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Location Classification of Nonstationary Sound
Sources Using Binaural Room Distribution Patterns

Jwu-Sheng Hu, Member, IEEE, and Wei-Han Liu

Abstract—This paper discusses the relationships between the
nonstationarity of sound sources and the distribution patterns
of interaural phase differences (IPDs) and interaural level dif-
ferences (ILDs) based on short-term frequency analysis. The
amplitude variation of nonstationary sound sources is modeled
by the exponent of polynomials from the concept of moving
pole model. According to the model, the sufficient condition for
utilizing the distribution patterns of IPDs and ILDs to localize
a nonstationary sound source is suggested and the phenomena
of multiple peaks in the distribution pattern can be explained.
Simulation is performed to interpret the relation between the
distribution patterns of IPD and ILD and the nonstationary
sound source. Furthermore, a Gaussian-mixture binaural room
distribution model (GMBRDM) is proposed to model distribution
patterns of IPDs and ILDs for nonstationary sound source location
classification. The effectiveness and performance of the proposed
GMBRDM are demonstrated by experimental results.

Index Terms—Head-related transfer function (HRTF), inter-
aural level difference (ILD), interaural phase difference (IPD),
sound source localization.

I. INTRODUCTION

T HE task of localizing a sound source using multiple mi-
crophones has been developed for years [1]. Among var-

ious kinds of techniques, methods that are based on the auditory
system of humans or other animals using two microphones are
one of the introduced approaches in this research field.

The sound waves reaching a human listener are influenced by
the listener’s body, as well as by the acoustic environment. The
way that the human body modifies the incident sound waves
is specified by head-related transfer function (HRTF), or by
head-related impulse response (HRIR) [2]–[4]. The HRIR is a
measure of impulse response from the sound source to eardrums
in an anechoic room [5]. The HRTF is the Fourier transform of
the HRIR [6]. The HRTF varies with the sound source location,
and many localization cues based on the HRTF have been in-
vestigated. For example, the interaural level differences (ILDs)
and the interaural phase differences (IPDs) are major cues for
localizing a sound source, especially for azimuth localization
and these cues can be extracted from the HRTF [7].
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Brungart et al. concluded that ILDs play an important role
in localizing sound sources near the head [8]. The IPD can
be estimated by cross-correlation functions [9] or generalized
cross-correlation methods [10], [11]. However, based on an as-
sumption that head and ears are symmetrical, the sound source
presented at a median plane should produce no interaural dif-
ference. Therefore, interaural difference cues are insufficient for
localizing the elevation of a sound source in the medium plane.
Moreover, any sound source that falls on a “cone of confusion,”
as Woodworth called it [12], may lead to constant IPDs and
ILDs.

Cues of spectral modification are very important for
elevation localization and front-back discrimination [13]–[17].
Generally, these elevation localization methods assume a flat
sound source spectrum or one that is known in advance.
However, these assumptions are not suitable for real appli-
cations [13]. Another significant localization ability of the
human auditory system is distance localization. Research
works indicated that many possible cues exist for distance
localization (e.g., overall sound source intensity and energy
ratio of direct to reverberant sound [7], [18]). However, the
former can only be employed for relative distance localization
and the later is strongly influenced by the reflections in an
indoor environment [7]. Therefore, sound source localization
in three-dimensional environments using binaural information
remains an open research topic.

Early experimental results for HRTF were principally ob-
tained in anechoic rooms using the maximum-length sequence
(MLS) method [19]. Hence, conventional studies of HRTF
mainly concentrated on the steady-state response from a sound
source to the eardrums caused by human body. Only a few
studies addressed the issue of localizing a sound source in a
reverberant room [14], [20]. However, for most sound source
localization applications, the environments are reverberant and
natural sounds are highly nonstationary [13]. These two factors
could induce transient response and significantly influence the
localization cues. Gustafsson et al. analyzed how reverberation
can distort time-delay estimation [21]. Shinn-Cunningham et
al. showed that HRTFs are altered by reverberant sound in a
classroom [22], [23] and the reverberation can cause temporal
fluctuation in short-term IPDs and ILDs [22]. These studies
suggest that the performance of general methods of sound
source localization based on a set of HRTFs measured in
anechoic rooms with stationary sound sources could be limited
because of the nonstationarity of natural sound, reverberation,
and short-term frequency analysis. On the other hand, the work
by Shinn-Cunningham [25] showed human listeners can adapt
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to a reverberant environment, resulting in a better sound source
localization performance than that in an anechoic room.

Recent work showed the benefit of temporal fluctuation phe-
nomenon of IPDs and ILDs to sound source localization [26],
[27]. Rather than eliminating the influence of the fluctuations,
these studies attempted to describe the fluctuations using sta-
tistical models and use them to classify the locations of sound
sources. The work by Nix and Hohmann [26] investigated lo-
calization cues of IPDs and ILDs exhibiting temporal fluctu-
ation phenomena when sound sources are nonstationary and
short-term frequency analysis, such as short-term Fourier trans-
form (STFT), is utilized. In their work, distribution patterns of
IPDs and ILDs were applied as location models to classify the
azimuth and elevation of a sound source. Further, Smaragdis and
Boufounos [27] also used the wrapped Gaussian model for the
distribution pattern of relative magnitude and phase of the cross
spectra in a reverberant room. Instead of estimating the azimuth,
elevation or distance of sound source, the works of [26], [27]
tried to build models for the distribution patterns and differen-
tiated the location of sound source from modeled locations by
using classification methods.

This study attempts to discuss how the amplitude variation
of nonstationary sound sources could influence the distribution
pattern of IPDs and ILDs when STFT is utilized. To simplify the
description, distribution patterns of IPDs and ILDs are called
binaural room distribution patterns (BRDPs) in remainder of
this work. Although the nonstationarity of a sound source
could be tested in many different domains [28], this work only
considers the amplitude variation. The idea of moving pole
model [29], [30] is employed to model the nonstationary sound
sources; consequently, the amplitude variation is modeled as
an exponent of polynomial. Based on this model, it can be
shown that BRDPs depend on the content of the nonstationary
source signals. The dependency is analyzed to explain the
phenomenon of multiple peaks in the BRDPs.

Since the BRDPs can contain multiple peaks, a modeling
method that deals with complicated distribution patterns is
needed. This work adopts Gaussian mixture models (GMMs)
[31] to model BRDPs (called Gaussian-mixture binaural room
distribution model (GMBRDM)). Based on GMBRDM, this
work can classify the sound source from one of the modeled
locations using the pattern classification method. Because the
GMBRDM is a linear combination of the phase difference
GMM and the magnitude ratio GMM, a method is proposed
to obtain the optimal weighting of the linear combination to
enhance the classification ability. Additionally, because BRDPs
contain information on direct paths and reflections, classify
the location of a sound source in the azimuth, elevation and
distance using the proposed GMBRDM is possible.

The remainder of this paper is organized as follows. The next
section discusses how the nonstationary sound source could
influence the IPD and ILD and a simulation of a simplified
environment is performed to verify the discussion. Section III
presents the formulation of the proposed GMBRDM. The
experimental results are shown in Section IV and, finally, the
conclusions are drawn in Section V.

II. RELATION BETWEEN THE NONSTATIONARY

SOUND SOURCE AND THE BRDP

A. IPDs and ILDs of Nonstationary Sound Source

A linear time-invariant (LTI) room acoustic channel is repre-
sented by a tapped finite impulse response (FIR) model

(1)

where denotes sound signal emitted into the channel,
denotes the signal received by the ear, and is the coefficients
of the FIR model for the room impulse response (RIR) from
sound source to an ear. Without loss of generality, the non-
stationary input signal is assumed to be a complex exponen-
tial signal with frequency and nonconstant amplitude . To
model amplitude variation of a sound source, the amplitude of
the complex exponential signal is assumed as time varying

(2)

where represents the sampled frequency of an
-point STFT, is a integer between , and

is a phase value between . For such an input, the corre-
sponding output is

(3)

Take the N-point STFT at frequency

(4)

Since the analysis in this work assumes the signal is a com-
plex exponential signal at one sampled frequency, the window
function is omitted to simplify the expression. By denoting

and as the signals received by left and right ears,
respectively, and and are the STFT of and

, the ratio between and is

(5)

where and are the coefficients of FIR channel models,
and , from the sound source to the left ear and the right

ear, , . The
FIR model of a room impulse response can be obtained through
various approaches; for example, by real measurement in a room
or by simulation. However, the derivation in this work is suitable
for general FIR models, not specific ones.



684 IEEE TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 17, NO. 4, MAY 2009

Therefore, the IPD, , and ILD, , between
and are

and

(6)

where denotes the phase value. Note that the operation of
nature logarithm is taken for computing the magnitude ratio.
As shown in (6), the phase difference and magnitude ratio be-
come content dependent when STFT is utilized and is non-
stationary.

B. Modeling the Nonstationary Sound Source Using Moving
Pole Model

To analyze how nonstationarity of a sound source influences
the IPD and ILD, a parameterized model for nonstationary
sound is needed. Based on the studies of modeling the nonsta-
tionary sound source in [29] and [30], a nonstationary sound
source in an analysis window can be expressed as a sum of
moving pole models. In this work, the idea that approximate

as an exponent of polynomial is utilized [30]

(7)

where is the degree of the polynomial, is the coefficient
of the polynomial, and denotes the sampling frequency. To
simplify the analysis, we omit the terms of , as proposed in
[30]. Although omitting the higher order term would restrict the
flexibility of the model; however, for the following STFT based
analysis, this work assume that it is possible to find a suitable
parameter of and to fit the amplitude variation. Hence,
is modeled as

(8)

Substituting (8) into (5) yields

(9)

Through the same procedure, one can have

(10)

Fig. 1. Simulation configuration.

and the ratio between and becomes

(11)

Consequently, the IPD and ILD are

and

(12)

By observing (12), this study finds that the IPD and ILD values
depend on the coefficient of the FIR models and the value of

. The FIR models correspond to the location of sound source
and listener, and the value of corresponds to the slope of the
nature logarithm of , which is the trend of amplitude variation
of the sound source.

C. Content Dependency of BRDPs Obtained From
Nonstationary Sound Source

To verify the proposed analysis, a simplified simulation envi-
ronment (Fig. 1) is assumed (Although the simplified environ-
ment is utilized as an example here, the following discussion
of the relationship between BRDPs and nonstationary sound
sources can be applied to general cases).

As depicted in Fig. 1, the only cause of reflection is
the infinite wall located at . The two microphones
are located at m m m and
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Fig. 2. Histograms of IPDs and ILDs of the first sound source. (a) The his-
togram of IPDs of the first sound source. (b) The histogram of ILDs of the first
sound source.

m m m and the sound source
is located at m m m . The models
from the sound source to the microphones are simulated by
the image method [32] with sound speed m/s and
sampling rate Hz. The wall is assumed to be rigid,
which means the reflection coefficient is 1. Therefore, the
parameters of the FIR models are mostly determined by the
geometrical relation among the sound source, microphones,
and the wall. Two different sets of sound sources are input into
the simulation model to show the content dependency of IPD
and ILD histograms. For the first set of sound source, the value
of is uniformly distributed between [ 500,0]. The IPDs
and ILDs at a frequency of 140.625 Hz are computed 1000
times. Fig. 2 presents the histograms, which can represent the
probability distribution, of IPDs and ILDs. The second set of
sound source is similar to the first one, except the value of
is uniformly distributed between [ 500,200]. Note that the
value of is 0 for all simulation in this section; however, since

Fig. 3. Histograms of IPDs and ILDs of the second sound source. (a) The his-
togram of IPDs of the second sound source. (b) The histogram of ILDs of the
second sound source.

is eliminated in the derivation of (12), changing this value
would not influence the simulation results. The histograms are
illustrated in Fig. 3.

The simulation results in Figs. 2 and 3 demonstrate that,
when the sound sources are nonstationary, the IPD and ILD
histograms depend on the content of the source signal. There-
fore, conditions of the nonstationary sound source must be
designed such that the BRDPs can be utilized for localization.
In view of the discussion above, the sufficient condition is that
the distribution of of the sound source must be stationary
to make the sound source applicable for localization. Care
must be exercised when using IPDs and ILDs obtained from
nonstationary sound sources for sound source localization to
avoid performance degradation.

D. Formation of Peaks in the Distribution Patterns of IPDs

As shown by the simulation in Section III-A, the distribution
patterns of IPDs exhibit multiple peaks. This phenomenon also
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Fig. 4. Relation between the value of � and the IPD.

appears in empirical results in real environments, as illustrated
in the previous work [33]. The derivation result of (12) can be
adopted to explain this phenomenon.

According to (12), there are several possible reasons to form
peaks in the distribution patterns of IPDs. First, if of a sound
source is concentrated at a certain value, a peak in the histogram
will result. An example is a stationary sound source. For a sta-
tionary sound source, for all measured frames, which
makes IPD a fixed value, resulting in a peak in the distribution
pattern.

Second, the term in (12) decreases as increases
when is positive. This means the weighting of the reflection
part in the channel model is reduced and the influence of the
direct path is increased. Hence, when exceeds a certain level,
the measured IPDs can be approximated as

(13)

where and are propagation delay of the direct path
from the sound source to microphones. Based on (13), the phase
difference caused by direct paths from a sound source to mi-
crophones is emphasized and can dominate the measured IPDs.
Since the IPDs are approximately the same for all exceed a
certain level, a peak can be formed in the distribution pattern.
This derivation explains why some previous research results
of IPD-based time delay estimation suggested utilizing speech
source onset to improve the accuracy [24]. On the the contrary,
when is negative, the value of increases with . In
this case, the influence of the direct path is suppressed and the
reflections can dominate the measured IPDs.

The second simulation in Section II-C is utilized to interpret
the relationship between and the IPD (Fig. 4).

In Fig. 4, as , the value of IPD approaches 0, which
is the phase difference caused by the direct paths from the sound
source to microphones. On the other hand, when ,
the value converges to 1.1, representing the phase difference in-
fluenced by wall reflection. It is then easy to understand why

Fig. 5. Relation between the value of � and the ILD.

there are two peaks at 0 and 1.1 in Fig. 3(a). Generally, reflec-
tions appear later in the propagation model than direct paths,
meaning that a negative value of is required to emphasize
the effect of reflections. Consequently, the more the wall or
boundary absorbs the energy of sound source, the more negative
value of is required to emphasize the effect of reflections.

E. Formation of Peaks in the Distribution Patterns of ILDs

There are two major reasons to result in peaks in the dis-
tribution patterns of ILDs. First, if the of a sound source
is concentrated at a certain value, it would result in a peak in
the ILD distribution pattern. However, ILDs behave quite dif-
ferently than IPDs when is either large or small. Based on
the similar derivation of (13), when is larger than a certain
level, can be approximated by

(14)

Therefore, the relationship between ILDs and is approxi-
mately linear (with a slope of ) when
is larger than a certain level. Hence, if the slope is 0 (meaning

), it will cause a peak in the ILD histogram. Similar
to IPDs, when is smaller than a certain level, the influence of
the direct path is de-emphasized and the reflection part starts
dominating the measured ILDs. Fig. 5 shows the simulation re-
sults for the relationship between the value of and the ILD.

In Fig. 5, when , the measured ILD is about 0
because the simulation sets and

. This results in a peak at 0 in the histogram, as shown
in Fig. 3(b). In addition, when , the measured ILDs
change linearly with the value of , resulting in a flat area in
Fig. 3(b).

F. Location Classification of Nonstationary Sound Source
Using BRDPs

As mentioned in the Introduction, classifying the location of
sound sources presented at median plane or on a “cone of con-
fusion” is difficult when only IPDs and ILDs of direct paths
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are utilized. However, sound sources at different locations can
propagate through different reflections and with the property of
nonstationary sound source discussed above, the nonstationary
sound can result in distinguishable distribution patterns. Con-
sequently, it is possible to classify the location of the sound
sources in the azimuth, elevation, and distance using BRDPs.

III. GMBRDM FOR NONSTATIONARY

SOUND SOURCE LOCALIZATION

As discussed in Section II-C, if the environment and head
position are unchanged and the distribution of of the sound
source is stationary, using BRDPs to classify the locations
sound sources is possible. Sections II-D and II-E also show
that BRDPs can be non-Gaussian and contain multiple peaks.
Consequently, modeling these distribution patterns as a simple
distribution pattern (such as a single Gaussian distribution) can
eliminate important details. However, utilizing a high-resolu-
tion normalized histogram to model the distribution pattern
requires considerable memories. In this paper, GMMs are
employed to model BRDPs (called the GMBRDM) to reduce
the memory requirement through parameterization.

A. Training Procedure of the Proposed GMBRDM

Let and denote the phase difference
and magnitude ratio obtained at frame , respectively, for con-
structing GMM at frequency , , which means

frequencies are utilized to construct the model. The phase dif-
ference and magnitude ratio GMMs are defined as the weighted
sum of and mixtures of Gaussian component densities

(15)

(16)

where ,
. and are the

weighting of ith mixture, and and are
the Gaussian density function. Notably, the mixture weights
must satisfy the constraints

and (17)

The terms and represent the parameters of and
component densities

and (18)

where

denotes the phase difference
mixture weight vector with
dimensions ;

denotes the magnitude ratio
mixture weight vector with
dimensions ;

denotes the phase difference
mean matrix with dimensions

;

denotes the magnitude ratio mean
matrix with dimensions ;

denotes the phase difference
covariance matrix with
dimensions ;

denotes the magnitude ratio
covariance matrix with
dimensions .

The parameters and in (18) can be estimated by the
EM algorithm [31], [34] which guarantees a monotonic increase
in the model’s log-likelihood value. By denoting the training
sequence length as , the iterative procedure can be divided
into the expectation step and maximum step

1) Expectation step:

(19)

(20)

where and are poste-
riori probabilities.

2) Maximization step:
a) Estimate the mixture weights:

(21)

(22)

b) Estimate the mean vector:

(23)

(24)
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c) Estimate the variances:

(25)

(26)

The EM algorithm is sensitive to the choice of initial model.
A good choice of initial model results in a lower number of it-
erations of the EM algorithm. K-means based methods are fre-
quently used for determining the initial model parameters. This
work utilizes an accelerated K-means algorithm proposed by
Elkan [35] to find the initial value of and . The initial
values of and are set to and

, respectively. The variances of Gaussian all components
are initialized as 1.

The proposed GMBRDM at each location is defined as the
linear combination of the phase difference GMM and the mag-
nitude ratio GMM

(27)

where , and represent the weighting factors. The
values of and can be chosen arbitrarily. However,
poor choices of these parameters would lead to a poor clas-
sification result. This work provides a method to determine
these parameters based on the sum of the correlation values
among locations of the phase difference GMM and magnitude
ratio GMM. It uses the sum of correlation of IPDs’ GMMs,

, and the sum of correlation of
ILDs’ GMMs, , among dif-
ferent locations. If the IPDs’ GMMs among different locations
have higher correlation, it means they are more similar to each
other and the chance to discriminate them is considered lower
(so does the ILDs’ GMMs among different locations). Conse-
quently, the GMMs with higher correlation should lead to lower
weight, since the ability to discriminate is considered lower
under this circumstance, and vice versa. Under this principle,

and are determined by the following formula:

(28)

where and are the dimensional random
vectors in the operation ranges, and

and

...
. . .

...
...

. . .
...

...
...

...

with dimension

In addition

(29)

(30)

and

(31)

where and denote the total selected numbers of
and .

The values of and can be obtained by solving (28) as

(32)

(33)

The proofs of (32) and (33) are shown in the Appendix.

B. Testing Procedure of the Proposed GMBRDM

The location of a sound source is classified by finding the
maximum a posteriori probability from GMBRDMs for a given
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Fig. 6. Layout of the experimental environment.

observation sequence. Since the GMBRDMs are location de-
pendent, finding the most possible GMBRDM of a given test
sequence also gives the most possible location classification

(34)

where and
are the phase difference and mag-

nitude ratio computed from the testing sequences denoted as
and , and denotes the testing sequence length.

The probabilities and could be selected
as since the probability in each location is equally likely
for a blind search. Moreover, because the probability densities

and are the assumed same and conditionally
independent for all location models, the localization rule can
be recast as

(35)

IV. EXPERIMENTAL RESULTS

The experiment is performed in a laboratory filled with
common furniture and equipment. Fig. 6 shows the layout of
the environment.

Fig. 7. Dummy head adopted in the experiment.

The laboratory area is m and room height is 3
m. The recording equipment comprises two B&K 4935 array
microphones, a B&K 2694 conditioning amplifier, and an
Azova DAQP-16 analog-to-digital converter. The microphones
are mounted in the ears of a dummy head, as depicted in Fig. 7.
The distance between the dummy head’s ears is 0.16 m. Fig. 6
illustrates the location of the dummy head. The ears of the
dummy head are placed 1 m above the floor.

The sound source is a recording of a female reading a book in
Mandarin (Here, we assume the distribution of of the speech
signal remains identical during training and testing procedure.).
The sound source is generated by a loudspeaker. Received sig-
nals are sampled at 8000 Hz, and the STFT window is 512 sam-
ples. For each experiment, the sound source is played at each lo-
cation to obtain the training sequence to establish GMBRDMs.
Training sequence length is set to 400 and testing sequence
length is set to 100, with a shift of 80 samples between
each frame. Hence, 4-s data are utilized for training, and 1-s
data are utilized for testing; note that the training sequence and
the testing sequence are nonoverlapping word sets. Since this
work attempts to classify the sound source location, the testing
sequences are always generated from one of the trained loca-
tions. Six significant frequencies of the sound source, which are
250, 484.4, 578.1, 734.4, 796.9, and 1140.6 Hz, are selected in
all experiment. Note that the number “six” is obtained form em-
pirical results. Generally, add more significant frequencies im-
prove the localization performance at the expense of more com-
putational load. These frequencies are obtained by observing
the major peaks of average spectrum of sound source. There-
fore, each Gaussian model has six dimensions . For each
location, testing is performed 100 times to acquire the correct
rate. In this experiment, if the location of a sound source is clas-
sified to the nearest trained location in the database, it will be
regarded as a correct one.

The first experiment tests the ability of azimuth classification.
In this experiment, distances between the sound source and ears
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TABLE I
AVERAGE CORRECT RATES OF AZIMUTH CLASSIFICATION AT EACH DISTANCE

TABLE II
AZIMUTH CLASSIFICATION AT THE DISTANCE OF 2.0 m

AND THE NUMBER OF MIXTURES IS 25

are fixed at 1, 1.2, 1.4, 1.6, 1.8, and 2 m. For each distance, the
azimuth of sound source moves from 60 , 30 , 0 , 30 , to
60 to test the average correct rate of azimuth classification. The
elevation of sound source is set the same as that of the ears (1 m).
Different numbers of mixtures are utilized. Table I shows the
average correct rate of azimuth classification at each distance.

As shown in Table I, when the distance between the sound
source and ears is 1 m, meaning that the sound source close
to the dummy head, the performance of only one mixture is
roughly the same as those of high numbers of mixtures. When
the sound source is close to the dummy head, the influence of
direct path propagation is much more significant than that of re-
verberations. Consequently, the BRDPs are influenced less by
the reflections and can be modeled using a single Gaussian dis-
tribution model. However, as distance between the sound source
and ears increases, the influence of reflection is becoming sig-
nificant and leads to complex BRDPs. The benefit of adopting
multiple mixtures is apparent at a long distance, such as 2 m,
where the correct rate increases with the number of mixture.
Table II shows the detail of classification at the distance of 2.0 m
and the number of mixtures is 25. One hundred trials were taken
for sound source at each angle, and the entry in Table II repre-
sents the number estimated for each angle. It is shown that at
azimuth of 60 , a great deal of misclassification occurs at 0
while for the case of 0 , none of the trials is misclassified to

60 . The testing sequence is much shorter than the training se-
quence. This result indicates that at shorter sequence, the model
at 60 could be similar to the one at 0 but not vice versa.

The histogram of IPDs measured with frequency 250 Hz at
60 and 0 are illustrated in Fig. 8 as an example to explain

the cause of this result. As shown in Fig. 8, besides the peak
at the phase difference around 1.2 rad, the histogram of IPDs

Fig. 8. Histograms of IPDs measured with frequency of 250 Hz. (a) At azimuth
of �60 . (b) At azimuth of 0 .

obtained at 60 also contains peaks at the phase difference
around 0 rad, which is overlapped with those in the histogram of
IPDs obtained at 0 . When the testing sequence is much shorter
than the training sequence, the measured IPDs may only con-
centrates around 0 rad and result in classification error.

The second experiment tests the capability of the proposed
GMBRDM for distance classification. In this experiment, the
azimuth is fixed at 60 , 30 , 0 , 30 , and 60 . At each az-
imuth, the distance between the sound source and ears changes
from 1, 1.2, 1.4, 1.6, 1.8, to 2 m to acquire average correct rates.
The sound source height is adjusted to 1 m. Table III shows the
average correct rates for distance classification at each azimuth.

Because the relationship between the sound source and ears
meets the criterion of far-field, the IPDs of direct path at the
same azimuth and different distances are approximately iden-
tical theoretically. The ILDs of direct paths generate only rela-
tively a slight difference between distant locations. Thus, mod-
eling these BRDPs using a single Gaussian component can lose
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TABLE III
AVERAGE CORRECT RATES OF DISTANCE CLASSIFICATION AT EACH AZIMUTH

TABLE IV
AVERAGE CORRECT RATES OF ELEVATION CLASSIFICATION AT EACH AZIMUTH

important details caused by reflections and result in poor local-
ization results. As listed in Table III, the average correct rates
when only one mixture is employed are clearly lower than those
with a high number of mixtures. This experimental finding is be-
cause the proposed GMBRDM can represent the details of the
BRDPs for superior modeling results.

The third experiment tests the elevation classification perfor-
mance of the proposed GMBRDM. In this experiment, distance
between the sound source and ears is 2 m and the azimuth is
fixed at 60 , 30 , 0 , 30 , and 60 . At each azimuth, the el-
evation of the sound source changes from 1 m, 1.25 m, to 1.5
m (or 0 , 7 , to 14 , approximately) to acquire average cor-
rect rates. Table IV lists experimental results. Experimental data
show that GMBRDM with a large number of mixtures can prop-
erly model the BRDPs at different elevations.

V. CONCLUSION

This paper investigates the relationship between nonsta-
tionary sound sources and the BRDPs when STFT is utilized.
Firstly, the amplitude variation of the nonstationary sound
source is modeled as an exponent of polynomial based on the
concept of moving pole model. This model explains the content
dependency of the BRDPs. Moreover, the sufficient condition
for utilizing BRDPs to classify the location of nonstationary
sound source is identified. The phenomena of multiple peaks
in the distribution patterns are analyzed. The related derivation
shows that using simple distribution, such as a single Gaussian
distribution, is not suitable for modeling these distribution
patterns. Therefore, a GMBRDM is proposed to model the
BRDPs for classifying the locations of nonstationary sound
sources. Experimental results display that the proposed GM-
BRDM can discriminate between the azimuth, elevation, and
distance of the sound sources. Notably, the correct rates in
experimental results do not monotonically increase with the
number of Gaussian mixtures. This experimental finding is
because the proposed GMBRDM can be influenced by the

initial condition selected and the complexity of BRDPs varies
with sound source locations. However, the initial condition of
the GMM remains an open research topic in the field of pattern
recognition and statistics. A more appropriate method to obtain
the initial values of GMBRDM could improve the performance
of proposed method further. Moreover, the proposed method
is unsuitable for unknown or changing environments since the
relationship between BRDPs and the sound source locations
can only be obtained using empirical data. Prediction of this
relationship requires further research.

APPENDIX

Proofs of (32) and (33).
The problem is formulated as

(A1)

According to the constraint, set . Then, the cost
function becomes

(A2)

Setting the first derivative with respect to be zero gives

(A3)
Therefore

(A4)

(A5)
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