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Abstract

During the last century, modular forms and modular curves played important roles in the
developments of number theory. Shimura curves are natural generalizations of classical
modular curves. The arithmetic properties of automorphic forms and Shimura curves are
particularly important in modern number theory. Our aim isto study the arithmetic properties
of automorphic forms and automorphic functions on<Shimura curves. The work in this
dissertation is a starting point.

Due to the recent work of Yifan Yang, if the Shimura curve is of genus zero, then one can
express its automorphic forms in terms of the solutions of the associated Schwarzian
differential equation. This provides a concrete space of automorphic forms. We then can do
explicit computation on the spaces to study the arithmetic properties of automorphic forms
and functions. Therefore, the main question is how to find the Schwarzian differential

equations.

In this thesis, we determine the Schwarzian differential equations for certain Shimura
curves of genus zero. As a byproduct of study on automorphic forms on Shimura curves, we
also obtain several algebraic transformations of ,F;-Hypergeometric functions. This
discovery is achieved by interpreting Hypergeometric functions as automorphic forms on
Shimura curves.
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Chapter 1

Introduction

During the last century, modular forms and modular curves played important roles in
the developments of number theory. A reason of this fact is:because of the connection
with the moduli space of elliptic curves, and that the elliptic curves, being algebraic
curves of the smallest positive.genus, are related with many non-trivial Diophantine
problems in number theory. -For-example; the.arithmetic properties of-elliptic curves
are essential in. Andrew Wilesproof of Fermat’s Last Theorem. Shimura curves are
natural generalizations of classical modular curves. Similar to the classical modular
curves, Shimura curves are moduli spaces of certain abelian surfaces with.-quaternionic
multiplication.- The arithmetic properties of Shimura curves are particularly important
in modern number theory. Our aim is to study the arithmetic of automorphic forms and
automorphic functions on Shimura curves. The work in this dissertation is a starting
point.

A Shimura curve is a quotient space of the.upper half plane h'= {7 : C : Im(7) >
0} obtained by certain quaternion order. More precisely, welet K be a totally real
number of degree n and B be a quaternion algebra over K that splits exactly at one
infinite place, that is,

B®gR~ M(2,R) x H* !,

where M (2, R) is the algebra of 2 by 2 matrices over R and H is Hamilton’s quaternion
algebra. Up to conjugation, there is a unique embedding ¢+, from B into M (2,R).
Given an order O of B, we let O be the group of the elements of reduced norm 1 of
O. Then the image I'(O) = 1, (O') under the embedding ¢, is a discrete subgroup of
SL(2,R), and hence there is a group action of I'(O) on § by the usual fractional linear

transformations .
a b at + a b
(C d> T = m, <C d) (S F(O)

When B # M(2,Q), we denote by X (O) the Riemann surface I'(O)\h. This is the so-
called Shimura curve associated to O. In the case of B = M (2,Q), the compactified
curve I'(0)\(h UPL(Q)) by adjoining cusps is the classical modular curve.

When B # M (2,Q), an automorphic form of weight k& on I'(O) is a holomorphic



function f : h — C such that

f (IZ) = (er+d)" f(7), V7 € b, (£]) €T(0).

For the classical modular forms, i.e., the case of B = M(2,Q), we need additional
conditions on cusps.

Even though it is true that many theoretical aspects of classical modular curves can
be extended to the case of Shimura curves, to the best knowledge of the author, it is not
true for explicit methods. In the case of classical modular curves, many problems about
modular curves can be answered using Fourier expansions of modular forms or mod-
ular functions involved, and there are many explicit methods for constructing modular
functions, modular forms and computing their Fourier expansions. In fact, because the
Fourier coefficients of a normalized Hecke eigenform. on congruence subgroups are
identical with the eigenvalues of Hecke operators, one can compute the expansions of
Hecke eigenforms without actually constructing them..Howeyver, unlike their classical
counterpart, Shimura curves do not have cusps and hence automorphic forms or auto-
morphic functions on'Shimura curves do not have Fourier expansions. Because of this,
as far as we know, there have been very few explicit methods to construct automorphic
forms and automorphic functions-on Shimura curves. Also, any method for classical
modular curves that uses Fourier expansions can not possibly be extended to the case
of Shimura curves. Therefore, the question is how to_construct automorphic forms on
Shimura curyes with Taylor series at a CM-point.

Recently, Yang [33] had a breakthrough for constructing automorphic forms on
Shimura curves. In the work of Yang {33], he proposed a new method to study automor-
phic forms on Shimura curves of genus zero, in which automorphic forms are expressed
in terms of solutions of Schwarzian differential.equations. He then demonstrated how
to compute Hecke operators explicitly on these automorphic forms. Moreover, since
Schwarzian differential equations that with exactly 3 singularities are essentially hy-
pergeometric, this approach leads to many identities among hypergeometric functions
by interpreting the hypergeometric functions as autemorphic forms on Shimura curves.
This was the main theme of my joint-paper with Yang [24], the author [22] also gave
more examples of algebraic transformations of hypergeometric functions to illustrate
the role Shimura curves play in proving these identities.

Due to the results of Yang [33], once the Schwarzian differential equation for a
Shimura curve of genus zero is determined, we can study the arithmetic properties of
the automorphic forms on this Shimura curve as ¢-series, where ¢ is a generator of
the field of functions on the Shimura curve of genus zero. Because of the importance
of Schwarzian differential equations in explicit methods for Shimura curves, one of
the main goals is to determine Schwarzian differential equations for as many Shimura
curves as possible. Especially, we are most interested in the Shimura curves attached
to Eichler orders of the indefinite quaternion algebras over Q and their quotients by
Atkin-Lehener involutions.

We denote by X£’ () the Shimura curve obtained by an Eichler order of level N
in an indefinite quaternion algebra defined over Q of discriminant D. (When D = 1,
the curve X{ (V) is the classical modular curve Xo(N).) Let Wp n be the group



of all the Atkin-Lehner involutions w,,, of X (N). In this dissertation, let us focus
on the Shimura curves X’ (N)/G, quotient by some subgroup G of Wp n, D > 1.
We will determine the Schwarzian differential equations for certain Shimura curves
XP(N)/Wp,n of genus zero.

In order to determine the Schwarzian differential equation for a given Shimura
curve, we will first compute the defining equations of Shimura curves over @, and then
construct coverings, we can find the coverings between Shimura curves. These rela-
tions will help us determine the Schwarzian differential equations. The key ingredients
for determination of the equations of Shimura curves are the Cerednik-Drinfeld theory
of p-adic uniformization for Shimura curves, and the Jacquet-Langlands correspon-
dence. The Jacquet-Langlands correspondence gives a bijection from automorphic
representations on X’ (NN) and certain modular representations on Xo(DN). This
tells us the isogeny class of a given Shimura;curve which is an elliptic curve defined
over Q. The Cerednik-Drinfeld theory. gives us the information of the bad reductions
of Shimura curves, and then we can determine the isomorphism class of the given
Shimura curve.

For the rest of this dissertation, we.will first say.a few words about quaternion al-
gebras, Shimura curves and then-introduce my recent work of automorphic forms on
Shimura curves. In Chapter-2;-we-introduce quaternion algebras, quaternion orders,
Shimura curves;-automorphic forms and automorphic functions on-Shimura curves.
In Chapter 3, we briefly recall some. basic.and useful properties of the Eichler or-
ders of levels(D, N), the Shimura curves X’ (IV), automorphic forms on X (N),
the Cerednik=Drinfeld theory of p-adic uniformization for Shimura curves, and the
Jacquet-Langlands correspondence.

In Chapter 4, we provide the connection between the automorphic forms on Shimura
curves and the Schwarzian differential equations. Also; we will work out Schwarzian
differential equations for certain Shimura curves X&’ (N)/Wp 1 of genus zero. As ap-
plications of the‘arithmetic of automorphic forms on Shimura curves of genus zero, in
Chapter 5, we compute Hecke operators 7}, with prime p.on X}*(1)/W14 1 and use
numerical computation to obtain Ramanujan-type series for the curve X}*4(1)/ Wiy ;.
This gives a numerical evidence to Yang’s.conjecture.in [32].

Finally, in Chapter 6, as a byproduct of the study on arithmetic properties of au-
tomorphic forms, we obtain some algebraic transformations of 5 F3-hypergeometric
functions.

For the future studies on the arithmetic of automorphic forms on Shimura curves
of genus zero, we plan to determine the coordinates of CM-points on Shimura curves.
The CM-points on Shimura curves correspond to abelian surfaces with endomorphism
algebra equal to a matrix algebra of degree 2 over an imaginary quadratic number field.
Another application is related to the Ramanujan-type formulae for Shimura curves.
Moreover, a main future work is to generalize Yang’s result. One restriction of Yang’s
approach is that the genus of the Shimura curve has to be zero. That is, it is not known
how to express automorphic forms on Shimura curves using solutions of Schwarzian
differential equations when the genus is positive. We will try to extend Yang’s method
to higher genus cases. Elkies [6], Greenberg, Voight [11, 28, 29, 30] also introduced
many methods to do computations on the arithmetic of the Shimura curves X (N),
X0 (D7) which is associated to a quaternion algebra defined over a totallyreal number



field F', or the Shimura curves arising the arithmetic triangle groups. For instances, they
compute CM-points on the Shimura curves, determine the system of Hecke eigenvalues
by using the Jacquet-Langlands correspondences. Another furure work is to generalize
their results.




Chapter 2

Quaternion algebras and
Shimura curves

In this chapter, we will briefly recall some basic definitions and properties of quaternion
algebras, especially quaternion-algebras over a local field or number field. Then we will
define the Shimura curves. Most-of the materials are taken from the references [1, 26].
From now on, we let /X be a field with characteristic not 2.

2.1 Quaternion algebras

2.1.1 Quaternion algebras and quadratic forms

A quaternion algebra B over a field K is a central simple algebra of dimension 4 over
K, or equivalently; there exist 7,7 € B and a,b € K™ so that

B=K 4 KitKj+Kij, i*=a,j*=b,ij=—ji.
In such case, we denote by (%b) the quaternion algebra B, which has canonical K-

basis {1,4, 7, ¢j }. Familiar examples are Hamilton’s quaternions H = (%) and the
matrix algebra M (2, K) = (%).

Theorem 2.1.1. If a quaternion algebra B over K has a zero divisor, then it is iso-
morphic to M (2, K).

According to Theorem 2.1.1, if a has a square root o in K then the quaternion
algebra B has a zero divisor h = « — 4, and B is isomorphic to the 2-by-2 matrix
algebra. Hence, if K is an algebraically closed field, then the only structure of K-
quaternion algebra is the matrix algebra.

Notice that an element h in a quaternion algebra satisfies a monic polynomial over
K of degree less than 2. Therefore, any quaternion algebra B is provided with a unique
K-linear anti-involution : B — B,

- , . . . . a,b
h=ag— a1t —asj —asziy, ifh =ag+ a1t + asj + asij € (K)



This map is called the conjugation. The reduced trace, and reduced norm on B are
defined by - -
tr(h) =h+h, and n(h)=hh,

respectively. We remark that tr(h) = 2h and n(h) = h?, if h lies in the center K. If
B = M (2, K) then the reduced trace and reduced norm of an element h € B are the
trace and the determinant of h. These maps tr and n lead to a nondegenerate symmetric
K-bilinear form on B, which is given by tr(zg). In other words, the quaternion algebra
B is a quadratic space with the quadratic form given by the reduced norm of B.

Recall that a quadratic space with a quadratic form () is said to be isotropic if there
is a non-zero element x so that Q(x) = 0. We have the following facts.

a,b
K

Theorem 2.1.2. For a quaternion algebra B = ( ) over K, the following are

equivalent.
(1) B is isomorphic to M (2, K):.
(2) B is not a division quaternion algebra.
(3) B is isotropic as a quadratic space with the reduce norm.
(4) The quadratic form az*—-by?* represents 1.
(5) If F =i (\/b), then a is an element of Npyk (F).
Denote By by the pure quaternion space, By = {z € B : tr(z) = 0}.

Theorem 2.1.3. Let B and B’ be two quaternion algebras over K. Then B is isometric
to B’ if and only if By and B{, aredisomorphic. Equivalently, the/quaternion algebras

(%(b> (a;’(b/> are isomorphic if and only if the quadratic forms

az’ 4+ by’ — abz? and o'z + by < a'blz?

are equivalent over K.

2.1.2 Automorphism theorem

Theorem 2.1.4. (Noether-Skolem Theorem)

Let L, L' be two commutative K-algebras over K contained in a quaternion alge-
bra B over K. Then all K-isomorphism from L to L' can be extended to an inner
automorphism of B. The K -automorphisms of B are all inner automorphisms.

Remark 2.1.5. An inner automorphism of B is an automorphism given by k +—
hkh=1, for some invertible element h of B. Therefore, according to the Theorem
2.1.4, the automorphism group of the quaternion algebra B, Auty (B), is isomorphic
to B* /| K*.



Corollary 2.1.6. For all separable quadratic algebras F over K contained in B, there
exists an element 0 € K> such that

B=F+Fu, u?=60andum=o(m)u,

where o denotes the non-trivial K-automorphism of F'. In this case, we use the symbol
{F,0} to denote the quaternion algebra B.

Remark 2.1.7. Let 0 : F — L be a nontrivial K-automorphism of L. Then there
exist u € B* so that umu™1 = o(m), for all m € F. The fact t(u) = 0 implies that

u? = 0 € K. In this way, we realize B as B = {F,0}, moreover, B = (%b) =

{K (i), 0}.

2.2 Orders and Ideals

As the fractional ideals in anumber field, there is a similar theory for ideals in a quater-
nion algebra. Let R be aDedekind domain and K be its field of fractions. An R-lattice
of a K-vector space V' is a finitely-generated R-module contained in V. A complete
R-lattice A of V"is an R-lattice Aof V such that K @ p A =~ V.

Example 2.2.1. We consider the cases in the quaternion algebras and quadratic num-
ber fields.

1. Let Ayv= R+ Riand Ay = R+Ri +Rj + Rij. Then they areboth R-lattice
of H and A5 is complete.

2. Given R =17, K = Q. Let V. = Q(\/m) and A be its number-ring, where m is
a square-free integer. Then \ is a complete lattice.

Definition 2.2.1. Anideal of a quaternion algebra B is a.complete R-lattice in B. If
an ideal of B is also awing withunity, it is called an order: Moveover, we say that I is
aleftideal of O if OI C I; I isarightideal of Oif IO C I.

Definition 2.2.2. A maximal order of B is an order that is not properly contained in
another order of B. An intersection of two maximal orders of B is called an Eichler
order.

Now if an ideal I is given, we can define two orders associated to /, the left order
of I,
O¢(I)={h e B:hl CI},

and the right order of 7,
O,(I)={heB:IhCI}.

Definition 2.2.3. An ideal I is said to be two-sided if Oy(I) = O,.(I), said to be
integral if I is contained in both Oy(I) and O,.(I). If O¢(I) and O, (I) are maximal
orders, then I is called a normal ideal.



An element z of a quaternion algebra B is called to be integral over R if R[x]
is a R-lattice of B. For instance, the element ¢ in the classical quaternion algebra
H = Q+ Qi + Qj + Qij is an integral element but /2 is not. Actually, we have a
useful criterion to determine whether if an element is integral or not.

Lemma 2.2.2. An element of a quaternion algebra B is integral if and only if its
reduced trace and norm are in the ring R.

Also, we have an equivalently definition of an order of a quaternion algebra.
Proposition 2.2.3. Let B be a quaternion algebra over K.

1. O is an order of B if and only if O is a ring of integral elements in B which
contains R and K -basis for B.

2. Every order is contained in a maximal order.

The second proposition is followed from the first one and Zorn’s Lemma. From
this proposition, we can see that an integral ideal is‘an ideal whose elements are all
integral elements:

There are also the analogueof the norm of an ideal, and the discriminant of an order
as in the algebraic number theory. The inverse of [ is defined to be

I ={he€ A:InI C I},

which is also.an ideal. The norm of I, n(I); is the R-fractional ideal generated by
{n(z) : x € L}=The dual I* of I is

I* ={h e A:te(hI) C R}.

The discriminant of an order @ is Do = n(O*)~ 1. If I is a left ideal of O, then the
discriminant of [ isgiven by D; = n(I*)~1n(I).

Proposition 2.2.4. We have the following properties.:
(1) II7* C Oy(I) and I7*T € O, (1).
(2) The square of discriminant of O, D%, is equal to the ideal over R generated by
{det(tr(z;x;)) : 1 <i,j <4,2;,2; € O}.

In particular, if O has free basis {e1, ea, €3, €4} over R, then D?Q is the principal
R-ideal det(tr(e;e;))R.

(3) If an order O is contained in the other order O, then Do divides Do:. There-
fore, Do = Do is and only if O = O'.

(3) If I is a left ideal of an order O, then D; = n(I)*De and

D? = {det(tr(z;z;)) : 1 <i,j <4, 2;,2; € I}.



Example 2.2.5. (1) The discriminant of the order M (2, R) is R.

(2) Consider the two orders
O=7Z+7Zi+Zj+ Zij

and o
14+t+5+1

O'=2+7i+7j+7 5

in the quaternion algebra (%) It obvious that O C O’ and

D%, =475 16Z = Do.

In the case of the quaternion algebra B = M (2, K). One can identify B with the
endomorphsim ring of some vector space over /<. To'be more precise, let V' be a vector
space over K with basis. {ey, es}. Then with respect to.this basis, M (2, K) is viewed
as End(V). Given a complete R-lattice A in V, we can see that

End(A)=+a € End(V) : aA C A}

is a maximal order in End(V").~Conversely, fora given order O in End(V'), we can
associate an R-module
A={ae;:ae€0,i=1,2},

which is a complete R-lattice, to the order O contained in End(A).

Proposition 2.2.6. If R is a principal ideal domain, then each maximal order in
M (2, K) is conjugate to the maximal order M (2, R).

2.3 Quaternion Algebras over Local Fields

For alocal field K, there are at most 2 non=isomorphic structures of quaternion algebras
over K. If K = C, there is only one C-quaternion algebra, namely, the matrix algebra
M (2,C). For the Archimedean local field R, a quaternion algebra over R is either
isomorphic to M (2, R) or the quaternions of Hamilton H. If K is non-Archimedean,
then a quaternion algebra over K is isomorphic to exactly one of M (2, K) or the
unique division quaternion algebra over K.

Theorem 2.3.1. (Frobenius Theorem)
Let D be a division ring containing R in its center of finite dimension over R. Then D
is isomorphic to H, the Hamiltonian quaternion.

Hence, Frobenius’ Theorem tells us that a quaternion algebra is either isomorphic
to M(2,R) or H.



2.3.1 Quaternion algebra over non-Archimedean local fields

For a non-Archimedean local field K, we let R be its ring of integers and 7 be a fixed
uniformizer with respect to the valuation v.

Theorem 2.3.2. There is a unique division quaternion algebra over K and it is iso-

morphic to (%), where K (+/€) is the unique unramified quadratic extension of K.

While h # 0 in (%£), the map w given by w(h) = $v(N(h)) defines a discrete
valuation on the division algebra (7%:2).

K
We define the Hasse invariant of the quaternion algebra B by

o(B) = {1, if B~ M(2,K),

—1, otherwise.

In the case of K = Q,,, the Hasse invariant-of 5. — (%—Zz) coincides with the Hilbert
Symbol (a, b),, which is given by

1, . if ax® + by® reprents 1,
(CL, b)p = :
=1, = otherwise.

Remark 2.3.3. From the Theorem-2.3.2, for p=> 2, we have a simple description for
the Hilbert symbol (a,b), with p { a,

1, ifpfab,
By =
W {(%) pta,plb,

where <5> is the Legendre . symbol.

2.3.2 Ordersin B = (%)

For the unique division quaternionalgebra B = (”7(9), it is known that there is a unique
maximal order in B, which is the associated valuation ring

O={heB:wh)>0t={heB:N(h) € R}
with respective to the valuation w. The ring
P={heB:wh)>0}
is a two-sided prime ideal of O.

Theorem 2.3.4. Let B = (5F), F = K(y/¢), and O be the unique maximal order in
B. Then we have

1. P = Oj is a prime ideal of O and P?> = Or.

2. O = Rp + Rpj, where Ry is the ring of integers of F.
3. The discriminant of O is Do = ©*R.

10



2.3.3 Ordersin M (2, K)

If B is isomorphic to M (2, K), then as the consideration in the end of the last section,
each maximal order in B is then isomorphic to the maximal order M (2, R). We now
let B=M(2,K).

Theorem 2.3.5. 1. A maximal order of M (2, K) is conjugate to M (2, R) by an
element of GL(2, K).

2. The set of all maximal orders is in one-to-one correspondence with the cosets
K*GL(2,R)\GL(2, K).

The standard coset representatives of X *GL(2, R)\GL(2, K) are

T C

0 7('b )
where @ and b are fonnegative integers and ¢ are from R/ (), subject to the condition
that v(c) = 0 if a,b.>0. Therefore, we can classify all maximal orders of M (2, K) as

-1
T c Tl c b
<O ﬂb) M(Q,R)(O 71_1,), a,b >0, c mod 7’y

and ¢ ¢ TR ifa,b > 0.
Also, wecan classify the Eichler order of M (2, K).

Proposition 2.3.6. (Hijikata)
If O is an orderin M(2, K,), then'the followings are equivalent.

1. O is an Eichler order.

2. There exists a unique pair.of maximal orders O1.and Oy such that O = O1NOs.

3. There exists n € Z~ such that O is-conjugate to (ﬂf?R g).

4. The order O contains R ® R as a subring.

We say that an Eichler order in M (2, K) is of level 7" R, if it is conjugate to

R R
( " \%&5 r?ow introduce the graph of maximal orders of M (2, K). First, let us define the
distance between the maximal orders. Let 01, O be two maximal orders in M (2, K).
If the the Eichler order O = Oy N Os is of index ¢™ in O, then the distance between
O and Oy is d(O1,03) = n, where q is the cardinality of the residue field R/7R.
Equivalently, the Eichler order O N Os is of level 7" R.

Now we define a graph X of maximal orders as follows. The vertices of X are the
maximal orders and two vertices are connected by a simple edge if the two correspond-
ing maximal orders has distance 1.
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Example 2.3.7. Ler Oy = M (2, R),

and

2
We have Og N Oy = ( B }R?),
00m02:(§ﬂ1‘§)g(7§?§)7 OlﬂoQ:(WIEﬂ-}?)g(RR)'
1

R R
Thus, d(Oo,01) = d(Oy,02) = 1 and d(O1,02) = 2. The subgraph of these
maximal orders is

02 Ol
r—o—0

Qo

Proposition 2.3.8. The graph X is'a (q + 1)-regular tree, i.e., a connected graph
without cycles, and every vertex has precisely q 4 1 edges connecting to it.

Example 2.3.9. Here is a subtree of maximal orders of M (2,Qs). The matrix c next
to a vertex means that the maximal order is o= M (2, Zs)av.

(51 (32)

(64) (04)

Remark 2.3.10. We remark that the group PGL(2, K) acts on the coset K*GL(2, R)\GL(2, K),
and hence acts by conjugation on the tree of maximal orders in M (2, K). In particular,
PGL(2, K) acts on the set

£ = {(O01,04) : d(Og, O3) = n}

double transitively.

2.4 Quaternion Algebras over Number Fields
We now recall the classification of quaternion algebras over a number field. Let K be

a number field, and R be its ring of integers. Let K, be the local field with respect to
the place v of K.
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2.4.1 Classification of quaternion algebras over number fields

A quaternion algebra B over a number field K is said to be ramified at v if B, =
B ® K, is a division algebra. Otherwise, B is unramified or split at v.

Theorem 2.4.1. (Hasse-Minkowski Theoerm)
The quaternion algebra B is isomorphic to M (2, K) if and only if B splits over K,
for all places v.

Let Ram(B) denote the set of ramified places of B. The reduced discriminant of
quaternion algebra B is the integral ideal of R defined by

DB = H v.

vcRam(B)

In the case that R is a principal ideal domain; we identify the ideal Dp with its gen-
erator, up to units. Thatis, DgR = H v; for a'quaternion algebra over Q, its

veRam(B)
discriminant is an integer.
The structure.of the quaternion-algebra B is uniquely determined by the reduced
discriminant.

Theorem 2.4.2. (1) The cardinality of Ram(B) is finite and even.

(2) Two quaternion algebras B and B’ over K are isomorphic if and only if Ram(B) =
Ram(B").

(3) Given afinite set S of noncomplex places.of Isuch-that |S| is even, there exists
a quaternion algebra B over K such that Ram(B)= S.

Therefore, if an even number of noncomplex places of /s given, then there exists
one and only one K<quaternion algebra that ramifies exactly-at these places.

Example 2.4.3. (1) A quaternion algebra over a number field K is isomorphic to
M (2, K) if and only if Dg/= R.

(2) The discriminant of the quaternion algebra (%) is 2, since the values of the

Hilbert symbols are

_]-7 lfp = 00, 27
(71771);0 = .
1, ifp> 2.

For any field F, if B is a quaternion algebra over F' and L is a field extension of
F. We say that L splits B if L ® B is isomorphic to M (2, L). We now address
the conditions that when a K-quaternion algebra B splits over a quadratic extension
field ' of K. In particular, one has the conditions for which quadratic fields can be
embedded into B. Let L be a finite extension field over K, and w be a place of L.
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Proposition 2.4.4. Let B be a quaternion algebra over K. Then B splits over L if and
only if B, splits over Ly, for any place w|v of L. In particular, if L is a quadratic field
over K, then followings are equivalent:

(1) The field L is a splitting field for B.

(2) The field L is K-isomorphic to a maximal subfield of B containing K.
(3) There exists an embedding over K form L into B.

(4) Each place v in K that ramifies in B is not totally split in L.

For a totally real number field K, if a quaternion algebra over K is ramified at
all the real infinite places, we say that the quaternion algebra is definite; otherwise,
it is indefinite. We remark that a quaternion algebra B is definite if and only if the
quadratic form given by < z,y >=tr(z%) on B is positive definite.

2.4.2 Orders in a quaternion algebra over a number field

Let I be an ideal in a'quaternion-algebra B over a number field /. Denote R, the
ring of integers of the localization- K. "Then the localization I, = [ ®z R, is an
ideal in the quaternion algebra-B;-and [ = B 0 ([[, I,)- As the Hasse-Minkowshi
theorem for quaternion algebras, being a maximal order or an Eichler order satisfied
the local-global correspondence.

Proposition 2:4.5. Let A be a lattice in-a quaternion algebra B'over K. For any finite
place v in Kywe consider a local lattice' Ly, in B,,. Assume that L, =\, for almost
all v. Then there exists a lattice N in.B-such that A, = Ly, for all finite places v.

This gives us-the existence of-a global lattice:

Note that if O is a maximal order of B, it is clear that O, is again an order in B,, and
(Do) = Do, . We have a eriterion for global maximal:orders from the information
of the discriminants.

Proposition 2.4.6. An order O is maximal in the quaternion algebra B if and only if
its discriminant is equal to the discriminant of B, i.e, Do = Dp.

Example 2.4.7. In the quaternion algebra B = (%), the order O = 7. + Zi +
Zj + Zij is a maximal order with Do = 2 = Dp.

Definition 2.4.1. The level of a global Eichler order is the unique integral ideal No in
R sothat No, is the level of each O,, at each finite place of K. Thatis, No =[], No,.
If R is a PID, we identify the ideal No with its generator, up to units.

Unlike the case of maximal orders, we have no explicit classification of Eichler
orders in terms of the discriminant.

Proposition 2.4.8. If O is an Eichler order of level N, then the discriminant of O is
Do = DgN.
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Lemma 2.4.9. Let I be an ideal in B and its right order O = O,(I) is a maximal
order. Then there exists an element h,, € B}, so that I, = h,O,,.

Corollary 2.4.10. For an ideal I in B, the right order of I, O,.(I), is maximal if and
only if the left order of I, Oy(I), is maximal.

Corollary 2.4.11. If I is a normal ideal in B, then 71 = O,.(I) and I1=* = O,(I).

2.5 Shimura Curves

We are now in a position to introduce Shimura curves. In this section, we will focus on
the indefinite quaternion algebras over totally real number fields, especially the rational
field.

Assume that K is a totally'real number field and take.a quaternion algebra B over
K that splits exactly at one infinite place among all.infinite places. That is, B ®g R ~
M (2,R) x HI:U~1 where His Hamilton’s quaternions. Notice that we have a natural
embedding from B.into B ®q R, we now-let i, - B — M (2, R) be the projection
onto the first factor. Let O be-an-order of B,

O £ {y € O=rn(y) =1}, 'and T(O) =i (OY).

Then I'(©) is.a discrete subgroup of SL(2, R) and hence it acts on the upper half plane
h = {7 :C:Im(r) > 0} by the usual fractional linear transformations.

We denote- X (O) the quotient space T'(@)\h (or T'(O)\hU Q U oo} if B =
M(2, Q)), which has a complex structure-as a compact Riemann surface. It is the so-
called Shimura curve associated to . In the case of the classical modular curve, the
associated quaternion algebra is the matrix algebra. B.= M(2,@) with discriminant
D=1

Example 2.5.1. () Let'B = M(2,Q). If O = M(2,Z); then T(O) = SL(2,Z)
and X (O) is the classicalmodular curve X (1)7= Xo(1). For the Eichler order
0= (%1%), X(0).is themodular curve Xo(N).

(2) Let O be the order Z + Zi + Zj + waﬁ'” in the quaternion algebra B =

Q
embedding i, : B — M(2,R) is given by

() = (2

ino(OY) = {(_O‘B g) com+pB=1, a,f€ Z[\/??]}.

(_1’3). The quaternion algebra is ramified at the finite places 2 and 3. An

and
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2.6 Signatures of Shimura curves

Recall that a nonidentity element v = (‘Z Z) of SL(2,R) is called parabolic, hy-
perbolic, or elliptic if 7 has one fixed point, 2 distinct points of P*(R), or a pair of
conjugate complex numbers, respectively. The points 7 fixed by -y are the roots of

e+ (d—a)T—b=0.

Hence, it can be simplified that y is parabolic, elliptic, or hyperbolic, corresponding
to whether [tr()| = 2, [tr(v)| < 2, or |tr(y)] > 2.

Definition 2.6.1. Let v be an element of T'(O).
1. The fixed point of a parabolic element is.called a cusp. We let e = oc.

2. The point T in the upper half-plane fixed by an elliptic element is called an ellip-
tic point of order ¢, where'e is the number of elementsin T'(O)/ £ 1 that fixes
7. In other words, e is the order of the isotropy subgroupof 7 in T(O)/ £ 1.

Note that cusps.can only appear when the quaternion algebra is M(2, Q). There-
fore, if B # M(2;Q), the quotient space T'(O)-\ b is a compact Riemann surface; if
B = M(2, Q), we compactify-the-Riemann surface I'(@) \'h by adjoining cusps.

Proposition 2:6.1. IfT'(O) has a parabolic element, then the related quaternion alge-
bra must be M(2, Q).

Proof. Let v € I'(O) be a parabolic €lement and / be the associated element in O1.
Then tr(h) = 2.0or —2, and N (h) = 1. Note that +1 are elements of O' and hence
+1 — h belong to O. Without loss generality, we may.assume that tz(h) = 2. Then
1 — h is an element has reduced trace 0 and reduced norm 0. /This means that the
quaternion algebra‘has a zero divisor element 1 — £ and henceit is isomorphic to the
2-by-2 matrix algebra over a totally real number field. The only possibility is the Q-
quaternion algebra M(2; @), for which splits at exactly one real place. O

For the curve X (O) with genus g, it is well-known that there exist hyperbolic
elements ay, ..., ag4, b1, ..., by, and elliptic or parabolic elements cy, ..., ¢, that
generate I'(O)/ + 1 with relations

la1,b1] ... [ag,bglc1 ... cr = 1, where [a;, b;] = aibiaflbgl.
We let (g;e1,...,e,) be the signature of the curve X (O). The number e; runs over
all I'(O)-inequivalent cusps and elliptic points. In particular, if a Shimura curve X (O)
has signature (0; e, ea, e3), we say that T'(O) is an arithmetic triangle group.

2.7 Automorphic Forms on Shimura Curves

Let X(O) =T(O) \ b be the Shimura curve associated to the order O in an indefinite
quaternion algebra B. In this section, we let k be a non-negative even integer.
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Definition 2.7.1. An automorphic form of weight k on I'(O) is a holomorphic func-
tion f : h — C such that

() = atse

forallT € handall (¢}) € T(0).

If f is meromorphic and k = 0, then f is called an automorphic function. More-
over, if the Shimura curve is of genus 0, an automorphic function is said to be a Haupt-
modul if it generates the field of automorphic functions on T'(O).

Remark 2.7.1. For the quaternion algebra B = M (2,Q), we also need additional
conditions at cusps. However, we do not consider the classical modular curves here, so
we need not to consider the cusps« The curves mentioned in the following discussions

are always concerned to be the quotient space related the quaternion algebra B #
M(2, Q) (if not be pointed out).

The automorphic forms of a given weight k form a complex vector space. We
denote it by S (T(O))or Sp(X(O))- It is easy to see that the weight 0 automorphic
forms on I'(O)/are exactly the constant functions. Using the Riemann=Roch Theorem,
one can figure'out the dimension formula'of S, (I'(O)).

Proposition 2.7.2. If the signature of X(O) is (g; €15 .., €;), then the dimension of
the space of automorphic forms of weight k on T'(©O) is

1, gy = 0
. \ lk:2>
dim S, (I'(O)) = fg— 1)(k_1)+z {g (1_ ;)J : ;k > 4.

J
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Chapter 3

The Shimura Curves X é) (N)

In this chapter, we will review some facts about the Shimura curves X (), which is
obtained by the Eichler order O(D, N) of level-/V in an indefinite quaternion algebra
over Q with discriminant D. Most of the materials are coming from [1, 4, 5, 15].

3.1 Eichler orders O(D, N'). and Shimura curves X’ (N)

Let B be a quaternion algebra over Q of diseriminant DD. According tothe proposition
2.4.5, for each positive integer N with-ged(D, N) = 1, there exists an Eichler order
of level N. We now give a characterizations of Eichler orders in a quaternion algebra
over Q.

Proposition 3.1.1. Let O be an order in a Q-quaternion algebra B of discriminant D.
Let N be a positive integer relatively prime to D. Then the following conditions are
equivalent:

(1) O is an Eichler order of level N.
(2) For each prime number, the localization Oy, 'is maximal if p { N, and is isomor-

Z Z
hic to the order b p) ifp| N.

(3) For each prime number, the localization Oy, is maximal if p | D, and is isomor-
. Ly Ly .
phic to the order (NZP Zp) ifptD.

Proposition 3.1.2. Let O be an order in a Q-quaternion algebra B of discriminant D.

(1) If O is an Eichler order with norm No with gcd(D, No) = 1, then its discrimi-
nant Do is equal to D No.

(2) If Do = DN is a square-free integer, then O is an Eichler order of level N.

18



(3) Let O and O’ be orders in B and they are conjugate. Then O is an Eichler order
of level N if and only if O’ is an Eichler order of level N.

Theorem 3.1.3. In an indefinite quaternion algebra over Q, there is only one Eichler
order of a given level N, up to conjugation. Moreover, such an Eichler order contains
a unit of norm —1.

We use the notation O = O(D, N) to indicate the Eichler order of level N in
an indefinite quaternion algebra over Q of discriminant D, where D, N are coprime
positive integers. In literature, sometimes, the order O(D, N) is said to be the Eichler
order of level (D, N'). We remark that when N = 1, the order O(D, N) is a maximal
order.

3.1.1 The Shimura curves X/”(\)

Note that Theorem 3.1.3 implies thatthe Shimuracurve X (@) attached to the Fuchsian
group defined from O = O(D, N) is only dependent on the discriminant D and the
level N. The curye X (Q) has a canonical model as a projectivecurve defined over
Q (Shimura [19]).. Here, we-use-the notation XOD () to denote the corresponding
Shimura curve.

Theorem 3.1.4. Let O be the Eichler order of level N in an indefinite Q-quaternion
algebra B with discriminant D. There is a projective-algebraic curve X (O) over Q
such that there exists an open immersion of Riemann surfaces

L(0)\ b = X(0)(C).
When D +# 1, this map is a biregular.isomorphism.

Therefore, the-curve X (O(D, N)) has a canonical model over @, we denote it by
XP(N). The notion of such Shimura curves generalizes that of the classical modular
curves X}(N) = X¢(N).

3.1.2 The Atkin-Lehner involutions-on X OD (N)

Like the theory of the classical modular curve, we can define the Aktin-Lehner group
of the curves X’ ().

For a compact Riemann surface X uniformized by a Fuchsian group I', the quo-
tient group of the normalizer of ' in GL(2,R)™ by T acts as automorphisms on X.
Here we let O = O(D, N) and take I' = T'(O), for convenience. To obtain such
automorphisms, we pullback to the order O in the (Q-quaternion algebra B.

For an integer m | DN with ged(m, DN/m) = 1, we then have an ideal I =
1,0 = Ox,, with I? = mO, for some x,,, € O with n(z,,) = m. Since O has a
unit of reduced norm —1, the norm 1 group O is equal to the conjugation x,, Ozt
Hence, z,,, gives an automorphism w,,, of Xo(D, N) with w2, = id. This is called
Atkin-Lehner involution associated to m.

The Atkin-Lehner group

Wp n ={wm :m | DN,ged(m,DN/m) =1}
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is an automorphism group of X& () associated to the the group Np+(O!)/Q*O,
where N+ (O') = {h € B* : hRO*h=! = O, n(h) > 0} is the normalizer of O in
the subgroup of B* collecting the positive reduced norm elements. The elements w,,
of Wp, n can be taken to be any generator of the only 2-sided ideal of reduced norm m
of O when m # 1. Hence the group Wp_p is isomorphic to (Z/27Z)", where r is the
number of prime factors of DN.

3.2 Optimal Embeddings

Let O be an order of a quaternion algebra B over the field K. Let F' be a quadratic
extension over K, and O be its ring of integers. For a given order A of Op, an
embedding of A in O is an embedding from F' into B such that ¢(A) C O; an optimal
embedding of A in O is an embedding from F into B:such that

(F)NO = ¢(A).

Welet £(O, A) = Ex(O4A) be the set of all optimal embeddings of the given quadratic
order A into the order O.

In the following discussion,-we are going to consider the optimal embeddings of
quadratic orders into a given Eichler order © = O(D, N ):

3.2.1 Optimal embeddings of quadratic orders into Q-quaternion
algebras

We first consider the case when B is a‘quaternion algebra over Q of discriminant D
and F = Q(v/dF) is a quadratic extension field over Q of disctiminant dr. We re-
call that there is an embedding from F into B-if and only if for any prime p in Q so
that Q, ® B 2 M(2;Q,), the prime number p does not completely split in F. In
other words, we have an embedding F' — B defined over @ if and only if the Leg-
endre symbol (‘%) # 1 if p ¥+D. Naturally, we'have an action of B* on the set

{¢ : F — B is an embedding defined over @} given by ¢" = h~1¢h, for any element
h € B*.

Proposition 3.2.1. Let ¢ : F' — B be an embedding defined over Q. For any element
h € B*, one has ¢ € £(O, ) if and only if p" € E(h~1Oh, A).

The following fact give conditions for the existence of optimal embeddings.

Lemma 3.2.2. Let B, be the division quaternion algebra over Q,, and O, be the
maximal order of By, If there exists an embedding from F), into B,,, we consider an
order Ay, in F,,. Then £(Op, Ap) is nonempty if and only if A, is a maximal order.

Proposition 3.2.3. Let O be an Eichler order of level N in the Q-quaternion aglebra
B. Let F be a quadratic number field such that there is an embedding from F into B,
and A be an order of conductor m in F. Then

(1) If (O, A) is non-empty, then gcd(D, m) = 1.
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(2) If N = 1 and B is indefinite, then £(O, A) is non-empty if and only if gcd(D, m) =
1.

Moreover, while B is an indefinite quaternion algebra, there is exactly one structure
of an Eichler order O = O(D, N) of level N with ged(D, N) = 1. The action of B*
on field embeddings gives an action of the normalizer of O in B* on £(O, A).

Corollary 3.2.4. Let O be an Eichler order in an indefinite Q-quaternion algebra B.
Let Np-(O) be the normalizer of O in B* and G be a subgroup of Np~(O). Then
the action of G on £(O,A) is an equivalence relation. Here, ¢,¢’" € E(O,A) are
G-equivalent if there is an element h € G such that ¢’ = h™' $h.

3.2.2 Optimal embeddings of quadratic orders into O(D, N)

In this subsection, we will count the the number of optimal embeddings of quadratic
orders into the Eichler.order O(D; N) of an indefinite Q-quaternion algebra of dis-

criminant D.
Let A = A(dgym) be an order of conductor myin the field = Q(v/dr), where
dr is the discriminant of the quadratic field F'. Denote by

V(D7N, dFam; O*) = #5(071\)/0*

the class number of O*-equivalent optimal embeddings of A in ©. In thelocal case, we
let v, (D, N,dg,m; O*) = HE(Oy, A,)/Oj denote the corresponding elass number,
where O, Ap ate the localization of O-and A at prime p, respectively.

Theorem 3.2.5. - Assume that there is an embedding of F' into B and ged(m, D) = 1.
Then
v(DyN,dp, m;OF)= h(dp, m) H vp(Dy N, dp,m;O™),
p|DN

where h(dp,m) is thedideal class number of the order’A.= A(dr, m), and the local
class numbers are given by

(1) Ifp | D, then vy(D, N, dp, m; OF) = 1— (dF)

P
(2) Ifp| N and p* { N, then
Ly (),
VP(D7N7dFam;O*){ +(P)7 lfp*m7

2, ifp|m

(3) Assume N = p"uy, with p{uy, v > 2. Write m = pFuy, with p { us.

(a) If r < 2k, then

k/2 k/2—1 ifk =0 d2
vp<D,N,dF,m;0*>={p P gk =0medz,

2ptk—1)/2 if k =1 mod2.
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(b) Ifr = 2k, then v,(D, N, dp, m; O*) = pF~1 (1 fp+ (g))
(c) If r =2k + 1, then

pr(m)7 lf dTF = 1a
Vp(DaNadva;O*): pka lf dYF :()a
0, if %F =—1.

(d) If r > 2k + 1, then
2¢P(m)7 if (dTF) =1,

V;D(DaN7dF7m;O*): |
0, otherwise.

Here, the function 1, is a mulfiplicative function given by

() = P Mt 1)
Yp(m) =1, if ged(m,p).= 1.

Corollary 3.2.6.If the integer-N-is-square-free, and assume that there exists an em-
bedding of F into B, gcd(m;D)="1, then the class number of optimal embeddings of
A into O can beexpressed as

0, if there exists p | N,p { m, (‘%F) =1,

V(DaN7dF7m;O*) =
{h(dp,m)2s+t, otherwise,

where s is the number of prime factors p of D so that pis inert in F' and t is the number
of prime factors.of N that splits.in F' or divides m.

3.3 Complex Multiplication Points on X7 (V)

When F' is an imaginary quadratic field, and assume that-F' embeds in the indefinite
Q-quaternion algebra B: Then, for any-embedding ¢ : F — B, the image of F'* in
B* \ Q* under ¢ has a unique'fixed point on the upper half-plane b.

To be more precise, it is known that two elements v, € GL(2,R) have the same
fixed points if and only if there exist real constants A # 0 and p so that 7' = Ay +pu- 1.
Now, if i, stands for the fixed embedding of the infinite (Q-quaternion algebra B into
M(2,R) and ¢ is an embedding from F into B, we then have precisely one fixed point
in b under the action of the set i, (¢(F™)). In this case, we denote 7, the fixed point in
h. It is a complex multiplication point (briefly, CM-point) on the associated Shimura
curve X.

Definition 3.3.1. Let A be an order of discriminant dn = m?dp in the imaginary
quadratic field F. A point 7 € XP (N) is said to be a CM-point by A or CM-point
of discriminant d, if it is fixed by i (¢), i.e. T = T4 on XP(N), for an optimal
embedding ¢ in E(O(D, N), A).

Remark 3.3.1. A point on X (N) is elliptic if and only if it is a CM-point by the ring
of integers Z[\/—1] or Z[(1 + v/=3)/2].
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3.3.1 The set of CM-points by an order

It is clear that there are many CM-points on the curve X’ (V). However, for a given
order A, the number of CM-points by A is related to the number of non-equivalent
optimal embeddings of A into the order O(D, N) and it is finite.

Proposition 3.3.2. Let ¢, ¢/ € E(O(D,N),A). Then 74 = T4 under the action of
I'(O(D, N)) if and only if ¢ is O(D, N)'-equivalent to ¢' or —¢', where —¢ is the
embedding defined by (—¢)(v/dr) = —o(\/dp).

Note that —¢(F) = ¢(F) and —¢(A) = ¢(A), hence ¢ and —¢ have the same
fixed point in h. Also, they are either simultaneously optimal or not.

Proof. May assume that ¢ is equivalent to ¢’. Suppose that h € O(D, N)! is the
element such that h=¢(a)h = ¢/ (@), foralbee€ F* \ Q*. Fixing a € F \ Q, let
Yhs 7> and 4" in T(O(D, N)) be the corresponding elements to h, ¢(a), ¢’'(«). Then
v '9n = 7' and henceiry = 4, 74, which'is T(O(D, N))-equivalent to the point
Tp-

Conversely, suppose that there exists 9,.€ I'(O(D, N)) so. that v, 1T¢ = Zz4'.
Write h € O(DyN)* as the-associated element to ;. Now, we choose o € F \ Q
with tr) (o) =0. Then both of ¢/(a) and-h ! ¢p(a) 1o fix the point 7« Considering the
elements v = Ggs(@()) and ¥ =77 (), one has the identity

Yl =M +p-l, A#0,peR.

By the assumption of trg (o) = 0, we can get that the constant x mustbe 0, since the
trace is QQ-linear and preserved by conjugation. The relation between determinants,

N (@) = det(y)'= A*det(") = N>Ng(a) and N§ (@) # 0,

implies that 7;, "y = +7/. That is, the embedding ¢’ is O(D, N)!-equivalent to ¢
or —ao. O

Lemma 3.3.3. If ¢ is an embedding from F into B, then'® is not O -equivalent to — ¢,
for any order O in B.

Proof. Suppose that ¢ is O'-equivalent to —¢. Fora fixed « € F—Q with tr(g (a) =0,
there is an element v € SL(2, R) such that

Y Voo (B(@))y = —ico(¢()).

Note that if we choose the element o with trace not 0 then the lemma hold by the prop-
erties of trace. Now we consider the associated quadratic forms. Since det(io (d(0))) =
Ng (a) > 0, we will get a contradiction. O

From above results, to count the number of CM-points by the order A is equiva-
lently to count the number of the non-equivalent class £(O(D, N), A)) under the action
of O(D, N)*. We now let CM(d,) denote the set of CM-points of discriminant dj,
up to O(D, N)*-equivalence. Also, we use the same notation CM (da ) or CM(A)
to indicate the set of the in-equivalent optimal embeddings of A into O(D, N). In the
stance, the optimal embedding corresponding to a point 7, means that the O(D, N)-
equivalent optimal embedding which fixes the point 7 € .
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Theorem 3.3.4. Fix A = A(dp) an order of index m in the the imaginary quadratic
field F which has discriminant dp.

#CM(dp) = #CM(A) = v(D, N, dp,m; O(D,N)*),

the class number of O(D, N)*-equivalent optimal embeddings of A in O(D, N) men-
tioned in Section 3.2.2.

3.3.2 Fixed points of Atkin-Lehner involutions

Regarding Atkin-Lehner involutions acting on X (N) as optimal embeddings, CM-
points arise in a natural way as fixed points of Atkin-Lehner involutions on X’ (V).

For a given involution w,,, we let h be its corresponding element in the order
O = O(D,N) with Oh = hO, n(h) = m. Assume that P € XP(N)(C) is a
fixed point of w,, on the curve X (N) and-7 € b representing for P. Then we have
ht = ur, for some u € @1. (Here, we use the notation &7 10 simplify the action of -y,
on 7 € h with v, € SL(2,R):) Therefore, we may assume that hz = 7 and tr(h) > 0,
by replacing —h by h if necessary. Since h fixes a pair of conjugate complex numbers
7 and 7, the field Q(h) containing-h-and Q is an imaginary quadratic field.

Observe that the conjugationf-of h generated the same principalideal Oh = Oh,
n(h) = m, and-tr(h) € Q. One has that h = uh, for.some u €O N Q(h). In
particular,

<47 itm =2,
u =< (3, ifm = 3,
—1, else.

Now let A be the quadratic order O(D;N)- N Q(h). It is clear that A contains the ring
Z[h]. Then fora given fixed point P € X (N) of w,,, we can associated 2 optimal
embeddings of R into ©(D;N), corresponding to & and /. Consider an embedding
u = v~ hy, whichis O(D, N )*-equivalent to h. If n(y) = 1, then u fixes 7, which
represents the same point P; if n(vy) = —1, then u fixes the point v(7) associated to
the point P, the complex conjugate point on. the'Shimura curve X (N). We can see
that P is a real point (i.e. P = P) if and onlyif h is O (D, N)*-equivalent to h.

Proposition 3.3.5. (Ogg [15]) Assume that m > 1 is a square-free exact divisor of
DN. Then the set of the fixed points of an Atkin-Lehner involution w,, on X (N) is

CM(—4) UCM(-8),  ifm=2,
CM(—m) U CM(—4m), ifm = 3 mod4,
CM(—4m), else.

We remark that in the case m is not square-free, the description of the fixed points
is complicated. In general, they will be a proper sunset of U2 4,,, CM(—4m / f ).

3.3.3 Fields of definition of CM-points

Let A be an order with discriminant d in the imaginary quadratic field F' = Q(y/—s).
Set I(A) be the group of the fractional invertible ideal classes of A, and Hy be the ring
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class field of A. By class field theory, we have the Artin isomorphism from I(A) to Hy
by [p] — Frob,, for all primes p of F' unramified in H,. Denote Q(P) be the number
field generated by the coordinates of the CM-point P € CM(d) on X (). Then we
have fundamental result due to Shimura, which is the so-called Shimura’s reciprocity
law.

Theorem 3.3.6. [19](Shimura’s reciprocity law) Let ® be the natural uniformization
map ) — IT'(O(D,N))\ b, T € b so that &(7) = P has CM by the order A. Then

(1) Hyn = F-Q(P).

(2) Let ¢ be the embedding A — O(D, N) corresponding to the point 7. Assume
that a € I(A) and o4 is the Artin symbol attached to a. Then action of the Galois
group Gal(Hy /F) ~ Pic(A) is given by

aa(P) = @(a”'7),
where a is some-element in O(D, N) with n(c).> Osatisfying the identity

#(@)O(D, N) = aO(D, N).

3.4 Signatures

Recall that the genus of a Shimura curve X is given by

g GriEh )

=&

where the sum runs through all elliptic points with e; being their respective orders.
Considering a normalization | [ dxdy/y*r for the hyperbolic area, from [17], the
formulae for the area (volume)and the genus of X (V) are

Vol (Xg'(N)) = % 1 (1—;> I1 <1+1>

and

o D
g<X5<N>>—1+W;;(11).

In particular, the total number of elliptic points of order 2 and 3, say v, and v3, are

given by
LI G (5) et

0, if4| N,
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and

vg = g (1_ (j»ﬂ[(“r (j)) if9f N,
0 if9 | N.

These can be obtained equivalently by counting the number of optimal embeddings
from the maximal order in the fields Q(v/—4) and Q(y/—3) into the quaternion order
O(D, N).

Note that the ramification points of this covering XP (N) — X (N)/(w,,) are
the exact fixed points of w,, on the curve X (N). Therefore, from the Riemann-
Hurwitz formula, we can deduce that the genus of the quotient curve X (N)/(w,,) is
equal to (g + 1)/2 — B,,/2, where g is the genus of X’ (N), and B,,, is the number
of the fixed points of w,, on X (N).

From Proposition 3.3.5, itiis easy to determine the number of elliptic points on
XP(N)/G for any subgroup G' of Wp x such that m is squarefree for any w,,, in G.

Lemma 3.4.1. [23]Let G be a nontrivial subgroup of the group Wp_ n of Atkin-Lehner
involutions on XP(IN) such that m is squarefree for any w,, € G. Then the only
possible orders of elliptic points-on XOD (N)/G are 2, 3, 4, and 6.

1. If wy € /Gy then the number of elliptic points of order2.on XP(IN) /G is

Y (#CM(—4m) + #CM(—m)) — #CM(-3) % if ws € G,

2 W €G ,m#1

[GI )oY (#CM(=4m) & #CM(=m)) S ifws ¢ G.

W, €G,m#1

If wy & G, then the number is (#CM(—4) +2A)/|G|, where Ais

D 0 (#CM(<4m) + #CM(—m)) — #CM(=3)" , ifws € G,

W €EG,m#1

> (HCM(=Am)d #CN(=m)) , ifws & G.

wm €G,m#1
(If —m is not a discriminant, we simply set #CM(—m) = 0.)

2. Ifws € G, then there are no elliptic points of order 3 on X (N)/G. If ws ¢ G,
then the number of elliptic points of order 3 is #CM(-3)/|G]|.

3. Ifwy & G, then there are no elliptic points of order 4 on X (N)/G. Ifws € G,
then the number of elliptic points of order 4 is 24+CM(—4)/|G|.

4. Ifws € G, then there are no elliptic points of order 6 on XP (N)/G. If ws € G,
then the number of elliptic points of order 6 is 24CM(—3) /|G|

Proof. The fact that only 2, 3, 4, and 6 can be the orders of elliptic points on X’ (N)/G
is well-known.

Let w,, € G. By Proposition 3.3.5, the fixed points of w,, consist of CM(—4),
CM(—m), or CM(—4m), depending on m. If m # 1,3, then points in CM(—4m)
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or CM(—m) are fixed only by w,,, and every other Atkin-Lehner involution other than
wy permutes them. Thus, there are totally |G|/2 points in CM(—4m) or CM(—m)
that are mapped to the same point in the covering X (N) — XP(N)/G. For points
in CM(—4), which constitute elliptic points of order 2 on X (N), they are also fixed
by ws. Thus, if wy € G, then there are 2#CM(—4)/|G| elliptic points of order 4
on XP(N)/G. If wy ¢ G, points in CM(—4) contribute another #CM(—4)/|G]
elliptic points of order 2 on X& (N)/G. For points in CM(—3), which are elliptic
points of order 3 on Xéj (N), they are also fixed by ws. If ws € G, then they become
elliptic points of order 6 on X’(N)/G and there are 24-CM(—3) /|G| such points. If
w3 ¢ G, then they remain elliptic points of order 3. There are #CM(—3)/|G| such
points. Summarizing, we get the lemma. O

3.5 Cerednik-Drinfeld Theory

In this section, we will review. the Cerednik-Drinfeld theory of the p-adic uniformiza-
tion for Shimura curves, which gives a description of the bad reduction of Shimura
curves XP(N). In the following, for fixed integers D and N, we will use X to denote
the Shimura curve X7 (NV).

Due to the moduli interpretation of Shimura curves, the curve X admit a canonical
model over Q. Following from-the work of Morita; éerednik, and Drinfeld, there
exists a proper integral model M = M(D, N)/Z of X which extends the moduli
interpretation to arbitrary schemes over Z and-it is smooth over Z[ﬁ]. It is known that
the curve X has good reduction only at the prime numbers p with p ¥ D&V, For a prime
divisor p of Dy the curve X/Q), defined over @, is a Mumford curve..By Mumford’s
theory, the curve X has a p-adicuniformization expressing it as a quotient of the p-adic
upper half planef),, by the action of a discrete subgroup-I' of PGL(2,Q,,). The theory
of Cerednik-Drinfeld provides an explicit description of this p-adic uniformization. It
describes X x Qas a quadratic twist of I" \ b, over Q,,.

In the following, ' we will also describe the connectionbetween Brandt matrices and
the bad reductions of X from the:theory of Cerednik-Drinfeld. Let us fix the nota-
tions K, K gnr, and Zgnr J‘as the unramified quadratic extension of Q,,, the maximal
unramified extension of Q,,, and the ring of integers of K", respectively.

3.5.1 The Cerednik-Drinfeld theory

Let p be a prime with p | D, and O = O(D/p, N) be an Eichler order of level N in a
definite quaternion algebra B’ defined over Q of discriminant D /p. Let Z(P) be the set

Z[1] and O) = O @ Z{P). Define Ly=0®" and
I, = {x ely: Ord,(n(z)) = 0 mod 2} .
Also, we letT'g = fO/Z(”)* and define

F+ :f+/Z(p)*
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Identifying the quaternion algebra B’ ® Q,, with the quaternion algebra M (2, Q, ), the
groups fo and f+ can be considered as discrete compact subgroups of GL(2, Q,) con-
taining the element (]8 2 ), and I'y and I' ;. can be viewed as discrete compact subgroups
of PGL(2,Q,). Then the quotients I'y \ b, and 'y \ b, exist. Moreover, let I' = I'y or
Iy, there exists a unique scheme Pr proper over Z,, such that the formal completion
of Pr along its closed fibre is canonically the quotient I" \ §,, over Z,. Note that the
scheme Pr is projective over Zj, and its generic fibre Xt is a smooth curve defined
over Q.

Theorem 3.5.1. (Cerednik-Drinfeld) There is an isomorphism over Z,, such that
X xQp2 ~ X%+,

where x is the character x : Gal(K,/Q,) — Aut(Xr, ® K),) defined by Frob —
wy, and X1>§+ is the quadratic twist of Xt by x.

3.5.2 Dual graph and bad reduction
Let A be the Burhat-Tits tree of SL(2,Q,), ie., PGL(2, Q,)/PGL(2,Z,), on which

PGL(2,Q,) acts in the usual manner. According to the Cerednik and Drinfeld’s result,
the special fiber of M ® Z, is_determined by a quadratic.twist by the finite graph
G =T} \ A with lengths. Geometrically; a vertex v-of the graph G is corresponding
to the irreducible rational component C,, of M,,, where M, is the closed fiber of M at
the prime p. An edge e of length £(e) connecting vertices v and v’ is corresponding to

an intersection point x of the component C,, and C',s locally at which

X,Y)/ (XY —p‘*(e))) :

Now, let us see'some properties of the graph G.

We first consider the finite graph Gy = Ty \ A with lengths. Let Iy, I, ..., I;, be
a completely representatives of the left ideals of O, and let-O; be the right order of I;,
i = 1...h. The vertices of the.graph G form the set Ver(Gy) = V, where V' collects
the right orders O;. The vertices. v; and-wg-are linked by an edge if and only if the
intersection of the corresponding orders @y and Oy is an Eichler order O(D/p, Np),
up to conjugation. Observe that the group I'; is a subgroup of index 2 of the group I'¢,
and the quotient group I'g/T"y is generated by 7, I"y, where -, is corresponding to an
element of O with reduced norm p. We can construct the graph G with lengths from
the graph Gy.

The vertices of the graph G are the set Ver(G) = V U V', where V' = ~,V with
v' = ~,v. There are no edges in G connecting 2 vertices from the same set V or V’.
Let ¢(v) be the weight of the a vertex v, and £(e) be the length of an edge e. One has
the following facts.

—~unr —~unr
M, xZ, /<~ Spec (Zp [

Proposition 3.5.2. For a given vertexv € V, letv' = ~yv € V.

1. The weight £(v;) of the vertex v; is equal to the half of the number of the units in
the corresponding order O;. That is ,

O*
g(’l)z) = #2 L,
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Furthermore, we have the equality £(v) = £(v").
2. The number of the edges e, with lengths {(e,,) joining v; and 1}§ coincides with

that of v and v;.

3. For all edges connecting to a vertex v, we have £(e) | £(v) and

(v
> de;erl,

eeStar(v)
if we let Star(v) be the set of all the edges connecting to the vertex v.

On the other hand, we can get the information of the graph G from the theory of
Brandt matrices. Let A = (a; ;) € M (h,Z) be the Brandt matrix attached to the order
O. The entry ay ¢ is the numberof the O} -left ideals of reduced norm p which are
equivalent to the the ideal I} 1, and the equality age/#O5 = ag/#O; holds for
every 4, k.

Proposition 3.5.3.. 1. The number of the edges e with given lengths {(e) joining v;
and v} is the number a;j..and

In particular, it always holds that
@; 5 vi) = aji[€(v;)-

2. For each row, we have
h
Z a;; =p+ 1.
j=1

These give us the information of the finite graph G" with lengths and thus we can
determine the special fibre M, when p'|"D:

When p | N, we have the'simpler result to determine the fibre M,. In summary,
when p | N, we let Iy, Io, ..., I, be'a completely representatives of the left ideals
of O(Dp, N/p), and let O; be the right order of I;, i = 1...h. Then the irreducible

components of M, meet at h points with thinkness #;91' ,i=1...h.

3.6 The Jacquet-Langlands correspondence

From the Jacquet-Langlands correspondence, we can see a connection between the
space of cusp forms on classical modular curves and the space of automorphic forms
on Shimura curves X (NV).

The definition of Hecke operators on the space of automoprhic forms on Shimura
curves X’(N) are the same as that of the classical modular forms. We assume that
O = O(D, N) is an Eichler order of level N in an indefinite quaternion algebra of
discriminant D. Now fix an imbedding ¢ : B — M (2, R).
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Definition 3.6.1. Let p be a prime withpt DN, and o € O be such N(«) = p. Then
for an automorphic form f(7) of even weight k on T' = T'(O), the action of Hecke
operator T, on f(7) is defined by

_ det v)k/2
Tp: f(T)HPk/z ! Z ((m__~_)d)kf(77)»
yeI\I't(a)T

where v = (2 5).

Hecke operators 7,, for general n with ged(n, DN) = 1 are more complicated.
As in the case of classical modular curves, there exists a basis of S;(O) consisting
of simultaneous eigenforms for all 7,,, with (n, DN) = 1. The Jacquet-Langlands
correspondence gives an isomorphism of Hecke.modules from Si(O(D, N)) to the
space of cusp forms of weight % and level-/N-which are new at all primes dividing D.

Now let S (D, N) stand for the space of automorphic forms of weight k on I'(O(D, N))
and simply S, (M) = Sp(1, M), the space of cusp forms of weight k& on I'g(M). De-
note by wy, = w,, (D, N)the Atkin-Lehner involutionin O(D, N): Then the Jacquet-
Langlands correspondence in-our-case can be stated as follows.

Proposition 3.6.1 ([12, 18, 33]).-.We have

Sk(D,N) ~ SP~""(DN) := @ €p Sp” (aD)!™
dIN m|

as Hecke modules, where
Snew(dD {f mt): f(1) € S,’Zew(dD)} g

and S}V (M) is the subspace.of newforms of Sy, (M). Moreoves, for a prime p | D, if
the action of the Atkin=Lehner involution w, (1, DN) on a normalized Hecke eigenform
fe S,?*”eW(DN) isaw,(1,.DN) f = e, f, then the actionof wy on the corresponding

automorphic form f € Si(D, N)is

A

According to the Jacquet-Langlands correspondence, we can see that each Hecke
eigenform f for T}, is with the same eigenvalues as the cusp form f.
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Chapter 4

Automorphic Forms in Terms of
Solutions of Schwarzian
Differential Equations

Let B be an indefinite quaternion-algebra of discriminant D over Q.- For an Eichler
order O of level N, (D,N) = 1, in B, we let X (IN) denote the Shimura curve
associated to, Q. For each divisor m of DN with (m, DN/m) = 1, we let w,, denote
the Atkin-Lehner involution on X’ (N)and Wp_  be the group of all Atkin-Lehner
involutions. Wesalso let the subgroup of IWp_n consisting of w,,, m|D;be denoted by
Wp.

Many properties and theories about classical modular-curves can be extended to the
case of Shimuraccurves. In the classical case, many results are relying on the Fourier
expansions of modular forms. However, because of the absence of cusps in the case
of general Shimura‘curves (D. # 1), it is not easy to.determine Taylor coefficients
of automorphic forms and functions.. Therefore, there have been very few results on
arithmetic of Shimura curves, and few methods to construct automorphic forms and
functions on Shimura curves. One of the few methods uses differential equations sat-
isfied by automorphic forms and automorphic functions. (See [2, 6, 33].) The idea is
that even though it is difficult to explicitly construct automorphic functions that can be
put into practical use, the Schwarzian differential equations associated to automorphic
functions in the case of Shimura curves of genus zero can often be determined us-
ing analytic information of the automorphic functions and coverings between Shimura
curves. Then one can use the solutions of the Schwarzian differential equations in place
of automorphic forms to study properties of automorphic forms.

From the result of Yang [33], every automorphic form on a Shimur curve X which
is of genus zero can be expressed by the solutions of Schwarzian differential equa-
tion associated to X. In view of the significance of Schwarzian differential equa-
tions, it is important to determine the Schwarzian differential equation for each of the
Shimura curves Xéj (N)/G, G < Wp, N, of genus zero. In [6], Elkies worked out
the Schwarzian equation on X$%(1)/Wrg, X34(1)/W14, and X33(1)/Wys. Bayer and
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Travesa [2] computed all the Schwarzian differential equations for the Shimura curves
X8(1)/G with G < Wg. In [33], Yang also gave Schwarzian differential equation on
X8(1)/Wg and X3°(1)/ W1 from the properties of the automorphic derivatives.

In this chapter, we will consider the cases X (N)/Wp when there exists a square-
free integer M > 1 such that X (M)/Wp has genus zero. The reason for this restric-
tion is that we need additional information from coverings between Shimura curves of
genus zero in order to completely determine the differential equations. (Note that in
[33], a covering between Shimura curves of different levels is also needed in order to
compute Hecke operators.) In the process, we also need work out equations for some
Shimura curves of genus one and hyperelliptic Shimura curves, which are useful in
determining the covering maps between Shimura curves. As a byproduct of our com-
putation of coverings X (N)/Wp — X&(1)/Wp, we can also determine the values
of Hauptmoduls at several CM-points.

In this chapter, we will describe a way: to.construct automorphic forms on Shimura
curves in Section 4.1 . The rest of this chapter is'organized as follows. In Section 4.2,
we determine all Shimura curves X (N)/Wp of genus 04N > 1. In Section 4.3,
we will find explieit coverings of X (N)/Wp. — XP(1)/Wp. The equations for
Shimura curves and the methods-to-obtain them given in [8, 9, 14] are important here.
The explicit coverings will be-usedlater. In Section 4.4, we will list the Schwarzian dif-
ferential equations for the selected Shimura curves. These results is mainly following
the preprint [23].

4.1 Automorphic Forms on Shimura Curves and Schwarzian
Differential Equations
Let ¢(7) be a non-constant ‘automorphic function on-a Shimura curve X. It is straight-

forward to verify that ¢'(7) is aimeromorphic automorphic formof weight 2 on X and
that the Schwarzian derivative

ITFrrEAs)

is @ meromorphic automorphic form of weight 4 on X. Thus, the ratio of {¢,7} and
t/(7)? is an automorphic function on X. In particular, if X has genus zero and ¢(7) is
a Hauptmodul, i.e., the function ¢ generates the field of automorphic functions on X,

then .
Q) =~ Q{t”(:)}Q

is a rational function of ¢. In literature [2], given a thrice-differentiable function f of z,
the function
{f 2}

C2f/(2)?

is called the automorphic derivative associated to f.

D(f,z2) :=
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Now the relation 2Q(¢)t'(7)? + {t, 7} = 0 can also be written as

7dt(7_)2t’(7)1/2 +QME (1)'/* =0.

1/2 1/2

In other words, if we consider ¢’ (7) is a solution of

the differential equation

as a function of ¢, then ¢'(7)

d2
@f + Q) f =0.

Definition 4.1.1. The differential equation d* f /dt>*+Q(t) f = 0 is called the Schwarzian
differential equation associated to t().

This differential equation is a Fuchsiandifferential equation. For each singularity,
there is a basis of local solutions of the form

(1 + a1z + agx + - )y

where e is the local exponent at the singular point. We also remark that this differential
equation can be regarded as_a normal form for all atomorphic differential equation
associated to the group I' with- X_= T! \ |, because it depends only on the chosen of

t(7).

4.1.1 Automorphic forms on Shimura curves of genus zero

The significance of Schwarzian differential equations can be seen from the following
result.

Proposition 4.1.1 ([33, Theorem 4]). Assume thata Shimura curve X has genus zero
with elliptic pointsa1y. .., 7. of orders ey, ... ey, respectively.. Let t(7) be a Haupt-
modul of X and set @y = t(7;), i = 1,...,r. For a positive even integer k > 4, then a
basis for Sk(X) is

Y2t T ()= a) TR =0 dy - 1,

j=l,a;#00
where dj, = dim S(X) and it is equal to 1 — k + 3% | & (1 - %)j

Moreover, the automorphic derivative )(t) satisfies some conditions.

Proposition 4.1.2. Assume that X has genus zero with elliptic points 11, ..., T, of
order e1, ..., e, respectively. Let t(1) be a Hauptmodul of X and set a; = t(7;),
i =1,...,r. Then the automorphic derivative Q(t) = D(t,T) is equal to
1 " 1—1/e? " B,
t) == —— Iy J
Q() 4 Z (t—aj)2 . Z f—(lj
j=1l,a;7#00 j=1l,a;7#00
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for some constants Bj. Moreover, if aj # oo for all j, then the constants B; satisfy

T T

;Bj = Z (aij + 3(1 - 1/e§)) = Z <a§Bj + %aja — 1/e§)> =0.

j=1 j=1
Also, if a, = oo, then B; satisfy

r—1 r—1

S=0 3 (B 0- 1) = j0-1e)

P

<

|
—

<

In other words, if we can determine the Schwarzian differential equation associated
to a Hauptmodul on a Shimura curve, then we can express automorphic forms of any
even weight & on this Shimura curve in terms of solutions of the differential equation.

Corollary 4.1.3. Let X be a Shimura curve of genus zerowith elliptic points Ty, . . .,
T, of order ey, ..., eg respectively. Let t(7) be a Hauptmodul of X and set a; = t(7;).
Suppose that {g1,4g2} is‘a basis for the solution space. of the Schwarzian differential
equation associated to't,

FL+QM)f=0.
Then a basis for Sy(X) is given-by

T

(o +0@)fe(ry ] @) —a) =2, j5 0, 00, - 1,

i=1,a;#00
for some constant C' € C.

This provides-a concrete space that we can use to study properties of automorphic
forms. For example, in [33], Yang devised a method to determine Hecke eigenforms
in the spaces of automorphic forms, expressed in terms of ‘solutions of Schwarzian
differential equations.

Now the upshot is that it is often. possible to"determine a Schwarzian differen-
tial equation without constructing a' Hauptmodul first. This is especially true when a
Shimura curve of genus zero has three elliptic points. This is due to the well-known
fact that a second-order Fuchsian differential equation with precisely three singularities
is uniquely determined its local exponents at the three points.

4.1.2 Hypergeometric functions as automorphic forms on Shimura
curves

In the case that the Shimura curve of genus 0 has exactly 3 elliptic points, since the
number of singularities of the differential equation is 3, the differential equation is es-
sentially a hypergeometric differential equation. Then one can express the automorphic
forms by using o F -hypergeometric functions.

To be more precise, when a Shimura curve has signature (0;eq,e2,e3), we let
T1, To, T3 be the three elliptic points corresponding to eq, eo, es. Since X has genus 0,
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there exists a unique Hauptmodul ¢ that takes values 0, 1, oo at 71, T2, 73, respectively.
According to Proposition 4.1.3, the functions ¢'(7)'/? and 7t(7)'/2, as functions of ¢,
satisfy the differential equation f” + Q(¢)f = 0, where

1/1-1/e? 1-1/é} By  Bs
t) =~ —
Q) 4( 2 Taoe)tT i
with ) . . )
By=-|-14+=+—=5 -5 By = —Bs.
(gt g ) S

The local exponents at 0, 1, oo are {1/2—1/(2e1),1/24+1/(2e1)}, {1/2—1/(2¢2),1/2—
1/(2e2)}, and {—1/2 — 1/(2e3), —1/2 + 1/(2e3) }, respectively. Therefore, the func-
tion ¢~ 1/2+1/(2e1) (1 — 4)=1/241/(2e2)4/(1)1/2, a5 a function of z, satisfies the hyperge-
ometric differential equation

00 +c—=1F —t(0 +a)(@+b)F =0, GZt%
with ) ) : .
a:(l ————— —>7 b=a+ —, RN b 1
2 e1 () es 3 €1

Combining this with Proposition 4.1.3, we see that every automorphic form on X can
be expressed in terms of hypergeometric functions:

Proposition 4.1.1 ([33, Theorem 9]). Assume that a Shimura curve X has signature
(05 e1, ea,e3)- Let t(T) be the Hauptmodul of X with values 0, 1, and oo at the elliptic
points of order ey, es, and es, respectively. Let 'k >4 be an even integer. Then a basis
for the space of automorphic forms of weight k-on-X is-given by

tikA=1/e0)/2} (1 ) thQs1/e2)/2} (gFl((l, b c;t) + Gt F (a1, ¢ t))k ,

J=0,..., k(1 —=1/e1)/2] + k(L= 1/es)/2)4 k(1 — 1/e3)/2] — k, for some
constant C, where for a rational number x, we let {x} denote the fractional part of x,

1 1 1 1 1
a=—-(1-———— — 1, b=a+ —, c=1-—
2 €1 €9 €3 €3 €1
and .
ad=a+ —, bV =b+ —, d=c+—
e] €1 €1

In [24], Yang and the author of the present paper obtained several new algebraic
transformation of 5 F}-hypergeometric functions by interpreting identities among hy-
pergeometric functions as identities among automorphic forms on different Shimura
curves. In chapter 6, we will introduce how we obtain algebraic transformations of
o F -Hypergeometric functions.
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4.1.3 Transformation laws of automorphic derivatives

For general Shimura curves, the following properties of Schwarzian differential equa-
tions and automorphic derivatives are very useful in determining the differential equa-
tions.

Proposition 4.1.4. [33] Automorphic derivatives have the following properties.
1. D((az +b)/(cz+d),z) =0 forall (¢}) € GL(2,C).
2. D(go f,2) = D(g, f(2)) + D(f,2)/(dg/df )*.

Proposition 4.1.5. [33] Let t(7) be a Hauptmodul for a Shimura curve X of genus
0. Let R(z) € C(z) be the rational function such that the automorphic derivative
Q(t) = D(t,7) is equal to R(t). Assume that v is an element of GL(2, R) normalizing
the order O associated to X and'let o be the automorphism of X induced by . If
ot (at+b)/(ct + d), then R(x) satisfies

(ad =~ bc)? ar+b\ _ R(#).
(cx + d)* cr+d
Proof. We shall compute D(£(77),7) in two ways. By Proposition 4.1.4, we have

= at(m)+b D(t(r),7) o o (et d)* R(t)
Do) g B Gyt S e o Kt 2

On the other hand, by the same proposition, we also have

\ D(y7,7) y at+b
Dlt(rm) b DUt DA SR () 4 Bl ).

Comparing thetwo expressions, we get the formula: U

4.2 Shimura Curves of Genus Zero

From now on, let us considér the Shimura curves X’ (V) and fix the notation Wp =
Wp.1. In this section, we will determine all pairs of integers (D,N), D,N > 1, such
that XP (N)/Wp has genus 0, where N is a squarefree integer. We will need explicit
coverings XP (N)/Wp — XP(1)/Wp in order to determine Schwarzian differential
equations.

A formula for the genus of X (N)/G, G < Wp_n, will involve the numbers of
CM points of certain discriminants. For the goal of this section, we only need to know
the number of CM-points associated to K = Q(y/—m) with m|D of discriminant —3,
dg, or 4d g in the case dg = 1 mod 4.

Lemma 4.2.1 ([15], or Section 3.3 and Section 3.2.2). For m|D or m = 3, let dg
denote the discriminant of the field K = Q(v/—m). We have

0, if PPN for some pldx.,
#CM(dk ) = h(dk) H (1 _ (dK>) H <1 4 <dK)> , ifp?{ Nfor any p|d.
p|D P p|N b
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Also, for m|D with m = 3 mod 4, we have

0, if2|D,
#CM(ddic) = Sh(4d) < T <1 _ <4df<>> 11 (1 4 <4df<)> 2D,
p p
p|D p|N
where when m = 7 mod &,
6, if8|N,
)4 i,
)2, if2|N,
1, if21N,
and when m = 3 mod &,
0. i8I,
0=1<2, if2|N ord4|N;
1, if2¢N.

Here h(d) is the class number-of the imaginary quadratic order of discriminant d.

Lemma 4.2.20 The complete_list.of integers (D, N) with- D, N >1 such that the
Shimura curve: X ( N/ W.p-has genus zero, is

(6,5), (6,7),(6,13), (10,3); (10;7), (14, 3),(14,5);
(15,2), (15,4), (21,2)5(26:3), (35,2), (39,2).

Proof. Let T be a congruence Fuchsian subgroup-of SL(2, R). (See [13] for the def-
inition of a congruence Fuchsian subgroup. The groups-considered here are all con-
gruence Fuchsian subgroups.) A famous result of Selberg [16] stated that if I" is a
congruence subgroup-of SL(2, Z), then the first eigenvalue A, of the Laplace operator
on the space of square-integrable function on I'\§ is notdess than 3/16. By combining
this result with the Jacquet-Langlands:correspondence; Vignéras [27] showed that the
same inequality also holds for.congruence Fuchsian subgroups coming from indefinite
quaternion algebras over Q of discriminant not equal to 1.

On the other hand, Zograf [34] showed that if the area Vol(T'\ h) is at least 16(g(T")+
1), then A1 < 4(g(T") + 1)/Vol(T'\h). Here ¢g(I") denotes the genus of I' and the area
is normalized such that A(SL(2,Z)\h) = 1/6. Combining Selberg’s inequality and
Zograf’s result, one sees that if a congruence Fuchsian subgroup has genus 0, then the
area must be less than 64/3.

Now recall that the area of X (N) is given by

S0

This immediately shows that if the number of prime factors of D is at least 6, then the
genus of X (N)/Wp cannot be 0 for any N > 2. Also, if D = pq is a product of
two primes such that (p — 1)(¢ — 1) > 512/3, then X’ (N')/Wp must have a positive
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genus for any NV > 2. A similar bounds exists for the case D has 4 prime factors. This
leaves finitely many cases to check.
Note that the genus of a Shimura X is given by

00 =14 550 55 (- 3).

i=1

where the sum runs through all elliptic points with e; being their respective orders. For
X = XP(N)/Wp, by Lemma 3.4.1, we have

g0 =14 YA LS O am) + #OM(-m)

2 4 r—1
m|D,m#1,3
1 1%, HCM(—4),« ~if2{D,
g .or=1 #CM(—4), if2|D
1

75 #CM(=3), if31D,
& n . |

(m#CM(—u) + W#CM(_?’)) , if 3|D,

where r is the-number of prime divisors of D. (Of course, if d is not a discriminant,
then we simply-let CM(d) be the empty set.)

Using the Selberg-Zograf bound, the genus formula in the paragraph above and
Lemma 4.2.1; we check case by case that the pairs of integers given in the lemma are
the only casesiwhere X (N)/Wp, N> 1, has genus zero. O

We now tabulate all Shimura curves X’ (AL) /W of genus 0 for integers D that
appear in the lemma. We will also give a description of their elliptic points. These
Shimura curves are the curves that we wish to determine their Schwarzian differential
equations. Here v; denotés the number of elliptic points of order j on X (M)/Wp.
Here we also let CM(—m) denote the set of pointson X’ (IN)/Wp that are the image
of CM points of discriminants —m under the covering X (N) — XP (N)/Wp. The
number n in CM(—m)*™ means the number of elements in CM(—m) is n. If n = 1,
we omit this annotation.
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D, N | vy,v3,v4,v6 | elliptic points

6,1 1,0,1,1 CM( 3), CM( 4), CM(—24)

6,5 2,0,2,0 M(—4)*2, CM(—24)*2

6,7 2,0,0,2 M(— 3)X2 CM( 24)%2

6,13 | 0,0,2,2 M(=3)*%, CM(—4)*?

10,1 | 3,1,0,0 M(—3), CM(—8), CM(—20), CM(—40)
10,3 | 4,1,0,0 M(—=3), CM(—8)*2, CM(— 20)*2

10,7 | 4,2,0,0 M(— 3)X2 CM(—20)*2, CM(—40)*?
14,1 | 3,0,1,0 M(—4), C ( 8), CM(—56)*2

14,3 | 6,0,0,0 M(—8)*2, CM(—56)*4

14,5 | 4,0,2,0 M(— 4)X2 CM( 56)*4

15,1 | 3,0,0,1 M(=3), CM(—12), CM(—15), CM(—60)
15,2 | 6,0,0,0 M(=12)*2 CM( 15)%2,/CM(—60)*2
15,4 8,0,0,0JL M(—12)*2, CM(—15)%2, CM( 60)*4
21,1 570,0,0ﬁ M(—4), C ( 7), CM(—28), CM(—84)*?
21,2 | 7,0,0,0 M(—4), CM(+ )X2 OM(—28)%2, CM(—84)*2
26,1 | 5,0,0,0 M(=8), CM(-52), CM(—104)%%

26,3 | .8,0,0,0 M(— 8)X2 CM( 104)%6

35,1 [ .6,0,0,0 M(—7), CM(~28), CM(-35), CM(—140)>3
35,2 | ..10,0,0,0 M(—7)*2, CM(—28)*?, CM(—140)*¢
39,1 |..6,0,0,0 M(— 52)X2 CM( 39)%2, CM(~156)*2
39,2 | -10,0,0,0 M(—52)%%; CM(—39)**, CM(=156)*%

4.3 Coverings of Shimura Curves

The goal of this section is to obtain explicit coverings of X3’ (N)/Wp — X (1)/Wp
for pairs of D and N given.in Lemma 4.2.2. That is, we-wish to find a Hauptmodul
t; of X (1)/Wp, a Hauptmodul ¢ ;v of X (IV)/W psand the relation between them.
Of course, there are infinitely many choice for ¢, and ¢ . For X (N)/Wp, we will
choose ¢ such that the Atkin-Lehner involution wy acts by wy : ¢ty — —ty. This
will make the determination of Schwarzian differential equation simpler.

Case D = 6 Inthe case D = 6, all the coverings X§(N)/Ws — X§(1)/Ws,
= 5,7, 13, are already given in [6]. Here we just modify the ¢ in [6] such that the
new tp satisfies wy : tny — —tpn.

Lemma 4.3.1 ([6]). 1. There is a Hauptmodul t, for X§(1)/Ws that takes values
0, 1, and oo at the CM-points of discriminants —24, —4, and —3, respectively.

2. There is a Hauptmodul t = t5 for X§(5) /W that takes values +i/8 and ++/—6/3
at the CM-points of discriminants —4 and —24, respectively. The relation be-
tween t1 and t is

(24 3t2)(34 — 117t 4 1824¢%)F 27(1 + 64¢2)(3 — 7t)*

B 125(1 + 6t)6 N 125(1 + 6t)6
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The Atkin-Lehner involution ws acts by ws : t — —t.

3. There is a Hauptmodul t = t7 for X§(7)/Ws that takes values ++/—3/9 and
++/—6/8 at the CM-points of discriminants —3 and —24, respectively. The
relation between t1 and t is

(3 + 32t2)(78 — 396t + 19632 — 12312¢3)2
A1+ 27¢2)(3 + 10t)6

1= —

The Atkin-Lehner involution wr acts by wy : t — —t.

4. There is a Hauptmodul t = t3 for X§(13) /W that takes values +4~/—3/9 and
+3i/4 at the CM-points of discriminants —3 and —4, respectively. The relation
between ti and t is

L 27(9--161%) (144 — 98t 246> — 161¢°)*

t =1
! 16(16 + 27t2)(30 + 3t 4 55t2)0

The Atkin-Lehner involution w13 acts by wis: t — —t.

Proof. In[6], Elkies already showed that explicitcoverings of X§(N)/Ws — X§(1)/Ws,
N =5,7,13, are given by

42 —55s
t1 =1+ 135s" + 324s° + 540s° Pe
1 + 135s™ + 3245° + 540s”, ws ;S 55 £ 3005’
(452 + 4s + 25)(28% — 382 1125 — 2)2 116 — 9s
t] = — ) Wy 8 —————,
108(7s2 —=8s + 37) 9 + 20s
and
b= (s7 — 508 4 635° — 50405 + 7835 — 16842652 < 68315 — 1864404)2
b 4(752 + 25 + 247)(s2 +-39)0
with
A 98 + 72
137 25 )
respectively. Choosing ¢ such that
s -3 S_—29t+6 8_—8t+9
~ 30t+5’ - 10t+3 7 S o2t+17
respectively, we get the lemma. O
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Case D = 10 The covering X$%(3)/W1o — X{9(1)/Wio has also been given in
[6]. Here we mainly work on the case N = 7.

Lemmad4.3.2. 1. There is a Hauptmodul t1 for X}°(1)/Wiq that takes values 0,
o0, 2, and 27 at the CM-points of discriminants —3, —8, —20, and —40, respec-
tively.

2. There is a Hauptmodul t = t3 for X3°(3)/Who that takes values 0, +1/4+/—2,
+1/v/—5 at the CM-points of discriminants —3, —8, and —20, respectively. The
relation between t1 and t is

1= =2-

108t(1 — 2t)3 5 2(1 + 5t%)(1 — 20t)2
(14 322)(14+7)2 (14 32t2)(1+7t)2 "

The Atkin-Lehner involution ws acts by w3 : t+ —t.

3. There is a Hauptmodul t =t for X3°(7Y/ Wiy thdt takes values +1/3+/=3,
+1/2/—5, and £+/—=10/16 at the CM-points of discriminants —3, —20, and
—40, respectively. The relation between tyand t is

8(1 + 27t%)(2 = 3t + 44¢?)3
T(L At 55824 10263 +.73614)2

The Atkin-Lehner involution wy acts by wr« t — —t.
Proof. In [6],it is shown that an explicit covering X°(3)/Wio — X3°(1)/ Wy is
given by
216(s — 1)3
(s+1)2(9s? — 10s + 17)
with ws : s — 10/9 ~s. Let ¢ be.the Hauptmodul of X1%(1) /W o with

2 5

BT

1=

s
Then the relation of ¢; and ¢ and the action of w3 are given as in the lemma.
We next consider the case N =/7. According to Theorem 3.4 of [9], an equation
for X30(7) is given by
y? = =272 — 4023 4 622 + 40z — 27. @.1)

The actions of the Atkin-Lehner involutions on this model of X}%(7) are given by

wn () ) s G (<54,

and

x—2" (v —2)2

Since CM(—20) are fixed points of ws, their coordinates on (4.1) are (%, +2v/5(1 +
2i)) and (—i,42v/5(1 — 2i)). Likewise, we find that CM(—40) have coordinates

2 + 1 5
w101($7y)'—>< Y )
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(2 + /5, +£8/—10(2 + v/5)) and (2 — v/5, +8y/—10(2 — v/5)). Furthermore, from
the method of [9], we know that the two points at infinity are CM-points of discrimi-
nant —3. Thus, the coordinates of CM(—3) are oo, (0, £3v/=3), (2, £15v/—3), and
(—1/2, £15v/—3/4).

From (4.1), we can obtain an equation w? +2722+402+20 = 0 for X}°(7)/(w1o),
where the covering X$%(7) — X1°(7)/(w1o) is given by

) ) = (5. 220,

On this equation for X(glo) (7)/(w1o), the actions of the Atkin-Lehner involutions are
given by

. . w —z
wrp = wr : (w, 2) — (—wyz), wy = ws :(wiz) — (2z—|— R 1) .

The coordinates of CM(~3) are the two points at oo and (£3/—3/2, —1/2). Also,
the coordinates of €M (—=20) are (42y/=5; 0);-and the coordinates of CM(—40) are
(£8vV=2(2 + v/5),4 4 2/5) and(£8/~2(2 — v/5),4 - 2/5).

Now set t = (z+1)/w. Wecan check that ¢ds invariant under ws-and that (w, z) +—
t = (2 + 1)/w'is 2-to-1. Thus,¢is a Hauptmodul of X}(7)/Wig. The coordinates
of CM-points'of discriminants-—3; —20, and —40 are +1/3./-3, £1/2,/—5, and
+1/—10/16,respectively. It follows that the relation-between t; and ¢ is

A1 +2782) (14 art + aot?)?
(14 b1t + bat? + b3t + bat?)?

t1 =

with
A1+ 272) (1t ant +ant2) = 2(1E bt bot® +bst® +bytt)>
= B(1 %.206*)(1 + c1t + cot? + c3t®)?,
A1+ 272 (1 # aytt ast®)® — 27(1 byt +bat* 4 bst® + byt?)?
= C(1+ 1282 /5) (1 Fdit + dat® + dst®)?

for some constants A, B, C, a;, bj, c;, and d;. Comparing the coefficients, we get

8(1 + 27t2)(2 — 3t + 44¢2)3

t =
"7 7(1 + 4t + 5512 4 10263 + 73614)2

(or the same expression with ¢ replaced by —t). This proves the lemma. O

Case D = 14 The case D = 14 is also worked out in [6]. Here we only need to make
a change of variable so that wy acts by wy : ty — —tn.

Lemma 4.3.3 ([6]). 1. Thereis a Hauptmodul t for X}*(1) /W14 that takes values
00, 0, and (—13 £+ 7v/—7) /32 at CM-points of discriminants —4, —8, and —56,
respectively.
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2. There is a Hauptmodul t = t3 for X}*(3)/ W14 that takes values 4-1/+/—2 and
(£9v—7 £ 4v/—14) /49 at CM-points of discriminants —8 and —56, respec-
tively. The relation between t1 and t is

4(1 +2t%)(1 — 5t)2
9(1+1t)* '

1=

The Atkin-Lehner involution ws acts by ws : t — —t.

3. There is a Hauptmodul t = t5 for X3*(5)/Why4 that takes values +i/4 and
(£5v/—T+4v/—14)/7 at CM-points of discriminants —4 and —56, respectively.
The relation between t1 and t is

5(k—=t 4 17t% — 13t3)2

ty =0
¢ (15-1662)(1 + 3t)*

The Atkin-Lehner involution ws acts by ws : t ——t.

Proof. In [6], it is shown that explicit coverings Xg*(N)/ Wiy <> X34(1)/Wi4 can
be given by

1 5—2
t1:2—7(s4—|—2s3+932), w3 ;8 2+Ss
and
P (2565 + 224s% + 2325 + 217)? _— 24 —7s
. 50000(s2 + 1) ’ b 7+ 245

respectively. Choosing ¢ with

1—5¢ 3.— 16t

s= ) Petre 1wl

1+t 4+ 12¢

respectively, we get the lemma. O

Case D = 15 An explicit covering Xi?(2)/Wis — X[}5(1)/Wis is given in [6].
Here we only need to make a change of variable so that wy acts by wy : txy — —tn.

Lemmad.34. 1. There is a Hauptmodul for X3°(1) /W15 that takes values oo, 0,
81, and 1 at CM-points of discriminants —3, —12, —15, and —60, respectively.

2. There is a Hauptmodul t5 for X}°(2)/Wis that takes values +1, ++/—15/3,
and +1/5 at CM-points of discriminant —12, —15, and —60, respectively. The
relation between t1 and ty is

27(1 — t2)(1 — 3t3)? (1 — 5t)(5 — Tta)? 27(1 + 5t5)(5 + 3t3)
t1 = =1+ = 81—

2(1 + t)3 B 2(1 + t)? 2(1 +t2)?

The Atkin-Lehner involution ws acts by ws : to — —ta.
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Proof. In [6], an explicit covering X}5(2) /W15 — X35(1)/ W15 is given by

1 36
tlzzs(s—i’))z, wy 't —.
Choosing a Hauptmodul ¢ for X }°(2) /W15 with
6 — 6t
S = s
141t
we establish the claim about X$°(2)/W7s. O

Case D = 21 We will need an equation for some Atkin-Lehner quotient of XZ*(2)
in order to determine the coordinates of elliptic points on X31(2).

Lemma 4.3.5. An equation for Xg*(2)/{wa1) isy? = (x + 12)(2? — Tx + 28).
Moreover, the actionof the Atkin-Lehner involution w3 =y on‘this curve is given by
(z,y) — (x, —y)Also, the two rational points oo and (—12,0) are the CM-points
of discriminants‘=28, and the other two 2-torsion points. ((7 + 3y/=7)/2,0) are the
CM-points of discriminant —1.

Proof. We follow the methods-of {9]. The Shimura curve X3! (2)/(ws;) has genus
1. By [9, Lemma 5.10], the two CM-points of discriminant —28 are Q-rational points
on this curve.Thus, X3%(2)/(ws;) is an elliptic curve over Q. Nowsin the space
S5(To(42))21e¥ the unique Hecke eigenform with +-eigenvalue forws; is coming
from the newform space of S5(I'o(42)).Therefore, the elliptic curye:X2'(2)/(wa;)
has conductor-42. Using the Cerednik-Drinfeld theory of p-adic uniformization of
Shimura curves; we find that the types of singular fibers-at primes of bad reduction of
X21(2)/{wa1) agree with those of the elliptic curve 42Al, in Cremona’s notation. The
global minimal model of the elliptic curve 42A1 is y? + xy4 y = #° + 22 — 42 + 5.
With a simple change of variables, we write it as y? = (2 +12)(2% — Tz + 28).

Now the covering X' (2)/(wsr). — X31(2)/Wai is ramified at the two CM-
points of discriminant —7 and the two'CM-points of discriminant —28. If we let one
of the CM-points of discriminant ~28 be the point at infinity, then an equation for
X2 (2)/{wa1) is of the form y? = f(z) for some polynomial f(x) = a3 + - -+ of de-
gree 3 in Q[z] with the Atkin-Lehner involution ws acting by (z,y) — (z, —y). Up to
a transformation of the form x — ax + b, this polynomial f(x) must be the polynomial
(x + 12)(x? — 7x + 28). This proves the lemma. O

Remark 4.3.6. According to Cremona’s table of elliptic curves [3], the elliptic curve
42A1 has 8 rational points. Thus, X3'(2)/{wa1) also has 8 Q-rational points. Two of
them are the CM-points of discriminant —28 mentioned above. The rest of Q-rational
points consist of two CM-points of discriminant —4 and four CM-points of discriminant
—16.

Lemma 4.3.7. There is a Hauptmodul t, for Xgl (1)/Way that takes values 49, 0, oo,
and (47 + 8v/—3)/7 at CM-points of discriminants —4, —7, —28, and —84, respec-
tively.
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Also, there is a Hauptmodul t = to for X31(2)/Way that takes values 0, +1/3/=7,
+1, and £1/3+/—3 at CM-points of discriminants —4, —7, —28, and —84, respec-
tively. The relation between t1 and t is

4914 1)(1 4 63t2)

1568t(1 — 3t)?
1= 49 + ( )

(1—t)(1—15t)2 (1—¢)(1—15t)2

The Atkin-Lehner involution ws acts by ws : t — —t.

Proof. According to [9], an equation for X31(1) is given by y? = —72% + 9422 — 343
with the actions of the Atkin-Lehner involutions given by

ws : (z,y) — (—x,—y), wr s (z,y) — (—x,y), way ¢ (x,y) — (z, —y).

The Atkin-Lehner involution wy fixes the two points at.oo and (0, £7/—7). Since the
equation has a symmetry(,y) & (7/x; Ty/x?), we might as well assume that the
two points (0, £7+/—7) are the CM-points of discriminant <7 and the two points at
infinity are the CM-points-of discriminant —28. Moreover, the four points with y = 0
correspond to the four CM-points of discriminant —84.

Since ws acts by (#, y) —-(=Z, —y), an equation for X2' (1) /{ws)is y? = 723+
9422 — 343z, where the covering X&' (1) = X2'(1)/(ws) is given by (z,y) —
(x2,2y). Then t; = = generates-the function field of X3'/W5i. The values of t;
at the CM-points of discriminants —7, —28, and <84 are 0, 00, and (474 8v/—-3)/7,
respectively. The value of #; at the CM-point of discriminant —4 will be determined
later.

By Lemma4.3.5, an equation X§'(2)/(wa1) is y? = (z + 12)(a? — Tz + 28)
with the Atkin-Lehner involution w3 = wy acting by (z,y) — (2, ~y)- Thus, s = x
generates the function field of X3'(2)/Wa;. According to the lemma, the values of
s at the CM-point$ of discriminant —7 are (7 2= 3y/=7)/2 and those at CM-points of
discriminant —28are —12 and co. The Atkin-Lehner involution ws switches the two
CM-points of discriminant —=28. It also switches the two CM-points of discriminant
—7. (Note that in general; ws can'send a CM-pointof discriminant —d on XP (N)/G
to a CM-point of discriminant —4d and-vice versa. Here because ws is defined over Q,
it must send a Q-rational point to‘another Q-rational point.) These informations suffice
to determine ws in terms of s. We find

—12s + 112

w2 .S 5+12

Choosing a new Hauptmodul

4—s
284
we have ws : t — —t. The new coordinates of CM-points of discriminants —7 and
—28 are +1/3+/—7 and =1, respectively. Also, since wo fixes the unique CM-point of
discriminant —4, we find that the CM-point of discriminant —4 has coordinate 0. We
now determine the relation between ¢; and ¢.

Replacing ¢ by —t if necessary, we may assume that the CM-point of discriminant
—28 of X21(2)/Who that lies above the CM-point of discriminant —7 of X2*(1)/Wa;

t
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is —1. Then
A(1+t)(1 + 63t2)

(1—t)(1— at)?

for some constants A and a. Since X31(2)/Wa; — X31(1)/Way is also ramified at
the CM-points of discriminant —84, the discriminant of the polynomial

1=

A1 +t)(1 +63t%) — B(1 —t)(1 — at)?

in ¢ must be divisible by the polynomial 732 —94 B+ 343. This gives us two conditions
on A and a. Solving them for A and a, we find that the only legitimate values for A and
a are A = 49 and @ = 15. Because t has value 0 at the CM-point of discriminant —4
on X21(2)/Way, the CM-point of —4 on X31(1)/Wha; has coordinate 49. This proves
the lemma. O

Case D =26 We first recall a lemma of Gonzélez and Rotger [8].

Lemma 4.3.8 ([8, Proposition 2.1]). Let C be a hyperelliptic curve of genus 2 defined
over a field k of characteristic.not equal to 2or 3 and let w be its hyperelliptic in-
volution. Assumie that the group-of automorphisms of C over k contains a subgroup
(u1, ug = uy ‘W) isomorphic to(Z/27%)* and denote’by C; the elliptic guotient C/ (u;).
If the two elliptic curves

E12y2:$3+A1$+Bl, E22y2:$3+A2£B+BQ

are isomorphicto Cy and Cy over k, respectively. Then C admits a hyperelliptic equa-
tion of the form y2 = ax8 + bet* + cx? + d> wherera € k*,/b/ €k are solutions

of
27a¥By = 243 + 278} + 941 B1b + 2436* = B1b®,
9(12142 & —3A% + 9B1b + A1b2,

c= (3A1 +b%)/(3a), d = (27B; +9A1b + b?) /(27a?), and the involution uy on C'is
given by (,y) — (=,y).
Lemma 4.3.9. The Shimura curves X : X3%(3)/{wa, w3), Xo : XZ5(3)/(wa, w3g),
and X3 : X3%(3)/(we,w13) are elliptic curves over Q with defining equations

X, s y? = 2% — 3403z — 83834,

X, % = 2% — 432 + 166,

X3 :y? =23 + 6212 + 9774.
Moreover, on the equation for X1, the point at oo is the CM-point of discriminant
—312, and the involution (x,y) +— (x,—y) is the Atkin-Lehner involution wis =

Wos = W39 = wrs. On the equation for Xs, the point at oo is the CM-point of
discriminant —24 and the involution (x,y) — (x, —y) is the Atkin-Lehner involution
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w3 = wg = w3z = Wag. On the equation for Xs, the point at oo is the CM-point of
discriminant —8 and the involution (x,y) — (x, —y) is the Atkin-Lehner involution
wWo = W3 = Wog = wWsg. In all three cases, the 2-torsion points are the CM-points of
discriminant —104 on their respective curves.

Proof. The fact that the three curves in the lemma have genus one can be verified
either by using the genus formula, together with Proposition 3.3.5, Lemmas 3.4.1, and
4.2.1, or by counting the dimensions of subspaces of So(I'o(78))26™" with appropriate
eigenvalues for the Atkin-Lehner involutions. We omit the details.

On X3, there is a unique CM-point of discriminant —312, which must be a Q-
rational point. Thus, X is an elliptic curve over Q. Likewise, X5 and X3 have unique
CM-points of discriminants —24 and —8, respectively. They are also elliptic curve over
Q.

Observe that all cusp forms:ifi S3(I'g(78))?% ¥ having —1 eigenvalue for wy are
from the cusp form of level 26 correspondingto.the isogeny class 26B of elliptic curves,
in Cremona’s notation: Thus, X7 and X5 are isomorphic to either 26B1 or 26B2. Sim-
ilarly, we find that the one<dimensional subspace of So(I'g(78))?6-"" that has eigen-
value +1 for both wg and w3 is coming from the cusp form associated to 26A. Using
the Cerednik-Drinfeld theory to compute the types of singular fibers at primes 2 and
13, we see that X} is isomorphic.to.the elliptic.curve 26B2, X isisomorphic to 26B1,
and X3 is isomorphic to 26A3.-If-we put the CM-point of discriminant—312 on X,
that of discriminant —24 on X5, and that of discriminant —8 on X3 at oo, respectively,
and require that the Atkin-Lehner involutions w3, ws, and ws act by (5y) — (z, —y)
on the three curves, respectively, we get the equations for the three curves.

Lemma 4.3.10. 1. An equation forthe curve X§°(3)/(wz) is

21
Yl = —Tg7x6 — 3622 ~ 552 — g

with the actions of the Atkin-Lehner involutions given by

ws @ (z,9) — (=, 1), wrg ' (x,y) — (z,—y).

On this model, the two CM-points of discriminant —312 are the two points at
infinity, and the two CM-points of discriminant —24 are (0, £2/—6/3).

2. An equation for the curve X3%(3)/(we) is
2197 699 225 81
2 _ 4190 g 099 4 220 5 Ol
2 T8 8T TR
with the actions of the Atkin-Lehner involutions given by
wsy s (z,y) — (—2,y), wag ¢ (z,y) — (z, —y).

On this model, the two CM-points of discriminant —312 are the two points at
infinity, and the two CM-points of discriminant —8 are (0, £9v/—2/4).
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3. An equation for X2°(3)/{wsg) is

8
y? = §x6 +9z% — 1822 + 81

with the actions of the Atkin-Lehner involutions given by
way (x,y) — (_-'If,y), We - (xvy) — (ZL'7 _y)

On this model, the two CM-points of discriminant —24 are the two points at
infinity, and the two CM-points of discriminant —8 are (0, £9).
Moreover, on each of these three curves, there are six CM-points of discriminant
—104. Their coordinates are (j,0), j = 1,...,6, where o are the zeros of their
respective polynomials of degree 6.

Proof. We apply Proposition 2.1 of [8], cited as Lemma 4.3.8 above) with C = XZ5(3)/(ws),
w13, U1 — W3, U2 = W39, A1 = 73403, Bl = 783834, AQ = 743, and BQ = 166.
We find an equation for X3(3) /(ws) is

2197 8
2 6 4 2
e 8 36224 552 =
Y 3 T z x 3
with the Atkin-Lehner involutions given by
ws (xay) ( l’,y), w13+ (J?,y) (ﬂ?, Z/)

Since CM-points of discriminant —24 are fixed points of the involution wg = w3 :
(,y) — (—x,y), we see that their coordinates are (0, +2/—6/3). Likewise, CM-
points of discriminant —312 are the fixed points.of wrg = wsg : (&, y) =~ (—z, —y), SO
they are the two points at infinity. Also, CM-points of discriminant —104 are the fixed

point of was = wqs : (zyy) — (x, —y). Their coordinates are'(¢;;0), j = 1,...,6,
where «; are the zeros of —21972°/3 — 36224 — 5522 —8/3.
The equations of the other two:curves are obtained inthe same way. O

Lemma 4.3.11. Let y?> = —21972°/3 — 3622% — 5522 — 8/3 be the equation for
X25(3)/(ws) given in the previous lemma. Then the coordinates of the four CM-points
of discriminant —8 are (£1/2v/—2,+3/16y/—2).

Proof. By Lemma 4.3.10, an equation for X2%(3)/(ws) is y? = —21972°/3—362x%—
5522 — 8/3 with ws : (x,y) — (—z,y) and w1z : (x,y) — (z,—y). Thus, if
we let t; = 22, then ¢; is a Hauptmodul for X36(3)/W2673. Likewise, if we let ¢
be the function z? in the equation y*> = 21972°/72 — 6992%/8 — 22522 /8 — 81/8
for X29(3)/(we), then to is also a Hauptmodul for X3¢(3)/Wag 3. It follows that
t1 = (aty + b)/(cta + d) for some a, b, ¢, d.

Now observe that the values of ¢; and ¢5 at the CM-point of discriminant —312
are both co. Thus, ¢t; = aty + b for some a and b. Moreover, the values of ¢; and
ty at the CM-points of discriminant —104 are the zeros of fi(z) = —21972%/3 —
36222 — 552 — 8/3 and the zeros of f5(z) = 21972372 — 69922 /8 — 2252 /8 — 81/8,
respectively. Therefore, the constants a and b must satisfy fi(az + b) = Afa(z) for
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some constant A. Comparing the coefficients, we find A = 1/576, a = —1/24 and
b = —1/8. Since the value of t5 at the CM-point of discriminant —8 is 0, the value
of ¢; at the same point is —1/8, which implies that the four CM-points of discriminant
—8 on X2%(3)/({ws) has coordinates (+1/(2v/—2),+3/(164/—2)) on the equation
y? = —219725/3 — 3622* — 5522 — 8/3 for X2(3)/(ws). O

Lemma 4.3.12. There is a Hauptmodul t1 for X3%(1)/Wag that takes values oo, 0,
and the three zeros of —2x3 + 1922 — 24x — 169 at the CM-point of discriminant
—8, the CM-point of discriminant —52, and three CM-points of discriminant —104,
respectively. Also, there is a Hauptmodul t = t3 for X3%(3)/Wag that takes values
+1/(2y/=2) and the six zeros of —219725/3 — 362z* — 552 — 8/3 at the two CM-
points of discriminant —8 and the six CM-points of discriminant —104, respectively.
Moreover, the relation between t1 and t_and the action of ws on t are given by

3(1 +t+ 10t2)?

h a1t

w3 »t—— —t.

Proof. According‘to. Theéorem 3.1 of [8], an equation for Xg°(1) is y* = —225 +
192* — 2422 — 169. In fact, the-method used in [8] to deduce this equation also shows
that the Atkin-Lehner involutions-act by wis : (@, y) ¥ (=, y) and wos : (z,y) —
(x, —y). Then the two points(0;24:13y/~1) are the CM-points of discriminant —52,
the two points at infinity are the fixed points of ws : (z,y) +— (—z,—y), i.e., the
two CM-points of discriminant —8, and the six points (a;,0), 7 = 1,.. ., 6, are the six
CM-points of discriminant — 104, where o are the zeros of —22%+ 192 — 2422 — 169.
Thus, t; = 2% is a Hauptmodul of X5%(1) /W with values oo, 0, the zeros of —2z3 +
1922 — 242 — 169 at the CM-point of discriminant —8, the CM-point of discriminant
—52, and the three CM-points of discriminant —104 on Xg6(1)/Wae.

On the other hand, Lemmas 4.3.10 and 4:3.11 show that if we let ¢ be the x in
the equation y? =—21977% /3 — 3622* — 5522 — 8/3 for X2%(3)/(wy), then t is
a Hauptmodul for XZ%(3)/Wae that takes values +1/(2y/—2) at the two CM-points
of discriminant —8 and (3j, j.="1,. .., 6, at the six CM-points of discriminant —104,
where j3; are the six zeros of —219725/3=362z* = 5552 — 8/3. It is clear that ws
actson t by ws : t — —t.

The relation between ¢; and ¢ is simple to determine. From the table at the end
of Section 4.2, we know that the covering X25(3)/Was — X26(1)/Wag is ramified
precisely at the CM-points of discriminants —8, —52, and —104 of X2(1)/Was with

ramification types given by
W \ 2 v
CM(-8) CM(-52)

1
CM(—104)3

It follows that
A1+ ait + agt?)?

(1+8e2)(1 + bt)?

t =
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for some constants A, a1, as, and b such that
—2f34+19f%g — 24f¢* — 169¢>
= B(—2197t%/3 — 362t* — 55t> — 8/3)(1 + c1t + cot? + c3t>)?

for some constants B, c1, ¢z, and c3, where f = A(1 + 8t?)(1 + at)? and g =
(1 + byt + bot?)2. Comparing the coefficients, we find

3(1 4t +10t2)? 3(1—t+ 10t%)?

YT T sy T T atse e

Both are valid, since the action of w3 sends one to the other. This gives us the lemma.
O

Case D = 35
Lemma 4.3.13. Anequation for X3°(1)/{ws)is

y° & — (2 4=12)(Ta + 4)(2° o 42 + 1442 +80)

with the action-wy = wss given by wr : (x,y) — (@, —y). The coordinates of CM-
points of discriminants —7, —28, —35, and —140 are (—12,0), (—4/7,0), oo, and
(o, 0), respectively, where ai; are the three roots of x> 4 4x” + 144z 4=80.

An equation for X3°(2)/(wz) is

=2y = (4 3%+ 11z + 25)(z° — 32° + 11z = 25)

with the actions of ws = w1y and ws = wss given by ws™: (x,y) '+ (=, —y) and ws :
(z,y) — (x, —y). The coordinates of CM-points of discriminants =7, —8, —140, and
—280 are (£+/—T7,&8), two points at 0o, (8;,0), j = 1g.4,6, and (0,425/v/=2),
respectively, where j3; are the sixiroots of (x° + 3z 1154 25) (23 — 322 + 11z — 25).

Proof. In Section 10.4 of [14], Molina showed that an equation for X3°(1)/{ws) is
y? = —x(9z + 4) (4o + 1)(1722% + 17622 + 60z + 7),

where w7 : (z,y) — (z, —y) and the points (0,0), (—4/9,0), (—1/4,0), and (~y;,0),
j = 1,...,3, are the CM-points of discriminant —7, —28, —35, and —140, respec-
tively. Here -, are the zeros of 172x3 + 17622 + 60x + 7. Setting

' +12 5y’
('Tvy) =\ 7 ’ / 3 )
4z’ + 28 16(z' +7)

we get the equation in our lemma. The reason for this change of variable is the follow-
ing. The Shimura curve X3°(1)/(w7) has genus 1 and the unique CM-point of discrim-
inant —35 is a Q-rational point. Thus, it is an elliptic curve over Q. Computing the sin-
gular fibers at primes of bad reduction, we find that it is isomorphic to the elliptic curve
35A1, which, after a change of variables, has an equation y? = 23 + 422 + 144z + 80.
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If we choose a Weierstrass equation for X3°(1)/(w7) by requiring that the CM-point
of discriminant —35 is the point at infinity and that w; acts by (z,y) — (x, —y), then
up to a transformation of the form z — ax + b, this Weierstrass equation must be
y? = 23 + 42% + 1442 + 80 and the three 2-torsion points (cvj, 0) must be the three
CM-points of discriminant —140. In view of this equation for X3°(1)/(w~), we make
the above change of variables for X3°(1)/(ws).

We now consider the Shimura curve X3°(2)/(wr). It is bielliptic with elliptic
quotients C : X35(2)/{wr,wip) and Cy @ X3°(2)/ (w2, wr). Here C; is an ellip-
tic curve over Q because it has a unique C'M -point of discriminant —8 and another
two QQ-rational point coming from CM(—7). Likewise, Cs is an elliptic curve over Q
because C5 has a unique CM-point of discriminant —280. By considering the eigenval-
ues of the Atkin-Lehner involutions associated to the eigenforms in Sz (T (70))35me%,
we find that both C; and C fall in.the isogeny, class 35A, in Cremona’s notation.
Furthermore, by considering its singular fibers at primes of bad reduction using the
Cerednik-Drinfeld theory, we find-that C; is isomorphic to the elliptic curve 35A3
and Cy is isomorphic to 35A2. We take 3°> = x° = 1728z.+ 30672 and y? =
23 — 170208z — 28273968 to be (non-minimal) equations for 35A3 and 35A2, re-
spectively.

Now if we choose a Weierstrass equation for C'; by requiring that the CM-point of
discriminant +8:is the infinity point and ‘that the Atkin-Lehner involution ws acts by
(z,y) — (z, =y), then by a suitable transformation« > az + b, the equation must be
y? = 2% — 1728« + 30672. Similarly, if we put the.CM-point of disetiminant —280
at infinity and'require that ws acts by (z,y) —(x, —y), then an equation for Cs is
y? = 2% — 170208z — 28273968. Applying Lemma 4.3.8, we find an‘equation for
X3(2) (wr s

T ~g(:p6 + 132 — 292% — 625)
3 42(903 + 322 + 11z + 25) (2% — 322 4 Mz~ 25).
Replacing y by 3y, we get the equation
—2y% = (2® 4+ 32 4 11z + 25)(2* — 322 + 112 — 25) 4.2)

as claimed in the lemma. According to Lemma 4.3.8, the Atkin-Lehner involutions act
by

Wio - (x’y) = (_xay)a Ws - (.Q?,y) = (‘Tv—y)a ws - (‘Tvy) = (—.'17, _y)-

Since CM-points of discriminant —8, —140, and —280 on X3°(2)/(wr) are fixed
points of ws, ws, and wyg, respectively, we find that their coordinates are the two
points at infinity, (3;,0), j = 1,...,6, and (0, £25/1/—2), respectively, where j3; are
the zeros of the polynomial on the right-hand side of (4.2).

To determine the coordinates of the four CM-points of discriminant —7, we observe
that the curve Cy : X3°(2)/(wr,w10) has exactly three Q-rational points because
it is isomorphic to the elliptic curve 35A3, which has precisely 3 Q-rational points.
Since we already know that C; has three Q-rational points consisting of CM(—8)
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and CM(—7), any Q-rational point of C; that is the CM-point of discriminant —8
will be a CM-point of discriminant —7. Now from the model —2y? = 25 + 13z* —
2922 — 625 for X3°(2)/(wr), we see that —2y? = 3 + 1322 — 29z — 625 is also
an equation for X3°/ (w7, w10). On this model, the point at infinity is the CM-point of
discriminant —8. Thus, the 3-torsion points (—7, £8) are the coordinates of CM-points
of discriminant —7 on X3°(2) / (w7, w1o). This in turn implies that the four CM-points
of discriminant —7 on X3%(2)/(w7) have coordinates (4-v/—7, +8). This completes
the proof of the lemma. O

Lemma 4.3.14. There is a Hauptmodul t1 for X3°(1)/Ws3s that takes values —12,
—4/17, 0o, and the three zeros of 3 + 42 + 144x + 80 at the CM-points of discrim-
inants —'7, —28, —35, and —140, respectively. Also, there is also a Hauptmodul t for
X35(2)/Wss that takes values ++/—T, 5, the six zeros of (x> +3x2 + 112+ 25) (23 —
32 + 11z — 25), and 0 at the.CM-points of discriminants —7, —8, —140, and —280,
respectively. Moreover, the relation betweenty.and tis

2(t — 1)(t? — 6t +.25)

o= —
! 34 32 + 11t + 25

and the Atkin-Lehner involution ws on t is'given-by ws : t > —t.

Proof. The existence of Hauptmoduls with the described values at CM-points follows
immediately from Lemma 4.3.13. The fact that w-_acts on ¢ by wy «t — —t also
follows from:the same lemma. We now determine the relation between Hauptmoduls.

The CM-point of discriminant —35 on X3°(1) /WS35 splits completely-in the cover-
ing X3°(2)/Was — X3°5(1)/Wss and the three points lying above it are CM-points of
discriminant —140 on X35(2)/Wss5. Replacing ¢ by —t if necessary, we may assume
that the coordinates of these three points are the three zeros of 2% 4 32 + 11x + 25.
Considering CM=points of discriminant —7, we have

AP+ T7)(t—a)
£3 + 3t2 + 1d¢ +25

by #2112 = 4.3)
for some constants A and a. The point & = a is a CM-point of discriminant —28. Thus,
the point ¢ = —a is the other CM-point of discriminant —28 and this point lies above
the CM-point of discriminant —28 on X3°(1)/Ws3s. Therefore, we have

4 B(t+a)(t —b)?
ti+ = == 4.4
DR N YN LY (4.4)

for some constants B and b. Comparing (4.3) and (4.4), we find A = 10, B = —10/7,
a = —b5, and b = 3. It follows that

2(t — 1)(t? — 6t + 25)
3432+ 11t 4+ 25

t1 = —

To check the correctness, we observe that the point ¢ with t3 — 3t2 + 11t — 25 are
lying above CM-points of discriminant —140 on X3°(1)/Ws3s. Thus, if we write ¢ +
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4t% + 144t + 80 as a rational function of ¢, then t> — 3t2 4 11t — 25 should divide its
numerator. Indeed, we find
200(t® — t2 4+ 11t — 25)(t3 — t2 — 5t — 35)?

(83 + 3t2 + 11t + 25)3

3+ 4t3 4 144t +80 = —

as expected. This proves the lemma. O

Case D = 39
Lemma 4.3.15. An equation for X3°(1)/{w13) is

y* = —(T2* + 235+19)(2* + = + 1)

with ws = wsg : (z,y) = (x; =Yy). Moreover, the coordinates of CM-points of dis-
criminants —52, —39, and <156 are (£2i, £v/13(3%21)), ((~1 £ +/=3)/2,0), and
((—23 £ v/—3)/14,0), respectively.

Proof. By [14], anequation for X3%(1) is
y? = —(Tat 4 1923 + 311z% = 4978+ 277) (¢ + 92>+ 2922 £39x + 19)

with wsg : (z,y) = (%, —y). Moreover, the coordinates of CM-points of discriminants
—39 and —156.are (c;,0) and (5;,0), j =1, ..<, 4, respectively, where «; are the
zeros of x4 493 + 2922 + 392 + 19 and B;are the zeros of Tzt + 7927 + 31122 +
4972 + 277. Substituting « by & — 2; we obtain an equation

y? = (Ta? + 2323 + 522 =28 L)+ — X Lat 1) (4.5)

with smaller coefficients. This hyperelliptic curve has an obvious automorphism (z, y) —
(—1/z,y/x*). We will show that this is the Atkin-Lehner involution wi3.

The Atkin-Lehner av13 permutes the CM-points of discriminant —39. It also per-
mutes the CM-points of discriminant —=156. Thus; if wiz maps (z, y) to ((az+b)/(cz+
d), Cy/(cz + d)*), then the constants a, b, ¢, and d must satisfy

ar +b
cr+d

(cz +d)*f; < > = C;fj(x)
for fi(z) = To* + 232% + 522 — 23z + Tand fo(x) = 2 + 23 — 22 — 2 — 1. We
find w13 maps (z, y) to either (—1/x,y/2*) or (—1/z, —y/x*). The latter has no fixed
points, so we conclude that w13 maps (z,y) to (—1/x,y/x).

Now it is easy to show that Y = y/x? and X = z — 1/ generate the function field
of X3(1)/{w13). The relation between X and Y is also easy to find. It is

Y= —(7X%?+23X +19)(X? + X + 1), (4.6)

which gives us an equation for X3%(1)/{w13). The coordinates of CM-points of dis-
criminants —39 and —156 on X§3°(1)/(w13) are ((—1 4 +/=3)/2,0) and ((—23 &+ v/~=3)/14,0),
respectively.
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To determine the coordinates of CM-points of discriminant —52 on X39(1)/(w13),
we first consider the CM-points of the same discriminant on X3°(1). Since these
points on X3°(1) are the fixed points of w13 and on (4.5), the Atkin-Lehner involution
wy3 acts by (z,y) + (—1/x,y/z*), we find that the coordinates of CM-points of
discriminant —52 on (4.5) are (:I:i7 +/13(3 + 21)) This implies that the CM-points of
discriminant —52 on X3°(1)/(13) are (+2i, £v/13(3 + 2i)). The proof of the lemma
is complete. U

Lemma 4.3.16. There is a Hauptmodul t; on X3°(1)/Wsg that takes values

—1+v-3 —23£+v-3

+2i,
2 14

at the CM-points of discriminants—52, —39, and —156, respectively. Also, there is a
Hauptmodul t on X3°(2)/Wsg that takes values

+2v/-3++v-39
+1+£2v/ -3
3 b

£33,

at the CM-points of discriminants.—52, —39, and —156, respectively. Moreover; the
relation between ty and t is

2063 + 12 4+ 11t + 3)

b= e e+ 3)

and the Atkin-Lehner involution ws on't is ws : t — —t.

Proof. The existence of t; with the described properties-follows from the previous
lemma. Now let sy = (3 — 2¢)/(t1 + 2¢) so that si takes values 0 and oo at the
two CM-points of discriminant—52. Then the values of s; at the two CM-points of
discriminant —156 are the zeros of

(9% 460)a> + 942 +(9= 46). (4.7)

The covering X3°(2) /W39 — Xg°(1) /Wig is ramified at CM(—52) UCM(—156)
of X39(1)/Ws3g. There is a Hauptmodul s of X3°(2)/Ws3g such that

As(1 — s)?

1= (1—as)?

for some complex numbers A and a. That is, s is determined by the property that it
takes values 0 and 1 at the two points lying above the point s; = 0 with the point
s = 1 having a ramification index 2 and value oo at the point lying above s; = oo with
ramification index 1.
Now the condition that CM-points of discriminant —156 are ramified implies that
the discriminant of
As(1 —5)* — (1 — as)?
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as a polynomial in s must be divisible by the polynomial in (4.7). This gives two
relations between A and a. Solving them for A and a, we find that the only legitimate
choice is A = 9 — 467 and @ = 13. Then we have

© 2i(sp+ 1) 4394is® 4+ (—15548 — 574610)s% + (2392 + 39261)s — 92 + 18i

t =
LRI | (135 — 3+ 2i)(—169s2 4 (416 + 6241)s + 5 — 12i)

Let ¢ be the Hauptmodul of X3°(2)/W39 with

 3+2i(5+0)t+3—150
13 (5—d)t+3+15i

Then we have
2(43 +.1% 4+ 11t + 3)

(E3)(t2 +7)
The values of ¢ at CM(—52), CM(=39), and CM(=156) can be read off from

t =

8(t2.+49)(t2 + 2t 5)*
(t+3)2(t2+7)2

t+4=

(2 -+ 2t 13)(3t* + 34t> 4+ 27)
(3225 7)2 ’

T =

and
(£ — 2t +43) (> — 6t +/21)2

(t+3)2(t2 + 7)2 '

respectively. To-determine/the action of w, on ¢, we recall that wo switches the two
points in CM(—=52). It also exchanges the two.zeros of 1 + 21+ 13, corresponding
to the two pointsdn CM(—156) that lie above the CM-points of discriminant —39 on
X3%(1) /Wiy, with'the two zeros of 2 — 2z + 13, correspondifig to the other two points
in CM(—156) that lie above.the CM-points of discriminant ~156 on X3°(1)/Wag.
From these informations, we can deduce that wo : £+ —t. ]

T2 + 23t + 19 =

4.4 Schwarzian Differential Equations Associated to Shimura
Curves of Genus Zero
Theorem 4.4.1. Let t = tp x the Hauptmoduls for X (N)/Wp be chosen by Lem-

mas in Section 4.3. Then then automorphic derivatives Q(t) associated to them are as
follows. For (D,N) = (6,1),

108 — 113t + 140¢2
Q(t) = 2 2
576t2(1 — t)

For (D,N) = (6,5),

15(23 — 456t% + 1608t*)

Q) =— 2(2 + 3t2)2(1 + 64£2)2
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For (D,N) = (6,7),

3(267 + 6480t% + 64352t*)
4(1 + 272)2(3 4 32¢2)2

QM) = -

For (D,N) = (6,13),

12492 + 432722 + 37541t4)

3(
Q) = - (9 + 16t2)2(16 + 27t2)2

For (D,N) = (10,1),

3tt — 119¢3 + 31572 — 7296t + 10368
VY .

For (D, N) = (14,5),

623 +167 72t? 4 55178t* — 853468t + 97503t®

Q) = (1 + 162)2(7 + 114¢2 + 7t4)2

For (D,N) = (15,1),

177147 — 244944t + 244242t — 3680t° + 35¢*

Q(t) 14422 (1 — £)2(81 — 1)?

For (D,N) = (15,2),

3(385 + 5500t — 2042t* + 351965 — 2175¢%)
4(1 —t)2(1 4+ ¢)2(1 — 5t)2(1 + 5t)2(5 + 3t2)?

Q1) =
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For (D,N) = (21,1),

_ 21(40353607 — 17647350t + 3561369¢> — 477652(% + 31833t — 630> + 7t5)

@) 162(49 — £)°(343 — 94t + TE2)?

For (D,N) = (21,2),

3(1 — 692 — 40861* + 23670t + 60436535 + 6781887¢0)

Q) = 16t2(1 — )2(1 + ¢)2(1 + 27t2)2(1 + 63t2)2

For (D,N) = (26,1),

85683 + 15210¢ + 16694¢% — 9480¢3 + 1363¢* — 170¢° + 1216

t
Q) 1682 (169 + 24¢ +19¢2 + 2t3)2
For (D,N) = (26,3),

o) = 885+ 352812 + 60543t* + 5524485 + 28505795+ 7990200¢'° + 9677785¢'2)

(1 + 8¢2)2(8 + 165¢% + 1086t + 2197¢6)2
For (D, N) =35, 1),

Q) = Q1(t)/16(t + 12) (7t + 4)(t* + 4¢* + 144t + 80)2,
where

Q1(t) =666427392t + 1132800¢* 181420032 — 75398415 + 24576t + 14718
+ 659096576t> + 85540864¢> + 33081".

For (D,N) = (35;2),
Q(t) = Q1) /A(t>47)%(t* — 25)%(¢° +-13t1 < 29¢% — 625)2,
where

Q1(t) =2842805000t% + 91524600t° — 2082286t% — 217416t'°
+ 54644112 4- 378411 + 19t1° — 992578125 + 1017474100t*.

For (D,N) = (39,1),

—3Q1(1)
404 +2)2(1 + t + £2)2(19 + 23t + 7t2)2’

Q) =
where

Q1(t) =2596 + 7104t + 9692t% 4 123483 + 13149t* + 9522t°
+ 43675 + 108617 4 97¢5.
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For (D,N) = (39,2),

—90Q1(t)
4(9 4 12)2(13 + 2t + t2)2(13 — 2t + t2)2(27 + 3412 + 3t4)2’

Qt) =
where

Q1 (t) =419253003 + 119984328t + 89200020¢* + 43676088t° + 10194786¢*
+ 1272824110 + 87380¢'2 4 308014 + 43¢1°.

For these results, we take the Schwarzian differential equations associated to X34(1)/W4,
X34(3)/Wha, and X}*4(5) /W14 as examples for the proofs.

Proof. In Lemma 4.3.3, we see that there is a Hauptmodul #; on X34(1)/W4 with
values oo at the elliptic point of order 4 and values 0;/( =13 + 71/—7) /32 at the elliptic
points of order 2. According to Proposition 4.1.2, the automorphic derivative Q(¢1)
associate to t7 is

3 21 416B  3(512024416t—87). 421t +B(16t + 13))

t)=— —
Q) =15 52t (162 + 131+ 8)2 13(1662+ 13t + 8)

for some constant B. We now use the covering X 4(3)/Wy4 —+ X14(1)/W14 to
determine the constant B. More precisely, according to Proposition 4.1:4, we have the
relation between @Q(¢1) and the automorphic derivative Q(t) associative to a Haupt-
modul ¢ of X34(3)/ W4,

Q(t) = D(tast) #Q(t1) /(dtr/dt)*.

Note that there is a Hauptmodul ¢ for X *(3) /W4 that takes values £1/1/—2, (£9/—T7+
4+/—14) /49 at the 6 elliptic points of order 6.-Thus, the automorphic derivative Q(t)
is

3(2t2 — 1) < 3(18335t2 4 38759t + 1176495 791)

t =
Q) 4(2t2 4+ 1)2 A(7,226t2 +.343t1)2
343(686Ct> + 109Cyt* + 10904¢ +109C5) 137204t +- 981 + 218C3
436(7 + 226t% +'343t*) 436(2t2 4+ 1) ’

for some constants C3, Cy, and Cs. Also, the action of the Atkin-Lehner involution ws
on the Hauptmodul ¢ is w3 : ¢t — —t. Thus, by Proposition 4.1.5, the function Q(t)
satisfies

and then we can get the value Cy = 0.
Moreover, from the relation
4(1+2t%)(1 — 5t)?
9(1 +¢t)*

1 =

and Proposition 4.1.4,
Q(t) = D(t1,t) + Q(t1)/(dty /dt)?,
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we can find that

373 91 1301
“h1p 8= T ad G5 = —ape

For the case of X}*(5)/X14, the chosen Hauptmodul ¢ takes values +i/4 at the
elliptic points of order 4, (£5y/—7 & 41/—14) /7 at the elliptic points of order 2, and
the action of Atkin-Lehner involution ws is ¢ — —t. Therefore, the automorphic
derivative associative to ¢ is

_15(16t% — 1) | 3(49t° + 399t* + 6351¢% — 399)
- 2(1612 4 1)2 4(Tt4 + 11412 + 7)2
. B)

Q1)

for some constants

=|E[$j

and Proposition 4.1.4, we can.conclude
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Chapter 5

Applications of the Arithmetic
of Automorphic Forms

From previous discussions, for-a Shimura curve X having genus zero, we can use
the solutions of the Schwarzian-differential equations in place of automorphic forms (
Chapter 4). Then we can do-explicit computation on automorphic forms in terms of
the solutions ‘of the associated differential equations. This makes a powerful way to
study the arithmetic properties of automorphic forms. For example, we can compute
the Hecke operators on automorphic forms, modular equations for Shimura curves,
determine the Hecke eigenforms and so on: In the paper [33], Yang computes Hecke
operators on automorphic forms on Shimura curves X§(1)/Ws and on Xi°(1)/Wio.
He [31] also compute modular equations for Shimura curves.

A possible future work related to the arithmetic-of automorphic forms on Shimura
curves is Ramanujan-type series for Shimura curves. A typical example of Ramanujan-
type identities for the classical modular curves is

i": 6n+1 1/2) (4>n:£,

where (a), = a(a+1) - - (a+n—1) is the Pochhammer symbol. It is known that such
series is related to the Hecke theory of the classical modular curves and CM-theory.
Natively, one expects that we can obtain Ramanujan-type series for Shimura curves. In
the work of Yang [32], he gave several Ramanujan-type formulae for the Shimura curve
X8(1)/Ws. He also conjectures a general form for the Ramanujan-type identities for
Shimura curves.

In this chapter, in support of his conjecture, we will numerically obtain Ramanujan-
type identities for X4*(1)/W14. However, we are not able to give a rigorous proof
at present. In Section 5.1, we will compute Hecke operators on X}*4(1)/Wy4 and
hence determine Hecke eigenforms. In Section 5.2, using the method developed in
the previous chapter for obtaining bases of automorphic forms in terms of solutions of
Schwarzian differential equations, we obtain Ramanujan-type identities for X}4(1)/W14.
This is mainly following the preprint [23].
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5.1 Hecke Operators on X}*(1)/Wyy

Assume that O = O(D, N) is an Eichler order of level N in an indefinite quaternion
algebra B of discriminant D. Fix an imbedding ¢ : B — M (2, R). Recall that for a
given prime p { DN and o € O be such N(a) = p,

k/2
() =ph2t Y A

~yeT\I't(a)T (CT + d)

where f(7) is an automorphic form of weight konI' =T'(0), and y = (2 4).

Let ¢ be the Hauptmodul of X}*(1)/W14 with values oo, (—39 4 214/—7)/16 at
the elliptic points of order 2, and with value O at the elliptic point of order 4. Let u
be the Hauptmodul of X}*(3) /Wy, which is chosen. so that it takes values 4-1//—2,
and +91/—7 4 41/—14/49 at the CM-pints of diseriminant —8, and —56, respectively.
The relation between ¢ .and « is

27(1 + u)?

=1 = 1+ 2u2)(1 - 5u)2°

and the Atkin-Lehner involution-wgs sending w,to —u. Then we can deduce that the
Schwarzian differential equation-associated to ¢'is

d> i 3(64t* + 440t3 + 129¢2 + 9324¢ + 25920)
dt? 16t2(8¢2 + 39t + 144)2

i 1™

Near the point Py, the t-expansion of /() is the square of a linear/combination of 2
solutions

3/8 131 21631 , -+ 49745249 1, £ 16603576771
gi(t) =t3% (1 + b+ =
2304 3538944 29896998912 ' 91843580657664

ga(t) =t°/8 (1 + 5 e,
3840 1966080 176664084480 ' 9226105147883520

of the Schwarzian differential equation associated to t.

257758957 4 1646181570409

Lemma 5.1.1. Let g1, g2 be the functions given as above. We have

2
7-7E:Og—2 and t'(T):—ill(gliC‘%)

T—PF 91 C(Py — Py)

3

where P, denote the elliptic point of order 4 on the curve X}*(1)/Wy4, and C is
certain complex number.

Proof. Note that the functions t'(7)'/2 and 7t/(7)'/?, as functions of ¢, satisfy the
Schwarzian differential equation associated to ¢. Thus, there exist some constants a’,
v, c,d, so that

_adgi +b g

g+ dge
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and hence P b
T _9t0e e decC.
T—P cg1+dgs

On the other hand, we let v denote a generator of the isotropy subgroup for Py, then

we have
T -P TP

t V4 — ¢ut(r)"/* and — = —,
(y7)4 = at(r) e el

for some primitive fourth root of unity (4. Therefore, we can get that

From this identity, we can get

T = (Pigi — PuCygs) /(g1 ~Cg2)

and
dr —_— gldgg/dt — Qngl/dt C(P4 — E)
— =C(Py =P, b .
& ~ &7 e HgF3)?

O

Then we can give a concrete-basis for space Sy (I'). ‘According to the Corollary
4.1.3, an automorphi¢ form of weight 2k on X4(1)/Wy4 can be written as a linear
combination of

: 39 ~k/2]
L3R/ (t2 + i 18) (gi(t) — Cyga(t))* (5.1)
with the constant' C' in Lemma 5. 11, where j =0, .. ., 1 — 2k +3|k/2| + |3k/4].

We now compute Hecke operators 75 on the space Si(I") of automorphic forms on
X34(1) /W14 relative to the basis given in 5.1. We first consider the case of 7.

Let B = 76’7) be a quaternion algebra defined over @ of discriminant 14 which

is generated by I and J with the relations- 2= —1; J2 = 7, IJ = —JI. Fix the
maximal order to be O = Z'+ ZI + ZJ + Z(1 + I+ J + IJ)/2 and choose the

embedding 1+ B — M(2,R) tobe [+ (§" ') and J 1 (7 0).

The curve X4(1) has 3 elliptic points of order 2 and an elliptic point of order 4.
We choose the representatives of elliptic point of order 4 by Py = 7 with the isotropy
subgroup generated by M, = % ( } _11 )

Let A be the matrix 3 ( ?iﬁ _51::\[7) , which is the image of the element 2 + (1 +

I+ J+1J)/2 of reduced norm 3 in O under the embedding ¢. A complete set of right
coset representatives of I' \ ' AT is given by

1 5—!-\/? —1—}—\/? i .
- d ;= oM =1,2,3.
2<1+ﬁ 5*\/? ’ an IYJ 0 o ] ’ ’3

Then v; Py = APy = (5v/7 + 7+ 5i + /—7)/12. For these coset representatives, we
can easily verify the following property.

Yo
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Lemma 5.1.2. Letting v; = (Zj ICZ ), we have

a; =cjPy+d; =¥ 4i4+V/=T-V7)/2, j=0,1,2,3.

To compute Hecke operator T3 on the selected basis for Sk (I'), our goal is to de-
termine the ¢-expansions of

t(v;7), F(vj7), andc¢m+d;, j=0,...,3,

where F(t) = (g1(t) — Cga(t))?%.
Here, we will use the modular equation of level 3 to help us to decide the ¢-
expansions of t(vy;7).

Lemma 5.1.3. Let vy;, j = 0, 1,.2,13, be the coset,representatives given above. In a
neighborhood of Py, the t-expansion of t(~;T) is given by
.j 1897153 /4

9 ;33 229
Hoy) = (i) U1 ot 24

) N 531689 54

_i\J
1 16 96 o1 ) Tagas

In particular, we have't(v; Pr) =9/4.

Proof. At the beginning, let us-consider the Hauptmoduls « and ¢ we mentioned before.
Note that the relation between ¢ and w is

27(1 + u)*

S B A = s

and the action of wg is u — —u.-Thus; we have

27(1 )
(1T +2u?)(1+ 5u)?’

s=fleu) =
and the polynomial
D3(s,t) =924210st(5+t) — 2304(s ==t4) + 20736(s® + t3)
— 87505343 + 260415522 + 1931045t (s> + t2)
— 562552t (s + 1%) + 7200(st* + st) — 69984(s% + t?)
—10350(5%t2) (s 4 t) 4 104976 (s + t) + 15579545t — 59049.
Solving the modular equation ®3(s,t) = 0 for s, we find the 4 roots are

9 ;33 '
si=g+at/t

229 4,5 31897 5,4 1791 ;531689 5/,
To G g P gt g
for j = 0,1,2,3, where (4 is a primitive fourth root of unity. The fourth root t'/* =
t'/4(7) of t(7) is defined in a neighborhood of Pj so that it becomes a holomorphic
function of 7 near P;.

In view of t(My7) = t(7), one has t(My7)*/* = (t()'/4, for some fourth root of
unity ¢. Note that the function 7 — ¢(7) preserves orientation and is locally 4-to-1 at
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Py, hence the number ( is actually —i. Without loss of generality, may assume that the
expansion of ¢(vy7) is g, and then we have

t(y7) =t ((%MZ) T) =t (’70 (MZT)) =$j
with (4 = ( = —¢,forj =1,2,3. O
Corollary 5.1.4. We have the equality, for each j,
2P (HyP)) | 12F(9/4)

ﬁcj _
4 4 (ij4+dj)2 o (CjP4+dj)2'

Proof. Assume that the t-expansion of t(yy7) is Ag + A1t'/* 4 ---. According to
Lemma 5.1.1, we have

A = lim tor) =40 _ m t(707).— Ao
Ry ga(t())/g1(t(1)) P (1 —B)JC(r — Py)’

By L’Hopital rule.and Lemma-5:1:1; the equality becomes

[ A C(Py="Pi)(detop)t (Yo Pa) \12E(9/4)
[ (C()P4 = d0)2 (C()P4 + d0)2 :

From Lemma.5.1.3, we have

33 12F(9/4)

4 o (00P4 -+ d0>2 :
Using the same arguments, we can get the identity-in this Corollary. O
As we see in the previous proof, if we suppose that the#-expansion of F (yo7) is

o0
Z Bnt"/ 4, for some constants Bj;, then we have

n=0

F(yy7) = F (ty;7)) = Y _ Ba(=i)t"*, j=0,1,2,3.

n=0

Also, from the above results, we can figure that the constant term By is the value of
F (v;7) at T = Py for each coset representatives ;.

Corollary 5.1.5. The constant term By of the t-expansions of F (v;T) is equal to
F(9/4), that is

66 —33V7+ (22v/7 — 11)i

= 16 .

Proof. This can be easily verified form the Lemma 5.1.2 and Corollary 5.1.4. O

By
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We then determine other coefficients B,, inductively. Denote by fo) the automor-
phic form

—k/2
+—3k/4] t2+§t+18 L /J( (t)—C )"
< g1 92(1))

of weight 2k in the equation (5.1). Observe that their expansions near P, are

fa _Lan gct?’/“ + éc% — §C3t5/4 + ( Lo 25) 2

18 187 10368
fs :3% - 82—10t1/4 + 81102751/2 - ;—?0%3/4 + (1?%5204 - 9;;’12> bt
Fia :ﬁtlm _ ﬁc 3/4 4 91%0% _ %0%5/4 _ %ﬁﬂ T
fia :ﬁtl/‘l - %Ctl/z + %0%3/‘1 L %C% e
frs :1041976t3/4 2 581@(% * %Cztw B %;70%3/2 R

we can use the basis of S, (I').described in equation (5.1) to get the coefficients B,, as
the followings

nmod4 |07 1 2 3
k 8 14 4,12 18

It is easier that if we use basis of Sy (I") than if we use automorphic forms of weight 12
to compute the B,, with n = 2 mod 4. Note that

dim SG(F) = dim Slo(r) = O, dim SlG(F) = 3,

and the ¢-expansion of f¢ starts from a nonzero.constant term, so we omit their expan-
sions here.

For the purpose to determine the expansion F(v7), i.e. the number B,,, we first
use Jacquet-Langlands correspondence to decide the representative matrix of 75 on
Sk (T") with respect to the'chosen basis.

Lemma 5.1.6. Fork =4, 8, 14, 18, let Fy, ;, k = 1.. . dy, in (5.1) be the automorphic
Sforms of weight k on I that spans the space Sy (T"). Then the representative matrices
of Ts with respect to { Fy, ;}%* are

k| 4 8 14 18
Ts | —2 <48 50) ~1026 4626

108 22

Proof. According to the Jacquet-Langlands correspondence,
Si(T) ~ SPEWY(Ty(14), -1, —1),

where SPW (I (14), —1, —1) is the subspace of SPEW(T'y(14)) with eigenvalues —1
for both wy and wy. For k = 4, the space SNV (T';(14)) is of dimension 2, and the
subspace SPW(T'5(14), —1, —1) is spanned by the eigenform

f=q+2¢% —2¢° +4¢* —12¢° — 4¢5 + 7¢" +8¢% — 23¢° — 244" + - - .
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Thus, the eigenvalue of Tj respect f is —2, the third coefficient of f. Here, we use the
algebra computation system MAGMA to find the Hecke eigenforms. The eigenvalues of
T3 for the case k = 14, k = 18, can be determined in the same way.

For the case k = 8, the subspace SPW(I'((14), —1,—1) is 2 dimensional and
spanned by

f = q+8¢°+aq® +64¢* +(378—9a)¢° +8aq® +343¢" +512¢% + (70a—1443)¢" +- - -

with a? —70a = 744 and its Galois conjugate. Therefore, the characteristic polynomial
of the operator T3 with respect to our basis for Sy (I') is 22 — 70z — 744. That is, the
trace of the operator is 70, and its determinant is —744.
Note that the space Sg(I") is spanned by
1
t3(t2 4 (39/8)t +.18)2

The operator T3 acts on Fy 1 and Fg 5 becoming

Fyq(t) = (gi(t)y=1Cga(1)*, and Fyo(t) = tFs(t).

Z FZ? ) a e b er il
37 Z FZZT + d _CF&I(t(T)) + dF&z(t(T))’

the characteristic polynomial of the matrix (@5 ).is 2% — 702z — 744. Hence, the number
d is equal to 70— a.

Observe that the t-expansion of Fg 1(¢(7)) is
1 2 7 14 25 35
- 4Ct1/4 ACQtl/Q _ —03t3/4 IV A ._04 t e
324 81 X 81 81 93312 162 +

If we evaluate the values at.the point 7 = Py, the Lemma 5:1.3 tells us that t(fyj Py) =
9/4, and we then have the equations

3
Fs.1(9/4)
372 5.1(9/4) J=a/324

— CJP4+d
2. Fsa(9/4) 9 L fsa(9/4)
37 L— 5,1 = ¢/324.
o (e;Py+dy) 4 Z Pty | =

These imply that ¢ = 9a/4. We now determine the value a. Since

3

3y PO/ 21637 Z( F(9/4) )
= (CjP4 + dj)g 310714 = (CjP4 + dj)2 ’

according to Corollary 5.1.4, we have
3

Iy Fa@) _ 29 a1 4
CJP4+d 310114 \ 4 124 27
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In a word, we have the identity

23: Fsa(9/4) _ a
(Pt &y 32

Hence the number a must be 48, and ¢ = 108. Together with the fact that the char-

acteristic polynomial of the matrix (%) is z? — 70z — 744, we can find that the

representative matrix of 75 with respect to the basis { Fg 1, Fg o} is
a by (48 50
c d)  \108 22/

For k = 4, 14, 18, let A be the eigenvalue for 73 given in previous Lemma, we
have

O

35 12 JZZT-Fd = Al (t(T));

for k = 8, we have the equahty

47 fs (t
Z C]T+ d = (48 + 50t) fs(t(7)).
Write
29 “[k/2]
fu(t) SAUNF(E)P2, Gt =13 (t2+§t+18> |

Now the t-expansions of 7 and ¢(+y;7) are known in Lemma 5.1:1 and 5.1.3, so the
part of dj,(t(v;7))/(cjT + dj)* can be work out. Also, we have the constant By of the
expansion of F'(y;7) near £ by Corollary 5.1.5.-Thus, using these information, we
can determine the other coefficients B, of the expansion

Floor) = Bo + 3 But/t

n>1

inductively. Then the expansions of

F(vy;7) = By + Z By (=)™ ¢/

n>1

near Py can be determined consequently. Here, let us list first 12 coefficients of the
t-expansion of F'(~y7). In the followings, we denote M; = (6 —3T—i+ 2\/—7),

My = (5—+7)C,and M3 = (6 — 3v/7+i—2y/=7) C2.
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By 16M1’
229 11
By ="22M, — =M
1 96 1 4 2y
1897 229 11
By =—2M — 222 My + =M
S I VIR T
1 22
Bs :@Ml - 7897M2 79M3,
64 96 96
1345607 597 1897
B, = M, — 2250, + =2
T Y e T TV I b
8577605 13443101 597
5 = 1 9 4+ ——Ms,
331776 207360 64
427949389 10699507 3357533
6 710048608~ 103680 2. 207360
1249481879 8534385587 42708031
7= 11— My + ——————Ms3,
21897216 54743040 1658880
156151317775 . 1556045479 4254891697
8 771926955008 1 | —6842880 109486080
280396875558295 18652796644997 6200954437
By = M) — ————— My + ————— M3,
2497333690368 57808650240 109486080
_ 3139891380163495 | 17432924774791 5802349183013
10T 00603002945536 11 30020838912 2 ' 72260812800 @
_ 11188830166896727 . 249723804965137451 6936494964167563
YT 54941341188096 , - & < 412060058910720— ° [ 62433342259200

This is enough to compute the Hecke operator 75 for general automorphic forms
on X34(1)/Wy4for general weights.

For computing Hecke operators 7;, with prime p >75, we can deduce the eigenval-
ues form 73 and Jacquet-Langlands correspondence: For example, from the Jacquet-
Langlands correspondence, the subspace S§W (I'g(14),—1, —1) is 2 dimensional and
spanned by

f = q+8¢* +aq® +64¢"* + (378 —9a)q° +8aq® +343¢" +512¢° + (70a—1443)¢" +- - -

with a2 —70a = 744 and its Galois conjugate. The eigenvalue for T is 343. According
to the Lemma 5.1.6, the matrix for 75 relative to our basis of automorphic forms of

weight 8 is
48 50 —54  —450
W&HQ%QQ_(QW MJ'
5.2 Ramanujan-type Formulae

Recall that if E is an elliptic curve defined over @, which has CM by an imaginary
quadratic field K of discriminant d, then up to an algebraic factor, the period of F can
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be expressed by

o\ Waxa(@)/4ha
Q=7 H F(M) ,

0<a<]ld|

where wg is the number of roots of unity in K, x4 is the Kronecker character (d)

associated to K, and hy is the class number of K. In [32], Yang contributes many
Ramamnujan-type series. For example,

o0

6860 (1/12)”(1/4)n(5/12)n 74 ni )
;{)(744807H 3) (1/2)5(3/4)nn! (3375) = TV5V3375

47
V1202’

which is related to the period of an elliptic curve with CM by Q(v/—1). The power
series

> (1/12),(1/4),,(5/12),,
Z (1/2),,(3/4) 0!

mentioned above is the hypergeometric function

1 =51 3 % 3 W\
32 (12 PESpis e t) Tk (ﬂ”ﬂwt) :
Note that the/function 5 F; (2 70 % 4, i, t) is related to the Schwarzian differential equa-
tion associated to the Hauprmodul ¢ of X§(1)/W; that takes values 0,1, and oo at
the CM-points of discriminants —4, —24, and —3, respectively. Yang also gave other
similar identities related to €2_ 4, and also'the Ramanujan-type series related to €2_3 for
the curve X§(1)/Ws.

In this article [32], he guess, in general, we can use the t-series expansion of a
meromorphic form to obtain the Ramanujan-type identities, which are related to certain
periods of elliptic curves with CM. That is, we may have

(o)

Z(R1H+R2)Ant0 R3 Q2 y

n=0

where R1, Ro, Rs € Q, ZSO A,t™ is the expansion of a meromorphic automorphic
form of weight 2 with respect to a Hauptmodul ¢ of a Shimura curve of genus zero such
that ¢ takes value 0 at a CM-point of discriminant d, and % is the value of ¢ at some CM-
point of discriminant d’ # d. To be more precise, if g1, g2 are 2 linearly independent
solutions of a given Schwarzian differential equation associated to a Shimura curve of
genus 0. Write g7 = > 0° A,t" and g3 = >~ B,,t", then we expect that

Z (Rin + Ra) Aty = Rg%
prd d

> (Rin+ Ry o+ Rufa) Batfy = Rs=—*,

n=0
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for certain positive integer a. We remark that the series also converge p-adically for the
prime p | M while tg = M/N. The p-adic numbers which they converge to should be
related to the p-adic periods of certain elliptic curves with CM. It is natural to expect
that those p-adic identities should be related to the p-adic periods of elliptic curves
with CM. Yang also gave some numerical examples of the p-adic analogues for the
Ramanujan-type series obtained from X§(1)/Ws. Here, let us see some numerical
examples coming from X34(1)/W14.

From the Lemma 4.3.3, we know that there is a Hauptmodul ¢ for X}4(1)/W14
that takes values oo, 0, and (—13 £ 7/—7) /32 at CM-points of discriminants —4, —8,
and —56, respectively. The ¢-series expansions of 2 linearly independent solutions of
the Schwarzian differential equation associated to ¢ ( see Theorem 4.4.1),

d? 192 + 440t + 43t% + 1036t3 + 960t*
— Hf=0 t) =
dt2f RN =0, Q@ 16¢2(8 4 13t + 16t2)2 ’

are

/(14 §t+ 1867 o 9559375 157030847 , - = 3694251053 5
= 64 8192 2621440 671088640 42949672960

go =t3/4 (1+—2it+ 31495434593 .« 264972083 , 39014127761 .

192 245761572864 1207959552 850403524608

The Hauptmodule ¢ takes values ¢y = —13/81 at the CM-points of discriminants —91
(This is given by Elkies [6]). We now let

9] oo
Z Ap= t_1/29%7 Z B, = t_3/29§7
n=0 n=0

and
81 T(5/8)0(7/8) 81
= PR T (/8T8 AT &

In this case, our numerical computation checked for 100-digits gives us that

= 84T
(Z Ryn + R2> Anty = S5 1313C, (52)
n=0
847
(Z coRin + Ry + Rg) Bpth = §131/427C‘1. (5.3)
n=0

If we choose a Hauptmodule ¢ that takes values 0, co, and (—39 £ 21/—7)/16 at
CM-points of discriminants —4, —8, and —56, respectively. The Schwarzian differen-
tial equation associated to ¢ is given by

d? 3(64t* + 4403 + 129¢2 + 9324¢ + 25920)
— t)f =0 t) =
dt2 F+QMf =0, Q) 16¢2(8¢2 + 39t + 144)2 ’
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and its 2 linearly independent solutions are

_38 (14 131 n 21631 , = 49745249 4 16603576771
= 2304 3538944 29896998912 91843580657664
_p/8 (1 4 131 ‘4 8923 5 257758957 4 646181570409  ,
92 = 3840 1966080 176664084480 9226105147883520
The Hauptmodule ¢ takes values to = 27,/200 at the CM-points of discriminants —168.
Let
ch:tffﬂ/llg%? ZDn:t75/4g§
n=0 n=0
We have
- 810000
> (Run £ Rsy Oty :T273/42001/4C,
n=0
- 10
SO (R4 Ry + Ry /2) Dty =2 112;00271/42003/40—1

n=0

with R; = 2904, Ry = 12, where

LA

Let I', (-) 'stand for the p-adic Gamma function. The numerical results checked for
70 p-adic digits provide us that

& 24118 981°5(1/4)\ /*
R Ry) Cpth = 273200 ————L~ ,
28 T Cuty (o)
> 24118 27T5(3/4)\ /4
R Ry + Ry/2) Dty == (27 -200° >~
2 e T TR PS5 s

hold 3-adically with R; = 29040 and R, = 120.
For the numbers > nA,tl, > Anth, > nByty, and Y B,ty, after numerical
computation, we can find that the equalities

I'13(5/8)'13(7/8)
2I'13(1/8)T'13(3/8)°

I5(1/8)T'13(3/8)
8T'13(5/8)I'13(7/8)’

2
(oo}
(Z (110110 + 7290) Antg> =3%.7.137-1571

n=0

0o 2
(Z (11011n + 75897) Bnt8> =3'2.7.114

n=0

hold 13-adically.
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Chapter 6

Algebraic Transformations of
Hypergeometric Functions
Arising from Theory of
Shimura Curyves

For real numbers a,b,c with ¢ # 0, —1,=2,4.., the 5 F-hypergeometric function
(Gaussian hypergeometric function) is‘defined by the hypergeometric series

2 Fi(a,byc;2) = Z %Zn

n=0

for z € C with |z|'< 1, where

() & 1, if n=0,
" Vdla+ D@t —1), ifn>1,

is the Pochhammer symbol. The hypergeometric function 5 F(a, b; ¢; ) is a solution
of the differential equation
d
0@ +c—1)F —z(0+a)(@+b)F =0, szd—.
z
This is a Fuchsian equation on the complex projective line with precisely 3 regular
singular points at z = 0,1, co with local exponents {0,1 — ¢}, {0,c — a — b}, and
{a, b}, respectively.
Using the well-known fact in the classical analysis that a second-order linear or-
dinary differential equation with three regular singularities at 0, 1, oo is completely
determined by the local exponents, one can easily deduce Euler’s identity

oF1(a,b;c2) = (1 —2) % F (a,c— b; ¢; i )

T2—1
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(among many other similar identities). Since the function z/(z — 1) is a rational func-
tion of degree 1 of z, we call this identity an algebraic transformation of degree 1 of
hypergeometric functions. In this chapter, we are concerned with algebraic transfor-
mations of hypergeometric functions, that is, identities of the form

2F1<a7 b; ) Z) = R(Z)QFI (a’/7 b/; Cl; S<Z)) (61)

with suitable parameters a, b, c,a’,b’, ¢’ and algebraic functions R(z) and S(z). If
w = R(z) is of degree m over the field C(z) or if z is of degree m over the field C(w),
we say the algebraic transformation has degree m.

Beyond transformations of degree 1, one of the simplest examples is Kummer’s
quadratic transformation

1 1
o F1 <2a, 2b;a + b+ 5,2) =oF; <a,b;a+b+ 5;4,2(1 - z)> , (6.2)

valid for any real numbers @, b with a + b + 1/2 # 0, =1,=24.... In [10], Goursat
gave more than 100-algebraic transformations of degrees 2, 3,4, 6: One such example

is
1 1 2(9=82)* AL 11
Filaat = o 73 =(1 -) Fi{3a,a+ =55
21(“”’32 (4 —3)® S E) NWad” \\2'
of degree 3. (See Entry (96) on Page 132 of [10]:) More recently, Vidiinas [25] gave

dozens of new algebraic transformations of degrees 6,8,9,10, 12. For example, he
showed that if we set 5 = £/—2,

4z(z — 1)(8Bz + 7 — 4B)°

S(z) = 6.3
(2) (2048323 — 3072822 < 326422 + 91207 + 32642 +563.— 17)3’ ©.3)
and
B 16 64 , #2048 g
R(z) = <1+ 5 (4= 110)2 = S (167 — 1360)28 4 (112 — 175)= ) ,
then

5 13 7 1 17 7
o Fy <24, 24’8’Z> = R(2)211 <48’48’ 8’S(2)> ’

which is a transformation of degree 10. (See (32) of [10].) Vidunas’ examples usually
involve Grobner-basis computation. This is perhaps one of the reasons why Goursat
could not find these transformations.

In a very recent paper, we [24] obtained many new algebraic transformations of
hypergeometric functions. For example, one of our favorite identities is

I 114 642(1 — 2z — 2%)°
TI\207 475 (1 — 22)(1 + 4z — 22)5

2 9
—(1— 2\1/20 1 4y — 2\1/4 F, =, .52 .
( z ) ( + 4z z ) 211 10,5,10,Z
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The main novelty in [24] is the interpretation of hypergeometric functions as automor-
phic forms on Shimura curves. Then proving identities such as the one above amounts
to showing two certain automorphic forms on two Shimura curves are equal. This
point of view is especially useful in determining the function R(z) in (6.1). As far as
we know, this interpretation first appeared in [33].

In this chapter, we will present several new algebraic transformations and give ex-
amples of algebraic transformations of hypergeometric functions to illustrate the role
Shimura curves play in proving these identities. Firstly, we will prove Kummer’s
quadratic transformation (6.2) in the cases when the hypergeometric functions are re-
lated to automorphic forms on Shimura curves, and obtain identities related to Class
IT in Takeuchi’s classification of arithmetic triangle groups [20, 21]. We remark that
these identities can also be deduced from the results in [24] and some classical algebraic
transformations of hypergeometric functions. The purpose of proving these identities is
to demonstrate the advantage of using Shimura curves in proving this kind of identities.
We then prove identities related to Classes IIT and VI in Takeuchi’s classification.

This chapter is mainly following the articles [22] and.[24].

6.1 Preliminaries

In this section, we will review-definitions arithmetic triangle groups, and their relations
to hypergeometric functions.

6.1.1 Triangle groups

Suppose that a-Shimura curve X (O) has signature (0; ey, e2,e3). /Then we say the
group I'(O) is an‘arithmetic triangle group, and we denote it by I'(©O), = (eq, e2, e3).
The complete lists of all arithmetic triangle groups and their commensurability classes
were determined by Takeuchi [20, 21].

If we cut each fundamental domain of an arithmetie triangle group T'(O) into 2
halves in a suitable way, then the fundamental half<domains give a tessellation of the
upper half-plane h by congruent triangles with-internal angles 7/e1, w/es, and 7/e3.
The following figure shows the tessellation of the unit disc, which is conformally equiv-
alent to b, by fundamental half-domains of the arithmetic triangle group (2, 3, 7).

N
AN
Azl
<>
L S

R
x4y
AL
AN
A

A

=
Y
2
Yy

D4\
&\
pad)
i
WS
YA
N7

5

7)

7
DS
N

S
J

74



Here each triangle represents a fundamental half-domain. Any combination of a grey
triangle with a neighboring white triangle will be a fundamental domain for the triangle
group (2,3,7).

In general, for any discrete subgroup I" of SL(2, R) such that I"\ h has finite volume,
we can define its signature in the same way. If the signature is (0; e1, €2, €3), then we
say I is a (hyperbolic) triangle group.

6.1.2 Automorphic forms on Shimura curves

We recall that if a Shimura curve X is of genus zero, Yang [33] shows that we can
express the automomprhic forms on X by solutions of the Schwarzian differential
equation associated to X. (Please see Section 4.1). In the case of arithmetic triangle
groups, since the number of singularities of the. differential equation is 3, the differ-
ential equation is essentially athypergeometric differential equation. We then can use
oI -hypergeometric functions to express the automorphic forms (see Section 4.1.2).

Theorem 6.1.1. Assume that a Shimura curve X has signature(0; e, ea, e3). Let t(T)
be the Hauptmodul of X with values 0, 1, and oo at the elliptic points of order eq,
eo, and eg, respectively. Let k>4 be an even integer. Then a basis for the space of
automorphic forms of weight k-on-X is given by

$lk(=1/e0)/2hy gy lhO=1/ea)/2}4i <2F1(a, bie: t)y & CtYEFy (alsb, ¢; t))k :

J=0,..., [k =1/e1)/2] + k(1 —=1/e3)/2] + |k(1 — 1/e3)/2) = k, for some
constant C, where for a rational number @, we let {x} denote the fractional part of x,

1 1 1 1 1 1
a:“(]. ————— —>7 b:a+—, c=1——
2 €1 () €3 €3 €1
and 1
o =afF =5 bl =0+ —" =t —
€1 €1 €1

6.1.3 Algebraic transformations of hypergeometric functions

Consider the following situation. Suppose that I'y < T's are two arithmetic triangle
groups with Hauptmoduls z; and 29, respectively. Since any automorphic function on
T'; is also an automorphic function on I'y, we have 2o = S(21) for some S(z) € C(z).
Likewise, if f; and fo are two automorphic forms of the same weight k& on I'; and
I's, respectively, then the ratio f1/f> is an automorphic function on I'y and hence is
equal to R(z;) for some R(z) € C(z). After taking the kth roots of the two sides
of f1/f2 = R(z1), we obtain an algebraic transformation of hypergeometric function.
This explains the existence of Kummer’s, Goursat’s and Vidunas’ transformations. (Of
course, the triangle groups appearing in their transformations may not be arithmetic,
but the argument above is still valid.)

More generally, if I'y and I'y are two commensurable arithmetic triangle groups
such that the Shimura curve associated to I' = T'y N 'y has genus 0. Let z be a
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Hauptmodul on I'. Then each of z; and 29 is a rational function of z. Similarly, the
ratio f1/ f2 is also a rational function of z. In view of Theorem 6.1.1, we can obtain an
algebraic transformation of the form

2F1 (a1,b1;¢1; 51(2)) = R(2)2F1 (a2, ba; ca; S2(2))

for some rational functions S1(z) and S2(z) and some algebraic function R(z). This
is the theory behind (6.4) and other algebraic transformations given in the paper.

Definition 6.1.1. Let S(z) € C(z) be a rational function. If the finite covering
PY(C) — PY(C) defined by S : z — S(z) is ramified at most at three points 0, 1,
and oo, then S is called a Belyi function.

In practice, the Belyi functions S (z) andSa(z) can be determined by the ramifi-
cation data of the coverings of Shimura curves. The function R(z) can be determined
by Theorems 4.1.3 and 6:1.1.

6.2 Kummer’s Quadratic Transformations and Auto-
morphic¢ Forms

In this section, we will use our arguments to prove Kummer’s quadratic transformation
1 1
o Fi (2@,2b;a—|—b+ E,x) =oF] (a,b;a+b+ 5;4.’17(1 —a:)) ,

describe the automorphic forms on' certain groups belong to Takeuchi’s calss II, and
obtain the related algebraic transformations.

6.2.1 Kummer’s quadratic transformation

Note that the triangle group (g, g,p)is asubgroup of (¢, 2, 2p) of index 2. The (q, ¢, p)-
triangle is decomposed by 2 copies of (g, 2, 2p)-triangle.

T/2p

/2 /g

Let z be a Hauptmodul of T'; = (g, ¢, p) and z be a Hauptmodul of T’y = (g, 2, 2p).
Label the elliptic points of X; =T'; \ h by P, Pé, P, for X; and @)y, Q2, Q2, for X»
such that the ramification data are given by
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Py Pé P, P
[ ] [ ] [ ]
1\/1 2 2
[ ] [ ] [ ]
Qq Q2p QQ

Here the numbers next to the lines are the ramification indices.
Assume that the values of x and z at these elliptic points are

x(Py) =0, z(P;)) =1, 2(P,) =00, and 2(Q,) =0, 2(Q2) =1, 2(Q2,) = oo,

z =0

= O

5t
Il

x=0

Then the corresponding hypergeometric functions are
1 1
2F1 20(,26,0[+,3+§,5C ’ and 2F1 a7ﬁ7a+6+§7z ;

where

CTu w2 TE R oy

Also, the ramification data

z 0 ‘ 1 ‘ %)
20, T aya | coge0

at z = 0, 00 implies z = uz(1l — x) for some constant u; the data at z = 1 implies
ux(l — x) = 1 has a repeated root, which shows u = 4 and a = 1/2. Therefore, the
relation between the Hauprmoduls z and x is z = 42:(1—x), and thus the ratio between

1 1
oI <2a72b;a+ b+ 2;$> , and oF) (mb;a—i— b+ 5;4:3(1 — x)) .
is an algebraic function of x. By considering the analytic behaviors, one can see that
they are equal.

Remark. Here, we give another way to determine the value o = z(P). Let G be the
group of all symmetries of the tessellation of the hyperbolic plane by the (g, q,p)-
triangles and G be the subgroup generated by the reflections across the edges of
(¢, q, p)-triangles. Then the factor group G /Gy is of order 2. Since the group relation
I’y < I'y admits the decomposition, the triangle group I's = (g, 2, 2p) corresponds to
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the group G/Gy. Therefore, any element of I'; not in I'; induces an automorphim of
order 2 on the curve X». Such an automorphism must fix the points P, P, and permute
the elliptic points P, P;. In terms of the Hauampmodul z, such an automorphism is
given by

c:x—1—=x

which implies that 2(P) = 1/2.

6.2.2 Automorphic forms on arithmetic triangle groups in Takeuchi’s
class II and the associate algebraic transformations

Let us take Takeuchi’s Class II of commensurable arithmetic triangle groups as an
example, which comes from the quaternion algebra over Q with discriminant 6. This
is a sub-diagram of the subgroup diagram of Calss II.

The node (2,2, 3, 3) in the diagram means-that the related curve X, obtained by I' =
(2,6,6) N (3,4, 4), has signature (0; 2,2, 3, 3). The relations of these subgroups admit
the Coxeter decompositions of a quadrilateral polygon that is symmetric with respect
to both the diagonals as shown below

1 5 3 22 1/12 1 11
A= =222 J=@g- P =, 222-2) ).
2 1(12’12’4’4(zl)> (L=2)) "o F (15,37 53#2 = 2)



and

2

1 2
V2 Fy <3, g? Z? 4(;1)) =(1- 2)1/3(2 - 2)1/22F1 (7, §§ §; 2(2— Z)) .
Moreover, we can express all automorphic forms on I' in terms of hypergeometric func-
tions. (The algebraic transformation associated to the pair of groups (2,4, 6), (3,4, 4),
and the pair of (2,4, 6), (2,6,6) are Kummer’s quadratic transformations, so we skip
the associated transformations here.)
Let the Hauptmoduls be denoted by

(2,3,3,2) (4,4,3) (2,676)
z U t

where for (eq, e, €3), we choose the uniformizers in.a way such that the values at the
vertices e1, e, e are 0, 15 and oo, respectively. For (2, 2,3, 3), we assume that z takes
values 0 at one of the elliptic point of order 2 and values 1 and co the two elliptic points
of order 3, respectively. Then-from-the ramification data, we have the relations

52
= — d t B 2 — .
U= o1 an 2(2=2)

Note that-the Hilbert-Poincaré series for X is

> dimSp[@)z* =1 Hat 148 1 + 2" $30"2 + - F 5 4

1 +IE12
=21 —29)

which means that there are automorphic forms fy, fs, fis of wight 4, 6, and 12 that
generate the graded ring of automorphic forms. Moreover, there exists a linear relation

among [, fg, 1o, f2 18, & iz, andf§ fao.
On the other hand, according to the dimension formula, Proposition 2.7.2, we can
find the dimensions of S;(I') on 'y = (3,4,4) and 'y = (2,6, 6) are

dlmSG(Fl) = 1, dlmSg(Fl) =1, dimSlg(Pl) =1
dim S@(Fg) = O, dim Sg(FQ) =1, dim Slg(rg) =2

Moreover, the space Sg(I'1) can be spanned by

1 5 3 125 6
FG(U) = u1/4(1 _U)1/4 <2F1 (12, E; 4;u) +Clu1/42F1 (3, g; 4;u>> ,

for some constant C', the space Ss(I'1) can be spanned by

_ 1 5.3 1/4 12
FS(U)_<2F1 (12712747u>+clu 2F1 <373
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and Fi(u)? spans the automorphic forms of wight 12 on I';. Similarly, on I's, the sets
{Gs(t)} and {G12,1(t), G12,2(t)} span the spaces of automorphic forms of weight 8
and 12, respectively, where

and

B 111 12 733 \\"
Gig1(t) =t <2F1 <1274727t> + Cot™ /%9 Fy (12,4,2,75)) )

for some C € C.

Substituting u = 22 /4(z —1)and t = 2(2 — z)/into Fs(u), Fs(u), Fs(u)?, Gs(t),
G12,1(t), and G12,2(t), they become automorphic formson.I'. Also, the space Sg(I")
is equal to the space spanned by Fg (2%/(4z — 4)), and.the automorphic form

Ey (22)(42 — 4)) =0Gs(2(2 —%)), CE€C

is a basis of Sg(T"). Comparing the behaviors of these functions, we can find that the
constant C'is equal to 1, and C5 = (—1)1/ 403/2. Thus, by taking 8th roots of the two
sides, we can get the algebraic transformation

1 5 : 3 22 - 1/24 1 1 ].
2by <uﬁim> = (=22 =2) Ll 15 115122 —2) |-
1"2°5 22 7 33
2F [ zps s ——— | =@—2YV3@2—2)YLR | — FiZm2-2)).
fQ 1 <3’37474(Z—1)> ( Z) ( Z) 241 Z( Z)
Observe that'since the dim Sy(T') = dim Sg(I")-= 1,-if Sy (D) is spanned by some

automorphic form fy then f2 spans Ss(I), whichcanbe also spannedby Fs (22/(4z — 4)).
So we can choose

1% 3 125 :
=(-F . /4 gt o 2.0,
f4 (2 1<12712747u>+01u 2 1(3,3,4,“)) )

and we can find
F}(2%/(42 —4)), Gz (22 —27), andFj (2%/(4z —4))

form a basis of S12(T"). (We remark that 4F§ (22/(4z — 4)) = iG122 (22 — 2%).)
As a conclusion, the graded ring of automorphic forms on I' can be generated by
the following functions

4
1 5 3 22 2 M 125 22
S (2 1(12’12’4’4z4)+ "1 7 1(3’3’4’424)> 7
6
1 5 3 2 2\ 125 2
fe = <2F1 (12’12’4’4z—4) +Cy <42_4)> 2 F1 (3,3,4»42_4> )
B 111 (-1)¥40y 1/2 T 3.3
fro = <2F1 (12,4,27z(2—z)) —&—#(2(2—2)) 2 F1 5,1,5,2(2—2)
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with the relation

1S —4ififi2— fin =0.

6.3 Algebraic Transformations Associated to Class III

According to [21], Takeuchi’s Class III of commensurable arithmetic triangle groups

has the following subgroup diagram.

(3,3,4) (2,4,8)

/

(2,6,8) (2,3,8)

\/

(4,4,4)

2

(4,8,8)

The main goal.in this section is to prove-an algebraic transformation associated to the
pair of triangle-groups (4, 6, 6) and (4, 4,4).

Theorem 6.3.1._Let o be a root of &* + 3 = 0 and B a root of z> + 2 = 0. We have

(1+ )3 32)1/8 (5 3.3.12(12(1—22)(1—922))

(1 +a@az)/% 24’874’ (I+az)s ©.5)
1 - (1 33 R(z)>
T 1+ (@AF28)7 = (hh28))2 (878 1 ’
and
(1—2)Y4(1 + 2)5/3(1 — 32)Y/4(1 4 32)%/8 11 5 5 12az(1—2%)(1 — 92?)
(1+ az)l1/4 2 (24 84 (1+ az)s >
_ (14 (=7+4pB)z%/3) 355
T+ (4+28)z - (1+2/3)z2)3/22F1 (8 '8 4’R(z)>
(6.6)
where

41+ B)*z(1+ (=7 +48)22/3)*
(14+2)(1=32)(1+ (44+28)z — (1 +28)22)*"

We first determine the signatures of the intersections.

R(z)=—
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Lemma 6.3.2. We have

(2,6,8) (2,3,8)

\/

T

(3,3,4) (2,4,8)

(3,4,3,4) (4,4,4) (2,8,8)
3 / 2
(@) (4,8,8)

Moreover, the group.of signature (4°) is a normal subgroup of the group of signature
(3,4,3,4). (Here (4°) is-a shorthand for (4, 4,4,4,4,4).)

Proof. LetT'; =(3,8,8) and-I"}-be its commutator subgroup. From the group presen-
tation

L1~y o o 12)® = 1)

for 'y, we know that I'y /T is cyclic of order 8. Thus, I'; has exactly one subgroup of
index 2, which must be the common intersection of the groups (4,6,6), (3,8, 8) and
(3,3,4). The signature of this subgroup can be easily determined by observing that a
covering of degree 2 from a:Shimura curve to the Shimura curve associated to (3, 8, 8)
can only ramify at the two elliptic points of order 8. We find that the signature must be
(3,4,3,4).

We next observe that the commutator subgroup I'y, of the group. I's = (3, 3,4) is
cyclic of order 3. Thus, I} is a normal subgroup of index 3'in'T's. This I', must be the
same as the group of signature (454, 4). If I', # (4, 4,4), then ;N (4,4, 4) is a normal
subgroup of (4, 4,4) of index 3, but.the group (4, 4;4) cannot have a normal subgroup
of index 3. We next determine the signature of the intersection of I's = (3,4, 3,4) and
Iy =(4,4,4).

Let X; denote the Shimura curve associated to the group I';. Since I'y is a normal
subgroup of I'y of index 3, the intersection I's of I's and I'4 is a normal subgroup of
index 3 in I's, which implies that the two elliptic points of order 4 of X3 must split
completely on X5. In view of the Riemann-Hurwitz formula, the two elliptic points of
order 3 of X3 must be totally ramified. We conclude that I'5 has signature (4%).

In fact, the subgroup relations mentioned above can be visualized by the following
figures.
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Here the small triangles are (2, 3, 8)-triangles. Let G be the group of all symmetries
of the tessellation of the hyperbolic plane by the (4, 4,4)-triangles and G be the sub-
group generated by the reflections across the edges of (4,4, 4)-triangles. Then G /G
is isomorphic to D3. The (3, 3;4)-triangle group corresponds to the cyclic subgroup of
order 3 in G/G, while the group (2,3;8) corresponds the whole group G/Gy. Simi-
larly, if we piece 12 copies of (2, 6, 8)-triangles around:the vertex of inner angle /4,
we get a regular hexagon with inner angles 7 /4. Let H be the group of all symme-
tries of the tessellation by this regular hexagon and H be the subgroup generated by
the reflections across the edges-of hexagons. Then H/Hj is isomorphic to Dg. The
unique cyclic subgroup of order-3-in H/Hj corresponds'to the group(3,4, 3,4). See
the figures below.

(The groups (2, 6, 8), (4,6,%6), and (3;8;8) correspond to the whole H/H,, the cyclic
subgroup of order 6 of H/H, and one of the Ds-subgroups, respectively.) O

Now let I'y = (4,6,6), T2 = (3,8,8), I's = (3,3,4), I'y = (4,4,4), 5 =
(3,4,3,4), and T'g = (4°). Let X; = X(Ij), j = 1,...,6, be the corresponding
Shimura curves. Label the elliptic points on X; by Py, Ps, and P, those on X5 by Qs,
Qs, and Q5, those on X5 by Rs, R, and Ry, those on X4 by Sy, S}, S, and those on
X5 by T3, T4, Ty, and T (with the subscripts carrying the obvious meaning) such that
the ramification data are given by

T3 T3 T T3 T3 T3 Ty Ty
2 2 v v 2 2
Ps P Py Q3 Qs Q5
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T3 T3 T, T
Rs Rl Ry
Label the elliptic points of Xg by Uy, ..., Us such that the rotation around the
center of the (4%)-polygon by the angle /3 permutes the six points cyclically. From

the figures above, we know that if we label the points such that U; lies above T35, then
the ramification data for Xg — Xj5 are

Ur Us Us Us Uy Us U Us
N/ 1\ 1 [ 1 [ 3 I 3

° °

T3 T?I) T4 Ti

where Uy and U} are the centers of the (45)-polygons. (The reader is reminded that
each (4%)-polygon represents-only-half of the fundamental domain for the Shimura
curve Xg. Referring to the figure in the proof of the lemma above; a fundamental
domain consistsiof a grey (4%)-polygon and a neighboring white (4%)<polygon.)

Lemma 6.3.3. The two elliptic points of X¢ at the two ends of a diagonal of a (4°)-
polygon lie above the same elliptic point of X4. That is, labeling the elliptic points of
Xy suitably, we-have

U1 U4 UQ U5 U3 UG
Sy S Sy

Moreover, if we choose Hauptmoduls z;(T) for X3, j=1,...,6, by requiring

z1(Py) =04 z1(Fs) =11, z1(F) = oo,
22(Qs) =0, 2(Q3) =1, 2(Q%) = oo,
23(R4) =0, 23(R3) =1, =23(R3) =00,
24(S1) =0, 24(8)) =1, 24(8)) = oo,
z5(Ty) =0, 2z5(T3) =1, 25(Ty) = oo,
26(U1) =0, z5(Us) =1, 26(Us) = o0,
then we have
4zg 9
AT 2o
(S PN N (S Y
(1+¢2a)? ’ 1—-928 ’
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(28 + 168)25(1 + (—17 + 568)22/81)*
(14 25)(1+ (13 +808)25/3 — (25 + 3283)22 /9 + (17 — 563)23 /81)3”

zZ3 =

nd
¢ A(1+ B) 261 + (=7 +48)22/3)

(14 26)(1 — 326) (1 + (44 28)z6 — (1 4+ 28)23)*’
where C is a 3rd root of unity and 3 is a root of x> + 2 = 0.

Z4 = —

Proof. The ramification data for the covering X5 — X5 and the assumption 2z5(Q3) =
25(T3) = 1 imply that 2o = 22 and

2(T3) = —1.

The relation between 21 and z5 is easy to determine. We find z; = 425/(1 + 21)2.

To determine the relation between z3 and z,, werecall from Lemma 6.3.2 that I'y
is a normal subgroup I's.. Any element of I's not in Iy induces an automorphism of
order 3 on X,4. Such an automorphism must permute:the three elliptic points Sy, S},
and S cyclically. In term of the Hauptmodul z4, such.an automorphism is either

=1

024 —>
2’4—1

or its square.. Moreover, the-fixed-points of such an automorphism are the ramified
points in the covering X4 — X3. That is, if we let Sy and S{, be the points lying above
R3 and R} tespectively, then 24(Sp), 24(S) € {—C, —C?}, where (.is a primitive
3rd root of unity. Then from the ramification data, we easily deduce that z3 = (¢ —
(*)2a(l = 2Z)/L # C24)°.

To determine the relation between z5 and zg, we argue similarly as above. The
tessellation of the hyperbolic plane by I's has a- Dg-symmetry, in addition to the sym-
metries arising from the reflections across the edges of the (4%)-polygons. Thus, the
automorphism group of Xg is at least as large as Dg. This provides many useful infor-
mations. For example, if we let 7 be the reflection across the diagonal joining U; and
Uy, then 7 induces an inyolution on.-Xg, which, in-termsof zg, is given by

T V26— —26,

which implies that
Zg <P5) = —1.

Furthermore, let p denote the rotation by angle 7/3 around the center of the hexagon.

Then
czg+ 1

g ——————
p —cCczg + C

for some zero constant ¢ since p maps 1 to oo and oo to —1. In light of p? : 0 — 1, we
conclude that ¢ = 3 and

z(Uz2) = 1/3, z(Us) = —1/3.

It follows that z5 = Azg(1 — 22)/(1 — 922) for some A. This constant A has the
property that Az(1 — 2?) — (1 — 92?%) has repeated roots. We find A = +3/—3. The
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choice of the sign must be synchronized with the choice of the third root of unity in the
relation between z4 and z5. This will be done later.

We now come to the more complicated part of the lemma. Let 7 : Xg — X4
be the covering of the Shimura curves. Let « be an element of I's not in I'4. Then
~ normalizes both I'y and I'g and induces automorphisms p; and p; on X, and Xg,
respectively. We may assume that p, = p?, where p permutes Uy, . . ., U cyclically, as
defined in the previous paragraph. It is easy to check that wo p; = pyonw. Thus, 7(Uy),
7(Us), and 7(Us) are three different elliptic points on X4. We label them by Sy, S},
and S/, respectively. Let V7, V5 be the two ramified points lying above Sy. Now there
are three possibilities

77_1(54) = {Uh UQ; V17V2}7 71—_1(54) = {U17 U47V17 ‘/2}7 7T—1(S4) = {U17U67 ‘/17 ‘/2}

We will show that the correct oneiis {Uy, Uy, V1, Vo
Let Vj/ = pg(‘/j) and ij” —= pg(‘/]) forj =1,2./0f 7T_1(S4) = {Ul, Us, Vl,VQ},
then we have

BZG(l — 326)(256 — 26(V1))4(26 - 26(‘/2))4
(1 + 26)(1 +326) (26 — 26(V{"))*(26 — 26(V5'))*

Zap—

for some constant B. The values of z¢(V7) and etc. must satisfy

Bz(l 2de)(1 “@/20A) (1L — &/2(V2))?
— (1)L + Be) (L) (L /(WD 67
S CaL )1 - o2V oz (V)

for some constant C. Now if we let py(2) = 1 + aw + ba? = (1 - 2/26(V1))(1 —
z/26(V2)), then (= u/z6(V))(1 = &/ 26(V5)) and (I = 2/ 2(Vi)(1 — x/26(V5"))
are scalar multiples of

z—1
3z 41

z+1
1-—3x

p2(z) = (14 32)%*p; < ) =(1—a+b) (6 —2a —2b)x + (9 + 3a + b)a?,

p3(z) = (1 — 3z)%p; ( ) =% a+b)+ (=6 —2a+2b)z+ (9 —3a+ b)a?,
respectively. Substituting these into (6.7) and equating the coefficients in the two sides,
we find A = B =0,a = —2, b = —3, but obviously this is invalid. This means that
7 1(S4) # {Uy, Uz, Vi, Va}. Likewise, 7 1(S4) # {U1,Us, Vi, Va}. Thus, we must
have 771(S4) = {U1, Uy, V1, Vo }. Now equating the coefficients in the two sides of

Bx(1 + az 4 bx?)* — (1 — 2)(1 + 32)pa(z)* = C(1 + ) (1 — 3z)ps(x)*

and excluding the invalid solutions, we get the claimed relation between z4 and zg. The
relation between z3 and z5 can be determined by the known relation between z3 and z4,
that between z4 and zg, and that between z5 and zg. This process also determines the
choices of the third roots of unity in the relation between z3 and z4 and that between
z5 and zg. We omit the details. O
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Lemma 6.3.4. The automorphic derivative QQ(zg) = D(z¢,T) is equal to

15 /1 1 1 1 1
5 (3 T e ) 68

4i 1 n 1 n 3 n 3
128 ]-_ZG 1+ZG 1—32’6 1+3Z6 ’

Proof. By Proposition 4.1.2, the rational function R(z) such that automorphic Q(zg) =
D(zg,7) is equal to R(z) is equal to

R( )_15 1 n 1 n 1 n 1 n 1
Do\ Z T 0 0 T @132 @ri/3)y
B, By = Bs B, Bs
T Jra:—l+ac+1+9c—1/3+m—&-1/3

for some constants B; ‘satisfying

1 1 15
By + By +B3 + B4 +B5=0; BQ—Bg+§B4—§B5+E:0. (6.9)
Now the normalizer of I'g in SL(2:R) contains at least the group of signature (2, 6, 8).
The factor group, in terms of the Hauptmodul zg, s generated by o : zg — (326 +
1)/(—3z¢ + 3)'and 7 : zg — —z6. By Proposition 4:1.5, R(x) satisfies

144 3z +1
S = R@). (a8 (—3x n 3) ()
Combining these informations with (6.9), we find
45 45
B = By=By=———, B3=Bs=—.
1.=0, 2 4 123 3 57 193
This gives us the formula. O

We now prove the theorem.

Proof of Theorem 6.3.1. By Proposition 2.7.2, we have
dim Se(rl) = 1, dim 56(F4) = 17 dim S@(FG) =T.

By Theorem 6.1.1, the one-dimensional spaces Sg(I'1) and Sg(T'4) are spanned by

5 3 3 1155 6
Fy = 75}/4(1—21)1/2 <2F1 (247 3 4;21> + 012}/42F1 ( )) (6.10)

ﬂag;z;zl
and
6
133 355
Fy, = Zi/4(1 - 24)1/4 <2F1 (8’ g; 4;2’4) +C2Zi/42F1 (8’ g; 4;Z4>> (6.11)
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for some complex numbers C; and Cs, respectively. Furthermore, by Theorem 4.1.3,
if we let

46 67 730928 6 T 39928 O
24 2 11522 230121
f2—22/8(1—222 5, 7269 , 115223 55230 _)

67 34%6 7 170 6 T T 408 5 27880

15 111 2045 11355195 77997477
f122/8(1z§142§ 6 _ 8 _ 10'”>

be a basis for the solution space of the Schwarzian differential equation d?f/dz2 +
Q(z6)f = 0, where Q(zg) is the rational function in (6.8), then a basis for Sg(I'¢) is
g= Ji+ Cazg!”

21 — 28)*(1 — 92§)?

{zgg: j=0,...,6},

Now from Lemma 6.3.3, we have

7 _ 12a26(1 — 22)(1 — 929)
T (14 azg)8

and
A1 +8)" 21+ (-7 + 48)%5/3)*
(14 26)(1 — 326)(1 + (4 +28)2z6 — (1 + 283)23)*’
where « is a root of 22 +3 = 0 and 3 is a root of #° + 2 = 0. Substituting these into
(6.10) and (6.11) and comparing the coefficients, we find

Z4 —=

=1+ 32%)39
and

Fy = e <1 % JT”BZ‘;’) (1+ (44 28) 2620 $25)22)
x (1 (4 F2Byse="1+2B)%) §

for some constants ¢; and c,. Taking the sixth roots of F; and F5 and simplifying, we
obtain the identities claimed in the theorem. O

Associated to this class, we also have the following identities.

Theorem 6.3.1. (1) Corresponding to the pair of (4,6,6) and (3,3,4) are the fol-
lowing identities

5 33 4t 1 3 3 (28+16B3)tR*

51/8 (2 2.2, -1 t3/8 = 2. 2. = 7
I 247874 (14 1)2 LN Cyekbe (1+6)53 )’

11 5 5 4t 7 5 5 (284 1683)tR*

S7/gF L9 9 = R(1 t5/8F R P S e Al
24874 (14 1)2 A0SR op gy (1+6)S3 )’
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(2) Corresponding to the pair of (3,8,8) and (3,3, 4) are the following identities

1 3.3 (28+168)tR*\ _ 18 1/24 517,
2b1 (’8’4’(14—1&)53 =S+ 5 gt

7 55 (284166)tR"Y /s 7/24 1119
Ry (4 81 (1+6)S = SRR 3724’8 it

(3) Associated to the groups (3,8,8), (4, 6,6) are the following identities

5 33 4t _ 5/12 5 17 5
2F1<24’84(1+t))_(1+t) 2P\ 5p 5!
11 5 5 4t _ 11/12 1119 ,
2F1 <2478’4’(1+t)2>_(1+t) 2F1 3324787t ’
where
—17.+568 5 13 + 84 25 +32B 5 17 —560 4
R + 81 , S a 3 9 * 81 ’

and B is a root.of x> + 2.

We remark here that these equalities can be deduced from the results described in
Theorem 6.3.1. The purpose of the following proving these identities is to demonstrate
the advantage of using Shimura curves in proving this kind of identities.

Proof. Let Ty= (4,6,6), I's = (3,8,8), I's = (3,3,4), T' = (3,4y3,4), and the
Hauptmoduls be denoted by

(4,6,6) (8,3,8) (4,3,3) (4,3,4,3)
Z1 22 23 t

where for (eq, e2, e3), we choose the Hauptmoduls such that the values at the vertices
e1, ea, ez are 0, 1, and oo, respectively. For (3, 4,3,4), we assume that ¢ takes value
1 at one of the elliptic point of order 3 and values 0 and oo the two elliptic points of
order 4, respectively.

Then we can find that ¢ takes value —1 at the other elliptic point of order 3, and the
relations between these Hauptmoduls are

4
A(7+ 4B)t (1 + %Wﬂ)

z3 =

1 27 ’ _ 3

(1+1) (t+1) (1 + 13;8(375 _ 25+932ﬁtg n 178156ﬁt3

(6.12)

By Proposition 2.7.2, we have
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Therefore, the space Sg(I'1) is spanned by

6
5 3 3 11 5 5
F] = Z%/4(1—Zl)1/2 <2F1 (24’87 4,21) +Clzi/42F1 ( g, 4,2’1)) (613)

for some constant C1; the space Sg(I'2) is spanned by

- 5 17 18 111 9 6
Fy =28 (,F 25 Cozy*sFy (=) =3 = 6.14
D = 2 (2 1(24’3’8’22)+ 2% 21 5,5 i g% (6.14)

for some constant Cs, and the space Sg(T'3) is spanned by

1 33 7 55 6
Py = 2/ <2F1 (24, < 4;z3) 4 1€z Fy (2478; 4;Z3)> (6.15)

for some constant Cs3.
By Theorem 4.1:3; a basis for the space Sg(T") is

(f1 +Cf2)°

tg, -t = |
{g? gﬂ 9}7 g t2(1 l t)2(1 +t)27

for some constant C', where {f1; f2} is a basis for the solution space of the Schwarzian
differential equation d*f /dt®> + Q(¢)f = 0 associatefo ¢.
Note that for any element 7y of I'; not I'; we have the equality

t(yr) = —t(7).
From the information and Theorem 4.1.3, we can get
15 2 1 1 1 1
t) = 2 - ,
Q) 64t2+9<(1—t)2+(1+t)2 t—1+t+1)

Here, we choose a basis for the solution space of the Schwarzian differential equa-
tion d?f/dt?> + Q(t) f = 0 with t-series

s (116, 1168, 99568 ;1922128 o 3201ST6S
81 12393 1673055 45172485 930508645 ’

Gy (1160 176 . 65008 1792496 . 2591952,
63 1701 1056321 42101937 7957266093 '

After substituting (6.12) into (6.13), (6.14) and (6.15), one has
CSFy =v2(1 — 1?)g,
CGFQ :tg,

COF3 =V2(7+4p)"/* (1 + (_17;565)#) g

(6.16)
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Simplifying the relations

—17 4 568

1/4
(7448) (1 + o1

t2) Fy = (1—t*)Fs,

tFy = V2(7 +48)'/4 (1 + ﬂﬂ) B,

81

and
tF = V2(1 —t*)Fy,

we can get the identities described in the theorems. O

6.4 Algebraic Transformations Associated to Class VI

According to Appendix A, the subgroup diagram for Takeuchi’s Class VI is

(2,4/5) (2,4,10)

\/

(4,4,5) (2,10, 10)

X ; /

(2,2,5,5) (5,10,10)

396 |

(57 5’ 5? 5)

2

2

LetT; = (2,5,5), s = (5010, 10);'3.=(5,55575), and X1, X5, X3 be the Shimura
curves associated to these three ‘groups. (The reader is reminded that the subgroup
diagram should be read as “there are arithmetic Fuchsian subgroups of SL(2,R) such
that their subgroup relations are given by the diagram”.) The subgroups relations I's <
I'y, 'y admit Coxeter decompositions as the following figures show.

£

Here the small triangles are (2,4, 5)-triangles. Associated to this triplet of groups is
the following identities.
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Theorem 6.4.1. We have

P 114 642(1 — 2z — 22)°
271\207 475 (1= 22)(1 + 4z — 22)5

3 9 9 (6.17)
= (1= B - A (o B )
and
L
(6.18)

21 11
:1_21/41 4_25/4F 77,7,2.
(1= VAL + 42 = 23R (£, 53552
Proof. Label the elliptic points of X; by P5, Ps, P2 for Xy, Q5, Q10, Q' for X5, and
R;,v=1,...,4, for X3 such that'the ramifications data are given by
Ry Ry S 2 Ry Ri  Rs

Ss Ry Ry S2 Sz R
AN T NN A
V& P Qs Q10 o

Here the numbers next to the lines are the ramification indices. We have omitted Ps
from the diagram. There are 6 points lyingabove P». Each has ramficiation index 2.
Choose Hauptmoduls z; for X; by requiring

21(Ps) = 0, z1(P2) = 1, 21(P5) = 00, 22(Q10). =0, 22(Qs5) = 15122(Q}) = 0
and
23([1) =0, 23(R2) =1, 23(R3) = o0

The relation between 25 and zs.is easy to figure out. We'have
2y = 23, (6.19)

which implies that z5(R4) = —1. To determine the relation between z; and z3, we
observe that the tessellation of the hyperbolic plane by the (5,5, 5, 5)-polygons has
extra symmetries by rotation by 90 degree around the center of any (5, 5, 5, 5)-polygon.
In terms of groups, this means that I's has a supergroup I' normalizing I's such that
I'/T5 is cyclic of order 4. (In fact, T' is the (4,4, 5)-triangle group in the subgroup
diagram.) Therefore, the automorphism group of X3 has an element o of order 4 that
permutes I?;, Ry, R3, R4 cyclically. In terms of the Hauptmodul, we have

0O z23+H——

zZ3 — 1 '
Thus, if the value of 23 at S; is a, then we have

a—1 1 a+1

z3(51) = a, 23(S:2) = paE z3(83) = P 23(S4) = 1
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Therefore, the relation between z; and z3 is

Bzz(z3 —a)®(z3 + 1/a)®
(1=25)(23 = (a—1)/(a+1))>(23 + (a+1)/(a — 1))

for some constant B. Moreover, the automorphism o of X3 rotates 4 of the six points
lying above P; cyclically and fixes the other two. (The reader is reminded that each
(5,5,5,5)-polygon represents only half of the fundamental domain for I's. The two
fixed of o are the centers of the (5, 5,5, 5)-polygons.) In terms of the Hauptmodul z3,
this means that the values of z3 at the two fixed points of o are £ and if the value of
z3 at one of the other 4 points above P is b, then the values at the other 3 points are
—1/b,(b—1)/(b+1),and —(b+1)/(b — 1). Thus, we have

C(1+ 22)2(25 — b)2 (23 + 1/0)2(25— (b — 1)/(b+1))%(z5 + (b + 1)/(b — 1))?

zZ1 =

2171:

(1 - 23)(s = (a=1)/(@+1))%(25 + (a + 1)/(a — 1))
for some constant C'. Gomparing the two sides, we finda = 0,41, +i, a®> +a—1 = 0,
or a? — a — 1 = 0. The first five solutions are invalid.-The othef two solutions give
6423(1 — 23 — 23)°
(= 22)(1 + 425 — 22)°

(6.20)

Z1=

or
6423(1 + 23 — 23)°
(1= 23)(1 — 423 — 25)°
Both are valid because of the following reason. Notice that I'a'normalizes I's. If we
take an element#y of ' not in I'3, thén ="' T,y is again a triangle of signature (2,5, 5)
containing thesame I's. If the relation between.the Hauptmoduls of T'; and I's is
(6.20), then thetelation between the Hauptmoduls of ~v=I'; v and I's will be (6.21).
By dimension formula and Theorem 6.1.1, we have

Y- (6.21)

dim Sg(rl) = dim Ss(rg) = 1, dim Ss(r3) b 4 7,

and the one-dimensional space Sg(I'; ) is'spanned by
114 19 6 §

F=2" <2F1 (20 7 5;21) +Cizy s Ry ( —; m)) (6.22)

for some constant C, the function

8
= 23/5(1 — 29)'/5 (2F1 (1‘3;)7 %; 1%; Zz) + 022;/1021:‘1 <§, %; %; Zz))
(6.23)
is contained in Sg(T'2) for some constant Cs. To get a basis for Sg(I's), we need to
work out the Schwarzian differential equation associated to z3. It is actually easy in
this case.
Here we use we use the automorphism of X3 coming from the normal subgroup
relation I's <1 T'y. Let v be an element of I'; not in I's. We know that

z3(V7) = —z3(7)-
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Now by Proposition 4.1.4 and Theorem 4.1.1, the function zé (1), as a function of
23, satisfies

d2

where

Oy S (L, 1 v
B\ 2 T M=) T (Ut 1-z 142/

Thus a basis for the solution space of the Schwarzian differential equation d? f /d23 +
Q(z3)f = 01is given by

(i A 52 1346, 4GS 2021921 .,
1= % 1573 7 47573 7206625 2 1083125 % 60265625

3/5( 12 , (28 4 2708 893636/ o 7503908 )

= 1 —_ — _— — — -
fo=2 5573 97578 1262570 8738125 ° 218453125 3

By Corollary 4.1.3,

(fa+ Cs /)8
28 (1= 23)3(1 + 23)°°

g, 239, 23397 Z?:):ga Z§g7 g =

form a basis for Sg(I's) for some constant C5. That is, after substituting (6.20) and
(6.19) into (6.22) and (6.23), respectively; we-have Fy = hq(z3)g and F> = ha(z3)g
for some polynomials h;(z) and ho(z) of degree < 4. Indeed, by comparing the
coefficients, we find

Pl S0 e 222)go T FfLag.
(It is easier if we take the 8th roots of the functions first)) Simplifying the relation
23Fy = 26/5(1 — 23 ~22)(1 Fdzy — 22) Iy, we get the two identities in the theorem.
This completes the proof. O

6.5 Algebraic Transformations Associated to Other Classes

Note that the quaternion algebra in Class I is M (2, Q), so the Shimura curves are just
the classical modular curves. In this case, it is easier to use Fourier expansions of
modular forms and modular functions. We will not discuss this case.
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6.5.1 ClassesIl, V, and XII
The subgroup diagrams of Class II, V, and XII are all of the form

(2,4,2n)
2/ X
(2,2n,2n) (4,4,n)
(n,2n,2n) (2,n,2,n)

The subgroup relation (2 is a special case of

that is sym-

Associated to this family of subgroup relations is the following identity.
Theorem 6.5.1. For real numbers a and b such that neither b+ 3/4 nor 2b+1/2 is a

nonpositive integer, we have

1 3 1 1 4z
2a+2b 2. 2.2 2. 2.
(1+2) oF) (a+b,a+4,b+4,z) 3 (a+b,b+4,2b+2,(l+z)2)

in a neighborhood of z = 0.
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This identity can be easily proved using Kummer’s quadratic transformation. Al-
ternatively, one can verify that both sides are solutions of the differential equation

22(1—2)(142)? F" —(142)((3—4b) 2> +8(a+b) z—4b—1) F' —(a+b) (1+4b) (1—2) F = 0.

and that the local behaviors at z = 0 agree. We omit the details.

6.5.2 Classes 1V, VIII, XI, XIII, XV, XVII
The subgroups diagrams of Classes IV, VIII, XI, XIII, XV, and XVIII are either of the

form
(2,3,12n)
2
4
3
(3,3,6n) (3, 4n, 12n) (2, 6m) 12n)
4 4
2
(3,3,2n,6n) (6n,6n,6n) (2n,4n, 6n,12n) (3n, 12n,12n)
3 2
4 4
(2n3, 6n) (3n24f6n2) (n,3n,4n?, 12n2)

(1;n?,2n2,3n2, 6n2)

or sub-diagram of it with Class XI having one-extra node. There are two families of
essentially new identities associated to these classes. One corresponds to the pair of
(3,3,6n) and (3, 4n412n). (Theorem 6.5.2 below.) One corresponds to the pair of
(3,4n,12n) and (2, 6n, 12n). (Theorem 6.5.3 below.)

Theorem 6.5.2. For a real number a such that neither 3a+1 nor 2a+1 is a nonpositive
integer, we have

1 1
(14 2)2+/6(1 — z/3)3¢+V/2, |y <2a + 3t gidat]; z2>

1 1 1623
=, F Z Z.9 10— =
2 1(a+6,a+2, a+ ’(1+Z)(3—Z)3>
in a neighborhood of z = 0.

Theorem 6.5.3. For a real number a such that neither 6a+1 nor 4a+1 is a nonpositive
integer, we have

1 1 2722(1 — 2)
1— 9a+3/4 F |4 Z9 _. 1: —
(1-=2) 2F1 (4ot 3,20+ 3560 +1; T,

1 1 6423
= (1 —9z)etl/12 - Z.4 1o =
( Z) 241 3a + 47a+ 4’ a+ 1; (1—2)3(1—92)
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in a neighborhood of z = 0.

In principle, these two identities can be deduced from Kummer’s and Goursat’s
transformations, once the related Belyi functions are determined. Here we briefly indi-
cate how one can prove the theorems in the cases where the parameters correspond to
discrete Fuchsian groups using theory of automorphic forms.

Proof of Theorem 6.5.2 in the cases of Shimura curves. For the pair of (3,3,6n) and
(3,4n,12n), the subgroup relations admit Coxeter decompositions, as shown in the

ﬁgures

Here the parameter nin the figures is 1 and the smaller triangles are (2, 3, 12)-triangles.
LetT'y = (3,3,6n), s = (3;4n,12n), T's =T1 NTs, and let X;, 7 =1,...,3 be the
associated Shimura curves. Denote by Ps, Piyand Pg, the elliptic points of orders 3,
3, and 6m on X5, by Q3, Q4ys-and-Q1o, the elliptic points of orders 3, 4n, and 12n on
X5, and by Rg, Rg, Rg,, and Rg, the elliptic points of order 3, 3, 2n, and 6n on X3.
The points are labelled ina Way such that the ramification data are given.by

Si R3 Ry Ry, Ren
\/ \/ \/ )

4n Ql?n

Choose Hauptmoduls zponX;, j =1,2,3, by requiring
21(Psn) = 0, 21(P3) = 1, 21 (P3) =00, 22(Qan) =0, 22(Q3) = 1, 22(Q125) = o0

and
23(Ran) =0, 23(R3) =1, 23(Repn) = 00

It is easy to see from the ramification information that

zo = 23, (6.24)
which implies that z5(Rj5) = —1. For 27, we have
Az3

= (14 23)(1 — az3)®

for some complex numbers A and a, where 1/a is the value of z3 at S;. These two
numbers satisfy
Azg (1 — 23)(1 — b23)3
—_ = — 21 = 5
(14 23)(1 —az3)? ! (14 23)(1 —az3)?

(6.25)
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where 1/b is the value of z3 at S2. Now observe that I's is a normal subgroup of I's.
Thus, an element of I'y not in I's induces an automorphism on X3. In terms of the
Hauptmodul zs, it is easy to see that this automorphism sends z3 to —z3. Since this
automorphism maps Sy to Sy, we find b = —a. Then comparing the two sides of
(6.25), we get A =16/27,a = 1/3, and

1623
(14 23)(3 — 23)%

(6.26)

zZ1 =
Now by Proposition 2.7.2, we have

2, ifn=1,

dim S('y) = dim Sg(I'2) = 1, dim S5(I'3) {3, ifn > 2.

From now on, we assume_that n > 2.
By Theorem 6.1.1,the one-dimensional spaces Sg(I';)‘and Se(I'2) are spanned by

B 1 1 i 1
ooy (L L L
L=% R Tt B i h W

| . 6.27)
q = 1 o 1
F B o — < 1 .
+Gm ek (6 T onts a7
and
1 1 1 1 1
B, o= i=dfdn( o (L F L
2= 42 3 6n’'3 120  4n'?
6 (6.28)
1/4n 1 11 1 1
F — JE— -1 y &
Pt N <3 T3 e A ) )
. . 1/2—1/4n
respectively, for some constants C and.Ca. Also, if we let f; = 23 1+

c1z+--+)and fo = z§/2+1/4”(1 + dyz + ---) be a basis of the solution space of
the Schwarzian differential equation d f /dz3 + Q(z3) f = 0 associated to z3, then by
Theorem 4.1.3, Sg(I'3) is spanned by g, z3¢g, and z%g, where

_ (f1 +C5f2)8
©22(1 = 23)2(1 + 23)2

for some constant C's. Now we substitute (6.26) and (6.24) into (6.27) and (6.24),
respectively. We find

F1:a123*3/2”_~_... F2:Z§*3/2"+...
where a; = (16/27)'~1/2" and thus
Fy = a1739, Fy = (z3 4 as23)g
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for some constant as. That is, a12F»/F; = 1 + agz3. We then take the 6th roots of
the two sides and compare the coefficients of 23/2=1/4" we find that as is actually 0.
After simplifying, we arrive at

111 1 1
1 1/6-1/12n (1 _ v2-1/an_po(2 21 2
(1+2) (1=2/3) XU\ T 6’3 120 dn'

1 1 1 1 1 1623
=P (- s ol e s )
6 12n’2 12n 6n’ (1+2)(3—=2)
This proves Theorem 6.5.2 in the case the parameters correspond to arithmetic triangle
groups. O

Proof of Theorem 6.5.3 in the cases of Shimura curves. The subgroups (3, 4n, 12n), (2, 6n, 12n)
and their intersection admit Coxeter decompositions-as the figures below show.

Here the parameter » in the figures is 1 and the small triangles are (2, 3,.12)-triangles.

Denote the groups (3, 4n, 12n), (2, 6n, 12n), and (2n,4n, 6n, 12n) by I';, T's, and
I's, respectively. Label the elliptic pointsof (3;4n, 12n) by Ps, Py,, and P2, those
of (2,6n,12n).by Q2, Q¢n, and Q13,, and those of (2n,4n, 6n, 12n) by Ray,, Rin,
Rg.,, and Rqs,. The ramifications are shown as follows.

R2n R4n RGn R12n R2n R6n R4n R12n
°
°
Py, Py, Py Qen Q12n Q2

Choose Hauptmoduls z; for I';, j =1,..., 3, by requiring that

ZI(P4n) =0, ZI(P3) =1, ZI(PIQn) = 00,
22(Qon) =0, 22(Q2) =1, 22(Qi2n) = 00,
23(R2n) =0, 2z3(Ran) =1, 23(Ren) = oc.

It is easy to work out the relation between z; and z3 and that between 29 and z3. They
are
2722(1 — 23) 6423
7 =—"" Zo = — .
1-— 923 (1 - 23)3(1 - 923)

Here 1/9 is the value of z3 at Ry2,. We then follow the same arguments as before to
obtain the claimed identities. We omit the details. O

(6.29)

APPENDIX A. LIST OF ARITHMETIC TRIANGLE GROUPS
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In this section, we determine the signatures of the intersections of commensurable
triangle groups.

According to [21], there are totally 85 arithmetic triangle groups, falling in 19 dif-
ferent commensurability classes. Here we give the subgroup diagrams. Note that since
most groups here have genus 0, we omit the genus information from the signature, un-
less the group has a positive genus. Also, to save space, the notation (g; e, ..., el)
means that the Shimura curve has n; elliptic points order e;. Furthermore, for conve-
nience, we will often call the groups by their signatures, even though this raises some

ambiguity.

Remark 6.5.4. There is some ambiguity when we say “the intersections of commen-
surable triangle groups” because there may be more than one orders whose norm-one
groups have the same signature and the intersections of these groups with another
group may have different signatiures. For example, in the case B = M (2,Q), the
subgroups To(2) and T° (2) of SIi(2, Z) have-the same signature (0; 2, 00, 00) and the
group T'o(4) has signature (0;00, 00, 00). The intersection of T'o(2) and T'o(4) is just
T'o(4), but the intersectionof I'°(2) and T'o(4) has signature (0500, 00, 00, 00). Thus,
the subgroup diagrams described here should be read as “there are arithmetic groups
whose subgroup. relations are given by the subgroup diagrams”.

Since it is not easy to describe-explicitly the orders associated to arithmetic triangle
groups, here we use group theory and properties of discrete subgroups of SL(2,R) to
determine the signatures. We will work out the case of Class IV in [21] and omit the
proof of the others.

According to [21], Class IV of arithmetic triangle groups has the following sub-
group diagram.

(2,3,12)
(3,3,6) (3,4,12) (2,6,12)
(6,6,6) (3,12,12)

Here the numbers next to the lines are the indices. Set

rh=(23,12), I's=(3,3,6), I's=(3,4,12),
ry,=(2,6,12), TI's=1(6,6,6), I's=(3,12,12),

and let X;,7 =1,...,6, denote the respective Shimura curves. To determine I'y N I's,
we observe that I'; is a normal subgroup of I'y of index 2 and I'y = I'sI's. Thus,
I'; N T's is a normal subgroup of I's of index 2. Now the elliptic point of order 3 on
X5 must split into two points in X (I's N T'3) because 2 1 3. Then from the Riemann-
Hurwitz formula, we see that the elliptic points of order 4 and 12 must be ramified.
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That is, the curve X (T'y N T'3) must have signature (2, 3, 3, 6). In fact, this can also be
seen from the following figures.

n B

Here the smaller triangles are (2,3, 12)-triangles. The figures show that the triangle
group (2,3, 12) contains two subgroups of signatures (3, 3,6) and (3,4, 12), respec-
tively, whose intersection has signature (2,3, 3,6). (In fact, the theoretical argument
above shows that for any pair of subgroups of I'; with'signatures (3, 3,6) and (3, 4, 12),
respectively, the intersection must have signature (2,3, 3/6).)

Likewise, the figures

TN

show that there are two subgroups of I'y-of signatures (2, 6, 12) and (3,4;12) such that
there intersection has signature (2, 456, 12). We have the followmg subgroup diagram.
(2,3,12)

(3,3,6) (3,4712) (2:6712)
(6,6,6)

LetI'; = (2,3,3,6) and I's = (2,4, 6, 12) and X7 and X§ be their associated Shimura
curves. Again, because I'5 is a normal subgroup of I'4 of index 2 and I'sT'g = Ty, the
intersection of I's and I is a subgroup of index 2 of I's. Now the group (2, 4, 6, 12) has
many subgroups of index 2. (The structure of the quotient group of (2,4, 6,12) over
its commutator subgroup is Co x Cy x Cg.) To determine which of them is contained
is the group (6, 6, 6), we use the following properties.

f

(2,3,3,6) 2,4,6,12) (3,12,12)

1. If pis an elliptic point of order e on Xg, then its preimage in the covering X (I'sN
T's) — Xg consists of either a single elliptic point of order e/2 or two elliptic
points of order e.
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2. The total branch number of any finite covering of compact Riemann surface is
always even.

3. The volume of X (T's N T'g) is twice of that of Xg. Thus, if (g;e1,...,e,) is the
signature of X (I's N T'g), then we must have

- 1 1 1 1 1
29 —2 1—-——|=2(2—=—-—-——-— — | = 2.
o2+ (1-5)=2 (315 1)

From these informations, we find that possible signatures of a subgroup of index 2 of
(2,4,6,12) are

(1;2,3,6), (0;2,67,12%),-(0;3,4%,12%), (0;4%,6°)
(0;2,3,42%), (052%,6%); (0522, 3,4%,6). ©30)
Likewise, an elliptic point of order 6 on X5 can

1. splits into 4 elliptic points of order 6, or

2. splits into 2 elliptic points-of-order 3, or

3. splits into-1 elliptic point of order 3 and 2 elliptic point of order 6, or

4. splits into 1 elliptic point of order 2 and 1 elliptic point of order 6,

in the covering X (I's N I's) — X5 of degree 4. Also, the total branch number of
X (T'5s NT's) — X5 must be‘a positive even integer and the volume of X (I' N I's) is 2.
We find the possible signatures of a subgroup of index 4 of I'5 are

(0329, 6%), (0;2%,3%,6%),(0;2,3%,6), (0;3°): (6.31)

From (6.30) and (6.31); we conclude that the signature.of I's N\ I's must be (0; 23, 63).
This can also be seen from the figures:

By the same argument, we can also show that the intersection of I'g and I's must
have signature (0; 3,42, 122) and the intersection of I's and I's has signature (0; 3, 3,6, 6).
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The subgroup diagram becomes

/\

(3,3,6) (3,4,12) 2,6,12)

XX\

(2,3,3,6) (6,6,6) 2,4,6,12) (3,12,12)

g

(2%6%) (3°,6%) (3,4%,12%)
Finally, we can show that the only possible signatures:of subgroups of index 2 in
(23,63) are

(2,3,12)

(0;2°,3%,6%), (032743, 61),(0:2%,6°), (1;2°43%), (1: 2%3%,6%), (193, 6%), (2:3°),
while the only-possible signatures of subgroups of index 2 in (3, 42, 12%) are
(05 3%,4% 6%),7(0:2, 3%, 42,6, 12%)1(0; 2%, 3%,12%), (1; 2% 3%,6%).

From these, we see that the common interséction of (23, 6°), (3,42, 122), and (32, 62)
has signature (1;2%,32, 62): This completes the proof of the case of Class IV.

Remark 6.5.5." In literature [7], the decompositions of hyperbolic polygons shown in
the figures above are called Coxeter decompositions. In general, a. Coxeter decompo-
sition is a decomposition of .a polygon into finitely many Coxeter.polygons such that
if two Coxeter polygons share a.common side, then they are symmetric with respect to
the common side.

Note that not all subgroup relations given in Appendix A admit Coxeter decomposi-
tion. For example, in Class 111, the group (2,4,8) is a subgroup of index 3 of the group
(2,3,8), but there is no way one can decompose a (2,4, 8)-triangle into a union of
three (2, 3, 8)-triangles. In the case of Class IV discussed above, the subgroup relation
(23,6%) < (2,3, 3,6) does not admit a Coxeter decomposition either.

Now we give the subgroup diagrams for arithmetic triangle groups.
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Class 11

(2,4,6)
> S~
(2,6,6) (3,4,4)
2
— T s
(3,6,6) (2,2,3,3)
~ 5
(3’ 3’ 37 3)
Class 111
(2,6,8)
(4,6,6) (2,4,8)
3* 2

(22,43 ,8,8)
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Class IV

(2,3,12)

(3,3,6) (3,4,12) (2,6,12)

| > >

(3,3,2,6) (6,6,6) (2,4,6,12) (3,12,12)

Class V

Class VI

(2,4,10)

\/

(4,4,5) (2,10,10)
\ /
2 2
(2,2,5,5) (5,10, 10)
2 /
2
(5,5,5,5)
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Class VII

Class VIII

Class IX

Class X

(2,4,7)
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Class XI

(2,3,9) 2,3,18)
(3,3,9) (3,6,18) (2,9,18)
(3,3,3,9) (9,9,9) (3,6,9,18)

N

/

Class XII

Class XIII

Class XIV



Class XV

(2,3,24)
////E////// * \\\\7?\\\\\
(3,3,12) (3,8,24) (2,12, 24)

(3,3,4,12) (12,12,12) (4,8,12,24) (6,24,24)

| ><

(2,6,8%,24%)

4

Class XVI

Class XVII

el

(3,3,5,15) (15,15,15) (5,10, 15, 30)

\
4

(5%,15%)

/
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Class XVIII
(2,5,8)

(4,5,5)

Class XIX

(2,3,11)
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