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志村曲線上的自守型式 

 

研究生：凃芳婷          指導教授：楊一帆 教授 

國 立 交 通 大 學 

應用數學系 

 

摘   要 

 

    在上個世紀，模型式和模曲線在數論的發展上佔了很重要地位。志村的曲線是模曲

線的一個推廣，因此自守型式和志村曲線的算術性質在近代數論的發展也是舉足輕重。

我們的主要目標是研究自守型式的算術性質。這篇論文的工作是研究自守型式算術性質

的一個起點。 

 
根據楊一帆教授最近的結果，我們可以用 Schwarzian 微分方程的解來描述虧格為零的

志村曲線上的自守型式，這提供了我們一個明確的方法來對自守型式作計算並幫助我們

瞭解自守型式的算術性質。因此，如何找到的相關的 Schwarzian 微分方程就成為我們現

在最重要的問題。 

 
    在這篇論文中，我們決定了大部分虧格為零志村曲線的Schwarzian微分方程。另外，

在學習自守型式的算術性質時，我們有個有趣的發現： -超幾何函數的代數變換。這

主要的概念是把志村曲線上的自守型式用超幾何函數來表示，並利用自守型式之間的相

等關係，我們就可以看到這些有趣的代數變換。 
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Abstract 
 

  During the last century, modular forms and modular curves played important roles in the 

developments of number theory. Shimura curves are natural generalizations of classical 

modular curves. The arithmetic properties of automorphic forms and Shimura curves are 

particularly important in modern number theory. Our aim is to study the arithmetic properties 

of automorphic forms and automorphic functions on Shimura curves. The work in this 

dissertation is a starting point.  

Due to the recent work of Yifan Yang, if the Shimura curve is of genus zero, then one can 

express its automorphic forms in terms of the solutions of the associated Schwarzian 

differential equation. This provides a concrete space of automorphic forms. We then can do 

explicit computation on the spaces to study the arithmetic properties of automorphic forms 

and functions. Therefore, the main question is how to find the Schwarzian differential 

equations.  

In this thesis, we determine the Schwarzian differential equations for certain Shimura 

curves of genus zero. As a byproduct of study on automorphic forms on Shimura curves, we 

also obtain several algebraic transformations of -Hypergeometric functions. This 

discovery is achieved by interpreting Hypergeometric functions as automorphic forms on 

Shimura curves.  
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Chapter 1

Introduction

During the last century, modular forms and modular curves played important roles in
the developments of number theory. A reason of this fact is because of the connection
with the moduli space of elliptic curves, and that the elliptic curves, being algebraic
curves of the smallest positive genus, are related with many non-trivial Diophantine
problems in number theory. For example, the arithmetic properties of elliptic curves
are essential in Andrew Wiles’ proof of Fermat’s Last Theorem. Shimura curves are
natural generalizations of classical modular curves. Similar to the classical modular
curves, Shimura curves are moduli spaces of certain abelian surfaces with quaternionic
multiplication. The arithmetic properties of Shimura curves are particularly important
in modern number theory. Our aim is to study the arithmetic of automorphic forms and
automorphic functions on Shimura curves. The work in this dissertation is a starting
point.

A Shimura curve is a quotient space of the upper half plane h = {τ : C : Im(τ) >
0} obtained by certain quaternion order. More precisely, we let K be a totally real
number of degree n and B be a quaternion algebra over K that splits exactly at one
infinite place, that is,

B ⊗Q R 'M(2,R)×Hn−1,

whereM(2,R) is the algebra of 2 by 2 matrices overR andH is Hamilton’s quaternion
algebra. Up to conjugation, there is a unique embedding ι∞ from B into M(2,R).
Given an order O of B, we let O1 be the group of the elements of reduced norm 1 of
O. Then the image Γ(O) = ι∞(O1) under the embedding ι∞ is a discrete subgroup of
SL(2,R), and hence there is a group action of Γ(O) on h by the usual fractional linear
transformations (

a b
c d

)
τ =

aτ + b

cτ + d
,

(
a b
c d

)
∈ Γ(O).

WhenB 6= M(2,Q), we denote byX(O) the Riemann surface Γ(O)\h. This is the so-
called Shimura curve associated to O. In the case of B = M(2,Q), the compactified
curve Γ(O)\(h ∪ P1(Q)) by adjoining cusps is the classical modular curve.

When B 6= M(2,Q), an automorphic form of weight k on Γ(O) is a holomorphic
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function f : h→ C such that

f

(
aτ + b

cτ + d

)
= (cτ + d)kf(τ), ∀ τ ∈ h,

(
a b
c d

)
∈ Γ(O).

For the classical modular forms, i.e., the case of B = M(2,Q), we need additional
conditions on cusps.

Even though it is true that many theoretical aspects of classical modular curves can
be extended to the case of Shimura curves, to the best knowledge of the author, it is not
true for explicit methods. In the case of classical modular curves, many problems about
modular curves can be answered using Fourier expansions of modular forms or mod-
ular functions involved, and there are many explicit methods for constructing modular
functions, modular forms and computing their Fourier expansions. In fact, because the
Fourier coefficients of a normalized Hecke eigenform on congruence subgroups are
identical with the eigenvalues of Hecke operators, one can compute the expansions of
Hecke eigenforms without actually constructing them. However, unlike their classical
counterpart, Shimura curves do not have cusps and hence automorphic forms or auto-
morphic functions on Shimura curves do not have Fourier expansions. Because of this,
as far as we know, there have been very few explicit methods to construct automorphic
forms and automorphic functions on Shimura curves. Also, any method for classical
modular curves that uses Fourier expansions can not possibly be extended to the case
of Shimura curves. Therefore, the question is how to construct automorphic forms on
Shimura curves with Taylor series at a CM-point.

Recently, Yang [33] had a breakthrough for constructing automorphic forms on
Shimura curves. In the work of Yang [33], he proposed a new method to study automor-
phic forms on Shimura curves of genus zero, in which automorphic forms are expressed
in terms of solutions of Schwarzian differential equations. He then demonstrated how
to compute Hecke operators explicitly on these automorphic forms. Moreover, since
Schwarzian differential equations that with exactly 3 singularities are essentially hy-
pergeometric, this approach leads to many identities among hypergeometric functions
by interpreting the hypergeometric functions as automorphic forms on Shimura curves.
This was the main theme of my joint paper with Yang [24], the author [22] also gave
more examples of algebraic transformations of hypergeometric functions to illustrate
the role Shimura curves play in proving these identities.

Due to the results of Yang [33], once the Schwarzian differential equation for a
Shimura curve of genus zero is determined, we can study the arithmetic properties of
the automorphic forms on this Shimura curve as t-series, where t is a generator of
the field of functions on the Shimura curve of genus zero. Because of the importance
of Schwarzian differential equations in explicit methods for Shimura curves, one of
the main goals is to determine Schwarzian differential equations for as many Shimura
curves as possible. Especially, we are most interested in the Shimura curves attached
to Eichler orders of the indefinite quaternion algebras over Q and their quotients by
Atkin-Lehener involutions.

We denote by XD
0 (N) the Shimura curve obtained by an Eichler order of level N

in an indefinite quaternion algebra defined over Q of discriminant D. (When D = 1,
the curve X1

0 (N) is the classical modular curve X0(N).) Let WD,N be the group
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of all the Atkin-Lehner involutions wm of XD
0 (N). In this dissertation, let us focus

on the Shimura curves XD
0 (N)/G, quotient by some subgroup G of WD,N , D > 1.

We will determine the Schwarzian differential equations for certain Shimura curves
XD

0 (N)/WD,N of genus zero.
In order to determine the Schwarzian differential equation for a given Shimura

curve, we will first compute the defining equations of Shimura curves overQ, and then
construct coverings, we can find the coverings between Shimura curves. These rela-
tions will help us determine the Schwarzian differential equations. The key ingredients
for determination of the equations of Shimura curves are the Čerednik-Drinfeld theory
of p-adic uniformization for Shimura curves, and the Jacquet-Langlands correspon-
dence. The Jacquet-Langlands correspondence gives a bijection from automorphic
representations on XD

0 (N) and certain modular representations on X0(DN). This
tells us the isogeny class of a given Shimura curve which is an elliptic curve defined
over Q. The Čerednik-Drinfeld theory gives us the information of the bad reductions
of Shimura curves, and then we can determine the isomorphism class of the given
Shimura curve.

For the rest of this dissertation, we will first say a few words about quaternion al-
gebras, Shimura curves and then introduce my recent work of automorphic forms on
Shimura curves. In Chapter 2, we introduce quaternion algebras, quaternion orders,
Shimura curves, automorphic forms and automorphic functions on Shimura curves.
In Chapter 3, we briefly recall some basic and useful properties of the Eichler or-
ders of level (D,N), the Shimura curves XD

0 (N), automorphic forms on XD
0 (N),

the Čerednik-Drinfeld theory of p-adic uniformization for Shimura curves, and the
Jacquet-Langlands correspondence.

In Chapter 4, we provide the connection between the automorphic forms on Shimura
curves and the Schwarzian differential equations. Also, we will work out Schwarzian
differential equations for certain Shimura curves XD

0 (N)/WD,1 of genus zero. As ap-
plications of the arithmetic of automorphic forms on Shimura curves of genus zero, in
Chapter 5, we compute Hecke operators Tp with prime p on X14

0 (1)/W14,1 and use
numerical computation to obtain Ramanujan-type series for the curve X14

0 (1)/W14,1.
This gives a numerical evidence to Yang’s conjecture in [32].

Finally, in Chapter 6, as a byproduct of the study on arithmetic properties of au-
tomorphic forms, we obtain some algebraic transformations of 2F1-hypergeometric
functions.

For the future studies on the arithmetic of automorphic forms on Shimura curves
of genus zero, we plan to determine the coordinates of CM-points on Shimura curves.
The CM-points on Shimura curves correspond to abelian surfaces with endomorphism
algebra equal to a matrix algebra of degree 2 over an imaginary quadratic number field.
Another application is related to the Ramanujan-type formulae for Shimura curves.
Moreover, a main future work is to generalize Yang’s result. One restriction of Yang’s
approach is that the genus of the Shimura curve has to be zero. That is, it is not known
how to express automorphic forms on Shimura curves using solutions of Schwarzian
differential equations when the genus is positive. We will try to extend Yang’s method
to higher genus cases. Elkies [6], Greenberg, Voight [11, 28, 29, 30] also introduced
many methods to do computations on the arithmetic of the Shimura curves XD

0 (N),
X0(N) which is associated to a quaternion algebra defined over a totallyreal number

3



fieldF , or the Shimura curves arising the arithmetic triangle groups. For instances, they
compute CM-points on the Shimura curves, determine the system of Hecke eigenvalues
by using the Jacquet-Langlands correspondences. Another furure work is to generalize
their results.
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Chapter 2

Quaternion algebras and
Shimura curves

In this chapter, we will briefly recall some basic definitions and properties of quaternion
algebras, especially quaternion algebras over a local field or number field. Then we will
define the Shimura curves. Most of the materials are taken from the references [1, 26].
From now on, we let K be a field with characteristic not 2.

2.1 Quaternion algebras

2.1.1 Quaternion algebras and quadratic forms
A quaternion algebraB over a fieldK is a central simple algebra of dimension 4 over
K, or equivalently, there exist i, j ∈ B and a, b ∈ K∗ so that

B = K +Ki+Kj +Kij, i2 = a, j2 = b, ij = −ji.

In such case, we denote by
(
a,b
K

)
the quaternion algebra B, which has canonical K-

basis {1, i, j, ij}. Familiar examples are Hamilton’s quaternionsH =
(−1,−1

R
)

and the
matrix algebra M(2,K) ∼=

(
1,1
K

)
.

Theorem 2.1.1. If a quaternion algebra B over K has a zero divisor, then it is iso-
morphic to M(2,K).

According to Theorem 2.1.1, if a has a square root α in K then the quaternion
algebra B has a zero divisor h = α − i, and B is isomorphic to the 2-by-2 matrix
algebra. Hence, if K is an algebraically closed field, then the only structure of K-
quaternion algebra is the matrix algebra.

Notice that an element h in a quaternion algebra satisfies a monic polynomial over
K of degree less than 2. Therefore, any quaternion algebraB is provided with a unique
K-linear anti-involution ¯: B −→ B,

h̄ = a0 − a1i− a2j − a3ij, if h = a0 + a1i+ a2j + a3ij ∈
(
a, b

K

)
.
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This map is called the conjugation. The reduced trace, and reduced norm on B are
defined by

tr(h) = h+ h̄, and n(h) = hh̄,

respectively. We remark that tr(h) = 2h and n(h) = h2, if h lies in the center K. If
B = M(2,K) then the reduced trace and reduced norm of an element h ∈ B are the
trace and the determinant of h. These maps tr and n lead to a nondegenerate symmetric
K-bilinear form onB, which is given by tr(xȳ). In other words, the quaternion algebra
B is a quadratic space with the quadratic form given by the reduced norm of B.

Recall that a quadratic space with a quadratic form Q is said to be isotropic if there
is a non-zero element x so that Q(x) = 0. We have the following facts.

Theorem 2.1.2. For a quaternion algebra B =
(
a,b
K

)
over K, the following are

equivalent.

(1) B is isomorphic to M(2,K).

(2) B is not a division quaternion algebra.

(3) B is isotropic as a quadratic space with the reduce norm.

(4) The quadratic form ax2 + by2 represents 1.

(5) If F = K(
√
b), then a is an element of NF/K(F ).

Denote B0 by the pure quaternion space, B0 = {x ∈ B : tr(x) = 0}.

Theorem 2.1.3. LetB andB′ be two quaternion algebras overK. ThenB is isometric
to B′ if and only if B0 and B′0 are isomorphic. Equivalently, the quaternion algebras(
a,b
K

)
,
(
a′,b′

K

)
are isomorphic if and only if the quadratic forms

ax2 + by2 − abz2 and a′x2 + b′y2 − a′b′z2

are equivalent over K.

2.1.2 Automorphism theorem
Theorem 2.1.4. (Noether-Skolem Theorem)
Let L, L′ be two commutative K-algebras over K contained in a quaternion alge-
bra B over K. Then all K-isomorphism from L to L′ can be extended to an inner
automorphism of B. The K-automorphisms of B are all inner automorphisms.

Remark 2.1.5. An inner automorphism of B is an automorphism given by k 7→
hkh−1, for some invertible element h of B. Therefore, according to the Theorem
2.1.4, the automorphism group of the quaternion algebra B, AutK(B), is isomorphic
to B∗/K∗.
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Corollary 2.1.6. For all separable quadratic algebras F overK contained inB, there
exists an element θ ∈ K× such that

B = F + Fu, u2 = θ and um = σ(m)u,

where σ denotes the non-trivial K-automorphism of F . In this case, we use the symbol
{F, θ} to denote the quaternion algebra B.

Remark 2.1.7. Let σ : F −→ L be a nontrivial K-automorphism of L. Then there
exist u ∈ B∗ so that umu−1 = σ(m), for all m ∈ F . The fact t(u) = 0 implies that

u2 = θ ∈ K. In this way, we realize B as B = {F, θ}, moreover, B =
(
a,b
K

)
=

{K(i), b}.

2.2 Orders and Ideals
As the fractional ideals in a number field, there is a similar theory for ideals in a quater-
nion algebra. LetR be a Dedekind domain andK be its field of fractions. An R-lattice
of a K-vector space V is a finitely generated R-module contained in V . A complete
R-lattice Λ of V is an R-lattice Λ of V such that K ⊗R Λ ' V .

Example 2.2.1. We consider the cases in the quaternion algebras and quadratic num-
ber fields.

1. Let Λ1 = R + Ri and Λ2 = R + Ri+ Rj + Rij. Then they are both R-lattice
of H and Λ2 is complete.

2. Given R = Z, K = Q. Let V = Q(
√
m) and Λ be its number ring, where m is

a square-free integer. Then Λ is a complete lattice.

Definition 2.2.1. An ideal of a quaternion algebra B is a complete R-lattice in B. If
an ideal of B is also a ring with unity, it is called an order. Moveover, we say that I is
a left ideal of O if OI ⊂ I; I is a right ideal of O if IO ⊂ I .

Definition 2.2.2. A maximal order of B is an order that is not properly contained in
another order of B. An intersection of two maximal orders of B is called an Eichler
order.

Now if an ideal I is given, we can define two orders associated to I , the left order
of I ,

O`(I) = {h ∈ B : hI ⊆ I},

and the right order of I ,

Or(I) = {h ∈ B : Ih ⊆ I}.

Definition 2.2.3. An ideal I is said to be two-sided if O`(I) = Or(I), said to be
integral if I is contained in both O`(I) and Or(I). If O`(I) and Or(I) are maximal
orders, then I is called a normal ideal.
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An element x of a quaternion algebra B is called to be integral over R if R[x]
is a R-lattice of B. For instance, the element i in the classical quaternion algebra
H = Q + Qi + Qj + Qij is an integral element but i/2 is not. Actually, we have a
useful criterion to determine whether if an element is integral or not.

Lemma 2.2.2. An element of a quaternion algebra B is integral if and only if its
reduced trace and norm are in the ring R.

Also, we have an equivalently definition of an order of a quaternion algebra.

Proposition 2.2.3. Let B be a quaternion algebra over K.

1. O is an order of B if and only if O is a ring of integral elements in B which
contains R and K-basis for B.

2. Every order is contained in a maximal order.

The second proposition is followed from the first one and Zorn’s Lemma. From
this proposition, we can see that an integral ideal is an ideal whose elements are all
integral elements.

There are also the analogue of the norm of an ideal, and the discriminant of an order
as in the algebraic number theory. The inverse of I is defined to be

I−1 = {h ∈ A : IhI ⊂ I},

which is also an ideal. The norm of I , n(I), is the R-fractional ideal generated by
{n(x) : x ∈ I}. The dual I∗ of I is

I∗ = {h ∈ A : tr(hI) ⊂ R}.

The discriminant of an order O is DO = n(O∗)−1. If I is a left ideal of O, then the
discriminant of I is given by DI = n(I∗)−1n(I).

Proposition 2.2.4. We have the following properties:

(1) II−1 ⊆ O`(I) and I−1I ⊆ Or(I).

(2) The square of discriminant of O, D2
O, is equal to the ideal over R generated by

{det(tr(xixj)) : 1 ≤ i, j ≤ 4, xi, xj ∈ O}.

In particular, ifO has free basis {e1, e2, e3, e4} overR, thenD2
O is the principal

R-ideal det(tr(eiej))R.

(3) If an order O′ is contained in the other order O, then DO divides DO′ . There-
fore, DO = DO′ is and only if O = O′.

(3) If I is a left ideal of an order O, then DI = n(I)2DO and

D2
I = {det(tr(xixj)) : 1 ≤ i, j ≤ 4, xi, xj ∈ I}.

8



Example 2.2.5. (1) The discriminant of the order M(2, R) is R.

(2) Consider the two orders

O = Z+ Zi+ Zj + Zij

and
O′ = Z+ Zi+ Zj + Z

1 + i+ j + ij

2

in the quaternion algebra
(
−1,−1

Q

)
. It obvious that O ⊂ O′ and

D2
O′ = 4Z ⊃ 16Z = DO.

In the case of the quaternion algebra B = M(2,K). One can identify B with the
endomorphsim ring of some vector space overK. To be more precise, let V be a vector
space over K with basis {e1, e2}. Then with respect to this basis, M(2,K) is viewed
as End(V ). Given a complete R-lattice Λ in V , we can see that

End(Λ) = {α ∈ End(V ) : αΛ ⊂ Λ}

is a maximal order in End(V ). Conversely, for a given order O in End(V ), we can
associate an R-module

Λ = {αei : α ∈ O, i = 1, 2},

which is a complete R-lattice, to the order O contained in End(Λ).

Proposition 2.2.6. If R is a principal ideal domain, then each maximal order in
M(2,K) is conjugate to the maximal order M(2, R).

2.3 Quaternion Algebras over Local Fields
For a local fieldK, there are at most 2 non-isomorphic structures of quaternion algebras
over K. If K = C, there is only one C-quaternion algebra, namely, the matrix algebra
M(2,C). For the Archimedean local field R, a quaternion algebra over R is either
isomorphic to M(2,R) or the quaternions of Hamilton H. If K is non-Archimedean,
then a quaternion algebra over K is isomorphic to exactly one of M(2,K) or the
unique division quaternion algebra over K.

Theorem 2.3.1. (Frobenius Theorem)
Let D be a division ring containing R in its center of finite dimension over R. Then D
is isomorphic to H, the Hamiltonian quaternion.

Hence, Frobenius’ Theorem tells us that a quaternion algebra is either isomorphic
to M(2,R) or H.

9



2.3.1 Quaternion algebra over non-Archimedean local fields
For a non-Archimedean local field K, we let R be its ring of integers and π be a fixed
uniformizer with respect to the valuation ν.

Theorem 2.3.2. There is a unique division quaternion algebra over K and it is iso-
morphic to

(
π,e
K

)
, where K(

√
e) is the unique unramified quadratic extension of K.

While h 6= 0 in
(
π,e
K

)
, the map ω given by ω(h) = 1

2ν(N(h)) defines a discrete
valuation on the division algebra

(
π,e
K

)
.

We define the Hasse invariant of the quaternion algebra B by

ε(B) =

{
1, if B ∼= M(2,K),

−1, otherwise.

In the case of K = Qp, the Hasse invariant of B =
(
a,b
Qp

)
coincides with the Hilbert

Symbol (a, b)p, which is given by

(a, b)p =

{
1, if ax2 + by2 reprents 1,

−1, otherwise.

Remark 2.3.3. From the Theorem 2.3.2, for p > 2, we have a simple description for
the Hilbert symbol (a, b)p with p - a,

(a, b)p =

{
1, if p - a, b,(
a
p

)
, p - a, p | b,

where
(
·
p

)
is the Legendre symbol.

2.3.2 Orders in B =
(
π,e
K

)
For the unique division quaternion algebraB =

(
π,e
K

)
, it is known that there is a unique

maximal order in B, which is the associated valuation ring

O = {h ∈ B : w(h) ≥ 0} = {h ∈ B : N(h) ∈ R}

with respective to the valuation w. The ring

P = {h ∈ B : w(h) > 0}

is a two-sided prime ideal of O.

Theorem 2.3.4. Let B =
(
e,π
K

)
, F = K(

√
e), and O be the unique maximal order in

B. Then we have

1. P = Oj is a prime ideal of O and P 2 = Oπ.

2. O = RF +RF j, where RF is the ring of integers of F .

3. The discriminant of O is DO = π2R.

10



2.3.3 Orders in M(2, K)

If B is isomorphic to M(2,K), then as the consideration in the end of the last section,
each maximal order in B is then isomorphic to the maximal order M(2, R). We now
let B = M(2,K).

Theorem 2.3.5. 1. A maximal order of M(2,K) is conjugate to M(2, R) by an
element of GL(2,K).

2. The set of all maximal orders is in one-to-one correspondence with the cosets

K∗GL(2, R)\GL(2,K).

The standard coset representatives of K∗GL(2, R)\GL(2,K) are(
πa c
0 πb

)
,

where a and b are nonnegative integers and c are from R/(π)b, subject to the condition
that v(c) = 0 if a, b > 0. Therefore, we can classify all maximal orders of M(2,K) as(

πa c
0 πb

)−1

M(2, R)

(
πa c
0 πb

)
, a, b ≥ 0, c modπb,

and c /∈ πR if a, b > 0.
Also, we can classify the Eichler order of M(2,K).

Proposition 2.3.6. (Hijikata)
If O is an order in M(2,K), then the followings are equivalent.

1. O is an Eichler order.

2. There exists a unique pair of maximal ordersO1 andO2 such thatO = O1∩O2.

3. There exists n ∈ Z>0 such that O is conjugate to
(

R R
πnR R

)
.

4. The order O contains R⊕R as a subring.

We say that an Eichler order in M(2,K) is of level πnR, if it is conjugate to(
R R
πnR R

)
.

We now introduce the graph of maximal orders of M(2,K). First, let us define the
distance between the maximal orders. LetO1, O2 be two maximal orders in M(2,K).
If the the Eichler order O = O1 ∩ O2 is of index qn in O1, then the distance between
O1 and O2 is d(O1,O2) = n, where q is the cardinality of the residue field R/πR.
Equivalently, the Eichler order O1 ∩ O2 is of level πnR.

Now we define a graph X of maximal orders as follows. The vertices of X are the
maximal orders and two vertices are connected by a simple edge if the two correspond-
ing maximal orders has distance 1.

11



Example 2.3.7. Let O0 = M(2, R),

O1 = ( π 0
0 1 )

−1O0 ( π 0
0 1 ) =

(
R π−1R
πR R

)
,

and
O2 = ( 1 0

0 π )
−1O0 ( 1 0

0 π ) =
(

R πR
π−1R R

)
.

We have O0 ∩ O1 = ( R R
πR R ),

O0 ∩ O2 = (R πR
R R ) ∼= ( R R

πR R ) , O1 ∩ O2 = ( R πR
πR R ) ∼=

(
R R
π2R R

)
.

Thus, d(O0,O1) = d(O0,O2) = 1 and d(O1,O2) = 2. The subgraph of these
maximal orders is

O0

O1O2

Proposition 2.3.8. The graph X is a (q + 1)-regular tree, i.e., a connected graph
without cycles, and every vertex has precisely q + 1 edges connecting to it.

Example 2.3.9. Here is a subtree of maximal orders of M(2,Q2). The matrix α next
to a vertex means that the maximal order is α−1M(2,Z2)α.

( 1 0
0 1 )

( 2 0
0 1 )

( 1 0
0 2 )( 1 1

0 2 )

( 4 0
0 1 ) ( 2 1

0 2 )

( 1 0
0 4 )

( 1 2
0 4 )

( 1 1
0 4 )

( 1 3
0 4 )

Remark 2.3.10. We remark that the group PGL(2,K) acts on the cosetK∗GL(2, R)\GL(2,K),
and hence acts by conjugation on the tree of maximal orders inM(2,K). In particular,
PGL(2,K) acts on the set

L(n) = {(O1,O2) : d(O0,O2) = n}

double transitively.

2.4 Quaternion Algebras over Number Fields
We now recall the classification of quaternion algebras over a number field. Let K be
a number field, and R be its ring of integers. Let Kv be the local field with respect to
the place v of K.
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2.4.1 Classification of quaternion algebras over number fields
A quaternion algebra B over a number field K is said to be ramified at v if Bv =
B ⊗Kv is a division algebra. Otherwise, B is unramified or split at v.

Theorem 2.4.1. (Hasse-Minkowski Theoerm)
The quaternion algebra B is isomorphic to M(2,K) if and only if B splits over Kv

for all places v.

Let Ram(B) denote the set of ramified places of B. The reduced discriminant of
quaternion algebra B is the integral ideal of R defined by

DB =
∏

v∈Ram(B)

v.

In the case that R is a principal ideal domain, we identify the ideal DB with its gen-
erator, up to units. That is, DBR =

∏
v∈Ram(B)

v; for a quaternion algebra over Q, its

discriminant is an integer.
The structure of the quaternion algebra B is uniquely determined by the reduced

discriminant.

Theorem 2.4.2. (1) The cardinality of Ram(B) is finite and even.

(2) Two quaternion algebrasB andB′ overK are isomorphic if and only if Ram(B) =
Ram(B′).

(3) Given a finite set S of noncomplex places of K such that |S| is even, there exists
a quaternion algebra B over K such that Ram(B) = S.

Therefore, if an even number of noncomplex places of K is given, then there exists
one and only one K-quaternion algebra that ramifies exactly at these places.

Example 2.4.3. (1) A quaternion algebra over a number field K is isomorphic to
M(2,K) if and only if DB = R.

(2) The discriminant of the quaternion algebra
(
−1,−1

Q

)
is 2, since the values of the

Hilbert symbols are

(−1,−1)p =

{
−1, if p =∞, 2,
1, if p > 2.

For any field F , if B is a quaternion algebra over F and L is a field extension of
F . We say that L splits B if L ⊗F B is isomorphic to M(2, L). We now address
the conditions that when a K-quaternion algebra B splits over a quadratic extension
field F of K. In particular, one has the conditions for which quadratic fields can be
embedded into B. Let L be a finite extension field over K, and w be a place of L.
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Proposition 2.4.4. Let B be a quaternion algebra over K. Then B splits over L if and
only if Bv splits over Lw for any place w|v of L. In particular, if L is a quadratic field
over K, then followings are equivalent:

(1) The field L is a splitting field for B.

(2) The field L is K-isomorphic to a maximal subfield of B containing K.

(3) There exists an embedding over K form L into B.

(4) Each place v in K that ramifies in B is not totally split in L.

For a totally real number field K, if a quaternion algebra over K is ramified at
all the real infinite places, we say that the quaternion algebra is definite; otherwise,
it is indefinite. We remark that a quaternion algebra B is definite if and only if the
quadratic form given by < x, y >= tr(xȳ) on B is positive definite.

2.4.2 Orders in a quaternion algebra over a number field
Let I be an ideal in a quaternion algebra B over a number field K. Denote Rv the
ring of integers of the localization Kv . Then the localization Iv = I ⊗Z Rv is an
ideal in the quaternion algebra Bv and I = B ∩ (

∏
v Iv). As the Hasse-Minkowshi

theorem for quaternion algebras, being a maximal order or an Eichler order satisfied
the local-global correspondence.

Proposition 2.4.5. Let Λ be a lattice in a quaternion algebra B over K. For any finite
place v in K, we consider a local lattice Lv in Bv . Assume that Lv = Λv for almost
all v. Then there exists a lattice Λ′ in B such that Λ′v = Lv for all finite places v.

This gives us the existence of a global lattice.
Note that ifO is a maximal order ofB, it is clear thatOv is again an order inBv and

(DO)v = DOv . We have a criterion for global maximal orders from the information
of the discriminants.

Proposition 2.4.6. An order O is maximal in the quaternion algebra B if and only if
its discriminant is equal to the discriminant of B, i.e, DO = DB .

Example 2.4.7. In the quaternion algebra B =
(
−1,−1

Q

)
, the order O = Z + Zi +

Zj + Zij is a maximal order with DO = 2 = DB .

Definition 2.4.1. The level of a global Eichler order is the unique integral ideal NO in
R so thatNOv is the level of eachOv at each finite place ofK. That is,NO =

∏
v NOv .

If R is a PID, we identify the ideal NO with its generator, up to units.

Unlike the case of maximal orders, we have no explicit classification of Eichler
orders in terms of the discriminant.

Proposition 2.4.8. If O is an Eichler order of level N , then the discriminant of O is
DO = DBN .
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Lemma 2.4.9. Let I be an ideal in B and its right order O = Or(I) is a maximal
order. Then there exists an element hv ∈ B∗v so that Iv = hvOv .

Corollary 2.4.10. For an ideal I in B, the right order of I , Or(I), is maximal if and
only if the left order of I , O`(I), is maximal.

Corollary 2.4.11. If I is a normal ideal in B, then I−1I = Or(I) and II−1 = O`(I).

2.5 Shimura Curves
We are now in a position to introduce Shimura curves. In this section, we will focus on
the indefinite quaternion algebras over totally real number fields, especially the rational
field.

Assume that K is a totally real number field and take a quaternion algebra B over
K that splits exactly at one infinite place among all infinite places. That is, B ⊗Q R '
M(2,R)×H[K:Q]−1,whereH is Hamilton’s quaternions. Notice that we have a natural
embedding from B into B ⊗Q R, we now let i∞ : B ↪→ M(2,R) be the projection
onto the first factor. Let O be an order of B,

O1 = {γ ∈ O : n(γ) = 1}, and Γ(O) = i∞(O1).

Then Γ(O) is a discrete subgroup of SL(2,R) and hence it acts on the upper half plane
h = {τ : C : Im(τ) > 0} by the usual fractional linear transformations.

We denote X(O) the quotient space Γ(O)\h (or Γ(O)\h ∪ Q ∪ {∞} if B =
M(2,Q)), which has a complex structure as a compact Riemann surface. It is the so-
called Shimura curve associated to O. In the case of the classical modular curve, the
associated quaternion algebra is the matrix algebra B = M(2,Q) with discriminant
D = 1.

Example 2.5.1. (1) Let B = M(2,Q). If O = M(2,Z), then Γ(O) = SL(2,Z)
and X(O) is the classical modular curve X(1) = X0(1). For the Eichler order
O =

(
Z Z
NZ Z

)
, X(O) is the modular curve X0(N).

(2) Let O be the order Z + Zi + Zj + Z 1+i+j+ij
2 in the quaternion algebra B =(

−1,3
Q

)
. The quaternion algebra is ramified at the finite places 2 and 3. An

embedding i∞ : B →M(2,R) is given by

i 7→
(

0 −1
1 0

)
, j 7→

(√
3 0

0 −
√

3

)
and

i∞(O1) =

{(
α β

−β α

)
: αα+ ββ = 1, α, β ∈ Z[

√
3]

}
.
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2.6 Signatures of Shimura curves
Recall that a nonidentity element γ =

(
a b
c d

)
of SL(2,R) is called parabolic, hy-

perbolic, or elliptic if γ has one fixed point, 2 distinct points of P1(R), or a pair of
conjugate complex numbers, respectively. The points τ fixed by γ are the roots of

cτ2 + (d− a)τ − b = 0.

Hence, it can be simplified that γ is parabolic, elliptic, or hyperbolic, corresponding
to whether |tr(γ)| = 2, |tr(γ)| < 2, or |tr(γ)| > 2.

Definition 2.6.1. Let γ be an element of Γ(O).

1. The fixed point of a parabolic element is called a cusp. We let e =∞.

2. The point τ in the upper half-plane fixed by an elliptic element is called an ellip-
tic point of order e, where e is the number of elements in Γ(O)/ ± 1 that fixes
τ . In other words, e is the order of the isotropy subgroup of τ in Γ(O)/± 1.

Note that cusps can only appear when the quaternion algebra is M(2,Q). There-
fore, if B 6= M(2,Q), the quotient space Γ(O) \ h is a compact Riemann surface; if
B = M(2,Q), we compactify the Riemann surface Γ(O) \ h by adjoining cusps.

Proposition 2.6.1. If Γ(O) has a parabolic element, then the related quaternion alge-
bra must be M(2,Q).

Proof. Let γ ∈ Γ(O) be a parabolic element and h be the associated element in O1.
Then tr(h) = 2 or −2, and N(h) = 1. Note that ±1 are elements of O1 and hence
±1 − h belong to O. Without loss generality, we may assume that tr(h) = 2. Then
1 − h is an element has reduced trace 0 and reduced norm 0. This means that the
quaternion algebra has a zero divisor element 1 − h and hence it is isomorphic to the
2-by-2 matrix algebra over a totally real number field. The only possibility is the Q-
quaternion algebra M(2,Q), for which splits at exactly one real place.

For the curve X(O) with genus g, it is well-known that there exist hyperbolic
elements a1, . . ., ag , b1, . . ., bg , and elliptic or parabolic elements c1, . . ., cr that
generate Γ(O)/± 1 with relations

[a1, b1] . . . [ag, bg]c1 . . . cr = 1, where [ai, bi] = aibia
−1
i b−1

i .

We let (g; e1, . . . , er) be the signature of the curve X(O). The number ej runs over
all Γ(O)-inequivalent cusps and elliptic points. In particular, if a Shimura curve X(O)
has signature (0; e1, e2, e3), we say that Γ(O) is an arithmetic triangle group.

2.7 Automorphic Forms on Shimura Curves
Let X(O) = Γ(O) \ h be the Shimura curve associated to the order O in an indefinite
quaternion algebra B. In this section, we let k be a non-negative even integer.
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Definition 2.7.1. An automorphic form of weight k on Γ(O) is a holomorphic func-
tion f : h→ C such that

f

(
aτ + b

cτ + d

)
= (cτ + d)kf(τ)

for all τ ∈ h and all
(
a b
c d

)
∈ Γ(O).

If f is meromorphic and k = 0, then f is called an automorphic function. More-
over, if the Shimura curve is of genus 0, an automorphic function is said to be a Haupt-
modul if it generates the field of automorphic functions on Γ(O).

Remark 2.7.1. For the quaternion algebra B = M(2,Q), we also need additional
conditions at cusps. However, we do not consider the classical modular curves here, so
we need not to consider the cusps. The curves mentioned in the following discussions
are always concerned to be the quotient space related the quaternion algebra B 6=
M(2,Q) (if not be pointed out).

The automorphic forms of a given weight k form a complex vector space. We
denote it by Sk(Γ(O)) or Sk(X(O)). It is easy to see that the weight 0 automorphic
forms on Γ(O) are exactly the constant functions. Using the Riemann-Roch Theorem,
one can figure out the dimension formula of Sk(Γ(O)).

Proposition 2.7.2. If the signature of X(O) is (g; e1, . . . , er), then the dimension of
the space of automorphic forms of weight k on Γ(O) is

dim Sk(Γ(O)) =


1, if k = 0,

g, if k = 2,

(g − 1)(k − 1) +
∑
j

⌊
k

2

(
1− 1

ej

)⌋
, if k ≥ 4.
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Chapter 3

The Shimura Curves XD
0 (N)

In this chapter, we will review some facts about the Shimura curves XD
0 (N), which is

obtained by the Eichler order O(D,N) of level N in an indefinite quaternion algebra
over Q with discriminant D. Most of the materials are coming from [1, 4, 5, 15].

3.1 Eichler ordersO(D,N) and Shimura curves XD
0 (N)

Let B be a quaternion algebra over Q of discriminant D. According to the proposition
2.4.5, for each positive integer N with gcd(D,N) = 1, there exists an Eichler order
of level N . We now give a characterizations of Eichler orders in a quaternion algebra
over Q.

Proposition 3.1.1. LetO be an order in aQ-quaternion algebra B of discriminant D.
Let N be a positive integer relatively prime to D. Then the following conditions are
equivalent:

(1) O is an Eichler order of level N .

(2) For each prime number, the localization Op is maximal if p - N , and is isomor-

phic to the order
(
Zp Zp
NZp Zp

)
if p | N .

(3) For each prime number, the localization Op is maximal if p | D, and is isomor-

phic to the order
(
Zp Zp
NZp Zp

)
if p - D.

Proposition 3.1.2. LetO be an order in aQ-quaternion algebra B of discriminant D.

(1) If O is an Eichler order with norm NO with gcd(D,NO) = 1, then its discrimi-
nant DO is equal to DNO.

(2) If DO = DN is a square-free integer, then O is an Eichler order of level N .
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(3) LetO andO′ be orders in B and they are conjugate. ThenO is an Eichler order
of level N if and only if O′ is an Eichler order of level N .

Theorem 3.1.3. In an indefinite quaternion algebra over Q, there is only one Eichler
order of a given level N , up to conjugation. Moreover, such an Eichler order contains
a unit of norm −1.

We use the notation O = O(D,N) to indicate the Eichler order of level N in
an indefinite quaternion algebra over Q of discriminant D, where D,N are coprime
positive integers. In literature, sometimes, the order O(D,N) is said to be the Eichler
order of level (D,N). We remark that when N = 1, the order O(D,N) is a maximal
order.

3.1.1 The Shimura curves XD
0 (N)

Note that Theorem 3.1.3 implies that the Shimura curveX(O) attached to the Fuchsian
group defined from O = O(D,N) is only dependent on the discriminant D and the
level N . The curve X(O) has a canonical model as a projective curve defined over
Q (Shimura [19]). Here, we use the notation XD

0 (N) to denote the corresponding
Shimura curve.

Theorem 3.1.4. Let O be the Eichler order of level N in an indefinite Q-quaternion
algebra B with discriminant D. There is a projective algebraic curve X(O) over Q
such that there exists an open immersion of Riemann surfaces

Γ(O) \ h ↪→ X(O)(C).

When D 6= 1, this map is a biregular isomorphism.

Therefore, the curve X(O(D,N)) has a canonical model over Q, we denote it by
XD

0 (N). The notion of such Shimura curves generalizes that of the classical modular
curves X1

0 (N) = X0(N).

3.1.2 The Atkin-Lehner involutions on XD
0 (N)

Like the theory of the classical modular curve, we can define the Aktin-Lehner group
of the curves XD

0 (N).
For a compact Riemann surface X uniformized by a Fuchsian group Γ, the quo-

tient group of the normalizer of Γ in GL(2,R)+ by Γ acts as automorphisms on X .
Here we let O = O(D,N) and take Γ = Γ(O), for convenience. To obtain such
automorphisms, we pullback to the order O in the Q-quaternion algebra B.

For an integer m | DN with gcd(m,DN/m) = 1, we then have an ideal I =
xmO = Oxm with I2 = mO, for some xm ∈ O with n(xm) = m. Since O has a
unit of reduced norm −1, the norm 1 group O1 is equal to the conjugation xmO1x−1

m .
Hence, xm gives an automorphism wm of X0(D,N) with w2

m = id. This is called
Atkin-Lehner involution associated to m.

The Atkin-Lehner group

WD,N = {wm : m | DN, gcd(m,DN/m) = 1}
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is an automorphism group of XD
0 (N) associated to the the group NB+(O1)/Q∗O1,

where NB+(O1) = {h ∈ B∗ : hO1h−1 = O1,n(h) > 0} is the normalizer of O in
the subgroup of B∗ collecting the positive reduced norm elements. The elements wm
of WD,N can be taken to be any generator of the only 2-sided ideal of reduced norm m
of O when m 6= 1. Hence the group WD,N is isomorphic to (Z/2Z)r, where r is the
number of prime factors of DN .

3.2 Optimal Embeddings
Let O be an order of a quaternion algebra B over the field K. Let F be a quadratic
extension over K, and OF be its ring of integers. For a given order Λ of OF , an
embedding of Λ inO is an embedding from F intoB such that φ(Λ) ⊆ O; an optimal
embedding of Λ in O is an embedding from F into B such that

φ(F ) ∩ O = φ(Λ).

We let E(O,Λ) = EK(O,Λ) be the set of all optimal embeddings of the given quadratic
order Λ into the order O.

In the following discussion, we are going to consider the optimal embeddings of
quadratic orders into a given Eichler order O = O(D,N).

3.2.1 Optimal embeddings of quadratic orders into Q-quaternion
algebras

We first consider the case when B is a quaternion algebra over Q of discriminant D
and F = Q(

√
dF ) is a quadratic extension field over Q of discriminant dF . We re-

call that there is an embedding from F into B if and only if for any prime p in Q so
that Qp ⊗ B � M(2,Qp), the prime number p does not completely split in F . In
other words, we have an embedding F ↪→ B defined over Q if and only if the Leg-
endre symbol

(
dF
p

)
6= 1 if p - D. Naturally, we have an action of B∗ on the set

{φ : F ↪→ B is an embedding defined over Q} given by φh = h−1φh, for any element
h ∈ B∗.

Proposition 3.2.1. Let φ : F ↪→ B be an embedding defined over Q. For any element
h ∈ B∗, one has φ ∈ E(O,Λ) if and only if φh ∈ E(h−1Oh,Λ).

The following fact give conditions for the existence of optimal embeddings.

Lemma 3.2.2. Let Bp be the division quaternion algebra over Qp, and Op be the
maximal order of Bp. If there exists an embedding from Fp into Bp, we consider an
order Λp in Fp. Then E(Op,Λp) is nonempty if and only if Λp is a maximal order.

Proposition 3.2.3. Let O be an Eichler order of level N in the Q-quaternion aglebra
B. Let F be a quadratic number field such that there is an embedding from F into B,
and Λ be an order of conductor m in F . Then

(1) If E(O,Λ) is non-empty, then gcd(D,m) = 1.
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(2) IfN = 1 andB is indefinite, then E(O,Λ) is non-empty if and only if gcd(D,m) =
1.

Moreover, whileB is an indefinite quaternion algebra, there is exactly one structure
of an Eichler order O = O(D,N) of level N with gcd(D,N) = 1. The action of B∗

on field embeddings gives an action of the normalizer of O in B∗ on E(O,Λ).

Corollary 3.2.4. Let O be an Eichler order in an indefinite Q-quaternion algebra B.
Let NB∗(O) be the normalizer of O in B∗ and G be a subgroup of NB∗(O). Then
the action of G on E(O,Λ) is an equivalence relation. Here, φ, φ′ ∈ E(O,Λ) are
G-equivalent if there is an element h ∈ G such that φ′ = h−1φh.

3.2.2 Optimal embeddings of quadratic orders into O(D,N)

In this subsection, we will count the the number of optimal embeddings of quadratic
orders into the Eichler order O(D,N) of an indefinite Q-quaternion algebra of dis-
criminant D.

Let Λ = Λ(dF ,m) be an order of conductor m in the field F = Q(
√
dF ), where

dF is the discriminant of the quadratic field F . Denote by

ν(D,N, dF ,m;O∗) := #E(O,Λ)/O∗

the class number ofO∗-equivalent optimal embeddings of Λ inO. In the local case, we
let νp(D,N, dF ,m;O∗) = ] E(Op,Λp)/O∗p denote the corresponding class number,
where Op, Λp are the localization of O and Λ at prime p, respectively.

Theorem 3.2.5. Assume that there is an embedding of F into B and gcd(m,D) = 1.
Then

ν(D,N, dF ,m;O∗) = h(dF ,m)
∏
p|DN

νp(D,N, dF ,m;O∗),

where h(dF ,m) is the ideal class number of the order Λ = Λ(dF ,m), and the local
class numbers are given by

(1) If p | D, then νp(D,N, dF ,m;O∗) = 1−
(
dF
p

)
.

(2) If p | N and p2 - N , then

νp(D,N, dF ,m;O∗) =

{
1 +

(
dF
p

)
, if p - m,

2, if p | m

(3) Assume N = pru1, with p - u1, r ≥ 2. Write m = pku2, with p - u2.

(a) If r < 2k, then

νp(D,N, dF ,m;O∗) =

{
pk/2 + pk/2−1, if k = 0 mod 2,

2p(k−1)/2, if k = 1 mod 2.
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(b) If r = 2k, then νp(D,N, dF ,m;O∗) = pk−1
(

1 + p+
(
d
p

))
.

(c) If r = 2k + 1, then

νp(D,N, dF ,m;O∗) =


2ψp(m), if

(
dF
p

)
= 1,

pk, if
(
dF
p

)
= 0,

0, if
(
dF
p

)
= −1.

(d) If r > 2k + 1, then

νp(D,N, dF ,m;O∗) =

{
2ψp(m), if

(
dF
p

)
= 1,

0, otherwise.

Here, the function ψp is a multiplicative function given by{
ψp(p

k) = pk−1(p+ 1)

ψp(m) = 1, if gcd(m, p) = 1.

Corollary 3.2.6. If the integer N is square-free, and assume that there exists an em-
bedding of F into B, gcd(m,D) = 1, then the class number of optimal embeddings of
Λ into O can be expressed as

ν(D,N, dF ,m;O∗) =

{
0, if there exists p | N, p - m,

(
dF
p

)
= −1,

h(dF ,m)2s+t, otherwise,

where s is the number of prime factors p ofD so that p is inert in F and t is the number
of prime factors of N that splits in F or divides m.

3.3 Complex Multiplication Points on XD
0 (N)

When F is an imaginary quadratic field, and assume that F embeds in the indefinite
Q-quaternion algebra B. Then, for any embedding φ : F ↪→ B, the image of F ∗ in
B∗ \Q∗ under φ has a unique fixed point on the upper half-plane h.

To be more precise, it is known that two elements γ, γ′ ∈ GL(2,R) have the same
fixed points if and only if there exist real constants λ 6= 0 and µ so that γ′ = λγ+µ ·1.
Now, if i∞ stands for the fixed embedding of the infinite Q-quaternion algebra B into
M(2,R) and φ is an embedding from F into B, we then have precisely one fixed point
in h under the action of the set i∞(φ(F ∗)). In this case, we denote τφ the fixed point in
h. It is a complex multiplication point (briefly, CM-point) on the associated Shimura
curve X .

Definition 3.3.1. Let Λ be an order of discriminant dΛ = m2dF in the imaginary
quadratic field F . A point τ ∈ XD

0 (N) is said to be a CM-point by Λ or CM-point
of discriminant dΛ if it is fixed by i∞(φ), i.e. τ = τφ on XD

0 (N), for an optimal
embedding φ in E(O(D,N),Λ).

Remark 3.3.1. A point on XD
0 (N) is elliptic if and only if it is a CM-point by the ring

of integers Z[
√
−1] or Z[(1 +

√
−3)/2].
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3.3.1 The set of CM-points by an order
It is clear that there are many CM-points on the curve XD

0 (N). However, for a given
order Λ, the number of CM-points by Λ is related to the number of non-equivalent
optimal embeddings of Λ into the order O(D,N) and it is finite.

Proposition 3.3.2. Let φ, φ′ ∈ E(O(D,N),Λ). Then τφ = τφ′ under the action of
Γ(O(D,N)) if and only if φ is O(D,N)1-equivalent to φ′ or −φ′, where −φ is the
embedding defined by (−φ)(

√
dF ) = −φ(

√
dF ).

Note that −φ(F ) = φ(F ) and −φ(Λ) = φ(Λ), hence φ and −φ have the same
fixed point in h. Also, they are either simultaneously optimal or not.

Proof. May assume that φ is equivalent to φ′. Suppose that h ∈ O(D,N)1 is the
element such that h−1φ(α)h = φ′(α), for all α ∈ F ∗ \ Q∗. Fixing α ∈ F \ Q, let
γh, γ, and γ′ in Γ(O(D,N)) be the corresponding elements to h, φ(α), φ′(α). Then
γ−1
h γγh = γ′ and hence τφ′ = γ−1

h τφ, which is Γ(O(D,N))-equivalent to the point
τφ.

Conversely, suppose that there exists γh ∈ Γ(O(D,N)) so that γ−1
h τφ = zφ′ .

Write h ∈ O(D,N)1 as the associated element to γh. Now, we choose α ∈ F \ Q
with trFQ (α) = 0. Then both of φ′(α) and h−1φ(α)h fix the point τφ′ . Considering the
elements γ = i∞(φ(α)) and γ′ = i∞(α), one has the identity

γ−1
h γγh = λγ′ + µ · 1, λ 6= 0, µ ∈ R.

By the assumption of trFQ (α) = 0, we can get that the constant µ must be 0, since the
trace is Q-linear and preserved by conjugation. The relation between determinants,

NF
Q (α) = det(γ) = λ2 det(γ′) = λ2NF

Q (α) and NF
Q (α) 6= 0,

implies that γ−1
h γγh = ±γ′. That is, the embedding φ′ is O(D,N)1-equivalent to φ

or −φ.

Lemma 3.3.3. If φ is an embedding from F intoB, then φ is notO1-equivalent to−φ,
for any order O in B.

Proof. Suppose that φ isO1-equivalent to−φ. For a fixed α ∈ F−Qwith trFQ (α) = 0,
there is an element γ ∈ SL(2,R) such that

γ−1i∞(φ(α))γ = −i∞(φ(α)).

Note that if we choose the element α with trace not 0 then the lemma hold by the prop-
erties of trace. Now we consider the associated quadratic forms. Since det(i∞(φ(α))) =
NF

Q (α) > 0, we will get a contradiction.

From above results, to count the number of CM-points by the order Λ is equiva-
lently to count the number of the non-equivalent class E(O(D,N),Λ)) under the action
of O(D,N)∗. We now let CM(dΛ) denote the set of CM-points of discriminant dΛ,
up to O(D,N)∗-equivalence. Also, we use the same notation CM(dΛ) or CM(Λ)
to indicate the set of the in-equivalent optimal embeddings of Λ into O(D,N). In the
stance, the optimal embedding corresponding to a point τ , means that the O(D,N)-
equivalent optimal embedding which fixes the point τ ∈ h.
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Theorem 3.3.4. Fix Λ = Λ(dΛ) an order of index m in the the imaginary quadratic
field F which has discriminant dF .

#CM(dΛ) = #CM(Λ) = ν(D,N, dF ,m;O(D,N)∗),

the class number of O(D,N)∗-equivalent optimal embeddings of Λ in O(D,N) men-
tioned in Section 3.2.2.

3.3.2 Fixed points of Atkin-Lehner involutions
Regarding Atkin-Lehner involutions acting on XD

0 (N) as optimal embeddings, CM-
points arise in a natural way as fixed points of Atkin-Lehner involutions on XD

0 (N).
For a given involution wm, we let h be its corresponding element in the order

O = O(D,N) with Oh = hO, n(h) = m. Assume that P ∈ XD
0 (N)(C) is a

fixed point of wm on the curve XD
0 (N) and τ ∈ h representing for P . Then we have

hτ = uτ , for some u ∈ O1. (Here, we use the notation hτ to simplify the action of γh
on τ ∈ h with γh ∈ SL(2,R).) Therefore, we may assume that hτ = τ and tr(h) ≥ 0,
by replacing −h by h if necessary. Since h fixes a pair of conjugate complex numbers
τ and τ̄ , the field Q(h) containing h and Q is an imaginary quadratic field.

Observe that the conjugation h̄ of h generated the same principal ideal Oh = Oh̄,
n(h) = m, and tr(h) ∈ Q. One has that h̄ = uh, for some u ∈ O1 ∩ Q(h). In
particular,

u =


ζ4, if m = 2,

ζ3, if m = 3,

−1, else.

Now let Λ be the quadratic order O(D,N) ∩Q(h). It is clear that Λ contains the ring
Z[h]. Then for a given fixed point P ∈ XD

0 (N) of wm, we can associated 2 optimal
embeddings of R into O(D,N), corresponding to h and h̄. Consider an embedding
u = γ−1hγ, which is O(D,N)∗-equivalent to h. If n(γ) = 1, then u fixes γτ , which
represents the same point P ; if n(γ) = −1, then u fixes the point γ(τ̄) associated to
the point P̄ , the complex conjugate point on the Shimura curve XD

0 (N). We can see
that P is a real point (i.e. P = P̄ ) if and only if h is O(D,N)∗-equivalent to h̄.

Proposition 3.3.5. (Ogg [15]) Assume that m > 1 is a square-free exact divisor of
DN . Then the set of the fixed points of an Atkin-Lehner involution wm on XD

0 (N) is
CM(−4) ∪ CM(−8), if m = 2,

CM(−m) ∪ CM(−4m), if m = 3 mod 4,

CM(−4m), else.

We remark that in the case m is not square-free, the description of the fixed points
is complicated. In general, they will be a proper sunset of ∪f2|4mCM(−4m/f2).

3.3.3 Fields of definition of CM-points
Let Λ be an order with discriminant d in the imaginary quadratic field F = Q(

√
−s).

Set I(Λ) be the group of the fractional invertible ideal classes of Λ, and HΛ be the ring
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class field of Λ. By class field theory, we have the Artin isomorphism from I(Λ) toHΛ

by [p] 7→ Frobp, for all primes p of F unramified in HΛ. Denote Q(P ) be the number
field generated by the coordinates of the CM-point P ∈ CM(d) on XD

0 (N). Then we
have fundamental result due to Shimura, which is the so-called Shimura’s reciprocity
law.

Theorem 3.3.6. [19](Shimura’s reciprocity law) Let Φ be the natural uniformization
map h→ Γ(O(D,N)) \ h, τ ∈ h so that Φ(τ) = P has CM by the order Λ. Then

(1) HΛ = F ·Q(P ).

(2) Let φ be the embedding Λ ↪→ O(D,N) corresponding to the point τ . Assume
that a ∈ I(Λ) and σa is the Artin symbol attached to a. Then action of the Galois
group Gal(HΛ/F ) ' Pic(Λ) is given by

σa(P ) = Φ(α−1τ),

where α is some element in O(D,N) with n(α) > 0 satisfying the identity

φ(a)O(D,N) = αO(D,N).

3.4 Signatures
Recall that the genus of a Shimura curve X is given by

g(X) = 1 +
Vol(X)

2
− 1

2

r∑
i=1

(
1− 1

ei

)
,

where the sum runs through all elliptic points with ei being their respective orders.
Considering a normalization

∫ ∫
dxdy/y2π for the hyperbolic area, from [17], the

formulae for the area (volume) and the genus of XD
0 (N) are

Vol
(
XD

0 (N)
)

=
DN

6

∏
p|D

(
1− 1

p

)∏
p|N

(
1 +

1

p

)

and

g(XD
0 (N)) = 1 +

Vol(XD
0 (N))

2
− 1

2

∑
ei

(
1− 1

ei

)
.

In particular, the total number of elliptic points of order 2 and 3, say v2 and v3, are
given by

v2 =


∏
p|D

(
1−

(
−4

p

))∏
p|N

(
1 +

(
−4

p

))
, if 4 - N,

0, if 4 | N,
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and

v3 =


∏
p|D

(
1−

(
−3

p

))∏
p|N

(
1 +

(
−3

p

))
, if 9 - N,

0, if 9 | N.

These can be obtained equivalently by counting the number of optimal embeddings
from the maximal order in the fields Q(

√
−4) and Q(

√
−3) into the quaternion order

O(D,N).
Note that the ramification points of this covering XD

0 (N) −→ XD
0 (N)/〈wm〉 are

the exact fixed points of wm on the curve XD
0 (N). Therefore, from the Riemann-

Hurwitz formula, we can deduce that the genus of the quotient curve XD
0 (N)/〈wm〉 is

equal to (g + 1)/2 − Bm/2, where g is the genus of XD
0 (N), and Bm is the number

of the fixed points of wm on XD
0 (N).

From Proposition 3.3.5, it is easy to determine the number of elliptic points on
XD

0 (N)/G for any subgroup G of WD,N such that m is squarefree for any wm in G.

Lemma 3.4.1. [23] LetG be a nontrivial subgroup of the groupWD,N of Atkin-Lehner
involutions on XD

0 (N) such that m is squarefree for any wm ∈ G. Then the only
possible orders of elliptic points on XD

0 (N)/G are 2, 3, 4, and 6.

1. If w2 ∈ G, then the number of elliptic points of order 2 on XD
0 (N)/G is

2

|G|


∑

wm∈G,m6=1

(#CM(−4m) + #CM(−m))−#CM(−3) , if w3 ∈ G,∑
wm∈G,m6=1

(#CM(−4m) + #CM(−m)) , if w3 /∈ G.

If w2 6∈ G, then the number is (#CM(−4) + 2A)/|G|, where A is
∑

wm∈G,m6=1

(#CM(−4m) + #CM(−m))−#CM(−3) , if w3 ∈ G,∑
wm∈G,m6=1

(#CM(−4m) + #CM(−m)) , if w3 /∈ G.

(If −m is not a discriminant, we simply set #CM(−m) = 0.)

2. If w3 ∈ G, then there are no elliptic points of order 3 on XD
0 (N)/G. If w3 6∈ G,

then the number of elliptic points of order 3 is #CM(−3)/|G|.

3. If w2 6∈ G, then there are no elliptic points of order 4 on XD
0 (N)/G. If w2 ∈ G,

then the number of elliptic points of order 4 is 2#CM(−4)/|G|.

4. If w3 6∈ G, then there are no elliptic points of order 6 on XD
0 (N)/G. If w3 ∈ G,

then the number of elliptic points of order 6 is 2#CM(−3)/|G|.

Proof. The fact that only 2, 3, 4, and 6 can be the orders of elliptic points onXD
0 (N)/G

is well-known.
Let wm ∈ G. By Proposition 3.3.5, the fixed points of wm consist of CM(−4),

CM(−m), or CM(−4m), depending on m. If m 6= 1, 3, then points in CM(−4m)
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or CM(−m) are fixed only by wm and every other Atkin-Lehner involution other than
w1 permutes them. Thus, there are totally |G|/2 points in CM(−4m) or CM(−m)
that are mapped to the same point in the covering XD

0 (N) → XD
0 (N)/G. For points

in CM(−4), which constitute elliptic points of order 2 on XD
0 (N), they are also fixed

by w2. Thus, if w2 ∈ G, then there are 2#CM(−4)/|G| elliptic points of order 4
on XD

0 (N)/G. If w2 6∈ G, points in CM(−4) contribute another #CM(−4)/|G|
elliptic points of order 2 on XD

0 (N)/G. For points in CM(−3), which are elliptic
points of order 3 on XD

0 (N), they are also fixed by w3. If w3 ∈ G, then they become
elliptic points of order 6 on XD

0 (N)/G and there are 2#CM(−3)/|G| such points. If
w3 6∈ G, then they remain elliptic points of order 3. There are #CM(−3)/|G| such
points. Summarizing, we get the lemma.

3.5 Čerednik-Drinfeld Theory
In this section, we will review the Čerednik-Drinfeld theory of the p-adic uniformiza-
tion for Shimura curves, which gives a description of the bad reduction of Shimura
curves XD

0 (N). In the following, for fixed integers D and N , we will use X to denote
the Shimura curve XD

0 (N).
Due to the moduli interpretation of Shimura curves, the curve X admit a canonical

model over Q. Following from the work of Morita, Čerednik, and Drinfeld, there
exists a proper integral model M = M(D,N)/Z of X which extends the moduli
interpretation to arbitrary schemes over Z and it is smooth over Z[ 1

DN ]. It is known that
the curve X has good reduction only at the prime numbers p with p - DN . For a prime
divisor p of D, the curve X/Qp defined over Qp is a Mumford curve. By Mumford’s
theory, the curveX has a p-adic uniformization expressing it as a quotient of the p-adic
upper half plane hp by the action of a discrete subgroup Γ of PGL(2,Qp). The theory
of Čerednik-Drinfeld provides an explicit description of this p-adic uniformization. It
describes X ×Qp as a quadratic twist of Γ \ hp over Qp.

In the following, we will also describe the connection between Brandt matrices and
the bad reductions of X from the theory of Čerednik-Drinfeld. Let us fix the nota-
tions Kp, Kunr

p , and Zunr
p , as the unramified quadratic extension of Qp, the maximal

unramified extension of Qp, and the ring of integers of Kunr
p , respectively.

3.5.1 The Čerednik-Drinfeld theory
Let p be a prime with p | D, and O = O(D/p,N) be an Eichler order of level N in a
definite quaternion algebra B′ defined over Q of discriminant D/p. Let Z(p) be the set
Z[ 1

p ] and O(p) = O ⊗ Z(p). Define Γ̃0 = O(p)∗ and

Γ̃+ =
{
x ∈ Γ̃0 : Ordp(n(x)) ≡ 0 mod 2

}
.

Also, we let Γ0 = Γ̃0/Z(p)∗ and define

Γ+ = Γ̃+/Z(p)∗ .
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Identifying the quaternion algebra B′ ⊗Qp with the quaternion algebra M(2,Qp), the
groups Γ̃0 and Γ̃+ can be considered as discrete compact subgroups of GL(2,Qp) con-
taining the element

( p 0
0 p

)
, and Γ0 and Γ+ can be viewed as discrete compact subgroups

of PGL(2,Qp). Then the quotients Γ0 \hp and Γ+ \hp exist. Moreover, let Γ = Γ0 or
Γ+, there exists a unique scheme PΓ proper over Zp such that the formal completion
of PΓ along its closed fibre is canonically the quotient Γ \ hp over Zp. Note that the
scheme PΓ is projective over Zp, and its generic fibre XΓ is a smooth curve defined
over Qp.

Theorem 3.5.1. (Čerednik-Drinfeld) There is an isomorphism over Zp such that

X ×Qp2 ' Xχ
Γ+
,

where χ is the character χ : Gal(Kp/Qp) −→ Aut(XΓ+
⊗Kp) defined by Frob 7→

wp, and Xχ
Γ+

is the quadratic twist of XΓ+
by χ.

3.5.2 Dual graph and bad reduction
Let ∆ be the Burhat-Tits tree of SL(2,Qp), ie., PGL(2,Qp)/PGL(2,Zp), on which
PGL(2,Qp) acts in the usual manner. According to the Čerednik and Drinfeld’s result,
the special fiber of M ⊗ Zp is determined by a quadratic twist by the finite graph
G = Γ+ \∆ with lengths. Geometrically, a vertex v of the graph G is corresponding
to the irreducible rational component Cv of Mp, where Mp is the closed fiber of M at
the prime p. An edge e of length `(e) connecting vertices v and v′ is corresponding to
an intersection point x of the component Cv and Cv′ locally at which

Mx × Ẑp
unr
' Spec

(
Ẑp

unr
[X,Y ]/

(
XY − p`(e)

))
.

Now, let us see some properties of the graph G.
We first consider the finite graph G0 = Γ0 \∆ with lengths. Let I1, I2, . . ., Ih be

a completely representatives of the left ideals of O, and let Oi be the right order of Ii,
i = 1 . . . h. The vertices of the graph G0 form the set Ver(G0) = V , where V collects
the right orders Oi. The vertices v1 and v2 are linked by an edge if and only if the
intersection of the corresponding orders O1 and O2 is an Eichler order O(D/p,Np),
up to conjugation. Observe that the group Γ+ is a subgroup of index 2 of the group Γ0,
and the quotient group Γ0/Γ+ is generated by γpΓ+, where γp is corresponding to an
element of O with reduced norm p. We can construct the graph G with lengths from
the graph G0.

The vertices of the graph G are the set Ver(G) = V ∪ V ′, where V ′ = γpV with
v′ = γpv. There are no edges in G connecting 2 vertices from the same set V or V ′.
Let `(v) be the weight of the a vertex v, and `(e) be the length of an edge e. One has
the following facts.

Proposition 3.5.2. For a given vertex v ∈ V , let v′ = γpv ∈ V ′.
1. The weight `(vi) of the vertex vi is equal to the half of the number of the units in

the corresponding order Oi. That is ,

`(vi) =
#O∗i

2
.
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Furthermore, we have the equality `(v) = `(v′).

2. The number of the edges eα with lengths `(eα) joining vi and v′j coincides with
that of v′i and vj .

3. For all edges connecting to a vertex v, we have `(e) | `(v) and∑
e∈Star(v)

`(v)

`(e)
= p+ 1,

if we let Star(v) be the set of all the edges connecting to the vertex v.

On the other hand, we can get the information of the graph G from the theory of
Brandt matrices. Let A = (ai,j) ∈M(h,Z) be the Brandt matrix attached to the order
O. The entry ak,` is the number of the Ok-left ideals of reduced norm p which are
equivalent to the the ideal I−1

k I`, and the equality ak,`/#O∗k = a`,k/#O∗` holds for
every `, k.

Proposition 3.5.3. 1. The number of the edges e with given lengths `(e) joining vi
and v′j is the number ai,j , and

ai,j =
∑

vi
e−→v′j

`(vi)

`(e)
.

In particular, it always holds that

ai,j/`(vi) = aj,i/`(vj).

2. For each row, we have
h∑
j=1

ai,j = p+ 1.

These give us the information of the finite graph G with lengths and thus we can
determine the special fibre Mp when p | D.

When p | N , we have the simpler result to determine the fibre Mp. In summary,
when p | N , we let I1, I2, . . ., Ih be a completely representatives of the left ideals
of O(Dp,N/p), and let Oi be the right order of Ii, i = 1 . . . h. Then the irreducible
components of Mp meet at h points with thinkness #O∗i

2 , i = 1 . . . h.

3.6 The Jacquet-Langlands correspondence
From the Jacquet-Langlands correspondence, we can see a connection between the
space of cusp forms on classical modular curves and the space of automorphic forms
on Shimura curves XD

0 (N).
The definition of Hecke operators on the space of automoprhic forms on Shimura

curves XD
0 (N) are the same as that of the classical modular forms. We assume that

O = O(D,N) is an Eichler order of level N in an indefinite quaternion algebra of
discriminant D. Now fix an imbedding ι : B −→M(2,R).
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Definition 3.6.1. Let p be a prime with p - DN , and α ∈ O be such N(α) = p. Then
for an automorphic form f(τ) of even weight k on Γ = Γ(O), the action of Hecke
operator Tp on f(τ) is defined by

Tp : f(τ) 7→ pk/2−1
∑

γ∈Γ\Γι(α)Γ

(det γ)k/2

(cτ + d)k
f(γτ),

where γ =
(
a b
c d

)
.

Hecke operators Tn for general n with gcd(n,DN) = 1 are more complicated.
As in the case of classical modular curves, there exists a basis of Sk(O) consisting
of simultaneous eigenforms for all Tn, with (n,DN) = 1. The Jacquet-Langlands
correspondence gives an isomorphism of Hecke modules from Sk(O(D,N)) to the
space of cusp forms of weight k and level N which are new at all primes dividing D.

Now let Sk(D,N) stand for the space of automorphic forms of weight k on Γ(O(D,N))
and simply Sk(M) = Sk(1,M), the space of cusp forms of weight k on Γ0(M). De-
note by wm = wm(D,N) the Atkin-Lehner involution inO(D,N). Then the Jacquet-
Langlands correspondence in our case can be stated as follows.

Proposition 3.6.1 ([12, 18, 33]). We have

Sk(D,N) ' SD−new
k (DN) :=

⊕
d|N

⊕
m|Nd

Snew
k (dD)[m]

as Hecke modules, where

Snew
k (dD)[m] =

{
f(mτ) : f(τ) ∈ Snew

k (dD)
}
,

and Snew
k (M) is the subspace of newforms of Sk(M). Moreover, for a prime p | D, if

the action of the Atkin-Lehner involutionwp(1, DN) on a normalized Hecke eigenform
f ∈ SD−new

k (DN) iswp(1, DN)f = εpf , then the action ofwp on the corresponding
automorphic form f̃ ∈ Sk(D,N) is

wpf̃ = −εpf̃ .

According to the Jacquet-Langlands correspondence, we can see that each Hecke
eigenform f̃ for Tp is with the same eigenvalues as the cusp form f .
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Chapter 4

Automorphic Forms in Terms of
Solutions of Schwarzian
Differential Equations

Let B be an indefinite quaternion algebra of discriminant D over Q. For an Eichler
order O of level N , (D,N) = 1, in B, we let XD

0 (N) denote the Shimura curve
associated to O. For each divisor m of DN with (m,DN/m) = 1, we let wm denote
the Atkin-Lehner involution on XD

0 (N) and WD,N be the group of all Atkin-Lehner
involutions. We also let the subgroup of WD,N consisting of wm, m|D, be denoted by
WD.

Many properties and theories about classical modular curves can be extended to the
case of Shimura curves. In the classical case, many results are relying on the Fourier
expansions of modular forms. However, because of the absence of cusps in the case
of general Shimura curves (D 6= 1), it is not easy to determine Taylor coefficients
of automorphic forms and functions. Therefore, there have been very few results on
arithmetic of Shimura curves, and few methods to construct automorphic forms and
functions on Shimura curves. One of the few methods uses differential equations sat-
isfied by automorphic forms and automorphic functions. (See [2, 6, 33].) The idea is
that even though it is difficult to explicitly construct automorphic functions that can be
put into practical use, the Schwarzian differential equations associated to automorphic
functions in the case of Shimura curves of genus zero can often be determined us-
ing analytic information of the automorphic functions and coverings between Shimura
curves. Then one can use the solutions of the Schwarzian differential equations in place
of automorphic forms to study properties of automorphic forms.

From the result of Yang [33], every automorphic form on a Shimur curve X which
is of genus zero can be expressed by the solutions of Schwarzian differential equa-
tion associated to X . In view of the significance of Schwarzian differential equa-
tions, it is important to determine the Schwarzian differential equation for each of the
Shimura curves XD

0 (N)/G, G < WD,N , of genus zero. In [6], Elkies worked out
the Schwarzian equation on X10

0 (1)/W10, X14
0 (1)/W14, and X15

0 (1)/W15. Bayer and
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Travesa [2] computed all the Schwarzian differential equations for the Shimura curves
X6

0 (1)/G with G < W6. In [33], Yang also gave Schwarzian differential equation on
X6

0 (1)/W6 and X10
0 (1)/W10 from the properties of the automorphic derivatives.

In this chapter, we will consider the casesXD
0 (N)/WD when there exists a square-

free integer M > 1 such that XD
0 (M)/WD has genus zero. The reason for this restric-

tion is that we need additional information from coverings between Shimura curves of
genus zero in order to completely determine the differential equations. (Note that in
[33], a covering between Shimura curves of different levels is also needed in order to
compute Hecke operators.) In the process, we also need work out equations for some
Shimura curves of genus one and hyperelliptic Shimura curves, which are useful in
determining the covering maps between Shimura curves. As a byproduct of our com-
putation of coverings XD

0 (N)/WD → XD
0 (1)/WD, we can also determine the values

of Hauptmoduls at several CM-points.
In this chapter, we will describe a way to construct automorphic forms on Shimura

curves in Section 4.1 . The rest of this chapter is organized as follows. In Section 4.2,
we determine all Shimura curves XD

0 (N)/WD of genus 0, N > 1. In Section 4.3,
we will find explicit coverings of XD

0 (N)/WD → XD
0 (1)/WD. The equations for

Shimura curves and the methods to obtain them given in [8, 9, 14] are important here.
The explicit coverings will be used later. In Section 4.4, we will list the Schwarzian dif-
ferential equations for the selected Shimura curves. These results is mainly following
the preprint [23].

4.1 Automorphic Forms on Shimura Curves and Schwarzian
Differential Equations

Let t(τ) be a non-constant automorphic function on a Shimura curve X . It is straight-
forward to verify that t′(τ) is a meromorphic automorphic form of weight 2 on X and
that the Schwarzian derivative

{t, τ} :=
t′′′(τ)

t′(τ)
− 3

2

(
t′′(τ)

t′(τ)

)2

is a meromorphic automorphic form of weight 4 on X . Thus, the ratio of {t, τ} and
t′(τ)2 is an automorphic function on X . In particular, if X has genus zero and t(τ) is
a Hauptmodul, i.e., the function t generates the field of automorphic functions on X ,
then

Q(t) := − {t, τ}
2t′(τ)2

is a rational function of t. In literature [2], given a thrice-differentiable function f of z,
the function

D(f, z) := − {f, z}
2f ′(z)2

is called the automorphic derivative associated to f .
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Now the relation 2Q(t)t′(τ)2 + {t, τ} = 0 can also be written as

d2

dt(τ)2
t′(τ)1/2 +Q(t)t′(τ)1/2 = 0.

In other words, if we consider t′(τ)1/2 as a function of t, then t′(τ)1/2 is a solution of
the differential equation

d2

dt2
f +Q(t)f = 0.

Definition 4.1.1. The differential equation d2f/dt2+Q(t)f = 0 is called the Schwarzian
differential equation associated to t(τ).

This differential equation is a Fuchsian differential equation. For each singularity,
there is a basis of local solutions of the form

xe (1 + a1x+ a2x+ · · ·) ,

where e is the local exponent at the singular point. We also remark that this differential
equation can be regarded as a normal form for all atomorphic differential equation
associated to the group Γ with X = Γ \ h, because it depends only on the chosen of
t(τ).

4.1.1 Automorphic forms on Shimura curves of genus zero
The significance of Schwarzian differential equations can be seen from the following
result.

Proposition 4.1.1 ([33, Theorem 4]). Assume that a Shimura curve X has genus zero
with elliptic points τ1, . . . , τr of orders e1, . . . , er, respectively. Let t(τ) be a Haupt-
modul of X and set ai = t(τi), i = 1, . . . , r. For a positive even integer k ≥ 4, then a
basis for Sk(X) is

t′(τ)k/2t(τ)j
r∏

j=1,aj 6=∞

(t(τ)− aj)−bk(1−1/ej)/2c
, j = 0, . . . , dk − 1,

where dk = dimSk(X) and it is equal to 1− k +
∑r
jb
k
2

(
1− 1

ej

)
c.

Moreover, the automorphic derivative Q(t) satisfies some conditions.

Proposition 4.1.2. Assume that X has genus zero with elliptic points τ1, . . . , τr of
order e1, . . . , er, respectively. Let t(τ) be a Hauptmodul of X and set ai = t(τi),
i = 1, . . . , r. Then the automorphic derivative Q(t) = D(t, τ) is equal to

Q(t) =
1

4

r∑
j=1,aj 6=∞

1− 1/e2
j

(t− aj)2
+

r∑
j=1,aj 6=∞

Bj
t− aj
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for some constants Bj . Moreover, if aj 6=∞ for all j, then the constants Bj satisfy

r∑
j=1

Bj =
r∑
j=1

(
ajBj +

1

4
(1− 1/e2

j )

)
=

r∑
j=1

(
a2
jBj +

1

2
aj(1− 1/e2

j )

)
= 0.

Also, if ar =∞, then Bj satisfy

r−1∑
j=1

Bj = 0,
r−1∑
j=1

(
ajBj +

1

4
(1− 1/e2

j )

)
=

1

4
(1− 1/e2

r).

In other words, if we can determine the Schwarzian differential equation associated
to a Hauptmodul on a Shimura curve, then we can express automorphic forms of any
even weight k on this Shimura curve in terms of solutions of the differential equation.

Corollary 4.1.3. Let X be a Shimura curve of genus zero with elliptic points τ1, . . .,
τr of order e1, . . ., er, respectively. Let t(τ) be a Hauptmodul of X and set ai = t(τi).
Suppose that {g1, g2} is a basis for the solution space of the Schwarzian differential
equation associated to t,

f ′′ +Q(t)f = 0.

Then a basis for Sk(X) is given by

(g1 + Cg2)kt(τ)j
r∏

i=1,ai 6=∞

(t(τ)− ai)−b
k(1−1/ei)

2 c, j = 0, . . . , dk − 1,

for some constant C ∈ C.

This provides a concrete space that we can use to study properties of automorphic
forms. For example, in [33], Yang devised a method to determine Hecke eigenforms
in the spaces of automorphic forms, expressed in terms of solutions of Schwarzian
differential equations.

Now the upshot is that it is often possible to determine a Schwarzian differen-
tial equation without constructing a Hauptmodul first. This is especially true when a
Shimura curve of genus zero has three elliptic points. This is due to the well-known
fact that a second-order Fuchsian differential equation with precisely three singularities
is uniquely determined its local exponents at the three points.

4.1.2 Hypergeometric functions as automorphic forms on Shimura
curves

In the case that the Shimura curve of genus 0 has exactly 3 elliptic points, since the
number of singularities of the differential equation is 3, the differential equation is es-
sentially a hypergeometric differential equation. Then one can express the automorphic
forms by using 2F1-hypergeometric functions.

To be more precise, when a Shimura curve has signature (0; e1, e2, e3), we let
τ1, τ2, τ3 be the three elliptic points corresponding to e1, e2, e3. Since X has genus 0,
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there exists a unique Hauptmodul t that takes values 0, 1,∞ at τ1, τ2, τ3, respectively.
According to Proposition 4.1.3, the functions t′(τ)1/2 and τt′(τ)1/2, as functions of t,
satisfy the differential equation f ′′ +Q(t)f = 0, where

Q(t) =
1

4

(
1− 1/e2

1

t2
+

1− 1/e2
2

(t− 1)2

)
+
B1

t
+

B2

t− 1

with

B2 =
1

4

(
−1 +

1

e2
1

+
1

e2
2

− 1

e2
3

)
, B1 = −B2.

The local exponents at 0, 1,∞ are {1/2−1/(2e1), 1/2+1/(2e1)}, {1/2−1/(2e2), 1/2−
1/(2e2)}, and {−1/2− 1/(2e3),−1/2 + 1/(2e3)}, respectively. Therefore, the func-
tion t−1/2+1/(2e1)(1− t)−1/2+1/(2e2)t′(τ)1/2, as a function of z, satisfies the hyperge-
ometric differential equation

θ(θ + c− 1)F − t(θ + a)(θ + b)F = 0, θ = t
d

dt

with

a =
1

2

(
1− 1

e1
− 1

e2
− 1

e3

)
, b = a+

1

e3
, c = 1− 1

e1

Combining this with Proposition 4.1.3, we see that every automorphic form on X can
be expressed in terms of hypergeometric functions.

Proposition 4.1.1 ([33, Theorem 9]). Assume that a Shimura curve X has signature
(0; e1, e2, e3). Let t(τ) be the Hauptmodul of X with values 0, 1, and∞ at the elliptic
points of order e1, e2, and e3, respectively. Let k ≥ 4 be an even integer. Then a basis
for the space of automorphic forms of weight k on X is given by

t{k(1−1/e1)/2}(1− t){k(1−1/e2)/2}tj
(

2F1(a, b; c; t) + Ct1/e12F1(a′, b′, c′; t)
)k
,

j = 0, . . . , bk(1 − 1/e1)/2c + bk(1 − 1/e2)/2c + bk(1 − 1/e3)/2c − k, for some
constant C, where for a rational number x, we let {x} denote the fractional part of x,

a =
1

2

(
1− 1

e1
− 1

e2
− 1

e3

)
, b = a+

1

e3
, c = 1− 1

e1

and
a′ = a+

1

e1
, b′ = b+

1

e1
, c′ = c+

2

e1
.

In [24], Yang and the author of the present paper obtained several new algebraic
transformation of 2F1-hypergeometric functions by interpreting identities among hy-
pergeometric functions as identities among automorphic forms on different Shimura
curves. In chapter 6, we will introduce how we obtain algebraic transformations of
2F1-Hypergeometric functions.
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4.1.3 Transformation laws of automorphic derivatives
For general Shimura curves, the following properties of Schwarzian differential equa-
tions and automorphic derivatives are very useful in determining the differential equa-
tions.

Proposition 4.1.4. [33] Automorphic derivatives have the following properties.

1. D((az + b)/(cz + d), z) = 0 for all
(
a b
c d

)
∈ GL(2,C).

2. D(g ◦ f, z) = D(g, f(z)) +D(f, z)/(dg/df)2.

Proposition 4.1.5. [33] Let t(τ) be a Hauptmodul for a Shimura curve X of genus
0. Let R(x) ∈ C(x) be the rational function such that the automorphic derivative
Q(t) = D(t, τ) is equal toR(t). Assume that γ is an element of GL(2,R) normalizing
the order O associated to X and let σ be the automorphism of X induced by γ. If
σ : t 7→ (at+ b)/(ct+ d), then R(x) satisfies

(ad− bc)2

(cx+ d)4
R

(
ax+ b

cx+ d

)
= R(x).

Proof. We shall compute D(t(γτ), τ) in two ways. By Proposition 4.1.4, we have

D(t(γτ), τ) = D

(
at(τ) + b

ct(τ) + d
, t(τ)

)
+

D(t(τ), τ)

(dt(γτ)/dt(τ))2
= 0 +

(ct+ d)4R(t)

(ad− bc)2
.

On the other hand, by the same proposition, we also have

D(t(γτ), τ) = D(t(γτ), γτ) +
D(γτ, τ)

(dt(γτ)/dγτ)2
= R(t(γτ)) = R

(
at+ b

ct+ d

)
.

Comparing the two expressions, we get the formula.

4.2 Shimura Curves of Genus Zero
From now on, let us consider the Shimura curves XD

0 (N) and fix the notation WD =
WD,1. In this section, we will determine all pairs of integers (D,N), D,N > 1, such
that XD

0 (N)/WD has genus 0, where N is a squarefree integer. We will need explicit
coverings XD

0 (N)/WD → XD
0 (1)/WD in order to determine Schwarzian differential

equations.
A formula for the genus of XD

0 (N)/G, G < WD,N , will involve the numbers of
CM points of certain discriminants. For the goal of this section, we only need to know
the number of CM-points associated to K = Q(

√
−m) with m|D of discriminant −3,

dK , or 4dK in the case dK ≡ 1 mod 4.

Lemma 4.2.1 ([15], or Section 3.3 and Section 3.2.2). For m|D or m = 3, let dK
denote the discriminant of the field K = Q(

√
−m). We have

#CM(dK) = h(dK)


0, if p2|N for some p|dK ,∏
p|D

(
1−

(
dK
p

))∏
p|N

(
1 +

(
dK
p

))
, if p2 - N for any p|dK .
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Also, for m|D with m ≡ 3 mod 4, we have

#CM(4dK) = δh(4dK)


0, if 2|D,∏
p|D

(
1−

(
4dK
p

))∏
p|N

(
1 +

(
4dK
p

))
, if 2 - D,

where when m ≡ 7 mod 8,

δ =


6, if 8|N,
4, if 4‖N,
2, if 2‖N,
1, if 2 - N,

and when m ≡ 3 mod 8,

δ =


0, if 8|N,
2, if 2|N or 4|N,
1, if 2 - N.

Here h(d) is the class number of the imaginary quadratic order of discriminant d.

Lemma 4.2.2. The complete list of integers (D,N) with D,N > 1 such that the
Shimura curve XD

0 (N)/WD has genus zero, is

(6, 5), (6, 7), (6, 13), (10, 3), (10, 7), (14, 3), (14, 5),

(15, 2), (15, 4), (21, 2), (26, 3), (35, 2), (39, 2).

Proof. Let Γ be a congruence Fuchsian subgroup of SL(2,R). (See [13] for the def-
inition of a congruence Fuchsian subgroup. The groups considered here are all con-
gruence Fuchsian subgroups.) A famous result of Selberg [16] stated that if Γ is a
congruence subgroup of SL(2,Z), then the first eigenvalue λ1 of the Laplace operator
on the space of square-integrable function on Γ\h is not less than 3/16. By combining
this result with the Jacquet-Langlands correspondence, Vignéras [27] showed that the
same inequality also holds for congruence Fuchsian subgroups coming from indefinite
quaternion algebras over Q of discriminant not equal to 1.

On the other hand, Zograf [34] showed that if the area Vol(Γ\h) is at least 16(g(Γ)+
1), then λ1 < 4(g(Γ) + 1)/Vol(Γ\h). Here g(Γ) denotes the genus of Γ and the area
is normalized such that A(SL(2,Z)\h) = 1/6. Combining Selberg’s inequality and
Zograf’s result, one sees that if a congruence Fuchsian subgroup has genus 0, then the
area must be less than 64/3.

Now recall that the area of XD
0 (N) is given by

DN

6

∏
p|D

(
1− 1

p

)∏
p|N

(
1 +

1

p

)
.

This immediately shows that if the number of prime factors of D is at least 6, then the
genus of XD

0 (N)/WD cannot be 0 for any N ≥ 2. Also, if D = pq is a product of
two primes such that (p− 1)(q− 1) > 512/3, then XD

0 (N)/WD must have a positive
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genus for any N ≥ 2. A similar bounds exists for the case D has 4 prime factors. This
leaves finitely many cases to check.

Note that the genus of a Shimura X is given by

g(X) = 1 +
Vol(X)

2
− 1

2

r∑
i=1

(
1− 1

ei

)
,

where the sum runs through all elliptic points with ei being their respective orders. For
X = XD

0 (N)/WD, by Lemma 3.4.1, we have

g(X) = 1 +
Vol(X)

2
− 1

4

∑
m|D,m6=1,3

1

2r−1
(#CM(−4m) + #CM(−m))

−


1

4 · 2r
#CM(−4), if 2 - D,

3

8 · 2r−1
#CM(−4), if 2|D

−


1

3 · 2r
#CM(−3), if 3 - D,(
1

4 · 2r−1
#CM(−12) +

5

12 · 2r−1
#CM(−3)

)
, if 3|D,

where r is the number of prime divisors of D. (Of course, if d is not a discriminant,
then we simply let CM(d) be the empty set.)

Using the Selberg-Zograf bound, the genus formula in the paragraph above and
Lemma 4.2.1, we check case by case that the pairs of integers given in the lemma are
the only cases where XD

0 (N)/WD, N > 1, has genus zero.

We now tabulate all Shimura curves XD
0 (M)/WD of genus 0 for integers D that

appear in the lemma. We will also give a description of their elliptic points. These
Shimura curves are the curves that we wish to determine their Schwarzian differential
equations. Here vj denotes the number of elliptic points of order j on XD

0 (M)/WD.
Here we also let CM(−m) denote the set of points on XD

0 (N)/WD that are the image
of CM points of discriminants −m under the covering XD

0 (N)→ XD
0 (N)/WD. The

number n in CM(−m)×n means the number of elements in CM(−m) is n. If n = 1,
we omit this annotation.
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D,N v2, v3, v4, v6 elliptic points
6, 1 1, 0, 1, 1 CM(−3), CM(−4), CM(−24)
6, 5 2, 0, 2, 0 CM(−4)×2, CM(−24)×2

6, 7 2, 0, 0, 2 CM(−3)×2,CM(−24)×2

6, 13 0, 0, 2, 2 CM(−3)×2,CM(−4)×2

10, 1 3, 1, 0, 0 CM(−3), CM(−8), CM(−20), CM(−40)
10, 3 4, 1, 0, 0 CM(−3), CM(−8)×2, CM(−20)×2

10, 7 4, 2, 0, 0 CM(−3)×2, CM(−20)×2, CM(−40)×2

14, 1 3, 0, 1, 0 CM(−4), CM(−8), CM(−56)×2

14, 3 6, 0, 0, 0 CM(−8)×2, CM(−56)×4

14, 5 4, 0, 2, 0 CM(−4)×2, CM(−56)×4

15, 1 3, 0, 0, 1 CM(−3), CM(−12), CM(−15), CM(−60)
15, 2 6, 0, 0, 0 CM(−12)×2, CM(−15)×2,CM(−60)×2

15, 4 8, 0, 0, 0 CM(−12)×2, CM(−15)×2, CM(−60)×4

21, 1 5, 0, 0, 0 CM(−4), CM(−7), CM(−28),CM(−84)×2

21, 2 7, 0, 0, 0 CM(−4), CM(−7)×2, CM(−28)×2, CM(−84)×2

26, 1 5, 0, 0, 0 CM(−8), CM(−52), CM(−104)×3

26, 3 8, 0, 0, 0 CM(−8)×2,CM(−104)×6

35, 1 6, 0, 0, 0 CM(−7), CM(−28), CM(−35), CM(−140)×3

35, 2 10, 0, 0, 0 CM(−7)×2, CM(−28)×2, CM(−140)×6

39, 1 6, 0, 0, 0 CM(−52)×2, CM(−39)×2, CM(−156)×2

39, 2 10, 0, 0, 0 CM(−52)×2, CM(−39)×4, CM(−156)×4

4.3 Coverings of Shimura Curves
The goal of this section is to obtain explicit coverings ofXD

0 (N)/WD → XD
0 (1)/WD

for pairs of D and N given in Lemma 4.2.2. That is, we wish to find a Hauptmodul
t1 of XD

0 (1)/WD, a Hauptmodul tN of XD
0 (N)/WD, and the relation between them.

Of course, there are infinitely many choice for t1 and tN . For XD
0 (N)/WD, we will

choose tN such that the Atkin-Lehner involution wN acts by wN : tN 7→ −tN . This
will make the determination of Schwarzian differential equation simpler.

Case D = 6 In the case D = 6, all the coverings X6
0 (N)/W6 → X6

0 (1)/W6,
N = 5, 7, 13, are already given in [6]. Here we just modify the tN in [6] such that the
new tN satisfies wN : tN 7→ −tN .

Lemma 4.3.1 ([6]). 1. There is a Hauptmodul t1 for X6
0 (1)/W6 that takes values

0, 1, and∞ at the CM-points of discriminants −24, −4, and −3, respectively.

2. There is a Hauptmodul t = t5 forX6
0 (5)/W6 that takes values±i/8 and±

√
−6/3

at the CM-points of discriminants −4 and −24, respectively. The relation be-
tween t1 and t is

t1 =
(2 + 3t2)(34− 117t+ 1824t2)2

125(1 + 6t)6
= 1 +

27(1 + 64t2)(3− 7t)4

125(1 + 6t)6
.
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The Atkin-Lehner involution w5 acts by w5 : t 7→ −t.

3. There is a Hauptmodul t = t7 for X6
0 (7)/W6 that takes values ±

√
−3/9 and

±
√
−6/8 at the CM-points of discriminants −3 and −24, respectively. The

relation between t1 and t is

t1 = − (3 + 32t2)(78− 396t+ 1963t2 − 12312t3)2

4(1 + 27t2)(3 + 10t)6

The Atkin-Lehner involution w7 acts by w7 : t 7→ −t.

4. There is a Hauptmodul t = t13 forX6
0 (13)/W6 that takes values±4

√
−3/9 and

±3i/4 at the CM-points of discriminants −3 and −4, respectively. The relation
between t1 and t is

t1 = 1− 27(9 + 16t2)(144− 98t+ 246t2 − 161t3)4

16(16 + 27t2)(30 + 3t+ 55t2)6
.

The Atkin-Lehner involution w13 acts by w13 : t 7→ −t.

Proof. In [6], Elkies already showed that explicit coverings ofX6
0 (N)/W6 → X6

0 (1)/W6,
N = 5, 7, 13, are given by

t1 = 1 + 135s4 + 324s5 + 540s6, w5 : s 7−→ 42− 55s

55 + 300s
,

t1 = − (4s2 + 4s+ 25)(2s3 − 3s2 + 12s− 2)2

108(7s2 − 8s+ 37)
, w7 : s 7−→ 116− 9s

9 + 20s
,

and

t1 =
(s7 − 50s6 + 63s5 − 5040s4 + 783s3 − 168426s2 − 6831s− 1864404)2

4(7s2 + 2s+ 247)(s2 + 39)6

with
w13 : s 7−→ 5s+ 72

2s− 5
,

respectively. Choosing t such that

s =
7t− 3

30t+ 5
, s =

−29t+ 6

10t+ 3
, s =

−8t+ 9

2t+ 1
,

respectively, we get the lemma.
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Case D = 10 The covering X10
0 (3)/W10 → X10

0 (1)/W10 has also been given in
[6]. Here we mainly work on the case N = 7.

Lemma 4.3.2. 1. There is a Hauptmodul t1 for X10
0 (1)/W10 that takes values 0,

∞, 2, and 27 at the CM-points of discriminants −3, −8, −20, and −40, respec-
tively.

2. There is a Hauptmodul t = t3 for X10
0 (3)/W10 that takes values 0, ±1/4

√
−2,

±1/
√
−5 at the CM-points of discriminants−3,−8, and−20, respectively. The

relation between t1 and t is

t1 =
108t(1− 2t)3

(1 + 32t2)(1 + 7t)2
= 2− 2(1 + 5t2)(1− 20t)2

(1 + 32t2)(1 + 7t)2
.

The Atkin-Lehner involution w3 acts by w3 : t 7→ −t.

3. There is a Hauptmodul t = t7 for X10
0 (7)/W10 that takes values ±1/3

√
−3,

±1/2
√
−5, and ±

√
−10/16 at the CM-points of discriminants −3, −20, and

−40, respectively. The relation between t1 and t is

t1 =
8(1 + 27t2)(2− 3t+ 44t2)3

7(1 + 4t+ 55t2 + 102t3 + 736t4)2
.

The Atkin-Lehner involution w7 acts by w7 : t 7→ −t.

Proof. In [6], it is shown that an explicit covering X10
0 (3)/W10 → X10

0 (1)/W10 is
given by

t1 =
216(s− 1)3

(s+ 1)2(9s2 − 10s+ 17)

with w3 : s 7→ 10/9− s. Let t be the Hauptmodul of X10
0 (1)/W10 with

s =
2

9t
+

5

9
.

Then the relation of t1 and t and the action of w3 are given as in the lemma.
We next consider the case N = 7. According to Theorem 3.4 of [9], an equation

for X10
0 (7) is given by

y2 = −27x4 − 40x3 + 6x2 + 40x− 27. (4.1)

The actions of the Atkin-Lehner involutions on this model of X10
0 (7) are given by

w70 : (x, y) 7−→ (x,−y), w5 : (x, y) 7−→
(
− 1

x
,− y

x2

)
,

and

w10 : (x, y) 7−→
(

2x+ 1

x− 2
,

5y

(x− 2)2

)
.

Since CM(−20) are fixed points of w5, their coordinates on (4.1) are (i,±2
√

5(1 +
2i)) and (−i,±2

√
5(1 − 2i)). Likewise, we find that CM(−40) have coordinates
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(2 +
√

5,±8
√
−10(2 +

√
5)) and (2 −

√
5,±8

√
−10(2 −

√
5)). Furthermore, from

the method of [9], we know that the two points at infinity are CM-points of discrimi-
nant −3. Thus, the coordinates of CM(−3) are∞, (0,±3

√
−3), (2,±15

√
−3), and

(−1/2,±15
√
−3/4).

From (4.1), we can obtain an equationw2+27z2+40z+20 = 0 forX10
0 (7)/〈w10〉,

where the covering X10
0 (7)→ X10

0 (7)/〈w10〉 is given by

(x, y) 7−→ (w, z) =

(
y

x− 2
,
x2 + 1

x− 2

)
.

On this equation for X(10)
0 (7)/〈w10〉, the actions of the Atkin-Lehner involutions are

given by

w70 = w7 : (w, z) 7−→ (−w, z), w2 = w5 : (w, z) 7−→
(

w

2z + 1
,
−z

2z + 1

)
.

The coordinates of CM(−3) are the two points at ∞ and (±3
√
−3/2,−1/2). Also,

the coordinates of CM(−20) are (±2
√
−5, 0), and the coordinates of CM(−40) are

(±8
√
−2(2 +

√
5), 4 + 2

√
5) and (±8

√
−2(2−

√
5), 4− 2

√
5).

Now set t = (z+1)/w. We can check that t is invariant underw2 and that (w, z) 7→
t = (z + 1)/w is 2-to-1. Thus, t is a Hauptmodul of X10

0 (7)/W10. The coordinates
of CM-points of discriminants −3, −20, and −40 are ±1/3

√
−3, ±1/2

√
−5, and

±
√
−10/16, respectively. It follows that the relation between t1 and t is

t1 =
A(1 + 27t2)(1 + a1t+ a2t

2)3

(1 + b1t+ b2t2 + b3t3 + b4t4)2

with

A(1 + 27t2)(1 + a1t+ a2t
2)3 − 2(1 + b1t+ b2t

2 + b3t
3 + b4t

4)2

= B(1 + 20t2)(1 + c1t+ c2t
2 + c3t

3)2,

A(1 + 27t2)(1 + a1t+ a2t
2)3 − 27(1 + b1t+ b2t

2 + b3t
3 + b4t

4)2

= C(1 + 128t2/5)(1 + d1t+ d2t
2 + d3t

3)2

for some constants A, B, C, aj , bj , cj , and dj . Comparing the coefficients, we get

t1 =
8(1 + 27t2)(2− 3t+ 44t2)3

7(1 + 4t+ 55t2 + 102t3 + 736t4)2

(or the same expression with t replaced by −t). This proves the lemma.

CaseD = 14 The caseD = 14 is also worked out in [6]. Here we only need to make
a change of variable so that wN acts by wN : tN → −tN .

Lemma 4.3.3 ([6]). 1. There is a Hauptmodul t1 forX14
0 (1)/W14 that takes values

∞, 0, and (−13± 7
√
−7)/32 at CM-points of discriminants −4, −8, and −56,

respectively.
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2. There is a Hauptmodul t = t3 for X14
0 (3)/W14 that takes values ±1/

√
−2 and

(±9
√
−7 ± 4

√
−14)/49 at CM-points of discriminants −8 and −56, respec-

tively. The relation between t1 and t is

t1 =
4(1 + 2t2)(1− 5t)2

9(1 + t)4
.

The Atkin-Lehner involution w3 acts by w3 : t 7→ −t.

3. There is a Hauptmodul t = t5 for X14
0 (5)/W14 that takes values ±i/4 and

(±5
√
−7±4

√
−14)/7 at CM-points of discriminants−4 and−56, respectively.

The relation between t1 and t is

t1 = −5(1− t+ 17t2 − 13t3)2

(1 + 16t2)(1 + 3t)4
.

The Atkin-Lehner involution w5 acts by w5 : t 7→ −t.

Proof. In [6], it is shown that explicit coverings X14
0 (N)/W14 → X14

0 (1)/W14 can
be given by

t1 =
1

27
(s4 + 2s3 + 9s2), w3 : s 7−→ 5− 2s

2 + s

and

t1 = − (256s3 + 224s2 + 232s+ 217)2

50000(s2 + 1)
, w5 : s 7−→ 24− 7s

7 + 24s
,

respectively. Choosing t with

s =
1− 5t

1 + t
, s =

3− 16t

4 + 12t
,

respectively, we get the lemma.

Case D = 15 An explicit covering X15
0 (2)/W15 → X15

0 (1)/W15 is given in [6].
Here we only need to make a change of variable so that wN acts by wN : tN → −tN .

Lemma 4.3.4. 1. There is a Hauptmodul for X15
0 (1)/W15 that takes values∞, 0,

81, and 1 at CM-points of discriminants −3, −12, −15, and −60, respectively.

2. There is a Hauptmodul t2 for X15
0 (2)/W15 that takes values ±1, ±

√
−15/3,

and ±1/5 at CM-points of discriminant −12, −15, and −60, respectively. The
relation between t1 and t2 is

t1 =
27(1− t2)(1− 3t2)2

2(1 + t2)3
= 1+

(1− 5t2)(5− 7t2)2

2(1 + t2)3
= 81−27(1 + 5t2)(5 + 3t22)

2(1 + t2)3
.

The Atkin-Lehner involution w2 acts by w2 : t2 7→ −t2.
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Proof. In [6], an explicit covering X15
0 (2)/W15 → X15

0 (1)/W15 is given by

t1 =
1

4
s(s− 3)2, w2 : s 7−→ 36

s
.

Choosing a Hauptmodul t for X15
0 (2)/W15 with

s =
6− 6t

1 + t
,

we establish the claim about X15
0 (2)/W15.

Case D = 21 We will need an equation for some Atkin-Lehner quotient of X21
0 (2)

in order to determine the coordinates of elliptic points on X21
0 (2).

Lemma 4.3.5. An equation for X21
0 (2)/〈w21〉 is y2 = (x + 12)(x2 − 7x + 28).

Moreover, the action of the Atkin-Lehner involution w3 = w7 on this curve is given by
(x, y) 7→ (x,−y). Also, the two rational points ∞ and (−12, 0) are the CM-points
of discriminants −28, and the other two 2-torsion points ((7 ± 3

√
−7)/2, 0) are the

CM-points of discriminant −7.

Proof. We follow the methods of [9]. The Shimura curve X21
0 (2)/〈w21〉 has genus

1. By [9, Lemma 5.10], the two CM-points of discriminant −28 are Q-rational points
on this curve. Thus, X21

0 (2)/〈w21〉 is an elliptic curve over Q. Now in the space
S2(Γ0(42))21-new the unique Hecke eigenform with +-eigenvalue for w21 is coming
from the newform space of S2(Γ0(42)). Therefore, the elliptic curve X21

0 (2)/〈w21〉
has conductor 42. Using the Cerednik-Drinfeld theory of p-adic uniformization of
Shimura curves, we find that the types of singular fibers at primes of bad reduction of
X21

0 (2)/〈w21〉 agree with those of the elliptic curve 42A1, in Cremona’s notation. The
global minimal model of the elliptic curve 42A1 is y2 + xy + y = x3 + x2 − 4x+ 5.
With a simple change of variables, we write it as y2 = (x+ 12)(x2 − 7x+ 28).

Now the covering X21
0 (2)/〈w21〉 → X21

0 (2)/W21 is ramified at the two CM-
points of discriminant −7 and the two CM-points of discriminant −28. If we let one
of the CM-points of discriminant −28 be the point at infinity, then an equation for
X21

0 (2)/〈w21〉 is of the form y2 = f(x) for some polynomial f(x) = x3 + · · · of de-
gree 3 in Q[x] with the Atkin-Lehner involution w3 acting by (x, y) 7→ (x,−y). Up to
a transformation of the form x 7→ ax+b, this polynomial f(x) must be the polynomial
(x+ 12)(x2 − 7x+ 28). This proves the lemma.

Remark 4.3.6. According to Cremona’s table of elliptic curves [3], the elliptic curve
42A1 has 8 rational points. Thus, X21

0 (2)/〈w21〉 also has 8 Q-rational points. Two of
them are the CM-points of discriminant −28 mentioned above. The rest of Q-rational
points consist of two CM-points of discriminant−4 and four CM-points of discriminant
−16.

Lemma 4.3.7. There is a Hauptmodul t1 for X21
0 (1)/W21 that takes values 49, 0,∞,

and (47 ± 8
√
−3)/7 at CM-points of discriminants −4, −7, −28, and −84, respec-

tively.
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Also, there is a Hauptmodul t = t2 forX21
0 (2)/W21 that takes values 0,±1/3

√
−7,

±1, and ±1/3
√
−3 at CM-points of discriminants −4, −7, −28, and −84, respec-

tively. The relation between t1 and t is

t1 =
49(1 + t)(1 + 63t2)

(1− t)(1− 15t)2
= 49 +

1568t(1− 3t)2

(1− t)(1− 15t)2
.

The Atkin-Lehner involution w2 acts by w2 : t 7→ −t.

Proof. According to [9], an equation for X21
0 (1) is given by y2 = −7x4 + 94x2− 343

with the actions of the Atkin-Lehner involutions given by

w3 : (x, y) 7−→ (−x,−y), w7 : (x, y) 7−→ (−x, y), w21 : (x, y) 7−→ (x,−y).

The Atkin-Lehner involution w7 fixes the two points at∞ and (0,±7
√
−7). Since the

equation has a symmetry (x, y) 7−→ (7/x, 7y/x2), we might as well assume that the
two points (0,±7

√
−7) are the CM-points of discriminant −7 and the two points at

infinity are the CM-points of discriminant −28. Moreover, the four points with y = 0
correspond to the four CM-points of discriminant −84.

Sincew3 acts by (x, y)→ (−x,−y), an equation forX21
0 (1)/〈w3〉 is y2 = −7x3+

94x2 − 343x, where the covering X21
0 (1) → X21

0 (1)/〈w3〉 is given by (x, y) 7→
(x2, xy). Then t1 = x generates the function field of X21

0 /W21. The values of t1
at the CM-points of discriminants −7, −28, and −84 are 0,∞, and (47 ± 8

√
−3)/7,

respectively. The value of t1 at the CM-point of discriminant −4 will be determined
later.

By Lemma 4.3.5, an equation X21
0 (2)/〈w21〉 is y2 = (x + 12)(x2 − 7x + 28)

with the Atkin-Lehner involution w3 = w7 acting by (x, y) → (x,−y). Thus, s = x
generates the function field of X21

0 (2)/W21. According to the lemma, the values of
s at the CM-points of discriminant −7 are (7 ± 3

√
−7)/2 and those at CM-points of

discriminant −28 are −12 and∞. The Atkin-Lehner involution w2 switches the two
CM-points of discriminant −28. It also switches the two CM-points of discriminant
−7. (Note that in general, w2 can send a CM-point of discriminant −d on XD

0 (N)/G
to a CM-point of discriminant −4d and vice versa. Here because w2 is defined over Q,
it must send aQ-rational point to anotherQ-rational point.) These informations suffice
to determine w2 in terms of s. We find

w2 : s 7−→ −12s+ 112

s+ 12
.

Choosing a new Hauptmodul

t =
4− s
28 + s

,

we have w2 : t 7→ −t. The new coordinates of CM-points of discriminants −7 and
−28 are ±1/3

√
−7 and ±1, respectively. Also, since w2 fixes the unique CM-point of

discriminant −4, we find that the CM-point of discriminant −4 has coordinate 0. We
now determine the relation between t1 and t.

Replacing t by −t if necessary, we may assume that the CM-point of discriminant
−28 of X21

0 (2)/W21 that lies above the CM-point of discriminant −7 of X21
0 (1)/W21
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is −1. Then

t1 =
A(1 + t)(1 + 63t2)

(1− t)(1− at)2

for some constants A and a. Since X21
0 (2)/W21 → X21

0 (1)/W21 is also ramified at
the CM-points of discriminant −84, the discriminant of the polynomial

A(1 + t)(1 + 63t2)−B(1− t)(1− at)2

in tmust be divisible by the polynomial 7B2−94B+343. This gives us two conditions
onA and a. Solving them forA and a, we find that the only legitimate values forA and
a are A = 49 and a = 15. Because t has value 0 at the CM-point of discriminant −4
on X21

0 (2)/W21, the CM-point of −4 on X21
0 (1)/W21 has coordinate 49. This proves

the lemma.

Case D = 26 We first recall a lemma of González and Rotger [8].

Lemma 4.3.8 ([8, Proposition 2.1]). Let C be a hyperelliptic curve of genus 2 defined
over a field k of characteristic not equal to 2 or 3 and let w be its hyperelliptic in-
volution. Assume that the group of automorphisms of C over k contains a subgroup
〈u1, u2 = u1 ·w〉 isomorphic to (Z/2Z)2 and denote byCi the elliptic quotientC/〈ui〉.
If the two elliptic curves

E1 : y2 = x3 +A1x+B1, E2 : y2 = x3 +A2x+B2

are isomorphic to C1 and C2 over k, respectively. Then C admits a hyperelliptic equa-
tion of the form y2 = ax6 + bx4 + cx2 + d, where a ∈ k∗, b ∈ k are solutions
of

27a3B2 = 2A3
1 + 27B2

1 + 9A1B1b+ 2A2
1b

2 −B1b
3,

9a2A2 = −3A2
1 + 9B1b+A1b

2,

c = (3A1 + b2)/(3a), d = (27B1 + 9A1b+ b3)/(27a2), and the involution u1 on C is
given by (x, y) 7→ (−x, y).

Lemma 4.3.9. The Shimura curves X1 : X26
0 (3)/〈w2, w3〉, X2 : X26

0 (3)/〈w2, w39〉,
and X3 : X26

0 (3)/〈w6, w13〉 are elliptic curves over Q with defining equations

X1 : y2 = x3 − 3403x− 83834,

X2 : y2 = x3 − 43x+ 166,

X3 : y2 = x3 + 621x+ 9774.

Moreover, on the equation for X1, the point at ∞ is the CM-point of discriminant
−312, and the involution (x, y) 7→ (x,−y) is the Atkin-Lehner involution w13 =
w26 = w39 = w78. On the equation for X2, the point at ∞ is the CM-point of
discriminant −24 and the involution (x, y) 7→ (x,−y) is the Atkin-Lehner involution
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w3 = w6 = w13 = w26. On the equation for X3, the point at∞ is the CM-point of
discriminant −8 and the involution (x, y) 7→ (x,−y) is the Atkin-Lehner involution
w2 = w3 = w26 = w39. In all three cases, the 2-torsion points are the CM-points of
discriminant −104 on their respective curves.

Proof. The fact that the three curves in the lemma have genus one can be verified
either by using the genus formula, together with Proposition 3.3.5, Lemmas 3.4.1, and
4.2.1, or by counting the dimensions of subspaces of S2(Γ0(78))26-new with appropriate
eigenvalues for the Atkin-Lehner involutions. We omit the details.

On X1, there is a unique CM-point of discriminant −312, which must be a Q-
rational point. Thus, X1 is an elliptic curve over Q. Likewise, X2 and X3 have unique
CM-points of discriminants−24 and−8, respectively. They are also elliptic curve over
Q.

Observe that all cusp forms in S2(Γ0(78))26-new having −1 eigenvalue for w2 are
from the cusp form of level 26 corresponding to the isogeny class 26B of elliptic curves,
in Cremona’s notation. Thus, X1 and X2 are isomorphic to either 26B1 or 26B2. Sim-
ilarly, we find that the one-dimensional subspace of S2(Γ0(78))26-new that has eigen-
value +1 for both w6 and w13 is coming from the cusp form associated to 26A. Using
the Cerednik-Drinfeld theory to compute the types of singular fibers at primes 2 and
13, we see that X1 is isomorphic to the elliptic curve 26B2, X2 is isomorphic to 26B1,
and X3 is isomorphic to 26A3. If we put the CM-point of discriminant −312 on X1,
that of discriminant −24 on X2, and that of discriminant −8 on X3 at∞, respectively,
and require that the Atkin-Lehner involutions w13, w3, and w2 act by (x, y)→ (x,−y)
on the three curves, respectively, we get the equations for the three curves.

Lemma 4.3.10. 1. An equation for the curve X26
0 (3)/〈w2〉 is

y2 = −2197

3
x6 − 362x4 − 55x2 − 8

3

with the actions of the Atkin-Lehner involutions given by

w3 : (x, y) 7−→ (−x, y), w13 : (x, y) 7−→ (x,−y).

On this model, the two CM-points of discriminant −312 are the two points at
infinity, and the two CM-points of discriminant −24 are (0,±2

√
−6/3).

2. An equation for the curve X26
0 (3)/〈w6〉 is

y2 =
2197

72
x6 − 699

8
x4 − 225

8
x2 − 81

8

with the actions of the Atkin-Lehner involutions given by

w2 : (x, y) 7−→ (−x, y), w26 : (x, y) 7−→ (x,−y).

On this model, the two CM-points of discriminant −312 are the two points at
infinity, and the two CM-points of discriminant −8 are (0,±9

√
−2/4).
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3. An equation for X26
0 (3)/〈w39〉 is

y2 =
8

9
x6 + 9x4 − 18x2 + 81

with the actions of the Atkin-Lehner involutions given by

w2 : (x, y) 7−→ (−x, y), w6 : (x, y) 7−→ (x,−y).

On this model, the two CM-points of discriminant −24 are the two points at
infinity, and the two CM-points of discriminant −8 are (0,±9).

Moreover, on each of these three curves, there are six CM-points of discriminant
−104. Their coordinates are (αj , 0), j = 1, . . . , 6, where αj are the zeros of their
respective polynomials of degree 6.

Proof. We apply Proposition 2.1 of [8], cited as Lemma 4.3.8 above) withC = X26
0 (3)/〈w2〉,

w13, u1 = w3, u2 = w39, A1 = −3403, B1 = −83834, A2 = −43, and B2 = 166.
We find an equation for X26

0 (3)/〈w2〉 is

y2 = −2197

3
x6 − 362x4 − 55x2 − 8

3

with the Atkin-Lehner involutions given by

w3 : (x, y) 7−→ (−x, y), w13 : (x, y) 7−→ (x,−y).

Since CM-points of discriminant −24 are fixed points of the involution w6 = w3 :
(x, y) → (−x, y), we see that their coordinates are (0,±2

√
−6/3). Likewise, CM-

points of discriminant−312 are the fixed points ofw78 = w39 : (x, y) 7→ (−x,−y), so
they are the two points at infinity. Also, CM-points of discriminant −104 are the fixed
point of w26 = w13 : (x, y) 7→ (x,−y). Their coordinates are (αj , 0), j = 1, . . . , 6,
where αj are the zeros of −2197x6/3− 362x4 − 55x2 − 8/3.

The equations of the other two curves are obtained in the same way.

Lemma 4.3.11. Let y2 = −2197x6/3 − 362x4 − 55x2 − 8/3 be the equation for
X26

0 (3)/〈w2〉 given in the previous lemma. Then the coordinates of the four CM-points
of discriminant −8 are (±1/2

√
−2,±3/16

√
−2).

Proof. By Lemma 4.3.10, an equation forX26
0 (3)/〈w2〉 is y2 = −2197x6/3−362x4−

55x2 − 8/3 with w3 : (x, y) 7→ (−x, y) and w13 : (x, y) 7→ (x,−y). Thus, if
we let t1 = x2, then t1 is a Hauptmodul for X26

0 (3)/W26,3. Likewise, if we let t2
be the function x2 in the equation y2 = 2197x6/72 − 699x4/8 − 225x2/8 − 81/8
for X26

0 (3)/〈w6〉, then t2 is also a Hauptmodul for X26
0 (3)/W26,3. It follows that

t1 = (at2 + b)/(ct2 + d) for some a, b, c, d.
Now observe that the values of t1 and t2 at the CM-point of discriminant −312

are both ∞. Thus, t1 = at2 + b for some a and b. Moreover, the values of t1 and
t2 at the CM-points of discriminant −104 are the zeros of f1(z) = −2197z3/3 −
362z2− 55z− 8/3 and the zeros of f2(z) = 2197z3/72− 699z2/8− 225z/8− 81/8,
respectively. Therefore, the constants a and b must satisfy f1(az + b) = Af2(z) for
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some constant A. Comparing the coefficients, we find A = 1/576, a = −1/24 and
b = −1/8. Since the value of t2 at the CM-point of discriminant −8 is 0, the value
of t1 at the same point is −1/8, which implies that the four CM-points of discriminant
−8 on X26

0 (3)/〈w2〉 has coordinates (±1/(2
√
−2),±3/(16

√
−2)) on the equation

y2 = −2197x6/3− 362x4 − 55x2 − 8/3 for X26
0 (3)/〈w2〉.

Lemma 4.3.12. There is a Hauptmodul t1 for X26
0 (1)/W26 that takes values ∞, 0,

and the three zeros of −2x3 + 19x2 − 24x − 169 at the CM-point of discriminant
−8, the CM-point of discriminant −52, and three CM-points of discriminant −104,
respectively. Also, there is a Hauptmodul t = t3 for X26

0 (3)/W26 that takes values
±1/(2

√
−2) and the six zeros of −2197x6/3 − 362x4 − 55x2 − 8/3 at the two CM-

points of discriminant −8 and the six CM-points of discriminant −104, respectively.
Moreover, the relation between t1 and t and the action of w3 on t are given by

t1 = − 3(1 + t+ 10t2)2

(1 + 8t2)(1− t)2
, w3 : t 7−→ −t.

Proof. According to Theorem 3.1 of [8], an equation for X26
0 (1) is y2 = −2x6 +

19x4 − 24x2 − 169. In fact, the method used in [8] to deduce this equation also shows
that the Atkin-Lehner involutions act by w13 : (x, y) 7→ (−x, y) and w26 : (x, y) 7→
(x,−y). Then the two points (0,±13

√
−1) are the CM-points of discriminant −52,

the two points at infinity are the fixed points of w2 : (x, y) 7−→ (−x,−y), i.e., the
two CM-points of discriminant −8, and the six points (αj , 0), j = 1, . . . , 6, are the six
CM-points of discriminant−104, where αj are the zeros of−2x6+19x4−24x2−169.
Thus, t1 = x2 is a Hauptmodul ofX26

0 (1)/W26 with values∞, 0, the zeros of−2x3 +
19x2 − 24x − 169 at the CM-point of discriminant −8, the CM-point of discriminant
−52, and the three CM-points of discriminant −104 on X26

0 (1)/W26.
On the other hand, Lemmas 4.3.10 and 4.3.11 show that if we let t be the x in

the equation y2 = −2197x6/3 − 362x4 − 55x2 − 8/3 for X26
0 (3)/〈w2〉, then t is

a Hauptmodul for X26
0 (3)/W26 that takes values ±1/(2

√
−2) at the two CM-points

of discriminant −8 and βj , j = 1, . . . , 6, at the six CM-points of discriminant −104,
where βj are the six zeros of −2197x6/3 − 362x4 − 55x2 − 8/3. It is clear that w3

acts on t by w3 : t 7→ −t.
The relation between t1 and t is simple to determine. From the table at the end

of Section 4.2, we know that the covering X26
0 (3)/W26 → X26

0 (1)/W26 is ramified
precisely at the CM-points of discriminants −8, −52, and −104 of X26

0 (1)/W26 with
ramification types given by

CM(−8) CM(−104)×3 CM(−52)

1 1 2 1 1 2 2 2

It follows that

t1 =
A(1 + a1t+ a2t

2)2

(1 + 8t2)(1 + bt)2
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for some constants A, a1, a2, and b such that

− 2f3 + 19f2g − 24fg2 − 169g3

= B(−2197t6/3− 362t4 − 55t2 − 8/3)(1 + c1t+ c2t
2 + c3t

3)2

for some constants B, c1, c2, and c3, where f = A(1 + 8t2)(1 + at)2 and g =
(1 + b1t+ b2t

2)2. Comparing the coefficients, we find

t1 = − 3(1 + t+ 10t2)2

(1 + 8t2)(1− t)2
or t1 = − 3(1− t+ 10t2)2

(1 + 8t2)(1 + t)2
.

Both are valid, since the action of w3 sends one to the other. This gives us the lemma.

Case D = 35

Lemma 4.3.13. An equation for X35
0 (1)/〈w5〉 is

y2 = −(x+ 12)(7x+ 4)(x3 + 4x2 + 144x+ 80)

with the action w7 = w35 given by w7 : (x, y) 7→ (x,−y). The coordinates of CM-
points of discriminants −7, −28, −35, and −140 are (−12, 0), (−4/7, 0), ∞, and
(αj , 0), respectively, where αj are the three roots of x3 + 4x2 + 144x+ 80.

An equation for X35
0 (2)/〈w7〉 is

−2y2 = (x3 + 3x2 + 11x+ 25)(x3 − 3x2 + 11x− 25)

with the actions ofw2 = w14 andw5 = w35 given byw2 : (x, y) 7→ (−x,−y) andw5 :
(x, y) 7→ (x,−y). The coordinates of CM-points of discriminants −7, −8, −140, and
−280 are (±

√
−7,±8), two points at ∞, (βj , 0), j = 1, . . . , 6, and (0,±25/

√
−2),

respectively, where βj are the six roots of (x3 +3x2 +11x+25)(x3−3x2 +11x−25).

Proof. In Section 10.4 of [14], Molina showed that an equation for X35
0 (1)/〈w5〉 is

y2 = −x(9x+ 4)(4x+ 1)(172x3 + 176x2 + 60x+ 7),

where w7 : (x, y) 7→ (x,−y) and the points (0, 0), (−4/9, 0), (−1/4, 0), and (γj , 0),
j = 1, . . . , 3, are the CM-points of discriminant −7, −28, −35, and −140, respec-
tively. Here γj are the zeros of 172x3 + 176x2 + 60x+ 7. Setting

(x, y) =

(
− x′ + 12

4x′ + 28
,

5y′

16(x′ + 7)3

)
,

we get the equation in our lemma. The reason for this change of variable is the follow-
ing. The Shimura curveX35

0 (1)/〈w7〉 has genus 1 and the unique CM-point of discrim-
inant−35 is aQ-rational point. Thus, it is an elliptic curve overQ. Computing the sin-
gular fibers at primes of bad reduction, we find that it is isomorphic to the elliptic curve
35A1, which, after a change of variables, has an equation y2 = x3 + 4x2 + 144x+ 80.
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If we choose a Weierstrass equation for X35
0 (1)/〈w7〉 by requiring that the CM-point

of discriminant −35 is the point at infinity and that w5 acts by (x, y) → (x,−y), then
up to a transformation of the form x → ax + b, this Weierstrass equation must be
y2 = x3 + 4x2 + 144x + 80 and the three 2-torsion points (αj , 0) must be the three
CM-points of discriminant −140. In view of this equation for X35

0 (1)/〈w7〉, we make
the above change of variables for X35

0 (1)/〈w5〉.
We now consider the Shimura curve X35

0 (2)/〈w7〉. It is bielliptic with elliptic
quotients C1 : X35

0 (2)/〈w7, w10〉 and C2 : X35
0 (2)/〈w2, w7〉. Here C1 is an ellip-

tic curve over Q because it has a unique CM -point of discriminant −8 and another
two Q-rational point coming from CM(−7). Likewise, C2 is an elliptic curve over Q
becauseC2 has a unique CM-point of discriminant−280. By considering the eigenval-
ues of the Atkin-Lehner involutions associated to the eigenforms in S2(Γ0(70))35-new,
we find that both C1 and C2 fall in the isogeny class 35A, in Cremona’s notation.
Furthermore, by considering its singular fibers at primes of bad reduction using the
Cerednik-Drinfeld theory, we find that C1 is isomorphic to the elliptic curve 35A3
and C2 is isomorphic to 35A2. We take y2 = x3 − 1728x + 30672 and y2 =
x3 − 170208x − 28273968 to be (non-minimal) equations for 35A3 and 35A2, re-
spectively.

Now if we choose a Weierstrass equation for C1 by requiring that the CM-point of
discriminant −8 is the infinity point and that the Atkin-Lehner involution w2 acts by
(x, y) 7→ (x,−y), then by a suitable transformation x 7→ ax+ b, the equation must be
y2 = x3 − 1728x + 30672. Similarly, if we put the CM-point of discriminant −280
at infinity and require that w5 acts by (x, y) 7→ (x,−y), then an equation for C2 is
y2 = x3 − 170208x − 28273968. Applying Lemma 4.3.8, we find an equation for
X35

0 (2)/〈w7〉 is

y2 = −9

2
(x6 + 13x4 − 29x2 − 625)

= −9

2
(x3 + 3x2 + 11x+ 25)(x3 − 3x2 + 11x− 25).

Replacing y by 3y, we get the equation

−2y2 = (x3 + 3x2 + 11x+ 25)(x3 − 3x2 + 11x− 25) (4.2)

as claimed in the lemma. According to Lemma 4.3.8, the Atkin-Lehner involutions act
by

w10 : (x, y) 7→ (−x, y), w5 : (x, y) 7→ (x,−y), w2 : (x, y) 7→ (−x,−y).

Since CM-points of discriminant −8, −140, and −280 on X35
0 (2)/〈w7〉 are fixed

points of w2, w5, and w10, respectively, we find that their coordinates are the two
points at infinity, (βj , 0), j = 1, . . . , 6, and (0,±25/

√
−2), respectively, where βj are

the zeros of the polynomial on the right-hand side of (4.2).
To determine the coordinates of the four CM-points of discriminant−7, we observe

that the curve C1 : X35
0 (2)/〈w7, w10〉 has exactly three Q-rational points because

it is isomorphic to the elliptic curve 35A3, which has precisely 3 Q-rational points.
Since we already know that C1 has three Q-rational points consisting of CM(−8)
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and CM(−7), any Q-rational point of C1 that is the CM-point of discriminant −8
will be a CM-point of discriminant −7. Now from the model −2y2 = x6 + 13x4 −
29x2 − 625 for X35

0 (2)/〈w7〉, we see that −2y2 = x3 + 13x2 − 29x − 625 is also
an equation for X35

0 /〈w7, w10〉. On this model, the point at infinity is the CM-point of
discriminant−8. Thus, the 3-torsion points (−7,±8) are the coordinates of CM-points
of discriminant−7 on X35

0 (2)/〈w7, w10〉. This in turn implies that the four CM-points
of discriminant −7 on X35

0 (2)/〈w7〉 have coordinates (±
√
−7,±8). This completes

the proof of the lemma.

Lemma 4.3.14. There is a Hauptmodul t1 for X35
0 (1)/W35 that takes values −12,

−4/7,∞, and the three zeros of x3 + 4x2 + 144x + 80 at the CM-points of discrim-
inants −7, −28, −35, and −140, respectively. Also, there is also a Hauptmodul t for
X35

0 (2)/W35 that takes values±
√
−7,±5, the six zeros of (x3 +3x2 +11x+25)(x3−

3x2 + 11x− 25), and 0 at the CM-points of discriminants −7, −8, −140, and −280,
respectively. Moreover, the relation between t1 and t is

t1 = −2(t− 1)(t2 − 6t+ 25)

t3 + 3t2 + 11t+ 25

and the Atkin-Lehner involution w2 on t is given by w2 : t 7→ −t.

Proof. The existence of Hauptmoduls with the described values at CM-points follows
immediately from Lemma 4.3.13. The fact that w2 acts on t by w2 : t 7→ −t also
follows from the same lemma. We now determine the relation between Hauptmoduls.

The CM-point of discriminant−35 on X35
0 (1)/W35 splits completely in the cover-

ing X35
0 (2)/W35 → X35

0 (1)/W35 and the three points lying above it are CM-points of
discriminant −140 on X35

0 (2)/W35. Replacing t by −t if necessary, we may assume
that the coordinates of these three points are the three zeros of x3 + 3x2 + 11x + 25.
Considering CM-points of discriminant −7, we have

t1 + 12 =
A(t2 + 7)(t− a)

t3 + 3t2 + 11t+ 25
(4.3)

for some constantsA and a. The point t = a is a CM-point of discriminant−28. Thus,
the point t = −a is the other CM-point of discriminant −28 and this point lies above
the CM-point of discriminant −28 on X35

0 (1)/W35. Therefore, we have

t1 +
4

7
=

B(t+ a)(t− b)2

t3 + 3t2 + 11t+ 25
(4.4)

for some constants B and b. Comparing (4.3) and (4.4), we find A = 10, B = −10/7,
a = −5, and b = 3. It follows that

t1 = −2(t− 1)(t2 − 6t+ 25)

t3 + 3t2 + 11t+ 25
.

To check the correctness, we observe that the point t with t3 − 3t2 + 11t − 25 are
lying above CM-points of discriminant −140 on X35

0 (1)/W35. Thus, if we write t31 +
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4t21 + 144t1 + 80 as a rational function of t, then t3 − 3t2 + 11t− 25 should divide its
numerator. Indeed, we find

t31 + 4t21 + 144t1 + 80 = −200(t3 − t2 + 11t− 25)(t3 − t2 − 5t− 35)2

(t3 + 3t2 + 11t+ 25)3

as expected. This proves the lemma.

Case D = 39

Lemma 4.3.15. An equation for X39
0 (1)/〈w13〉 is

y2 = −(7x2 + 23x+ 19)(x2 + x+ 1)

with w3 = w39 : (x, y) 7→ (x,−y). Moreover, the coordinates of CM-points of dis-
criminants −52, −39, and −156 are

(
±2i,±

√
13(3 + 2i)

)
, ((−1±

√
−3)/2, 0), and

((−23±
√
−3)/14, 0), respectively.

Proof. By [14], an equation for X39
0 (1) is

y2 = −(7x4 + 79x3 + 311x2 + 497x+ 277)(x4 + 9x3 + 29x2 + 39x+ 19)

withw39 : (x, y) 7→ (x,−y). Moreover, the coordinates of CM-points of discriminants
−39 and −156 are (αj , 0) and (βj , 0), j = 1, . . . , 4, respectively, where αj are the
zeros of x4 + 9x3 + 29x2 + 39x+ 19 and βj are the zeros of 7x4 + 79x3 + 311x2 +
497x+ 277. Substituting x by x− 2, we obtain an equation

y2 = −(7x4 + 23x3 + 5x2 − 23x+ 7)(x4 + x3 − x2 − x+ 1) (4.5)

with smaller coefficients. This hyperelliptic curve has an obvious automorphism (x, y) 7→
(−1/x, y/x4). We will show that this is the Atkin-Lehner involution w13.

The Atkin-Lehner w13 permutes the CM-points of discriminant −39. It also per-
mutes the CM-points of discriminant−156. Thus, ifw13 maps (x, y) to ((ax+b)/(cx+
d), Cy/(cx+ d)4), then the constants a, b, c, and d must satisfy

(cx+ d)4fj

(
ax+ b

cx+ d

)
= Cjfj(x)

for f1(x) = 7x4 + 23x3 + 5x2 − 23x + 7 and f2(x) = x4 + x3 − x2 − x − 1. We
findw13 maps (x, y) to either (−1/x, y/x4) or (−1/x,−y/x4). The latter has no fixed
points, so we conclude that w13 maps (x, y) to (−1/x, y/x4).

Now it is easy to show that Y = y/x2 and X = x−1/x generate the function field
of X39

0 (1)/〈w13〉. The relation between X and Y is also easy to find. It is

Y 2 = −(7X2 + 23X + 19)(X2 +X + 1), (4.6)

which gives us an equation for X39
0 (1)/〈w13〉. The coordinates of CM-points of dis-

criminants−39 and−156 onX39
0 (1)/〈w13〉 are

(
(−1±

√
−3)/2, 0

)
and

(
(−23±

√
−3)/14, 0

)
,

respectively.
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To determine the coordinates of CM-points of discriminant−52 onX39
0 (1)/〈w13〉,

we first consider the CM-points of the same discriminant on X39
0 (1). Since these

points on X39
0 (1) are the fixed points of w13 and on (4.5), the Atkin-Lehner involution

w13 acts by (x, y) 7→ (−1/x, y/x4), we find that the coordinates of CM-points of
discriminant−52 on (4.5) are

(
±i,±

√
13(3 + 2i)

)
. This implies that the CM-points of

discriminant −52 on X39
0 (1)/〈13〉 are

(
±2i,±

√
13(3 + 2i)

)
. The proof of the lemma

is complete.

Lemma 4.3.16. There is a Hauptmodul t1 on X39
0 (1)/W39 that takes values

±2i,
−1±

√
−3

2
,

−23±
√
−3

14

at the CM-points of discriminants −52, −39, and −156, respectively. Also, there is a
Hauptmodul t on X39

0 (2)/W39 that takes values

±3i,
±2
√
−3±

√
−39

3
, ±1± 2

√
−3

at the CM-points of discriminants −52, −39, and −156, respectively. Moreover, the
relation between t1 and t is

t1 = −2(t3 + t2 + 11t+ 3)

(t2 + 7)(t+ 3)

and the Atkin-Lehner involution w2 on t is w2 : t 7→ −t.

Proof. The existence of t1 with the described properties follows from the previous
lemma. Now let s1 = (t1 − 2i)/(t1 + 2i) so that s1 takes values 0 and ∞ at the
two CM-points of discriminant −52. Then the values of s1 at the two CM-points of
discriminant −156 are the zeros of

(9 + 46i)x2 + 94x+ (9− 46i). (4.7)

The coveringX39
0 (2)/W39 → X39

0 (1)/W39 is ramified at CM(−52)∪CM(−156)
of X39

0 (1)/W39. There is a Hauptmodul s of X39
0 (2)/W39 such that

s1 =
As(1− s)2

(1− as)2

for some complex numbers A and a. That is, s is determined by the property that it
takes values 0 and 1 at the two points lying above the point s1 = 0 with the point
s = 1 having a ramification index 2 and value∞ at the point lying above s1 =∞ with
ramification index 1.

Now the condition that CM-points of discriminant −156 are ramified implies that
the discriminant of

As(1− s)2 − x(1− as)2
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as a polynomial in s must be divisible by the polynomial in (4.7). This gives two
relations between A and a. Solving them for A and a, we find that the only legitimate
choice is A = 9− 46i and a = 13. Then we have

t1 =
2i(s1 + 1)

−s1 + 1
=

4394is3 + (−15548− 5746i)s2 + (2392 + 3926i)s− 92 + 18i

(13s− 3 + 2i)(−169s2 + (416 + 624i)s+ 5− 12i)
.

Let t be the Hauptmodul of X39
0 (2)/W39 with

s = −3 + 2i

13

(5 + i)t+ 3− 15i

(5− i)t+ 3 + 15i
.

Then we have

t1 = −2(t3 + t2 + 11t+ 3)

(t+ 3)(t2 + 7)
.

The values of t at CM(−52), CM(−39), and CM(−156) can be read off from

t21 + 4 =
8(t2 + 9)(t2 + 2t+ 5)2

(t+ 3)2(t2 + 7)2
,

t21 + t1 + 1 =
(t2 + 2t+ 13)(3t4 + 34t2 + 27)

(t+ 3)2(t2 + 7)2
,

and

7t21 + 23t1 + 19 =
(t2 − 2t+ 13)(t2 − 6t+ 21)2

(t+ 3)2(t2 + 7)2
,

respectively. To determine the action of w2 on t, we recall that w2 switches the two
points in CM(−52). It also exchanges the two zeros of x2 + 2x + 13, corresponding
to the two points in CM(−156) that lie above the CM-points of discriminant −39 on
X39

0 (1)/W39, with the two zeros of x2−2x+13, corresponding to the other two points
in CM(−156) that lie above the CM-points of discriminant −156 on X39

0 (1)/W39.
From these informations, we can deduce that w2 : t 7→ −t.

4.4 Schwarzian Differential Equations Associated to Shimura
Curves of Genus Zero

Theorem 4.4.1. Let t = tD,N the Hauptmoduls for XD
0 (N)/WD be chosen by Lem-

mas in Section 4.3. Then then automorphic derivatives Q(t) associated to them are as
follows. For (D,N) = (6, 1),

Q(t) =
108− 113t+ 140t2

576t2(1− t)2
.

For (D,N) = (6, 5),

Q(t) = −15(23− 456t2 + 1608t4)

2(2 + 3t2)2(1 + 64t2)2
.
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For (D,N) = (6, 7),

Q(t) = −3(267 + 6480t2 + 64352t4)

4(1 + 27t2)2(3 + 32t2)2
.

For (D,N) = (6, 13),

Q(t) = −3(12492 + 43272t2 + 37541t4)

(9 + 16t2)2(16 + 27t2)2
.

For (D,N) = (10, 1),

Q(t) =
3t4 − 119t3 + 3157t2 − 7296t+ 10368

16t2(t− 2)2(t− 27)2
.

For (D,N) = (10, 3),

Q(t) =
8− 303t2 − 1200t4 − 95840t6

36t2(1 + 32t2)2(1 + 5t2)2
.

For (D,N) = (10, 7),

Q(t) = −655 + 62410t2 + 2237231t4 + 35817920t6 + 216522240t8

(1 + 27t2)2(1 + 20t2)2(5 + 128t2)2
.

For (D,N) = (14, 1),

Q(t) =
192 + 440t+ 43t2 + 1036t3 + 960t4

16t2(8 + 13t+ 16t2)2
.

For (D,N) = (14, 3),

Q(t) = −3(497− 1988t2 + 31494t4 + 141436t6 + 139601t8)

2(1 + 2t2)2(7 + 226t2 + 343t4)2
.

For (D,N) = (14, 5),

Q(t) = −623 + 16772t2 + 55178t4 − 853468t6 + 97503t8

(1 + 16t2)2(7 + 114t2 + 7t4)2
.

For (D,N) = (15, 1),

Q(t) =
177147− 244944t+ 244242t2 − 3680t3 + 35t4

144t2(1− t)2(81− t)2
.

For (D,N) = (15, 2),

Q(t) =
3(385 + 5500t2 − 2042t4 + 35196t6 − 2175t8)

4(1− t)2(1 + t)2(1− 5t)2(1 + 5t)2(5 + 3t2)2
.
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For (D,N) = (21, 1),

Q(t) =
21(40353607− 17647350t+ 3561369t2 − 477652t3 + 31833t4 − 630t5 + 7t6)

16t2(49− t)2(343− 94t+ 7t2)2
.

For (D,N) = (21, 2),

Q(t) =
3(1− 69t2 − 4086t4 + 23670t6 + 6043653t8 + 6781887t10)

16t2(1− t)2(1 + t)2(1 + 27t2)2(1 + 63t2)2
.

For (D,N) = (26, 1),

Q(t) =
85683 + 15210t+ 16694t2 − 9480t3 + 1363t4 − 170t5 + 12t6

16t2(169 + 24t− 19t2 + 2t3)2
.

For (D,N) = (26, 3),

Q(t) = −6(85 + 3528t2 + 60543t4 + 552448t6 + 2850579t8 + 7990200t10 + 9677785t12)

(1 + 8t2)2(8 + 165t2 + 1086t4 + 2197t6)2
.

For (D,N) = (35, 1),

Q(t) = Q1(t)/16(t+ 12)2(7t+ 4)2(t3 + 4t2 + 144t+ 80)2,

where

Q1(t) =666427392t+ 1132800t4 + 181420032− 753984t5 + 24576t6 + 147t8

+ 659096576t2 + 85540864t3 + 3808t7.

For (D,N) = (35, 2),

Q(t) = Q1(t)/4(t2 + 7)2(t2 − 25)2(t6 + 13t4 − 29t2 − 625)2,

where

Q1(t) =2842805000t2 + 91524600t6 − 2082286t8 − 217416t10

+ 54644t12 + 3784t14 + 19t16 − 992578125 + 1017474100t4.

For (D,N) = (39, 1),

Q(t) =
−3Q1(t)

4(4 + t2)2(1 + t+ t2)2(19 + 23t+ 7t2)2
,

where

Q1(t) =2596 + 7104t+ 9692t2 + 12348t3 + 13149t4 + 9522t5

+ 4367t6 + 1086t7 + 97t8.
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For (D,N) = (39, 2),

Q(t) =
−9Q1(t)

4(9 + t2)2(13 + 2t+ t2)2(13− 2t+ t2)2(27 + 34t2 + 3t4)2
,

where

Q1(t) =419253003 + 119984328t2 + 89200020t4 + 43676088t6 + 10194786t8

+ 1272824t10 + 87380t12 + 3080t14 + 43t16.

For these results, we take the Schwarzian differential equations associated toX14
0 (1)/W14,

X14
0 (3)/W14, and X14

0 (5)/W14 as examples for the proofs.

Proof. In Lemma 4.3.3, we see that there is a Hauptmodul t1 on X14
0 (1)/W14 with

values∞ at the elliptic point of order 4 and values 0, (−13± 7
√
−7)/32 at the elliptic

points of order 2. According to Proposition 4.1.2, the automorphic derivative Q(t1)
associate to t1 is

Q(t1) =
3

16
− 21 + 16B

52t
+

3(512t2 + 416t− 87)

(16t2 + 13t+ 8)2
+

4(21t+B(16t+ 13))

13(16t2 + 13t+ 8)
,

for some constant B. We now use the covering X14
0 (3)/W14 −→ X14

0 (1)/W14 to
determine the constant B. More precisely, according to Proposition 4.1.4, we have the
relation between Q(t1) and the automorphic derivative Q(t) associative to a Haupt-
modul t of X14

0 (3)/W14,

Q(t) = D(t1, t) +Q(t1)/(dt1/dt)
2.

Note that there is a Hauptmodul t forX14
0 (3)/W14 that takes values±1/

√
−2, (±9

√
−7±

4
√
−14)/49 at the 6 elliptic points of order 6. Thus, the automorphic derivative Q(t)

is

Q(t) =
3(2t2 − 1)

4(2t2 + 1)2
+

3(18335t2 + 38759t4 + 117649t6 − 791)

4(7 + 226t2 + 343t4)2

+
343(686C4t

3 + 109C3t
2 + 109C4t+ 109C5)

436(7 + 226t2 + 343t4)
− 1372C4t+ 981 + 218C3

436(2t2 + 1)
,

for some constants C3, C4, and C5. Also, the action of the Atkin-Lehner involution w3

on the Hauptmodul t is w3 : t 7→ −t. Thus, by Proposition 4.1.5, the function Q(t)
satisfies

Q(t) = Q(−t),
and then we can get the value C4 = 0.

Moreover, from the relation

t1 =
4(1 + 2t2)(1− 5t)2

9(1 + t)4

and Proposition 4.1.4,

Q(t) = D(t1, t) +Q(t1)/(dt1/dt)
2,
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we can find that

B = −373

512
, C3 = −91

9
, and C5 = −1301

3087
.

For the case of X14
0 (5)/X14, the chosen Hauptmodul t takes values ±i/4 at the

elliptic points of order 4, (±5
√
−7 ± 4

√
−14)/7 at the elliptic points of order 2, and

the action of Atkin-Lehner involution w5 is t 7→ −t. Therefore, the automorphic
derivative associative to t is

Q(t) =
15(16t2 − 1)

2(16t2 + 1)2
+

3(49t6 + 399t4 + 6351t2 − 399)

4(7t4 + 114t2 + 7)2

− 39 + 8B1

2(16t2 + 1)
+

7(B1t
2 +B2)

4(7t4 + 114t2 + 7)
,

for some constants B1 and B2. From the relation

t1 = −5(1− t+ 17t2 − 13t3)2

(1 + 16t2)(1 + 3t)4

and Proposition 4.1.4, we can conclude that

Q(t) = −97503t8 − 853468t6 + 55178t4 + 16772t2 + 623

(16t2 + 1)2(7t4 + 114t2 + 7)2
.
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Chapter 5

Applications of the Arithmetic
of Automorphic Forms

From previous discussions, for a Shimura curve X having genus zero, we can use
the solutions of the Schwarzian differential equations in place of automorphic forms (
Chapter 4). Then we can do explicit computation on automorphic forms in terms of
the solutions of the associated differential equations. This makes a powerful way to
study the arithmetic properties of automorphic forms. For example, we can compute
the Hecke operators on automorphic forms, modular equations for Shimura curves,
determine the Hecke eigenforms and so on. In the paper [33], Yang computes Hecke
operators on automorphic forms on Shimura curves X6

0 (1)/W6 and on X10
0 (1)/W10.

He [31] also compute modular equations for Shimura curves.
A possible future work related to the arithmetic of automorphic forms on Shimura

curves is Ramanujan-type series for Shimura curves. A typical example of Ramanujan-
type identities for the classical modular curves is

∞∑
n=0

(6n+ 1)(1/2)3
n

(n!)3

(
1

4

)n
=

4

π
,

where (a)n = a(a+1) · · · (a+n−1) is the Pochhammer symbol. It is known that such
series is related to the Hecke theory of the classical modular curves and CM-theory.
Natively, one expects that we can obtain Ramanujan-type series for Shimura curves. In
the work of Yang [32], he gave several Ramanujan-type formulae for the Shimura curve
X6

0 (1)/W6. He also conjectures a general form for the Ramanujan-type identities for
Shimura curves.

In this chapter, in support of his conjecture, we will numerically obtain Ramanujan-
type identities for X14

0 (1)/W14. However, we are not able to give a rigorous proof
at present. In Section 5.1, we will compute Hecke operators on X14

0 (1)/W14 and
hence determine Hecke eigenforms. In Section 5.2, using the method developed in
the previous chapter for obtaining bases of automorphic forms in terms of solutions of
Schwarzian differential equations, we obtain Ramanujan-type identities forX14

0 (1)/W14.
This is mainly following the preprint [23].
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5.1 Hecke Operators on X14
0 (1)/W14

Assume that O = O(D,N) is an Eichler order of level N in an indefinite quaternion
algebra B of discriminant D. Fix an imbedding ι : B −→ M(2,R). Recall that for a
given prime p - DN and α ∈ O be such N(α) = p,

Tp(f(τ)) = pk/2−1
∑

γ∈Γ\Γι(α)Γ

(det γ)k/2

(cτ + d)k
f(γτ),

where f(τ) is an automorphic form of weight k on Γ = Γ(O), and γ =
(
a b
c d

)
.

Let t be the Hauptmodul of X14
0 (1)/W14 with values∞, (−39 ± 21

√
−7)/16 at

the elliptic points of order 2, and with value 0 at the elliptic point of order 4. Let u
be the Hauptmodul of X14

0 (3)/W14 which is chosen so that it takes values ±1/
√
−2,

and±9
√
−7± 4

√
−14/49 at the CM-pints of discriminant−8, and−56, respectively.

The relation between t and u is

t = f(u) =
27(1 + u)4

(1 + 2u2)(1− 5u)2
,

and the Atkin-Lehner involution w3 sending u to −u. Then we can deduce that the
Schwarzian differential equation associated to t is

d2

dt2
f +

3(64t4 + 440t3 + 129t2 + 9324t+ 25920)

16t2(8t2 + 39t+ 144)2
f = 0.

Near the point P4, the t-expansion of t′(τ) is the square of a linear combination of 2
solutions

g1(t) = t3/8
(

1 +
131

2304
t+

21631

3538944
t2 − 49745249

29896998912
t3 +

16603576771

91843580657664
t4 + · · ·

)
,

g2(t) = t5/8
(

1 +
131

3840
t+

8923

1966080
t2 − 257758957

176664084480
t3 +

1646181570409

9226105147883520
t4 + · · ·

)
of the Schwarzian differential equation associated to t.

Lemma 5.1.1. Let g1, g2 be the functions given as above. We have

τ − P4

τ − P4

= C
g2

g1
and t′(τ) = −4 (g1 − Cg2)

2

C(P4 − P4)
,

where P4 denote the elliptic point of order 4 on the curve X14
0 (1)/W14, and C is

certain complex number.

Proof. Note that the functions t′(τ)1/2 and τt′(τ)1/2, as functions of t, satisfy the
Schwarzian differential equation associated to t. Thus, there exist some constants a′,
b′, c′, d′, so that

τ =
a′g1 + b′g2

c′g1 + d′g2
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and hence
τ − P4

τ − P4

=
ag1 + bg2

cg1 + dg2
, a, b, c, d ∈ C.

On the other hand, we let γ denote a generator of the isotropy subgroup for P4, then
we have

t(γτ)1/4 = ζ4t(τ)1/4 and
γτ − P4

γτ − P4

= ζ4
τ − P4

τ − P4

,

for some primitive fourth root of unity ζ4. Therefore, we can get that

τ − P4

τ − P4

= C
g2

g1
.

From this identity, we can get

τ = (P4g1 − P4Cg2)/(g1− Cg2)

and
dτ

dt
= C(P4 − P4)

g1dg2/dt− g2dg1/dt

(g1 − Cg2)2
= − C(P4 − P4)

4(g1 − Cg2)2
.

Then we can give a concrete basis for space Sk(Γ). According to the Corollary
4.1.3, an automorphic form of weight 2k on X14

0 (1)/W14 can be written as a linear
combination of

tj−b3k/4c
(
t2 +

39

8
t+ 18

)−bk/2c
(g1(t)− Cg2(t))2k (5.1)

with the constant C in Lemma 5.1.1, where j = 0, . . ., 1− 2k + 3bk/2c+ b3k/4c.
We now compute Hecke operators T3 on the space Sk(Γ) of automorphic forms on

X14
0 (1)/W14 relative to the basis given in 5.1. We first consider the case of T3.

Let B =
(
−1,7
Q

)
be a quaternion algebra defined over Q of discriminant 14 which

is generated by I and J with the relations I2 = −1, J2 = 7, IJ = −JI . Fix the
maximal order to be O = Z + ZI + ZJ + Z(1 + I + J + IJ)/2 and choose the
embedding ι : B −→M(2,R) to be I 7→

(
0 −1
1 0

)
, and J 7→

(√
7 0

0 −
√

7

)
.

The curve X14
0 (1) has 3 elliptic points of order 2 and an elliptic point of order 4.

We choose the representatives of elliptic point of order 4 by P4 = i with the isotropy
subgroup generated by M4 = 1√

2

(
1 −1
1 1

)
.

Let A be the matrix 1
2

(
5+
√

7 −1+
√

7

1+
√

7 5−
√

7

)
, which is the image of the element 2 + (1 +

I +J + IJ)/2 of reduced norm 3 inO under the embedding ι. A complete set of right
coset representatives of Γ \ ΓAΓ is given by

γ0 =
1

2

(
5 +
√

7 −1 +
√

7

1 +
√

7 5−
√

7

)
, and γj = γ0M

j
4 , j = 1, 2, 3.

Then γjP4 = AP4 = (5
√

7 + 7 + 5i+
√
−7)/12. For these coset representatives, we

can easily verify the following property.
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Lemma 5.1.2. Letting γj =
(
aj bj
cj dj

)
, we have

aj = cjP4 + dj = e2πij/8(5 + i+
√
−7−

√
7)/2, j = 0, 1, 2, 3.

To compute Hecke operator T3 on the selected basis for Sk(Γ), our goal is to de-
termine the t-expansions of

t(γjτ), F (γjτ), and cjτ + dj , j = 0, . . . , 3,

where F (t) = (g1(t)− Cg2(t))2.
Here, we will use the modular equation of level 3 to help us to decide the t-

expansions of t(γjτ).

Lemma 5.1.3. Let γj , j = 0, 1, 2, 3, be the coset representatives given above. In a
neighborhood of P4, the t-expansion of t(γjτ) is given by

t(γjτ) =
9

4
+(−i)j 33

4
t1/4+(−1)j

229

16
t1/2+ij

1897

96
t3/4+

1791

64
t+(−i)j 531689

13824
t5/4+· · ·

In particular, we have t(γjP4) = 9/4.

Proof. At the beginning, let us consider the Hauptmoduls u and twe mentioned before.
Note that the relation between t and u is

t = f(u) =
27(1 + u)4

(1 + 2u2)(1− 5u)2
,

and the action of w3 is u 7→ −u. Thus, we have

s = f(−u) =
27(1− u)4

(1 + 2u2)(1 + 5u)2
,

and the polynomial

Φ3(s, t) =924210st(s+ t)− 2304(s4 + t4) + 20736(s3 + t3)

− 8750s3t3 + 260415s2t2 + 193104st(s2 + t2)

− 5625s2t2(s2 + t2) + 7200(st4 + s4t)− 69984(s2 + t2)

− 10350(s2t2)(s+ t) + 104976(s+ t) + 1557954st− 59049.

Solving the modular equation Φ3(s, t) = 0 for s, we find the 4 roots are

sj =
9

4
+ ζj4

33

4
t1/4 + ζ2j

4

229

16
t1/2 + ζ3j

4

1897

96
t3/4 +

1791

64
t+ ζj4

531689

13824
t5/4 + · · ·

for j = 0, 1, 2, 3, where ζ4 is a primitive fourth root of unity. The fourth root t1/4 =
t1/4(τ) of t(τ) is defined in a neighborhood of P4 so that it becomes a holomorphic
function of τ near P4.

In view of t(M4τ) = t(τ), one has t(M4τ)1/4 = ζt(τ)1/4, for some fourth root of
unity ζ. Note that the function τ −→ t(τ) preserves orientation and is locally 4-to-1 at
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P4, hence the number ζ is actually −i. Without loss of generality, may assume that the
expansion of t(γ0τ) is s0, and then we have

t(γjτ) = t
((
γ0M

j
4

)
τ
)

= t
(
γ0

(
M j

4 τ
))

= sj

with ζ4 = ζ = −i, for j = 1, 2, 3.

Corollary 5.1.4. We have the equality, for each j,

33

4
ζj4 =

12F (t(γjP4))

(cjP4 + dj)2
=

12F (9/4)

(cjP4 + dj)2
.

Proof. Assume that the t-expansion of t(γ0τ) is A0 + A1t
1/4 + · · · . According to

Lemma 5.1.1, we have

A1 = lim
τ→P4

t(γ0τ)−A0

g2(t(τ))/g1(t(τ))
= lim
τ→P4

t(γ0τ)−A0

(τ − P4)/C(τ − P4)
.

By L’Hopital rule and Lemma 5.1.1, the equality becomes

A1 =
C(P4 − P4)(det γ0)t′(γ0P4)

(c0P4 + d0)2
=

12F (9/4)

(c0P4 + d0)2
.

From Lemma 5.1.3, we have

33

4
=

12F (9/4)

(c0P4 + d0)2
.

Using the same arguments, we can get the identity in this Corollary.

As we see in the previous proof, if we suppose that the t-expansion of F (γ0τ) is
∞∑
n=0

Bnt
n/4, for some constants Bn, then we have

F (γjτ) = F (t(γjτ)) =
∞∑
n=0

Bn(−i)njtn/4, j = 0, 1, 2, 3.

Also, from the above results, we can figure that the constant term B0 is the value of
F (γjτ) at τ = P4 for each coset representatives γj .

Corollary 5.1.5. The constant term B0 of the t-expansions of F (γjτ) is equal to
F (9/4), that is

B0 =
66− 33

√
7 + (22

√
7− 11)i

16
.

Proof. This can be easily verified form the Lemma 5.1.2 and Corollary 5.1.4.
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We then determine other coefficients Bn inductively. Denote by f2k the automor-
phic form

t−b3k/4c
(
t2 +

39

8
t+ 18

)−bk/2c
(g1(t)− Cg2(t))k

of weight 2k in the equation (5.1). Observe that their expansions near P4 are

f4 =
1

18
t1/2 − 2

9
Ct3/4 +

1

3
C2t− 2

9
C3t5/4 +

(
1

18
C4 − 25

10368

)
t3/2 + · · · ,

f8 =
1

324
− 2

81
Ct1/4 +

7

81
C2t1/2 − 14

81
C3t3/4 +

(
35

162
C4 − 25

93312

)
t+ · · · ,

f12 =
1

5832
t1/2 − 1

486
Ct3/4 +

11

972
C2t− 55

1458
C3t5/4 − 25

1119744
t3/2 + · · · ,

f14 =
1

5832
t1/4 − 7

2916
Ct1/2 +

91

5832
C2t3/4 − 91

1458
C3t+ · · · ,

f18 =
1

104976
t3/4 − 1

5832
Ct+

17

11664
C2t5/4 − 17

2187
C3t3/2 + · · · ,

we can use the basis of Sk(Γ) described in equation (5.1) to get the coefficients Bn as
the followings

n mod 4 0 1 2 3
k 8 14 4, 12 18

It is easier that if we use basis of S4(Γ) than if we use automorphic forms of weight 12
to compute the Bn with n ≡ 2 mod 4. Note that

dimS6(Γ) = dimS10(Γ) = 0, dimS16(Γ) = 3,

and the t-expansion of f16 starts from a nonzero constant term, so we omit their expan-
sions here.

For the purpose to determine the expansion F (γ0τ), i.e. the number Bn, we first
use Jacquet-Langlands correspondence to decide the representative matrix of T3 on
Sk(Γ) with respect to the chosen basis.

Lemma 5.1.6. For k = 4, 8, 14, 18, let Fk,i, k = 1 . . . dk in (5.1) be the automorphic
forms of weight k on Γ that spans the space Sk(Γ). Then the representative matrices
of T3 with respect to {Fk,i}dki=1 are

k 4 8 14 18

T3 −2

(
48 50
108 22

)
−1026 4626

Proof. According to the Jacquet-Langlands correspondence,

Sk(Γ) ' Snew
k (Γ0(14),−1,−1),

where Snew
k (Γ0(14),−1,−1) is the subspace of Snew

k (Γ0(14)) with eigenvalues −1
for both w2 and w7. For k = 4, the space Snew

k (Γ0(14)) is of dimension 2, and the
subspace Snew

k (Γ0(14),−1,−1) is spanned by the eigenform

f = q + 2q2 − 2q3 + 4q4 − 12q5 − 4q6 + 7q7 + 8q8 − 23q9 − 24q10 + · · · .
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Thus, the eigenvalue of T3 respect f is −2, the third coefficient of f . Here, we use the
algebra computation system MAGMA to find the Hecke eigenforms. The eigenvalues of
T3 for the case k = 14, k = 18, can be determined in the same way.

For the case k = 8, the subspace Snew
k (Γ0(14),−1,−1) is 2 dimensional and

spanned by

f = q+8q2+aq3+64q4+(378−9a)q5+8aq6+343q7+512q8+(70a−1443)q9+· · ·

with a2−70a = 744 and its Galois conjugate. Therefore, the characteristic polynomial
of the operator T3 with respect to our basis for Sk(Γ) is x2 − 70x − 744. That is, the
trace of the operator is 70, and its determinant is −744.

Note that the space S8(Γ) is spanned by

F8,1(t) =
1

t3(t2 + (39/8)t+ 18)2
(g1(t)− Cg2(t))4, and F8,2(t) = tF8,1(t).

The operator T3 acts on F8,1 and F8,2 becoming

37
3∑
j=0

F8,1(t(γjτ))

(cjτ + dj)8
=aF8,1(t(τ)) + bF8,2(t(τ)),

37
3∑
j=0

F8,2(t(γjτ))

(cjτ + dj)8
=cF8,1(t(τ)) + dF8,2(t(τ)),

the characteristic polynomial of the matrix
(
a b
c d

)
is x2−70x−744. Hence, the number

d is equal to 70− a.
Observe that the t-expansion of F8,1(t(τ)) is

1

324
− 2

81
Ct1/4 +

7

81
C2t1/2 − 14

81
C3t3/4 −

(
25

93312
− 35

162
C4

)
t+ · · · .

If we evaluate the values at the point τ = P4, the Lemma 5.1.3 tells us that t(γjP4) =
9/4, and we then have the equations

37
3∑
j=0

F8,1(9/4)

(cjP4 + dj)8
=a/324

37
3∑
j=0

F8,2(9/4)

(cjP4 + dj)8
=

9

4

37
3∑
j=0

f8,1(9/4)

(cjP4 + dj)8

 = c/324.

These imply that c = 9a/4. We now determine the value a. Since

37
3∑
j=0

F8,1(9/4)

(cjP4 + dj)8
=

21637

310114

3∑
j=0

(
F (9/4)

(cjP4 + dj)2

)4

,

according to Corollary 5.1.4, we have

37
3∑
j=0

F8,1(9/4)

(cjP4 + dj)8
= 4

21637

310114

(
33

4

)4
1

124
=

4

27
.
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In a word, we have the identity

4

27
= 37

3∑
j=0

F8,1(9/4)

(cjP4 + dj)8
=

a

324
.

Hence the number a must be 48, and c = 108. Together with the fact that the char-
acteristic polynomial of the matrix

(
a b
c d

)
is x2 − 70x − 744, we can find that the

representative matrix of T3 with respect to the basis {F8,1, F8,2} is(
a b
c d

)
=

(
48 50
108 22

)
.

For k = 4, 14, 18, let λk be the eigenvalue for T3 given in previous Lemma, we
have

3k−1
3∑
j=0

fk (t(γjτ))

(cjτ + dj)k
= λkfk(t(τ));

for k = 8, we have the equality

37
3∑
j=0

f8 (t(γjτ))

(cjτ + dj)8
= (48 + 50t)f8(t(τ)).

Write

fk(t) = dk(t)F (t)k/2, dk(t) = t−b3k/4c
(
t2 +

39

8
t+ 18

)−bk/2c
.

Now the t-expansions of τ and t(γjτ) are known in Lemma 5.1.1 and 5.1.3, so the
part of dk(t(γjτ))/(cjτ + dj)

k can be work out. Also, we have the constant B0 of the
expansion of F (γjτ) near P4 by Corollary 5.1.5. Thus, using these information, we
can determine the other coefficients Bn of the expansion

F (γ0τ) = B0 +
∑
n≥1

Bnt
n/4

inductively. Then the expansions of

F (γjτ) = B0 +
∑
n≥1

Bn(−i)njtn/4

near P4 can be determined consequently. Here, let us list first 12 coefficients of the
t-expansion of F (γ0τ). In the followings, we denote M1 =

(
6− 3

√
7− i+ 2

√
−7
)
,

M2 =
(
5−
√

7
)
C, and M3 =

(
6− 3

√
7 + i− 2

√
−7
)
C2.
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B0 =
11

16
M1,

B1 =
229

96
M1 −

11

4
M2,

B2 =
1897

384
M1 −

229

24
M2 +

11

16
M3,

B3 =
597

64
M1 −

1897

96
M2 +

229

96
M3,

B4 =
1345607

82944
M1 −

597

16
M2 +

1897

384
M3,

B5 =
8577605

331776
M1 −

13443101

207360
M2 +

597

64
M3,

B6 =
427949389

10948608
M1 −

10699507

103680
M2 +

3357533

207360
M3,

B7 =
1249481879

21897216
M1 −

8534385587

54743040
M2 +

42708031

1658880
M3,

B8 =
156151317775

1926955008
M1 −

1556045479

6842880
M2 +

4254891697

109486080
M3,

B9 =
280396875558295

2497333690368
M1 −

18652796644997

57808650240
M2 +

6200954437

109486080
M3,

B10 =
3139891380163495

20603002945536
M1 −

17432924774791

39020838912
M2 +

5802349183013

72260812800
M3,

B11 =
11188830166896727

54941341188096
M1 −

249723804965137451

412060058910720
M2 +

6936494964167563

62433342259200
M3.

This is enough to compute the Hecke operator T3 for general automorphic forms
on X14

0 (1)/W14for general weights.
For computing Hecke operators Tp with prime p ≥ 5, we can deduce the eigenval-

ues form T3 and Jacquet-Langlands correspondence. For example, from the Jacquet-
Langlands correspondence, the subspace Snew

8 (Γ0(14),−1,−1) is 2 dimensional and
spanned by

f = q+8q2+aq3+64q4+(378−9a)q5+8aq6+343q7+512q8+(70a−1443)q9+· · ·

with a2−70a = 744 and its Galois conjugate. The eigenvalue for T7 is 343. According
to the Lemma 5.1.6, the matrix for T5 relative to our basis of automorphic forms of
weight 8 is

378− 9

(
48 50
108 22

)
=

(
−54 −450
−972 180

)
.

5.2 Ramanujan-type Formulae
Recall that if E is an elliptic curve defined over Q, which has CM by an imaginary
quadratic field K of discriminant d, then up to an algebraic factor, the period of E can
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be expressed by

Ωd =
√
π

∏
0<a<|d|

Γ

(
a

|d|

)wdχd(a)/4hd

,

where wd is the number of roots of unity in K, χd is the Kronecker character
(
d
·
)

associated to K, and hd is the class number of K. In [32], Yang contributes many
Ramamnujan-type series. For example,

∞∑
n=0

(
74480n+

6860

3

)
(1/12)n(1/4)n(5/12)n

(1/2)n(3/4)nn!

(
−74

3375

)n
= 73

√
5

4
√

3375
4π

4
√

12Ω2
−4

,

which is related to the period of an elliptic curve with CM by Q(
√
−1). The power

series
∞∑
n=0

(1/12)n(1/4)n(5/12)n
(1/2)n(3/4)nn!

tn

mentioned above is the hypergeometric function

3F2

(
1

12
,

1

4
,

5

12
;

1

2
,

3

4
, t

)
= 2F1

(
1

24
,

5

24
;

3

4
; t

)2

.

Note that the function 2F1

(
1
24 ,

5
24 ; 3

4 ; t
)

is related to the Schwarzian differential equa-
tion associated to the Hauprmodul t of X6

0 (1)/W6 that takes values 0, 1, and ∞ at
the CM-points of discriminants −4, −24, and −3, respectively. Yang also gave other
similar identities related to Ω−4, and also the Ramanujan-type series related to Ω−3 for
the curve X6

0 (1)/W6.
In this article [32], he guess, in general, we can use the t-series expansion of a

meromorphic form to obtain the Ramanujan-type identities, which are related to certain
periods of elliptic curves with CM. That is, we may have

∞∑
n=0

(R1n+R2)Ant
n
0 = R3

π

Ω2
d

,

where R1, R2, R3 ∈ Q,
∑∞

0 Ant
n is the expansion of a meromorphic automorphic

form of weight 2 with respect to a Hauptmodul t of a Shimura curve of genus zero such
that t takes value 0 at a CM-point of discriminant d, and t0 is the value of t at some CM-
point of discriminant d′ 6= d. To be more precise, if g1, g2 are 2 linearly independent
solutions of a given Schwarzian differential equation associated to a Shimura curve of
genus 0. Write g2

1 =
∑∞

0 Ant
n and g2

2 =
∑∞

0 Bnt
n, then we expect that

∞∑
n=0

(R1n+R2)Ant
n
0 = R3

π

Ω2
d

∞∑
n=0

(R1n+R2 +R1/a)Bnt
n
0 = R3

Ω2
d

π
,
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for certain positive integer a. We remark that the series also converge p-adically for the
prime p |M while t0 = M/N . The p-adic numbers which they converge to should be
related to the p-adic periods of certain elliptic curves with CM. It is natural to expect
that those p-adic identities should be related to the p-adic periods of elliptic curves
with CM. Yang also gave some numerical examples of the p-adic analogues for the
Ramanujan-type series obtained from X6

0 (1)/W6. Here, let us see some numerical
examples coming from X14

0 (1)/W14.
From the Lemma 4.3.3, we know that there is a Hauptmodul t for X14

0 (1)/W14

that takes values∞, 0, and (−13± 7
√
−7)/32 at CM-points of discriminants−4, −8,

and −56, respectively. The t-series expansions of 2 linearly independent solutions of
the Schwarzian differential equation associated to t ( see Theorem 4.4.1),

d2

dt2
f +Q(t)f = 0, Q(t) =

192 + 440t+ 43t2 + 1036t3 + 960t4

16t2(8 + 13t+ 16t2)2
,

are

g1 =t1/4
(

1 +
23

64
t+

1867

8192
t2 − 955937

2621440
t3 +

157030847

671088640
t4 +

3694251053

42949672960
t5 + . . .

)
g2 =t3/4

(
1 +

23

192
t+

3149

24576
t2 − 434593

1572864
t3 +

264972083

1207959552
t4 +

39014127761

850403524608
t5 + . . .

)
.

The Hauptmodule t takes values t0 = −13/81 at the CM-points of discriminants −91
(This is given by Elkies [6]). We now let

∞∑
n=0

An = t−1/2g2
1 ,

∞∑
n=0

Bn = t−3/2g2
2 ,

and

C =
81

2548

Γ(5/8)Γ(7/8)

Γ(1/8)Γ(3/8)
=

81

2548
Ω2
−8/π.

In this case, our numerical computation checked for 100-digits gives us that( ∞∑
n=0

R1n+R2

)
Ant

n
0 =

847

18
133/43C, (5.2)(∑

n=0

∞R1n+R1 +R2

)
Bnt

n
0 =

847

18
131/427C−1. (5.3)

If we choose a Hauptmodule t that takes values 0,∞, and (−39 ± 21
√
−7)/16 at

CM-points of discriminants −4, −8, and −56, respectively. The Schwarzian differen-
tial equation associated to t is given by

d2

dt2
f +Q(t)f = 0, Q(t) =

3(64t4 + 440t3 + 129t2 + 9324t+ 25920)

16t2(8t2 + 39t+ 144)2
,
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and its 2 linearly independent solutions are

g1 =t3/8
(

1 +
131

2304
t+

21631

3538944
t2 − 49745249

29896998912
t3 +

16603576771

91843580657664
t4 + . . .

)
g2 =t5/8

(
1 +

131

3840
t+

8923

1966080
t2 − 257758957

176664084480
t3 +

646181570409

9226105147883520
t4 + . . .

)
.

The Hauptmodule t takes values t0 = 27/200 at the CM-points of discriminants−168.
Let

∞∑
n=0

Cn = t−3/4g2
1 ,

∞∑
n=0

Dn = t−5/4g2
2 .

We have

∞∑
n=0

(R1n+R2)Cnt
n
0 =

810000

118
273/42001/4C,

∞∑
n=0

(R1n+R2 +R1/2)Dnt
n
0 =

810000

118
271/42003/4C−1

with R1 = 2904, R2 = 12, where

C =
Γ(3/4)2

Γ(1/4)2

(
196

3

)1/4

=

(
196

3

)1/4

Ω2
−4/π.

Let Γp(·) stand for the p-adic Gamma function. The numerical results checked for
70 p-adic digits provide us that

∞∑
n=0

(R1n+R2)Cnt
n
0 =

24 · 118

9

(
273200

98Γ3(1/4)

27Γ3(3/4)

)1/4

,

∞∑
n=0

(R1n+R2 +R1/2)Dnt
n
0 =

24 · 118

9

(
27 · 2003 27Γ3(3/4)

98Γ3(1/4)

)1/4

,

hold 3-adically with R1 = 29040 and R2 = 120.
For the numbers

∑
nAnt

n
0 ,
∑
Ant

n
0 ,
∑
nBnt

n
0 , and

∑
Bnt

n
0 , after numerical

computation, we can find that the equalities( ∞∑
n=0

(11011n+ 7290)Ant
n
0

)2

=33 · 7 · 137 · 1571
Γ13(5/8)Γ13(7/8)

2Γ13(1/8)Γ13(3/8)
,

( ∞∑
n=0

(11011n+ 75897)Bnt
n
0

)2

=312 · 7 · 114 Γ13(1/8)Γ13(3/8)

8Γ13(5/8)Γ13(7/8)
,

hold 13-adically.
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Chapter 6

Algebraic Transformations of
Hypergeometric Functions
Arising from Theory of
Shimura Curves

For real numbers a, b, c with c 6= 0,−1,−2, . . ., the 2F1-hypergeometric function
(Gaussian hypergeometric function) is defined by the hypergeometric series

2F1(a, b; c; z) =

∞∑
n=0

(a)n(b)n
(c)nn!

zn

for z ∈ C with |z| < 1, where

(a)n =

{
1, if n = 0,

a(a+ 1) . . . (a+ n− 1), if n ≥ 1,

is the Pochhammer symbol. The hypergeometric function 2F1(a, b; c; z) is a solution
of the differential equation

θ(θ + c− 1)F − z(θ + a)(θ + b)F = 0, θ = z
d

dz
.

This is a Fuchsian equation on the complex projective line with precisely 3 regular
singular points at z = 0,1, ∞ with local exponents {0, 1 − c}, {0, c − a − b}, and
{a, b}, respectively.

Using the well-known fact in the classical analysis that a second-order linear or-
dinary differential equation with three regular singularities at 0, 1, ∞ is completely
determined by the local exponents, one can easily deduce Euler’s identity

2F1(a, b; c; z) = (1− z)−a2F1

(
a, c− b; c; z

z − 1

)
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(among many other similar identities). Since the function z/(z − 1) is a rational func-
tion of degree 1 of z, we call this identity an algebraic transformation of degree 1 of
hypergeometric functions. In this chapter, we are concerned with algebraic transfor-
mations of hypergeometric functions, that is, identities of the form

2F1(a, b; c; z) = R(z)2F1 (a′, b′; c′;S(z)) (6.1)

with suitable parameters a, b, c, a′, b′, c′ and algebraic functions R(z) and S(z). If
w = R(z) is of degree m over the field C(z) or if z is of degree m over the field C(w),
we say the algebraic transformation has degree m.

Beyond transformations of degree 1, one of the simplest examples is Kummer’s
quadratic transformation

2F1

(
2a, 2b; a+ b+

1

2
; z

)
= 2F1

(
a, b; a+ b+

1

2
; 4z(1− z)

)
, (6.2)

valid for any real numbers a, b with a + b + 1/2 6= 0,−1,−2, . . .. In [10], Goursat
gave more than 100 algebraic transformations of degrees 2, 3, 4, 6. One such example
is

2F1

(
a, a+

1

3
;

1

2
;
z(9− 8z)2

(4z − 3)3

)
=
(

1 +
z

3

)3a

2F1

(
3a, a+

1

6
;

1

2
; z

)
of degree 3. (See Entry (96) on Page 132 of [10].) More recently, Vidūnas [25] gave
dozens of new algebraic transformations of degrees 6, 8, 9, 10, 12. For example, he
showed that if we set β = ±

√
−2,

S(z) =
4z(z − 1)(8βz + 7− 4β)8

(2048βz3 − 3072βz2 − 3264z2 + 912βz + 3264z + 56β − 17)3
, (6.3)

and

R(z) =

(
1 +

16

9
(4− 17β)z − 64

243
(167− 136β)z2 +

2048

6561
(112− 17β)z3

)−1/16

,

then

2F1

(
5

24
,

13

24
;

7

8
; z

)
= R(z)2F1

(
1

48
,

17

48
;

7

8
;S(z)

)
,

which is a transformation of degree 10. (See (32) of [10].) Vidūnas’ examples usually
involve Gröbner-basis computation. This is perhaps one of the reasons why Goursat
could not find these transformations.

In a very recent paper, we [24] obtained many new algebraic transformations of
hypergeometric functions. For example, one of our favorite identities is

2F1

(
1

20
,

1

4
;

4

5
;

64z(1− z − z2)5

(1− z2)(1 + 4z − z2)5

)
= (1− z2)1/20(1 + 4z − z2)1/4

2F1

(
3

10
,

2

5
;

9

10
; z2

)
.

(6.4)
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The main novelty in [24] is the interpretation of hypergeometric functions as automor-
phic forms on Shimura curves. Then proving identities such as the one above amounts
to showing two certain automorphic forms on two Shimura curves are equal. This
point of view is especially useful in determining the function R(z) in (6.1). As far as
we know, this interpretation first appeared in [33].

In this chapter, we will present several new algebraic transformations and give ex-
amples of algebraic transformations of hypergeometric functions to illustrate the role
Shimura curves play in proving these identities. Firstly, we will prove Kummer’s
quadratic transformation (6.2) in the cases when the hypergeometric functions are re-
lated to automorphic forms on Shimura curves, and obtain identities related to Class
II in Takeuchi’s classification of arithmetic triangle groups [20, 21]. We remark that
these identities can also be deduced from the results in [24] and some classical algebraic
transformations of hypergeometric functions. The purpose of proving these identities is
to demonstrate the advantage of using Shimura curves in proving this kind of identities.
We then prove identities related to Classes III and VI in Takeuchi’s classification.

This chapter is mainly following the articles [22] and [24].

6.1 Preliminaries
In this section, we will review definitions arithmetic triangle groups, and their relations
to hypergeometric functions.

6.1.1 Triangle groups
Suppose that a Shimura curve X(O) has signature (0; e1, e2, e3). Then we say the
group Γ(O) is an arithmetic triangle group, and we denote it by Γ(O) = (e1, e2, e3).
The complete lists of all arithmetic triangle groups and their commensurability classes
were determined by Takeuchi [20, 21].

If we cut each fundamental domain of an arithmetic triangle group Γ(O) into 2
halves in a suitable way, then the fundamental half-domains give a tessellation of the
upper half-plane h by congruent triangles with internal angles π/e1, π/e2, and π/e3.
The following figure shows the tessellation of the unit disc, which is conformally equiv-
alent to h, by fundamental half-domains of the arithmetic triangle group (2, 3, 7).
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Here each triangle represents a fundamental half-domain. Any combination of a grey
triangle with a neighboring white triangle will be a fundamental domain for the triangle
group (2, 3, 7).

In general, for any discrete subgroup Γ of SL(2,R) such that Γ\h has finite volume,
we can define its signature in the same way. If the signature is (0; e1, e2, e3), then we
say Γ is a (hyperbolic) triangle group.

6.1.2 Automorphic forms on Shimura curves
We recall that if a Shimura curve X is of genus zero, Yang [33] shows that we can
express the automomprhic forms on X by solutions of the Schwarzian differential
equation associated to X . (Please see Section 4.1). In the case of arithmetic triangle
groups, since the number of singularities of the differential equation is 3, the differ-
ential equation is essentially a hypergeometric differential equation. We then can use
2F1-hypergeometric functions to express the automorphic forms (see Section 4.1.2).

Theorem 6.1.1. Assume that a Shimura curve X has signature (0; e1, e2, e3). Let t(τ)
be the Hauptmodul of X with values 0, 1, and ∞ at the elliptic points of order e1,
e2, and e3, respectively. Let k ≥ 4 be an even integer. Then a basis for the space of
automorphic forms of weight k on X is given by

t{k(1−1/e1)/2}(1− t){k(1−1/e2)/2}tj
(

2F1(a, b; c; t) + Ct1/e12F1(a′, b′, c′; t)
)k
,

j = 0, . . . , bk(1 − 1/e1)/2c + bk(1 − 1/e2)/2c + bk(1 − 1/e3)/2c − k, for some
constant C, where for a rational number x, we let {x} denote the fractional part of x,

a =
1

2

(
1− 1

e1
− 1

e2
− 1

e3

)
, b = a+

1

e3
, c = 1− 1

e1

and
a′ = a+

1

e1
, b′ = b+

1

e1
, c′ = c+

2

e1
.

6.1.3 Algebraic transformations of hypergeometric functions
Consider the following situation. Suppose that Γ1 < Γ2 are two arithmetic triangle
groups with Hauptmoduls z1 and z2, respectively. Since any automorphic function on
Γ2 is also an automorphic function on Γ1, we have z2 = S(z1) for some S(x) ∈ C(x).
Likewise, if f1 and f2 are two automorphic forms of the same weight k on Γ1 and
Γ2, respectively, then the ratio f1/f2 is an automorphic function on Γ1 and hence is
equal to R(z1) for some R(x) ∈ C(x). After taking the kth roots of the two sides
of f1/f2 = R(z1), we obtain an algebraic transformation of hypergeometric function.
This explains the existence of Kummer’s, Goursat’s and Vidūnas’ transformations. (Of
course, the triangle groups appearing in their transformations may not be arithmetic,
but the argument above is still valid.)

More generally, if Γ1 and Γ2 are two commensurable arithmetic triangle groups
such that the Shimura curve associated to Γ = Γ1 ∩ Γ2 has genus 0. Let z be a
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Hauptmodul on Γ. Then each of z1 and z2 is a rational function of z. Similarly, the
ratio f1/f2 is also a rational function of z. In view of Theorem 6.1.1, we can obtain an
algebraic transformation of the form

2F1 (a1, b1; c1;S1(z)) = R(z)2F1 (a2, b2; c2;S2(z))

for some rational functions S1(z) and S2(z) and some algebraic function R(z). This
is the theory behind (6.4) and other algebraic transformations given in the paper.

Definition 6.1.1. Let S(z) ∈ C(z) be a rational function. If the finite covering
P1(C) → P1(C) defined by S : z → S(z) is ramified at most at three points 0, 1,
and∞, then S is called a Belyi function.

In practice, the Belyi functions S1(z) and S2(z) can be determined by the ramifi-
cation data of the coverings of Shimura curves. The function R(z) can be determined
by Theorems 4.1.3 and 6.1.1.

6.2 Kummer’s Quadratic Transformations and Auto-
morphic Forms

In this section, we will use our arguments to prove Kummer’s quadratic transformation

2F1

(
2a, 2b; a+ b+

1

2
;x

)
= 2F1

(
a, b; a+ b+

1

2
; 4x(1− x)

)
,

describe the automorphic forms on certain groups belong to Takeuchi’s calss II, and
obtain the related algebraic transformations.

6.2.1 Kummer’s quadratic transformation
Note that the triangle group (q, q, p) is a subgroup of (q, 2, 2p) of index 2. The (q, q, p)-
triangle is decomposed by 2 copies of (q, 2, 2p)-triangle.

Let x be a Hauptmodul of Γ1 = (q, q, p) and z be a Hauptmodul of Γ2 = (q, 2, 2p).
Label the elliptic points of Xj = Γj \ h by Pq , P ′q , Pp for X1 and Qq , Q2, Q2p for X2

such that the ramification data are given by
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Pq P ′q Pp P

Qq Q2p Q2

1 1 2 2

Here the numbers next to the lines are the ramification indices.
Assume that the values of x and z at these elliptic points are

x(Pq) = 0, x(P ′q) = 1, x(Pp) =∞, and z(Qq) = 0, z(Q2) = 1, z(Q2p) =∞,

Then the corresponding hypergeometric functions are

2F1

(
2α, 2β;α+ β +

1

2
;x

)
, and 2F1

(
α, β;α+ β +

1

2
; z

)
,

where
α =

1

4
− 1

4p
− 1

2q
, β =

1

4
+

1

4p
− 1

2q
.

Also, the ramification data

z 0 1 ∞
x 0, 1 a, a ∞, ∞

at z = 0,∞ implies z = ux(1 − x) for some constant u; the data at z = 1 implies
ux(1 − x) = 1 has a repeated root, which shows u = 4 and a = 1/2. Therefore, the
relation between the Hauprmoduls z and x is z = 4x(1−x), and thus the ratio between

2F1

(
2a, 2b; a+ b+

1

2
;x

)
, and 2F1

(
a, b; a+ b+

1

2
; 4x(1− x)

)
.

is an algebraic function of x. By considering the analytic behaviors, one can see that
they are equal.

Remark. Here, we give another way to determine the value α = x(P ). Let G be the
group of all symmetries of the tessellation of the hyperbolic plane by the (q, q, p)-
triangles and G0 be the subgroup generated by the reflections across the edges of
(q, q, p)-triangles. Then the factor group G/G0 is of order 2. Since the group relation
Γ1 < Γ2 admits the decomposition, the triangle group Γ2 = (q, 2, 2p) corresponds to
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the group G/G0. Therefore, any element of Γ2 not in Γ1 induces an automorphim of
order 2 on the curveX2. Such an automorphism must fix the points P , Pp and permute
the elliptic points Pq , P ′q . In terms of the Hauampmodul x, such an automorphism is
given by

σ : x 7→ 1− x

which implies that x(P ) = 1/2.

6.2.2 Automorphic forms on arithmetic triangle groups in Takeuchi’s
class II and the associate algebraic transformations

Let us take Takeuchi’s Class II of commensurable arithmetic triangle groups as an
example, which comes from the quaternion algebra over Q with discriminant 6. This
is a sub-diagram of the subgroup diagram of Calss II.

(2, 4, 6)

(2, 6, 6) (3, 4, 4)

(2, 2, 3, 3)

�
�

��

2 Q
Q
QQ

2

Q
Q
QQ2

�
�
�� 2

The node (2, 2, 3, 3) in the diagram means that the related curve X , obtained by Γ =
(2, 6, 6) ∩ (3, 4, 4), has signature (0; 2, 2, 3, 3). The relations of these subgroups admit
the Coxeter decompositions of a quadrilateral polygon that is symmetric with respect
to both the diagonals as shown below

�
��

2 @
@@2

@
@@

2 �
�� 2

Associated to groups (3, 4, 4), (2, 6, 6) and Γ, we have the identities

2F1

(
1

12
,

5

12
;

3

4
;

z2

4(z − 1)

)
= (1− z))1/12

2F1

(
1

12
,

1

4
;

1

2
; z(2− z)

)
.
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and

√
22F1

(
1

3
,

2

3
;

5

4
;

z2

4(z − 1)

)
= (1− z)1/3(2− z)1/2

2F1

(
7

12
,

3

4
;

3

2
; z(2− z)

)
.

Moreover, we can express all automorphic forms on Γ in terms of hypergeometric func-
tions. (The algebraic transformation associated to the pair of groups (2, 4, 6), (3, 4, 4),
and the pair of (2, 4, 6), (2, 6, 6) are Kummer’s quadratic transformations, so we skip
the associated transformations here.)

Let the Hauptmoduls be denoted by

(2, 3, 3, 2) (4, 4, 3) (2, 6, 6)
z u t

where for (e1, e2, e3), we choose the uniformizers in a way such that the values at the
vertices e1, e2, e3 are 0, 1, and∞, respectively. For (2, 2, 3, 3), we assume that z takes
values 0 at one of the elliptic point of order 2 and values 1 and∞ the two elliptic points
of order 3, respectively. Then from the ramification data, we have the relations

u =
z2

4(z − 1)
and t = z(2− z).

Note that the Hilbert-Poincaré series for X is∑
k≥0

dimSk(Γ)xk = 1 + x4 + x6 + x8 + x10 + 3x12 + · · ·+ 5x24 + · · ·

=
1 + x12

(1− x4)(1− x6)

which means that there are automorphic forms f4, f6, f12 of wight 4, 6, and 12 that
generate the graded ring of automorphic forms. Moreover, there exists a linear relation
among f6

4 , f4
6 , f2

12, f3
4 f

2
6 , f3

4 f12, and f2
6 f12.

On the other hand, according to the dimension formula, Proposition 2.7.2, we can
find the dimensions of Sk(Γ) on Γ1 = (3, 4, 4) and Γ2 = (2, 6, 6) are

dimS6(Γ1) = 1, dimS8(Γ1) = 1, dimS12(Γ1) = 1

dimS6(Γ2) = 0, dimS8(Γ2) = 1, dimS12(Γ2) = 2

Moreover, the space S6(Γ1) can be spanned by

F6(u) = u1/4(1− u)1/4

(
2F1

(
1

12
,

5

12
;

3

4
;u

)
+ C1u

1/4
2F1

(
1

3
,

2

3
;

5

4
;u

))6

,

for some constant C1, the space S8(Γ1) can be spanned by

F8(u) =

(
2F1

(
1

12
,

5

12
;

3

4
;u

)
+ C1u

1/4
2F1

(
1

3
,

2

3
;

5

4
;u

))8

,
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and F6(u)2 spans the automorphic forms of wight 12 on Γ1. Similarly, on Γ2, the sets
{G8(t)} and {G12,1(t), G12,2(t)} span the spaces of automorphic forms of weight 8
and 12, respectively, where

G8(t) = (1− t)1/3

(
2F1

(
1

12
,

1

4
;

1

2
; t

)
+ C2t

1/2
2F1

(
7

12
,

3

4
;

3

2
; t

))8

,

G12,1(t) =

(
2F1

(
1

12
,

1

4
;

1

2
; t

)
+ C2t

1/2
2F1

(
7

12
,

3

4
;

3

2
; t

))12

,

and

G12,1(t) = t

(
2F1

(
1

12
,

1

4
;

1

2
; t

)
+ C2t

1/2
2F1

(
7

12
,

3

4
;

3

2
; t

))12

,

for some C2 ∈ C.
Substituting u = z2/4(z − 1) and t = z(2− z) into F6(u), F8(u), F6(u)2, G8(t),

G12,1(t), and G12,2(t), they become automorphic forms on Γ. Also, the space S6(Γ)
is equal to the space spanned by F6

(
z2/(4z − 4)

)
, and the automorphic form

F8

(
z2/(4z − 4)

)
= CG8 (z(2− z)) , C ∈ C

is a basis of S8(Γ). Comparing the behaviors of these functions, we can find that the
constant C is equal to 1, and C2 = (−1)1/4C1/2. Thus, by taking 8th roots of the two
sides, we can get the algebraic transformation

2F1

(
1

12
,

5

12
;

3

4
;

z2

4(z − 1)

)
= (1− z(2− z))1/24

2F1

(
1

12
,

1

4
;

1

2
; z(2− z)

)
.

√
22F1

(
1

3
,

2

3
;

5

4
;

z2

4(z − 1)

)
= (1− z)1/3(2− z)1/2

2F1

(
7

12
,

3

4
;

3

2
; z(2− z)

)
.

Observe that since the dimS4(Γ) = dimS8(Γ) = 1, if S4(Γ) is spanned by some
automorphic form f4 then f2

4 spans S8(Γ), which can be also spanned byF8

(
z2/(4z − 4)

)
.

So we can choose

f4 =

(
2F1

(
1

12
,

5

12
;

3

4
;u

)
+ C1u

1/4
2F1

(
1

3
,

2

3
;

5

4
;u

))4

,

and we can find

F 3
4

(
z2/(4z − 4)

)
, G12,1

(
2z − z2

)
, andF 2

6

(
z2/(4z − 4)

)
form a basis of S12(Γ). (We remark that 4F 2

6

(
z2/(4z − 4)

)
= iG12,2

(
2z − z2

)
.)

As a conclusion, the graded ring of automorphic forms on Γ can be generated by
the following functions

f4 =

(
2F1

(
1

12
,

5

12
;

3

4
;

z2

4z − 4

)
+ C1

z2

4z − 4

1/4

2F1

(
1

3
,

2

3
;

5

4
;

z2

4z − 4)

))4

,

f6 =

(
2F1

(
1

12
,

5

12
;

3

4
;

z2

4z − 4

)
+ C1

(
z2

4z − 4)

)1/4

2F1

(
1

3
,

2

3
;

5

4
;

z2

4z − 4

))6

,

f12 =

(
2F1

(
1

12
,

1

4
;

1

2
; z(2− z)

)
+

(−1)1/4C1

2
(z(2− z))1/2

2F1

(
7

12
,

3

4
;

3

2
; z(2− z)

))12

,
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with the relation
f6

4 − 4if2
6 f12 − f2

12 = 0.

6.3 Algebraic Transformations Associated to Class III
According to [21], Takeuchi’s Class III of commensurable arithmetic triangle groups
has the following subgroup diagram.

(2, 6, 8) (2, 3, 8)

(4, 6, 6) (3, 8, 8) (3, 3, 4) (2, 4, 8)

(4, 4, 4) (2, 8, 8)

(4, 8, 8)

2

HHH
HHH2

���
���

10
2

HHH
HHH3

3

�
���

�� 2
2

2

The main goal in this section is to prove an algebraic transformation associated to the
pair of triangle groups (4, 6, 6) and (4, 4, 4).

Theorem 6.3.1. Let α be a root of x2 + 3 = 0 and β a root of x2 + 2 = 0. We have

(1 + z)1/8(1− 3z)1/8

(1 + αz)5/4 2F1

(
5

24
,

3

8
;

3

4
;

12αz(1− z2)(1− 9z2)

(1 + αz)6

)
=

1

(1 + (4 + 2β)z − (1 + 2β)z2)1/2 2F1

(
1

8
,

3

8
;

3

4
;R(z)

)
,

(6.5)

and

(1− z)1/4(1 + z)5/8(1− 3z)1/4(1 + 3z)5/8

(1 + αz)11/4 2F1

(
11

24
,

5

8
;

5

4
;

12αz(1− z2)(1− 9z2)

(1 + αz)6

)
=

(1 + (−7 + 4β)z2/3)

(1 + (4 + 2β)z − (1 + 2β)z2)3/2 2F1

(
3

8
,

5

8
;

5

4
;R(z)

)
(6.6)

where

R(z) = − 4(1 + β)4z(1 + (−7 + 4β)z2/3)4

(1 + z)(1− 3z)(1 + (4 + 2β)z − (1 + 2β)z2)4
.

We first determine the signatures of the intersections.
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Lemma 6.3.2. We have

(2, 6, 8) (2, 3, 8)

(4, 6, 6) (3, 8, 8) (3, 3, 4) (2, 4, 8)

(3, 4, 3, 4) (4, 4, 4) (2, 8, 8)

(46) (4, 8, 8)

2

HH
HHHH
2

��
����

10
2

HH
HHHH3∗

HH
HHHH

2
2

��
����

10
3

��
����

2
2

3

�
���

��

10
2

Moreover, the group of signature (46) is a normal subgroup of the group of signature
(3, 4, 3, 4). (Here (46) is a shorthand for (4, 4, 4, 4, 4, 4).)

Proof. Let Γ1 = (3, 8, 8) and Γ′1 be its commutator subgroup. From the group presen-
tation

Γ1 ' 〈γ1, γ2 : γ3
1 , γ

8
2 , (γ1γ2)8 = 1〉

for Γ1, we know that Γ1/Γ
′
1 is cyclic of order 8. Thus, Γ1 has exactly one subgroup of

index 2, which must be the common intersection of the groups (4, 6, 6), (3, 8, 8) and
(3, 3, 4). The signature of this subgroup can be easily determined by observing that a
covering of degree 2 from a Shimura curve to the Shimura curve associated to (3, 8, 8)
can only ramify at the two elliptic points of order 8. We find that the signature must be
(3, 4, 3, 4).

We next observe that the commutator subgroup Γ′2 of the group Γ2 = (3, 3, 4) is
cyclic of order 3. Thus, Γ′2 is a normal subgroup of index 3 in Γ2. This Γ′2 must be the
same as the group of signature (4, 4, 4). If Γ′2 6= (4, 4, 4), then Γ′2∩(4, 4, 4) is a normal
subgroup of (4, 4, 4) of index 3, but the group (4, 4, 4) cannot have a normal subgroup
of index 3. We next determine the signature of the intersection of Γ3 = (3, 4, 3, 4) and
Γ4 = (4, 4, 4).

Let Xj denote the Shimura curve associated to the group Γj . Since Γ4 is a normal
subgroup of Γ2 of index 3, the intersection Γ5 of Γ3 and Γ4 is a normal subgroup of
index 3 in Γ3, which implies that the two elliptic points of order 4 of X3 must split
completely on X5. In view of the Riemann-Hurwitz formula, the two elliptic points of
order 3 of X3 must be totally ramified. We conclude that Γ5 has signature (46).

In fact, the subgroup relations mentioned above can be visualized by the following
figures.
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Here the small triangles are (2, 3, 8)-triangles. Let G be the group of all symmetries
of the tessellation of the hyperbolic plane by the (4, 4, 4)-triangles and G0 be the sub-
group generated by the reflections across the edges of (4, 4, 4)-triangles. Then G/G0

is isomorphic to D3. The (3, 3, 4)-triangle group corresponds to the cyclic subgroup of
order 3 in G/G0, while the group (2, 3, 8) corresponds the whole group G/G0. Simi-
larly, if we piece 12 copies of (2, 6, 8)-triangles around the vertex of inner angle π/4,
we get a regular hexagon with inner angles π/4. Let H be the group of all symme-
tries of the tessellation by this regular hexagon and H0 be the subgroup generated by
the reflections across the edges of hexagons. Then H/H0 is isomorphic to D6. The
unique cyclic subgroup of order 3 in H/H0 corresponds to the group (3, 4, 3, 4). See
the figures below.

(The groups (2, 6, 8), (4, 6, 6), and (3, 8, 8) correspond to the whole H/H0, the cyclic
subgroup of order 6 of H/H0, and one of the D3-subgroups, respectively.)

Now let Γ1 = (4, 6, 6), Γ2 = (3, 8, 8), Γ3 = (3, 3, 4), Γ4 = (4, 4, 4), Γ5 =
(3, 4, 3, 4), and Γ6 = (46). Let Xj = X(Γj), j = 1, . . . , 6, be the corresponding
Shimura curves. Label the elliptic points onX1 by P4, P6, and P ′6, those onX2 by Q3,
Q8, and Q′8, those on X3 by R3, R′3, and R4, those on X4 by S4, S′4, S′′4 , and those on
X5 by T3, T ′3, T4, and T ′4 (with the subscripts carrying the obvious meaning) such that
the ramification data are given by

T3 T ′3 T4 T ′4 T3 T ′3 T4 T ′4

P6 P ′6 P4 Q3 Q8 Q′8

2 2 1 1 1 1 2 2
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T3 T ′3 T4 T ′4

R3 R′3 R4

1 3 3 3 1 3 3 3 1 1 4 4

Label the elliptic points of X6 by U1, . . . , U6 such that the rotation around the
center of the (46)-polygon by the angle π/3 permutes the six points cyclically. From
the figures above, we know that if we label the points such that U1 lies above T3, then
the ramification data for X6 → X5 are

U1 U3 U5 U2 U4 U6 U0 U ′0

T3 T ′3 T4 T ′4

1 1 1 1 1 1 3 3

where U0 and U ′0 are the centers of the (46)-polygons. (The reader is reminded that
each (46)-polygon represents only half of the fundamental domain for the Shimura
curve X6. Referring to the figure in the proof of the lemma above, a fundamental
domain consists of a grey (46)-polygon and a neighboring white (46)-polygon.)

Lemma 6.3.3. The two elliptic points of X6 at the two ends of a diagonal of a (46)-
polygon lie above the same elliptic point of X4. That is, labeling the elliptic points of
X4 suitably, we have

U1 U4 U2 U5 U3 U6

S4 S′4 S′′4

1 1 4 4 1 1 4 4 1 1 4 4

Moreover, if we choose Hauptmoduls zj(τ) for Xj , j = 1, . . . , 6, by requiring

z1(P4) = 0, z1(P6) = 1, z1(P ′6) =∞,
z2(Q8) = 0, z2(Q3) = 1, z2(Q′8) =∞,
z3(R4) = 0, z3(R3) = 1, z3(R′3) =∞,
z4(S4) = 0, z4(S′4) = 1, z4(S′′4 ) =∞,
z5(T4) = 0, z5(T3) = 1, z5(T ′4) =∞,
z6(U1) = 0, z6(U3) = 1, z6(U4) =∞,

then we have

z1 =
4z5

(1 + z5)2
, z2 = z2

5 ,

z3 =
3(ζ − ζ2)z4(1− z4)

(1 + ζz4)3
, z5 =

3(ζ − ζ2)z6(1− z2
6)

1− 9z2
6

,
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z3 =
(28 + 16β)z5(1 + (−17 + 56β)z2

5/81)4

(1 + z5)(1 + (13 + 8β)z5/3− (25 + 32β)z2
5/9 + (17− 56β)z3

5/81)3
,

and

z4 = − 4(1 + β)4z6(1 + (−7 + 4β)z2
6/3)4

(1 + z6)(1− 3z6)(1 + (4 + 2β)z6 − (1 + 2β)z2
6)4

,

where ζ is a 3rd root of unity and β is a root of x2 + 2 = 0.

Proof. The ramification data for the covering X5 → X2 and the assumption z2(Q3) =
z5(T3) = 1 imply that z2 = z2

5 and

z(T ′3) = −1.

The relation between z1 and z5 is easy to determine. We find z1 = 4z5/(1 + z1)2.
To determine the relation between z3 and z4, we recall from Lemma 6.3.2 that Γ4

is a normal subgroup Γ3. Any element of Γ3 not in Γ4 induces an automorphism of
order 3 on X4. Such an automorphism must permute the three elliptic points S4, S′4,
and S′′4 cyclically. In term of the Hauptmodul z4, such an automorphism is either

σ : z4 7−→
−1

z4 − 1

or its square. Moreover, the fixed points of such an automorphism are the ramified
points in the covering X4 → X3. That is, if we let S0 and S′0 be the points lying above
R3 and R′3 respectively, then z4(S0), z4(S′0) ∈ {−ζ,−ζ2}, where ζ is a primitive
3rd root of unity. Then from the ramification data, we easily deduce that z3 = (ζ −
ζ2)z4(1− z2

4)/(1 + ζz4)3.
To determine the relation between z5 and z6, we argue similarly as above. The

tessellation of the hyperbolic plane by Γ6 has a D6-symmetry, in addition to the sym-
metries arising from the reflections across the edges of the (46)-polygons. Thus, the
automorphism group of X6 is at least as large as D6. This provides many useful infor-
mations. For example, if we let τ be the reflection across the diagonal joining U1 and
U4, then τ induces an involution on X6, which, in terms of z6, is given by

τ : z6 7−→ −z6,

which implies that
z6(P5) = −1.

Furthermore, let ρ denote the rotation by angle π/3 around the center of the hexagon.
Then

ρ : z6 7−→
cz6 + 1

−cz6 + c

for some zero constant c since ρ maps 1 to∞ and∞ to −1. In light of ρ2 : 0→ 1, we
conclude that c = 3 and

z6(U2) = 1/3, z6(U6) = −1/3.

It follows that z5 = Az6(1 − z2
6)/(1 − 9z2

6) for some A. This constant A has the
property that Ax(1− x2)− (1− 9x2) has repeated roots. We find A = ±3

√
−3. The
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choice of the sign must be synchronized with the choice of the third root of unity in the
relation between z4 and z5. This will be done later.

We now come to the more complicated part of the lemma. Let π : X6 → X4

be the covering of the Shimura curves. Let γ be an element of Γ5 not in Γ6. Then
γ normalizes both Γ4 and Γ6 and induces automorphisms ρ1 and ρ2 on X4 and X6,
respectively. We may assume that ρ2 = ρ2, where ρ permutes U1, . . . , U6 cyclically, as
defined in the previous paragraph. It is easy to check that π◦ρ1 = ρ2 ◦π. Thus, π(U1),
π(U3), and π(U5) are three different elliptic points on X4. We label them by S4, S′4,
and S′′4 , respectively. Let V1, V2 be the two ramified points lying above S4. Now there
are three possibilities

π−1(S4) = {U1, U2, V1, V2}, π−1(S4) = {U1, U4, V1, V2}, π−1(S4) = {U1, U6, V1, V2}.

We will show that the correct one is {U1, U4, V1, V2}.
Let V ′j = ρ2(Vj) and V ′′j = ρ2

2(Vj) for j = 1, 2. If π−1(S4) = {U1, U2, V1, V2},
then we have

z4 =
Bz6(1− 3z6)(z6 − z6(V1))4(z6 − z6(V2))4

(1 + z6)(1 + 3z6)(z6 − z6(V ′′1 ))4(z6 − z6(V ′′2 ))4

for some constant B. The values of z6(V1) and etc. must satisfy

Bx(1− 3x)(1− x/z6(V1))4(1− x/z6(V2))4

− (1 + x)(1 + 3x)(1− x/z6(V ′′1 ))4(1− x/z6(V ′′2 ))4

= C(1− x)(1− x/z6(V ′1))4(1− x/z6(V ′2))4

(6.7)

for some constant C. Now if we let p1(x) = 1 + ax + bx2 = (1 − x/z6(V1))(1 −
x/z6(V2)), then (1 − x/z6(V ′1))(1 − x/z6(V ′2)) and (1 − x/z6(V ′′1 )(1 − x/z6(V ′′2 ))
are scalar multiples of

p2(x) = (1 + 3x)2p1

(
x− 1

3x+ 1

)
= (1− a+ b) + (6− 2a− 2b)x+ (9 + 3a+ b)x2,

p3(x) = (1− 3x)2p1

(
x+ 1

1− 3x

)
= (1 + a+ b) + (−6− 2a+ 2b)z + (9− 3a+ b)x2,

respectively. Substituting these into (6.7) and equating the coefficients in the two sides,
we find A = B = 0, a = −2, b = −3, but obviously this is invalid. This means that
π−1(S4) 6= {U1, U2, V1, V2}. Likewise, π−1(S4) 6= {U1, U6, V1, V2}. Thus, we must
have π−1(S4) = {U1, U4, V1, V2}. Now equating the coefficients in the two sides of

Bx(1 + ax+ bx2)4 − (1− x)(1 + 3x)p2(x)4 = C(1 + x)(1− 3x)p3(x)4

and excluding the invalid solutions, we get the claimed relation between z4 and z6. The
relation between z3 and z5 can be determined by the known relation between z3 and z4,
that between z4 and z6, and that between z5 and z6. This process also determines the
choices of the third roots of unity in the relation between z3 and z4 and that between
z5 and z6. We omit the details.
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Lemma 6.3.4. The automorphic derivative Q(z6) = D(z6, τ) is equal to

15

64

(
1

z2
6

+
1

(1− z6)2
+

1

(1 + z6)2
+

1

(z6 − 1/3)2
+

1

(z6 + 1/3)2

)
+

45

128

(
1

1− z6
+

1

1 + z6
+

3

1− 3z6
+

3

1 + 3z6

)
.

(6.8)

Proof. By Proposition 4.1.2, the rational functionR(x) such that automorphicQ(z6) =
D(z6, τ) is equal to R(z6) is equal to

R(x) =
15

64

(
1

x2
+

1

(1− x)2
+

1

(1 + x)2
+

1

(x− 1/3)2
+

1

(x+ 1/3)2

)
+
B1

x
+

B2

x− 1
+

B3

x+ 1
+

B4

x− 1/3
+

B5

x+ 1/3

for some constants Bj satisfying

B1 +B2 +B3 +B4 +B5 = 0, B2 −B3 +
1

3
B4 −

1

3
B5 +

15

16
= 0. (6.9)

Now the normalizer of Γ6 in SL(2,R) contains at least the group of signature (2, 6, 8).
The factor group, in terms of the Hauptmodul z6, is generated by σ : z6 7→ (3z6 +
1)/(−3z6 + 3) and τ : z6 7→ −z6. By Proposition 4.1.5, R(x) satisfies

R(−x) = R(x),
144

(−3x+ 3)4
R

(
3x+ 1

−3x+ 3

)
= R(x).

Combining these informations with (6.9), we find

B1 = 0, B2 = B4 = − 45

128
, B3 = B5 =

45

128
.

This gives us the formula.

We now prove the theorem.

Proof of Theorem 6.3.1. By Proposition 2.7.2, we have

dimS6(Γ1) = 1, dimS6(Γ4) = 1, dimS6(Γ6) = 7.

By Theorem 6.1.1, the one-dimensional spaces S6(Γ1) and S6(Γ4) are spanned by

F1 = z
1/4
1 (1−z1)1/2

(
2F1

(
5

24
,

3

8
;

3

4
; z1

)
+ C1z

1/4
1 2F1

(
11

24
,

5

8
;

5

4
; z1

))6

(6.10)

and

F2 = z
1/4
4 (1− z4)1/4

(
2F1

(
1

8
,

3

8
;

3

4
; z4

)
+ C2z

1/4
4 2F1

(
3

8
,

5

8
;

5

4
; z4

))6

(6.11)
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for some complex numbers C1 and C2, respectively. Furthermore, by Theorem 4.1.3,
if we let

f1 = z
3/8
6

(
1− 15

7
z2

6 −
111

14
z4

6 −
2045

46
z6

6 −
11355195

39928
z8

6 −
77997477

39928
z10

6 − · · ·
)

f2 = z
5/8
6

(
1− 5

3
z2

6 −
245

34
z4

6 −
7269

170
z6

6 −
115223

408
z8

6 −
55230121

27880
− · · ·

)
be a basis for the solution space of the Schwarzian differential equation d2f/dz2

6 +
Q(z6)f = 0, where Q(z6) is the rational function in (6.8), then a basis for S8(Γ6) is

{zj6g : j = 0, . . . , 6}, g =
f1 + C3z

1/4
6

z2
6(1− z2

6)2(1− 9z2
6)2

.

Now from Lemma 6.3.3, we have

z1 =
12αz6(1− z2

6)(1− 9z2
6)

(1 + αz6)6

and

z4 = − 4(1 + β)4z6(1 + (−7 + 4β)z2
6/3)4

(1 + z6)(1− 3z6)(1 + (4 + 2β)z6 − (1 + 2β)z2
6)4

,

where α is a root of x2 + 3 = 0 and β is a root of x2 + 2 = 0. Substituting these into
(6.10) and (6.11) and comparing the coefficients, we find

F1 = c1(1 + 3z2
6)3g

and

F2 = c2

(
1 +
−7 + 4β

3
z2

6

)(
1 + (4 + 2β)z6 − (1 + 2β)z2

6

)
×
(
1− (4 + 2β)z6 − (1 + 2β)z2

6

)
g

for some constants c1 and c2. Taking the sixth roots of F1 and F2 and simplifying, we
obtain the identities claimed in the theorem.

Associated to this class, we also have the following identities.

Theorem 6.3.1. (1) Corresponding to the pair of (4, 6, 6) and (3, 3, 4) are the fol-
lowing identities

S1/8
2F1

(
5

24
,

3

8
;

3

4
;

4t

(t+ 1)2

)
= (1 + t)3/8

2F1

(
1

24
,

3

8
;

3

4
;

(28 + 16β)tR4

(1 + t)S3

)
,

S7/8
2F1

(
11

24
,

5

8
;

5

4
;

4t

(t+ 1)2

)
= R(1 + t)5/8

2F1

(
7

24
,

5

8
;

5

4
;

(28 + 16β)tR4

(1 + t)S3

)
,
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(2) Corresponding to the pair of (3, 8, 8) and (3, 3, 4) are the following identities

2F1

(
1

24
,

3

8
;

3

4
;

(28 + 16β)tR4

(1 + t)S3

)
= S1/8(1 + t)1/24

2F1

(
5

24
,

1

3
;

7

8
; t2
)
,

R2F1

(
7

24
,

5

8
;

5

4
;

(28 + 16β)tR4

(1 + t)S3

)
= S7/8(1 + t)7/24

2F1

(
1

3
,

11

24
;

9

8
; t2
)
,

(3) Associated to the groups (3, 8, 8), (4, 6, 6) are the following identities

2F1

(
5

24
,

3

8
;

3

4
;

4t

(1 + t)2

)
= (1 + t)5/12

2F1

(
5

24
,

1

3
;

7

8
; t2
)
,

2F1

(
11

24
,

5

8
;

5

4
;

4t

(1 + t)2

)
= (1 + t)11/12

2F1

(
1

3
,

11

24
;

9

8
; t2
)
,

where

R = 1 +
−17 + 56β

81
t2, S = 1 +

13 + 8β

3
t− 25 + 32β

9
t2 +

17− 56β

81
t3,

and β is a root of x2 + 2.

We remark here that these equalities can be deduced from the results described in
Theorem 6.3.1. The purpose of the following proving these identities is to demonstrate
the advantage of using Shimura curves in proving this kind of identities.

Proof. Let Γ1 = (4, 6, 6), Γ2 = (3, 8, 8), Γ3 = (3, 3, 4), Γ = (3, 4, 3, 4), and the
Hauptmoduls be denoted by

(4, 6, 6) (8, 3, 8) (4, 3, 3) (4, 3, 4, 3)
z1 z2 z3 t

where for (e1, e2, e3), we choose the Hauptmoduls such that the values at the vertices
e1, e2, e3 are 0, 1, and∞, respectively. For (3, 4, 3, 4), we assume that t takes value
1 at one of the elliptic point of order 3 and values 0 and ∞ the two elliptic points of
order 4, respectively.

Then we can find that t takes value −1 at the other elliptic point of order 3, and the
relations between these Hauptmoduls are

z1 =
4t

(1 + t)2
, z2 = t2, z3 =

4(7 + 4β)t
(

1 + −17+56β
81 t2

)4

(t+ 1)
(

1 + 13+8β
3 t− 25+32β

9 t2 + 17−56β
81 t3

)3 .

(6.12)
By Proposition 2.7.2, we have

dimS6(Γ1) = dimS6(Γ2) = dimS6(Γ3) = 1 and dimS6(Γ) = 3.
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Therefore, the space S6(Γ1) is spanned by

F1 = z
1/4
1 (1−z1)1/2

(
2F1

(
5

24
,

3

8
;

3

4
; z1

)
+ C1z

1/4
1 2F1

(
11

24
,

5

8
;

5

4
; z1

))6

(6.13)

for some constant C1; the space S6(Γ2) is spanned by

F2 = z
5/8
2

(
2F1

(
5

24
,

1

3
;

7

8
; z2

)
+ C2z

1/8
2 2F1

(
1

3
,

11

24
;

9

8
; z2

))6

(6.14)

for some constant C2, and the space S6(Γ3) is spanned by

F3 = z
1/4
3

(
2F1

(
1

24
,

3

8
;

3

4
; z3

)
+ C3z

1/4
3 2F1

(
7

24
,

5

8
;

5

4
; z3

))6

(6.15)

for some constant C3.
By Theorem 4.1.3, a basis for the space S6(Γ) is

{g, tg, t2g}, g =
(f1 + Cf2)6

t2(1− t)2(1 + t)2
,

for some constant C, where {f1, f2} is a basis for the solution space of the Schwarzian
differential equation d2f/dt2 +Q(t)f = 0 associate to t.

Note that for any element γ of Γ2 not Γ, we have the equality

t(γτ) = −t(τ).

From the information and Theorem 4.1.3, we can get

Q(t) =
15

64t2
+

2

9

(
1

(1− t)2
+

1

(1 + t)2
− 1

t− 1
+

1

t+ 1

)
.

Here, we choose a basis for the solution space of the Schwarzian differential equa-
tion d2f/dt2 +Q(t)f = 0 with t-series

f1 = t5/8
(

1− 16

81
t2 − 1168

12393
t4 − 99568

1673055
t6 − 1922128

45172485
t8 − 32018768

980508645
t10 − · · ·

)
,

f2 = t3/8
(

1− 16

63
t2 − 176

1701
t4 − 65008

1056321
t6 − 1792496

42101937
t8 − 254491952

7957266093
t10 − · · ·

)
.

After substituting (6.12) into (6.13), (6.14) and (6.15), one has

C6F1 =
√

2(1− t2)g,

C6F2 =tg,

C6F3 =
√

2(7 + 4β)1/4

(
1 +

(−17 + 56β)

81
t2
)
g.

(6.16)
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Simplifying the relations

(7 + 4β)1/4

(
1 +
−17 + 56β

81
t2
)
F1 = (1− t2)F3,

tF3 =
√

2(7 + 4β)1/4

(
1 +
−17 + 56β

81
t2
)
F2,

and
tF1 =

√
2(1− t2)F2,

we can get the identities described in the theorems.

6.4 Algebraic Transformations Associated to Class VI
According to Appendix A, the subgroup diagram for Takeuchi’s Class VI is

(2, 4, 5) (2, 4, 10)

(2, 5, 5) (4, 4, 5) (2, 10, 10)

(2, 2, 5, 5) (5, 10, 10)

(5, 5, 5, 5)

2

HH
HHHH6

��
����

2
2

HHH
HHH

6
2

���
���

2
2

2

�
���

�� 2

Let Γ1 = (2, 5, 5), Γ2 = (5, 10, 10), Γ3 = (5, 5, 5, 5), and X1, X2, X3 be the Shimura
curves associated to these three groups. (The reader is reminded that the subgroup
diagram should be read as “there are arithmetic Fuchsian subgroups of SL(2,R) such
that their subgroup relations are given by the diagram”.) The subgroups relations Γ3 <
Γ1,Γ2 admit Coxeter decompositions as the following figures show.

Here the small triangles are (2, 4, 5)-triangles. Associated to this triplet of groups is
the following identities.
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Theorem 6.4.1. We have

2F1

(
1

20
,

1

4
;

4

5
;

64z(1− z − z2)5

(1− z2)(1 + 4z − z2)5

)
= (1− z2)1/20(1 + 4z − z2)1/4

2F1

(
3

10
,

2

5
;

9

10
; z2

)
.

(6.17)

and

(1− z − z2)2F1

(
1

4
,

9

20
;

6

5
;

64z(1− z − z2)5

(1− z2)(1 + 4z − z2)5

)
= (1− z2)1/4(1 + 4z − z2)5/4

2F1

(
2

5
,

1

2
;

11

10
; z2

)
.

(6.18)

Proof. Label the elliptic points of Xj by P2, P5, P ′5 for X1, Q5, Q10, Q′10 for X2, and
Ri, i = 1, . . . , 4, for X3 such that the ramifications data are given by
R1 R3 S1 S3 R2 R4 S2 S4 R2 R4 R1 R3

P5 P ′5 Q5 Q10 Q′10

1 1 5 5 1 1 5 5 1 1 2 2

Here the numbers next to the lines are the ramification indices. We have omitted P2

from the diagram. There are 6 points lying above P2. Each has ramficiation index 2.
Choose Hauptmoduls zj for Xj by requiring

z1(P5) = 0, z1(P2) = 1, z1(P ′5) =∞, z2(Q10) = 0, z2(Q5) = 1, z2(Q′10) =∞

and
z3(R1) = 0, z3(R2) = 1, z3(R3) =∞.

The relation between z2 and z3 is easy to figure out. We have

z2 = z2
3 , (6.19)

which implies that z3(R4) = −1. To determine the relation between z1 and z3, we
observe that the tessellation of the hyperbolic plane by the (5, 5, 5, 5)-polygons has
extra symmetries by rotation by 90 degree around the center of any (5, 5, 5, 5)-polygon.
In terms of groups, this means that Γ3 has a supergroup Γ normalizing Γ3 such that
Γ/Γ3 is cyclic of order 4. (In fact, Γ is the (4, 4, 5)-triangle group in the subgroup
diagram.) Therefore, the automorphism group of X3 has an element σ of order 4 that
permutes R1, R2, R3, R4 cyclically. In terms of the Hauptmodul, we have

σ : z3 7−→
z3 + 1

z3 − 1
.

Thus, if the value of z3 at S1 is a, then we have

z3(S1) = a, z3(S2) =
a− 1

a+ 1
, z3(S3) = −1

a
, z3(S4) = −a+ 1

a− 1
.
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Therefore, the relation between z1 and z3 is

z1 =
Bz3(z3 − a)5(z3 + 1/a)5

(1− z2
3)(z3 − (a− 1)/(a+ 1))5(z3 + (a+ 1)/(a− 1))5

for some constant B. Moreover, the automorphism σ of X3 rotates 4 of the six points
lying above P2 cyclically and fixes the other two. (The reader is reminded that each
(5, 5, 5, 5)-polygon represents only half of the fundamental domain for Γ3. The two
fixed of σ are the centers of the (5, 5, 5, 5)-polygons.) In terms of the Hauptmodul z3,
this means that the values of z3 at the two fixed points of σ are ±i and if the value of
z3 at one of the other 4 points above P2 is b, then the values at the other 3 points are
−1/b, (b− 1)/(b+ 1), and −(b+ 1)/(b− 1). Thus, we have

z1 − 1 =
C(1 + z2

3)2(z3 − b)2(z3 + 1/b)2(z3 − (b− 1)/(b+ 1))2(z3 + (b+ 1)/(b− 1))2

(1− z2
3)(z3 − (a− 1)/(a+ 1))5(z3 + (a+ 1)/(a− 1))5

for some constant C. Comparing the two sides, we find a = 0,±1,±i, a2 +a−1 = 0,
or a2 − a− 1 = 0. The first five solutions are invalid. The other two solutions give

z1 =
64z3(1− z3 − z2

3)5

(1− z2
3)(1 + 4z3 − z2

3)5
(6.20)

or

z1 = − 64z3(1 + z3 − z2
3)5

(1− z2
3)(1− 4z3 − z2

3)5
. (6.21)

Both are valid because of the following reason. Notice that Γ2 normalizes Γ3. If we
take an element γ of Γ2 not in Γ3, then γ−1Γ1γ is again a triangle of signature (2, 5, 5)
containing the same Γ3. If the relation between the Hauptmoduls of Γ1 and Γ3 is
(6.20), then the relation between the Hauptmoduls of γ−1Γ1γ and Γ3 will be (6.21).

By dimension formula and Theorem 6.1.1, we have

dimS8(Γ1) = dimS8(Γ2) = 1, dimS8(Γ3) = 7,

and the one-dimensional space S8(Γ1) is spanned by

F1 = z
1/5
1

(
2F1

(
1

20
,

1

4
;

4

5
; z1

)
+ C1z

1/5
1 2F1

(
1

4
,

9

20
;

6

5
; z1

))8

(6.22)

for some constant C1, the function

F2 = z
3/5
2 (1− z2)1/5

(
2F1

(
3

10
,

2

5
;

9

10
; z2

)
+ C2z

1/10
2 2F1

(
2

5
;

1

2
;

11

10
; z2

))8

(6.23)
is contained in S8(Γ2) for some constant C2. To get a basis for S8(Γ3), we need to
work out the Schwarzian differential equation associated to z3. It is actually easy in
this case.

Here we use we use the automorphism of X3 coming from the normal subgroup
relation Γ3 C Γ1. Let γ be an element of Γ2 not in Γ3. We know that

z3(γτ) = −z3(τ).
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Now by Proposition 4.1.4 and Theorem 4.1.1, the function z′3(τ), as a function of
z3, satisfies

d2

dz2
3

f +Q(z3)f = 0,

where

Q(z3) =
6

25

(
1

z2
3

+
1

(1− z3)2
+

1

(1 + z3)2
+

1

1− z3
+

1

1 + z3

)
.

Thus a basis for the solution space of the Schwarzian differential equation d2f/dz2
3 +

Q(z3)f = 0 is given by

f1 = z
2/5
3

(
1− 4

15
z2

3 −
52

475
z4

3 −
13436

206625
z6

3 −
46348

1033125
z8

3 −
2024924

60265625
z10

3 − · · ·
)

f2 = z
3/5
3

(
1− 12

55
z2

3 −
28

275
z4

3 −
2708

42625
z6

3 −
393636

8738125
z8

3 −
7503908

218453125
z10

3 − · · ·
)
.

By Corollary 4.1.3,

g, z3g, z
2
3g, z

3
3g, z

4
3g, g =

(f1 + C3f2)8

z3
3(1− z3)3(1 + z3)3

,

form a basis for S8(Γ3) for some constant C3. That is, after substituting (6.20) and
(6.19) into (6.22) and (6.23), respectively, we have F1 = h1(z3)g and F2 = h2(z3)g
for some polynomials h1(x) and h2(x) of degree ≤ 4. Indeed, by comparing the
coefficients, we find

F1 = 26/5(1− z3 − z2
3)(1 + 4z3 − z2

3)g, F2 = z3g.

(It is easier if we take the 8th roots of the functions first.) Simplifying the relation
z3F1 = 26/5(1− z3 − z2

3)(1 + 4z3 − z2
3)F2, we get the two identities in the theorem.

This completes the proof.

6.5 Algebraic Transformations Associated to Other Classes
Note that the quaternion algebra in Class I is M(2,Q), so the Shimura curves are just
the classical modular curves. In this case, it is easier to use Fourier expansions of
modular forms and modular functions. We will not discuss this case.
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6.5.1 Classes II, V, and XII
The subgroup diagrams of Class II, V, and XII are all of the form

(2, 4, 2n)

(2, 2n, 2n) (4, 4, n)

(n, 2n, 2n) (2, n, 2, n)

(n, n, n, n)

��
��

2 HH
HH2

����
2 HHHH2

���� 2

H
HHH

2 �
��� 2

The subgroup relation (2, 2n, 2n) ∩ (4, 4, n) = (2, n, 2, n) is a special case of

(2, 2m, 2n)

(m, 2n, 2n) (n, 2m, 2m)

(m,n,m, n)

�
���

2 H
HHH2

HHHH
2 ���� 2

which arises from the Coxeter decompositions of a quadrilateral polygon that is sym-
metric with respect to both the diagonals as shown below

�
��

2 @
@@2

@
@@

2 �
�� 2

Associated to this family of subgroup relations is the following identity.

Theorem 6.5.1. For real numbers a and b such that neither b+ 3/4 nor 2b+ 1/2 is a
nonpositive integer, we have

(1+z)2a+2b
2F1

(
a+ b, a+

1

4
; b+

3

4
; z2

)
= 2F1

(
a+ b, b+

1

4
; 2b+

1

2
;

4z

(1 + z)2

)
in a neighborhood of z = 0.
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This identity can be easily proved using Kummer’s quadratic transformation. Al-
ternatively, one can verify that both sides are solutions of the differential equation

2z(1−z)(1+z)2F ′′−(1+z)((3−4b)z2+8(a+b)z−4b−1)F ′−(a+b)(1+4b)(1−z)F = 0.

and that the local behaviors at z = 0 agree. We omit the details.

6.5.2 Classes IV, VIII, XI, XIII, XV, XVII
The subgroups diagrams of Classes IV, VIII, XI, XIII, XV, and XVIII are either of the
form

(2, 3, 12n)

(3, 3, 6n) (3, 4n, 12n) (2, 6n, 12n)

(3, 3, 2n, 6n) (6n, 6n, 6n) (2n, 4n, 6n, 12n) (3n, 12n, 12n)

(2n
3
, 6n

3
) (3n

2
, 6n

2
) (n, 3n, 4n

2
, 12n

2
)

(1;n
2
, 2n

2
, 3n

2
, 6n

2
)

���
���

2
4

HHH
HHH

3

4

H
HHH

HH

�
���

��

H
HHH

HH

�
���

��

4

H
HHH

HH
2

HHH
HHH

3
4

HHH
HHH

2

���
���

2

HHH
HHH

���
���

2
4

HHH
HHH

2
4

���
���

2

or sub-diagram of it with Class XI having one extra node. There are two families of
essentially new identities associated to these classes. One corresponds to the pair of
(3, 3, 6n) and (3, 4n, 12n). (Theorem 6.5.2 below.) One corresponds to the pair of
(3, 4n, 12n) and (2, 6n, 12n). (Theorem 6.5.3 below.)

Theorem 6.5.2. For a real number a such that neither 3a+1 nor 2a+1 is a nonpositive
integer, we have

(1 + z)a+1/6(1− z/3)3a+1/2
2F1

(
2a+

1

3
, a+

1

3
; 3a+ 1; z2

)
= 2F1

(
a+

1

6
, a+

1

2
; 2a+ 1;

16z3

(1 + z)(3− z)3

)
in a neighborhood of z = 0.

Theorem 6.5.3. For a real number a such that neither 6a+1 nor 4a+1 is a nonpositive
integer, we have

(1− z)9a+3/4
2F1

(
4a+

1

3
, 2a+

1

3
; 6a+ 1;−27z2(1− z)

1− 9z

)
= (1− 9z)a+1/12

2F1

(
3a+

1

4
, a+

1

4
; 4a+ 1;− 64z3

(1− z)3(1− 9z)

)
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in a neighborhood of z = 0.

In principle, these two identities can be deduced from Kummer’s and Goursat’s
transformations, once the related Belyi functions are determined. Here we briefly indi-
cate how one can prove the theorems in the cases where the parameters correspond to
discrete Fuchsian groups using theory of automorphic forms.

Proof of Theorem 6.5.2 in the cases of Shimura curves. For the pair of (3, 3, 6n) and
(3, 4n, 12n), the subgroup relations admit Coxeter decompositions, as shown in the
figures

Here the parameter n in the figures is 1 and the smaller triangles are (2, 3, 12)-triangles.
Let Γ1 = (3, 3, 6n), Γ2 = (3, 4n, 12n), Γ3 = Γ1 ∩ Γ2, and let Xi, i = 1, . . . , 3 be the
associated Shimura curves. Denote by P3, P ′3, and P6n the elliptic points of orders 3,
3, and 6n on X1, by Q3, Q4n, and Q12n the elliptic points of orders 3, 4n, and 12n on
X2, and by R3, R′3, R2n, and R6n the elliptic points of order 3, 3, 2n, and 6n on X3.
The points are labelled in a way such that the ramification data are given by
R3 S1 R′3 S2 R2n R6n R3 R′3 R2n R6n

P3 P ′3 P6n Q3 Q4n Q12n

1 3 1 3 3 1 1 1 2 2

Choose Hauptmoduls zj on Xj , j = 1, 2, 3, by requiring

z1(P6n) = 0, z1(P3) = 1, z1(P ′3) =∞, z2(Q4n) = 0, z2(Q3) = 1, z2(Q12n) =∞

and
z3(R2n) = 0, z3(R3) = 1, z3(R6n) =∞.

It is easy to see from the ramification information that

z2 = z2
3 , (6.24)

which implies that z3(R′3) = −1. For z1, we have

z1 =
Az3

3

(1 + z3)(1− az3)3

for some complex numbers A and a, where 1/a is the value of z3 at S1. These two
numbers satisfy

1− Az3
3

(1 + z3)(1− az3)3
= 1− z1 =

(1− z3)(1− bz3)3

(1 + z3)(1− az3)3
, (6.25)
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where 1/b is the value of z3 at S2. Now observe that Γ3 is a normal subgroup of Γ2.
Thus, an element of Γ2 not in Γ3 induces an automorphism on X3. In terms of the
Hauptmodul z3, it is easy to see that this automorphism sends z3 to −z3. Since this
automorphism maps S1 to S2, we find b = −a. Then comparing the two sides of
(6.25), we get A = 16/27, a = 1/3, and

z1 =
16z3

3

(1 + z3)(3− z3)3
. (6.26)

Now by Proposition 2.7.2, we have

dimS6(Γ1) = dimS6(Γ2) = 1, dimS6(Γ3) =

{
2, if n = 1,

3, if n ≥ 2.

From now on, we assume that n ≥ 2.
By Theorem 6.1.1, the one-dimensional spaces S6(Γ1) and S6(Γ2) are spanned by

F1 = z
1−1/2n
1

(
2F1

(
1

6
− 1

12n
,

1

2
− 1

12n
; 1− 1

6n
; z1

)

+ C1z
1/6n
1 2F1

(
1

6
+

1

12n
,

1

2
+

1

12n
; 1 +

1

6n
; z1

))6 (6.27)

and

F2 = z
1−3/4n
2

(
2F1

(
1

3
− 1

6n
,

1

3
− 1

12n
; 1− 1

4n
; z2

)

+ C2z
1/4n
2 2F1

(
1

3
+

1

12n
,

1

3
+

1

6n
; 1 +

1

4n
; z2

))6

,

(6.28)

respectively, for some constants C1 and C2. Also, if we let f1 = z
1/2−1/4n
3 (1 +

c1z + · · · ) and f2 = z
1/2+1/4n
3 (1 + d1z + · · · ) be a basis of the solution space of

the Schwarzian differential equation d2f/dz2
3 +Q(z3)f = 0 associated to z3, then by

Theorem 4.1.3, S6(Γ3) is spanned by g, z3g, and z2
3g, where

g =
(f1 + C3f2)6

z2
3(1− z3)2(1 + z3)2

for some constant C3. Now we substitute (6.26) and (6.24) into (6.27) and (6.24),
respectively. We find

F1 = a1z
3−3/2n
3 + · · · , F2 = z

2−3/2n
3 + · · · ,

where a1 = (16/27)1−1/2n, and thus

F1 = a1z
2
3g, F2 = (z3 + a2z

2
3)g
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for some constant a2. That is, a1zF2/F1 = 1 + a2z3. We then take the 6th roots of
the two sides and compare the coefficients of z3/2−1/4n, we find that a2 is actually 0.
After simplifying, we arrive at

(1 + z)1/6−1/12n(1− z/3)1/2−1/4n
2F1

(
1

3
− 1

6n
,

1

3
− 1

12n
; 1− 1

4n
; z2

)
= 2F1

(
1

6
− 1

12n
,

1

2
− 1

12n
; 1− 1

6n
;

16z3

(1 + z)(3− z)3

)
.

This proves Theorem 6.5.2 in the case the parameters correspond to arithmetic triangle
groups.

Proof of Theorem 6.5.3 in the cases of Shimura curves. The subgroups (3, 4n, 12n), (2, 6n, 12n)
and their intersection admit Coxeter decompositions as the figures below show.

Here the parameter n in the figures is 1 and the small triangles are (2, 3, 12)-triangles.
Denote the groups (3, 4n, 12n), (2, 6n, 12n), and (2n, 4n, 6n, 12n) by Γ1, Γ2, and

Γ3, respectively. Label the elliptic points of (3, 4n, 12n) by P3, P4n, and P12n, those
of (2, 6n, 12n) by Q2, Q6n, and Q12n, and those of (2n, 4n, 6n, 12n) by R2n, R4n,
R6n, and R12n. The ramifications are shown as follows.

R2n R4n R6n R12n R2n R6n R4n R12n

P4n P12n P3 Q6n Q12n Q2

2 1 2 1 3 3 1 3 1 2 2

Choose Hauptmoduls zj for Γj , j = 1, . . . , 3, by requiring that

z1(P4n) = 0, z1(P3) = 1, z1(P12n) =∞,
z2(Q6n) = 0, z2(Q2) = 1, z2(Q12n) =∞,
z3(R2n) = 0, z3(R4n) = 1, z3(R6n) =∞.

It is easy to work out the relation between z1 and z3 and that between z2 and z3. They
are

z1 =
27z2

3(1− z3)

1− 9z3
, z2 = − 64z3

3

(1− z3)3(1− 9z3)
. (6.29)

Here 1/9 is the value of z3 at R12n. We then follow the same arguments as before to
obtain the claimed identities. We omit the details.

APPENDIX A. LIST OF ARITHMETIC TRIANGLE GROUPS
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In this section, we determine the signatures of the intersections of commensurable
triangle groups.

According to [21], there are totally 85 arithmetic triangle groups, falling in 19 dif-
ferent commensurability classes. Here we give the subgroup diagrams. Note that since
most groups here have genus 0, we omit the genus information from the signature, un-
less the group has a positive genus. Also, to save space, the notation (g; en1

1 , . . . , enr
r )

means that the Shimura curve has ni elliptic points order ei. Furthermore, for conve-
nience, we will often call the groups by their signatures, even though this raises some
ambiguity.

Remark 6.5.4. There is some ambiguity when we say “the intersections of commen-
surable triangle groups” because there may be more than one orders whose norm-one
groups have the same signature and the intersections of these groups with another
group may have different signatures. For example, in the case B = M(2,Q), the
subgroups Γ0(2) and Γ0(2) of SL(2,Z) have the same signature (0; 2,∞,∞) and the
group Γ0(4) has signature (0;∞,∞,∞). The intersection of Γ0(2) and Γ0(4) is just
Γ0(4), but the intersection of Γ0(2) and Γ0(4) has signature (0;∞,∞,∞,∞). Thus,
the subgroup diagrams described here should be read as “there are arithmetic groups
whose subgroup relations are given by the subgroup diagrams”.

Since it is not easy to describe explicitly the orders associated to arithmetic triangle
groups, here we use group theory and properties of discrete subgroups of SL(2,R) to
determine the signatures. We will work out the case of Class IV in [21] and omit the
proof of the others.

According to [21], Class IV of arithmetic triangle groups has the following sub-
group diagram.

(2, 3, 12)

(3, 3, 6) (3, 4, 12) (2, 6, 12)

(6, 6, 6) (3, 12, 12)

��
����

2
4

HH
HHHH3

HHH
HHH3

���
��� 2

HHH
HHH2

Here the numbers next to the lines are the indices. Set

Γ1 = (2, 3, 12), Γ2 = (3, 3, 6), Γ3 = (3, 4, 12),

Γ4 = (2, 6, 12), Γ5 = (6, 6, 6), Γ6 = (3, 12, 12),

and let Xi, i = 1, . . . , 6, denote the respective Shimura curves. To determine Γ2 ∩ Γ3,
we observe that Γ2 is a normal subgroup of Γ1 of index 2 and Γ1 = Γ2Γ3. Thus,
Γ2 ∩ Γ3 is a normal subgroup of Γ3 of index 2. Now the elliptic point of order 3 on
X3 must split into two points in X(Γ2 ∩ Γ3) because 2 - 3. Then from the Riemann-
Hurwitz formula, we see that the elliptic points of order 4 and 12 must be ramified.
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That is, the curve X(Γ2 ∩ Γ3) must have signature (2, 3, 3, 6). In fact, this can also be
seen from the following figures.

Here the smaller triangles are (2, 3, 12)-triangles. The figures show that the triangle
group (2, 3, 12) contains two subgroups of signatures (3, 3, 6) and (3, 4, 12), respec-
tively, whose intersection has signature (2, 3, 3, 6). (In fact, the theoretical argument
above shows that for any pair of subgroups of Γ1 with signatures (3, 3, 6) and (3, 4, 12),
respectively, the intersection must have signature (2, 3, 3, 6).)

Likewise, the figures

show that there are two subgroups of Γ1 of signatures (2, 6, 12) and (3, 4, 12) such that
there intersection has signature (2, 4, 6, 12). We have the following subgroup diagram.

(2, 3, 12)

(3, 3, 6) (3, 4, 12) (2, 6, 12)

(2, 3, 3, 6) (6, 6, 6) (2, 4, 6, 12) (3, 12, 12)

�
�����

2
4

H
HHHHH3

4

HH
HHHH

��
����

HH
HHHH

��
����

HH
HHHH2

4

Let Γ7 = (2, 3, 3, 6) and Γ8 = (2, 4, 6, 12) andX7 andX8 be their associated Shimura
curves. Again, because Γ5 is a normal subgroup of Γ4 of index 2 and Γ5Γ8 = Γ4, the
intersection of Γ5 and Γ8 is a subgroup of index 2 of Γ8. Now the group (2, 4, 6, 12) has
many subgroups of index 2. (The structure of the quotient group of (2, 4, 6, 12) over
its commutator subgroup is C2 × C4 × C6.) To determine which of them is contained
is the group (6, 6, 6), we use the following properties.

1. If p is an elliptic point of order e onX8, then its preimage in the coveringX(Γ5∩
Γ8) → X8 consists of either a single elliptic point of order e/2 or two elliptic
points of order e.
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2. The total branch number of any finite covering of compact Riemann surface is
always even.

3. The volume of X(Γ5 ∩ Γ8) is twice of that of X8. Thus, if (g; e1, . . . , er) is the
signature of X(Γ5 ∩ Γ8), then we must have

2g − 2 +
r∑
i=1

(
1− 1

ej

)
= 2

(
2− 1

2
− 1

4
− 1

6
− 1

12

)
= 2.

From these informations, we find that possible signatures of a subgroup of index 2 of
(2, 4, 6, 12) are

(1; 2, 3, 6), (0; 2, 62, 122), (0; 3, 42, 122), (0; 42, 63)

(0; 23, 3, 122), (0; 23, 63), (0; 22, 3, 42, 6).
(6.30)

Likewise, an elliptic point of order 6 on X5 can

1. splits into 4 elliptic points of order 6, or

2. splits into 2 elliptic points of order 3, or

3. splits into 1 elliptic point of order 3 and 2 elliptic point of order 6, or

4. splits into 1 elliptic point of order 2 and 1 elliptic point of order 6,

in the covering X(Γ5 ∩ Γ8) → X5 of degree 4. Also, the total branch number of
X(Γ5 ∩ Γ8)→ X5 must be a positive even integer and the volume of X(Γ ∩ Γ8) is 2.
We find the possible signatures of a subgroup of index 4 of Γ5 are

(0; 23, 63), (0; 22, 32, 62), (0; 2, 34, 6), (0; 36). (6.31)

From (6.30) and (6.31), we conclude that the signature of Γ5 ∩ Γ8 must be (0; 23, 63).
This can also be seen from the figures.

By the same argument, we can also show that the intersection of Γ6 and Γ8 must
have signature (0; 3, 42, 122) and the intersection of Γ5 and Γ6 has signature (0; 3, 3, 6, 6).
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The subgroup diagram becomes

(2, 3, 12)

(3, 3, 6) (3, 4, 12) (2, 6, 12)

(2, 3, 3, 6) (6, 6, 6) (2, 4, 6, 12) (3, 12, 12)

(23, 63) (32, 62) (3, 42, 122)

�
���

��

2
4

HHH
HHH

3

4

HHH
HHH

���
���

HHH
HHH

���
���

HHH
HHH

2
4

HHH
HHH

3
4

HHH
HHH

2
���

���

HH
HHHH

4

���
���

Finally, we can show that the only possible signatures of subgroups of index 2 in
(23, 63) are

(0; 26, 32, 62), (0; 24, 3, 64), (0; 22, 66), (1; 24, 33), (1; 22, 32, 62), (1; 3, 64), (2; 33),

while the only possible signatures of subgroups of index 2 in (3, 42, 122) are

(0; 32, 44, 62), (0; 2, 32, 42, 6, 122), (0; 22, 32, 124), (1; 22, 32, 62).

From these, we see that the common intersection of (23, 63), (3, 42, 122), and (32, 62)
has signature (1; 22, 32, 62). This completes the proof of the case of Class IV.

Remark 6.5.5. In literature [7], the decompositions of hyperbolic polygons shown in
the figures above are called Coxeter decompositions. In general, a Coxeter decompo-
sition is a decomposition of a polygon into finitely many Coxeter polygons such that
if two Coxeter polygons share a common side, then they are symmetric with respect to
the common side.

Note that not all subgroup relations given in Appendix A admit Coxeter decomposi-
tion. For example, in Class III, the group (2, 4, 8) is a subgroup of index 3 of the group
(2, 3, 8), but there is no way one can decompose a (2, 4, 8)-triangle into a union of
three (2, 3, 8)-triangles. In the case of Class IV discussed above, the subgroup relation
(23, 63) < (2, 3, 3, 6) does not admit a Coxeter decomposition either.

Now we give the subgroup diagrams for arithmetic triangle groups.
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Class II
(2, 4, 6)

(2, 6, 6) (3, 4, 4)

(3, 6, 6) (2, 2, 3, 3)

(3, 3, 3, 3)

���
2 HHH2

�
��
2 H

HH2

�
�� 2

HHH
2 ��� 2

Class III

(2, 6, 8) (2, 3, 8)

(4, 6, 6) (3, 8, 8) (3, 3, 4) (2, 4, 8)

(22, 43) (3, 4, 3, 4) (4, 4, 4) (2, 8, 8)

(46) (2, 4, 2, 4) (4, 8, 8)

? (4, 4, 4, 4)

?

2

H
HHHHH

2

��
����

10
2

H
HHHHH3∗

3∗
H
HHH

HH

2
2

�
���

��

10
3∗

�
���

��
2

2

HHH
HHH

2
3∗

�
���

��

10
2

����
��

2
2

2

���
����

10 2

���
���

2

2

���
����

10
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Class IV

(2, 3, 12)

(3, 3, 6) (3, 4, 12) (2, 6, 12)

(3, 3, 2, 6) (6, 6, 6) (2, 4, 6, 12) (3, 12, 12)

(23, 63) (32, 62) (3, 42, 122)

(1; 2, 2, 3, 3, 6, 6)

��
����

2
4

HH
HHHH
3

4

HH
HHHH

��
����

HH
HHHH

��
����

4

HH
HHHH
2

H
HHH

HH

3∗
4

H
HHH

HH
2

�
���

��

2
H
HHH

HH

�
���

��
2

4

HHH
HHH

2
4

���
���

2

Class V
(2, 4, 12)

(2, 12, 12) (4, 4, 6)

(6, 12, 12) (2, 2, 6, 6)

(6, 6, 6, 6)

�
��
2 H

HH2

�
��
2 H

HH2

��� 2

HHH
2 ��� 2

Class VI
(2, 4, 5) (2, 4, 10)

(2, 5, 5) (4, 4, 5) (2, 10, 10)

(2, 2, 5, 5) (5, 10, 10)

(5, 5, 5, 5)

2

H
HHH

HH6

�
���

��

2
2

HH
HHHH

6∗
2

��
����

2
2

2

���
��� 2
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Class VII
(2, 5, 6)

(3, 5, 5)

2

Class VIII
(2, 3, 10)

(3, 3, 5) (2, 5, 10)

(5, 5, 5)

�
�

��

2 Q
Q
QQ3

Q
Q
QQ

3 �
�

�� 2

Class IX
(3, 4, 6)

Class X

(2, 4, 7) (2, 3, 7) (2, 3, 14)

(2, 7, 7) (3, 3, 7) (2, 7, 14)

(1; 7, 7) (7, 7, 7)

(1; 76)

Q
Q
QQ

2 �
�
��

9 Q
Q
QQ8

�
�

�� 2

Q
Q
QQ3

Q
Q
QQ

8 �
�

�� 9

Q
Q
QQ3

�
�

�� 2

Q
Q
QQ3

�
�

�� 9
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Class XI
(2, 3, 9) (2, 3, 18)

(3, 3, 9) (3, 6, 18) (2, 9, 18)

(3, 3, 3, 9) (9, 9, 9) (3, 6, 9, 18)

(33, 93)

4

�
���

��

2
4

H
HHH

HH
3

4

H
HHH

HH

�
���

��

H
HHH

HH

�
���

��
4

HHH
HHH

3∗
4

���
���

2

Class XII

(2, 4, 18)

(2, 18, 18) (4, 4, 9)

(9, 18, 18) (2, 2, 9, 9)

(9, 9, 9, 9)

�
��
2 H

HH2

�
��
2 H

HH2

�
�� 2

HHH
2 ��� 2

Class XIII

(2, 3, 16)

(2, 8, 16) (3, 3, 8)

(4, 16, 16) (8, 8, 8)

(4, 4, 8, 8)

�
��
3 H

HH2

���
2 HHH2

��� 3

HHH
2 ��� 2

Class XIV
(2, 5, 20)

(5, 5, 10)

2
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Class XV

(2, 3, 24)

(3, 3, 12) (3, 8, 24) (2, 12, 24)

(3, 3, 4, 12) (12, 12, 12) (4, 8, 12, 24) (6, 24, 24)

(43, 123) (62, 122) (2, 6, 82, 242)

(1; 22, 42, 62, 122)

��
����

2
4

HH
HHHH
3

4

H
HHH

HH

�
���

��

H
HHH

HH

�
���

��
4

H
HHH

HH
2

HHH
HHH

3∗
4

HHH
HHH

2

���
���

2
HHH

HHH

���
���

2
4

HH
HHHH

2
4

��
����

2

Class XVI
(2, 5, 30)

(5, 5, 15)

2

Class XVII

(2, 3, 30)

(3, 3, 15) (3, 10, 30) (2, 15, 30)

(3, 3, 5, 15) (15, 15, 15) (5, 10, 15, 30)

(53, 153)

�
���

��

2
4

H
HHH

HH
3

4

H
HHH

HH

�
���

��

H
HHH

HH

�
���

��
4

HHH
HHH

3∗
4

���
���

2
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Class XVIII
(2, 5, 8)

(4, 5, 5)

2

Class XIX
(2, 3, 11)

109



Bibliography

[1] Montserrat Alsina and Pilar Bayer. Quaternion orders, quadratic forms, and
Shimura curves, volume 22 of CRM Monograph Series. American Mathematical
Society, Providence, RI, 2004.

[2] Pilar Bayer and Artur Travesa. Uniformizing functions for certain Shimura
curves, in the case D = 6. Acta Arith., 126(4):315–339, 2007.

[3] J. E. Cremona. Algorithms for modular elliptic curves. Cambridge University
Press, Cambridge, second edition, 1997.
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[9] Josep González and Victor Rotger. Non-elliptic Shimura curves of genus one. J.
Math. Soc. Japan, 58(4):927–948, 2006.
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[25] Raimundas Vidūnas. Algebraic transformations of Gauss hypergeometric func-
tions. Funkcial. Ekvac., 52(2):139–180, 2009.
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