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Full-Chip Thermal Analysis for the Early Design
Stage via Generalized Integral Transforms
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Abstract—The capability of predicting the temperature profile
is critically important for timing estimation, leakage reduction,
power estimation, hotspot avoidance and reliability concerns
during modern IC design. This paper presents an accurate and
fast analytical full-chip thermal simulator for early-stage tem-
perature-aware chip design. By using the generalized integral
transforms (GIT), an accurate formulation is derived to estimate
the temperature distribution of full-chip with a truncated set of
spatial bases which only needs very small truncation points. Then,
we develop a fast Fourier transform like evaluating algorithm to
efficiently evaluate the derived formulation. Experimental results
confirm that the proposed GIT-based analyzer can achieve an
order of magnitude speedup compared with a highly efficient
Green’s function-based thermal simulator. Finally, we propose
a 3-D IC thermal simulator and demonstrate its efficiency and
accuracy.

Index Terms—Circuit simulation, generalized integral trans-
forms (GITs), physical design, simulation, thermal analysis, 3-D
IC.

I. INTRODUCTION

HE power density of VLSI circuits increases monotoni-
T cally as the CMOS technology scales down. The power
dissipated by the circuits converts into heat. As a result, it raises
the temperature of dies and induces hot spots. These thermal-
related phenomena significantly degrade the performance and
reliability of circuits [1]-[16]. For example, the resistance of
copper interconnect increases 39% as the temperature rises from
20 °C to 120 °C, and the mean-time-to-failure of the intercon-
nect exponentially decreases as the temperature increases [1].
To precisely predict the thermal impacts on design performance,
an efficiently and accurately thermal analyzer is necessary in
the temperature-aware design flow because it is usually a part
of simulation kernel in the optimization loop and needs to be
executed numerous times.

The thermal simulators can be categorized into two classes,
numerical and analytical methods. The numerical methods use
the finite difference method or the finite-element method (FEM)
to transfer heat equations to resistance—capacitance (RC) net-
work equations. Based on the RC network equations, several
methods have been proposed to save the runtime. Wang et al.
[2] utilized the alternating-direction-implicit method to split the
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equivalent RC system into different alternating directions, and
alternately performed the line smooth scheme in each direction.
In [3], the model order reduction technique was employed to
improve the efficiency of transient analysis. Li ef al. [4] applied
the multi-grid method to speed up the convergence rate of itera-
tive methods, and developed an order reduction scheme to save
the runtime of dynamic thermal simulation. Because of the flex-
ibility for dealing with the complicated structure, the numerical
framework is the main stream in back-end design stages such as
the post layout thermal verification.

As pointed out in [1], [5], and [6], temperature-aware design
should be brought to early design stages such as thermal-aware
floor-planning and placement. To give a reasonably accurate
temperature prediction with little computational effort, [1] pro-
posed a compact thermal model which modeled the package and
interconnect layers as effective heat transfer coefficients for the
boundary conditions of die. With the modeled heat transfer co-
efficients for the heat sink, prelayout interconnect and package,
recently, an efficiently numerical thermal simulator developed
by Yong et al. [7] is very suitable for early temperature-aware
design stages. Because their simulator applies an adaptive dis-
cretization algorithm for spatial and temporal domains to ana-
lyze the temperature profile without degrading the accuracy, the
number of temperature variables and simulating time steps can
be significantly reduced.

The other category of thermal simulators being suitable for
early design stages is the analytical method. The primary ad-
vantage of analytical approaches is that they avoid the volume
meshing procedure of entire substrate, and have closed-form
representations for the temperature distribution of the entire die.
Hence, they are flexible to obtain the temperature distribution of
certain user-specified regions without performing the thermal
simulation for the entire die. Furthermore, based on the closed-
form representations, the fast temperature evaluation of the die
can be achieved for early design stages.

One analytical thermal solver is the Green’s function-based
method [6]. First, the steady-state Green’s function of chip with
a unity impulse power source is calculated. After that, its steady
state temperature distribution with arbitrary power source map
is got by taking the convolution of Green’s function and its
power density distribution with a table lookup method. To en-
hance the efficiency for lots of power sources, they used a series
of cosine waveforms to approximate the power density map, and
the temperature map of all grid cells were cast into the form of
discrete cosine transform (DCT). Although their computational
costis O(M N logy M N), where M and N are numbers of di-
visions in the power density map along - and y-directions, re-
spectively, they can only provide the steady state thermal simu-
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lation. However, the dynamic thermal analysis is also necessary
while performing the dynamic thermal management and run-
time thermal analysis [1], [4], [7]. Moreover, as indicated in [6],
a large number of truncation points for the Green’s function is
usually required to achieve an accurate solution.

To overcome these shortcomings, our major contributions are
as follows.

* Compared with a highly efficient Green’s function-based
method [6], we improve the bound of the error decaying
rate of analytical solution for the steady state temperature
distribution and provide a transient temperature simula-
tion by utilizing the generalized integral transforms (GITs)
[17]-[19] to construct a set of spatial bases and calcu-
late their time-varying coefficients. The proposed method
can accurately estimate the temperature distribution of full-
chip with very small truncation points (N, and N,) of spa-
tial bases. The experimental results presented in Section V
show that N, N, can be far less than M N without losing
any accuracy compared with [6].

* We develop a fast Fourier transform (FFT) like evaluating
algorithm to efficiently evaluate the temperature map of
all grid cells, and its computational cost is in the order
of O(MN log, NN, ), where N, and N, are truncation
points of bases in the z- and y-directions, respectively.

e We build an efficient 3-D IC thermal simulator by com-
bining the GIT and numerical schemes, and its efficiency
and accuracy are demonstrated by experimental results.
Moreover, this hybrid scheme can be used to get more ac-
curate temperature distribution with considering the dif-
ferent thermal conductivity of each stacked layer for the
primary and secondary heat flow paths.

This paper is organized as follows. First, the thermal model
for early design stages is presented in Section II. The GIT-based
computational formula for the full-chip thermal simulation and
the proposed evaluating algorithms are described in Section III.
After that, the hybrid scheme of GIT-based thermal simulation
method for the 3-D ICs and the package structures is addressed
in Section IV. Finally, the experimental results and conclusions
are given in Sections V and VI, respectively.

II. THERMAL MODELING FOR EARLY DESIGN STAGES

A compact thermal structure of the chip, as illustrated in
Fig. 1, can be used for early design stages. This model consists
of three portions [1]: the primary heat flow path, the secondary
heat flow path, and the heat transfer characteristic of each
macro/block on the silicon die. The primary heat flow path is
composed of thermal interface material, heat spreader and heat
sink. The secondary heat flow path contains interconnect layers,
input/output (I/O) pads and the print circuit board (PCB). The
functional blocks are modeled as many power generating
sources attached to a thin layer close to the top surface of die
with the thickness being equal to the junction depth.! The major
concerns of early-stage temperature-aware optimization proce-
dure are to reduce the temperature or the thermal gradient of
die. Here, we focus on estimating the temperature distribution.

Because major part of currents only passes through the channel, this approx-
imation is more reasonable than setting the power generating sources distributed
to the entire die.

Ambient Air

1/0 Pads & PCB

Interconnect Layers 2
w5

Thin layer with junction-
depth thickness Z
Thermal Interfage

Heat Spreader

Heat Sink —_—

Ambient Air

Fig. 1. Compact thermal model for early design stages.
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Fig. 2. Energy conservation law and the heat conduction equation. The
dE/dt is the energy change rate for the unit volume and is equal to
o AxAyAzdT/dt. The conduction heat flowing into the unit volume is equal
to the sum of ¢|., = —KkAYAzOT[0x|.,, qly, = —KAxAZIT [0yl
and q|., = —kAxAydT[/dz|.,. The conduction heat flowing outward the
unit volume is the sum of qlog+a. = —£AYA2OT/0%|ogtae, tlyo+ay =
—kAxAZOT[0Y|yg+ay, and q|.gya- = —kAxAYIT/0z|. 4a-. The
pAxAyAz is the energy generation rate of that unit volume. The « and o are
the thermal conductivity, and the product of the material density and the heat
in the unit volume, respectively. The p is the power consumption density of the
unit volume.

According to energy conservation law, the changing rate of
energy in a unit volume of substrate equals to the conduction
heat through the unit volume [17]. Fig. 2 illustrates this heat
conduction mechanism. Based on this heat conduction mech-
anism, the temperature 7,;(r, t) of die can be governed by the
following heat transfer equations [2], [4], [5], [7]:

(1) A5 = (6(T)VTatr, )
+p(r,t); reD (1)
() P 4y (e, 8) = o (1), @

Here, r = (z,y, 2), £(T4) is the thermal conductivity (W/m -°
C) of die, o(T}) is the product of the material density and the
specific heat (J/m® -° C) of die, p(r, ) is the power density of
heat source (W/m®), D = (0, L,) x (0, L,) x (—L.,0) is the
dimension of die, L, and L, are the lateral lengths of die, L.
is the thickness of die, b is any specific boundary surface of
the die, hy, is the heat-transfer coefficient on b, f3, (r) is an
arbitrary function on b, and 9/9dn;, is the differentiation along
the outward direction which is normalized to b;.
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To provide reasonable accuracy of the temperature estimation
with little computational effort during the early-stage temper-
ature-aware optimization procedures, heat-transfer coefficients
on the boundary surfaces of die should be appropriately mod-
eled [1]. Based on the model proposed by [1], the heat transfer
coefficients of primary heat flow path can be equalized to an
effective heat transfer coefficient h,, by combining the effect
of each component on the primary heat flow path. Since the
detailed layout of interconnects is not available in early de-
sign stages, each interconnect layer is modeled as an equiva-
lent thermal resistance based on the densities and the regularity
structure assumption of metal and dielectric material [1]. Fur-
thermore, the I/0 pads and PCB can also be modeled as an ef-
fective thermal resistance by using the technique proposed by
[20], [21]. With theses modeled thermal resistors, the technique
shown in [15] can be utilized to find the equivalent heat-transfer
coefficient h, of these successively connected thermal resis-
tors. After h, and h, have been obtained, f;_(r)’s for the top
and bottom surfaces are set to h,1, and —h,T,, respectively
[15], [20]. Here, T}, is the ambient air temperature. Because of
the chip and package structures, the area of vertical surface is
strictly less than the area of horizontal surface, and the thermal
conductivity of air is much less than the thermal conductivi-
ties of primary and secondary heat flow paths. Therefore, the
boundary condition of each vertical surface can be set to be adi-
abatic [6].

Generally, the values of (7T;) and o(7T,;) are temperature de-
pendent. The difference of peak temperature is about 5 °C be-
tween the result with temperature-dependent thermal parame-
ters and the result with constant thermal parameters at 25 °C
[7]. In current VLSI design, the on-die temperture can be in the
degree of 100 °C. Under this situation, this difference may lead
to about 5% error for the peak temperature of die. Since the ef-
fort to amend this error is relatively high,2 for practical purposes,
these thermal parameters are usually treated as appropriate con-
stants while performing temperature-aware floor-planning and
placement [5], [11]-[14].

The value of each thermal parameter can be found by ap-
plying a simplified 1-D thermal model shown in Fig. 3 to es-
timate the roughly average rising temperature of the die with
respect to the room temperature. After that, the thermal pa-
rameters are calculated at the average temperature. Please see
Section V-A for the detail of using 1-D thermal model. By using
these estimated thermal parameters, the error of peak tempera-
ture can be reduced.

With the above models, the heat diffusion equations for the
rising temperature, T'(r,t) = Ty(r,t) — T,, of die in early de-
sign stages can be rewritten as

8Té1; ) _ V2T (r,t) + p(r,t);r € D (3)
T (r,t) _ 0T(x.t) —0 @)
Ox r=0,L, 8y y=0,L,
T(r,
o IT(r,t) =h,T(x,y,—L-,t) (5)
0z z=—L,

2To calibrate the difference caused by the temperature-dependent issue of
thermal parameters, several iterative loops of the thermal simulation need to
be executed.

Ambient Air

cht Flow Path
Rp
Ambient Air

Fig. 3. Simplified 1-D thermal model for estimating the roughly average tem-
perature of die. The modeled thermal resistance network is shown in the right-
hand side. The values of thermal resistors are R, = 1/A4.h., R, = 1/A..h,
and Raie = D7 /kAa.. Tavg(2) is the average rising temperature with respect
to the room temperature 7, on the lateral planes at arbitrary z position of die.
Here, Ra;. can be viewed as a variable resistor when obtaining 7, g(:) at cer-
tain z position. Py is the total average power consummation of die. A . is the
cross area of die normal to the z-direction, and D is the thickness of die.

OT(r,t) B )
" 7 =0 - hsT(lv.@/;O;t). (6)

Here, k and o are the thermal conductivity, and the product of
the material density and the specific heat of die got by using the
roughly average temperature, respectively, and the initial condi-
tion 7'(r,0) = 0.

By discretizing the power generating source of die along the
z- and y-directions into M N grid cells, as shown in Fig. 1,
where M and N are numbers of divisions in x- and y-direc-
tions, respectively, the power density profile p(r,¢) in (3) can
be written as

r e Dp;
re D\ D,.
@)

p(r, 1) = {Z SN (DT ),

Here, D, = (0, L,)x (0, Ly) X (—3a4,0), ja is the junction depth
of device, Il,,,(z,y) is an indicative function with nonzero
value being 1 only when (z,y) is in [mAz, (m + 1)Az] x
[nAy, (n + 1)Ay], Ax = L,/M, Ay = L,/N, m and n are
indices of divisions, and p,,,(t) is the power density waveform
of grid cell (m, n) in the thin layer with thickness j4.

For the dynamic thermal simulation, p,,(t) is a user-speci-
fied time-interval function with the magnitude of each interval
being equal to the average power density of each time interval.
We should note that the thermal time constant of heat conduction
is much larger than the clock period of circuit [2], [16]. As indi-
cated in [16], the temperature takes at least 100 K cycles to rise
0.1 °C. Practically, the time interval specified by the user can
be much larger than the clock period of circuit. Moreover, when
calculating the steady state temperature, the input power profile
is usually set to the steady power profile (the average power pro-
file for a very long time period estimation) [1], [2], [4], [6], [7],
therefore, p.,.,(t) can be reasonably viewed as a step function
with the magnitude being equal to its average power density for
a long time period.
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appropriate ortho-normal :> calculate time varying :> formulas for average
bases for approximating coefficients by using temperatures of grid
temperature distribution Galerkin’s scheme cells

V4

Fast temperature evaluating algorithm

Perform the proposed 2D-
LTS-FFT to the power
density map of grid cells

Perform the proposed 2D-
STL-FFT to get the average
temperatures of grid cells

/
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Fig. 4. Executing flow of the proposed GIT-based thermal simulator.

With the previous discussion and governing (3)—(6), our goal
is to get the rising temperature distribution of the die corre-
sponding to the ambient temperature.

III. FULL-CHIP THERMAL SIMULATION

The executing flow of our GIT-based thermal simulator is
summarized in Fig. 4. After the chip geometry, package config-
uration and power density of grid cells are given, the compact
thermal model described in Section II is built.

Then, the GIT-based computational formulas for the full-chip
temperature distribution are derived. As shown in the first major
block (Computational formulas construction) of Fig. 4, three
steps are involved to construct the formulas. In the beginning,
a set of appropriate bases is generated by a system-compat-
ible auxiliary problem.3 After that, the temperature distribution
can be expressed by these bases with suitable time-varying co-
efficients. With the Galerkin’s scheme [17], [19], those time-
varying coefficients can be found by an uncoupled system for
estimating the temperature in the sense of least square residual
approximation. Finally, the calculating formula of the average
temperature for each specific grid cell is obtained by averaging
the temperatures in that grid area.

After the temperature computational formulas are derived,
we develop two efficient FFT like evaluating algorithms,
2D-LTS-FFT and 2D-STL-FFT, as shown in the second major
block (fast temperature evaluating algorithm) of Fig. 4, to get
the transformed coefficients for the power density map of grid
cells and the desired temperature distribution, respectively.

In reality, the leakage power of chip is temperature dependent.
Although our simulating flow does not include this issue, it can
be easily handled by combining the temperature-power iterative

3Several guidelines [17]-[19] need to be followed for choosing this auxil-
iary problem. First, the auxiliary problem should be as similar as possible to the
original problem. Second, the generated bases have to be completely ortho-nor-
malized to ensure the convergence in mean of the approximated temperature
distribution. Finally, the ortho-normal bases should be time independent for the
efficiency consideration.

framework [1], [7], [10] with the proposed algorithm, and the
detail is presented in Appendix III.

In the rest of this section, each sub-block of two major blocks
in Fig. 4, the error bound decaying rates of [6] and our GIT-
based formula for the average steady-state temperature distri-
bution, and the dynamic thermal simulation are discussed.

A. Auxiliary Problem for Generating Appropriate
Spatial Bases

The auxiliary problem can be introduced by considering the
homogeneous problem which the temperature distribution sat-
isfies (3)—(6) with p(r,t) = 0. As stated in [17]-[19], the aux-
iliary problem can be set to be the following Sturm—Liouville
problem with specific boundary conditions:

V2hiq(r) + )\?zqqu(r) =0;r = (v,y,2) €D ®)

Iitg(r) Dirg(r)
Cor T oy =0 ©
2 dy y=0.L,
0
K %(r) - = hpdig(z,y,—L.) (10)
i
" %(r) o = — hsdig(,y,0). (11)

The solutions of Sturm-Liouville problem form a set of com-
pletely ortho-normal spatial bases for the die, and the general
forms of ¢;;4(r) and A2 can be obtained as follows [17]:

ilg
Bitg (r) cos (1) cos () du(@) (12)
ilg(T) =
' Niig
Mg =22+ A0+ A2, (13)

where 4, [ and ¢ are non-negative integers, N;;4 is the normalized
value being equal to #;; L, L, N, 6loo = 1/2, 0,0 = 0p1 = 1/4,
0 = 1/8 with ¢ # O and [ # 0, )\3 = (iw/Lm)z, )\51 =
(Im/Ly)?

(hp+ X2, ) (i + L) + il
qu = A2
Zq

(14)

and

pg(x) = kcos (A, (z+ L)) + hy

X sin ()\Zq(z—i-Lz)). (15)

q
Here, each )\Zq is a positive value which satisfies
2y2 _
K /\zq hphs

m = cot (/\quz) .

(16)
To obtain each ). , we apply Newton-Raphson method [22]
to (16) with the initial guess of each ¢ being 7q/L. + 0.27 /L.,
because the period of the right hand side in (16) is equalto 7/ L.

Each ¢, (r) is called as an eigenfunction, A, is its eigen-
value, and )\92“ s )\12” ,and )\gq are eigenvalues in z-, y-, and z-di-
rections, respectively. The physical meaning of ¢;;,(r) is that it
presents the ilg'" free vibration with respect to the system de-
scribed by (8)—(16), and its vibration frequencies are A;,, Ay,
and A, in -, y-, and z-directions, respectively. The physical
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meaning of A\, o 1s that it presents the spectral magnitude of

Pitg(T).
B. System Transformation for Time-Varying Coefficients

Since the generated bases {¢;,(r)} are completely ortho-
normal in the spatial domain of die, T'(r, t) can be approximated
as the following finite integral transform pair [17]-[19]:

N.—1Ny—-1N,—-1

T(r,t) mT(r,t)= Y Z Z Witg(t)ditg(r) (17)
q=0 [=0 =
o L, L,
Yi1q () ///T t)pirg(r)dzdydz (18)
“L.0 0

where each 1;,4(t) is an unknown transformed time-varying co-
efficient, and IV, IV, and IV, are truncation points in z-, y-, and
z-directions, respectively.

After utilizing the energy conservation law and Diver-
gence Theorem [18], and executing a series of derivations,
the following uncoupled system is established to find each
time-varying coefficient function t;;4(t). The detail description
is shown in Appendix I

{ o1y (t) = —EX3itg () + Pitg (t)
¢Zlq( )

0<i<N,—1,0<I<N,—1,0<q<N.—1 (19)

where

0 LyL,
ﬁizq(t):///p(r,t)d)ilq(r)dxdydz. (20)
—ja 0 0

Since (19) is uncoupled for different “zlq”
be individually solved as

, each ;4 (t) can

t

1 2
d}ilq(t) = _/ﬁilq( )e g)‘zlq(t T)dT.
g

0

21

For the steady-state simulation, p.,,, (¢) is a step function with
its magnitude being equal to the average power density of grid
(m,n) for a long time period. Thus, ¢ is set to be infinity to find
the steady-state value of thiig(00) which is Pirg(00)/(kA7,)-
Therefore, the evaluation of steady-state temperature can be
done without any time step approaching.

C. Average Rising Temperature Evaluation of Grid Cells

Generally speaking, hot spots occur in regions which are
close to power sources. Hence, we focus on evaluating the
average temperature of each grid cell on the top surface (z = 0)
of die.# First, we present the formulation for calculating the av-
erage rising temperature of steady state and discuss its decaying
rate of truncation error. Then, the fast evaluating algorithms are
developed for realizing the formulation. Finally, the dynamic
thermal simulation is given.

4Our method can be used to find the average temperature of each grid cell at
arbitrary lateral plane of the die by substituting suitable z into the bases.

1) Steady-State Formulation: Plugging ¢ii,(r)’s and
d)ilq(oo)’s into (17), the average rising temperature T,n Of
steady state for each grid cell (m, n) on the top surface is

(n+1)Ay (m+1)Az

_ 1 T
mn — T ? 70. d d
AzAy (,y,0,00)dwdy
nAy mAz
—1N,-1
2 1 I (2 1
-3 S o (o ()
(22)
where
ﬁ ' e
K 27 Nitg —— g (0) 23)
q=0
rA).\T/QAy; 2207120
ilg
v x sin? (1=
w ; i=0,1#0
Cilg = y s;r’lg iz @9
17 e (), i#0.1=0
sin sin? (42
\ 16MNL, L12127r4(>\22M) (zN); i#0,1#£0
and
B fz NZ cos[(FCmADN  (Ir(2n+1)
= 2. 2 Pmn IM 2N
(25)
2K . i ]
I‘q:/\ cos (A, (Lz = ja/2)) sin (Az,ja/2)
2h, i
B E sin ()\zq(L - Jd/2)) sin ( zq]d/Z) (26)

where P, is the average power density of grid (m,n) for a
long time period, and M and N are numbers of divisions in the
z- and y-directions.

An error bound of T,,, calculated by (22) is given by
Theorem 1 in Appendix II. Based on Theorem 1, the error
decaying rate of (22) is dominated by i*I*X ((ir/Ly)* +
(Ir/L,)* + qu). To compare the previous error decaying
rate with the Green’s function based method’s [6], we set
the boundary conditions and power source location to be the
same with [6]. With these settings and Appendix II, the error
decaying rate of our GIT-based formulation is in the order of
P?1?((im [ Ly)? 4 (I | Ly)? + A2 ), and the error decaying rate
of [6] is in the order of i?I/(im /L,)? + (Ir /L,)?. Therefore,
the error decaying rate of the proposed GIT-based method is
faster than [6]. The reason is that the bases in z-direction of the
GIT-based method are different with [6], and our constructed
bases can fully fill the eigen-space of heat diffusion equation.
This fact leads to different coefficients in the approximating
form even if the bases in z- and y-directions of our GIT-based
method are the same with [6]. Furthermore, the error decaying
rate of the proposed GIT-based method is not only faster than
[6], the experimental results also show that it can maintain the
same accuracy as [6] even if its truncation points, N, and N,
are far less than the numbers of divisions, M and N.
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Length of column = N Length of column =N
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Fig. 5. Overview of using 2D-SLT-FFT and 2D-LTS-FFT to evaluate the av-
erage rising temperature of grid cells.

Although the truncation points N, IV, can be far less than the
number of grid cells M N, there is no actual efficiency improve-
ment over [6] if we directly apply the standard FFT to evaluate
each T,,,,,. The reason is that the standard inverse fast Fourier
transform (IFFT) needs to pad zeros to the input data when the
dimension of input data is less than the dimension of output data,
such as (22). Moreover, the dimension of output data in stan-
dard FFT is equal to the dimension of input data. However, the
dimension of output data in (25) is only N, N, which is far less
than its dimension of input data, M N. To overcome this limi-
tation, we develop FFT like fast evaluating algorithms for our
GIT formulation in the next subsection.

2) Fast Evaluating Algorithms for GIT Formulation: To ef-
ficiently realize our formulation for the steady-state tempera-
ture distribution, we first derive a one-dimensional radix-two-
based FFT like algorithm for the length of output data being
larger than the length of input data /D-STL-FFT. Then, based
on ID-STL-FFT, we develop a 1-D FFT like algorithm for the
length of output data being smaller than the length of input
data ID-LTS-FFT. Finally, we extend these 1-D algorithms to
two 2-D algorithms by the row-column procedure, and we call
them as 2D-STL-FFT and 2D-LTS-FFT. Finally, these two al-
gorithms are integrated to calculate (22) and (25). The compu-
tational complexity of our GIT-based thermal simulator can be
analyzed to be only O(M N log, N, Ny). The overview of the
previous evaluating algorithms are shown in Fig. 5. Given the
power density profile of chip, 2D-STL-FFT computes the trans-
formed coefficients of power density profile, and 2D-LTS-FFT
transforms these transformed coefficients to obtain the average
rising temperature of grid cells.

a) ID-STL-FFT: The prototype of 1D-STL-FFT is

M—1
Fr=Y_ fie®™* M =0, 2M -1

, 27
i=0

where M < M and both are power of 2, 7 = v—1, and fi’s
and F;.’s  are complex input and output data with lengths being
equal to M and M, respectively.

Because the length of F';’s is larger than the length of f;’s,
the zeros-padding step of f;’s like in the standard FFT algo-
rithm needs to be avoided for saving the runtime. Therefore, the

Algorithm Radix-two /D-STL-FFT
Input: Complex vector f lvith length M
Output: Complex vector F' with length 2M

1 Begin

2 fr = Revejse-bit( s

3 L=4M/M ;

4 NsubpFTs = M /2 ;

5 For SubIndex = 0to NsubprTs — 1
6 k =L X SubIndex ;

7 i =2 X SubIndex ;

8 For SubK =0to L — 1

9 F k] = frli] + frli + 1] x el2mxSubK/L
10 k=k+1;

11 EndFor

12 EndFor

13 Apply the bottom up procedure of standard FFT to execute the

Danielson-Lanczos Lemma log, M — 1 times for evaluating F’
14 End

Fig. 6. Procedure of ID-STL-FFT. The “Reverse — bit” means the re-
verse-bit algorithm [22].

I1D-STL-FFT algorithm shown in Fig. 6 is developed to calcu-
late (27) without the zeros-padding.

In the beginning, the “Reverse — bit(f)” reorders the input
data for those sub discrete Fourier transforms (DFTs) which will
be generated by recursively performing the Danielson—Lanczos
Lemma (DL-Lemma) [22] to the prototype of ID-STL-FFT in
(27). The DL-Lemma is used to rewrite the original DFT as
the sum of two sub DFTs with half output length. One of the
two is formed from the even-numbered points of the input data,
and the other is formed from the odd-numbered points. In this
step, the DL-Lemma is used recursively for these two sub DFTs.
Because ]\/IJS less than M, this bisectiyg, procedure is executed
only log, M times, and we have log, M bisecting levels.

After Line 2 in Fig. 6 is performed, the /D-STL-FFT algo-
rithm evaluates the output of those L sub DFTs in the bottom
level by using Lines 3 ~ 12, and performs Line 13 to get the
output of remaining levels. .

An example with M = 16 and M = 8 is given in Fig. 7(a).
There are three bisecting levels, and four sub DFTs in the bottom
level. After performing the reverse-bit algorithm to the input
data, two phases are executed. The first phase is done by using
Lines 3 ~ 12 of Fig. 6. The second phase is to get the output of
the remaining levels by executing the bottom up procedure of
standard FFT as stated in Line 13 of Fig. 6. .

The complexity of /D-STL-FFT is O(M log, M) since there
are log, M bisecting levels and each complexity is O(M).

b) ID-LTS-FFT: The prototype of 1D-LTS-FFT is

M-1
Fi — z : fm6j27”m/2M; j = 0,

m=0

M -1 (28)

where M < M, and fm and F; are real input and complex
output data with lengths being equal to M and M, respectively.

Applying the DL-Lemma to the prototype of /D-LTS-FFT for
generating log, (M /M) + 1 bisecting levels, F} can be written
as the sum of 2M /M sub DFTs. Each sub DFT has the same
form as the ID-STL-FFT with the lengths of input and output
being equal to M /2 and M, respectively.
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Fig. 7. Computational flow graphs of /D-STL-FFT and 1D-LTS-FFT with M =8and M = 16. (a) ID-STL-FFT. (b) ID-LTS-FFT. (c) 1D-LTS-FFT for negative

frequencies.

Algorithm Radix- two ID-LTS-FFT
Input: Real vector f with Iength M

Output: Complex vector F with length M
1 Begm
2 fR Reverse-bit( f)

3 Nsuwprrs = 2M/M ;

4 For Sub; =0 to Ngupprrs — 1
5 Start = Sub; X ]\7I ;

6 End = Start + M;

7 Fy (Start : End — 1) = ID-LTS-FFT(fr(Stert  Ead _ 1)),
8 EndFor

9 L=M,;

10 For level =0 to logz(M/M)

11 n=0;

12 Sub; =0 ;

13 NsubDFTs = NsubDFTs/2 3
14 While Sub; < N@beFTs

15 Fori=0to M —1;

16 * =i+ Sub; x M ;
17 Fyi +n] = Fy[i*] + Fy[i* + M] x e32mi/L |
18 EndFor

19 Subi = Subi +2;

20 n=n+ 1\71 ;

21 EndWhile

22 L=2xL;

23 EndFor

24 F=F(0:M-1);

25 End

Fig. 8. Procedure of /D-LTS-FFT.

Two phases are utilized to evaluate E-, and the ID-LTS-FFT
algorithm is shown in Fig. 8. First, Line 2 performs the re-
verse-bit algorithm to the input data, and Lines 4 ~ 8 use the
1D-STL-FFT algorithm to obtain each bisected sub DFT. After
each sub DFT has been done, a bottom up procedure is applied
to the remaining log,(M /M) + 1 bisecting levels for finding
F;, and the executing steps are from Line 9 to Line 24.

An example with M = 16 and M = 8 is shown in Fig. 7(b).
In the first phase, the input data are reordered by using the re-
verse-bit algorithm, and the reordered data are fed into the corre-
sponding /D-STL-FFT blocks. This can be done by using Lines
3 ~ 8 in Fig. 8. Then, the output of top block in the level 1 of
the second phase is calculated by

fvie — ﬁiee + ej27ri/16fvieo (29)

Algorithm Radix-two 2D-STL-FFT
Input: Complex matrix K with length N x Ny
Output: Complex matrix F' with length 2M X2N

1  Begin

2 Fori=0to Ny —1

3 Thow(i,0 : 2N — 1) = ID-STL-FFT(K (3,0 : Ny — 1)) ;
4 EndFor

5 Forj=0to 2N —1

6 F(0:2M —1,j) = ID-STL-FFT(TRow(0 : Nz — 1,5)) ;
7 EndFor

8 End

Fig. 9. Procedure of 2D-STL-FFT.

and ﬁf can be done by a similar way. Finally, ﬁ} is equal to

Fy = Ff + ™32 Fp. (30)
The second phase is summarized in Lines 9 ~ 24 of Fig. 8.

For the general case, the sub DFTs in each level of the second
phase can be obtained by combining those sub DFTs of their
previous level with the similar formula of (29) by replacing
16 to be 2' M, 2>M, - - -, 2M in each level. The computational
complexity of the first phase is O(M logy M) because the
ID-STL-FFT needi to be Agxecuted 2M/M times, and each
complexity is O(M log, M). The complexity is O(M) for
the second phase. Hence, the computational complexity of
ID-LTS-FFT is O(M log, M)

c) Temperature Evaluation: The average rising tempera-

ture of steady state shown in (22) can be got as

_ 1 — —
Tmn = §Re {Fm,n + FZI\J—(m+1),n} (31)
where R.{-} is the real part operator, and
71N ! 2mik j27lk
Fry ko = Z Z RKue e v (32)

Here, 0 < k; < 2M — 1,0 < ky < 2N -1, Ky =
K ei2mi/AM 52wl /AN and each K is equal to (23).

To obtain T',,,,,’s, the values of F'y, x,’s and K;;’s need to be
known.

To calculate Fkl,;w’s, a row-column-based 2D-STL-FFT
method is developed and shown in Fig. 9 by utilizing the
1D-STL-FFT algorithm. Lines 2 ~ 4 perform the /D-STL-FFT
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Input: Geometries of die and package, and related thermal parameters.
The steady power density of grid cells.
Output: The average steady-state rising temperature 7'y, for each
grid cell (m,n).
Pre-calculating stage
1. Set thermal parameters of die by using the roughly average
temperature obtained by the simplified 1-D model
described in section II.
2. Obtain the eigenfunctions and eigenvalues described in
section III-A.
3. Obtain Cj;4 and the summation term for each g in
equations (24) and (23), respectively.
Post-calculating stage
1. Obtain 1/52-1 by 2D-LTS-FFT discribed in section III-C.2,
and K;; in equation (23).
2. Obtain K;; in equation (32) and feed it into 2D-STL-FFT
described in section III-C.2. Then, apply equation (31) to
obtain Tyr,.

Fig. 10. Simulating algorithm of the proposed steady-state thermal simulator.

for each row of the input matrix K which each (i,[) entry is
K1, and Lines 5 ~ 7 apply the 1D-STL-FFT to each column
of the output matrix got from the row procedure for obtaining
the desired matrix F' which each (k1,k2) entry is Fp, k,.
The complexity for obtaining Fy, x,’s is O(M N log, N, Ny)
because the complexities of row and column procedures are
O(N,.N log, Ny) and O(N M log, N..), respectively.

To calculate each K;; from (23), ﬁil’s need to be known
from (25). Therefore, the 2-D prototype with the similar form
as (28) is needed to get related F;;’s for the input data being
Pmn’S. A row-column-based 2D-LTS-FFT algorithm can be
constructed by using the similar procedure shown in Fig. 9
with the ID-STL-FFT replaced by the ID-LTS-FFT. The
2D-LTS-FFT method is then used to get those related Fj ;’s.
However, (31) cannot beAutilized to calculate ﬁil’s because the
lengths of those related Fj ;’s in the row and column directions
are less than 2M and 2N, respectively. Therefore, the complex
conjugates of F;;’s are required to complete the calculation of
ﬁil’s.

Fortunately, the complex conjugate of the output from each

sub ID-STL-FFT in calculating F;;’s can be directly obtained
by reversing these sub DFTs. Therefore, the complex conjugates
of F\,L-J ’s can be got by reversing the data of F; in Line 7 of Fig. 8,
and performing Lines 9 ~ 24 in Fig. 8 during the row-column
procedure of F; ;’s.
__The complexity of row procedure for obtaining those related
F;;’s is O(MN log, N,) because the ID-LTS-FFT needs to
be executed 2M times. The complexity of column procedure
is O(NyM log, N,) because the /D-LTS-FFT needs to be ex-
ecuted IV, times. Hence, the complexity for obtaining F, 1’s s
O(MN logy N, N,). The complexity for calculating the com-
plex conjugates of ﬁ,;,l’s is O(MN) + O(N,M) since only
the second phase needs to be recomputed. Therefore, the com-
plexity for computing (25) is O(M N log, N, N,).

From the previous discussion, we conclude that
the complexity of our GIT based thermal simulator is
O(MN logy N, N,). Finally, the completely proposed
simulating algorithm is illustrated in Fig. 10.

3) Dynamic Thermal Simulation: While performing the dy-
namic thermal simulation, each p,,,(t) can be modeled as a

user-specified time interval function with the magnitude in each
interval being equal to the average power in each time interval.
By using (21), each time-varying coefficient ¢}, = i, (t) is

ﬁtl k2
Uhy = U+ g (1— BN 33
ilg

where At is the time step and is equal to the time interval of
power density waveforms, pY, o 18 equal to (20) with p(r,t) being
equal to the average power density profile in the time interval
(t — At t), and 95 2" = iy (t — At).

After 1j;,’s are calculated, the average temperature of each
grid cell at the sampling time ¢ can be obtained by (17) with the
same evaluating method presented in Section III-C2. In addi-
tion, applying (33) to compute each 1)}, o, Would not induce any
unstable issue with a large At because (33) is the exact solu-
tion of the system (19), i.e., without the error caused from finite
difference approximations such as the backward-Euler method,
the trapezoidal method and the Runge—Kutta method. Further-
more, since the thermal time constant of heat conduction is
much larger than the clock period of circuit [2], [16], the time
step At can be far larger than the clock period of the circuit to
save runtime with acceptable errors.

IV. THERMAL SIMULATION FOR 3-D ICs AND
PACKAGE STRUCTURES

3-D ICs provide several advantages over 2-D ICs [8]. They
provide the flexibility in system design, placement and routing,
the suitability for circuits operating on different supply voltages
and the capability of on-chip memory design. However, due to
the high power density and the ill capability of heat dissipation,
the thermal issue is one major concern for 3-D ICs.

Recently, the tradeoff between the circuit performance and
the thermal issue of early-stage 3-D ICs design has been studied
by estimating the uniform average temperature of each layer
[9], [10]. To take into the thermal issue account for early-stage
3-D ICs design, Cong et al. [11], [12] applied the 1-D thermal
model to predict the temperature cost for their floorplanning and
placement algorithms, Goplen et al. [13] applied the FEM-based
thermal simulator for their force-directed approach based stan-
dard cell placement method, and Balakrishnan et al. [14] uti-
lized the state-of-the-art numerical method provided in [2] to
obtain the temperature distribution as the cost function for their
global placement engine.

The 1-D thermal model can quickly capture the average tem-
perature of the region close to cells for each active layer but it
loses the spatial temperature gradient. The numerical method
needs to know temperatures of unnecessary sampling points,
such as the points being far from the region of devices, because
temperatures of sampling points depend on each other. To effi-
ciently obtain the nonuniform temperature distribution without
needing the temperatures of unnecessary sampling points, we
develop a fast 3-D IC thermal simulator by combining the GIT
and numerical schemes.

This hybrid scheme is developed for the structure of 3-D ICs
in Fig. 11 by using the effective heat transfer coefficients for
the primary and secondary heat flow paths. On the other hand,
although different materials in the primary and secondary heat
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Schematic diagram of a 3-D IC with N; chip layers.

Fig. 11.

flow paths of Fig. 1 are described by effective heat transfer co-
efficients for the fast temperature estimation, those materials
should be modeled as an inhomogeneous structure for the fur-
ther accuracy consideration. Since its structure is similar to the
multilayer structure of 3-D ICs, its inhomogeneity can also be
handled by the proposed 3-D IC thermal simulator.

As shown in Fig. 11, the structure of 3-D ICs is a multilayer
structure with stacking silicon and insulator layers one by one
[8]-[10]. The power sources are distributed in a thin layer close
to the top surface of each active silicon layer in the z-direction,
and each insulator layer consists of Cu, ILD and glue materials.
The heat transfer equations of 3-D ICs can be built by combining
the governing equations of each layer with suitable boundary
conditions. The heat diffusion equation inside each layer is sim-
ilar to (3) with their corresponding thermal parameters ¢ and
o¢. Here, ( is the layer index. The boundary conditions on the
lateral surfaces are flux isolated, and the boundary conditions
at z = —L. and z = 0 are convection types with equivalent
heat-transfer coefficients h, and h, for the primary and sec-
ondary heat flow paths, respectively. With the GIT technique,
the governing equations of 3-D ICs can be transformed into a
1-D subproblem by utilizing the following ortho-normal spatial
bases in the z- and y-directions

1T l7r_y
) COS(Lw)COS(Ly)

I\,
pi(z,y N

(34)

where N;; = pyL.Ly, poo = 1, pio = por = 1/2, and py =
1/4 with ¢ # 0, # 0. These ortho-normal spatial bases satisfy
the following 2-D Sturm-Liouville problem:

A?l¢il(x7y) = _v2¢il(x7 y)7 (‘I'?y) € DTy

where D, = (0,L,) x (0,L,) and A3 = A2 + X7 . The
boundary conditions of (35) are flux isolated and equal to (9)
with replacing ¢;;,4(r) by ¢u(z,y).

Since ¢;;(z,y)’s are ortho-normal spatial bases, the approx-
imated rising temperature f(r, t) can be expressed as

(35)

N,—1Ny—1

Z Zt/mztgbzz:vy)
=0 1=0

(36)

where each 1;;(z,t) is an unknown function, and needs to be
found.

Combining the interface conditions, the temperature conti-
nuity and the heat flux conservation law on the interface of two
different layers, performing Galerkin’s scheme along the z- and
y-directions, and using (35), each 1;;(z, t) can be got by solving
the following 1-D sub-problem:

82
o gy, 0) =i ez, 0=Vt
1/}il(2,t)|z:d2r = 1/}il(z7t)|z=d<_ (38)
a’l,b,l(z t) _ 81/)1'1(2,15)
B 0z e=d? e oz a=d; (39)
81/1il(z,t) _ )
T o - h5¢zl(07 t) (40)
My (z,t
KaN,—1 % =hptu(—=L.,1) 41
z=—L.

where ﬁil,((zv t) = fOLy fOLZ P¢ (Ia Yz, t)¢zl (1‘, y)dl'dy, C is
the layerindex and 1 < ( < 2N;—1, d, is the position of the (th
interface in the z-direction, p¢(z, y, z, t) is the power density in
the thin layer of the (th active silicon substrate and is equal to
zero as ( is even (insulator layer), and each v;;(z,0) = 0.

Though the ortho-normal spatial bases in the z-direction of
the above 1-D sub-problem can be analytically solved by the
sign-count method [17], or (37)—(41) can be directly solved by
[23], their computational effortsS are relatively high for the prac-
tical purpose. Hence, we adopt the numerical scheme to ob-
tain v;;(z, t) because its runtime is linear in the number of grid
points along the z-direction.

By discretizing this 1-D sub-problem along the z-direction,
the value of v;;(z, t) at each grid point in the z-direction can be
obtained by the following matrix equation:

Gil\I/il(t) + C\Ifil(t) = Pi[(t) (42)

where W;i(t) = [u(z0,1), - ir(zr,t), - Pu(za—1, )",

zr’s are positions of grid points in the z-direction,

zg = 0, za—1 = —L,, and A is the number of grid

points. The G;;’s and C are tri-diagonal and diagonal

matrices, respectively, and P;(¢) is equal to

[07"'7(])77?\1'1((117"')707 '707ﬁil(d37t)707 '707ﬁil(d2N1717t)7
., 0]".

When performing steady-state simulation, P;;(¢) is a con-
stant vector, and W%, () is a zero vector. Hence, ¥;;(o0) can be
obtained without the time step evaluation. Moreover, because
each Gy; is tri-diagonal, each ¥;;(c0) can be solved in linear

5The complexity of sign-count method [17] for obtaining the ortho-normal
spatial bases in the z-direction for each “#l” is proportional to “FLayers X

q_é\’ -1 K;14”. Here, N is the truncation number in the z-direction, and
K1, 1s the sign-count iterations for obtaining the eigenvalue A;;, of each ortho-
normal spatial basis. The complexity of using [23] to obtain the spatial bases
in the z-direction for each “il” is extremely high because it needs symbolic
expression for the determinant of a #Layers X #£Layers matrix and needs to
perform the inverse Laplace transform.
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Fig. 12. Accuracy and the maximum error trend of a test chip. (a) Floorplan; (b) geometries of the test chip; (c) power distribution; (d) the rising temperature
distribution of the top surface of the die; (e) the relative error distribution; and (f) the maximum relative error versus truncation point.

time. After solving W,;(00), the steady-state temperature of (36)
at any z position of grid point can be cast into the similar form
developed for 2-D ICs, and the proposed fast evaluating method
can be used to calculate the temperature.

The transient analysis can be done by performing the time
step evaluation to (42) for getting the value of U;;(¢) at each
time step, and then the proposed evaluating method is used to
calculate the temperature at each time step. Note that, each G,
wouldn’t change after functional blocks are replaced. Hence,
once the LU decompositions of Gy;’s are done, they can be
reused during the temperature-aware design flow.

V. EXPERIMENTAL RESULTS

We implement the proposed GIT-based thermal simulator and
the Algorithm II of a highly efficient Green’s function based
method [6] in C++ language. The state-of-the-art FFT package,
FFTW3 [24], is used to realize the DCT and IDCT for [6]. All
methods are tested on a HP xw9300 workstation with 16 GB
memory. The results are compared with a commercial compu-
tational fluid dynamic software ANSYS.

A. Accuracy and Fast Convergence of the GIT-Based Thermal
Simulator

A chip, DEC Alpha 21264 [25], is employed to demon-
strate the accuracy of our method, and its size is scaled down
to 3.3 mm x3.3mm X 0.5 mm for the 65-nm technology.
Its floorplan is shown in Fig. 12(a), and its die and package
geometries are shown in Fig. 12(b). The equivalent thermal
resistance of the package is set to be 45.5 °C/W [21].

The interconnect layer consists of 25% copper and 75% oxide
with the thickness being equal to 0.06 mm, and its effective
thermal conductivity is 101 W/(m-°C). The thickness of the
power source layer is set to be 20 nm which is the nominal
value of the device junction depth for the 65-nm technology
[26]. The equivalent heat transfer coefficient of the primary heat

flow path, h,, is 8700 W/(m? -° C) [6], and the equivalent
heat transfer coefficient of the secondary heat flow path, hg, is
2017 W/(m? -° C).

To appropriately set the thermal conductivity of die, we apply
the 1-D thermal model shown in Fig. 3 to compute the av-
erage temperature of die. To calculate the thermal resistance
R,, we apply the formula stated in [2], [15] to obtain R, =
1/(hpAg4.) = 10.55°C/W. Here, Ag. is the cross area of die
among the z-direction. The R; is equivalent thermal resistance
of the successively connected package and interconnect layers
which is equal to 45.52 °C/W. Initially, Rg;e is calculated by
using the thermal conductivity of die at the room temperature.
After thermal resistances R, R, and Rg;. are obtained, the av-
erage rising temperature 75y, of die is equal to

Tavg(0) + Tavg(=L2)
2

Tavg = 43)

where Tioyg (0) and Ty (— L) can be obtained by using the 1-D
thermal model.

The T,y got from (43) is the exact average rising tempera-
ture of die for its 1-D thermal model with given thermal resis-
tors. Once Ty, is calculated, Rg;e is reset by using the thermal
conductivity of die at T,y + 15. This calculating procedure
is repeated until T, converges. Here, the room temperature
T, is set to be 27 °C. With the above procedure, the average
temperature is 90.9 °C, the thermal conductivity of die is 113.5
W/(m -° C), and Rg;e = 0.4°C/W.

The top surface of die is divided into 128 x 128 grid cells
and the average power density profile is shown in Fig. 12(c).
The average steady state rising temperature distribution on the
top surface of the die computed by the proposed method with
the truncation points being 32 in each z-, y-, and z-direction is
shown in Fig. 12(d). The maximum relative error compared with
the result of ANSYS is 0.24%, and its relative error distribution
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Fig. 13. Power density and temperature distribution of a 1 cm X 1 cm chip with
one million functional blocks. (a) The power density distribution and (b) the
rising temperature distribution.

is shown in Fig. 12(e). The relative error of each grid cell (m, n)
is measured by
TANSYS _ 7

TANSYS (44)

-
where TANSYS is the average rising temperature of grid cell
(m, n) obtained by ANSYS. Note that, the T,,;(0) = 65.14°C
got by the 1-D thermal model is consistent with the T,z (0) =
65.15 °C got by the proposed GIT-based method. This verifies
the ability of 1-D thermal model for predicting the average tem-
perature of the entire die.

To further demonstrate our fast error decaying rate, we plot
the maximum relative errors with different truncation points in
Fig 12(f). The result shows that the proposed GIT-based ana-
lyzer can achieve an extremely accurate solution even when the
truncation points are very small.

B. Thermal Simulation for the Full-Chip Containing Lots of
Functional Blocks

To demonstrate the capability of the proposed GIT-based
method for the thermal simulation of full-chip with containing
lots of functional blocks and the efficiency improvement
over the Algorithm II of [6], a test chip with dimension of
Iecm x I ecm x 0.5 mm and one million functional blocks is
considered. The top surface of the chip is set to be adiabatic,
and the power sources are assumed to be attached on the top
surface of the die.6 The setting is consistent with the setting
in [6]. Fig. 13(a) shows the power density distribution of the
functional blocks in W/ cm”. The top surface of the chip is
divided into 1024 x 1024 grid cells. The truncation points of
our GIT-based method are 16 x 16 x 8 and the truncation points
of [6] are 2048 x 2048 to achieve the same maximum error
level. The average rising temperature distribution of the top
surface got by our GIT-based method is shown in Fig. 13(b),
and the maximum error is 0.3576% presented in Table 1.

The runtime comparison is shown in Table I. The runtime
of the post-calculating stage in our method is 0.1312 s while
the runtime of the post-calculating stage in [6] is 2.7642 s. The
speedup of our method over [6] is 21.07 at the post-calculating
stage. This result demonstrates the substantial efficiency im-
provement of our thermal analyzer over [6].

6The power sources which are attached on the top surface of the die can be
easily handled by deriving the integral transform pair with the assumption of
the plane-power density on the top surface of die. The general solution can be
found in [17]-[19].

TABLE I
ACCURACY AND RUNTIME COMPARISON OF THE PROPOSED GIT-BASED
METHOD AND ALGORITHM II OF [6]

Algorithm 1T of [6] | Our method

number of functional blocks 1 million
number of grid cells 220
number of bases 222 211
maximum error (%) 0.4143 0.3576
runtime | pre-calculating 2.47850 0.00005

(sec) post-calculating 2.7642 0.1312
speedup (post-calculating) 21.0686

C. Accuracy and Efficiency of the GIT-Based Thermal
Simulator for the 3-D IC Thermal Analysis

To demonstrate the accuracy of our GIT-based thermal sim-
ulator for 3-D ICs, three chip layers are stacked and the power
sources are distributed in three thin layers with the thickness
being equal to the device junction depth. The lateral dimension
of each chip layer is 3.3 mm x 3.3 mm. The thicknesses of insu-
lator and silicon layers on both top and middle chips are scaled
down to 15 and 10 pum, respectively. The thicknesses of insu-
lator and silicon layers (including the substrate) for the bottom
chip are 15 and 500 pm, respectively. The thermal parameters
of each layer are referred to [9]. The top surface of each sil-
icon layer is divided into 128 x 128 grid cells. The truncation
point is 32 in each x- and y-direction, and the number of sam-
pling points in the z-direction is 10 for each layer. Comparing
with the result of ANSYS, our maximum error is 0.24% which
demonstrates the accuracy of our method for 3-D ICs.

To show the efficiency of our GIT-based method for the cell-
level thermal analysis in 3-D ICs, the top surface of each silicon
layer is divided into 1024 x 1024 grid cells to mimic 1.05 mil-
lion power sources. The truncation point and the number of sam-
pling points in the z-direction are the same as the case of 128 x
128 grid cells. The average power density profile of each silicon
layer is shown in Fig. 14(a), (c), and (e). The estimated average
steady state rising temperature distribution on the top surface
of each silicon layer is shown in Fig. 14(b), (d), and (f) from
the top layer to the bottom layer. The runtime of our GIT-based
method is 0.031 s for the pre-calculating stage (including the LU
decomposition of each tri-diagonal matrix Gy;). The runtime of
the post-calculating stage is only 0.48 s (including 0.016 s for
calculating each U;;(c0)).

VI. CONCLUSION

An accurate and efficient GIT-based thermal simulator has
been presented. Experimental results confirm its theoretical
property which can achieve accurate results with sufficiently
small truncation points. The proposed algorithm only takes
0.13 s for a chip with one million functional blocks and over
one million grid cells, and 0.48 s for a 3-D IC with 3.146
million grid cells in the post-calculating stage to achieve ac-
curately steady state temperature distribution. Therefore, the
proposed GIT-based thermal simulator is very suitable for the
thermal-aware design flow.



624 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 17, NO. 5, MAY 2009

Power Density (KW/mm )

8
8
g

N
2
g

»
2
g

Rising Temperature (°C)
o
&

Rising Temperature (°C)

°

(@

Power Density (KW/mm®)

Power Density (KW/mm®)

Fig. 14. Power density and temperature distribution of a test 3-D chip. (a)—(c) The power density distribution on the top surface of the top, middle, and bottom
silicon layers, and (d)—(f) the temperature distribution on the top surface of the top, middle, and bottom silicon layers.

APPENDIX [
DERIVATION OF TIME-VARYING COEFFICIENTS FOR THE
APPROXIMATED TEMPERATURE

To derive the uncoupled first-order differential (19) for each
thi1q(t), both sides of (3) are multiplied by ¢;,(r) and integrated
over the region D of the die. After that, we have

/ A2T(x, )ity (r)dv = Z / T(r, )qszzq( )dv

K

zl»—‘

/p r,t)pig(r)dv  (45)

D

where [,()dv = [, fo fo Sdzdydz.
The inward and outward flows of (45) must be balanced to

satisfy the energy conservation law. Therefore, by applying the
Divergence Theorem [18] to the left-hand side of (45), we have

1)
o ds

/ AT (v, t)pirg(r)dv = / pi1g (1) OT(r,t
fren

where [ (- 5(+)ds is the surface integral of the boundary surface
union S of the die, and 9/0n is the normal derivative on S in
the outward direction.

By applying the Divergence Theorem to the second term in
the right side of (46), we have

- Vig(r)dv (46)

/VT £ 1) - Ve (r )dv—/ T(r ,t)%;—;(r)ds

/ T(e,6)V2 g (£)dv. (47)

D

Inserting (47) into (46), and then putting the result into (45), we

have
o [ EED g3 [ 760,05 b

. wwi e 2],
+ [ plr g (48)

By plugging (8), (18), (4)—(6), and (9)—(11) into (48), we have
the uncoupled first-order differential (19) for each v;14(t).

APPENDIX 11
ERROR BOUND ANALYSIS OF THE GIT-BASED STEADY-STATE
TEMPERATURE FORMULATION

To proceed the error bound analysis of the GIT-based steady-
state temperature formulation stated in Section III-C1, the fol-
lowing lemma is introduced.

Lemma 1: The magnitude of each time-varying coefficient

[i14(00)] at the steady state is bounded by
(2ialr (L ﬂ) . . B
N2 ky/Nitg \ Az + a )i i=0,0=0
ey (L 5 ) = 0,10
(o)) < 4 P/ Ry PR ) =007
T s (s i) iA0d=0
i)\?lqnﬂ—\/m Azq )\gq ! )
8MNj P p o
\W&T(Eﬁ'ﬁ), i#0,0l#0
T ;
(49)

where Pr is the total steady power consumption of die and j4
is the junction depth of device.

Since the time domain waveform of steady power profile can
be treated as a step function, Lemma 1 can be easily proved by
plugging (12) and (20) into (21), setting ¢ to be infinity and with
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several manipulations. With Lemma 1, an error bound of the GIT
based formulation is given by the following theorem.

Theorem 1: The absolute error of average steady state tem-
perature for each grid cell (m,n) by using the GIT-based for-
mulation with truncation points of N, NV, and N in z-, y-, and
z-directions is bounded by

061%1 aﬂq 043%1 Q4Yq
> + D met X pe
(i,l,q)eslt Alig (i.q)€Ss " Alog lq)essl Olq q€ /\(‘;Og)
where
1 } kA2 + h2
Vo= — (42| P
Az, Az, mgq — hphs
and S7 = [1, N,] x (N, 00) X [0,00) U (N, 00) x [1, N,]x

[0,00)U[L, N x[1, Ny] X (N, 00), Sz = [1, Ny] x (N, 00)U
(N, 00)%x[0,00), 83 = [1, N;] x (N, 00)U(N,, 00) x [0, 00),
Sy = (N.,00), a1 = 256M2N2deT/(anLyLz7r4), oy =
32M?jaPr[(kLy Ly L.77), ag = 32N?j4Pr [ (KL, Ly L.7*),
Qg = 4JdPT/(KfLmLyLz)

Proof: Aspointed outin [18] and [19], (17) is convergent in
mean when truncation points are infinities. Hence, the absolute
truncation error is bounded as

|€mn (2, 00)]
1/ ( ) (n+1)Ay (m+1)Az
Dilg\ 00
< — y 1
< Z Acdy / . ¢ig(r)dedy|  (51)
(4,1,9)¢S nAy mAx
where S = [0, N,] x [0, N,] x [0, N.]. Plugging (12) into (51),

utilizing Lemma 1 and with several manipulations, we can get
the error bound (50). [ ]

Since the decaying rate of v, is dominated by 1/X._, the
error decaying rate of the GIT-based steady-state temper-
ature formulation stated in Section III-C1 is dominated by
PPN, ((im )Ly )? 4 (Im/Ly)* + A2).

To compare the error bound of the GIT-based formulation
with the error bound of [6] under the same boundary conditions
and the plane-power source assumption, the error bound (50)
can be simplified to

2222+Z 22+222 Za4

(i,,9)€S1 Allg (i,0)€S> Alog (L,g)€Ss Ay 43, Abog

(52)
where o = 128M2N2PT/(LmLyLzmr4), oo =
16M?Pr/(kLyLyL.7%), a3 = 16N?Pr/(kL,L,L,w?), and
Qg = 2PT/(I'€LTLyLZ)

The previous result shows that the error decaying
rate of our GIT-based method can be in the order of
i212((im /Ly )? + (Im/Ly)? + /\gq).

On the other hand, the error bound of the Green’s function-
based method shown in [6] can be similarly derived as

& & B
Z # Z ;22 Z 125.

. 2
@neB, | eBya=o UV i—guem, U

(53)

GIT Thermal Simulator Power Density Calculator

Y

1. Obtain P, by 2D-LTS
-FFT

2 Obtain K+/K ., and solve |g
T, by 2D-STL-FFT B

Calculate Pn by using T,
which has been obtained
by GIT Thermal Simulator

Fig. 15. Temperature-power iterative framework for dealing with the tempera-
ture dependence issue of leakage power.

where vy = /(ir/L,)*+ (Ir/L,)?, By = (N,,00) x
(Ny700) BQ = (Nz,OO), Bg = (Ny,OO), ﬂl =
64M2N?Pr/(LyLykm?*), (2 8M?2Pr/(LyLykm?), and
/33 = 8N2PT/(LzLyIi7T2).

This bound shows that the error decaying rate of the
Green’s function based method [6] is in the order of

202\ /(im [ L )2 + (In ] Ly)2.

APPENDIX III
EXTENSION OF GIT FOR THE TEMPERATURE-DEPENDENCE
ISSUE OF LEAKAGE POWER

By utilizing the temperature-power iterative frameworks [1],
[7], [10], the proposed GIT-based method can be extended to
consider the temperature-dependence issue of leakage power,
as shown in Fig. 15. In the beginning, the power density profile
is calculated at the room temperature and is immediately up-
dated by applying the temperature-power iterative framework
to the 1-D thermal model of the chip before carrying out the
detail thermal simulation. Then, the temperature-power itera-
tive framework is executed by recursively using the GIT thermal
simulator and the power density calculator until they converge.
Here, the precalculating stage only needs to be done once since
it is independent of the power density profile.

Remarks: By integrating (17) from z = —j45 to z = 0 and
converting the result to the form which is suitable for performing
2D-STL-FFT, a more accurate temperature estimation can be
obtained. However, the difference between the top surface tem-
perature distribution and the average temperature distribution
for the power source layer is very small because the thickness
of power source layer is very small.

ACKNOWLEDGMENT

The authors would like to thank the National Center for High-
Performance Computing of Taiwan for the computer time and
facilities.

REFERENCES

[1] W. Huang, S. Ghosh, S. Velusamy, K. Sankaranarayanan, K. Skadron,
and M. R. Stan, “HotSpot: A compact thermal modeling methodology
for early-stage VLSI design,” IEEE Trans. Very Large Scale Integr.
(VLSI) Syst., vol. 14, no. 5, pp. 501-513, May 2006.

[2] T.-Y. Wang and C. C.-P. Chen, “Thermal-ADI: A linear-time chip-
level thermal simulation algorithm based on alternating-direction im-
plicit (ADI) method,” IEEE Trans. Very Large Scale Integr. (VLSI)
Syst., vol. 11, no. 4, pp. 691-700, Aug. 2003.

[3] T.-Y. Wang and C. C.-P. Chen, “SPICE-compatible thermal simulation
with lumped circuit modeling for thermal reliability analysis based on
model reduction,” in Proc. Int. Symp. Quality Electron. Des., 2004, pp.
357-362.



IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 17, NO. 5, MAY 2009

[4] P. Li, L. T. Pileggi, M. Asheghi, and R. Chandra, “IC thermal simu-

lation and modeling via efficient multigrid-based approaches,” IEEE

Trans. Comput.-Aided Des. Integr. Circuits Syst., vol. 25, no. 9, pp.

319-326, Sep. 2006.

J.-L. Tsai, C. C.-P. Chen, G. Chen, B. Goplen, H. Qian, Y. Zhan,

S.-M. Kang, M. D. F. Wong, and S. S. Sapatnekar, “Tempera-

ture-aware placement for SOCs,” Proc. IEEE, vol. 94, no. 8, pp.

1502-1518, Aug. 2006.

[6] Y. Zhan and S. S. Sapatnekar, “High efficiency Green function-based

thermal simulation algorithms,” IEEE Trans. Comput.-Aided Des. In-

tegr. Circuits Syst., vol. 26, no. 9, pp. 1661-1675, Sep. 2007.

Y. Yang, Z. Gu, C. Zhu, R. P. Dick, and L. Shang, “ISAC: Integrated

space-and-time-adaptive chip-package thermal analysis,” IEEE Trans.

Comput.-Aided Des. Integr. Circuits Syst., vol. 26, no. 1, pp. 86-99,

Jan. 2007.

K. Banerjee, S. J. Souri, P. Kapur, and K. C. Saraswat, “3-D ICs: A

novel chip design for improving deep-submicrometer interconnect per-

formance and systems-on-chip integration,” Proc. IEEE, vol. 89, no. 5,

pp. 602-633, May 2001.

[9] G. L. Loi, B. T. Agrawal, N. Srivastava, S.-C. Lin, T. Sherwood, and
K. Banerjee, “A thermally-aware performance analysis of vertically
integrated (3-D) processor-memory hierarchy,” in Proc. Des. Autom.
Conf., 2006, pp. 991-996.

[10] H.Hua, C. Mineo, K. Schoenfliess, A. Sule, S. Melamed, R. Jenkal, and
W. R. Davis, “Exploring compromises among timing, power and tem-
perature in three-dimensional integrated circuits,” in Proc. Des. Autom.
Conf., 2006, pp. 997-1002.

[11] J. Cong, G. Luo, J. Wei, and Y. Zhang, “Thermal-aware 3D IC place-
ment via transformation,” in Proc. Asia South Pacific Des. Autom.,
2006, pp. 780-785.

[12] J. Cong, J. Wei, and Y. Zhang, “A thermal-driven floorplanning algo-
rithm for 3D ICs,” in Proc. Int. Conf. Comput.-Aided Des., 2004, pp.
306-313.

[13] B. Goplen and S. Sapatnekar, “Efficient thermal placement of standard
cells in 3D ICs using a force directed approach,” in Proc. Int. Conf.
Comput.-Aided Des., 2003, pp. 86-89.

[14] K. Balakrishnan, V. Nanda, S. Easwarm, and S. K. Lim, “Wire con-
gestion and thermal aware 3D global placement,” in Proc. Asia South
Pacific Des. Autom., 2005, pp. 1131-1134.

[15] Y.-K. Cheng, P. Raha, C.-C. Teng, E. Rosenbaum, and S.-M. Kang,
“ILLIADS-T: An electrothermal timing simulator for tempera-
ture-sensitive reliability diagnosis of CMOS VLSI chips,” IEEE Trans.
Comput.-Aided Des. Integr. Circuits Syst., vol. 17, no. 8, pp. 668-681,
Aug. 1998.

[16] K. Skadron, M. R. Stan, K. Sankaranarayanan, W. Huang, S.
Velusamy, and D. Tarjan, “Temperature-aware microarchitecture:
Modeling and implementation,” ACM Trans. Arch. Code Opt., vol. 1,
no. 1, pp. 94-125, Mar. 2004.

[17] M. D. Mikhailov and M. N. Ozisik, Unified Analysis and Solutions of
Heat and Mass Diffusion. New York: Wiley, 1983.

[18] N.Y.Olcer, “On the theory of conductive heat transfer in finite region,”
Int. J. Heat Mass Transfer, vol. 7, pp. 307-314, 1964.

[19] M. D. Mikhailov, “General solutions of the heat equation in finite re-
gions,” Int. J. Eng. Sci., vol. 10, pp. 577-591, 1972.

[5

—_

[7

—

[8

—_—

[20] J. Parry, H. Rosten, and G. B. Kromann, “The development of compo-
nent-level thermal compact models of a C4/CBGA interconnect tech-
nology: The Motorola PowerPC 603 and PowerPC 604 RISC micro-
processors,” IEEE Trans. Compon., Packag., Manuf. Technol. A, vol.
21, no. 1, pp. 104-112, Mar. 1998.

[21] C.Lasance, H. Vinke, H. Rosten, and K.-L. Weiner, “A novel approach
for the thermal characterization of electronic parts,” in Proc. IEEE
Semi-Therm Symp., 1995, pp. 1-9.

[22] W.H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Nu-
merical Recipes in C++. Cambridge, U.K.: Cambridge Univ. Press,
2002.

[23] X. Lu, P. Tervola, and M. Viljanen, “A novel and efficient analyt-
ical method for calculation of the transient temperature field in a
multi-dimensional composite slab,” J. Phys. A: Math. Gen., vol. 38,
pp. 8337-8351, 2005.

[24] M. Frigo and S. G. Johnson, “FFTW Version 3.1 Package,” 2004. [On-
line]. Available: http://www .tftw.org

[25] W. Liao, L. He, and K. Lepak, “Temperature-aware performance and
power modeling,” UCLA, Los Angeles, CA, Tech. Rep. UCLA Eng.
04-250, 2004.

[26] F. Lallement, B. Duriee, A. Grouillet, F. Amaud, B. Tavel, F. Wac-
quant, P. Stalk, M. Woo, Y. Erokhin, J. Scheuer, L. Gadet, J. Weeman,
D. Distaso, and D. Lenoble, “Ultra-low cost and high performance
65 nm CMOS device fabricated with plasma doping,” in Symp. VLSI
Technol. Dig. Tech. Papers, 2004, pp. 178-179.

Pei-Yu Huang received the B.S. degree in electrical
engineering from the National Taiwan University
of Science and Technology, Taiwan, in 2004, and
the M.S. degree from National Chiao-Tung Uni-
versity, Taiwan, in 2004, where he is pursuing the
Ph.D. degree in the Department of Communication
Engineering.

His research interests include computer-aided de-
sign of integrated circuits, thermal analysis, thermal
optimization technique, and power grid analysis.

Yu-Min Lee (M’03) received the B.S. and M.S.
degrees in communication engineering from the Na-
tional Chiao-Tung University, Taiwan, in 1991 and
1993, respectively, and the Ph.D. degree in electrical
and computer engineering from the University of
Wisconsin-Madison, Madison, in 2003.

Since 2003, he has been an Assistant Professor
with the Department of Communication Engi-
neering, National Chiao-Tung University. His
research interests include computer-aided design
on VLSI circuits with emphases on interconnect

analysis and optimization, and circuit/thermal/electro-thermal simulation.

Dr. Lee was a recipient of the ISPD Best Paper Award in 2003.



