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摘         要 

 

我們提出了一個以提高網格質量的理念為基礎的重新網格化方

法，利用一連串區域的運算來改進網格的幾何性質。其核心技術為

Area-based smoothing ，此方法能建造一個非均勻網格，並且能有效

地降低鈍角三角形的數目。 
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ABSTRACT 

 

We present a remeshing scheme based on the idea of improving mesh 

quality by a series of local modifications of the mesh geometry and 

connectivity. The central local modification technique is an area-based 

smoothing technique. Area-based smoothing allows the control of both 

triangle quality and vertex sampling over the mesh, as a function of some 

criteria, e.g. the mesh curvature. The algorithm is able to create an 

unstructured mesh, and reduce irregular vertices efficiently. 
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1 Introduction

Triangular meshes are used to approximate surfaces or flow fields for rendering
and simulation. Triangles with large angles are also found to hamper the efficiency
of some iterative algebraic solvers. This implies that obtuse triangles should be
avoided as much as possible. The control of the maximum angle is difficult, however.
Especially for the triangular mesh under flow, it always produce meshes that contain
a large number of obtuse triangles. There are a number of methods for generating
triangular meshes [3, 10, 11]. However, none of these methods consider avoiding
obtuse triangles.

In this paper, we present an effective method for reducing obtuse triangles effi-
ciently.

1.1 Related Works

Recent remeshing algorithms, e.g. [2, 6, 9] are based on global parameterization
of the original mesh, and then a resampling of the parameter domain. Following
this, the new triangulation is projected back into 3D space, resulting in an improved
version of the original model. The main drawback of the global parameterization
methods is the sensitivity of the result to the specific parameterization used, and to
the cut used to force models that are not isomorphic to a disk to be so. Embedding
a non-trivial 3D structure in the parameter plane severely distorts this structure,
and important information, which is not specified explicitly, may be lost on the
way. Even if the parameterization minimizes the metric distortion of the 3D origi-
nal in some reasonable sense, it is impossible to eliminate it completely. Moreover,
methods finding a global parameterization are slow, usually involving the solution
of a large set of (sometimes nonlinear) equations. Recent progress may accelerate
the process to almost linear time even for large meshes, using multi-resolutional
approaches, e.g. [15], inspired by multi-grid methods together with good precondi-
tioning. Unfortunately, when dealing with extremely large meshes, or meshes with
severe isoperimetric distortion (like sock-shaped regions) numerical precision issues
may arise. In such cases, a global parameterization is almost impossible to perform
without using multi-scale or precise arithmetic representation of the parametric do-
main.

The main alternative to global parameterization is to work directly on the surface
and perform a series of local modifications on the mesh. This approach is also known
as the mesh adaptation process and is the one we use in this work. Remeshing
algorithms using this approach [1, 5, 7, 8, 14, 19] usually involve computationally
expensive optimizations in 3D or more efficient but less accurate optimization in
the tangent plane. In Section 3.2, we use PN triangles as a good tradeoff between
accuracy and efficiency.
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2 Contribution and Overview

In this paper we present a remeshing method which we call explicit. The
word explicit we mean that we operate directly on the mesh surface and apply local
modifications to it, instead of working on some indirect representation of the surface,
e.g. on a global parametric domain. The components of our remeshing algorithm
are natural and straightforward ways to improve a mesh. Our scheme is based on
the work that Vitaly Surazhsky and Craig Gostman presented [17]. We use local
parameterization to reduce the problem of local mesh optimizations to 2D.

Our remeshing algorithm incorporates a number of novel techniques, each of
independent interest. The central technique is the area-based mesh optimization
described in Section 4, which manipulates the areas of triangulation in order to
achieve a uniform or otherwise specified vertex sampling. Section 5 presents a novel
regularization technique that performs local modifications to the mesh connectiv-
ity, resulting in a mesh whose connectivity is much regular. When combined, our
techniques provide an accurate and robust remeshing algorithm that can be applied
to meshs of arbitrary genus. Our remeshing scheme is very efficient and is easy to
coding.

3 Surface Reconstruction

We perform an estimate of the smooth surface in the vicinity of a mesh tri-
angle. This may be obtained by reconstructing an approximation of the surface
using triangular cubic Bézier patches for every face of the mesh. Vlachos et al.
[20] presented a simple and efficient yet robust and accurate method to construct
such curved patches called PN triangles.The triangle vertex normals together with
vertex coordinates are used to construct a PN triangle. If the normals at the mesh
vertices are not given, we use a method similar to [13] to define them, and we will
introduce the algorithm later. The normal of any point within a PN triangle is
defined as an efficient quadratic interpolation of the normals at the triangle vertices.
We use PN triangles as a good tradeoff between accuracy and efficiency.

3.1 Normals

The definition of cubic Bézier triangle requires normals to be provided or ap-
proximated at each vertices. Defining the normal, NP at a point as the weighted
average of the adjacent faces normal, Nj, where the weight, wj is the normalized
angle at the point. Equations (1), (2) and Figure 1 describe this procedure.

NP =
n∑

j=1

Njwj (1)

2



wj =
αj∑n
j=1 αj

(2)

Figure 1: Definition of a normal at point P.
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3.2 PN triangle
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(a) Input triangulation (b) Gouraud shaded input trian-
gulation

(c) Using PN triangles

Figure 2: Which rendering would you prefer?

A cubic Bézier triangle is a surface with the equation

b : R2 → R3, for w = 1− u− v, u, v, w ≥ 0

b(u, v) =
∑

i+j+k=3

bijk
3!

i!j!k!
uivjwk

= b300w
3 + b030u

3 + b003v
3

+ b2103w
2u+ b1203wu

2 + b2013w
2v

+ b0213u
2v + b1023wv

2 + b0123uv
2

+ b1116wuv

We group the bijk together as

vertex coefficients : b300, b030, b003
tangent coefficients : b210, b120, b021, b012, b102, b201
center coefficient : b111

Coefficients are also often called control points and are connected to form a control
net(see Figure 3(b)).
We are given the positions P1, P2, P3 ∈ R3 and normal N1, N2, N3 ∈ R3 of the tri-
angle corners as shown in Figure 3(a). In formulas for implementation, coefficients
of the PN triangle are defined as follows:
b300 = P1,
b030 = P2,
b003 = P3,
wij = (Pj − Pi) ·Ni

4



b210 = (2P1 + P2 − w12N1)/3,
b120 = (2P2 + P1 − w21N2)/3,
b021 = (2P2 + P3 − w23N2)/3,
b012 = (2P3 + P2 − w32N3)/3,
b102 = (2P3 + P1 − w31N3)/3,
b201 = (2P1 + P3 − w13N1)/3,
E = (b210 + b120 + b021 + b012 + b102 + b201)/6,
V = (P1 + P2 + P3)/3,

b111 = E + (E − V )/2.

(a) Input date: points Pi and normals Ni

(b) The coefficients or control points of a
triangular Bézier patch arranged to form a
control net

Figure 3
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4 Remeshing

(a) original (b) edge-flip (c) edge-collapse (d) edge-split

Figure 4: Types of edge operation

The focus of our remeshing scheme is on maximizing the angles of all tri-
angles of the mesh. Remeshing of the given mesh M is performed by a series of
local modifications. The most well-known and commonly used local modifications
are edge− flip, edge− collapse, edge− split and vertex relocation.

The main stages of our remeshing scheme are as follows:

• Adjust the number of vertices of M

• Apply the area-based remeshing procedure on M

• Regularize M using the algorithm of Section 5

• Apply the angle-based smoothing procedure on M

Edge-collapse and edge-split are used to change the number of mesh vertices. Edge-
flip and vertex relocation improve the quality of the mesh triangles. The area-based
remeshing procedure is the heart of our remeshing scheme and produces a mesh
with high quality triangles and the required vertex sampling. Another two stages
improve the mesh quality further. The regularization stage improves the regularity
of the mesh connectivity. The angle-based smoothing then polishes the mesh to
obtain the optimal mesh geometry without changing its connectivity.

The area-based remeshing and the angle-based smoothing involve the most crit-
ical and difficult operation − vertex relocation.

4.1 Vertex Relocation

Let v be a vertex having location x(v) and whose neighbors are v1, · · · , vk with
locations x(v1), · · · ,x(vk), respectively, and k is the vertex degree. We want to find
a new location xnew(v) satisfying some condition, e.g. improving the angles of the
triangles incident on v. A solution to this problem that directly finds xnew(v) in 3D
usually involves solving a difficult optimization problem, which may have non-linear
constraints. We overcome this problem by mapping faces incident on v into the 2D

6
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Figure 5: Vertex relocation

plane and solving the problem there. The location computed in the plane is then
brought back to the original surface.

Let S(v) be a sub-mesh of M containing only v, v1, · · · , vk and faces incident on
v. (See Figure 5(a)) We map S(v) into the plane using a natural and simple method
approximating the geodesic polar map [16], as described, for example, by Welch and
Witkin [21] and Floater [4]. Let p, p1, · · · , pk be the positions of vertices v, v1, · · · , vk
within the resulting mapping SP (v). p is mapped to the origin. p1, · · · , pk satisfy
the following conditions: the distances between p and its neighbors are the same as
the corresponding distances in M , namely, ‖p− pi‖ = ‖x(v)− x(vi)‖ for 1 ≤ i ≤ k.
The angles of all triangles at p are proportional to the corresponding angles in M
and sum to 2π.

The next step is to find a new location pnew to satisfies some condition, we will
introduce it later. (See Figure 5(b))

4.2 Back to the Original Surface

After the new vertex location pnew has been found, we need to find its corre-
sponding location on the original surface, namely, to find xnew(v). Existing remesh-
ing methods, e.g. [1, 8, 14] solve this problem by finding the vertex projection onto
the original surface. Projecting the vertex involves a computationally expensive
and not always accurate computation that without special care may even lead to
topological errors during the remeshing process.

In our case, xnew(v) is computed by a barycentric coordinate scheme. Given a
point p and that the triangle (q1, q2, q3) contains p, we can compute its barycentric
coordinate b′ = (b1, b2, b3) using (3). Then we apply the method PN triangle in
Section 3.2 to find it.

b1 =
A(p, q2, q3)

A(q1, q2, q3)
, b2 =

A(p, q3, q1)

A(q1, q2, q3)
, b3 =

A(p, q1, q2)

A(q1, q2, q3)
(3)
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where A(qi, qj, qk) is the signed area of triangle (i, j, k).

4.3 Area-based Remeshing

The concept of triangle areas has never been used as a central factor in mesh
generation. Triangle areas are usually used to assist, analyze or control meshing.
The reason for this is that by using triangle areas alone we cannot obtain meshes
of reasonable quality. A mesh optimization that equalizes the areas of the mesh
triangles or brings triangle areas to specified (absolute or relative) values will, in
most cases, result in many long and skinny triangles. Nevertheless, Surazhsky and
Gotsman [18] discovered that a 2D triangulation having triangles with equal (or close
to equal) areas has globally uniform spatial vertex sampling. They presented the
following remeshing scheme that exploits this: Alternate between area equalization
and a series of angle-improving (Delaunay) edge-flips. Applying this simple scheme
results in a 2D mesh with a very uniform sampling and well-shaped triangles.

It is important to mention that this alternation process does not usually converge.
After a uniform sampling rate is obtained, the process begins to oscillate, producing
different but similar uniform vertex distributions. However, this oscillation is not
a problem for our remeshing algorithm, since subsequent steps of our remeshing
algorithm improve quality of the mesh further by regularizing and smoothing it.

4.4 Area-based Vertex Relocation

Area equalization is done iteratively by relocating every vertex such that the
areas of the triangles incident on the vertex are as equal as possible. In this work we
extend this method to relocating vertices such that the ratios between the areas are
as close as possible to some specified values. To define this formally, we return to
the definitions of point p and its neighbors p1, · · · , pk from Section 4.1. Let (xi, yi)
be the coordinates of pi. Our goal is to find p = (x, y) such that the ratios of the
triangle areas are as close as possible to µ1, · · · , µk. µi is all positive and sum to
unity. Denote Ai(x, y) be the area of triangle p, pi, pi+1:

Ai(x, y) =
1

2

∣∣∣∣∣∣
xi yi 1
xi+1 yi+1 1
x y 1

∣∣∣∣∣∣
Let A be the area of polygon (p1, · · · , pk), which may be computed as

∑k
i=1Ai(0, 0).

Now the location of p is defined as follows:

(x, y) = argmin
(x,y)

k∑
i=1

(Ai(x, y)− µiA)2

8



This reduces to solving a system of two linear equations in x and y, which has
a unique solution. Thus, area-based relocation is almost as efficient as Laplacian
smoothing.

4.5 Curvature Sensitive Remeshing

We now show how to use area-based vertex relocation to produce a mesh re-
flecting the curvature of the original mesh. Intuitively, more curved regions of M
will contain small triangles and a dense vertex sampling, while almost flat regions
will have large triangles with more sparse vertices. The idea is to specify ratios
between triangle areas depending on curvature.

Let Ψ be a density function defined over M . For every vertex v of M , we define
Ψ(v) as 1/(α|K(v)| + βH2(v)), where H(v) and K(v) are approximated discrete
Gaussian and mean curvatures, respectively. α and β are user-defined values, which
are positive and sum to unity. Usually we use α = β = 0.5. We compute H(v) and
K(v) using the method described in [12].

The next step is to define the triangle area ratios that we use in vertex relocation.
We return to the notations of Section 4.4. Define µ′i for 1 ≤ i ≤ k as the average
between Ψ(vi) and Ψ(vi+1). The value µ′i describes the required density of the
corresponding triangle (v, vi, vi+1). Then µ′1, · · · , µ′k are normalized to obtain valid

µ1, · · · , µk, namely, µi = µ′i/
∑k

j=1 µ
′
j

4.6 Weight-angle-based smoothing

Figure 6: Weighted angle-based smoothing
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Zhou and Shimada [22] presented an effective and easy to implement angle-
based mesh smoothing scheme. They show that the quality of the mesh after angle-
based smoothing is much better than after Laplacian smoothing. Moreover, the
chance that the scheme will produce inverted (invalid) faces is much less than that
in Laplacian smoothing. Unfortunately, this is true mostly for meshes whose vertices
have degrees close to the average degree, namely, the mesh connectivity is close to
regular. When the mesh has more irregular connectivity, the scheme may fail. In
applications involving meshes with very distorted (long and skinny) triangles, a more
robust smoothing scheme is critical. We propose a very simple improvement to the
original angle-smoothing scheme, which significantly reduces the chances of inverted
triangles and improves the quality of the resulting mesh. Furthermore, it has almost
the same computational cost per iteration and a lower total computational cost due
to better convergence in practice.

The original scheme attempts to make each pair of adjacent angles equal. Given
a vertex c and its neighbours p1, · · · , pk, we want to move c in order to improve
the angles of the triangles incident on c. Let αi be the angle adjacent to pi in the
polygon p1, · · · , pk. We define ci to be the point lying on the bisector of αi such that
‖pi − ci‖ = ‖pi − c‖, namely, the edge (pi, c) is rotated around pi to coincide with
the bisector of αi(see Figure 4). The new position of c is defined as the average of
all ci for all the neighbours, namely:

cnew =
1

k

k∑
i=1

ci (4)

We improve this scheme by introducing weights into Eq.4. For a small angle αi

it is difficult to guarantee that the resulting cnew will be placed relatively close to
the bisector of αi. Since αi is itself small, a large deviation of cnew from the bisector
of αi will create angles not only much smaller than αi/2 but even negative (invalid)
ones. Thus, the resulting mesh will have poor quality. To prevent this, we modify
Eq.4 in the following way:

cnew =
1∑k

i=1 1/α2
i

·
k∑

i=1

1

α2
i

· ci

Namely, the ci for small angles αi will carry more weight than for large angles.

4.7 Implementation Notes

Area-based remeshing

The procedure is controlled by two parameters: nstep and narea. We alternate
nstep times times between curvature sensitive area equalization and a series of Delau-
nay edge-flips. Area equalization consists of narea iterations of applying area-based

10



vertex relocation for every vertex of M . Edge-flips are performed until a Delaunay
edge-flip can no longer be applied. nstep and narea are usually small. There is no
need to bring the triangle areas as close as possible to some required ratios to change
vertex sampling. A very small number (1 to 3) of narea iterations is enough to move
vertices in the proper direction towards the required vertex sampling. nstep is usu-
ally between 5 and 10 and is sufficient to produce a mesh with vertex sampling very
close to the required one.

Angle-based smoothing

The parameter mstep of this procedure defines how many iterations of weighted
angle-based smoothing are performed. Each iteration relocates once every vertex of
M . mstep is also small and usually somewhere between 5 and 10.

Adjusting the number of the mesh vertices

To obtain a mesh with the number of vertices specified by the user, we apply
local refinement or simplification operations to the mesh. Until the required number
of vertices is achieved we perform a series of edge-collapse or edge-split modifications
(depending on the required size) such that the edges affected by the modifications
are an independent edge set. Edges whose faces have minimal/maximal angle are
simplified/refined first. Before every series of modifications we apply the area-based
remeshing procedure with nstep=1 to maintain a fair vertex sampling.

5 Connectivity Regularization

Another component of our remeshing scheme is an effective yet simple and
efficient algorithm to improve the mesh quality by regularizing its connectivity. The
algorithm performs a series of local operations that modify the mesh connectivity,
namely, edge-flips, edge-collapses and edge-splits. Formally, improving regularity
means minimizing the following function:

R(M) =
∑
v∈M

(d(v)− dopt(v))2

where d(v) is the degree of vertex v and dopt(v) its optimal degree, which is equal to
6. We do not define this formally, but during the mesh regularization we allow only
a small change in the total number of mesh vertices and vertex sampling along the
mesh.

We call an edge-flip basic if it decreases R(M). In their elegant work, Alliez et
al. [2] proposed to randomly apply basic edge-flips to regularize mesh connectivity.
This straightforward method results in some improvement. However, it still leaves
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too many irregular vertices even when basic edge-flips can no longer be applied. The
reason for this is that R has many local minima with respect to basic edge-flips. The
intriguing question is how to continue from such a local minimum.

We pose this problem as a puzzle. The player can click an edge to flip, collapse
or split it. We call an edge easy if we can apply a basic edge-flip on it. The game
starts with a mesh without easy edges, namely, when R(M) is at a local minimum.
The goal of the game is to minimize R(M) further with a small number of mesh
modifications. To visualize, we color vertices according to their degree. A vertex v
is black if d(v) < dopt(v) and white when d(v) > dopt(v). The vertex is not colored
when d(v) = dopt(v), namely, the player has solved the puzzle for v. See Figure 7.
When solving the puzzle we discovered that there are three types of edges that are
actually interesting, and for every type there is only one specific local modification
to apply.

Long edges

An edge is a long edge if both its vertices are white. The definition of a long edge
is based on the connectivity alone. However, optimizing the mesh geometry using

Figure 7: Types of edges: (a) A long edge. (b) A short edge. (c) A drifting edge. (d)
The drifting edge moved two steps to the right. (e) After angle-based smoothing.

12



the angle-based smoothing reveals that long edges are actually geometrically longer
than their nearby edges. Thus, the natural modification for this edge is to refine it.
See Figure 5(a).

Short edges

An edge is a short edge if both of its vertices are black. Short edges are actually
shorter than other nearby edges if the mesh has been optimized using the anglebased
smoothing procedure. Thus, we collapse short edges. See Figure 5(b).

Drifting edges

An edge is a drifting edge if one of its endpoints is a white vertex and the other is
black. Every drifting edge e has the following nice property: If we flip an edge e′

incident on the white vertex that belongs to one of the faces adjacent to e, then e
disappears (loses its drifting property) and reappears as the opposite to e within the
quad defined by e′. Thus, we say that we have moved a drifting edge. This allows us
to move a pair of white and black vertices of a drifting edge across a regular region
of the mesh; see Figure 5(c-e).

5.1 Solving the Puzzle

To every edge among long, short or drifting edges, we apply only its correspond-
ing operation. The central idea in solving the puzzle is to cause a drifting edge to
migrate until it meets irregular vertices, and thus, an easy, long or short edge may
appear. We perform operations on these edges, until only drifting edges are left.
Then we choose an arbitrary drifting edge as the next edge to move.We proceed this
way, until no drifting edge is left. This condition means that there are no easy, long
and short edges as well, and the algorithm terminates. Consequently, the algorithm
results in a mesh that has all irregular vertices surrounded by regular vertices. The
number of such isolated irregular vertices is usually very small.

6 Numerical Results

First, we will show the remeshing method can reduce obtuse triangle and im-
prove the angle in the mesh. Second, we compute the mean curvature on the original
mesh, mesh after remesh, and after mesh refinement, to show that both of them are
more accurate than the original mesh.

13
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Figure 8: Example 1 for the ellipsoid under shear flow at T=1

Table 1

number of triangles θmin θavg obtuse triangles
origin 888 23◦ 40.2◦ 43.4%

remesh 874 27.5◦ 46.2◦ 1.2%
mesh refinement 7866 27◦ 46.2◦ 1.5%
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Figure 9: angle distribution

Example 2

Table 2

number of triangles θmin θavg obtuse triangles
origin 888 16.9◦ 33◦ 65.3%

remesh 852 24.4◦ 44.8◦ 3.5%
mesh refinement 7668 24.3◦ 44.8◦ 4%
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Figure 10: Example 2 for the ellipsoid under shear flow at T=1.5
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Figure 11: angle distribution
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Figure 12: Ellipsoid is evolving under shear flow
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Figure 13: Explain what is mesh refinement
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obtuse triangle
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Figure 14
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2

To compute the mean curvature numerically, we have already known that the
equation ∆sX = 2Hn, where H is the mean curvature and n is the outward unit
normal. The mean curvature is defined on the vertex of triangle:

∆sXi =
1

AM(Xi)

∑
j∈N1(Xi)

cotαij + cot βij
2

(Xi −Xj)

The N1(Xi) means the 1-ring neighbors of vertex Xi, AM(Xi) is the area of Mixed
Voronoi region (see Figure 14). The angles αij and βij are shown in Figure 14(d).

To measure the error, we compute the maximum error in the notation ‖ · ‖∞ by
max |H(xi)−Hexact| and the average error by

∑
|H(xi)−Hexact|/N , where N is the

number of vertices.

Original mesh

x2

32
+

y2

1.52
+

z2

1.52
= 1

‖ · ‖∞ average error number of obtuse triangles
h=0.5 0.4633 0.0100 2/408
h=0.25 0.0232 0.0031 0/2072
h=0.125 0.0153 0.0025 1/8760
h=0.0625 0.0179 0.0023 0/35832

Under flow

Evolving under shear flow u = (y, 0, 0) with h = 0.25

‖ · ‖∞ average error number of obtuse triangles
t=0 0.0232 0.0031 0/2072

t=0.5 0.1384 0.0069 112/2072
t=1 0.4807 0.1027 984/2072

t=1.5 0.8136 0.2491 1461/2072

Remesh for t=1

‖ · ‖∞ average error number of obtuse triangles
origin 0.4807 0.1027 984/2072

remesh 0.3032 0.0141 70/2024
mesh refinement 0.3856 0.0080 293/8096
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(a) original (b) remesh (c) mesh refinement

Figure 15: mean curvature for t=1

Remesh for t=1.5

‖ · ‖∞ average error number of obtuse triangles
origin 0.8136 0.2491 1461/2072

remesh 0.3468 0.0163 52/2024
mesh refinement 0.6159 0.0078 297/8048

(a) original (b) remesh (c) mesh refinement

Figure 16: mean curvature for t=1.5

7 Conclusion

Our method can greatly reduce the number of obtuse triangles in the given
triangular mesh. However, it still cannot remove obtuse triangles completely. The
reason is the regularity. In Section 5, we improve the mesh quality by regularizing
its connectivity, but it still exists irregular vertices. The irregular vertices usually
generate obtuse triangles. Hence, further research is needed to improve the result
of the regularity.
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differential-geometry operators for triangulated 2-manifolds. In Proc. VisMath,
pages 35–57. 2002.

[13] Steven J. Owen, David R. White, and Timothy J. Tautges. Facet-based surfaces
for 3d mesh generation. In IMR, pages 297–311, 2002.

[14] Houman Borouchaki Pascal J. Frey. Geometric surface mesh optimization.
Computing and Visualization in Science, 1:113–121, 1998.

[15] Pedro V. Sander, Steven J. Gortler, John Snyder, and Hugues Hoppe. Signal-
specialized parametrization. In Proceedings of the 13th Eurographics workshop
on Rendering, EGRW ’02, pages 87–98, 2002.

[16] D.J. Struik. Lectures on Classical Differential Geometry: Second Edition.
Addison-Wesley series in mathematics. Addison-Wesley Publishing Company,
1961.

[17] Vitaly Surazhsky and Craig Gotsman. Explicit surface remeshing. In Pro-
ceedings of the 2003 Eurographics/ACM SIGGRAPH symposium on Geometry
processing, SGP ’03, pages 20–30, 2003.

[18] Vitaly Surazhsky and Craig Gotsman. High quality compatible triangulations.
Eng. with Comput., 20(2):147–156, 2004.

[19] Greg Turk. Re-tiling polygonal surfaces. In Proceedings of the 19th annual
conference on Computer graphics and interactive techniques, SIGGRAPH ’92,
pages 55–64, 1992.

[20] Alex Vlachos, Jörg Peters, Chas Boyd, and Jason L. Mitchell. Curved PN
triangles. In Proceedings of the 2001 symposium on Interactive 3D graphics,
I3D ’01, pages 159–166, 2001.

[21] William Welch and Andrew Witkin. Free-form shape design using triangulated
surfaces. In Proceedings of the 21st annual conference on Computer graphics
and interactive techniques, SIGGRAPH ’94, pages 247–256, 1994.

[22] Tian Zhou and Kenji Shimada. An angle-based approach to two-dimensional
mesh smoothing. In IMR, pages 373–384, 2000.

22


