IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 17, NO. 5, MAY 2009 723

Transaction Briefs

Automatic Verification Stimulus Generation for Interface
Protocols Modeled With Non-Deterministic Extended FSM

Che-Hua Shih, Juinn-Dar Huang, and Jing-Yang Jou

Abstract—Verifying if an integrated component is compliant with cer-
tain interface protocol is a vital issue in component-based system-on-a-chip
(SoC) designs. For simulation-based verification, generating massive con-
strained simulation stimuli is becoming crucial to achieve a high verifica-
tion quality. To further improve the quality, stimulus biasing techniques
are often used to guide the simulation to hit design corners. In this paper,
we model the interface protocol with the non-deterministic extended fi-
nite-state machine (NEFSM), and then propose an automatic stimulus gen-
eration approach based on it. This approach is capable of providing nu-
merous biasing strategies. Experiment results demonstrate the high con-
trollability and efficiency of our stimulus generation scheme.

Index Terms—Design automation, generators.

I. INTRODUCTION

In the system-on-a-chip (SoC) era, designers tend to integrate a large
number of components into a well-defined platform to accelerate the
design process. To facilitate fast integration, components are usually
compliant with certain interface protocol so that they can concordantly
communicate with each other within the platform. Obviously, it be-
comes an important issue to preverify if a component can work cor-
rectly after being integrated into an SoC design. Many related studies
[1]-[6] focus on building a monitor/checker to examine the behaviors
of interface signals through dynamic simulation or formal techniques.
The simulation-based approach is classical and widely used in most
design environments. In this approach, a large amount of verification
stimuli are demanded and applied to the design to hunt possible de-
sign errors. Nevertheless, the manual stimulus generation process tends
to be time-consuming and error-prone. Hence, many research works
[7]-[11] aim at automating the stimulus generation process.

To obtain massive stimuli automatically, it is intuitive to use a
random stimulus generation approach. However, the major disad-
vantage is that the random process could produce invalid stimulus
sequences violating the target specification. Instead, constraint-based
verification methodology [12] is usually adopted to avoid this
drawback. Constraints are actually formal specifications of design
behaviors. A constraint-based stimulus generator produces only valid
stimuli based on the given constraints. Previous research works
typically use satisfiability (SAT) or binary decision diagram (BDD)
solvers as their constraint-solving engines. The SAT method is a
formal technique that is generally capable of solving a large number
of complex constraints. A typical SAT solver often generates only
one feasible solution under a given constraint set with no biasing
capability. Alternatively, solving constraints with BDDs is relatively
easier to be combined with the bit-level biasing approach. However,

Manuscript received October 05, 2007; revised March 03, 2008. First pub-
lished March 10, 2009; current version published April 22, 2009.

The authors are with the Department of Electronics Engineering, National
Chiao Tung University, Taiwan 300, R.O.C. (e-mail: matar@eda.ee.nctu.
edu.tw; jdhuang @mail.nctu.edu.tw; jyjou@faculty.nctu.edu.tw).

Digital Object Identifier 10.1109/TVLSI.2008.2006042

the weakness of the BDD-based solver is the memory explosion
problem while handling a large set of constraints.

Yuan et al. [8] propose a general-purpose BDD-based stimulus gen-
eration approach. Constraints are represented as Boolean formulas with
state variables. Then they conjoin related constraints into a single BDD
before simulation. Next, BDDs are traversed in a top-down fashion to
produce stimuli. Note that the bit-level biasing can be applied to ad-
just the branch probabilities of BDD nodes while performing the tra-
versal. Another work by Shimizu et al. [9] targets on interface veri-
fication. First, authors write a list of interface constraints in a propri-
etary specification style. Next, they create BDDs with appropriate con-
straints on-the-fly instead of before simulation. In this way, BDDs can
be smaller and thus solved more quickly. However, this approach needs
to rebuild a new set of BDDs at every simulation cycle.

In this paper, we propose a method to develop an automatic veri-
fication stimulus generator (AVSG) for interface compliance verifica-
tion. The major difference against previous approaches is that the pro-
posed AVSG uses a non-deterministic extended finite state machine
(NEFSM) as the interface protocol specification. As well, the diversi-
fied biasing strategies, including the transition-level, transaction-level,
word-level, and bit-level biasing, provide users higher controllability
over stimulus generation. Our AVSG is also capable of checking if
the design under verification (DUV) conforms to the interface protocol
during simulation. Furthermore, unlike SAT- or BDD-based constraint
solvers, this generator can be easily implemented in synthesizable hard-
ware description language (HDL). Therefore, it is feasible to dramati-
cally speed up the verification process via a hardware accelerator or an
emulator.

The rest of this paper is organized as follows. Section II introduces
the NEFSM model. The stimulus generation, biasing methodology, and
AVSG compiler are described in Section III. Section IV shows the ex-
perimental results. Finally, Section V concludes this paper.

II. PRELIMINARIES

The extended finite-state machine (EFSM) model [13] is a finite-
state machine extended with internal variables. It provides a more ef-
ficient way to describe the behavior of a sequential circuit and relaxes
the state explosion problem suffered by traditional finite state machine
models. Though the EFSM model has been widely used in many pre-
vious research works [14] and [15], we slightly modify the definition
of the state transition to best fit our own need here.

Definition 1: For a variable V, its value set is Dy . For a finite set of
variables S = {V1, Va,..., V4. }, its value set Dy is the n-dimensional
Cartesian product Dy, X Dy, X --+- x Dy,,.

Definition 2: An EFSM is a 7-tuple (Q, X, A, X, qo, 20, T):

Q a finite set of states;
hX a set of inputs;

A a set of outputs;

X a set of variables;

q0 the initial state, g0 € Q;
o a set of initial values of variables in X;

T a set of state transitions, each transition t is a 4-tuple
(St./ qt,€¢, 'LLf), where;

1063-8210/$25.00 © 2009 IEEE

724 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 17, NO. 5, MAY 2009

(Vol=0/ Vi) (Vo!=0/ Vi==, Og++)

ﬁ\
(V=0 -)

Step 1 (from Item 1)

(I & (Vu!=0) / Vi=-, Ogt+, 04=0),
(M; / 0y=04, 0,=0,, 0=0y)

=
I & (Vy=0) /)
(& V2O L7701 g (vit=0)/
{@ V==, O+, Op=1)
(Shusy)

Step 4 (from Item 1~4)
Fig. 1. NEFSM of the simplified AMBA AHB protocol.

St the current state, s; € Q;
a the next state, ¢; € Q;

et the transition enabling function, returning
true(1)/false(0) to enable/disable the transition,
e Dg X DA X D)(— {0,1};

N the update transformation function, updating the values of
the subset S C AU X, u; : Ds X Da X Dx — Ds.

Definition 3: Given an EFSM, for any state s € () and its outgoing
transition set Ty, = {t|t = (51, qi,er,ue) € T and s, = s}. If 3¢,
t; €Ts,t; #t;and d € Dy; x Da X Dx, such that both e, (d) = 1
and e¢; (d) = 1, then the given EFSM is an NEFSM. Otherwise, it is a
deterministic EFSM.

In a deterministic EFSM, for a given combination of input, output,
variable, and state values, there is at most one transition that can be en-
abled. On the contrary, an NEFSM allows multiple possible transitions.
This non-determinism adequately formulates the common behaviors
frequently appearing in most interface protocol specifications. For in-
stance, a bus slave may choose to respond to a request immediately or
to insert extra wait cycles before responding.

III. METHODOLOGY

A. Protocol Modeling

Since the interactions between the DUV and the rest of the system
must obey a specific interface protocol, the first step of our approach
is using an NEFSM to model the interface protocol with respect to the
DUV. Due to the non-determinism of most existing interface protocol
specifications, it is natural to model those protocols with NEFSMs. In
order to clearly illustrate the modeling process, we introduce a protocol
simplified from the AMBA AHB [16] as an example. It only considers
two input signals (I,- and I) and three output signals (Op, O, and Og).
The following is a part of the bus master specification about issuing a
fixed-length incrementing burst to a slave.

Item 1) n-beat burst consists of n data transfers.

Item 2) Address (O,) of the next transfer in a burst is equal to the
address of the current transfer plus one.

Item 3) Slave asserts the ready signal (I,) when it is ready for the cur-
rent transfer. The master should send the values of the current
data (O4) and the next address. Besides, the master can choose
to continue the burst or send a busy response (Op = 1) to tem-
porarily suspend the next transfer.

Item 4) Slave can insert extra wait cycles by deasserting I... In this sit-
uation, all output signals of the master must hold their previous
values.

Step 2 (from Item 1~2)

(1, & (V3!=0) / Vi=r, O+, 0,=0)

(1 & (Vy=0) /- (1 & (Vy!=0)/

V==, Ot 1, Op=1)

Step 3 (from Item 1~3)

t=(e, / uy)

t=(1; & e & (V!=0) / Vy--, Oyt+, 0,=0)
t=(11; & ! / 0y=0y, O,=0,, O4~0q)
t=(I; & I, & (V,=0)/-)

t=(I; & o & (Vp!=0) / V==, Oy++, Op=1)
ts=(!; & I, / 0p=0, O4=0y)

Step S (from Item 1~5)

Item 5) Slave can return an error response by asserting the error signal
(I.) and deasserting I, simultaneously. In this situation, Og4
must hold its previous value.

According to the previous specification, we build the corresponding
NEFSM, shown in Fig. 1, step by step. The final NEFSM has four
states (Sseq, Sdone, Shusy » AN Serror) and five transitions (¢1 ~ ¢5) with
an internal variable (V3) for burst-length counting. Note that since we
only consider a simplified partial specification here, some states have
no outgoing transition in this case.

B. Stimulus Generation Flow

We develop a compiler that can automatically translate a given
NEFSM model into the corresponding AVSG. The generated AVSG is
capable of producing massive random stimuli fully compliant with the
given interface protocol via the corresponding NEFSM.

A three-phase flow is proposed to automatically generate the stim-
ulus on-the-fly based on the current DUV’s response during simulation.

1) Evaluation: At the current state, evaluate the enabling functions of
all its outgoing transitions. The return values of the enabling func-
tions are determined by the current values of the interface signals
(X, A) and internal variables (X). A transition is put into the next
transition candidate set (NTCS) only if its enabling function is
evaluated true. Some transitions might be evaluated false and ex-
cluded from the NTCS. It actually means the current signal values
on the interface prevent the AVSG from producing certain stimuli
for the next cycle. In other words, the AVSG implicitly solves con-
straints presented by the given protocol during the stimulus gen-
eration process. Meanwhile, in case the NTCS is empty after the
evaluation, it means the behavior of DUV must violate the pro-
tocol because it makes the AVSG find no valid move for the next
cycle. That is, the AVSG can not only generate the valid stimuli
but also serve as a protocol compliance checker at the same time.

2) Selection: From the non-empty NTCS, randomly pick one as the
next transition based on the given transition weights. A transition
with a higher weight has a higher probability to be selected as the
next transition. Hence, some sort of biasing strategies can be uti-
lized here to meet different requirements from users. Meanwhile,
the next transition becomes determinate at this phase no matter
what selection strategy is in use.

3) Update: Assign values to the outputs and variables according to
the update transformation function of the selected transition. This
phase consists of the constrained and unconstrained parts:

a) Constrained Part: Outputs and variables explicitly con-
strained in the update transformation function must be
assigned with the constrained values.

b) Unconstrained Part: Outputs not constrained in the update
transformation function can be randomly assigned with any
valid values within their own domains. Again, some kind of
biasing strategies can be used here.

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 17, NO. 5, MAY 2009 725

TABLE I
BIASING INFORMATION I

Transaction-level Weight | Word-level Weight
Wi =80 Wa-00 =5
Wiy = 40 Wa-01 = 40
Wiy = 40 Wa-10 = 40
Wiy = 20 Wgi-11 = 15
Wiy = 100

Actually, the mission of the Update phase is to generate a complete
and valid stimulus. After the Update phase, the NEFSM moves to
the next state through the selected transition and then the stimulus
generation process goes back to the Evaluation phase for the next
cycle.
Now we use the AVSG built from the NEFSM in Fig. 1 to demon-
strate this flow. Assume the current state is Seeq.
Casel) (I, =1,I. = 0,0, = 20,V, = 4).
The enabling functions e;, and e,, are both evaluated true at
the Evaluation phase. It means the two corresponding transi-
tionst; and £, are the next transition candidates. Next, at the
Selection phase, one of the candidates would be chosen as
the next transition. Assume the transition ¢4 is selected, the
constrained outputs and variables of u;, need to be updated
as the defined values—assigning Oy, O, ,and Vj, to 1,21, and
3, respectively. The remaining unconstrained outputs can be
assigned to any valid values. For instance, we can set O4 to
1. Finally, the current state moves from sgeq t0 Shusy -
Case2) (I, = 1,1I. = 1).
In this case, all enabling functions return false at the Eval-
uation phase. In other words, no possible valid transition
exists and a protocol violation is detected by the AVSG.
Meanwhile, it terminates the current simulation and reports
the error.

C. Biasing

Biasing techniques can help verification engineers generate stimuli
to hit desirable corner cases more easily. Our AVSG is capable of
providing users to adjust various bias settings to guide the generated
stimuli. This feature is extremely useful to exercise those uncovered
scenarios to get a better simulation quality.

Transition-Level Biasing/Transaction-Level Biasing: Since each
transition indicates certain interface behavior, we use the fransi-
tion-level biasing to guide the state transition. Due to the non-deter-
minism, there may exist multiple valid transitions after the Evaluation
phase. A strategy is needed to pick one from these candidates. One
method is to give each transition ¢ an individual weight w. Then, the
probability that a candidate transition ¢; is selected is defined as

we

P, i ., ti € NTCS.

theN’TCS We;

i

For example, in Case 1) of the previous example, ¢, and ¢4 are both
transition candidates. If the biasing information is given as Table I, t;
has a higher probability (80%) to be chosen than ¢4 (20%) does. Fur-
thermore, if preliminary simulation results do not exercise certain states
or transitions, the related transition weights can be increased accord-
ingly. Another similar approach is the transaction-level biasing. Users
can define a meaningful transaction in terms of a sequence of transi-
tions and then bias these transitions simultaneously.

Bit-Level Biasing/Word-Level Biasing: In typical protocols, many
signals are defined in a group of bits, i.e., a word, instead of a single
bit only. Therefore, the capability of the word-level biasing becomes
critical and essential. In our approach, we allow the weight settings for
different word values of d as shown in Table I to apply direct word-level
biasing. This biasing setting simultaneously increases the appearance
probabilities of “d = 01” and “d = 10”. Note that, under bit-level

TABLE II
BIASING INFORMATION II
Biasing type ‘Weight
Word-level Wy—o = 3
Wy—1 =1

Modified weight

W,fl = 80 * (3/4) = 60
WY, =40« (4/4) = 40
Wi, =40 (4/4) = 40
W(, =20x(1/4) =5
WL’5 =100 (3/4) =75

Transition-level

biasing, the positive biasing of “d = 01” implies the negative biasing
of “d = 10”. Obviously, there is no way for bit-level biasing to achieve
the distribution of word-level biasing given in Table 1.

In our approach, the word-level biasing settings can affect the gener-
ated stimuli in two manners. On the one hand, while the biased signal
is in the unconstrained part of the Update phase, the signal’s value can
be directly produced via a weighted random number generator with the
distribution specified by the word-level biasing. On the other hand, if
the biased signal appears in the constrained part, i.e., the signal value re-
lates to which transition is selected, the biasing effect could be reflected
by changing the transition weights. Assume the word-level biasing list
for an n-bit signal s is “W,—o, W,=1,..., W,zan_;” and Cl_, is a
binary variable indicating if “s = ¢” is feasible while selecting ¢ as the
next transition, for0 < 7 < 2" —1. While the original transition weight
of the transition ¢ is w¢, the modified transition weight according to the
word-level biasing is

2™ —1 ~t § 7
Zi*O CS:,' * "1’5:1'

271
ST W,

Table II shows an example of this mechanism. When the word-level
weights of the signal b are given, the original transition weights, as
shown in Table I, can be modified according to the update transfor-
mation functions of those transitions. While ¢, and #4 constrain the
value of b to 0 and 1, respectively, the modification ratio, W}, /Wy :
Wi, /Wy, is 3:1, which is the same as the word-level biasing setting
of b(Wy=p : Wp=1). After this adjustment, the transitions tending to
generate signal values with higher word-level weights should appear
more frequently.

!
Wy = Wy *

D. AVSG Compiler

We implement an AVSG compiler as shown in Fig. 2. The compiler
first reads in the given NEFSM of the specific interface protocol and
the biasing information. It then automatically produces a corresponding
AVSG in target HDL format. The upper part in Fig. 2 is a typical sim-
ulation-based verification environment. DUVs are usually written in
HDL. However, high-level test benches or stimulus generators are often
developed in C/C++, so they need to interact with the HDL simulator
via the Programming Language Interface (PLI). Extra simulation over-
head is required due to the PLI communication need. Since our AVSG
is implemented in native HDL, it can thus save simulation time com-
pared to those approaches using PLI.

Fig. 3 shows the AVSG input/output (I/O) interface. The primary
input ports () and output ports (A) of generated AVSG are defined
in NEFSM model. Besides, it has an additional output port, “FAIL”, to
indicate whether any protocol violation occurs. This translation process
can be completed in the following three steps.

Step 1) First, the compiler translates the enabling functions into
HDL assignment statements. For example, the enabling
function e;, in Fig. 1 can be translated into the following
Verilog statement:

By, = (I)&& (1) &&(Vy! = 0).

726 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 17, NO. 5, MAY 2009

< = IF
Behavioral
or y AVSG DUV
AVSG HDL Simulator
Compiler AVSG
Only I/F
Biasing Synthesizer | H\AV\-/bsacs;ed DUV
Information
Emulator
Fig. 2. AVSG generation flow.
NEFSM M=(Q, 3, A, X, g0, x0, T')
A
b o

|:> —4 AVSG |0

Fig. 3. AVSG I/O interface.

— Wt Wt

Adder
— WP Wi+ Wt—

Tree / ' [

Look-up Decoder
— WP Table Wt,+Wtz+Wh——‘
— Wt W|,+W|2+Wt3+Wt4-
q
Random Number

! Selection
Generatior Result

Fig. 4. Weighted selection procedure.

In this statement, I, is a binary variable representing the
evaluation result. The evaluation results for all outgoing
transitions of the current state pass through an NOR gate
and then drive the output signal “FAIL” as shown in Fig. 3.

Step 2) Unlike the deterministic machine, the NEFSM has a set of
transition candidates. In our approach, the AVSG chooses
the next transition according to the given transition weights
(transition-level biasing). We use a weighted selection pro-
cedure as shown in Fig. 4 to realize this mechanism. First,
it sums up the weights of transitions in NTCS via additions
or a lookup table. Then, it generates a random number be-
tween 0 and the weight sum. According to this number and
weight distribution, a decoder can determine the selection
result.

Step 3) The major task of AVSG is to generate proper values for
output signals which are constrained by the selected tran-
sition. On the one hand, the constraints are defined in the
update transformation functions, and the compiler directly
translates them into HDL-based assignment statements. For
example, the update transformation function v, can be im-
plemented with three statements in Verilog

Vi=Ve—1; O,.=0,+1; O, =0.
On the other hand, the weighted selection procedure is used
here again to assign the unconstrained output signals with
weighted random values (bit-level/word-level biasing).
Synthesizable AVSG: Practically, simulation jobs are very time-con-
suming for large complex SoC designs. Hence hardware accelerators

or emulators are usually utilized to speed up the verification process

TABLE IIT

BASIC INFORMATION OF SELECTED DUVS

Design Description | Protocol
AC97 Simple AC97 controller | WISHBONE
SPI Serial Peripheral Interface | WISHBONE
PTC PWM/Timer/Counter | WISHBONE
RGB2YCrCb | RGB-to-YCrCb Translator | AMBA AHB
CON Convolution Calculator | AMBA AHB
MAC Multiply-accumulator | AMBA AHB

around 100 ~ 1000 times. The lower part of Fig. 2 demonstrates this
acceleration environment. In general, SAT- or BDD-based generators
are inherently hard to be synthesized down to hardware, and thus pre-
vent such kind of acceleration. Conversely, the proposed compiler is
capable of generating the AVSG in synthesizable HDL form on one
condition—only synthesizable operators are allowed in the transition
enabling and update transformation functions of the given NEFSM. In
our experiences, the set of synthesizable operators are large enough
for modeling most interface protocols. Meanwhile, the random number
generator is required to implement the weighted selection schemes re-
quested by the Selection and Update phases. This hardware implemen-
tation is similar to the hardware Lottery manager circuit in [17]. To
make our AVSG fully synthesizable, a hardware-based linear feedback
shift register (LFSR) [18] is used. The combination of these two efforts
enables the truly hardware-based AVSG as well as the use of hardware
acceleration techniques.

IV. EXPERIMENTAL RESULTS

To demonstrate the effectiveness and efficiency of our approach, we
use the WISHBONE [19] and AMBA AHB protocols as the test drivers.
The experiments are conducted over a set of WISHBONE-compliant
and AHB-compliant bus slave designs. The WISHBONE test cases are
obtained from http://www.opencores.org/, and the others are internal
designs. Table III shows the basic information of each design.

We first model both the WISHBONE and AHB master protocols in
NEFSM. The resultant NEFSM of the WISHBONE requires 4 states
and 17 transitions while AHB’s requires 6 states and 46 transitions.
Then the target AVSGs are directly generated from the corresponding
NEFSMs through the proposed compiler.

The overall experimental results confirm that generated AVSGs are
fully capable of providing a large amount of valid stimuli for all six
designs. Next, we report certain detailed experimental results to show
the power of biasing and the runtime efficiency of our AVSG.

Biasing: We apply the proposed biasing methods on the experi-
ments over the design CON. We first show the effectiveness of the
transaction-level biasing. Suppose each transition initially has equal
weight and users want to exercise a 5-cycle transaction, “Nonseq —
Busy — Seq — Busy — Seq”. However, this transaction never oc-
curs in the initial unbiased simulation of 1000 cycles. Then we increase
the weights of related transitions (e.g., Nonseq— Busy) by 10 times.
Under the new bias setting, the expected transaction appears 19 times
in first 1000 cycles. It demonstrates that the transaction-level biasing
technique can help achieve higher functional coverage in shorter sim-
ulation cycles.

Another experiment focuses on performing the word-level biasing on
the AHB signal HBURST. HBURST is a three-bit signal indicating the
current burst type as shown in the first and second columns of Table IV.
For certain verification need, we set the expected probabilities on dif-
ferent HBURST values in terms of the word-level weights. Note that
no single bit-level bias setting on HBURST can produce the identical
word-level biasing shown in the third column in Table IV. After 1 mil-
lion simulation cycles, the appearance count of each burst type is re-
ported in the last column. The results perfectly match the given bias
setting. This experiment also implies that we can disable certain types

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 17, NO. 5, MAY 2009 727

TABLE 1V
RESULTS OF WORD-LEVEL BIASING
HBURST Burst type | Weight | Count
000 SINGLE 10 13022 (9.95%)
001 INCR 20 | 25996 (19.86%)
010 WRAP4 40 | 52377 (40.02%)
011 INCR4 5 6521 (4.98%)
100 WRAPS 15 19645 (15.01%)
101 INCR8 0 0 (0%)
110 WRAP16 0 0 (0%)
111 INCR16 10 13317 (10.18%)
TABLE V

RUNTIME ANALYSIS OF DIFFERENT STIMULUS GENERATORS

Stimulus generator

Design PRSG AVSG SG, SGsy
ACO7 117365 | 123.04s | 136925 | 13981 s

SPI 10455 | 24035 | 36605 | 37925

PIC 1488s | 1742s | 31.52s | 3390 s
RGB2YCrCb | 11.10s | 1220s | 23.07s | 2446
CON 1043s | 1137s | 2401s | 25005
MAC 1280s | 1382s | 22.11s | 2255s

[Ratio | 092 | 100 | 136 | a1 |

of stimuli by setting the corresponding weights as zeros. This skill is
extremely useful when a DUV does not fully implement all features
specified in the interface protocol. In short, through the proposed bi-
asing techniques, it becomes much easier to get the desired stimuli.

Performance Analysis: Shorter stimulus generation time should be
always preferred during verification. To illustrate the performance of
the AVSG, the runtime is compared with those of other stimulus gener-
ation methods. We build four simulation environments which contain
different stimulus generators. The runtime (for 1 million simulation cy-
cles) for six real designs in each simulation environment is reported in
Table V. In the first environment, we use a pure random stimulus gener-
ator (PRSG) to produce stimuli. This is the most trivial way to generate
massive random stimuli at virtually no cost. The second environment is
to use our AVSG instead of the PRSG. From Table V, the difference of
runtime required by the PRSG and our AVSG is quite small. It shows
our AVSG can be as efficient as a PRSG. However, the PRSG gener-
ally produces invalid stimuli while the AVSG only generates stimuli
fully compliant with the protocol. Besides, we build two BDD-based
implementations, referred to as SG and SG2, which are similar to
the stimulus generators in [8] and [9], respectively. Since PLI mecha-
nism is required between the HDL simulator and BDD-solving engine
for these two environments, the experimental results show that the two
environments take averagely 36% and 41% more runtime than our ap-
proach.

Error Detection: While the NEFSM model describes the target in-
terface protocol, the AVSG can also detect those design errors which
violate the interface protocol. For demonstrating this feature, we do in-
ject protocol-related errors into designs, and the experimental results
show that the AVSG can indeed capture all these kinds of design er-
rors. We also inject protocol-independent errors to correct designs. As
expected, this kind of error can not be detected by our AVSG while the
error effect does not affect the interface behavior. To detect those in-
ternal design bugs, users need to build other checkers to investigate the
simulation results and the AVSG purely serves as a stimulus generator
in this case.

Hardware Synthesis: As mentioned, our AVSG can be mapped to
real hardware for emulation through a logic synthesizer. The synthe-
sizer reports that only 1.8 and 3.7 K gates are required to implement
the AVSGs of the WISHBONE and AHB protocols, respectively. This
result clearly shows that the proposed AVSG can be easily and cost-ef-
fectively integrated into a emulator-based verification flow.

V. CONCLUSION

In this paper, we propose a constrained random stimulus genera-
tion approach for interface protocol verification. In this approach, the
NEFSM model is used to represent the interface specification and then
automatically translated into a dedicated AVSG. This AVSG can pro-
duce a large amount of valid random stimuli and simultaneously check
the correctness of the interface behavior. In addition, it can be im-
plemented in synthesizable HDL to enable the hardware acceleration.
By supporting many biasing methods, the AVSG provides users much
better controllability over where a simulation run heads for. The exper-
imental results demonstrate that these biasing methods do successfully
generate appropriate stimuli as expected. Moreover, the extremely low
overhead in simulation time shows the high efficiency of our AVSG.
Hence, this approach can indeed improve the simulation quality as well
as speed up the verification process.

REFERENCES

[1] K. Shimizu, D. L. Dill, and A. J. Hu, “Monitor-based formal specifica-
tion of PCL,” in Proc. Int. Conf. Formal Methods Comput.-Aided Des.,
Nov. 2000, pp. 335-353.

[2] A. Nightingale and J. Goodenough, “Testing for AMBA compliance,”
in Proc. IEEE Int. ASIC/SOC Conf., Sep. 2001, pp. 301-305.

[3] M. T. Oliviera and A. J. Hu, “High level specification and automatic
generation of IP interface monitors,” in Proc. Des. Autom. Conf., Jun.
2002, pp. 129-134.

[4] A.J.Hu,J.Casus, andJ. Yang, “Efficient generation of monitor circuits
for GSTE assertion graphs,” in Proc. IEEE/ACM Int. Conf. Comput.-
Aided Des., Nov. 2003, pp. 154—159.

[5] A.Roychoudhury, T. Mitra, and S. R. Karri, “Using formal techniques
to debug the AMBA system-on-chip bus protocol,” in Proc. Des.,
Autom. Test Europe Conf. Exhibition, Mar. 2003, pp. 828-833.

[6] H.-M. Lin, C.-C. Yen, C.-H. Shih, and J.-Y. Jou, “On compliance test

of on-chip bus for SOC,” in Proc. Asia South Pacific Des. Autom. Conf.,

Jan. 2004, pp. 328-333.

K. Ara and K. Suzuki, “A proposal for transaction-level verification

with component wrapper language,” in Proc. Des., Autom. Test Europe

Conf. Exhibition, Mar. 2003, pp. 82-87.

J. Yuan, K. Shultz, C. Pixley, H. Miller, and A. Aziz, “Modeling design

constraints and biasing in simulation using BDDs,” in Proc. IEEE/ACM

Int. Conf. Comput.-Aided Des., Nov. 1999, pp. 584-589.

[9] K. Shimizu and D. L. Dill, “Deriving a simulation input generator and
a coverage metric from a formal specification,” in Proc. Des. Autom.
Conf., Jun. 2002, pp. 801-806.

[10] J. Yuan, C. Pixley, A. Aziz, and K. Albin, “A framework for constrained
functional verification,” in Proc. IEEE/ACM Int. Conf. Comput.-Aided
Des., Nov. 2003, pp. 142-145.

[11] M. A. Iyer, “RACE: A word-level ATPG-based constraints solver
system for smart random simulation,” in Proc. Int. Test Conf., Sep.
2003, pp. 299-308.

[12] J. Yuan, C. Pixley, and A. Aziz, Constraint-Based Verification.
York: Springer Science Business Media, Inc., 2006.

[13] G.V.Bochmann andJ. Gecsei, “A unified method for the specification
and verification of protocols,” in Proc. Int. Federation for Inf. Process.
Congr., Aug. 1977, pp. 229-234.

[14] K.-T. Cheng and A. S. Krishnakumar, “Automatic functional test gen-
eration using the extended finite state machine model,” in Proc. Des.
Autom. Conf., Jun. 1993, pp. 86-91.

[15] D. Lee and M. Yannakakis, “Optimization problems from feature
testing of communication protocols,” in Proc. Int. Conf. Netw. Proto-
cols, Oct. 1996, pp. 66-75.

[16] ARM Limited, Cambridge, U.K., “AMBA Specification (Rev. 2.0),”
May 1999.

[17] K. Lahiri, A. Raghunathan, and G. Lakshminarayana, “Lotterybus: A
new high-performance communication architecture for system-on-chip
design,” in Proc. Des. Autom. Conf., Jun. 2001, pp. 15-20.

[18] P. H. Bardell, W. H. McAnney, and J. Savir, Built-in Test for VLSI:
Pseudorandom Techniques. New York: Wiley, 1987.

[19] OpenCores Organization, “Specification for the: WISHBONE SOC in-
terconnection architecture for portable IP cores, Rev. B.3,” Sep. 2002.
[Online]. Available: http://www.opencores.org/

[7

—

[8

[t

New

