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Abstract In this paper, a fuzzy-identification-based

adaptive backstepping control (FABC) scheme is proposed.

The FABC system is composed of a backstepping con-

troller and a robust controller. The backstepping controller,

which uses a self-organizing fuzzy system (SFS) with the

structure and parameter learning phases to on-line estimate

the controlled system dynamics, is the principal controller,

and the robust controller is designed to dispel the effect of

approximation error introduced by the SFS. The developed

SFS automatically generates and prunes the fuzzy rules by

the proposed structure adaptation algorithm and the

parameters of the fuzzy rules and membership functions

tunes on-line in the Lyapunov sense. Thus, the overall

closed-loop FABC system can guarantee that the tracking

error and parameter estimation error are uniformly ulti-

mately bounded; and the tracking error converges to a

desired small neighborhood around zero. Finally, the pro-

posed FABC system is applied to a chaotic dynamic system

to show its effectiveness. The simulation results verify that

the proposed FABC system can achieve favorable tracking

performance even with unknown controlled system

dynamics.

Keywords Adaptive control � Backstepping control �
Chaotic dynamic system � Self-organizing fuzzy system �
Structure adaptation

1 Introduction

Fuzzy control (FC) has achieved many practical successes;

however, it has not been viewed as rigorous. Because FC

lacks a systematic design procedure to determine proper

membership functions and fuzzy rules, and the way to

guarantee the global stability still needs to be explored

(Timothy 1995; Wang 1997). To tackle this problem, some

researchers have focused on the use of the Lyapunov syn-

thesis approach to construct a stable adaptive fuzzy control

(AFC) scheme (Leu et al. 2005; Lin 2002; Lin and Hsu

2002; Wang 1994; Wang and Lin 2000). Based on the

universal approximation property of fuzzy systems, the

AFC design methods can provide stabilizing controller in

the Lyapunov sense for nonlinear systems with dominant

uncertain nonlinearities by using sufficiently complex

approximation functions (Wang 1994). With these approa-

ches, the fuzzy rules and membership function can be

automatically adjusted by some adaptation laws to achieve

satisfactory system response. If an adaptive fuzzy controller

uses fuzzy systems as a model of the plant, it is referred to as

a indirect adaptive fuzzy controller. If an adaptive fuzzy

controller uses fuzzy systems as controllers, it is referred to

as a direct adaptive fuzzy controller (Wang 1994).

Though the performances of AFC are acceptable in Leu

et al. (2005), Lin (2002), Lin and Hsu (2002), Wang (1994)
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and Wang and Lin (2000), the learning algorithms only

take care of parameter learning but neglect structure

learning of fuzzy system. Time-consuming trial-and-error

process or experts’ knowledge is still needed to determine

the structure’s size of fuzzy system. However, if much time

or experienced experts are unavailable, an ill-structure of

fuzzy system may be constructed and causes serious

problems. In general, more fuzzy rules are needed as more

favorable performance is required. On the other hand, an

overly-small fuzzy rule base may not be robust enough to

achieve favorable control performance. To solve the

problem of structure determination in fuzzy system, much

interest has been focused on the adaptive structure learning

approach for self-organizing fuzzy system (SFS) or self-

organizing fuzzy neural network (SFNN) (Leng et al. 2005;

Lin et al. 2005; Pal and Pal 1999). Lin et al. proposed a

self-constructing fuzzy neural network; unfortunately, the

proposed approach cannot prevent the structure of the

network from growing unboundly (Lin et al. 2005). Pal and

Pal proposed a rule pruning algorithm to prune the fuzzy

rules; however, the searching space for the connection

weights is restricted to R? (Pal and Pal 1999). This may

harm the capability of the proposed network to lower the

value of residual square error. In (Leng et al. 2005), both

rule adding and pruning are performed in the structure

learning of the proposed self-organizing fuzzy neural net-

work. It has been demonstrated that by the proposed

adaptive structure learning approach the fuzzy rules can be

automatically generated or pruned. The adding approach is

derived form geometric growing criterion and satisfies e-
completeness of fuzzy rules; on the other hand, second

derivative information is used to find the unimportant rule

which should be pruned. However, it can be imagined that

such complicated structuring learning may lead to com-

putational load so that they are not suitable for online

practical applications. Recently, some intelligent control

schemes utilize the SFS approach proposed in Gao and Er

(2003), Hsu (2007), Lin et al. (2001) and Park et al. (2003,

2005). However, some of them use the gradient descent

method to derive the parameter learning algorithms which

cannot guarantee the system stability (Lin et al. 2001).

Some of them derive the parameter learning algorithms in

the Lyapunov sense to guarantee system stability, but the

structure learning algorithm is too complex (Gao and Er

2003; Hsu 2007; Park et al. 2003, 2005). In Hsu (2007), Lin

et al. (2001) and Park et al. (2005), a self-constructing

fuzzy neural network control is proposed to avoid the

newly generated membership function being too similar to

the existing ones. However, the structure would grow large

as the input data has large variations. Gao and Er use an

error reduction ratio with QR decomposition to prune the

rules; however, the design procedure is overly complex

(Gao and Er 2003). In Park et al. (2003), the developed

adaptation law does not consider the tuning of membership

functions, and the structure learning does not consider

the pruning algorithm of fuzzy rules. This maybe causes

slow convergence of the parameters and unbound structure

size.

In this paper, a fuzzy-identification-based adaptive

backstepping control (FABC) system for an unknown

nonlinear system is proposed. The FABC system is com-

posed of a backstepping controller and a robust controller.

The backstepping controller containing a SFS is designed

in the sense of the adaptive backstepping control technique.

The SFS with simultaneous structure and parameter

learning is used to on-line estimate the controlled system

dynamics. The structure learning considers both growing

and pruning of fuzzy rules. A new membership function is

generated (resulting in new generated rules) when a new

incoming input signal lies far away from the input range,

i.e., the membership degrees in all its fuzzy sets are quite

small. A rule is considered redundant and pruned when it

has little contribution to the output of the SFS for a period

of time. The robust controller is designed to dispel the

effect of approximation error between SFS approximation

and controlled system dynamics. The developed structure

learning algorithm empowers the SFS to automatically

generate and prune the fuzzy rules during the learning

process. All the control parameters of FABC can be on-line

tuned by the adaptive laws derived in the Lyapunov sense;

thus the uniformly ultimately bounded stability of the

closed-loop control system can be guaranteed. Finally, the

FABC system using the developed SFS is applied to a

chaotic dynamic system. Simulation results verify that the

proposed control scheme can achieve favorable tracking

performance.

2 Problem formulation

Chaotic dynamic systems have been studied and known to

exhibit complex dynamical behavior. The interest in cha-

otic dynamic systems lies mostly upon their complex,

unpredictable behavior, and extreme sensitivity to initial

conditions as well as parameter variations. Consider a

second-order chaotic dynamic system, the well known

Duffing’s equation, which describes a special nonlinear

circuit or a pendulum moving in a viscous medium under

control. The dynamics of Duffing’s equation is described as

(Chen and Dong 1993; Loria et al. 1998)

€x ¼ �p _x� p1x� p2x3 þ q cosðwtÞ þ u ¼ f þ u ð1Þ

where t is the time variable; w is the frequency, f ¼
�p _x� p1x� p2x3 þ q cosðwtÞ is the system dynamic

function, u is the control effort, and p, p1, p2 and q are

real constants. Depending on the choices of these
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constants, the solutions of system (Eq. 1) may display

complex phenomena, including various periodic orbits

behaviors and some chaotic behaviors. To observe these

complex phenomena, the open-loop system behavior with

u = 0 was simulated with p = 0.4, p1 = -1.1, p2 = 1.0

and w = 1.8. The phase plane plots with an initial con-

dition (0, 0) are shown in Fig. 1a, b for q = 2.1 (chaotic)

and q = 7.0 (period 1), respectively. It is shown that the

uncontrolled chaotic dynamic system has different chaotic

trajectories for different values of q (Chen and Dong

1993). The control objective is to find a control law so

that the chaotic trajectory can track the desired periodic

orbit. Assume that all the parameters of system (Eq. 1)

are exactly known, the design of ideal backstepping

control for the chaotic dynamic system is described step-

by-step as follows (Hsu et al. 2006; Slotine and Li 1991).

Step 1 Define the tracking error

e1 ¼ x� xc ð2Þ

where xe is the command trajectory. The time derivative

of tracking error is defined as

_e1 ¼ _x� _xc: ð3Þ

The _x can be viewed as a virtual control in the equation.

Define the following stabilizing function

a ¼ �s1e1 þ _xc ð4Þ

where s1 is a positive constant.

Step 2 Define

e2 ¼ _x� a: ð5Þ

Then the time derivative of e2 is expressed as

_e2 ¼ €x� _a ¼ €x� ð�s1 _e1 þ €xcÞ ¼ €e1 þ s1 _e1: ð6Þ

Step 3 If the dynamic system is known, an ideal

backstepping controller can be obtained as (Hsu et al.

2006)

uib ¼ €xc � f � s1 _e1 � s2e2 � e1 ð7Þ

where s2 is a positive constant. Substituting Eq. 7 into 1

yields

_e2 ¼ �s2e2 � e1: ð8Þ

Step 4 Define the Lyapunov function as

V1ðe1; e2Þ ¼
e2

1

2
þ e2

2

2
: ð9Þ

Differentiating Eq. 9 with respect to time and using

Eqs. 3 and 8, yields

_V1ðe1; e2Þ ¼e1 _e1 þ e2 _e2

¼e1ðe2 � s1e1Þ þ e2ð�s2e2 � e1Þ
¼ � s1e2

1 � s2e2
2� 0

ð10Þ

This implies that e1 and e2 converge to zero as t ? ?
(Slotine and Li 1991). Therefore, the ideal backstep-

ping controller in Eq. 7 will asymptotically stabilize

the system.

3 Self-organizing fuzzy system (SFS)

Since the system dynamic function f may be unknown

or perturbed in practical application, the ideal back-

stepping controller (Eq. 7) cannot be precisely obtained.

To solve this problem, a SFS with the structure and

parameter adaptation learning algorithm is developed to

on-line estimate the system dynamic function f in this

paper.Fig. 1 Typical chaotic orbits of the chaotic dynamic system
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3.1 Description of SFS

Consider a two-input one-output fuzzy system wherein the

IF-THEN rules are of the following form (Wang 1997)

Rulei1;i2 : IF X1 is Fi1
1 and X2 is Fi2

2 ; THEN f is ai1;i2

ð11Þ

where X1 and X2 are the input variables; f is the output

variable; ai1;i2 is the crisp singleton consequent; F
ij
j ; j = 1, 2

are the fuzzy sets characterized by the fuzzy membership

function F
ij
j ðXjÞ with ij 2 1; 2; . . .;Nj

� �
being the number

of membership functions of Xj. Define a set X which

collects all possible fuzzy rules:

X ¼ Rulei1;i2 i1 ¼ 1; 2; . . .;N1; i2 ¼ 1; 2; . . .;N2j
� �

: ð12Þ

The output of SFS can be expressed as (Wang 1997)

f ¼

P
Rulei1 ;i2

2Xsub
ai1;i2

Q2
j¼1 l

F
ij
j

ðXjÞ
� �

P
Rulei1 ;i2

2Xsub

Q2
j¼1 l

F
ij
j

ðXjÞ
� � ð13Þ

where Xsub � X is the rule base. Then, SFS can be

represented as a linear combination of fuzzy basis

functions defined as

ni1;i2 ¼
P2

j¼1 l
F

ij
j

ðXjÞ
P

Rulei1 ;i2
2Xsub

P2
j¼1 l

F
ij
j

ðXjÞ
� � ; ij 2 1; 2; . . .;Nj

� �
;

j ¼ 1; 2:

ð14Þ

In this study, a Gaussian membership function is defined as

l
F

ij
j

ðXj; c
ij
j ; r

ij
j Þ ¼ exp

ðXj � c
ij
j Þ

2

rij2
j

" #

ð15Þ

where c
ij
j and rij

j are the mean and standard deviation of

Gaussian function, respectively. However, rij
j may become

to zero in the training procedure and thus the firing weight

l
F

ij
j

ð�Þ will not be defined. To avoid this problem, this

paper consider a novel form of membership function as

l
F

ij
j

ðXj; c
ij
j ; r

ij
j Þ ¼ exp

ðXj � c
ij
j Þ

2

rij2
j þ �w

" #

ð16Þ

where �w is a small positive constant.

If the number of the fuzzy rules is chosen too large, the

computation loading is heavy so that they are not suitable

for online practical applications. If the number of the fuzzy

rules is chosen too small, the learning performance may be

not good enough to achieve desired performance. In order

to avoid the time consuming process of constructing proper

fuzzy rules, a structure adaptation algorithm is developed.

Before building fuzzy rules, every input space S(Xj) is

partitioned into several overlapping clusters to construct

the fuzzy sets of Xj. Traditionally, this work is done by

humans. However, even with experienced experts, it could

happen that for some incoming Xj, the membership degrees

of all its fuzzy sets are quite small, i.e., F
ij
j Xj

� �
; ij ¼

1; 2; . . .;Nj are quite small, as depicted in Fig. 2a. This

implies that the input space S(Xj) is not properly clustered.

Hence, the fundamental concept of the growing of fuzzy

rules is developed to adjust the inappropriate clustering.

Initially, create one initial fuzzy rule for the given initial

state as

Rule1;1 IF X1 is F1
1 and X2 isF1

2 THEN f is a1;1 ð17Þ

where the membership functions for F1
j ; j = 1, 2, are

defined with the initial input, Xjð0Þ; as the following form

lF1
j
ðXjÞ ¼ exp � ½Xj � Xjð0Þ�2

r12
j

( )

: ð18Þ

The fuzzy approximator will be operated with this single

rule. Define the growing criterion as

lmax
j \Hg; j ¼ 1; 2 ð19Þ

where lmax
j ¼ max

ij¼1;2
l

F
ij
j

ðXjÞ is the max membership

function degree of Xj and Hg 2 ð0; 1Þ is a given

threshold. During the control process, if the growing

criterion (Eq. 18) is satisfied for new incoming Xj,

1 B j B 2, an new membership functions with the mean

and standard deviation are created as (Lin et al. 2005)

c
Njþ1
j ¼ Xj ð20Þ

rNjþ1
j ¼ �r ð21Þ

where �r is a predefined positive constant. The created

membership function is shown as Fig. 2b. For example, if

one new membership function is created for X1, N1 new

fuzzy rules will be generated according to the new

membership function.

RuleN1þ1 : IF X1 FN1þ1
j and X2 is F1

2 THEN f isaN1þ1;1

RuleNjþ1;2 : IF X1 is FN1þ1
1 and X2 is F2

2 THEN f isaN1þ1;2

..

.

RuleNjþ1;N2
: IF X1is FN1þ1

1 and X2 is FN2

2 ;THEN f isaN1þ1;N2

ð22Þ

where aN1þ1;1;aN1þ1;2; . . .;aN1þ1;N2
are initialized from

zeros. If one new membership function is created for X2,

N1 new fuzzy rules will be generated in the way similar to

Eq. 22. Next the structure learning phase is considered to

determine whether or not to eliminate the inappropriate

existing fuzzy rules. The contribution made by kth rule on

the output f can be defined in 2-norm sense as
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Ck ¼
fkj jPn

k¼1 fkj j
; k ¼ 1; 2; . . .; n ð23Þ

where fk ¼ aknk and n is the number of the existing fuzzy

rule. A significance index which determines the importance

of the k-th rules is given as follows

Sk ¼
Src

k s; if Ck\g
Src

k ; if Ck� g

�
; k ¼ 1; 2; . . .; n ð24Þ

where Src
k is the most recent Sk, s 2 ð0; 1Þ is a decay

constant, and g 2 ð0; 1Þ is a given constant. The initial

value of Sk is 1. It can be observed from Eq. 18 that Sk

declines when Ck is smaller than g. A decaying significance

index implies that the associated rule is becoming less and

less important and should be pruned. The pruning criterion

of kth fuzzy rule is thus defined as follows.

Sk\Hp; k ¼ 1; 2; . . .; n ð25Þ

where Hp 2 ð0; 1Þ is a selected threshold. If the pruning

criterion (Eq. 25) is satisfied for Sk, the associated kth rule

is pruned. An exponential function was used to calculate

the value of significant index for each existing fuzzy rule in

[0, 1]; however, the computation load would be large (Hsu

2007). In this study, decay constant is used to calculate the

value of significant index. It is better than exponential

function used in Hsu (2007), since it is simple to imple-

ment and easy to design.

In summary, the flowchart of the structure learning

algorithm for the SFS is summarized in Fig. 3. The major

contributions of the SFS are: (1) fuzzy rules can be auto-

matically generated and pruned by the structure learning

approach; (2) the concepts of growing and pruning of rules

are quite simple and intuitive and thus only little compu-

tational load is caused by the structure learning; (3) no

prior knowledge is needed to determine the fuzzy partitions

of input spaces and the number of fuzzy rules; the rule base

is automatically constructed from a single rule which is

determined according to the initial input signal to the SFS;

(4) the computational load caused by the ineffective fuzzy

rules can be relieved.

Fig. 2 a Improper fuzzy clustering of input variable Xj; b Newly

created membership functions
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Fig. 3 Flowchart of the structure learning algorithm
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Remark 1 In this paper, a two-input one-output fuzzy

system is considered. It is reasonable that the proposed

SFS still works with larger input dimension. Though

much more rules may be generated, the ineffective or

redundant rules will be pruned by the proposed self-

organizing approach.

Remark 2 If the computation load is the important issue,

the threshold Hp should be chosen large enough so that

more fuzzy rules are pruned, or the threshold Hg should be

chosen small enough so that fewer fuzzy rules are

generated.

3.2 Fuzzy approximation

For ease of notation, define vectors c and r as

c ¼ ½c1 c2�T ð26Þ

r ¼ ½r1 r2�T ð27Þ

where cj ¼ ½c1
j . . . c

Nj

j �
T

and rj ¼ ½r1
j . . . rNj

j �
T

collect the

means and standard deviations of the Gaussian membership

functions of Xj, j = 1, 2, respectively. Equation 13 can be

expressed in the vector form as

f ¼ ½a1 a2 � � � an�

n1

n2

..

.

nn

2

6664

3

7775
¼ aTnðX; c; rÞ ð28Þ

where X = [X1X2] is the input vector; ak and nk represent

the singleton consequents and the fuzzy basis functions of

kth fuzzy rule, respectively. It has been proven that there

exists a fuzzy system so that it can uniformly approximate

a nonlinear even time-varying function. Thus, an SFS is

designed to estimate the system dynamics. To develop the

control law, the fuzzy system described in Eq. 28 can

approximate the unknown system dynamics as follows

(Wang 1994; Wang and Lin 2000)

f ¼ f � þ D ¼ a�TnðX; c�; r�Þ þ D ¼ a�Tn� þ D ð29Þ

where a*, c*, and r* are the bounded optimal vectors of

a, c, and r, and D denotes the approximation error. In

fact, it is difficult to determine the optimal vectors to best

approximate a nonlinear function. The optimal vectors

even may not be unique. Therefore, a fuzzy approximator

is defined as

f̂ ¼ âTn̂ðX; ĉ; r̂Þ ¼ âTn̂ ð30Þ

where â; ĉ; and r̂ are the estimation vectors of a, c, and r,

respectively. Hence, the modeling error, ~f ; can be

expressed as

~f ¼f � f̂ ¼ a�Tn� þ D� âTn̂

¼~aTn̂þ âT~nþ ~aT~nþ D
ð31Þ

where ~a ¼ a� � â and ~n ¼ n� � n̂: In the following, some

preliminaries will be made for adaptive online-tuning of

the parameters of SFS, and thus favorable approximation

can be achieved. To achieve this goal, the Taylor

linearization technique is employed to transform the

nonlinear fuzzy basis function into partially linear form

as follows (Wang and Lin 2000)

~n¼

~n1
~n2

..

.

~nn

2

6664

3

7775
¼

on1

oc
on2

oc

..

.

onn

oc

2

66664

3

77775

����������
c¼ĉ

ðc� � ĉÞþ

on1

or
on2

or

..

.

onn

or

2

66664

3

77775

����������
r¼r̂

ðr� � r̂Þ þ h

ð32Þ

or

~n ¼ nT
c ~cþ nT

r~rþ h ð33Þ

where h represents the higher order term, ~c ¼ c� � ĉ and

~r ¼ r� � r̂: Substituting Eq. 33 into 31 yields

~f ¼~aTn̂þ âTnT
c ~cþ âTnT

r~rþ e

¼~aTn̂þ ~cTncâþ ~rTnrâþ e
ð34Þ

where âTnT
c ~c ¼ ~cTncâ and âTnT

r~r ¼ ~rTnrâ are used since

they are scalars, and e ¼ âThþ ~aT~nþ D is the lumped

uncertainty. Assume the lumped uncertainty e is globally

bounded by

ej j �E ð35Þ

where E is a positive bound, which is difficult to deter-

mine in practical applications. This assumption is not

strong because only the existence of E is required. Prior

knowledge of E is not necessary in the development of

FABC, and E will be estimated by a proposed estimation

scheme.

4 Design of FABC

Since the system dynamic function f may be unknown or

perturbed in practical application, the ideal backstepping

controller (Eq. 7) cannot be precisely obtained. Then, a

fuzzy-identification-based adaptive backstepping control

(FABC) scheme, as shown in Fig. 4, is proposed to

achieve favorable tracking performance for a tracking

problem of a chaotic dynamic system. The FABC system

is composed of a backstepping controller and a robust

controller. The backstepping controller, which uses an

SFS with the structure and parameter learning phases to
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on-line estimate the controlled system dynamics, is the

principal controller. The robust controller designed to

dispel the effect of approximation introduced by the SFS.

Define the tracking error e1 as Eq. 2, a stabilizing func-

tion a as Eq. 4 and e2 as Eq. 2. The control law of the

FABC system defines as

u ¼ ubc þ urc ð36Þ

where

ubc ¼ €xc � f̂ � s1 _e1 � s2e2 � e1 ð37Þ

and

urc ¼ � Ê tanhðe2

c
Þ ð38Þ

in which f̂ is the output of SFS, Ê is the estimated bound

value of the approximation error, tanhð�Þ denotes the

hyperbolic tangent function, and c is a predefined positive

constant. Substituting Eq. 36 into 1 yields

_e2 ¼ f � f̂ � s2e2 � e1 � Ê tanh
e2

c

	 

: ð39Þ

By using the modeling approximation error in Eq. 31,

Eq. 39 can be rewritten as

_e2 ¼ ~aTn̂þ ~cTnT
c âþ ~rTnT

r âþ e� s2e2 � e1 � Ê tanhðe2

c
Þ:

ð40Þ

Define the Lyapunov function as

V2 ¼
e2

1

2
þ e2

2

2
þ ~aT~a

2ba

þ
~cT~c

2bc

þ ~rT~r
2br

þ
~E2

2bE

ð41Þ

where ~E � E � Ê; ba; bc; br and bE are positive constants.

Differentiating Eq. 41 with respect to time and using

Eq. 40 yields

_V2 ¼ e1 _e1þ e2 _e2þ
~aT _~a

ba

þ
~cT _~c

bc

þ ~rT _~r
br

þ
~E _~E

bE

¼ e1 e2� s1e1ð Þ

þ e2

�
~aTn̂þ ~cTnT

c âþ ~rTnT
r âþ e� s2e2

� e1� Ê tanh
e2

c

	 
�
þ ~aT _~a

ba

þ
~cT _~c

bc

þ ~rT _~r
br

þ
~E _~E

bE

¼�s1e2
1� s2e2

2þ ~aT e2n̂þ
_~a

ba

	 

þ ~cT e2n̂

T
c âþ

_~c

bc

 !

þ ~rT e2n̂
T
r âþ

_~r
br

	 

þ e2eþ e2ð ~E�EÞ tanh

e2

c

	 


þ
~E _~E

bE

� � s1e2
1� s2e2

2þ ~aT e2n̂þ
_~a

ba

	 


þ ~cT e2n̂
T
c âþ

_~c

bc

 !

þ ~rT e2n̂
T
r âþ

_~r
br

	 


þ e2j jEþ e2ð ~E�EÞ tanh
e2

c

	 

þ

~E _~E

bE

¼�s1e2
1� s2e2

2þ ~aT e2n̂þ
_~a

ba

	 

þ ~cT e2n̂

T
c âþ

_~c

bc

 !

þ ~rT e2n̂
T
r âþ

_~r
br

	 

þ e2j j � e2 tanh

e2

c

	 
� �
E

þ ~E e2 tanh
e2

c

	 

þ

_~E

bE

" #

ð42Þ

The adaptive laws of SFS are designed as

_̂a ¼ � _~a ¼ ba½e2n� qaâ� ð43Þ
_̂c ¼ � _~c ¼ bc½e2n

T
c â� qcĉ� ð44Þ

_̂r ¼ � _~r ¼ br½e2n
T
r â� qrr̂� ð45Þ

and the adaptive laws of the approximation error bound is

designed as

_̂E ¼ � _~E ¼ bE e2 tanh
e2

c

	 

� qEÊ

� �
ð46Þ

where qa, qc, qr and qE are positive small constants. Every

adaptive law in Eqs. 43–46 incorporates a leakage term

based on r-modification (Kim and Calise 2007; Wang and

Hill 2006). These leakage terms are used to improve the

robustness in the presence of approximation errors and

prevent the parameter drifts of the system. The following

inequality holds for any m 2 R and any c[ 0 (Park et al.

2003)

0� mj j � m tanh
m
c

	 

� jc ð47Þ

where j is a constants satisfying j ¼ expð�jþ 1Þ; i.e.,

j ¼ 0:2875: Then, Eq. 42 can be expressed as

1
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bcu u x
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j
max

n

1
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n

Fig. 4 The block diagram of the FABC system using a SFS
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_V2� � s1e2
1 � s2e2

2 þ qa~aTâþ qc~c
Tĉ

þ qr~rTr̂þ qE
~ETÊ þ jcE: ð48Þ

Completing the squares yields

_V2� � s1e2
1 � s2e2

2

þ 1

2
qa ~aþ âk k2þqc ~cþ ĉk k2
n

þqr ~rþ r̂k k2 þ qEð ~E þ ÊÞ2
o

� 1

2
qa ~ak k2þqc ~ck k2þqr ~rk k2þqE

~E2
h i

� 1

2
qa âk k2
h

þqc ĉk k2þqr r̂k k2þqEÊ2
i
þ jcE

� � s1e2
1 � s2e2

2 �
1

2
qa ~ak k2þqc ~ck k2þqr ~rk k2þqE

~E2
h i

þ 1

2
qa a�k k2þqc c�k k2
h

þ qr r�k k2þqEE2
�
þ jcE

� � sV2 þ z

ð49Þ

Fig. 5 Simulation results of FABC using 3 fuzzy rules for q = 7.0
Fig. 6 Simulation results of FABC using 10 fuzzy rules for q = 7.0
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where s and z are positive constants given by

s ¼ min 2s1; 2s2; qaba; qcbc; qrbr; qEbEf g ð50Þ

z ¼ 1

2
qa a�k k2þqc c�k k2þqr r�k k2þqEE2
h i

þ jcE: ð51Þ

Define 1 ¼ z=s [ 0: Then, the solution of the differential

inequality (Eq. 49) satisfies

0�V2� 1þ V2ð0Þ � 1½ � expð�stÞ ð52Þ

where V2(0) is the initial value of V2. Thus, e, â; ĉ; and r̂

are uniformly ultimately bounded according to the

extensions of the Lyapunov theory (Wang and Hill

2006). From Eq. 40, it is obvious that
e2

1

2
�V2 for any V2.

From Eq. 52, we obtain

Fig. 7 Simulation results of FABC using 20 fuzzy rules for q = 7.0

Fig. 8 Simulation results of FABC using SFS without rule pruning

algorithm for q = 7.0
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e2
1

2
�VðtÞ� 1þ V2ð0Þ � 1½ � expð�stÞ: ð53Þ

Then, Eq. 53 can be rearranged to yield the following

inequality

e1j j �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
21þ 2 V2ð0Þ � 1½ � expð�stÞ

p
: ð54Þ

Note that the term 2 V2ð0Þ � 1½ � expð�stÞ will decay

gradually with time because s [ 0. Therefore, Eq. 54

implies that for any given k [
ffiffiffiffiffi
21
p

; there exists T so that

the tracking error e1 satisfies

Fig. 9 Simulation results of FABC using proposed SFS for q = 7.0
Fig. 10 Simulation results of FABC using proposed SFS for q = 2.1
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e1j j ¼ x1 � xcj j\k: ð55Þ

for all t� T : Then, the output of the FABC system can

exponentially converge to a small neighborhood of the

trajectory command.

5 Simulation results

The proposed FABC is applied to control a chaotic

Duffing’s equation to track a desired orbit. It should be

Fig. 11 Simulation results with SFS which tends to easily generate

and prune rules for q = 7.0

Fig. 12 Simulation results with SFS which tends to easily generate

and prune rules for q = 2.1
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emphasized that the prior knowledge of the dynamics of

the controlled system is not necessary in the development

of FABC. An SFS with the proposed structuring and

parameter learning algorithms is utilized to on-line esti-

mate the chaotic dynamics equation. Excessively small s1

and s2 will diminish the control effort and thus slow down

the convergence of tracking error; on the contrary, over-

large s1 and s2 may cause a variation of high gain control.

If the learning rates ba, bc, br and bE are small, the

parameters convergence of the FABC scheme will be

easily achieved but result in slow learning speed. However,

if the learning rates ba, bc and br are large, the learning

speed will be fast, but the FABC scheme may become

more unstable for parameter convergence. The parameters

qa, qc, qr and qE should not be chosen too small to destroy

their capabilities of preventing parameter estimations from

drifting to vary large values. An excessively small c is not

suggested, because tanhð�Þ may be driven to sgnð�Þ and thus

loses the power of tanhð�Þ to smoothen the control efforts.

To illustrate the effectiveness of the proposed design

method, a comparison among fix-structure fuzzy systems,

the proposed SFS without pruning algorithm, and the

proposed SFS is made.

The simulation results of FABC using 3 fuzzy rules for

q = 7.0 are shown in Fig. 5. The tracking response of x is

shown in Fig. 5a; the tracking response of _x is shown in

Fig. 5b; the associated control effort is shown in Fig. 5c;

the tracking error e1 is shown in Fig. 5d; and the modeling

error ~f is shown in Fig. 5e, respectively. The simulation

results show that the tracking performance is unsatisfactory

when the number of fuzzy rules is chosen too small.

Moreover, the simulation results of FABC using 10 and 20

fuzzy rules for q = 7.0 are shown in Figs. 6 and 7,

respectively. The simulation results show that the satisfied

tracking responses can be achieved when the number of

fuzzy rules is chosen appropriately. In general, the better

approximation capability of the fuzzy system can achieve

as using the more fuzzy rules. However, some exceptions

show that a fuzzy system with an over-large number of

rules is likely to fail to achieve approximation perfor-

mance. So it is not an easy task to determine an appropriate

number of fuzzy rules to achieve favorable approximation

performance.

Next, the proposed FABC is applied to chaotic dynamic

system again. The parameters of FABC system are

selected as s1 ¼ s2 ¼ 1; qa ¼ qc ¼ qr ¼ qE ¼ 0:005; c ¼
0:05; ba ¼ 200; bc ¼ br ¼ 1; bE ¼ 0:1; �r ¼ 1:0;Hg ¼ 0:8;

Hp ¼ 0:01 and g ¼ 0:001: Considering the requirement of

stability and possible operating conditions, these values

through some trials to achieve satisfactory control perfor-

mance. To illustrate the effectiveness of the proposed design

method, a comparison between a FABC with and without

structure pruning algorithm is made. The simulation results

without structure pruning algorithm for q = 7.0 are shown in

Fig. 8. The tracking response of x is shown in Fig. 8a; the

tracking response of _x is shown in Fig. 8b; the associated

control effort is shown in Fig. 8c; the number of the fuzzy

rule is shown in Fig. 8d; the tracking error e1 is shown in

Fig. 8e; and the modeling error ~f is shown in Fig. 8f,

respectively. From the simulation results, the simulation

results show that the favorable tracking performance is

achieved. However, since the pruning algorithm of fuzzy

rules is not considered in the structure learning, the number

of the fuzzy rule may grow unboundedly.

Then, the proposed pruning algorithm is adopted. The

simulation results with structure pruning algorithm for

q = 7.0 and q = 2.1 are shown in Figs. 9 and 10, respec-

tively. Simulation results prove that the proposed FABC

system with structure adaptation algorithm can achieve

favorable tracking performance under parameter variation.

Moreover, the number of fuzzy rules increases rapidly at

the beginning of control, and then gradually decreases to an

invariant value at the end of control. The on-line structure

adaptation algorithm can create new fuzzy rules to improve

unsatisfactory approximation performance and prune

insignificant fuzzy rules to reduce the computation load.

Finally, the thresholds for growing an pruning rules (Hg

and Hp) are the most significant pre-given constants that

influence the number of rules. To illustrate the influence of

them, the proposed FABC using SFS is applied to control

the chaotic system again with Hg ¼ 0:89 and Hp ¼ 0:05:

The simulation results are shown in Figs. 11 and 12 for

q = 7.0 and q = 2.1, respectively. Simulation results prove

that the proposed FABC system can achieve favorable

tracking performance. Moreover, the fuzzy rules are

generated and pruned more easily when the thresholds for

growing and pruning rules are chosen larger.

6 Conclusion

To deal with the highly nonlinear property of chaotic

dynamic system and the difficulty of obtaining precise

system model, a fuzzy-identification-based adaptive back-

stepping control (FABC) system using self-organizing

fuzzy system (SFS) is proposed in this paper. The FABC

system is composed of a backstepping controller and a

robust controller. The effectiveness of the FABC system

using a SFS is verified by some simulations. The main

contributions of this paper are: (1) a time-consuming trial-

and-error tuning procedure for determining suitable num-

ber of fuzzy rules can be avoided, and rules of the SFS can

be automatically generated and pruned by the structure

learning algorithm; (2) the parameter and structure learning

of the SFS are performed simultaneously instead of

sequentially, and thus make the FABC system using a SFS
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suitable for on-line instead of off-line operation; (3) the

overall closed-loop control system guarantees that the

tracking error and parameter estimation error are uniformly

ultimately bounded, and the tracking error can be asymp-

totically attenuated to a desired small level around zero by

appropriate choices of parameters and learning rates.
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