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We consider a system of two coupled Brownian particles fluctuating between two states. The
fluctuations are produced by both equilibrium thermal and external nonthermal noise, the transition
rates depending on the interparticle distance. An externally induced modulation of the transition
rates acts on the internal degree of freedom (the interparticle distance) and generates reciprocating
motion along this coordinate. The system moves unidirectionally due to rectification of the internal
motion by asymmetric friction fluctuations and thus operates as a dimeric motor that converts input
energy into net movement. The properties of the motor are primarily determined by the properties
of the reciprocating engine, represented by the interparticle distance dynamics. Two main
mechanisms are recognized by which the engine operates: energetic and informational. In the
physically important cases where only one of the motion-inducing mechanisms is operative, exact
solutions can be found for the model with linearly coupled particles. We focus on the informational
mechanism, in which thermal noise is involved as a vital component and the reciprocating velocity
exhibits a rich behavior as a function of the model parameters. An efficient rectification method for

the reciprocating motion is also discussed. © 2009 American Institute of Physics.

[DOLI: 10.1063/1.3116790]

I. INTRODUCTION

The emergence of directed motion in small-scale sys-
tems from unbiased nonequilibrium fluctuations (brought
about by an energy releasing process) has attracted consider-
able recent attention. The problem has been discussed in
manifold contexts by approaches of varying rigor and
sophlstlcatlon ? These studies are primarily motivated by a
desire to understand how molecular motor protems3 and ion
purnps4 operate, carrying out various particular physiological
functions. Another motivation comes from artificial
molecular® and nanoscale machinery design:6 this rapidly de-
veloping field faces the challenge of building synthetic struc-
tures which, if supplied with energy and information, can
controllably move and interface molecular-level systems
with the macroscopic world.

Interaction between two dynamic levels, internal and ex-
ternal, has been recognized as an important factor in energy
conversion by structured objects.L9 In the present work, we
address the case of motor systems consisting of two coupled
particles, where the internal degree of freedom is essential
for directional motion to occur. Several models of this type
have been proposed.lo_16 Most of them rely on the existence
of a locally periodic and asymmetric (ratchet) potential in
which the motors move.'"'? There are, however, alternative
concepts: a transport effect can be achieved in a symmetric
potential and, moreover, without any effective
potential.™ 81415 7 g usually postulated that the particles are
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linearly coupled and their order cannot change (resembling
the inchworm walking in motor proteins3 ) with notable
exceptionslo’16 in which a nonlinear particle interaction is
considered and the particles are allowed to alternate in the
lead (the head-over-head Walking3). Much of the previous
work on the driving mechanisms of dimeric motors has been
concerned with a role of intrinsic structures and symmetry
properties of the systems operating in almost deterministic
fashion at energies much higher than the thermal noise. Sto-
chastically dominant mechanisms responsible for the appear-
ance of dimer directed motion on the nanoscale have been
comparatively less investigated, although a subtle interplay
of thermal noise, nonlinearity, and different dynamic levels is
definitely interesting and a promising topic.

In this paper, we consider a two-state model for a
dimeric motor, placing particular emphasis on stochastic as-
pects of the system behavior. The considered system consists
of two coupled Brownian particles fluctuating between two
conformational states, generally with different interparticle
interaction potentials, position-dependent rate constants of
interstate transitions, and particle friction coefficients. An ex-
ternal action drives the interstate transition rates away from
spontaneous values so that reciprocating motion “out of
noisy states”” occurs along the internal coordinate (the in-
terparticle distance). Since the system dynamics is coupled to
the internal dynamics and the internal motion is rectified by
asymmetric friction fluctuations, the system moves unidirec-
tionally and thus functions as a two-headed motor. By anal-
ogy with a macroscopic combustion motor, the motor con-

© 2009 American Institute of Physics
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sists of a reciprocating engine capable to convert
nonequilibrium fluctuations into reciprocating mechanical
motion and a symmetry-breaking mechanism. We primarily
focus on the reciprocating engine. In addition to a key role
played in our approach, the concept of the reciprocating mo-
tion on the nanoscale is intriguing by itself. It also appears
relevant in the treatment of optomechanical conversions in
single-molecule devices,'® biochemical “futile cycles,”19 par-
ticle separation,20 a strategy for molecular motor design,21
and in other contexts.

For any nanoscale model of energy conversion to be
physically reasonable and biologically relevant, it should in-
clude the spatial dependence of the system’s chemical
activity.] In a simplified version of the considered model, "
the dynamics for switching between competing states is as-
sumed independent of particle spatial position and thermal
noise. So the results and the conclusions of Ref. 15 are only
applicable to systems switchable by extremely large on the
nanoscale forces. As shown in Ref. 22, the incorporation of
the position dependence of the interstate transition rate con-
stants (i) gives proper weight to the effect of thermal noise
not only for spatial motion but also for the interstate transi-
tions and (ii) reveals two basic mechanisms (energetic and
informational) causing the reciprocating motion with quite
distinct physical origins and manifestations. Generally, a
fully analytical treatment of the model under consideration is
hardly possible. However, in the important limiting cases,
where only one of the motion-inducing mechanisms is op-
erative, exact solutions can be obtained for the model with
linearly coupled particles. One of them (representing the en-
ergetic mechanism) has been first found in Ref. 15. The
other, which nicely illustrates the stochastically dominant in-
formational mechanism, is one of the main results of this
work.

The outline of the paper is as follows. In Sec. II, we
formulate a model for a dimeric motor, reduce this model to
one dimension, and show how the directional motion of the
system arises from the noise-induced internal reciprocating
motion. The reduced model (called the reciprocating engine)
is considered in Sec. III. Our main results are presented in
Sec. IV, where an exact solution for the informational recip-
rocating engine is obtained and analyzed. Section V contains
a short discussion of a possible rectifying mechanism.

Il. TWO-STATE MODEL FOR DIMERIC MOTOR

Consider a system consisting of two coupled Brownian
particles moving on a track. The system is assumed to have
two conformational states, o=+ and o=—. The discrete vari-
able o(r) determines the potential profile of interaction be-
tween the particles U (x=x,—x;) with x; and x, denoting the
locations of the particles along the track, the particle friction
coefficients {;(o) and {,(o), and the standard chemical po-
tentials u(o) and u3(0) (the position-independent parts of
the chemical potentials which reflect the contribution of in-
ternal degrees of freedom). The potentials U, (x) and U_(x)
may have various shapes (e.g., be multiwell) and are as-
sumed to tend to infinity for |x| — . Depending on the be-
havior of U (x) at small |x|, two scenarios are possible. If the
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potentials become high enough as the particles approach
each other, the particles cannot overtake and one of them
always leads (inchworm mode). Otherwise the particles can
alternate their order randomly (hand-over-hand mode).

The interstate switching dynamics is governed by the
rate equation

7+(x)

H =04 (1)

y-(x)

with the position-dependent transition rate constants 7, (x)
and y_(x). We assume that

Y+ (x) = '}’t,o(x) +w.(x), (2)

where y- o(x) are the rate constants for the transitions caused
by equilibrium (thermal) fluctuations and w.(x) represent the
excitation introduced by an external (nonthermal) noise>>
[from here on, the lower index (0) marks the functions or
parameters referring to the equilibrium state]. The over-
damped dynamics of the model in a thermal bath at tempera-
ture T is described by the two coupled extended Langevin
equations24

P00 | riotem. i=12. ()
"

l

Go)x; =~

together with the rate [Eq. (1)] for the conformational state
variable o(r). Here &(¢) and &)(7) are uncorrelated standard-
ized Gaussian white noises: &(1)=0, &(1)&(s)=8;.0(t—s).

By introducing the center of mass X=(x;+x,)/2 as a
system variable and the relative coordinate x as an internal
variable, Egs. (1) and (3) can be written in terms of the
equivalent master equation for 2D joint probability densities
P,(X,x,t),0=+,-, for finding the system in state ¢ near
point (X,x) at time ¢. The master equation reads

IP (X, x,1) { 101,(X,x,1) ai,,(x,x,t)]
=—|= +

ot 2 X ax
- 0‘[’Y+(x)P+(X’x9t) - 7—(x)P—(X’x’t)]7 (4)

where
1 | 19P,(X,x,t
1,(X,x,t) == — S
B2 X
d
+ e, PUe—[PUsWp (X x, t)]}, ()
ox
1 (?P X’ ’t
io(X,x,0) == — SISl
Bi, 2 X

d
N e—ﬁUU(X)a—[eﬁU(r(")Po(X,x,t)]}
X

are the probability currents, 8=T"', and £, are the effective
friction coefficients

L=+ 5 0). (6)

The dimensionless coefficients €,=[{;(0)=4(0)]/[¢(0)
+&,(0)] represent the coupling between the internal motion
and the translation of the system as a whole. Both the system
variable X and the internal variable x vary from —o to ®
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(even if the order of particles is fixed, the range of definition
of x may be safely extended to include negative values,
which are not populated). The boundary conditions to Egs.
(4) and (5) imply that the probability densities and currents
vanish when |X| or |x| goes to infinity.

As it follows from Egs. (4) and (5) and the boundary
conditions at infinity, the marginal probability density asso-
ciated with the internal motion

p,,(x,t):f P, (X,x,n)dX, o=+,—- (7)

satisfies the following equation:

Ipglx,t)  AJglx,1)

= oy, () p,(x,1) = y_(x)p_(x,1)],

ot ox
(8)
where J(x,r) is the probability current along the
x-coordinate in state o,
Ja(x,t)=f i, (X,x,0)dX
1 J
o BU L BUW ) (. 9
5. ax[e Po(x,1)] )

The average velocity of the motion in state o is defined as
v,(0) = f J(x,t)dx. (10)

Note that the dynamics along the internal coordinate evolves
independently of the system motion, since both the potential
and the transition rate profiles are determined solely by x.

The quantity of foremost interest is the average velocity
of the center of mass

V() = dit f f ’ dXdxX[P,(X.,x,0) + P_(X,x,1)]. (11)

Using Eqgs. (4) and (5) and the boundary conditions at infin-
ity, Eq. (11) can be rewritten as

“ IP.(X.x.t) OP_(Xx.t
V(1) = f f ddex[ +(a;x ), (azX)

= % f f ’ dXdx[I,(X,x,t) + I_(X,x,1)]

= %fm [e,J,.(x,1) + €_J_(x,1)]dx. (12)

At long times, the motion along the internal coordinate ap-
proaches a steady state, so that v.(f)— *=v and V(r) — V. In
this regime, the total current J,(x)+J_(x)=0 for all x, as it
must be for bounded motion. Using this fact and Eq. (10), we
can rewrite Eq. (12) to obtain the relation between the
steady-state values of the system velocity V and the internal
velocity v (Ref. 25),
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_ §(+) (=) = 4(=)6H(+)
[6i(+) + L)L) + L)1
(13)

V=ev, €= 5(e+— €)

Thus, the original two-dimensional problem is reduced to the
one-dimensional problem of finding the reciprocating veloc-
ity v of Brownian motion in a confining fluctuating potential.
The reduced model contains essentially the dominant dynam-
ics of the system.

A simple physical picture emerges from our analysis. An
external excitation does not directly interact with the state
variable X but rather acts on the internal degree of freedom
and induces reciprocating (bidirectional) motion along this
coordinate with time and length scales long compared to
those of the microscopic (thermal) fluctuations. The internal
dynamics drives the motion of the whole system via the cou-
pling represented by the coefficients €, and e_. The rectifi-
cation mechanism exploits the left-right asymmetry of fric-
tion fluctuations which determines the rectification
coefficient €. As a result, the system motion appears as the
rectified reciprocating motion of the internal degree of free-
dom, i.e., the system operates like a two-headed motor. The
motor consists of an engine converting nonequilibrium fluc-
tuations into reciprocating motion and a symmetry-breaking
rectifier. In Secs. III and IV we study mechanisms by which
the reciprocating engine operates within the one-dimensional
reduced model. An example of a symmetry breaking mecha-
nism is briefly discussed in Sec. V.

lll. RECIPROCATING ENGINE
A. Model

The reduced model considers the confined motion of a
Brownian particle fluctuating between two conformational
states o=+ and o=-. The conformational variable o speci-
fies the potential profile U,(x), the particle friction coeffi-
cient {, [Eq. (6)], and the standard chemical potential
=u)(0)+u5(0). The switching dynamics is described by rate
Eq. (1) with the position-dependent transition rate constants
v,.(x) and y_(x) [see also Eq. (2)]. In fact, the reduced model
is the model of a nanoscale reciprocating engine recently
proposed by the present authors.”” In the next two para-
graphs, we briefly review the major points of the model for-
mulation, which are needed for understanding the engine op-
eration and in further calculations (for a more detailed
description see Sec. II in Ref. 22).

The dynamics of the model is governed by the master
Eq. (8) for the time evolution of probability densities
ps(x,1),0=+,— for finding the particle in state o near point
x at time . The total probability of both states is normalized
to unity [see Eq. (7) in Ref. 22]. In the steady-state regime,
all the quantities become time independent and Eq. (8) takes
the form
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20 = ol 1) = 7] 7=+~
(14)

where J(x) is the probability current in state o at point x
defined by Eq. (9) [see also Egs. (5) and (6) in Ref. 22]. The
currents J.(x) vanish at x— oo, From Eq. (14) and the
reflecting boundary conditions at x= = o, it follows the inte-
gral balance condition

f [7:(0)ps(x) = ¥-(x)p_(x)]dx =0, (15)

which is the condition of existence and stability of the steady
state. The quantity of concern, viz., the reciprocating velocity
v=v,=-v_, is defined by Eq. (10).

Without external forcing, w.(x)=0 for all x, the system
is at equilibrium: the probability densities p,,, o=+,-,
obey the Boltzmann distribution

Bl U],

0 o0
prox)=Z"e Z= >, ePro J e~ PUs gy

o=+,—

(16)

and the detailed balance holds
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Yi0(X)ps0(x) = y-0(x)p_o(x) =0 for all x. (17)

The condition of detailed balance implies zero current and
zero average velocity in each state. With a source of non-
equilibrium noise, additional transitions between the states
occur, the detailed balance is broken, and nonzero values of
the velocity in each of the states are allowed. The particle
moves back and forth with the same absolute value of the
velocity v. So the model operates as a reciprocating engine:
a part of the free energy coming from the source of nonequi-
librium is converted into mechanical energy of reciprocating
motion.

For our goals it is useful to introduce the marginal prob-
ability density of the position variable Q(x) and the function
W(x), which serves as a direct measure of detailed balance
breaking

0(x) = p,(x) + p_(x),

W(x) = [7,.(x)p.(x) = y_(x) p_(x) ]/ ¥(x)
=[1 - alx)]p;(x) — ax)p_(x), (18)

where a(x)=y_(x)/y(x) is the conditional probability to find
the particle in state +, given the particle is at point x, and
v(x)=v,(x)+ y_(x). From Egs. (9) and (14) it follows that the
functions Q(x) and W(x) satisfy the following system of dif-
ferential equations

[T () Q) y(x)]" + BO(N{(1 = A)a(x)Ui(x) + (1 + A)[1 = a(x)JUL(x)} = 2AW'(x) = BW)[(1 - A)U,(x) - (1 + A)U_(x)]',

{0'(x) + BOW[a(x)UL(x) + (1 — a(x) UL(x) ]+ BWX)[U,(x) = U_(x)]'} =2BLA y(x)W(x), (19)

where {=({,+{_)/2 is the average friction coefficient, A
=(L,— L)/ (L + L) represents the friction asymmetry of the
states, I'~'(x) is the characteristic relaxation time

I(x)=(1+A4)y,(x)+(1-4)y(x), (20)

and the prime denotes a derivative with respect to x. In deri-
vation of the first of Eq. (19), we essentially used the fact
that the total probability current takes the zero value at any
point x, J,(x)+J_(x)=0. The second equation of system (19)
is obtained simply by summing up the equations derived
from Eq. (14) with o=+ and o=-, after multiplying them by
£, and £_, respectively. Both Q(x), W(x) and Q'(x), W'(x)
vanish when x — * o. Additionally, the normalization condi-
tion for the p.(x) and the integral balance condition (15)
imply that Q(x) and W(x) must satisfy

(Do=1, (¥Yx)w=0, (21)

where notations (o= 0(x)dx and
(¢ yw=[",-W(x)dx have been introduced for future con-
venience. In these notations, the desired reciprocating veloc-
ity (10) reads

v = {xy(xX)y- (22)

While at equilibrium Qg(x) is determined by Eq. (16)
and Wy(x)=W((x)=0, in a state of nonequilibrium, generally,
Eq. (19) does not admit analytic solutions. In what follows,
we show that there exist particular physically meaningful
cases where exact solutions for v are available and focus on
their analysis.

B. Two basic operational mechanisms

The energy required for the engine to operate is provided
by a source of noise that modulates the equilibrium values of
transition rates. It is instructive to characterize this source of
unbalance by the chemical potential u.g(x), which specifies
the free energy released on “burning of the effective fuel” at
point x. For the reciprocating engine, p.q(x) has been ex-
pressed in terms of the model parameters in Ref. 22,

Y+ (x)
y-(x)

Reg(x) = pd = ,u(i +U_(x)-U,(x)+TIn

1+ w (x)/ X
-TIn L (x) 7+,0( ) (23)
1+ 0_(x)/y_o®)
A more accurate derivation of this formula is given in the
Appendix to make the paper self-contained.
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U

FIG. 1. Schematic illustrations of the energetic (panel a) and informational
(panel b) mechanisms. (a) A Brownian particle is moving in the potential
that fluctuates between the two profiles U, (dashed line) and U_ (dotted line)
corresponding to + and — conformational states. The arrows designate the
working cycle of the engine. This mechanism essentially exploits the differ-
ence between the state potential profiles. (b) The state potential profiles are
identical, U,(x)=U_(x) [U,(x) is vertically shifted for clarity]. Interstate
transitions occur only at “active sites” located at x; and x, with zero energy
cost. The rate constants are y.=%¥. ;8(x—x;)+ ¥ ,8(x—x,). If the relation
Vial V-1=Vs2! ¥_5 holds, then p.(x)=0, i.e., the system is at equilibrium
implying probability current in neither state. If this relation is violated, the
system is out of equilibrium: one of the active sites, say at x;(x,), can be
treated as a source (sink) of particles in, say, state +(—), while the other site
in this state serves as a sink (source). As a result, Brownian motion in +(-)
state is biased in the positive (negative) direction. The reciprocating motion
occurs due to the presence of a sink or source of information about the
particle position.

As Eq. (23) shows, a generalized force that drives the
reciprocating motion may be treated as the sum of two
forces: one arising from the difference between the state po-
tential profiles and the other stemming from the difference
between the position-dependent rate constants of interstate
transitions. This suggests two ways to modify the system
stability properties and, correspondingly, two mechanisms
responsible for the engine operation with quite distinct
physical origins and manifestations: (i) the energetic mecha-
nism [see Fig. 1(a)] implies that the energy fed into the sys-
tem in each transition from one state to the other is converted
into the particle potential energy and then used to push the
particle forward or back upon relaxation and (ii) the infor-
mational mechanism [see Fig. 1(b)] makes nonequilibrium
noise act as a source or sink of physical information about
the particle position. The former is mainly based on me-
chanical nonequilibrium and the latter on chemical nonequi-
librium.

It is worth mentioning that the concept of the two
mechanisms underlying the fluctuation-induced transport26
has been often invoked in modeling molecular motors and
pumps.5 The deterministically dominant energetic mecha-
nism is usually discussed in the framework of the so-called
power-stroke model.”” The stochastically dominant informa-
tional mechanism is involved to account for transport in in-
homogeneous systems with the position-dependent diffusion
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coefficient  (or temperature)28 and position-dependent
mobility29 (or friction®®). Within a microscopic description of
the environment in terms of a harmonic oscillator bath, the
nonequilibrium noise associated with these inhomogeneities
represents the nonthermal part of the energy in the nonequi-
librium bath coupled to the system and acts as a source or
sink of negentlropy.31 So the informational mechanism stands
for “possibilities rather than forces.”” Both the energy32 and
information ratchets™ have been implemented chemically in
the form of catenanes (interlocking rings) and rotaxanes (a
dumbbell threaded through a ring).

Of primary interest are two limiting cases, where only
one of the motion-inducing mechanisms is operative. If the
position-dependent part of the chemical potential of the ef-
fective fuel p.g(x) is simply U_(x)—U,(x), the reciprocating
engine is driven solely by the energetic mechanism [see Fig.
1(a)]. This occurs when the barrier between the conforma-
tional states is very high compared to 7, so that the thermally
activated jumps vanish and the interstate transitions are
caused only by a homogenous (position-independent) strong
(on the nanoscale) excitation, i.e., y+(x)=w.. At these con-
ditions, the model is reduced to that considered in Ref. 15,
where an exact solution for the velocity v has been found,
with the parabolic potential profiles of the conformational
states given by (apart from additive constants) U.(x)
=%ki(x—ai)2, where k. and a. are the curvatures and the
locations of the potential well minima separated by the dis-
tance L=a,—a_. The solution reads'”

w0 L
U o to L+ Lotk + Lotk

This formula also follows from Egs. (19), (21), and (22)
under the conditions formulated above.

What is particularly noteworthy about this result is the
temperature-independent reciprocating velocity, which im-
plies no contribution to the effect from thermal noise. As
shown earlier,"” this is a signature of the parabolic potential
involved: equilibrium and nonequilibrium fluctuations are
not coupled. Even a small nonparabolicity of the potential
leads to noise coupling and the temperature-dependent veloc-
ity. Generally, an interesting interplay of the noises underlain
by the action of the confining potential takes place. Thus the
energetic mechanism is not purely deterministic: thermal
noise comes into play with nonlinear potential effects.

(24)

IV. INFORMATIONAL MECHANISM

Consider the opposite limiting case: the engine is driven
solely by the informational mechanism. Let the potential pro-
files of the conformational states be identical, U, (x)=U_(x)
=U(x); hence the interstate transitions do not change the par-
ticle energy. Then the position-dependent part of the chemi-
cal potential . is determined only by the entropic term
T In[y,(x)/ y_(x)] [cf. Eq. (23)]. So the engine operates at the
expense of increased entropy. The active sites represented by
the peaks of the nonequilibrium noise distributions w-(x)
work as sources and sinks of the information about the par-
ticle position. The particle converts this information into re-
ciprocating motion [see Fig. 1(b)].
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With identical potentials, Eq. (19) is greatly simplified.
In particular, the first of them can be integrated to obtain

000 = g((—;[mwoo + O] (25)

with y(x)=1v,(x)+y_(x), the characteristic relaxation time
I'~!'(x) defined by Eq. (20) and the equilibrium probability
density Qy(x)=ePVW/ [ ¢~BUWx The integration constant
C (independent of x but generally dependent on the model
parameters) is determined to satisfy condition (21),

T'(x) I'(x) [(x)

In fact, we do not need W(x) itself but the integral (22) with
this function. This suggests use of a reduced form of the
differential equation, which is obtained by integration of Eq.
(27) over x after multiplying it by x. Then, in view of
Eqgs. (22) and (26) and the boundary conditions at infinity, we
are led to the following relation:

z<r(x>>Q<[y+<x>—y_<x>]'> <y<x> >_
20\ @ ) /e, \Tw Y7

(28)

As demonstrated below, in the parabolic setup the desired
reciprocating velocity v [Eq. (22)] is found exactly from this
relation by assuming that the characteristic relaxation time
I'~!(x) is position independent,

) =1+4A)y,x)+(1-A)y.()=T. (29)

Note that in the symmetric case the condition (29) implies
the position-independent y(x)=I" (remind that the transition
rates y.(x) are anyway position dependent).

The following remark is to be made before we proceed.
With identical potentials, the ratio vy, o(x)/y_g(x) is constant,
as followed from Egs. (16) and (17). Then, in view of con-
dition (29), the rate constants for the transitions caused by
thermal fluctuations are x-independent, 7, o(x)=7,, and
¥-0(x)="_y. So the x-dependence of the transition rate con-
stants arises due to the position-dependent excitations w-(x).
This enables condition (29) to be rewritten,

F=(1+A)y,0+(1=A)y_p.
(30)
(1+A)w,(x)+(1-A)w_(x)=0.
For convenience of notation, let

o, () =(1-DNof(x), o (x)=-(1+defx), (31)

where w and f(x) characterize the amplitude and distribution
of external noise with 2|w| <min(y, 4, y_) and |f(x)| =1 for
all x.
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= (o, 20)

Note that if {,={_=(, the picture becomes especially simple
because in this case I'(x)=y(x), C=1, and Q(x)=Q(x) for
any values of y.(x). Thus in the symmetric case, the equi-
librium distribution of the position variable persists even in
the absence of global equilibrium.

The second from Eq. (19) when combined with Eq. (25)
gives an equation for the function W(x), which can be written
as

{[Y(X)W( )} _%[M] Ool) + Hx ),BU( )W(x)} = BLy(x)W(x). (27)

Then for the parabolic potential U(x)=kx?/2 and, ac-

cordingly, Q(x)=+Bk/(2m)exp(~Bkx?/2), it follows from
Egs. (28)—(31) that

T
vz T g, (32)

The parameter y={I"/k compares two relevant time scales:
the typical sliding time in the potential {/k and the charac-
teristic relaxation time I'~! related to the position-
independent thermally driven interstate transitions. The pa-
rameter

L (33)
~28ulf(x))g,

with yy=17, ¢+ Y- accounts for the effect state asymmetry
(in the symmetric case s=1).

Formula (32) is one of the main results of this work.
This formula is the exact solution for the informational en-
gine with the transition rates related by condition (30). It
explicitly emphasizes two important points: (i) the recipro-
cating motion occurs due to the difference between the
position-dependent rate constants of interstate transitions and
(ii) a symmetric excitation must be shifted relatively to a
symmetric potential for the effect to occur.

This formula also clearly shows that the role of thermal
noise in the informational mechanism is substantially differ-
ent from that in the energetic mechanism [cf. Eq. (24)]. At
low temperatures 7— 0, the velocity exhibits a universal be-
havior (in the sense that it is insensitive to the specific form
of external excitation): v «T. Thus the informational engine
can operate only in the presence of both thermal and non-
thermal noises. Taking into account that f(x) is a bounded
function of x, one can verify that at high temperatures T
— o, the velocity goes to zero with a law depending on the
specific form of external excitation. So strong thermal noise
essentially destroys the confinement effect of the potential.
Accordingly, the velocity exhibits a nonmonotonic behavior
upon temperature variation, thus reflecting the constructive
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and destructive roles of thermal fluctuations. For any set of
the model parameters, there exists an optimal value of T
which maximizes the velocity v. Another evidence of the
dual role played by thermal fluctuations in the informational
mechanism is provided by the effect of thermal transitions
rates on the reciprocating velocity. In the limit of slow ther-
mal transitions, where y,— 0 and hence w— 0, the velocity
v vanishes. In the opposite limit of fast spontaneous transi-
tions, I'— o0 and v vanishes again.

A closer examination of the solution [Eq. (32)] reveals
that the interplay of thermal and external noises leads to a
rich behavior of the reciprocating velocity as a function of
the relevant model parameters. To illustrate the physics of
the informational mechanism, we present two simple proto-
typical examples in which the function f(x) is explicitly
used.

A. Local excitation

Let us consider an excitation normally distributed
around point ¢ with a width ¢ [see Fig. 2(a)],

f(x) = e~ =24, (34)

With this local excitation, the solution given by Eq. (32)
takes the form
s T/(kg?) { 1 (c/g)? }

= A TGP T 2 ek | Y
where s is given by Eq. (33) with (f(x))QO
=[1+ 77 (kg®) I "exp{~5(c/q)*/[1+T/(kg*)]}. Note that ex-
ternal noise leads to a shift in the equilibrium temperature.
Then as Eq. (35) suggests, the nonequilibrium steady state is
characterized by the effective temperature T.=T+kg>. The
notion of “effective temperature” was first used in this con-
text in Ref. 34.

Figure 2 [panels (b)—(d)] illustrates the behavior of the
reciprocating velocity [Eq. (35)] as a function of the model
parameters. Upon temperature variation, the velocity exhibits
a stochastic resonancelike behavior shown in Fig. 2(b). At
low temperatures, 7<<T.y, the velocity goes to zero, thus
demonstrating that thermal noise is a necessary ingredient
for the informational engine operation. The velocity also
vanishes at very high temperatures, 7> T, since the effect
of the potential is drowned out by the noise in this case.

Equation (35) indicates that the excitation inducing the
reciprocating motion must be shifted relative to the potential.
The shift is needed to split the degenerate conformational
states with identical potentials and hence to modify stability
properties of the states. When the shift ¢ is small, ¢
<V”Teff/ k, the velocity v grows linearly with ¢. However,
when the excitation is far enough from the potential well
bottom (located at the origin), i.e., in a sparsely populated
region, the velocity decays exponentially as one might ex-
pect. Thus the dependence of v on ¢ has a bell-shaped pro-
file, as shown in Fig. 2(c).

Figure 2(d) presents v plotted versus g. Note that with
our setup [see Eq. (34)], the parameter g characterizes not
only the width but also the strength of the excitation. Since
the smallness of g implies not only the narrowness of the
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FIG. 2. Informational engine driven by a local excitation [Eq. (34)], which
satisfies condition (30). (a) A sketch of the potential profile U(x) (solid line)
and the transition rates y..(x) (dashed and dotted lines). Panels (b)—(d) show
the reciprocating velocity [Eq. (35)] vs one of the model parameters [T for
(b), ¢ for (c), and ¢ for (d)] with the other parameters kept constant
[c=2q for (b), T=4kq?> for (c), and 0.8T=kc? for (d)]. For all curves, y=1
and s=1.

distribution f(x) but also the excitation weakness, the veloc-
ity tends to zero linearly when ¢—0. As the distribution
broadens, g — oo, the function f(x) becomes increasingly flat.
In this limit, v 1/¢*> While the small-g behavior of the
velocity is attributed to the particular form of the local exci-
tation considered here, the large-g decay is universal. In con-
trast to the energetic engine, here the velocity changes non-
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FIG. 3. Informational engine driven by a periodic excitation [Eq. (36)],
which satisfies condition (30). (a) A sketch of the potential profile U(x)
(solid line) and the transition rates 7y..(x) (dashed and dotted lines). (b) The
reciprocating velocity [Eq. (37)] as a function of the dimensionless param-
eter &. y=1, ¢p=7/2, and s=1.

monotonically with the stiffness coefficient k. In the limit of
k going to zero, the points of stability disappear, the motion
becomes delocalized in either state, and the energy-
transduction mechanism stops, v < k*2. In the opposite limit
of k— oo, the motion is confined to a very narrow region
around the origin, the average {f’(x))QO becomes indepen-
dent of k, and the velocity therefore decays as k™'

B. Periodic excitation

Consider a periodic excitation [see Fig. 3(a)]
2
flx)= cos(%x - QS) , (36)

where \ is the excitation wavelength and ¢ is the phase shift
between the excitation and the confining potential. With pe-
riodic driving, the solution given by Eq. (32) takes the form

27wT s sin ¢ ( 2712T) ®\ s sin ¢
= pl— =——e¢e

ex > —&/2
N L4y o

b}

1)) =
2 1+ y

(37)

where e=472T/(k\?), x={T'/k, and s is found from Eq. (33)
at (f(x))Q():e‘s/ 2 cos ¢. We see again that a finite phase shift
between the excitation and the potential is required for recip-
rocating motion to occur.

The dimensionless parameter ¢ reflects the combined ef-
fect of thermal noise, the periodic excitation, and the confin-
ing potential. Figure 3 [panel (b)] illustrates how the inter-
play of these three factors affects the reciprocating velocity.
As would be expected, in both limiting cases, e<<1 and &
> 1, the velocity vanishes. The maximum velocity is reached
at ¢ of the order unity. As Eq. (37) shows, the velocity be-
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havior with varying temperature (or potential strength) is
qualitatively the same as that for the local excitation case.
The difference is that the velocity in the present example
decays exponentially rather than algebraically at large 7" and
small k. Equation (37) also shows that the velocity as a func-
tion of the excitation wavelength A exhibits a bell-shaped
behavior. At short wavelengths, \ << \yﬂ, the effect is small
since the potential change over the distance N\ is small as
compared to 7. So the velocity rapidly falls to zero with A,
vOCe‘i“S” M. In the opposite limit of long wavelengths, \
> \T/k, the spatial dependence of the transition rates be-
comes very weak and the velocity vanishes, v o \7!.

V. DISCUSSION

Let us return to the dimeric motor model introduced in
Sec. II. In this model, the noise-driven dynamics along the
internal coordinate represents the reciprocating engine dis-
cussed in Secs. III and IV. The role of a gear that rectifies the
reciprocating motion is played by asymmetric friction fluc-
tuations. To specify the motor operation, a mechanism to
produce these fluctuations should be incorporated into the
model. The simplest way by which to accomplish this goal
involves variation in the size or shape of the dimer heads
upon the conformational changes. However, only very low
rectification efficiency can be obtained in this way.

A more efficient rectification can be achieved when,
along with the omnipresent viscous drag, there is an addi-
tional channel of energy dissipation provided by specific
particle-track interaction, which is different for two motor
heads. Several realizations of this approach are possible. A
known example is the dissipation due to continuous making
and breaking of weak chemical bonds between the particle
and the track, which is called protein friction.3 3 The corre-
sponding additive friction forces are linear in the velocity
with the friction coefficients £, and £, for the viscous and
protein friction, respectively. In contrast to the hydrodynamic
drag, the protein friction takes place only if (i) the particle
and the track are able to interact and (ii) the binding/
unbinding kinetics is much faster than the particle motion
(characterized by the sliding time and the mean residence
time). In case the conditions (i) and (ii) are fulfilled, the
friction coefficient is {={,+{,. If the particle-track interac-
tion is absent or the motion is so fast that the chemical bonds
do not have enough time to form, the viscosity is solely
responsible for the dissipation, i.e., {={,. Suppose that only
one of two particles in each state is able to interact with the
track, say the first particle in state + and the second in state
—. Moreover, assume that the sliding along the potential pro-
files and interstate transitions are sufficiently slow to allow
protein friction. Then the switching between the states causes
the friction coefficients to fluctuate, ¢ (+):§p+§v and
£1(=)=¢,, while {H(+)=¢, and {(-)={,+{,. Thus, noise
gives rise to left-to-right/right-to-left asymmetry that pro-
vides a rectifying action. With two “operating heads,” the
rectification coefficient defined by Eq. (13) takes the value
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g
€= —1—. (38)
&+24,

Substituting Egs. (22) and (38) into Eq. (13), we obtain the
velocity of the dimeric motor with an arbitrary interhead
interaction in which the noise-induced internal motion is rec-
tified by the protein friction. Since protein friction domi-
nates, §p>§u, the coefficient €, is very close to unity, i.e.,
high rectification efficiency is achieved, |V|=|v|. If only one
of the motor heads is operative, the rectification efficiency is
twice smaller, %ep.

The idea to exploit the concept of protein friction in
rectifying noise-induced internal fluctuations was proposed
by Mogilner et al." In their model, the motor is represented
by two heads connected by an effective spring that fluctuates
between two conformational states with different rest lengths
and stiffness coefficients. Because the conformational
changes caused by nucleotide binding/hydrolysis are linked
to the protein friction fluctuations, the net result is directed
motion. The effect was analyzed by means of a numerical
simulation technique. With the biologically relevant values
of the model parameters, the calculated velocity of the motor
based on protein friction well reproduces the typical velocity
of dimeric motor proteins. So the heuristic model exhibits
qualitatively similar behavior to that observed for the protein
motors. A noteworthy point is that the rectification mecha-
nism relied on protein friction does not require any potential
interaction between a motor and its track in contrast to
ratchet-type models" where a periodic asymmetric potential
acts as a rectifier.

A shortcoming of the model developed in Ref. 14 is that
the dynamics of switching between states was assumed inde-
pendent of motor-head spatial positions and thermal noise,
which oversimplifies the problem and leads to a motor with
the only power-stroke (energetic) operative mechanism. Our
model that includes the position dependence of transition
rate constants overcomes the above shortcoming, so that we
give proper weight to the effect of thermal noise and get an
insight into the interplay of two main mechanisms: energetic
and informational. Thus the model of Mogilner et al.™ is a
particular case of the model considered here (with the recti-
fication relied on protein friction), in which the interstate
transition rates are position independent, the interhead inter-
action potential is parabolic, and the only energetic mecha-
nism is operative. In this limiting case (with the only work-
ing head), our result for the motor velocity [see Eq. (13) with
e=%ep and v given by Eq. (24)] coincides, as it should be,
with the exact solution obtained by Fogedby et al.*® for the
model of Mogilner et al. 1

VI. CONCLUSIONS

Summing up, we have presented a model of a motor that
operates due to rectification of the noise-induced internal
movement. The model consists of a reciprocating engine that
converts unbiased nonequilibrium fluctuations into recipro-
cating mechanical motion and a symmetry breaking mecha-
nism. As a model for the engine, we have considered the
confined motion of a Brownian particle fluctuating between
two states with different potential profiles and different
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position-dependent rate constants of the interstate transitions.
Two main mechanisms are recognized by which the engine
operates in the steady-state regime: the energetic mechanism
relies on the difference between the potential profiles of the
competing states and the informational mechanism takes ad-
vantage of the difference between the position-dependent
rate constants. While the problem is too complicated to be
solved analytically in a general case with arbitrary profiles of
the confining potentials, exact solutions for parabolic poten-
tial profiles have been found in the important limiting cases
where only one of the motion-inducing mechanisms is op-
erative. These solutions reveal the properties of the engine.
The most notable observation is that the informational
mechanism involves thermal noise as a vital component of
the energy conversion process, whereas in the energetic
mechanism thermal noise manifests itself only through non-
linear effects. Another notable observation is a nonmono-
tonic behavior of the reciprocating velocity as a function of
the model parameters. This allows for the possibility of tun-
ing the engine to optimum performance, which may be use-
ful for applications. The rectification method is based on the
asymmetry of noise-induced friction fluctuations resulting
from specific particle-track interaction, which is different for
two motor heads. This method not involving any effective
periodic potential may serve as a possible alternative to the
most common approach relied on the rectified action of the
ratchet potential.

We hope that the model developed here provides a better
understanding of mechanisms of energy conversion on the
nanoscale and may be relevant to some aspects of the behav-
ior of protein and artificial molecular motors. In the present
paper, we have focused on physically meaningful limiting
cases amenable to a fully analytical treatment. The model
deserves a more detailed study including numerical simula-
tions. In particular, it is of interest to look at a more general
situation in which both the motion-inducing mechanisms are
involved and an alternation of two particles is possible (a
rigid ordering of particles has been tacitly assumed in the
derivation of the main results of the paper). This will be the
subject of the future work.
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APPENDIX: CHEMICAL POTENTIAL OF EFFECTIVE
FUEL

The derivation of Eq. (23) is based on the simple idea
that the system can be driven out of equilibrium in several
equivalent ways. With this in mind, consider the transitions
between the conformational states caused by the chemical
reaction [cf. Eq. (1)],

V()

H+EFH=3+EA

y-(x)

(A1)
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The particles F and F (moving in potentials Uz and Uz with
the friction coefficients { and {7, respectively) serve as a
“fuel” or a “degraded fuel” depending on the reaction direc-
tion. At the steady state, the particles F(F) are distributed
with a probability density pxzz(x) and the corresponding
chemical potentials are given by

pro(x) = pl+ Uy(x) + Tln p(x), ¢=F,F. (A2)

Suppose that the presence of species F and F does not dis-
turb the equilibrium between the conformational states, i.e.,
at equilibrium not only g, o(x)+ pro(x)=pu_ o(x)+ pro(x),
but moreover , o(x)=pu_(x) and pzo(x)=puro(x). Then the
equilibrium probability densities p. o(x) are specified by Eq.
(16) and

PFOY) _ o plul et U] (A3)
p7.o(x)

The processes represented by Eqgs. (1) and (A1) are dis-
tinguished by the sources of unbalance. In the former case,
the system is driven out of equilibrium by external noise
modulating the transition rates [see Eq. (2)]. In the latter
case, the process involves the unbalanced chemical species F
or F so that pAx)/ pr(x) # pro(x)/ pro(x), while the rate
constants y.(x) obey the detailed balance condition

Y+(X)p£0(xX)ps.0(x) = Y- (x) pz o(x) p_ (). (A4)

To establish a correspondence between the two cases, first
note that y,(x) and y_(x) can be considered as pseudo-first-
order rate coefficients: y,(x)=%,(x)pg(x) and y_(x)
=%_(x)px(x). Then Egs. (16) and (A2)—(A4) are used to re-
write the ratio y,(x)/y_(x),

%0 7 Wpsx)  ProX)P_0() p(x)
Y(x)  F()prx)  pro®)ps o) prx)

= o AU~V -] (A5)

where eg(x) = pr(x) — ur(x) is the chemical potential of the
effective fuel. This expression, together with Egs. (2), (16),
and (17), leads to the result in Eq. (23).
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