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Shear dilatancy, a significant nonlinear behavior of nonequilibrium thermodynamics states, has been
observed in nonequilibrium molecular dynamics �NEMD� simulations for liquid n-hexadecane fluid
under extreme shear conditions. The existence of shear dilatancy is relevant to the relationship
between the imposed shear rate �̇ and the critical shear rate �̇c. Consequently, as �̇��̇c, the
intermolecular equilibrium distance of the fluid remains unchanged, while the nonequilibrium state
of the fluid approaches equilibrium. In contrast to �̇��̇c, the intermolecular distance is lengthened
substantially by strong shear deformation breaking the equilibrium thermodynamic state so that
shear dilatancy takes place. Notably, a characteristic shear rate �̇m, which depends on the root mean
square molecular velocity and the average free molecular distance, is found in nonequilibrium
thermodynamics state curves. Studies of the variations in the intermolecular radial distribution
function �RDF� with respect to the shear rate provide a direct measure of the variation in the degree
of intermolecular separation. Additionally, the variations of the RDF curve in the microscopic
regime are consistent with those of the nonequilibrium thermodynamic state in the macroscopic
world. By inspecting the overall shape of the RDF curve, it can be readily corroborated that the fluid
of interest exists in the liquid state. More importantly, both primary characteristic values, the
equilibrium thermodynamic state variable and a particular shear rate of �̇p, are determined
cautiously, with �̇p depending on the �̇m value and the square root of pressure. Thereby, the
nonequilibrium thermodynamic state curves can be normalized as temperature-, pressure-, and
density-invariant master curves, formulated by applying the Cross constitutive equation. Clearly, �̇c

occurs at which a reduced shear rate �̇ / �̇p approaches 0.1. Furthermore, the trends in the rates of
shear dilatancy in both the constant-pressure and constant-volume NEMD systems under isothermal
conditions conform to the cyclic rule of pressure, as a function of density and shear rate.
© 2009 American Institute of Physics. �DOI: 10.1063/1.3123171�

I. INTRODUCTION

Nonequilibrium molecular dynamics �NEMD� simula-
tions play an important role in helping us understand the
relationship between macroscopic transport phenomena and
microscopic molecular interactions. Such simulations can in-
tegrate thermodynamic states and rheological properties ad-
vantageously to explore nonlinear behavior. In NEMD simu-
lations, most simple fluids exhibit a wide variety of non-
Newtonian manifestations for rheological investigations,
such as shear thinning phenomena, normal stress effects, and
viscoelastic behaviors. To date, only a few NEMD discus-
sions regarding nonequilibrium thermodynamics states have
appeared in literature.

Shear dilatancy, which is a type of nonlinear behavior in
nonequilibrium thermodynamics, is usually observed under
extreme shear in the field of NEMD research. In general, for
rigid particles1–4 with Lennard–Jones �LJ� and Weeks–
Chandler–Andersen �WCA� potential models and for alkane

molecules5–16 and short polymer chains17–19 with realistic
molecular potential models, the shear dilatancy behavior is
characterized by a pressure increase in a constant-volume
�isochoric-isothermal� NEMD system and by a density de-
crease in a constant-pressure �isobaric-isothermal� NEMD
system when the shear rate is increased. This tendency is
generally known as positive shear dilatancy;6,11 negative
shear dilatancy �or shear compression� is characterized by
the inverse of these trends.19 For longer molecular chains
�length of chain� �20 beads�, Kröger et al.18 and Xu
et al.19 detected shear compression, presumably because they
created coarse-grained molecular chains by using a finite ex-
tensible nonlinear elastic potential to make the chains more
flexible. Their studies18,19 revealed that the overall variations
in pressure, with respect to shear rate, depend strongly on the
length of the molecular chains; i.e., positive shear dilatancy
occurs for shorter chains and negative dilatancy for longer
chains.

Reynolds coined the term “dilatancy” in 1885.8,20 At the
time, the dilatancy phenomenon described how the volume
of a compacted granular material expanded when it was
sheared. Notably, Reiner and Blair21 suggested the rheologi-
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cal terminology of related experiments and theories. Because
the terms dilatancy and “thickening” were often used inter-
changeably among practitioners,8,22 they provided the fol-
lowing technical explanation: Dilatancy is the expanded vol-
ume under isobaric-isothermal conditions, but not the
increase in viscosity observed for thickening.

Thompson and Grest23 mimicked granular materials in
MD simulations using rigid particles under shear, where a
constant loading normal stress and a constant driving veloc-
ity were applied in the gradient and flow directions, respec-
tively. Their findings indicated that as the driving velocity
was enhanced, an increase in the height of the gradient oc-
curred explicitly. In other words, the expanded volume was
significant because of the constant area of the plate, viz., the
occurrence of shear dilatancy. Dilatancy phenomenon has
been discovered, not only in shear flows of NEMD simula-
tions but also in elongation flows, such as the so-called elon-
gation dilatancy that emerged in the NEMD simulations of
linear-chain polyethylene �PE� liquids by Baig et al.,24

Daivis et al.,25 and Kim et al.26

During the theoretical development of systems to ex-
plain nonlinear fluid behavior, the mode-coupling theory of
Kawasaki and Gunton1,27 confirmed the 3/2 power behavior
for shear dilatancy of simple fluids, namely, P��̇3/2. Such
behavior was demonstrated in the earlier NEMD studies.1,2

Ge et al.4 recently proposed, however, that the 3/2 power
behavior occurs only at the triple point, with a 2.0 power
behavior �P��̇2.0� existing at common state points; they also
proved the existence of both types of behavior through
NEMD simulations of LJ and WCA particles. Moreover,
Daivis et al.25 studied both the shear dilatancy and elonga-
tional dilatancy of polymer melts, using retarded motion ex-
pansion �RME� to derive the quadratic term in the strain
rates dependence of pressure, where RME �Ref. 28� is a sys-
tematic description of rheologically simple viscoelastic fluids
having low Deborah numbers. Coincidentally Morriss et al.14

also found the 2.0 power behavior for liquid n-decane
�C10H22� and n-eicosane �C20H42�.

The majority of reports describing constant-volume
NEMD simulations have emphasized only the presence of
shear dilatancy. Some researchers18,19,26,29–31 have, however,
conducted simulations to further analyze the effects of mo-
lecular structures on the rate of shear dilatancy. In particular,
at a constant molecular weight of 100 methylene �CH2�
beads, Jabbarzadeh et al.29 showed that the rate of shear
dilatancy was not related to the molecular structure of H,
star, comb, and branched architectures, whereas an investi-
gation of different molecular weights performed by Bosko et
al.30 revealed that the rate of shear dilatancy increased upon
increasing the degree of branching. Moreover, in constant-
volume NEMD systems, the variation of pressure is relevant
to both the intermolecular LJ and torsion potentials; this re-
lationship is completely discussed in several articles6,17,26 re-
garding changes in intermolecular and intramolecular poten-
tials with respect to the shear rate. Notably, using a pair-
correlation function �or radial distribution function�, Koo and
Hess32 found that the molecular origin of shear dilatancy was
ellipsoidal distortion of the pair-correlation function at lower
shear rates and twisted distortion at higher shear rates; such

results are consistent with related experimental
observations.33,34

Most published NEMD studies concerning shear dila-
tancy have been limited to constant-volume NEMD systems;
such studies may not be convenient in related applications
since experimental data are usually measured under
isobaric conditions.5,9,31 Regrettably, only a few attempts
have been made to probe constant-pressure NEMD
simulations8,10,15,19,31 because of issues relating to numerical
instability: The instantaneous pressure drifts suddenly to
generate large instantaneous volume fluctuations.35 To re-
solve this issue, Wang and Fichthorn35 proposed a modified
pressure method to obtain an effectively stable numerical
solution of the volume.

Judging from literature cited above, NEMD discussions
with respect to nonequilibrium thermodynamic states have
almost invariably stressed �i� the observation of shear dila-
tancy behavior or �ii� how this behavior as related to the
intermolecular LJ potential; at best, we have only a limited
understanding of how shear dilatancy is affected by changes
in molecular structure. Recently, in NEMD studies of liquid
n-hexadecane �C16H34�, we found16 that the rate of shear
dilatancy decreased strongly upon increasing the pressure
and density, whereas it increased only weakly upon increas-
ing the temperature. In addition, variations in the degrees of
shear dilatancy are qualitatively contrary to those of shear
thinning.16,36 The reasons for shear dilatancy occurring in
NEMD simulations have not, however, been addressed pre-
viously from a molecular point of view.

Our objective for this present study was to determine the
probable cause of shear dilatancy in NEMD simulations, as
related to the imposed shear rate and the root mean square
molecular velocity, based on our previous study.16 Thus, we
cautiously normalized the nonequilibrium thermodynamic
state curves into the form of master curves—temperature,
pressure, and density invariant—using two characteristic val-
ues: A thermodynamic state variable and a particular shear
rate. Interestingly, we could extend the thermodynamic space
in terms of four variables, namely temperature �T�, pressure
�P�, density ���, and shear rate ��̇�. Considering that the rates
of shear dilatancy in both constant-volume and constant-
pressure NEMD systems under isothermal conditions are
��P /��̇�T,� and ��� /��̇�T,P, respectively, we further examined
whether or not their tendencies conformed to the cyclic
rule2,37 of the pressure as a function of density and shear
rate.

More importantly, we used the radial distribution func-
tion �RDF� to understand how the change in the intermolecu-
lar distance was related to that in the nonequilibrium thermo-
dynamic state. Also, we investigated how the RDF curves
were affected by the temperature, pressure, density, and shear
rate. Furthermore, we could use the overall shape of the RDF
curve to validate that our research fluid existed in the liquid
state.

In Sec. II, we briefly describe the necessary theoretical
background; in Sec. III, we present our results related to the
abovementioned studies; in Sec. IV, we summarize the main
conclusions and suggest future studies.

164515-2 Tseng, Wu, and Chang J. Chem. Phys. 130, 164515 �2009�
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II. SIMULATION DETAILS

In a previous study,16 we investigated the shear thinning
and shear dilatancy behaviors of liquid n-hexadecane
through NEMD simulations. For completeness, here the po-
tential models and simulation algorithms used in this present
study are briefly summarized. Our molecular modeling was
based on the set of realistic potential models described by
Chynoweth and Michopoulos �CM�,38,39 who fit the optimal
parameters of the van der Waals �vdW� potential by adopting
experimental data of heat enthalpy of vaporization. As a
whole, the CM model was better at quantitatively predicting
the rheological properties of shear flows16 than was the trans-
ferable potential for phase equilibria �TraPPE� model,40

which is an adaptation applied in predictions of equilibrium
thermodynamic properties to calculate the vapor-liquid coex-
istence curves41 and surface tensions42 of n-alkane phase dia-
grams. On the other hand, when predicting thermodynamic
properties, the TraPPE model is superior16 to the CM model.

The CM model describes how the molecular chain is
modeled with the use of spherical interaction sites, regarded
as methylene �CH2� groups. Interaction sites connected to-
gether can form molecular chains through dominant vdW
and covalent bonding interactions, providing the bond
stretching, bond bending, and torsion motions of molecules.
The functions and parameters of those potentials for the CM
model are the same as the ones we apply to model
n-hexadecane molecule.16 This model has been adopted pre-
viously in the steady state shear flow,16,36,43–45 oscillatory
shear flow,46 and contraction flow47 portions of molecular
dynamics simulations.

The NEMD algorithm48–50 was originally developed by
combining SLLOD equations of motion with the Lees–
Edwards sliding brick periodic boundary condition.51 In this
present study, we performed our NEMD simulations under
isothermal conditions involving both constant-volume
NEMD �NVT-NEMD� and constant-pressure8,10 NEMD
�NPT-NEMD� systems. As for the whole simulation frame-
work, we chose the atomic version, including the SLLOD
equations of motion, temperature, and stress tensor. In addi-
tion, the isothermal NEMD systems were achieved by using
the atomic Gaussian thermostat method.48–50 For a suitable
range of shear rates ��̇�1.1�1012 s−1; 2.5 in reduced
units�, the atomic thermostat caused no strange effects in the
predictions of the thermodynamic states and rheological
properties.29,52 Recently, Daivis reported that the nonlinear
behavior observed in NEMD simulations was influenced by
the specific thermostat methods used for shearing linear vis-
coelastic fluids.53

Furthermore, the SLLOD equations can be implemented
using MacGowan and Heyes’ Leapfrog–Verlet scheme,54

which offers a fast converging iterative algorithm for Gauss-
ian thermostat multipliers.5 The magnitude of the time step
�from 1.0 to 0.1 fs� depends on a shear rate. After the simu-
lation system approaches a steady state �typically several
million time steps�, the atomic trajectories are collected and
calculated using time averages. Detailed information regard-
ing the molecular potentials, SLLOD algorithms, and other
related methods are available elsewhere.16

Significantly, the radial distribution function, one of the
focuses of our present study, can be applied indirectly to
explore the intermolecular behavior of shear dilatancy. The
radial distribution function, generally abbreviated g�r� with
the understanding that it describes the probability of finding
two molecules at a separation distance r, is defined49,55–58 as
the ratio of the local number density at a distance r from the
central molecule to the bulk number density

g�r� =
��i=1

N � j�i
N ���r − rij��	
4�r2N�

, �1�

where r is the orientation of the separation vector with its
distance r, rij is the distance vector between the centers of
mass of molecules i and j, N is the total number of mol-
ecules, � is the density, and � is the delta symbol;55 the
angled brackets denote the time average.

Note that the radial distribution function is also as a
function of density � and temperature T, namely, g�r ,� ,T�.
For a pure fluid, g�r ,� ,T� must satisfy the following
asymptotic relations: �1� In the ideal gas state, i.e., as �
approaches zero, lim

�→0

g�r ,� ,T�=1; �2� at a large intermolecu-

lar distance, lim
r→	

g�r ,� ,T�=1.57 In general, the characteris-

tics of g�r� curves can be useful to distinguish between the
three phase states �gas, liquid, and solid� of a pure fluid.59

Experimentally, g�r� can be obtained from x-ray or neutron-
scattering measurements of gases and liquids.56 In this
present study, we examined the effects of temperature, pres-
sure, density, and shear rate on the resulting g�r� curves.

III. RESULTS AND DISCUSSION

Following our earlier study,16 liquid n-hexadecane was
steadily sheared over a wide range of shear rates �from 1
�109.0 to 1�1012.0 s−1�. The flow �x-axis� and gradient
�y-axis� directional sizes �Lx and Ly, respectively� of the
simple shear flow system were 3.0 and 4.5 nm, respectively.
Our research fluid consisted of 144 n-hexadecane molecules.
A shear rate �̇ was applied to the fluid to characterize the
shear flow field; �̇ is related to the streaming velocity vx in
the x direction, namely, �̇=�vx /�y. The periodic boundary
condition was adopted in all directions while “the Lees–
Edwards boundary condition” was used in the xy plane.49,50

To determine the possible reasons for shear dilatancy occur-
ring in NEMD simulations, the first goal of our present study
was to propose an explanation from the molecular point of
view. The second—and major—goal was to carefully nor-
malize the nonequilibrium thermodynamic state curves under
different temperatures, pressures, and densities as
temperature-, pressure-, and density-invariant master curves,
respectively. These master curves were formally described
using the Cross constitutive equation.28 Incidentally, we
found that the rate of shear dilatancy in both constant-
pressure and constant-volume NEMD systems conformed to
the cyclic rule2,37 of the pressure, i.e., as a function of the
density and shear rate. Our third goal was to verify whether
or not the changes in RDF �Refs. 55–57� with respect to the
shear rate were related to the shear dilatancy. In addition, we
examined how the temperature, pressure, and density influ-

164515-3 Shear dilatancy master curves J. Chem. Phys. 130, 164515 �2009�
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enced the radial distribution function. Simultaneously, we
confirmed that our fluid of interest, n-hexadecane, existed in
the liquid state by observing a curve characteristic of a RDF.

A. Molecular explanation of shear dilatancy

Before the moment at which shear dilatancy occurs can
be determined, two issues must be resolved: �i� At low shear
rates, why does the variation of the nonequilibrium thermo-
dynamic state, with respect to the shear rate, approach a con-
vergent equilibrium state? In contrast, at high shear rates,
why does shear dilatancy occur?; and �ii� One deviation
point defines the onset of the nonequilibrium thermodynamic
state curve’s deviation from the convergence state; thus,
what is the possible physical meaning of this deviation point,
and how is it affected by temperature, pressure, and density?
A detailed response to these questions follows.

Shear deformation was exerted upon the n-hexadecane
molecules by the fluid itself. When the imposed shear rate
��̇� was obviously less than a critical shear rate ��̇c�, the
intermolecular separation did not change explicitly. In this
situation, the corresponding thermodynamic state of the fluid
was not affected by shear deformation.

In contrast, when �̇��̇c �i.e., the fluid was strongly
sheared�, it appeared that the separation distance was altered
and, as a result, that shear dilatancy occurred. In constant-
pressure NEMD simulations, the density decreased upon in-
creasing the shear rate;16 this behavior implied that the inter-
molecular separation would increase upon decreasing the
density. Therefore, for shear dilatancy, the intermolecular
separation would increase as the shear rate increased. In Sec.
III C, we describe how we used a RDF to confirm this be-
havior. Consequently, the moment at which shear dilatancy
occurred in NEMD simulations was connected to the rela-
tionship between �̇ and �̇c. Thus, we have clarified the cause
of the first issue raised above.

It is worth nothing that, in a previous study,16 we found
that a transient point existed in the density–shear rate ��
− �̇� curve of the constant-pressure NEMD simulations at �̇

1�1011.0 s−1, and followed the slope of shear dilatancy
from the convergent density plateau region. By imagining a
dashed horizontal line marked on the convergent density, a
deviation point can be identified roughly between 1�1010.5

and 1�1011.0 s−1. This deviation point corresponds to a par-
ticular shear rate, i.e., the onset of shear dilatancy, also
known as critical shear rate, �̇c.

We observed that the �̇c value increased gradually upon
increasing the temperature; in contrast, the �̇c value did not
depend on pressure.16 Similar to the results obtained for the

constant-pressure NEMD simulations, the pressure–shear
rate �P− �̇� curves of the constant-volume NEMD simula-
tions revealed that the values of �̇c were not related to den-
sity.

According to elementary statistical mechanics, when cer-
tain molecules exist at a constant temperature T, the root
mean square molecular velocity37 v̄rms is derived by

v̄rms =�3kBT

M
, �2�

where kB is Boltzmann’s constant �1.381�10−23 J /K� and
M is the molecular weight. The molecular weight of
n-hexadecane is 226.44 g/mol. Table I lists the values of v̄rms

obtained at various temperatures within the temperature
range of 300–500 K.

Because �̇c and v̄rms were relative to temperature, we
presumed, albeit cautiously, that �̇c might depend on v̄rms.
Table I lists the values of �̇c for n-hexadecane at various
temperatures within the range of 300–500 K. Thus, the sec-
ond issue, as described above, has also been resolved.

In summary, we suggest the following simple rule of
shear dilatancy: If �̇��̇c, the substantial motion of the mol-
ecules will be affected so that the disrupted fluid’s equilib-
rium thermodynamic state also results in shear dilatancy. The
existence of shear dilatancy thus depends on the values of �̇
and �̇c, where �̇c has a connection with v̄rms depending on
temperature. As a consequence, �̇c increases upon increasing
the temperature, whereas pressure and density have no evi-
dent effect. Significantly, in Sec. III B we will precisely de-
termine the magnitude of �̇c in reduced units when deriving
a characteristic shear rate.

From rheological considerations,28 we would initially at-
tempt to find a characteristic shear rate �̇m depending on v̄rms,
as

�̇m =
v̄rms

lm
, �3�

where lm is a average free distance of molecules, namely,
lm= �V /N�1/3= �M /�e�1/3; �e is the equilibrium density of
n-hexadecane fluid and its volume V contains N
n-hexadecane molecules.

Notably, the definition of �̇m in Eq. �3� implies that the
critical shear rate for the onset of shear dilatancy depends on
the average free molecular distance. Generally speaking, the
critical shear rate of viscosity–shear rate �
− �̇� curves is
interpreted in terms of viscoelastic relaxation time �R.60 Fur-
thermore, the relaxation time for shear dilatancy, �SD, may
not be the same as �R and, so, not expected to depend on the

TABLE I. Temperature dependence of various parameters for normalized �− �̇ curves at 250 MPa in
NPT-NEMD simulations.

T �K� 300 350 400 450 500
�e �g /cm3�a 0.836 0.818 0.801 0.785 0.770
�̇c �s−1� 4.0�1010.0 4.4�1010.0 4.7�1010.0 5.0�1010.0 5.2�1010.0

v̄rms �m/s� 181.8 196.4 209.9 222.6 234.7
lm �Å� 7.663 7.719 7.773 7.825 7.876
�̇m �s−1� 2.37�1011.0 2.54�1011.0 2.70�1011.0 2.85�1011.0 2.98�1011.0

aTaken from Ref. 16.

164515-4 Tseng, Wu, and Chang J. Chem. Phys. 130, 164515 �2009�
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system size. Thereby, our present study indicates that for a
fixed system size, �SD should depend obviously on tempera-
ture.

B. Master curves for shear dilatancy

In macroscopic rheological experiments,28 the viscosity–
shear rate �
− �̇� flow curves obtained at different tempera-
tures can usually be normalized to provide a master curve
through a shift factor of time–temperature superposition.61

Some NEMD studies13,39,62,63 have also revealed that flow
curves at different state points can be reduced to a master
curve. In addition, we recently reported three types of 
− �̇
master curves—namely, temperature, pressure, and density
invariant.36 Because the overall shape of the nonequilibrium
thermodynamic state curves were similar to those of the 

− �̇ flow curves, in this study we also sought to obtain master
curves from the nonequilibrium thermodynamic state curves.

Prior to obtaining the master curves for the nonequilib-
rium thermodynamic state curves,16 it was important for us
to determine two characteristic values: The thermodynamic
state and the shear rate variables. The density-characteristic
value �C in constant-pressure NEMD systems is given by the
equilibrium density �e, whereas the pressure-characteristic
value PC in constant-volume NEMD systems is given by the
equilibrium pressure Pe; namely, �C=�e and PC= Pe, respec-
tively. Additionally, �̇m was selected initially as the shear rate
characteristic value, as referred to Eq. �3�.

Next, using those characteristic values, we normalized
the nonequilibrium thermodynamic state curves at various
temperatures, pressures, and densities to achieve the
temperature-, pressure-, and density-invariant master curves,
respectively. Significantly, under isothermal conditions, we
could simply inspect whether or not the tendencies of the
rate of shear dilatancy in both constant-pressure and
constant-volume NEMD systems conformed to the cyclic
rule2,37 of pressure, which is a function of density and shear
rate.

1. Temperature-invariant master curve

The melting point59 and boiling point38 of n-hexadecane
are 289–291 and 558 K, respectively. Therefore, it was as-
sumed that the fluid in this present study existed in the liquid
state at a temperature between 300 and 500 K.

After having referred to a previous study,16 we per-
formed �− �̇ curves of nonequilibrium thermodynamic state
in NPT-NEMD simulations for n-hexadecane fluid at 250
MPa and five different temperatures �300, 350, 400, 450, and
500 K�. Thereby, Table I lists the characteristic values of �e

and �̇m with respect to the temperature. We further reduced
the �− �̇ curves at different temperatures via �e and �̇m, as
shown in Fig. 1. Surprisingly, the plots of � /�e versus �̇ / �̇m

at various temperatures were all superimposable. We suc-
cessfully obtained the temperature-invariant master curve. In
addition, the master curve could then be formally described
formally using the Cross constitutive equation below, as a
function of density and shear rate,28

�� = �	
� +

�e
� − �	

�

1 + ����̇��n , �4�

where ��=� /�e, �e
�=�e /�e, �	

� =�	 /�e, ��=��̇m, and �̇�

= �̇ / �̇m. This equation has four parameters: �e
�, �	

� , ��, and n.
After fitting the data, the parameters of the Cross model in
Eq. �4� for the temperature-invariant master curve were �e

�

=1.0, �	
� =0.60, ��=9.3, and n=1.0. The Cross model curve,

which is the solid line in Fig. 1, accurately passes through
the centers of all the reduced points and is a good represen-
tation of the temperature-invariant �− �̇ master curve. Note
that �̇c obviously occurs at �̇ / �̇p
0.1; as �̇ / �̇p
0.1, the
nonequilibrium thermodynamic state approaches equilib-
rium.

2. Pressure-invariant master curve

In our previous study,16 we obtained �− �̇ curves from
NPT-NEMD simulations of liquid n-hexadecane at 400 K

FIG. 1. �Color online� Temperature-invariant master curve for dimension-
less density � /�e as a function of dimensionless shear rate �̇ / �̇m, as obtained
from NPT-NEMD simulations for n-hexadecane at 250 MPa and tempera-
tures between 300 and 500 K. Solid line: Cross model curve fitted to the
data.

TABLE II. Pressure dependence of various parameters for normalized �− �̇ curves at 400 K in NPT-NEMD
simulations.

P �MPa� 50 100 250 500 750 1000
�e �g /cm3�a 0.699 0.737 0.801 0.866 0.911 0.950
lm �Å� 8.134 7.992 7.773 7.573 7.446 7.343
�̇m �s−1� 2.58�1011.0 2.63�1011.0 2.70�1011.0 2.77�1011.0 2.82�1011.0 2.86�1011.0

ap 0.447 0.632 1.000 1.414 1.732 2.000
�̇p �s−1� 5.77�1011.0 4.15�1011.0 2.70�1011.0 1.96�1011.0 1.63�1011.0 1.43�1011.0

aTaken from Ref. 16.
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over a wide range of pressure �50–1000 MPa�. Table II lists
the values of �e and �̇m with respect to pressure. Thus, the
�− �̇ curves at different pressures can be reduced to dimen-
sionless units by �e and �̇m. Figure 2 displays � /�e plotted as
a function of �̇ / �̇m. Dramatically, for �̇ / �̇m�0.1, the re-
duced curves of � /�e versus �̇ / �̇m were not superimposable.
This result suggested that the slope of the shear dilatancy
strongly depended on pressure;16 nevertheless, the overall
reduced curves were all rather similar. We applied a shift
factor aP of the time–temperature superposition28,61—a con-
cept adapted from polymer physics—to the reduced curves
in the present study. When the reference pressure P0 was set
to 250 MPa, we could use the shift factors to move the other
curves to the curve obtained at the reference pressure. Using
this approach, we might have expected to obtain one master
curve at a reference pressure of 250 MPa. Indeed, a new
shear rate characteristic value �̇p that was dependent on pres-
sure can be defined by adjusting �̇m as follows:

�̇p = ap�̇m. �5�

An additional question then presented itself: What was
the value of aP when only the pressure P was a function of
the shear rate �̇? Notably, from an NEMD study, Ge et al.4

reported that, whereas sheared simple fluids at a triple point
exhibited a 3/2 power behavior �P��̇3/2�, those at common
states possessed a 2.0 power behavior �P��̇2.0�. More Re-
cently, Daivis et al.25 employed “the third-order retarded mo-
tion expansion of continuum mechanics” to derive the qua-
dratic term in the strain rates dependence of pressure. In an
earlier NEMD study of liquid n-decane �C10H22� and
n-eicosane �C20H42�, Morriss et al.14 also found such 2.0
power behavior. From these precedents, we assumed, with
caution, that �̇��P could be employed in the present study.
Such proportionality resulted in aP being defined as

ap =� P

P0
. �6�

Accordingly, using Eq. �5�, we calculated the values of �̇p at
various pressures under a reference pressure of 250 MPa;

Table II lists the values of aP and �̇p with respect to pressure.
Figure 3 presents � /�e plotted with respect to �̇ / �̇p. Surpris-
ingly, at an isothermal temperature of 400 K and a reference
pressure of 250 MPa, the master curve was obtained via the
use of a shift factor. Then, this master curve can also be well
described using the Cross model, Eq. �4�, with the following
parameters: �e

�=1.0, �	
� =0.60, ��=8.9, and n=1.0, where the

reduced shear rate �̇� and the reduced relaxation time ��

have been modified as �̇�=�̇ / �̇p and ��=��̇p. In Fig. 3, the
solid curve is the Cross model curve and the open square
symbols represent the reduced data of � /�e versus �̇ / �̇m cap-
tured from the temperature-invariant master curve at 250
MPa, as in Fig. 1. These two plots are almost superimpos-
able. As a result, findings presented in Figs. 1 and 3 at the
same temperature �400 K� and pressure �250 MPa� are in
good agreement, with the parameters of their Cross model
curves being fairly close in value. Similar to Fig. 1, �̇c in Fig.
3 also occurs at �̇ / �̇p
0.1.

Here, an explanation is necessary as to why Fig. 2 show-
ing the pressure effect using “the value of �̇m” is not similar
to Fig. 1 showing the temperature effect. In a previous
study,16 we fitted the �− �̇ curves between 1�1011.0 and 1
�1012.0 s−1 to the power-law model16,19 ���̇−n�, where n� is
an exponent for shear dilatancy in a constant-pressure
NEMD system; this exponent also implicitly relates to the
rate of shear dilatancy. As a consequence, we obtained the
following values of n� at various temperatures: 0.070 �300
K�, 0.076 �350 K�, 0.082 �400 K�, 0.089 �450 K�, and 0.095
�500 K�;16 at various pressures, the values of n� were 0.241
�50 MPa�, 0.162 �100 MPa�, 0.082 �250 MPa�, 0.065 �500
MPa�, 0.053 �750 MPa�, and 0.046 �1000 MPa�.16 Overall,
this tendency suggested that the value of n� decreased dra-
matically upon increasing the pressure; the increase in n�

upon increasing the temperature was less obvious. In other
words, the shear dilatancy behavior was strongly related to

FIG. 2. �Color online� Normalized plots of dimensionless density � /�e vs
dimensionless shear rate �̇ / �̇m, as obtained from NPT-NEMD simulations
for n-hexadecane at 400 K and pressures between 50 and 1000 MPa.

FIG. 3. �Color online� Pressure-invariant master curve for dimensionless
density � /�e as a function of dimensionless shear rate �̇ / �̇p, as obtained
from NPT-NEMD simulations for n-hexadecane at 400 K and pressures
between 50 and 1000 MPa. Data taken at the indicated pressures were
shifted to a reference pressure, P0=250 MPa. Solid line: Cross model curve
fitted to the data. The open square symbols: The � /�e vs �̇ / �̇m data of the
temperature-invariant master curve were caught from Fig. 1.
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pressure, but only weakly to temperature. Therefore, we ex-
pected the results presented in Fig. 2 to differ from those in
Fig. 1 for the same value of �̇m used.

3. Density-invariant master curve

In the liquid/vapor coexistence curve of n-hexadecane,
the phase diagram at 400 K reveals a liquid state density of
greater than 0.65 g /cm3; in contrast, at less than
0.65 g /cm3, the fluid comprises coexisting liquid and vapor
states.16 To ensure that our simulated fluid existed well
within the region of a single liquid phase, we chose the fol-
lowing five densities for the n-hexadecane fluid in our
NVT-NEMD simulations performed at 400 K: 0.70, 0.75,
0.80, 0.85, and 0.90 g /cm3. The P− �̇ plot is available in our
previous publication.16

Table III lists the values of Pe and �̇m with respect to
density. Figure 4 presents P / Pe plotted with respect to �̇ / �̇m.
Similar to Fig. 2, at �̇ / �̇m�0.1, the reduced curves of P / Pe

versus �̇ / �̇m were also not obviously superimposable, which
suggested that the slope of the plot of the shear dilatancy was
strongly affected by density. Because pressure and density
have parallel effects on shear dilatancy,16 the reduced curves
obtained at various densities were also readily transformed—
through a shift factor—to that at the reference density; this
approach was identical to that we described for the pressure
effect in Sec. III B 2.

Thus, we chose a reference density �0 and determined its
corresponding pressure P��0�. We used a shift factor, ap

=�Pe��� / Pe��0�, to obtain the value of �̇p. For the reference
density �0=0.80 g /cm3, Table III lists both the values of aP

and �̇p with respect to density. As expected, Fig. 5 shows that
the corresponding master curve of P / Pe versus �̇ / �̇p was
obtained at an isothermal temperature of 400 K and a refer-
ence density of 0.80 g /cm3. In addition, we also formulated
this master curve using the Cross model below, as a function
of pressure and shear rate,

P� = P	
� +

Pe
� − P	

�

1 + ����̇��n , �7�

where P�= P / Pe, Pe
�= Pe / Pe, P	

� = P	 / Pe, ��=��̇p, and �̇�

= �̇ / �̇p. This equation has four parameters: Pe
�, P	

� , ��, and n.
The solid curve in Fig. 5 is the Cross model curve of Eq. �7�
drawn with the following parameters: Pe

�=1.0, P	
� =30.0, ��

=72.7, and n=1.0. This model curve passed well through the
overall center of the data. As expected, in Fig. 5, �̇c is also
found at �̇ / �̇p
0.1. The nonequilibrium pressure at �̇ / �̇p


0.1 is closer to the equilibrium value.
More importantly, we focused our attention on under-

standing why the pressure increased upon increasing the
shear rate, especially in constant-volume NEMD simulations
at high shear rates. From a microscopic viewpoint, atomic
pressure49,55 is a function of the kinetic energy Ek and the
virial energy Evirial, which are related to the temperature and

TABLE III. Density dependence of various parameters for normalized P− �̇ curves at 400 K in NVT-NEMD
simulations.

� �g /cm3� 0.70 0.75 0.80 0.85 0.90
Pe �MPa�a 66.3 140.6 258.9 440.9 698.6
lm �Å� 8.130 7.945 7.776 7.620 7.477
�̇m �s−1� 2.58�1011.0 2.64�1011.0 2.70�1011.0 2.75�1011.0 2.81�1011.0

ap 0.506 0.737 1.000 1.305 1.643
�̇p �s−1� 1.31�1011.0 1.95�1011.0 2.70�1011.0 3.59�1011.0 4.61�1011.0

aTaken from Ref. 16.

FIG. 4. �Color online� Normalized plots of dimensionless pressure P / Pe vs
dimensionless shear rate �̇ / �̇m, as obtained from NVT-NEMD simulations
for n-hexadecane at 400 K and densities between 0.70 and 0.90 g /cm3.

FIG. 5. �Color online� Density-invariant master curve for dimensionless
pressure P / Pe as a function of dimensionless shear rate �̇ / �̇p, as obtained
from NVT-NEMD simulations for n-hexadecane at 400 K and densities
between 0.70 and 0.90 g /cm3. Data taken at the indicated densities were
shifted to a reference density, �0=0.80 g /cm3. Solid line: Cross model
curve fitted to the data.
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potential energy, respectively. Because Ek is held constant at
an isothermal temperature of 400 K, Evirial plays a dominant
role in determining the variation of pressure. In most cases,
Evirial has a negative value. When molecular chains readily
exclude one another, so that the Evirial value is enhanced, the
pressure rises accordingly. Moore et al.13 suggested that
when a strong shear deformation is imposed onto a fluid at
an extreme shear rate, the intermolecular collisions are more
frequent and stronger, i.e., a Brownian-type collision
effect.13,26 In such a state, we would infer that the increase in
the intermolecular distance would make it more difficult for
the molecules to interact, causing the pressure to increase
upon increasing the value of Evirial. In Sec. III C, whether by
constant-volume or constant-pressure NEMD simulations,
we validated, through variations in the RDF with respect to
the shear rate, that shear dilatancy behavior caused an in-
crease in the intermolecular distance.

Moreover, it is interesting to note that extended thermo-
dynamic space is considered to be a function of four vari-
ables: Temperature T, pressure P, density �, and shear rate �̇.
Under isothermal conditions, pressure is an exact function of
density and the shear rate: P= P�� , �̇�; therefore, we obtained
the cyclic rule2,37 via the total differential of P= P�� , �̇�

� �P

��̇



T,�

= − � �P

��



T,�̇
� ��

��̇



T,P

. �8�

The shear dilatancy aspect of the constant-pressure
NEMD simulations, as presented in Figs. 1 and 3, clearly
indicated that ��� /��̇�T,P�0. Additionally, in our previous
study,16 under a constant temperature �400 K� and shear rate
�1�1012.0 s−1�, we observed that ��P /���T,�̇�0; thus, as in,
Eq. �8�, ��P /��̇�T,��0. This indirect ratiocination was in
good agreement with our observations of the shear dilatancy
aspect of the constant-volume NEMD simulations in Fig. 5.
As a whole, our results above have firmly supported the va-
lidity of shear dilatancy in both constant-volume and
constant-pressure NEMD simulations. In particular, it has
been suggested that Eq. �8� is true for a unique thermody-
namic temperature in the shearing steady state system; how-
ever, the validity of this assumption is questionable and it has
recently been challenged. We refer the reader to previous
studies, discussed by Daivis53,64 and Matin,64 regarding the
thermodynamic relationships of shearing linear viscoelastic
fluids.

C. Radial distribution functions for intermolecules

Above, we have described how we obtained master
curves from nonequilibrium thermodynamics state curves; in
addition, we corroborated our supposition for shear dila-
tancy, i.e., that the intermolecular separation increased upon
increasing the shear rate. In this section, using RDFs,49,55–58

we show that variations in the intermolecular distance are
related to shear dilatancy. The RDF is the primary linkage
between macroscopic thermodynamic properties and inter-
molecular interactions within fluids. Hence, not only could
we analyze the variation in the intermolecular distance in

terms of the effects of temperature, pressure, density, and
shear rate but we could also manifest with certainty that our
research fluid existed in a liquid state.

1. Shear rate-induced variation

Following to Eq. �1�, we easily computed the RDF
for intermolecules, g�r�. Figure 6 presents the g�r�
curves that were obtained over a wide range of shear rates
�1�109.0–1�1012.0 s−1� from constant-pressure NEMD
simulations at 400 K and 250 MPa. First, at short distances
�r�3.08 Å�, the value of g�r� was zero because of strong
repulsive forces. Next, the first and largest peak occurred at
r
5.21 Å. This local maximum indicated that the probabil-
ity of finding a pair of molecules with such a separation was
highest when the pair potential energy was at a minimum.56,58

The g�r� curve then fell and passed through a minimum
value at approximately r
7.43. The chances of finding a
pair of molecules was lower, and its potential energy reached
a maximum value.56,58 Finally, at large separations, the po-
tential energy approached zero with some fluctuation, so that
the density was uniform, i.e., g�r�
1.55 This situation re-
vealed that one molecule had no influence on the position of
another—namely, there was no long-range order.56,58

As a whole, the shapes of the g�r� curves described
above for different shear rates clearly represented liquid state
characteristics, in accordance with McQuarrie’s treatise of
statistical mechanics.56 Significantly, our g�r� curves were in
good agreement with the results of Tsuchiya et al.,59 who
predicted the melting points of n-alkanes using molecular
dynamics simulations. In passing, we note that Matteoli and
Mansoori57 proposed a simple expression for the RDFs of
pure fluids and mixtures.

In Fig. 6, it is evident that the g�r� curves were affected
by the shear rates. At �̇�1�1011.0 s−1, there was no corre-
lation between the g�r� curves and the shear rates; in con-

FIG. 6. �Color online� Intermolecular contribution to the radial distribution
function at various shear rates ��1�109.0�– �1�1012.0� s−1�, as obtained
from NPT-NEMD simulations for n-hexadecane at 400 K and 250 MPa.
Horizontal line: The density is uniform, g�r�=1.
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trast, the intensity of the first peak at �̇�1�1011.0 s−1 de-
creased upon increasing the shear rate. We noticed that this
variation was the same as that observed in the NEMD simu-
lations described by Bosko et al. for a dendrimer.30 More-
over, for a shearing atomic fluid interacting via accurate two-
body potentials, Marcelli et al.65 demonstrated that the
intensity of the first peak in the g�r� curves at an extreme
shear rate �1.95 in reduced units� was specifically lower than
that obtained at an equilibrium state. Essentially, the study of
the shear rate dependence of RDFs g�r , �̇� reported by Koo
and Hess32 revealed that contour diagrams of g�r , �̇� ob-
tained at lower shear rates displayed ellipsoidal distortion,
whereas a twisted distortion occurred at higher shear rates,
i.e., the plot of g�r , �̇� became nonspherically symmetrical
under extreme shear.

On the other hand, at long distances �r�10.0 Å�, the
g�r� curves tended to gradually approach a value of one, with
fluctuation, upon increasing the shear rate. Notably, as the
shear rate increased, the g�r� curves did not move to either
the right or the left. The shifts in the g�r� curves that were
manifested at various temperatures, pressures, and densities
are discussed below.

Our observations described above imply that at low
shear rates, the intermolecular distances remain almost un-
changed; in contrast, although shear dilatancy occurs at high
shear rates, the intermolecular distances are lengthened upon
increasing shear rate. As indicated in Fig. 7, and as expected,
the g�r� curves obtained at 400 K and 0.80 g /cm3 for the
constant-volume NEMD systems were the same as those ob-
tained for constant-pressure NEMD systems. In short,
whether we employed a constant-volume or constant-
pressure NEMD system, the effect of shear dilatancy caused
an increase in the intermolecular distance.

2. Temperature-, pressure-, and density-induced
variations

In our ensuing RDF discussions, we examined the varia-
tions in the g�r� curves under various temperatures, pres-
sures, and densities. Figure 8 presents the g�r� curves ob-
tained at temperatures of 300, 400, and 500 K from constant-
pressure NEMD simulations performed at 250 MPa and 1
�1011.0 s−1. Upon increasing the temperature, the intensity
of the first peak fell and the overall curve moved to the right.
This result signified that the intermolecular distance in-
creased upon increasing the temperature, which was in
agreement with Verlet’s report of the equilibrium MD obser-
vation of liquid argon.66

Figure 9 presents the g�r� curves obtained at 400 K and
1�1011.0 s−1 over a wide pressure range �50–1000 MPa�.
With increased pressure, the intensity of the first peak rose
and the signals in the curve moved to the left. Thus, the
intermolecular distance was clearly shortened upon increas-
ing the pressure; note that this behavior was the exact oppo-
site of the temperature effect in Fig. 8.

Figure 10 displays the g�r� curves obtained at densities
of 0.70, 0.80, and 0.90 g /cm3 from constant-volume NEMD
simulations performed at 400 K and 1�1011.0 s−1. This
trend with respect to density was the same as the effect of
pressure on the g�r� curves �cf. Fig. 9�. Thus, as the density
increased, the intermolecular distance decreased correspond-
ingly. In summary, as analyzed above, the changes in g�r�
curves caused by changes in temperature, pressure, density,
and shear rate contributed to our understanding of common
molecular physics. Significantly, the characteristics of our
g�r� curves allowed us to ascertain with confidence that our
research fluid, n-hexadecane, existed in the liquid state under
each of the tested sets of conditions.

FIG. 7. �Color online� Intermolecular contribution to the radial distribution
function at various shear rates ��1�109.0�– �1�1012.0� s−1�, as obtained
from NVT-NEMD simulations for n-hexadecane at 400 K and 0.80 g /cm3.
Horizontal line: The density is uniform, g�r�=1.

FIG. 8. �Color online� Intermolecular contribution to the RDF at tempera-
tures of 300, 400, and 500 K, as obtained from NPT-NEMD simulations for
n-hexadecane at 250 MPa and 1�1011.0 s−1. Horizontal line: The density is
uniform, g�r�=1.
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IV. CONCLUSION

NEMD simulations were used to analyze the shear dila-
tancy behavior of liquid n-hexadecane fluid. Under isother-
mal conditions, the trends in the rates of shear dilatancy in
both constant-volume and constant-pressure NEMD systems
agreed well with the cyclic rule of pressure P as a function of
density � and shear rate �̇.

To answer the question of why the shear dilatancy of
liquid n-hexadecane appears in NEMD simulations, we pro-
posed one possible molecular explanation regarding the rela-
tionship between the imposed shear rate �̇ and the critical

shear rate �̇c. For �̇��̇c, the intermolecular distance did not
depend on the shear rate and the fluid’s nonequilibrium states
were close to equilibrium: i.e., ���̇�
���̇=0� under
isobaric-isothermal conditions or P��̇�
 P��̇=0� under
isochoric-isothermal conditions. In contrast, at �̇��̇c, the in-
termolecular distance lengthened upon increasing the shear
rate; namely, the fluid displayed shear dilatancy behavior. In
addition, we found that the characteristic shear rate �̇m is
related to the root mean square molecular velocity v̄rms and
the average free molecular distance lm, namely, �̇m= v̄rms / lm.

Studying the RDFs, we observed variations of the inter-
molecular distance with respect to the shear rate that were
strikingly similar to the variations in the fluid’s nonequilib-
rium states with respect to the shear rate. At low shear rates,
the RDF curves bore almost no relation to the shear rate. In
contrast, at high shear rates, the intensity of the first and
highest peaks in the RDF curves fell upon increasing the
shear rate; this situation provided evidence for an increase in
the intermolecular distance. Such variations in intermolecu-
lar distances on the molecular level corresponded to non-
equilibrium thermodynamic states on the macroscopic scale.
Moreover, with rising temperatures, the RDF curves revealed
increases in intermolecular distances. On the other hand,
upon increasing either pressure or density, we found that the
intermolecular distance shortened. Furthermore, the overall
characteristics of the RDF curves showed clearly our re-
search fluid existing in the liquid state.

Nonequilibrium thermodynamic state curves, including
the �− �̇ curves presented at different temperatures and pres-
sures and the P− �̇ curves presented at different densities,
could be normalized to temperature-, pressure-, and density-
invariant master curves, respectively. In addition, those mas-
ter curves could each be formulated using the Cross model.
Significantly, the key aspect of the normalization of these
master curves was that they could be defined in terms of two
relevant characteristic values, i.e., a thermodynamic state
variable �a density-characteristic value �C in isobars; a
pressure-characteristic value PC in isochors� and the shear
rate. The two criteria for selecting the characteristic values
are

�i� Thermodynamic state variable: In both constant-
pressure and constant-volume NEMD systems, �C and
PC are given by the equilibrium density �e and the
equilibrium pressure Pe, respectively; i.e., �C=�e and
PC= Pe.

�ii� Shear rate: In constant-pressure NEMD systems, the
shear rate’s characteristic value is �̇p=ap�̇m, a func-
tion of temperature and pressure; �̇m has a direct con-
nection with the root mean square molecular velocity
v̄rms, depending on temperature; ap=�P / P0 is a shift
factor that is related to pressure; P0 is the reference
pressure. Note that at a constant pressure but varying
temperatures, all of the shift factors are set to a value
of one �ap=1�. In constant-volume NEMD systems,
the shift factor is given by ap=�Pe��� / Pe��0�, where
� is the density and its equilibrium pressure is Pe���;
�0 is the reference density. More importantly, we ob-
tained that the magnitude of �̇c in reduced units of

FIG. 9. �Color online� Intermolecular contribution to the radial distribution
function at pressures of 50, 500, and 1000 MPa, as obtained from
NPT-NEMD simulations for n-hexadecane at 400 K and 1�1011.0 s−1.
Horizontal line: The density is uniform, g�r�=1.

FIG. 10. �Color online� Intermolecular contribution to the RDF at densities
of 0.70, 0.80, and 0.90 g /cm3, as obtained from NVT-NEMD simulations
for n-hexadecane at 400 K and 1�1011.0 s−1. Horizontal line: The density is
uniform, g�r�=1.
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�̇ / �̇p was always close to 0.1, whether dealing with
temperature-, pressure-, or density-invariant master
curves of nonequilibrium thermodynamic states.
Thus, in the particular situation, �̇ / �̇p
0.1, the non-
equilibrium thermodynamic state approaches equilib-
rium.

In the near future, we will extend our series of NEMD
studies to broaden our understanding with respect to shear
dilatancy as it relates to molecular structure: i.e., intramo-
lecular conformations, including bond length, bend angle,
and dihedral angle probability distributions, and overall mo-
lecular structure, including the radius of gyration, order of
orientation, and angle of sphericity.
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