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基於相容性身體部位組態 

的隨意姿勢人體偵測研究 

研究生：王耀笙      指導教授：王聖智 教授 

                     

 

國立交通大學 

電子工程學系  電子研究所碩士班 

 

摘要 

 

在本篇論文中，我們會著重於靜態影像中的隨意姿勢以及視角的人體偵測。針對

此議題，近年來的主流代表作大多只能透過引進更多的人體姿勢模板來做偵測，

這樣無疑會大幅度提升運算量!對此，其實只要限制所偵測的目標必須有很高的

機率重複出現在各種不同的姿勢以及視角，即可迴避此問題發生!在此，我們限

制所偵測的目標為四肢、臉、頭以及軀幹。對比基於相同想法的幾篇相關論文，

我們提出幾個不同的觀點。第一點，我們認為可以藉由假設四肢是由數個大小位

置略有差異的片段所組合而成的，來提高對於四肢形變的容忍度。第二點，頭與

軀幹的形變可以透過使用可形變身體部位模型來增加容忍度。第三點，只討論有

偵測到的身體部位所扮演的角色，可以更好的應對遮蔽現象所帶來的負面影響!

第四點，影像中的區域型資訊以及人體四肢的特質，可以輔助我們減少所需要偵

測的範圍，達到加速的目的。 
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Compatible Body Part Configuration 
 

Student：Yao-Sheng Wang  Advisor：Prof. Sheng-Jyh Wang 
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Abstract 
 

 In this thesis, we focus on the detection of human with arbitrary poses in 

different view-points in static images. To handle this issue, recently representative 

works need to produce lots of detectors to cover the cases of human with arbitrary 

poses in different view-points. In this way, the computation cost will be increased 

exponentially. To prevent this dilemma, we restrict body parts for detection to be limb, 

head, face or torso, which have high probability to be observed in arbitrary poses and 

view-points. Compared to related works in the literature, several different opinions 

are proposed. Firstly, a patch based approach is proposed to model the limb instead of 

parallel lines or well-segmented half limb used in related works. Secondly, a strong 

classifier with the “Deformable Part Model” proposed by Felzenszwalb et al. [1] is 

adopted to cover more variation on head-torso shape, instead of using the rectangular 

shape assumption for torso. Thirdly, we consider configuration inference as a label 

assignment problem, instead of a model fitting problem, in order to handle the 

limitation caused by occlusion or missing parts. Finally, instead of exhaustive search, 

segmentation information and native property of limb are adopted to reduce the 

searching space.  
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Chapter 1 Introduction 
 

Human detection has been an active topic in computer vision for well over 15 

years. The reason is the abundance of applications that can benefit from such 

technology. Examples include pedestrian detection for automotive safety, surveillance 

system for indoor care or crime alerts, and human computer interface…etc. However, 

up to now, there still exists no approach that can produce satisfactory results in 

general, with unconstrained settings while dealing with all of the following challenges: 

(1) illumination condition, (2) cluttered background, (3) occlusion, (4) view-point 

variation, (5) variable visual appearance, and (6) pose variation from a number of 

movable joints. In all of the six challenges, pose variation combined with view-point 

variation, which leads to no fixed shape of human body, is the main bottleneck. Hence, 

in this thesis, these two problems will be the main focus. 

Before presenting our proposed method, we first briefly introduce the 

background of human detection and discuss the dilemma for some recent 

representative works. Human detection scheme can be classified into three kinds of 

approaches: top-down approach, bottom-up approach and hybrid approach. 

Tow-down approaches use global models of the human body to detect humans by 

minimizing a given model to image criteria. Representative works include D.M. 

Gavrila et. al. [2] and Felzenszwalb et al. [1]…etc. D.M. Gavrila et. al. [2] adopt a 

silhouette matching approach to detect pedestrian, while Felzenszwalb et al. [1] using 

“Deformable Part Model” leaned by latent SVM training scheme to model the human 

body. Bottom-up approaches can be separated into two stages: bottom-up detection of 

parts and top-down procedure to obtain the best assembly. Representative works 

contain Alex Yong-Sang et al. [3] and Bourdev et al. [4]...etc. Alex Yong-Sang et al. [3] 

use the combination of lines and ellipses to describe body parts, while Bourdev et. al. 
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[4] cluster body parts collected from training data into group, which are similar in 

appearance and spatial condition, and name those groups as “Poselet”. Both works 

have constraints on the definition of parts, which should contain enough spatial 

information for inferring the positions of body center or other parts. In summary, 

although these works provide state-of-the-art performance, in consideration of the 

challenge we focused on, which is appearance variation introduced by the change of 

pose and view-point, we will find that all the works mentioned above will come into 

the same dilemma. That is the number of demanded detectors will increase 

exponentially in order to deal with more body poses. What’s more, if this way 

combined with the most popular searching scheme, exhaustive search, the 

computation cost will be un-acceptable. 

To avoid falling into the dilemma mentioned above, we adopt the bottom-up 

detection scheme and constrain the targets for detection to fulfill a specific criterion, 

which is that targets should have high probability to be found in arbitrary pose and 

view-point. In Figure 1-1, we can easily find the best set of targets will be head, torso, 

arms and legs, which are the body parts in anatomical sense. Similar parts’ definition 

had been adopted for human recognition in Huttenlocher et al. [5] and had been 

extended for human detection and pose estimation in many works, such as [6-9].  

 

 

 

 

 

Figure 1-1 Human in arbitrary poses 

In [6], Greg Mori et al. partition a given image into small segments and make 

several assumptions. They assume the half limb will be well-segmented and the shape 
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of torso will approximate a rectangle. Finally, they search the best assembly with a 

greedy method. In [7] and [8], the authors assume the limbs to consist of strait lines 

and also assume torso is in rectangular shape. For assembly, one adopts “Integer 

Quadratic Programing”, while another generate “Topological Human Body Model”, 

inspired by “Shock Graphs”, to evaluate the combination. In [9], the authors describe 

the body parts by “Shape Context Descriptor” and use the “Pictorial Structural Model” 

to infer the assembly. 

In this thesis, compared with the aforementioned works [6-9], we model limb as 

a combination of patches to release the strong constraints from the well-segmented 

and strait line assumptions. Instead of assuming the torso shape as rectangular, we 

describe the torso with the “Deformable Part Model” proposed by Felzenszwalb et al. 

[1] to allow larger variation on torso shape. In the assemble step, since our problem is 

human detection but not pose estimation, instead of fitting the whole model to the 

image with a “Pictorial Structure Model”, we only focus on the role assignment of 

detected parts and remove the false alarms by a greedy method. What’s more, to 

prevent the use of the exhaustive search, segmentation information and natural 

property of limbs will be used. 

This thesis is organized as follows. Detail information of related works will be 

provided in Chapter 2. In Chapter 3, the proposed algorithm will be discussed step by 

step. After that, experimental results will be given in Chapter 4. Finally, some 

conclusion and future work will be mentioned in Chapter 5. 
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Chapter 2 Backgrounds 
 

Human detection has been an active topic for a long time, and many algorithms 

have been proposed. In this chapter, some related works for human detection will be 

introduced. These algorithms can be roughly classified into two types; top-down and 

bottom-up, depending on the detection scheme adopted. The tow-down detection 

scheme uses global models of the human body to detect humans by minimizing a 

given model to image criteria, while the bottom-up detection scheme consists of two 

steps, bottom-up detection of parts and top-down inference of the best body 

configuration. In Section 2.1, several representative works in the top-down detection 

scheme will be mentioned. In Section 2.2, works in the bottom-up scheme will be 

presented. 

2.1 Human Detection in Top-down Detection Scheme 

  In [2] and [10], D.M. Gavrila et al. provide an algorithm, which describes the 

pedestrian with global silhouette, named as templates, and establishes a template tree 

as shown in Figure 2-1 to represent and match variety of shape exemplars efficiently. 

The similarity between an image and exemplars is evaluated by the “Distance 

Transform” matching method as shown in Figure 2-1. Finally, the author adopts 

Bayesian model to set the matching threshold for each node to allow the unpromising 

paths in the tree traversal process eliminated early on. 

 

(a)                 (b) 

Figure 2-1 (a) Template Tree [2] (b) Distance Transform Matching [2] 
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 In [11], Dalal and Triggs first propose the famous descriptor, “histograms of 

oriented gradients” (HOGs), to describe the global shape of human body. The main 

idea is that the local appearance and shape of target object can be well characterized 

by the distribution of intensity gradients, which include orientations and magnitudes. 

The descriptors are based on evaluating well-normalized local histograms of image 

gradient orientations in a dense grid. An illustration of HOGs is provided in Figure 

2-2. The gradients are first calculated by using difference filters, such as “Sobel 

Filter”. Next, these gradients are quantized and accumulated into discrete orientation 

bins of four cells, which equal to one block. After that, normalization will be applied 

on this block to handle the local variations in illumination and foreground-background 

contrast. A real example is provided in Figure 2-2, where the left image is a training 

image or testing image. We partition the image into cells and calculated the HOGs for 

all the cells as shown in right image. After that, we concatenate all the HOGs of each 

cell into a single vector, which will be the feature vector used to describe the global 

shape of human body. Collecting lots of positive and negative training images, we 

compute the feature vectors and then pass them into the “linear-SVM” training 

scheme proposed in [12]. Finally, the human detector will be obtained. Overview of 

the system is shown in Figure 2-3. 

 

Figure 2-2 (a) Illustration of HOGs [13] (b) Left: Original image, Right: HOGs feature map [11] 
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Figure 2-3 Overview of algorithm provided by Dala et al. [11] 

 Single rigid template or detector is not expressive enough to describe the object 

with highly articulated deformation, such as human body. Hence, in [1], Felzenszwalb 

et al. propose a “deformable part model” to handle the deformation of human body. 

From left to right, the model consists of root filter, part filter and deformation cost as 

shown in Figure 2-4. In Figure 2-4, a real detection result is provided. The frames of 

root filters are shown in red, while the frames of part filters which capture the 

deformation are shown in blue.  

 

(a)                                  (b) 

Figure 2-4 (a) Deformable Part Model (DPM) (b) Detection results of DPM [1] 

In Figure 2-5, the whole detection process is illustrated. We can find that the 

resolutions used to detect root filter and part filter are different in the feature pyramid. 

This implies that the root filter will roughly cover the entire object while the part 

filters will capture details in finer resolution. An example is clear shown in Figure 2-6. 

Face detection can be taken to demonstrate the idea clearly, where the root filter 

captures the face boundary in a coarse-resolution but the part filters detect the details 
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on face, such as eyes, nose and mouth. 

 

Figure 2-5 Overview of algorithm provided by Felzenszwalb et al. [1] 

 

Figure 2-6 Root filter in red and part filters in yellow. [1] 



 

8 

 

Although the deformations of objects are captured by the movable parts, there 

exists anchor for each part filter. These anchors are the positions where the penalties 

are lowest for the part filters. These positions are latent variables, which are obtained 

in the training step by the “MI-SVM”, or named as “latent-SVM” here, training 

scheme provided in [14]. A real example is shown as the third image in Figure 2-4. As 

the part filter is away from the anchor position, the higher penalty will be assigned. 

Equation definition can be seen as the second term of the following equation: 

score(𝑝0, … , 𝑝𝑛) =∑𝐹𝑖
′

𝑛

𝑖=0

∙ 𝜙(𝐻, 𝑝𝑖) −∑𝑑𝑖

𝑛

𝑖=1

∙ (𝑑𝑥𝑖, 𝑑𝑦𝑖 , 𝑑𝑥𝑖
2, 𝑑𝑦𝑖

2), (2.1-1) 

where  

(𝑑𝑥𝑖, 𝑑𝑦𝑖) = (𝑥𝑖 , 𝑦𝑖) − (2(𝑥0, 𝑦0) + 𝑣𝑖). (2.1-2) 

are denoted as the distance between the anchor and the current position for i-th part. 

Besides, in this equation, 𝑝𝑖 = (𝑥𝑖, 𝑦𝑖 , 𝑙𝑖) specifies the top-left corner position of the 

filter at (𝑥𝑖, 𝑦𝑖) in the 𝑙𝑖-𝑡ℎ level of the feature pyramid H, and 𝑝0 means the 

location of the root filter. “𝑣𝑖” is a two dimensional vector specifying the position of 

the anchor for the i-th part filter relative to the position of the root filter. Moreover, 

“𝑑𝑖” is a four dimensional vector specifying the coefficients of a quadratic function, 

which defines the deformation cost for each possible displacement from the position 

of the part to the position of the anchor. For example, if 𝑑𝑖 = (0,0,1,1), then the 

deformation cost for the i-th part is defined as the squared distance between the 

current position of the part filter to the position of the anchor. 

In Equation 2.1, the overall score is defined as summation of detection scores 

from the root filter and the part filters, plus the deformation cost. “𝐹𝑖
′“ represents the 

coefficients of the i-th part filter. “𝜙(𝐻, 𝑝𝑖)” means the feature vector with the top-left 

corner location at 𝑝𝑖. The detection score for the i-th part is defined as 𝐹𝑖
′ ∙ 𝜙(𝐻, 𝑝𝑖). 

Note that, for each location of the root filter, only one instance will be contained. 
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Hence, we will find the instance with the highest score, which means the best choice 

of part filter locations. 

2.2 Human Detection in Bottom-up Detection Scheme 

 In [4] and [15], Bourdev et al. introduced a new notion of parts as “poselets”, in 

which the key idea is to define parts that are tightly clustered both in the configuration 

space and the appearance space, as shown in Figure 2-7. The poselets are produced by 

a search procedure. A patch is randomly chosen in the image of a randomly picked 

person as a seed of poselet, and other examples are found by searching in images of 

other people for a patch where the configuration of key-points, such as shoulders or 

hips, is similar to that in the seed. After that, the HOGs feature will be computed for 

each of associated image patches. They are used as positive examples for training a 

linear support vector machine. At test time, a multi-scale sliding window is used to 

find strong activations of the poselet filters. Note that these poselets must have strong 

spatial information to estimate the possible locations of key-points which provides the 

ability to compute mutual consistency between activations. With these mutual 

consistencies, we can cluster the activations and produce the hypotheses of humans.  

 

Figure 2-7 Examples of Poselets [4] 

 In Figure 2-8, an example to illustrate the overall detection procedure is 
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introduced. As shown in Figure 2-8, detection results of different poselet detectors are 

shown in different colors, and the size of the blobs means the detection scores. Mutual 

consistency is to calculate how close the locations of key-points are estimated by two 

different activations. This information is used to re-score the activations. Activation 

with more supporting member agreeing with the estimated key-points will lead to a 

higher score, while the activation not in this case will be damped. This is shown in 

Figure 2-8. In Figure 2-8, the authors use a saliency based agglomerative clustering 

with pairwise distances based on consistency of the empirical key-point distributions 

predicted by each poselet. Finally, the bounding boxes and segmentations are 

predicted by the poselets in each cluster as shown in Figure 2-8. 

 

Figure 2-8 Illustration of algorithm provided by Bourdev et al. [15] (a) Detection results of Poselet in 

different color, called activations (b) Illustration of Mutual Consistency (c) Saliency based clustering in 

greedy manner (d) Detection and segmentation results. 

 In [3], Alex Yong-Sang Chia et al. assume that the target object can be described 
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by the combination of shape-tokens, which consist of several line segments and 

ellipses. An overview of this contour based recognition method is provided in Figure 

2-9. In the first step, lots of shape-tokens will be extracted from training set, and then 

clustered into different code-words of the codebook. Next, a discriminative sub-set of 

codebook will be extracted. Instead of cluster size, the extraction is based on the score 

calculated from shape and geometric qualities and a radial ranking will be applied. 

Note that for each shape-token, the relative position of object center will be recorded. 

Hence, the final positions of objects will be decided by a voting scheme. Besides, the 

bounding boxes will be determined based on the shape-tokens used. 

 

Figure 2-9 Overview of algorithm provided by Alex Yong-Sang Chia et al. [3] 

Up to now, the definitions of parts used for detection are learned from training 

data and these parts need to contain strong spatial information in order to infer the 

locations of key-points on body configuration or the center of target object. The 

following references in [6-9] adopt different ways. They directly define the parts for 

detection in the natomical sense, which means that the parts will be head, torso, 

forearm, upper-arm, thigh or shank. These references are closely related to our work 

in this thesis. 

In [6], Mori et al. first partition the testing image into segments, and then detect 
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the body parts, such as limb, torso and head, based on information of segments. For 

limb, the author assumes the half limbs, such as forearm, upper-arm, thigh or shank, 

will be well segmented, which means the half limb will be represented by single 

segments. In order to detect half limbs, lots of hand-segmented half limbs are 

extracted for training. Several examples are shown in Figure 2-10. Features used to 

describe the half limb are contour, shape, shading and focus. Sigmoid function is used 

to transform the feature value into a probability-like quantity. These values will be 

combined linearly and the weights will be learned from training data with a linear 

regression training scheme. Finally, the number of candidates to be extracted can be 

seen as the threshold for half limb detection.  

For torso, the shape is assumed to be rectangular, and may consist of more than 

one segment. The features used are the same as the features used for half limb only 

without shading. The training of weights for feature combination is totally the same. 

For inference of configuration, we need to know the orientation of torso and the 

locations of body joints. Hence, for each torso candidate and each orientation, the best 

matching head will be decided. A candidate head may consist of one or two segments. 

The same set of cues, contour, shape and focus are used to evaluate the score of a 

candidate head. The combination score of head and torso consists of the score of head 

and the score of torso, plus the simple score to describe the relative positions. Finally, 

we sort the possible combination of head and torso by their score and choose a finite 

number of combinations as candidates for the inference of configuration. Several 

examples are shown in Figure 2-10. 
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(a)                           (b) 

Figure 2-10 (a) Examples of human-segmented half limbs for training,  

                 (b) Torso candidates are provided by combination of segments. [6] 

As having the part candidates and information of joints, the next step is the 

inference of configuration. The method adopted by the author is the exhaustive search. 

For each torso candidate, the best limb will be independently selected for each joint. 

The number of possible configurations is evaluated as (𝐿
3
) ∙ 8 ∙ 7 ∙ 6 ∙ 23 ∙ 𝑇 . L means 

the number of half limb candidate, which is usually around 5~7, and T means the 

number of head-torso candidates, which is set to be 50. Here, the author assumes that 

for each configure, at least three half limbs can be found. Besides, there are 8 kinds of 

role for each half limb candidate. Hence, the number of possible combination of three 

half limbs will be 8 ∙ 7 ∙ 6. However, the polarity of half limbs is also considered. 

Hence, a multiplication of 23 will be needed. This exhaustive search will lead to 2-3 

million partial configurations. A “Constraint Satisfaction” strategy will be used to 

suppress physically impossible configures. The constraints used are relative widths, 

length given torso, adjacency and symmetry in clothing. With this strategy, the 

number of left configures will be approximately 1000. Finally, these configures will 

be sorted by the total scores, which are the linear combination of scores of limbs and 

head-torso. Several examples are shown in Figure 2-11. 
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Figure 2-11 Several detection results of [6] 

 In [7], the author first preprocesses the image by using the “local Pb operator” to 

compute the soft edge map. After that, “Canny’s hysteresis” is used to convert the soft 

edge map into contours, which are recursively split into piecewise straight lines. 

Finally, “constrained delaunay triangulation” (CDT) is applied to transform the 

scale-invariant discrete line structure into a set of triangles. 

 As the triangulation map is ready, the candidates of limb and torso will be 

extracted with the assumption of being a combination of parallel lines. Constraint for 

torso is oriented upward. With body parts, the configuration inference can be seen as a 

label assignment problem, which means the decision of the role for each part 

candidate in the configuration. The best configuration will be inferred by the 

discussion of simple unary constraints and pairwise constraints, which are aspect ratio, 

low-level score, scale consistency, appearance consistency, orientation consistency 

and connectivity. These constraints will be modeled by Gaussian distributions. The 

inference problem can be modeled as the minimization of the following equation: 

∑∑𝑓𝑘
′(𝑙1, 𝜋(𝑙1), 𝑙2, 𝜋(𝑙2))

𝑘

+∑𝑑(𝜋(𝑙)),

𝑙𝑙1,𝑙2

 (2.3-1) 

where  

𝑓𝑘
′ =

(𝑓𝑘−𝜇𝑘)
2

𝜎𝑘
2 . (2.3-2) 

In the equation, 𝑓𝑘
′ means the Gaussian model for the k-th constraint. {𝑙𝑖} denotes 
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body label. 𝜋(𝑙𝑖) represents the part candidate which is assigned with 𝑙𝑖 body label. 

Besides, 𝑑(𝜋(𝑙)) is used to measure the quality of an individual part candidate. 

Minimizing Equation 2.3 can be further written as an integer quadratic programming 

problem (IQP), which is expressed as follows: 

min𝑄(𝑥) =  𝑥′𝐻𝑥 + 𝑑′𝑥 𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝐴𝑥 = 𝑏, 𝑥 ∈ {0,1}𝑛, (2.4-1) 

where  

H(i, j) =  ∑𝑓𝑘
′(𝑙(𝑖), 𝑝(𝑖), 𝑙(𝑗), 𝑝(𝑗)).

𝑘

 (2.4-2) 

Directly optimize Equation 2.4 is an NP hard problem. An approximation is deducted 

which is a linear bounding function allowing efficient inference as shown in the 

following equation: 

minL(x) = ∑ (𝑞𝑖 + 𝑐𝑖)𝑥𝑖𝑖    L(x) < 𝑄(𝑥) 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑥, (2.5-1) 

where  

𝑞𝑖 = 𝑚𝑖𝑛𝑥∑ 𝐻(𝑖, 𝑗)𝑥𝑗
𝑗

. (2.5-2) 

Finally, the greedy search is adopted. We fix one candidate for specific label and find 

the best assignment for other candidates. We repeat the procedure to find the 

configuration with minimum constraint cost. An example for illustration of the overall 

system is provided in Figure 2-12. 

 

(a)           (b)          (c)          (d)          (e)         (f) 

Figure 2-12 Illustration of algorithm provided in [7] (a) Input image (b) Edge map (c) Result of 

Constrained Delaunay Triangulation (d) Part candidates in parallel lines with same color (e) 

Configuration found by Integer Quadratic Programming (f) Approximate Segmentation 

In [8], instead of finding two parallel line segments to identify limb candidate 
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directly as shown in [7], the authors relax the constraint so that they need only one 

straight line segment to handle the missing segment caused by cluttering, occlusion or 

shape variation. As one straight line is extracted, the “Distance Transform (DT)” 

matching provided in [10] will be applied. The matching score between parallel line 

templates in different sizes and orientations and the distance transform of edge map 

obtained by “Canny Edge Detector” will be evaluated at every possible position. The 

formula form is provided as follows: 

𝐷𝑇𝑇𝑙 =
1

|𝑇𝑙|
∑ 𝐼𝐸

′ (𝑡)

𝑡∈𝑇𝑙

, (2.6) 

where 𝑇𝑙 represents the prior shape of limb, which is parallel lines. |𝑇𝑙| denotes the 

number of edge points in 𝑇𝑙. 𝐼𝐸
′  means the DT of binary edge map 𝐼𝐸. The templates 

used for torso is the same as the templates for limb. The scale of torso will be inferred 

from the scale of limbs based on the anthropometric data provided in [16]. For head, 

the template shape is a circle. 

 With part candidates, the best body configuration is inferred by the lowest value 

of dissimilarity 𝐷𝐻 as expressed in the following equation: 

𝐷𝐻 = 𝑤𝑔𝐷𝑔 + 𝑤𝑡𝐷𝑡𝑜𝑝 + 𝑤𝑎𝐷𝑎𝑝𝑝 + 𝑤𝑙𝐷𝑙𝑔. (2.7) 

In Equation 2.7, {𝑤} means weights which are learned from training data. 𝐷𝑔 is a 

term dedicated to pruning configurations that are not physically valid. 𝐷𝑡𝑜𝑝 

corresponds to a topological matching between the part assembly and a model of the 

human skeleton. This model is inspired by the “shock graphs” mentioned in [17]. 

𝐷𝑎𝑝𝑝 encodes prior information about the symmetry in clothing and support these 

assemblies for which the appearance of left and right limbs is similar. The last term 

𝐷𝑙𝑔  corresponds to a more global reasoning about the configuration, which is 

dedicated to estimating a combined image likelihood of the assembly by explicitly 

taking into account self-occlusion. 
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A brief illustration of the system flow is shown in Figure 2-13. 

 

Figure 2-13 Illustration of algorithm provided in [8]. 

In [9], the authors claim that the performance of detection is highly dependent on 

the discriminative part classifiers. Hence, in this work, densely sampled “shape 

context descriptor” provided in [18] is adopted to describe body parts. Moreover, the 

Adaboost training scheme proposed by [19] is applied. Finally, with part candidates, 

the inference of configure follows the same steps as proposed in [5] with the usage of 

“Pictorial Structural Model”. The equation form of this model is provided as follows: 

p(L|D) ∝ 𝑝(𝑙0) ∙∏𝑝(𝑑𝑖|𝑙𝑖)

𝑁

𝑖=0

∙ ∏ 𝑝(𝑙𝑖|𝑙𝑗)
(𝑖,𝑗)∈𝐸

. (2.8) 

In this equation, p(L|D) means that given the image feature, D, what will the 

probability of configuration L be. This probability will be proportional to the 

multiplication of three terms shown in the right portion of Equation 2.8. 𝑝(𝑙0) 

denotes the probability for the location of torso to be at 𝑙0. ∏ 𝑝(𝑑𝑖|𝑙𝑖)
𝑁
𝑖=0  represents 

the probability for the rest part to be placed at 𝑙𝑖. 𝑑𝑖 means the evidence map for the 

the i-th part. Finally, ∏ 𝑝(𝑙𝑖|𝑙𝑗)(𝑖,𝑗)∈𝐸  denotes the spatial relation between the 

position of the i-th part and the position of the j-th part. One thing needs to be 
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mentioned is that torso candidates will be detected first in this work. Several results of 

this work are provided in Figure 2-14. 

 

Figure 2-14 Several detection results provided in [9]. 
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Chapter 3 Proposed Method 
 

Recall the goal of our work is to provide a human detection method to handle the 

intra-class variation caused by the change of poses and view-points as much as 

possible. In order to prevent the demand of lots of detectors to cover the intra-class 

variation, bottom-up scheme and constrained body parts defined in anatomical sense 

are going to be used. One thing needs to be mentioned is that, instead of considering 

head and torso separately, we detect them at the same time in order to avoid the high 

false alarm rate introduced by each of them alone. Moreover, the face information will 

be extracted to support the identification of head-torso candidates. 

In the adopted bottom-up scheme, our system can be divided into two portions, 

information collection and information integration, as the last two steps in Figure 3-1. 

Information collection is the step of detecting parts. Information integration is the step 

to integrate the detection results; that is, to decide which parts should belong to the 

same person and what are these parts: face, head- torso, arm, leg or false alarm from 

background.  

In the information collection step, despite of the existence of constraint on the 

definition of parts for detection, the computation cost is still high due to the 

exhaustive search on the scale, position and orientation of parts. Hence, an extra step 

to reduce the searching space is introduced. Here, we will first partition the image into 

segments to create a discrete searching space.  

Hence, our system consists of three portions: image decomposition, collection of 

information and information integration, as shown in Figure 3-1. In Section 3.1, 

image decomposition will be discussed. After that, the method of detection for limbs, 

faces and head-torsos will be mentioned in Section 3.2. Finally, in Section 3.3, the 

way to deal with information integration will be provided. 
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Figure 3-1 Flowchart of our algorithm 

3.1 Image Decomposition 

 As aforementioned, we will partition the image into segments and use the region 

information to reduce the searching space, with the assumption that it is rare to have 

body parts existing within smooth regions. 

 Segmentation can be regarded as a pixel clustering problem. There are lots of 

clustering algorithms in the literature and these algorithms can be classified into four 

kinds of methods: “partition-based methods”, “hierarchical clustering methods”, 

“probabilistic model-based clustering methods” and “spectral clustering methods”. 

Here, the proposed method belongs to “spectral clustering methods”.  

 “Spectral clustering methods” are graph partition based methods. Hence, the first 

thing is to establish the graph. Here, image pixels are defined to be nodes in the graph. 

The definition of edges is called affinity matrix. Each element in the affinity matrix 

represents the relation between two pixels or two nodes. There are three kinds of 

methods for the definition of affinity matrix which are “K-nearest Neighbors”, 

“Radius Based Method” and “Gaussian Model Based Method”. As a graph is obtained, 

we can write the cost function as shown in the following equation: 

min∑𝐴𝑖,𝑗
𝑖,𝑗

∙ (𝛼𝑖 − 𝛼𝑗)
2
, (3.1) 

where i, j are indexes of nodes in the graph or indexes of pixels in the image. 𝐴𝑖,𝑗 

denotes the affinity relation between 𝑛𝑜𝑑𝑒𝑖 and 𝑛𝑜𝑑𝑒𝑗. 𝛼𝑖  & 𝛼𝑗 are cluster labels 

for 𝑛𝑜𝑑𝑒𝑖 and 𝑛𝑜𝑑𝑒𝑗. With this equation, our goal will be to find the optimal cluster 

labels for each pixel. Equation 3.1 can be represented as a general quadratic form as 



 

21 

 

follows: 

min𝛼𝑇 ∙ 𝐿 ∙ 𝛼, (3.2) 

where L = D − A is called as “Graph Laplacian Matrix”. D = ∑ 𝐴(𝑖, 𝑗)𝑁
𝑗=1  is the 

degree matrix of graph. A denotes the affinity matrix of graph and N is the number of 

nodes. Finally, 𝛼 represents the matrix of cluster labels for all nodes. Here, the 

definition of the affinity matrix, A, is adopted from the representative work, spectral 

matting, proposed by Levin et al. in [20]. Note that instead of global affinity 

calculation, only local affinity will be calculated. This means that we only consider 

the affinities among pixels in a local region. For a local region as 𝜔𝑞 , the definition 

of A is provided in the following equation: 

A =∑ 𝐴𝑞
𝑞

, (3.3-1) 

where  

𝐴𝑞(𝑖, 𝑗) =

{
 

 1

|𝜔𝑞|
(1 + (𝐼𝑖 − 𝜇𝑞)

𝑇
∙ (Σ𝑞 +

𝜀

|𝜔𝑞|
𝑈)

−1

∙ (𝐼𝑗 − 𝜇𝑞))       (𝑖, 𝑗) ∈ 𝜔𝑞

                                       0                                                                    𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.   

 (3.3-2) 

In Equation 3.3, 𝐼𝑖 and 𝐼𝑗 denote the colors of the i-th and the j-th pixels in input 

image 𝐼. 𝜇𝑞 is the 3x1 mean color vector of image in the region, 𝜔𝑞. Σ𝑞 is the 

covariance matrix in the same region. Finally, |𝜔𝑞| means the number of pixels in 

the region and 𝑈 represents the 3x3 identity matrix. Note that the graph Laplacian 

matrix is also called matting Laplacian in [20]. 

 The general method to solve Equation 3.2 is to find the eigenvectors of the 

matting Laplacian and sort these eigenvectors based on the eigenvalues in ascending 

order. After that, they map data points into the space constructed by eigenvectors. 

Finally, K-means method is applied to classified data points into clusters. 

 One thing needs to be noticed is that the computation complexityfor obtaining 

eigenvectors is O(𝑁3), where 𝑁 denotes the number of pixels in [20]. This leads to 
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slow speed when handling large images. Hence, instead of taking each pixel as a node, 

we group pixels into cells and decompose the cell-based matting Laplacian, 𝐿𝑐. The 

equation for 𝐿𝑐 is provided as follows: 

𝐿𝑐 = 𝑚̅
𝑇 ∙ 𝐿 ∙ 𝑚̅, (3.4) 

where 𝑚  is the mapping of pixels into cells. 𝑚̅  denotes the mapping relation 

normalized by the number of pixels in each cell. Finally, two different segmentation 

results are provided in Figure 3-2 and Figure 3-3, respectively. 

 

Figure 3-2 Result of segmentation. Different color means different segment. 

 

Figure 3-3 Result of segmentation. Different color means different segment. 
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3.2 Information Collection 

 In this section, information collection will be presented as detection of body 

parts. The body parts to be detected can be separated into three types, which are limbs, 

head-torso and face. Method for detection of limbs will be discussed in Section 3.2.1. 

After that, the adopted algorithm for detection of head-torso and face will 

subsequently be mentioned in Sub-section 3.2.2 and 3.2.3. 

3.2.1 Detection of Limb 

 In this sub-section, the implementation for limb detection and the reason for this 

implementation will be described in detail. Firstly, we will review the methods for 

limb detection adopted in [6-9] and describe the limitations of these works. After that, 

the ideas to overcome the limitations will be provided. Finally, the implementation 

detail will be described step by step. 

Go back to the related works. In [6], the authors assume the half limb, which 

means forearm, upper-arm, thigh or shank, will be well segmented as shown in Figure 

3-4. This assumption will fail in the case shown in Figure 3-4.  

 

(a)                  (b) 

Figure 3-4 (a) Example of well-segmented half limb [6] (b) Failure of well-segmented approach. 

In [7-8], limbs are assumed as the combination of parallel lines or at least one 

side of limb can be detected as a straight line as shown in Figure 3-5. This assumption 

cannot handle the shape variation as shown in Figure 3-5. In [9], the shape context 
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descriptor is used to describe body parts. However, for simple shapes, such as limbs 

only, shape context is too complicated for description and may introduce high 

computation cost. 

 

(a)                     (b) 

Figure 3-5 (a) Examples of limb candidates with assumption of parallel lines (b) Negative example 

In order to prevent these limitations, we describe each limb as a combination of 

patches, which are simple masks with nine different orientations as shown in Figure 

3-6. With this description, limbs will be detected by exhaustive search. In this way, 

instead of using the restriction of well segmented limbs, we only need the limbs to 

have clear boundary on both sides and we allow arbitrary connections on the ends of 

limbs, as shown in Figure 3-7. Moreover, the variation of limb shape shown in Figure 

3-5 can be handled by the displacement and scale change of patches. One example is 

provided in Figure 3-8. 

 

Figure 3-6 Masks for limb patch detection 
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Figure 3-7 Example of clear boundary on both sides of limbs 

 

Figure 3-8 Example of detection results of limb patches 

Up to now, we have the descriptor for limbs and use a detection scheme with 

exhaustive search. Exhaustive search for all the positions, orientations and scales is 

quite inefficient. Hence, instead of exhaustive search, we’d like to find some other 

information to reduce the searching space. The information used here will be 

segmentation boundary from the previous image decomposition step and the natural 

characteristic of limbs: limbs often appear at regions with high density of isotropic 

orientation. In order to use the information, we make two assumptions: (1) the 

boundary of limbs will be included in the boundary of segmentation, and (2) the 
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density of isotropic orientation of limbs will be relatively high in the local region. 

Based on these assumptions, density maps for each orientation can be established. 

With density maps, we can sample a few initial points and apply the exhaustive search 

method for the positions and scales in local region. 

In the following, we will follow the order of the block diagram as shown in 

Figure 3-9 to describe the limb detection step by step. 

 

Figure 3-9 Flowchart of limb detection system in our work 

To establish the density maps, “Histogram of Oriented Gradient” (HOGs) is first 

computed to encode the orientation information as shown in Figure 3-10. After that, 

one specific orientation is extracted from the HOGs map, as shown in Figure 3-10. It 

is easy to find that there exist lots of background noise in smooth regions. The noise 

leads to lots of meaningless initial points and increase the computation cost. In order 

to retain meaningful information and filter out noise, a morphological method is 

applied on the segmentation map. The segmentation boundary map is then extracted 

out as shown in Figure 3-10. We use this segmentation boundary map to retain the 

useful orientation information and an example of the filtered result is shown in Figure 

3-10. Finally, Gaussian smooth filter is convolved with the filtered orientation map, 

and the density map for specific orientation will be obtained as shown in Figure 3-10. 

We repeat all the steps until all the density maps in different orientations are 

produced. 
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Figure 3-10 Illustration for production of orientation density map 

Up to now, the density maps for all orientations are obtained. The next step is the 

extraction of discrete points as the initial points. The algorithm used here is the 

“mean-shift” algorithm and the features are position and density value. After all the 

points are clustered, the position of the center for each cluster will be taken as the 

position of the initial point. However, there are two problems for the direct usage of 

the original “mean-shift” algorithm. One is the slow speed and another is 

unreasonable distribution of clusters.  

The first problem is caused by the iterative re-assignment for all the points on the 
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density map till convergence. To solve this problem, we can approximate the result by 

assigning all the points only one time. Firstly, we sort all the points on the density 

map in the descent order. After that, one point is taken and the distances to the centers 

of the established clusters are computed for each iteration. If no cluster exists or all 

the distances are larger than the clusters’ radii, we establish a new cluster for the 

current point. We repeat the steps until all points are assigned. 

The second problem can be seen in Figure 3-11. There are too many points 

spreading along the orientation which means that there are too many initial points for 

a single limb candidate. To avoid the waste of computation, a modified distance 

equation is provided as follows: 

dist = 𝑤1 × 𝑜𝑟𝑖 + 𝑤2 × 𝑜𝑟𝑡ℎ𝑜𝑟𝑖 + 𝑤3 × 𝑑𝑣  , 𝑤1 = 𝑤2 > 𝑤3, (3.5) 

where 𝑜𝑟𝑖  means orientation, 𝑜𝑟𝑡ℎ𝑜𝑟𝑖  means orthogonal orientation, and dv 

denotes density value. In Equation 3.5, smaller weights are provided along the 

orientation which means a larger radius is used along this direction. The difference 

can be seen in Figure 3-11. The red dashed circle is the result of the modified process, 

and the yellow dashed circle is the result without modification. 

 

(a)                      (b)                     (c) 

Figure 3-11 Produce starting points for limb detection. (a) Distribution of starting points without 

modification. (b) Illustration of modification. (c) Distribution of starting points with modification. 

After having obtained the initial points, we can exhaustively test all possible 
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positions and scales along the orthogonal orientation, as shown in Figure 3-12. Once a 

patch is detected, as shown in Figure 3-12 with the bright green bounding box, its 

estimated scale and position will be used as prior information to detect the remaining 

patches on the same limb, as shown in Figure 3-12 with the red bounding boxes. With 

this detection scheme, we can reduce the searching space dramatically. 

The last step in limb detection is refinement. This step can be divided into three 

portions: non-maximum suppression, connection of fragments on the same segment 

and connection of fragments on different segments.  

 

(a)                             (b) 

Figure 3-12 Illustration of patch based limb detection. (a) Starting patch detection. 

 (b) Detection of rest patches on the same limb. 

Firstly, as mentioned previously, more than one initial point may be adopted for a 

single limb, as shown in Figure 3-11. Hence, a “non-maximum suppression” 

algorithm is implemented. One thing needs to be mentioned is that we only consider 

the suppression for limb candidates on the same segment. An illustration of the 

algorithm is provided in Figure 3-13. Linear equation for one of limb candidates, 

called a basic candidate, is firstly generated. After that, we calculate the shortest 

distances from the end-points of another candidate, as shown in Figure 3-13. The 

summation of distances is compared to the width of the basic candidate. Moreover, we 
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check the distance between centers of limb candidates to prevent the case of 

suppression shown in Figure 3-13. If both the distance summation of end-points to 

line of basic candidate is less than the width of basic candidate and the distance 

between centers is less than a half length of the basic candidate, we further compare 

the scores of limb candidates. We choose the larger one and suppress the other. The 

score used here is composed of four ingredients: width, length, degree of deviation 

and the average detection score from patches as member of limbs. Here, limb 

candidate with a larger width and longer length will be favored. The degree of 

deviation is defined as the average of deviations collected from the displacements 

between neighboring patches along the orthogonal orientation, as illustrated in Figure 

3-13. Due to the rigidness of half limb, the limb candidate with the smaller deviation 

is favored. 

 

(a)                     (b)                     (c) 

Figure 3-13 Illustration of non-maximum suppression. 

Secondly, due to the discrete orientation angle of patch detector shown in Figure 

3-6, we expect the disconnection for the patches on the same limb, as illustrated in 

Figure 3-14. Hence, we need to apply an extra step to connect these fragments back to 

a single limb. The criteria used are the width ration between fragments, the distance 

between end-points and the difference between orientations. The threshold for width 

ration is two. The threshold for distance between end-points is set to the maximum 
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width of fragments. Finally, the threshold for orientation difference is 20 degrees.  

The third portion is similar to the second portion just mentioned. It is caused by 

the color difference on different regions of limb. An example is shown in Figure 3-14. 

The connection criteria used is the same as the ones used in second portion. One thing 

needs to be noticed is that the fragments to be connected should fulfill one criterion. 

That is, over 80 percents of the segment region on which the fragment is detected 

should be covered by the region of fragment. This can be seen in Figure 3-14. Finally, 

we merge the segments which are connected together. 

 

(a)                      (b)                      (c) 

Figure 3-14 Refinement step in flowchart of limb detection sub-system. 

 

3.2.2 Detection of Head-torso 

 In this sub-section, instead of detecting head and torso separately, we detect them 

together. The reason is that the shapes of head and torso are short of decisive 

information to be distinguished from background noise. Hence, in order to suppress 

false alarms, we consider the combination of head and torso. The following is the 

discussion of the adopted head-torso detection method and the targets to be detected. 

It can be seen in Figure 3-15 that the head-torsos are oriented in multiple directions 

and the shape boundaries are highly deformed due to different clothing, occlusions, 

foreshortening, difference from side-view and frontal view, and also the relative 

displacement between head and torso. Hence, a single template or detector as 
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provided in [11] is needed. Here, the “deformable part model” proposed by [1] is 

applied to capture the shape deformation by using deformable part filters. Note that 

the feature used in [1] is HOGs. Instead of providing 18 directions, only 10 directional 

training data can fulfill the demand for the training of the detector training. That’s 

because the training/testing scheme will automatic flipped the image along the 

vertical orientation to handle the head-torso in mirror-symmetric direction. Finally, 

detectors in different 10 directions are provided as shown in Figure 3-16.  

 

Figure 3-15 Examples of head-torso training data. 

 

Figure 3-16 Detectors of head-torso in 10 directions. 
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With trained detectors, the next step is the application of detectors to detecting 

head-torso candidates. The searching scheme used in [1] is exhaustive search, which 

consists of “image (feature) pyramid” plus “sliding window” as shown in second row 

of Figure 3-17. This searching scheme leads to high computation cost. Hence, we find 

extra information to reduce the searching spaces of parameters, which are positions 

(x, y) and scale s. In our work, we agree with the assumption used in [21] which 

indicates that there exists dominant colors for torso region on human body in most 

cases. This assumption can be seen in Figure 3-15. With this assumption, the size of 

head-torso can be approximated by the size of segment. That is, we estimate the scale 

and position of head-torso candidates by the information of segments. In Figure 3-18, 

the bounding box in green denotes the region of torso, and the searching region is 

shown in red. Searching region will be re-scaled for fitting different scales of feature 

maps. The estimated scale for searching torso in feature maps for torso is provided in 

the following equations: 

𝑠𝑐𝑎𝑙𝑒𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 = max(𝑟𝑜𝑢𝑛𝑑 (
1.5 ∙ 𝑠𝑖𝑧𝑒𝑡𝑜𝑟𝑠𝑜

𝑠𝑏𝑖𝑛 ∙
9
2

) , 1), (3.6-1) 

𝑠𝑐𝑎𝑙𝑒𝑢𝑝𝑝𝑒𝑟𝑏𝑜𝑢𝑛𝑑 = 𝑠𝑐𝑎𝑙𝑒𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 − 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙 − 1, and (3.6-2) 

𝑠𝑐𝑎𝑙𝑒𝑙𝑜𝑤𝑒𝑟𝑏𝑜𝑢𝑛𝑑 = 𝑠𝑐𝑎𝑙𝑒𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 + 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙 + 1, (3.6-3) 

where 𝑠𝑖𝑧𝑒𝑡𝑜𝑟𝑠𝑜 means the diagonal length of green bounding box as shown in 

Figure 3-18. The constant 1.5 denotes the size ratio between head-torso and torso. 

sbin represents the size of cell used in calculation of HOGs feature pyramid. The 

constant 2 means the size of cell in the first scale of HOGs feature pyramid is 
𝑠𝑏𝑖𝑛

2
. 

The constant 9 is the size of root filter for head-torso detection. Finally, “interval” is 

the scale difference between two resolutions in the HOGs feature pyramid. Extra step 

is required to handle the cases as shown in Figure 3-19. In these figures, the color of 
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legs or arms is the same with the color of torso. Hence, we need to delete the region of 

limbs to avoid false estimation. Finally, two detection results are provided in Figure 

3-20. 

 

Figure 3-17 Illustration of “Image (Feature) Pyramid” and “Sliding Window Searching Scheme”. 

 

Figure 3-18 Bounding box of torso is in green color, while searching region for head-torso is in red. 
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Figure 3-19 Extra step for cutting limb regions from segments. 

 

Figure 3-20 Several results of head-torso detection are provided. 

 

3.2.3 Detection of Face 

The reason to detect face is to handle the missing cases of head-torso detection 

caused by serious deformation, such as foreshortening more than 40 degrees and 

serious occlusion…etc. Moreover, faces can be seen as extra information to support 

the detection of correct head-torso and the suppression of the false alarms. Both 

benefits are mainly from the discriminative features of faces. 

The algorithm used for face detection is the famous face detector proposed in 

[22]. In this algorithm, Viola and Jones first propose “integral image” to accelerate the 

extraction of features. After that, an Ada-boost learning algorithm is applied to select 

a small number of critical visual features from a very large set of potential features 

extracted from training data. Finally, the selected critical visual features for examining 

the testing images are arranged in cascade form for speed-up which filters out most 

patches in the first few steps. 

The implementation of the face detector is provided in the “Computer Vision 
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System Toolbox” on Matlab. There exists both frontal and profile face detectors. Both 

detectors are designed for human standing upward only. Hence, an extra step is used 

which rotates the image into 18 directions. Finally, to handle multiple detections on 

the same face, the non-maximum suppression process is applied. Several detection 

results are shown in Figure 3-21. 

 

Figure 3-21 Several detection results of face detectors. Different colors denote different orientations. 

 

3.3 Information Integration 

Up to now, candidates of body parts have been detected and spread over the 

whole image as shown in Figure 3-22. With the adoption of a bottom-up detection 

scheme, the next two steps will be the combination of body parts to provide possible 
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configurations and the score evaluation of all configurations.  

 

 

 

 

 

Figure 3-22 Detection results of body parts. Yellow color is for face candidates. Red lines are for limb 

candidates. Other colors denote head-torso candidate oriented in different directions. 

For the combination step, direct exhaustive combination between part candidates 

will introduce lots of unreasonable configurations. To prevent this problem, an extra 

filtering step is adopted. With the dominating color assumption mentioned in Section 

3.2.2, each segment is treated as a torso candidate. Hence, we first discuss the 

possibility for the combination between part candidates and the specific torso 

candidate. After that, only part candidates with high possibilities will be preserved as 

a torso candidate to establish configurations. This portion is provided in Section 3.3.1. 

With the knowledge of which part candidates can be used to establish the 

configurations for each torso candidate, we exhaustively produce all possible 

configurations and evaluate their scores in Section 3.3.2. Finally, with these scores, 

the best configuration is extracted for each torso candidate. 

3.3.1 Combination Pre-filtering 

In this sub-section, we will discuss which part candidate can be combined with a 

specific torso candidate. For the candidates of head-torso, we detect head-torso 

candidates for each segment separately and ask these candidates to overlap the 
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segment with a percentage above a specific threshold. Hence, for each segment, it 

could be a torso. 

For the face candidates, we know the orientation difference between face and 

torso can’t be over 90 degrees. Hence, a half circle mask is produced to decide the 

ownership of face candidates, as shown in Figure 3-23. Segments covered by the red 

half circle mask can be combined with this face candidate. 

 

Figure 3-23 Illustration of the ownership of a specific face candidate for each segment. 

Finally, we discuss the possibilities of combinations between limb candidates 

and torso candidates. Firstly, we need to know the reasonable combination types 

between limb and torso. In our approach, there are four major types. The first one is 

that limbs are on the same segment as the torso candidate, as illustrated in Figure 3-24. 

The second one is that the limbs segments are directly connected with a torso segment. 

An example is also provided in Figure 3-24. The third type is that a segment exists 

between a limb segment and a torso segment, which can be seen in Figure 3-24. The 

final type is that two segments exist between a limb segment and a torso segment. A 

real example is shown in Figure 3-24. Note that we don’t consider the cases with more 

than two segments exist between limb segment and torso segment. 
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(a)                                 (b) 

Figure 3-24 Illustration of combination types between limb and torso. 

As we know the combination types, we can model the possibility evaluation 

problem as a multi-path optimization problem as shown in Figure 3-25, where “T” 

means torso, “L” means limb and “S” means in-between segment. For each path, we 

evaluate the cost, which is equal to the inverse of possibility. After that, we choose the 

path with the lowest cost and compare the cost with a pre-defined threshold. If the 

cost is lower than the threshold, this limb candidate will be preserved to establish a 

configuration for current torso candidate. 

 

Figure 3-25 Illustration of multi-path problem 

Features used to calculate costs are the summation of the areas of in-between 

segments in the path and the way that the current limb combines with the first 

in-between segment. Examples are shown in Figure 3.26. The torso region is bounded 

by the red color boundary. A correct path is bounded by the blue color boundary, 

while an incorrect path is bounded by the green color boundary. Large areas of 
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in-between segments will lead to a high cost. Limbs combining with neighboring 

segments along similar orientations will lead to a low cost. Equations are provided as 

follows: 

Cost𝑝𝑎𝑡ℎ = Penalty𝑡𝑦𝑝𝑒 ∙
𝐴𝑟𝑒𝑎𝑠𝑒𝑔𝑚𝑒𝑛𝑡

𝐴𝑟𝑒𝑎𝑡𝑜𝑟𝑠𝑜
, (3.15-1) 

where  

𝑃𝑒𝑛𝑎𝑙𝑡𝑦𝑡𝑦𝑝𝑒 = S(min(r3 + r4 + r2 − r1, r3 + r4 + r1 − r2)), (3.15-2) 

S(∙) = 𝑟𝑒𝑠𝑐𝑎𝑙𝑒 𝑣𝑎𝑙𝑢𝑒 𝑖𝑛𝑡𝑜 1~5, and (3.15-3) 

𝐴𝑟𝑒𝑎𝑠𝑒𝑔𝑚𝑒𝑛𝑡 = summation of areas of middle segments. (3.15-4) 

𝑃𝑒𝑛𝑎𝑙𝑡𝑦𝑡𝑦𝑝𝑒  is decided by the way that the current limb combines with the 

neighboring segment. On the other hand, “r1,r2,r3,r4” are the overlapping regions 

between the neighboring segment and the mask used for estimating the direction of 

the combination. This is illustrated in Figure 3.27. 

 

Figure 3-26 An example of cost evaluation. 

 

Figure 3-27 Illustration of estimation of combination direction. 
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3.3.2 Establishment and Score Sorting of Configurations 

 As we have the part candidates, which can be used as a torso candidate, the next 

step will be the establishment of configurations based on these part candidates. The 

establishment of configurations can be seen as the labeling of part candidates which is 

the decision of what role the specific part candidate will be. For different kinds of part 

candidates, there exist different choices. For each face candidate, it may be a face or a 

false alarm. For each head-torso candidate, it may be a head-torso or a false alarm. 

For each limb candidate, it may be a left/right forearm, a left/right upper-arm, a 

left/right shank, a left/right thigh, a left/right full-arm, a left/right full-leg or a false 

alarm. How do we decide the role for each part-candidate? Firstly, fixed references 

need to be set. The references used here are the body joints, which are center of head, 

shoulders and hips. With these fixed body joints, we can start to evaluate the score or 

possibility of each part-candidate to be a specific role. 

 Where do these joints come from? There are several sources. For the joint of 

head, it may come from the candidates of head-torso or face. For the joints of 

shoulders and hips, it may come from the candidates of head-torso or limb. The 

shoulder joints from candidates of head-torso are provided by the trade-off between 

two possibilities. One is the joints relative to the bounding box of the detection result, 

which are annotated by human and are based on the model shown in Figure 3-16. This 

is shown in Figure 3-28. Another one is the joints deducted from the positions of part 

filters of detection result as shown in Figure 3-28. The reason for this implementation 

is due to the unstable performance of part filters. It can be seen in Figure 3-16 that 

there exists no part filter to describe the shape of shoulders directly. This is because 

the high variance introduced by the movement of two arms. The information used for 

trade-off is the detection score of head-torso candidate. The trade-off equation is 

provided as follows: 
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J𝑡𝑟𝑎𝑑𝑒_𝑜𝑓𝑓 = Jℎ𝑎 ∙ (1 − 𝑟𝑎𝑡𝑖𝑜𝑡𝑟𝑎𝑑𝑒𝑜𝑓𝑓) + Jpf ∙ 𝑟𝑎𝑡𝑖𝑜𝑡𝑟𝑎𝑑𝑒𝑜𝑓𝑓 , (3.15-1) 

where  

𝑟𝑎𝑡𝑖𝑜𝑡𝑟𝑎𝑑𝑒𝑜𝑓𝑓 = 𝑒𝑥𝑝1.4∙𝑑𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛𝑠𝑐𝑜𝑟𝑒 . (3.15-2) 

Jℎ𝑎 represents the joints annotated by human.  Jpf denotes the joints deducted from 

the positions of part filters. Finally, 1.4 is used to adjust the value into a suitable 

range.  

 

(a)                          (b) 

Figure 3-28 Decision of joints by detection result of head-torso.  

(a) Joints relative to root bounding box annotated by human  

(b) Joints decided by position of part filters. 

Although the trade-off method is applied, sometimes the results of joints are still 

not satisfactory. Here, an extra step is adopted. As shown in Figure 3-29, two masks 

are used to estimate the width and length of torso from the silhouette. The distance 

between joints will be adjusted by the estimated width and length. As all the possible 

candidates of joints are ready, the combination list of joints will be established and the 

greedy approach will be applied. 
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Figure 3-29 Estimation of width and length on silhouette of torso to adjust the positions of joints 

estimated from head-torso filters, which are joints in blue color. And the modified results are shown in 

yellow color.  

 With the combination list of joints, we can start to evaluate the scores for each 

part playing in different roles. Note that there exists no direct criterion to evaluate 

whether a part-candidate is a false alarm. The only definition is that the part 

candidates not used by the configuration with the highest score for each segment will 

be the false alarm. Currently, for each segment, we only record the configuration with 

the highest score due to the dominate color assumption for the torso part. 

 The evaluation of a face candidate to be a face part in a configuration is based on 

four criteria. One is the size ratio between the size of face candidate and the size of 

torso defined by the shoulder joints and hip joints. Another one is the summation of 

the distance from shoulders to the center of face candidate. The third one is the 

distance between the center of face candidate and the head joint. The fourth one is the 

angle difference between the direction of torso defined by joints and the direction of 

face candidate. These criteria are modeled in the following equations: 
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𝑐𝑜𝑟𝑒𝑠𝑖𝑧𝑒 = 𝑒
−|
𝑠𝑖𝑧𝑒𝑏𝑗
𝑠𝑖𝑧𝑒𝑓

−4|
, 

(3.16-1) 

𝑠𝑐𝑜𝑟𝑒𝑓𝑡𝑜𝑠 =
1

1 + 𝑒−7∙(𝑑𝑖𝑠𝑡𝑓𝑡𝑜𝑠−1.2)
∙

1

1 + 𝑒7∙(𝑑𝑖𝑠𝑡𝑓𝑡𝑜𝑠−1.8)
, (3.16-2) 

𝑠𝑐𝑜𝑟𝑒𝑑𝑖𝑟 =
1

1 + 𝑒0.1∙(𝑎𝑛𝑔𝑙𝑒𝑑𝑖𝑓𝑓−45)
, and (3.16-3) 

𝑠𝑐𝑜𝑟𝑒𝑓ℎ𝑑 = 𝑒
−
‖𝑐𝑒𝑛𝑓−𝑐𝑒𝑛ℎ‖

𝑠𝑖𝑧𝑒𝑓 . 
(3.16-4) 

After that, these scores are combined via multiplication as expressed in following 

equation: 

𝑠𝑐𝑜𝑟𝑒𝑓𝑎𝑐𝑒 = 𝑠𝑐𝑜𝑟𝑒𝑠𝑖𝑧𝑒 ∙ 𝑠𝑐𝑜𝑟𝑒𝑓𝑡𝑜𝑠 ∙ 𝑠𝑐𝑜𝑟𝑒𝑑𝑖𝑟 ∙ 𝑠𝑐𝑜𝑟𝑒𝑓ℎ𝑑. (3.17) 

Note that 𝑠𝑖𝑧𝑒𝑏𝑗 = 𝑙𝑒𝑛𝑡𝑜𝑟𝑠𝑜 ∙ 1.5 ∙
1.4

𝑟𝑎𝑡𝑖𝑜𝑓𝑠
 for 𝑟𝑎𝑡𝑖𝑜𝑓𝑠 < 1.4. 𝑙𝑒𝑛𝑡𝑜𝑟𝑠𝑜 is the length 

defined by body joints. 𝑟𝑎𝑡𝑖𝑜𝑓𝑠 =
𝑙𝑒𝑛𝑡𝑜𝑟𝑠𝑜

𝑤𝑖𝑑𝑡ℎ𝑡𝑜𝑟𝑠𝑜
 is the foreshortening ratio which 

describes the level of foreshortening. 1.4 is the smallest value of reasonable ratio 

between the length and width of torso. 1.5 is used to scale the value to the length of 

head-torso. 

 For the evaluation of head-torso candidate, there are four criteria. The first one is 

the distances between center of head-torso candidate and the center defined by body 

joints used. The second one is the size ratio between the size of head-torso candidate 

and the size of head-torso deducted by body joints. The third one is to check the 

rationality of distance between the head center of head-torso candidate to the 

shoulders of body joints. The fourth one is to check the angle difference between the 

direction of head-torso candidate and the direction deducted by body joints. Finally, 

the detection score of head-torso candidate is also considered. All these criteria are 

modeled as follows: 

𝑠𝑐𝑜𝑟𝑒𝑐𝑒𝑛𝑡𝑒𝑟 = 𝑒
−‖𝑐𝑒𝑛ℎ𝑡−𝑐𝑒𝑛𝑏𝑗‖/𝑠𝑖𝑧𝑒𝑏𝑗 , (3.18-1) 

𝑠𝑐𝑜𝑟𝑒𝑠𝑖𝑧𝑒 = 𝑒−|log (𝑠𝑖𝑧𝑒ℎ𝑡−𝑠𝑖𝑧𝑒𝑏𝑗)|, (3.18-2) 
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𝑐𝑜𝑟𝑒ℎ𝑡𝑜𝑠 =
1

1 + 𝑒−10∙(𝑑𝑖𝑠𝑡ℎ𝑡𝑜𝑠−0.9)
∙

1

1 + 𝑒10∙(𝑑𝑖𝑠𝑡ℎ𝑡𝑜𝑠−1.8)
, (3.18-3) 

𝑠𝑐𝑜𝑟𝑒𝑑𝑖𝑟 =
1

1 + 𝑒0.5∙(𝑎𝑛𝑔𝑙𝑒𝑑𝑖𝑓𝑓−30)
, and (3.18-4) 

𝑠𝑐𝑜𝑟𝑒𝑑𝑡𝑟 = 𝑒
2∙𝑠𝑐𝑜𝑟𝑒𝑑𝑡 . (3.18-5) 

All the information will be combined as follows: 

𝑠𝑐𝑜𝑟𝑒ℎ𝑡 = 𝑠𝑐𝑜𝑟𝑒𝑐𝑒𝑛𝑡𝑒𝑟 ∙ 𝑠𝑐𝑜𝑟𝑒𝑠𝑖𝑧𝑒 ∙ 𝑠𝑐𝑜𝑟𝑒ℎ𝑡𝑜𝑠 ∙ 𝑠𝑐𝑜𝑟𝑒𝑑𝑖𝑟 ∙ 𝑠𝑐𝑜𝑟𝑒𝑑𝑡𝑟 . (3.19) 

 For the evaluation of limb candidate, several criteria will be used. The first one is 

the ratio between the limb length and the limb width to suppress the case such as a 

small width value with a large length value. One example is shown in Figure 3-30. 

The definitions of equations are modeled by the sigmoid functions as follows: 

𝑙𝑤𝑟𝑝𝑎𝑟𝑡 =
1

1 + 𝑒
−𝑎∙(

𝑙𝑒𝑛𝑙𝑖𝑚𝑏
𝑤𝑖𝑑𝑡ℎ𝑙𝑖𝑚𝑏

−𝑏)
. (3.20) 

The parameters [𝑎 𝑏] are provided in the following table: 

Table 3-1 Parameters for sigmoid function used in Equation 3.20 

 

Two examples for equation curves are shown in Figure 3-31. Note that the width of 

limb should be divided by two due to the positive region of limb patch detectors only 

covers half width, as shown in Figure 3-6. Note that the parameter 𝑎 in the sigmoid 

function in Equation 3.20 means the attenuation rate in negative value and the 

mounting rate in positive value. The parameter 𝑏 in the sigmoid function in Equation 

3.20 means the starting point for attenuation or increment. 
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Figure 3-30 Examples of limb candidates with unreasonable length to width ratio. 

 

Figure 3-31 Two examples of mapping relations from aspect ratio to probability. 

The second one is the ratio between the length of limb and the size of torso, which is 

used to suppress the case of limbs with a too long length compared to the torso size. 

One example can be seen in Figure 3-32. The too-short case will not be considered 

here due to the case of foreshortening as shown in Figure 3-32. Equations are 

provided as follows: 

𝑙𝑡𝑟𝑝𝑎𝑟𝑡 =
1

1 + 𝑒
−𝑎∙(

𝑠𝑖𝑧𝑒𝑏𝑗
𝑙𝑒𝑛𝑙𝑖𝑚𝑏

−𝑏)

. (3.21) 

The parameters [𝑎 𝑏] are provided in the following table: 
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Table 3-2 Parameters for sigmoid function used in Equation 3.21 

 

Examples of curves are provided in Figure 3.30. 

 

(a)                            (b) 

Figure 3-32 Examples of ratio between length of limb candidate and size of torso. 

 

Figure 3-33 Two examples of mapping relations from ratio between limb length  

and size of torso to probability. 



 

48 

 

The third one is the ratio between limb width and torso size. A too small or too large 

width should be suppressed. An example is shown in Figure 3-34. Equations are 

provided as follows: 

wtr = 𝑤𝑡𝑟𝑢𝑝𝑝𝑒𝑟𝑏𝑜𝑢𝑛𝑑 ∙ 𝑤𝑡𝑟𝑙𝑜𝑤𝑒𝑟𝑏𝑜𝑢𝑛𝑑, (3.22-1) 

𝑤𝑡𝑟𝑢𝑝𝑝𝑒𝑟𝑏𝑜𝑢𝑛𝑑 =
1

1 + 𝑒
5∙(

𝑠𝑖𝑧𝑒𝑏𝑗
𝑙𝑒𝑛𝑙𝑖𝑚𝑏

−10)

, and (3.22-2) 

𝑤𝑡𝑟𝑙𝑜𝑤𝑒𝑟𝑏𝑜𝑢𝑛𝑑 =
1

1 + 𝑒
−5∙(

𝑠𝑖𝑧𝑒𝑏𝑗
𝑙𝑒𝑛𝑙𝑖𝑚𝑏

−3)

. (3.22-3) 

Note that there are no different definitions for different roles due to the variance from 

clothing. It’s hard to define a specific range for width in a specific role. The curve of 

the mapping relation is illustrated in Figure 3-34. 

 

(a)                                  (b) 

Figure 3-34 (a) Examples of unreasonable widths. (b) Curve for mapping relation from ratio between 

width of limb candidate and torso size to probability. 

The fourth one is the distances to the joints. The definitions of equations are provided 

in the following equation: 

ltols =
1

1 + 𝑒
−1.5∙(

𝑠𝑖𝑧𝑒𝑏𝑗

‖𝑒𝑛𝑑𝑝𝑜𝑖𝑛𝑡𝑙𝑖𝑚𝑏−𝑗𝑜𝑖𝑛𝑡𝑙𝑒𝑓𝑡 𝑠ℎ𝑜𝑢𝑙𝑑𝑒𝑟‖
−3.5)

, 
(3.23-1) 
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ltors =
1

1 + 𝑒
−1.5∙(

𝑠𝑖𝑧𝑒𝑏𝑗

‖𝑒𝑛𝑑𝑝𝑜𝑖𝑛𝑡𝑙𝑖𝑚𝑏−𝑗𝑜𝑖𝑛𝑡𝑟𝑖𝑔ℎ𝑡 𝑠ℎ𝑜𝑢𝑙𝑑𝑒𝑟‖
−3.5)

, 
(3.23-2) 

ltolh =
1

1 + 𝑒
−1.5∙(

𝑠𝑖𝑧𝑒𝑏𝑗

‖𝑒𝑛𝑑𝑝𝑜𝑖𝑛𝑡𝑙𝑖𝑚𝑏−𝑗𝑜𝑖𝑛𝑡𝑙𝑒𝑓𝑡 ℎ𝑖𝑝‖
−3.5)

, and 
(3.23-3) 

ltorh =
1

1 + 𝑒
−1.5∙(

𝑠𝑖𝑧𝑒𝑏𝑗

‖𝑒𝑛𝑑𝑝𝑜𝑖𝑛𝑡𝑙𝑖𝑚𝑏−𝑗𝑜𝑖𝑛𝑡𝑟𝑖𝑔ℎ𝑡 𝑠ℎ𝑜𝑢𝑙𝑑𝑒𝑟‖
−3.5)

. 
(3.23-4) 

Outside a specific distance range for each specific role, the score starts to decay. For 

the lower parts of limbs, such as forearm or shank, there exists no obvious definition 

of ranges for possible distances. Hence, we produce masks for virtual upper parts of 

limbs, such as upper-arm or thigh, and then evaluate the cover rate on the silhouette 

with masks and the ratio between the length of virtual upper parts of limbs and size of 

torso, which is used to suppress the virtual upper parts of limbs with unreasonable 

lengths. Equation representations of both kinds of scores are shown in following 

equation: 

vlg = exp(𝑟𝑎𝑡𝑖𝑜𝑐𝑜𝑣𝑒𝑟 − 1) ∙
1

1 + 𝑒
−𝑎∙(

𝑠𝑖𝑧𝑒𝑡𝑜𝑟𝑠𝑜
𝑙𝑒𝑛𝑔𝑡ℎ𝑣𝑖𝑟𝑡𝑢𝑎𝑙 𝑙𝑖𝑚𝑏

−𝑏)
, (3.24-1) 

where  

𝑟𝑎𝑡𝑖𝑜𝑐𝑜𝑣𝑒𝑟 =
𝑜𝑣𝑒𝑟𝑙𝑎𝑝𝑚𝑎𝑠𝑘∩𝑠𝑖𝑙ℎ𝑜𝑢𝑒𝑡𝑡𝑒

|𝑚𝑎𝑠𝑘𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒_𝑟𝑒𝑔𝑖𝑜𝑛|
. (3.24-2) 

In this equation, (a, b) is equal to [6 3.3] for virtual upper-arm, while (a, b) is 

equal to [6 1.7]  for virtual thigh. Several illustration figures for virtual limb 

evaluation are provided in Figure 3-35. 

An extra criterion is adopted for each limb to handle the case as shown in Figure 

3-36, where the right shank is taken as the right arm due to the variance of the 

estimation of the right shoulder joint. This causes the distance for endpoint of limb to 

the right shoulder joint to be less than the distance to the right hip joint. We 



 

50 

 

compensate this variance by multiplying the cover rate from endpoint to other joints. 

For obvious representation, only two covering masks are provided in Figure 3-36. It is 

expected that the cover rate from the right shank to the right shoulder will less than 

the cover rate from the right shank to the right hip. Equation is provided as follows: 

vlgc = exp(𝑟𝑎𝑡𝑖𝑜𝑐𝑜𝑣𝑒𝑟 − 1), (3.25-1) 

where  

𝑟𝑎𝑡𝑖𝑜𝑐𝑜𝑣𝑒𝑟 =
𝑜𝑣𝑒𝑟𝑙𝑎𝑝𝑚𝑎𝑠𝑘∩𝑠𝑖𝑙ℎ𝑜𝑢𝑒𝑡𝑡𝑒

|𝑚𝑎𝑠𝑘𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒_𝑟𝑒𝑔𝑖𝑜𝑛|
. (3.25-2) 

 

 

Figure 3-35 Illustration of evaluation for virtual limb on silhouette. 

 

Figure 3-36 Illustration of compensation on variance from estimation of shoulder joints by cover rate. 
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Finally, the evaluation equations for each role are provided in the following equations: 

𝑙𝑖𝑚𝑏 𝑔𝑟𝑎𝑑𝑒𝑙𝑒𝑓𝑡 𝑓𝑜𝑟𝑒𝑎𝑟𝑚 = 𝑣𝑙𝑔𝑙𝑠(𝑢𝑝𝑝𝑒𝑟𝑎𝑟𝑚) ∙ 𝑣𝑙𝑔𝑐𝑙𝑠(𝑢𝑝𝑝𝑒𝑟𝑎𝑟𝑚) ∙ 𝑙𝑤𝑟𝑓𝑜𝑟𝑒𝑎𝑟𝑚 ∙ 𝑙𝑡𝑟𝑓𝑜𝑟𝑒𝑎𝑟𝑚 ∙ 𝑤𝑡𝑟, (3.26-1) 

𝑙𝑖𝑚𝑏 𝑔𝑟𝑎𝑑𝑒𝑟𝑖𝑔ℎ𝑡 𝑓𝑜𝑟𝑒𝑎𝑟𝑚 = 𝑣𝑙𝑔𝑟𝑠(𝑢𝑝𝑝𝑒𝑟𝑎𝑟𝑚) ∙ 𝑣𝑙𝑔𝑐𝑟𝑠(𝑢𝑝𝑝𝑒𝑟𝑎𝑟𝑚) ∙ 𝑙𝑤𝑟𝑓𝑜𝑟𝑒𝑎𝑟𝑚 ∙ 𝑙𝑡𝑟𝑓𝑜𝑟𝑒𝑎𝑟𝑚 ∙ 𝑤𝑡𝑟, (3.26-2) 

𝑙𝑖𝑚𝑏 𝑔𝑟𝑎𝑑𝑒𝑙𝑒𝑓𝑡 𝑢𝑝𝑝𝑒𝑟𝑎𝑟𝑚 = 𝑙𝑡𝑜𝑙𝑠 ∙ 𝑣𝑙𝑔𝑐𝑙𝑠(𝑢𝑝𝑝𝑒𝑟𝑎𝑟𝑚) ∙ 𝑙𝑤𝑟𝑢𝑝𝑝𝑒𝑟𝑎𝑟𝑚 ∙ 𝑙𝑡𝑟𝑢𝑝𝑝𝑒𝑟𝑎𝑟𝑚 ∙ 𝑤𝑡𝑟, (3.26-3) 

𝑙𝑖𝑚𝑏 𝑔𝑟𝑎𝑑𝑒𝑟𝑖𝑔ℎ𝑡 𝑢𝑝𝑝𝑒𝑟𝑎𝑟𝑚 = 𝑙𝑡𝑜𝑟𝑠 ∙ 𝑣𝑙𝑔𝑐𝑟𝑠(𝑢𝑝𝑝𝑒𝑟𝑎𝑟𝑚) ∙ 𝑙𝑤𝑟𝑢𝑝𝑝𝑒𝑟𝑎𝑟𝑚 ∙ 𝑙𝑡𝑟𝑢𝑝𝑝𝑒𝑟𝑎𝑟𝑚 ∙ 𝑤𝑡𝑟, (3.26-4) 

𝑙𝑖𝑚𝑏 𝑔𝑟𝑎𝑑𝑒𝑙𝑒𝑓𝑡 𝑠ℎ𝑎𝑛𝑘 = 𝑣𝑙𝑔𝑙ℎ(𝑡ℎ𝑖𝑔ℎ) ∙ 𝑣𝑙𝑔𝑐𝑙ℎ(𝑡ℎ𝑖𝑔ℎ) ∙ 𝑙𝑤𝑟𝑠ℎ𝑎𝑛𝑘 ∙ 𝑙𝑡𝑟𝑠ℎ𝑎𝑛𝑘 ∙ 𝑤𝑡𝑟, (3.26-5) 

𝑙𝑖𝑚𝑏 𝑔𝑟𝑎𝑑𝑒𝑟𝑖𝑔ℎ𝑡 𝑠ℎ𝑎𝑛𝑘 = 𝑣𝑙𝑔𝑟ℎ(𝑡ℎ𝑖𝑔ℎ) ∙ 𝑣𝑙𝑔𝑐𝑟ℎ(𝑡ℎ𝑖𝑔ℎ) ∙ 𝑙𝑤𝑟𝑠ℎ𝑎𝑛𝑘 ∙ 𝑙𝑡𝑟𝑠ℎ𝑎𝑛𝑘 ∙ 𝑤𝑡𝑟, (3.26-6) 

𝑙𝑖𝑚𝑏 𝑔𝑟𝑎𝑑𝑒𝑙𝑒𝑓𝑡 𝑡ℎ𝑖𝑔ℎ = 𝑙𝑡𝑜𝑙ℎ ∙ 𝑣𝑙𝑔𝑐𝑙ℎ(𝑡ℎ𝑖𝑔ℎ) ∙ 𝑙𝑤𝑟𝑡ℎ𝑖𝑔ℎ ∙ 𝑙𝑡𝑟𝑡ℎ𝑖𝑔ℎ ∙ 𝑤𝑡𝑟, (3.26-7) 

𝑙𝑖𝑚𝑏 𝑔𝑟𝑎𝑑𝑒𝑟𝑖𝑔ℎ𝑡 𝑡ℎ𝑖𝑔ℎ = 𝑙𝑡𝑜𝑟ℎ ∙ 𝑣𝑙𝑔𝑐𝑟ℎ(𝑡ℎ𝑖𝑔ℎ) ∙ 𝑙𝑤𝑟𝑡ℎ𝑖𝑔ℎ ∙ 𝑙𝑡𝑟𝑡ℎ𝑖𝑔ℎ ∙ 𝑤𝑡𝑟, (3.26-8) 

𝑙𝑖𝑚𝑏 𝑔𝑟𝑎𝑑𝑒𝑙𝑒𝑓𝑡 𝑓𝑢𝑙𝑙𝑎𝑟𝑚 = 𝑙𝑡𝑜𝑙𝑠 ∙ 𝑣𝑙𝑔𝑐𝑙𝑠(𝑢𝑝𝑝𝑒𝑟𝑎𝑟𝑚) ∙ 𝑙𝑤𝑟𝑓𝑢𝑙𝑙𝑎𝑟𝑚 ∙ 𝑙𝑡𝑟𝑓𝑢𝑙𝑙𝑎𝑟𝑚 ∙ 𝑤𝑡𝑟, (3.26-9) 

𝑙𝑖𝑚𝑏 𝑔𝑟𝑎𝑑𝑒𝑟𝑖𝑔ℎ𝑡 𝑓𝑢𝑙𝑙𝑎𝑟𝑚 = 𝑙𝑡𝑜𝑟𝑠 ∙ 𝑣𝑙𝑔𝑐𝑟𝑠(𝑢𝑝𝑝𝑒𝑟𝑎𝑟𝑚) ∙ 𝑙𝑤𝑟𝑓𝑢𝑙𝑙𝑎𝑟𝑚 ∙ 𝑙𝑡𝑟𝑓𝑢𝑙𝑙𝑎𝑟𝑚 ∙ 𝑤𝑡𝑟, (3.26-10) 

𝑙𝑖𝑚𝑏 𝑔𝑟𝑎𝑑𝑒𝑙𝑒𝑓𝑡 𝑓𝑢𝑙𝑙𝑙𝑒𝑔 = 𝑙𝑡𝑜𝑙ℎ ∙ 𝑣𝑙𝑔𝑐𝑙ℎ(𝑡ℎ𝑖𝑔ℎ) ∙ 𝑙𝑤𝑟𝑓𝑢𝑙𝑙𝑙𝑒𝑔 ∙ 𝑙𝑡𝑟𝑓𝑢𝑙𝑙𝑙𝑒𝑔 ∙ 𝑤𝑡𝑟, and (3.26-11) 

𝑙𝑖𝑚𝑏 𝑔𝑟𝑎𝑑𝑒𝑟𝑖𝑔ℎ𝑡 𝑓𝑢𝑙𝑙𝑙𝑒𝑔 = 𝑙𝑡𝑜𝑟ℎ ∙ 𝑣𝑙𝑔𝑐𝑟ℎ(𝑡ℎ𝑖𝑔ℎ) ∙ 𝑙𝑤𝑟𝑓𝑢𝑙𝑙𝑙𝑒𝑔 ∙ 𝑙𝑡𝑟𝑓𝑢𝑙𝑙𝑙𝑒𝑔 ∙ 𝑤𝑡𝑟. (3.26-12) 

 With the score of each role for each candidate, we can start to infer the list of 

possible configurations. Limb candidates with the first three highest scores are chosen 

for each joint instead of choosing the highest one only to handle the error introduced 

by position estimation of joints. The number of possible configurations is (3 + 1) ∙

(3 + 1) ∙ (3 + 1) ∙ (3 + 1) = 256. “Plus one” means no limb candidate is chosen for 

that joint. We delete unreasonable configurations with limb candidate used by more 

than one joint. Moreover, the deletion will be applied on the configuration with at 

least one score of limb candidates less than one after multiplication with the 

parameter of part-collected compensation. This parameter can be seen as a threshold 

to filter out the limb candidates with small scores. Currently, this parameter is 

experimentally set to 𝑒3.5. 

 For each configuration, three more kinds of scores will be calculated. One is the 
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overall cover rate, which represents the ratio of the whole silhouette covered by part 

candidates. The background region covered by part candidates will also be calculated 

to compensate the result. The overall score of covering condition will be calculated by 

the following equation:  

𝑠𝑐𝑜𝑟𝑒𝑐𝑜𝑣𝑒𝑟 = exp (−
1

1 − 𝑟𝑎𝑡𝑖𝑜𝑠𝑐
) ∙ exp(−𝑟𝑎𝑡𝑖𝑜𝑏𝑐), 

(3.27-1) 

where  

𝑟𝑎𝑡𝑖𝑜𝑠𝑐: 𝑟𝑎𝑡𝑖𝑜 𝑜𝑓 𝑠𝑖𝑙ℎ𝑜𝑢𝑒𝑡𝑡𝑒 𝑐𝑜𝑣𝑒𝑟𝑒𝑑 =
𝑠𝑖𝑙ℎ𝑜𝑢𝑒𝑡𝑡𝑒𝑐𝑜𝑣𝑒𝑟𝑒𝑑
𝑠𝑖ℎ𝑜𝑢𝑒𝑡𝑡𝑒𝑎𝑟𝑒𝑎

, and 

𝑟𝑎𝑡𝑖𝑜𝑏𝑐: 𝑟𝑎𝑡𝑖𝑜 𝑜𝑓 𝑏𝑎𝑐𝑘𝑔𝑟𝑜𝑢𝑛𝑑 𝑐𝑜𝑣𝑒𝑟𝑒𝑑 =  
𝑏𝑎𝑐𝑘𝑔𝑟𝑜𝑢𝑛𝑑𝑐𝑜𝑣𝑒𝑟𝑒𝑑
𝑠𝑖ℎ𝑜𝑢𝑒𝑡𝑡𝑒𝑎𝑟𝑒𝑎

. 

(3.27-2) 

An illustration is shown in Figure 3-37. 

 

Figure 3-37 Illustration of evaluation of overall covering rate. 

Another score to be calculated is the score of color symmetry, which is the index for 

the color similarity between the left limb and the right limb in the configuration. This 

is based on the property of color symmetry of left and right limb on human body. 

RGB color space is used and the intensity values for each pixel in one color channel 

are collected into a histogram with 11 bins. We separate the range of intensity value in 

specific channel, which is 0 to 255, into 11 regions. They are 0~23, 24~46, 47~69, 

70~92, 93~115, 116~138, 139~161, 162~184, 185~207, 208~230 and 231~255. 

Hence, the color difference is calculated in a 33 dimensional feature space. Note that 
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the “Integral Image” method proposed by [22] is used to accelerate the establishment 

of histogram. The color difference equation is provided as follows. 

𝑑𝑖𝑠𝑡𝑐𝑜𝑙𝑜𝑟 = exp(−10 ∙ ‖𝑐𝑜𝑙𝑜𝑟𝑙𝑖𝑚𝑏1 − 𝑐𝑜𝑙𝑜𝑟𝑙𝑖𝑚𝑏2‖). (3.28) 

The last score for calculation is compatibility of hips joints used for left and right legs. 

This score is to suppress the unreasonable case with hips joints far from each other as 

shown in Figure 3-38. Equation is provided as follows: 

𝑑𝑖𝑠𝑡ℎ𝑖𝑝𝑠 = exp(−
‖𝑗𝑜𝑖𝑛𝑡𝑙𝑒𝑓𝑡 ℎ𝑖𝑝 − 𝑗𝑜𝑖𝑛𝑡𝑟𝑖𝑔ℎ𝑡 ℎ𝑖𝑝‖

min(𝑤𝑖𝑑𝑡ℎ𝑙𝑒𝑓𝑡&𝑟𝑖𝑔ℎ𝑡 𝑙𝑖𝑚𝑏)
). (3.29) 

Finally, the overall score is formulated in following equation: 

𝑠𝑐𝑜𝑟𝑒𝑜𝑣𝑒𝑟𝑎𝑙𝑙 = 𝑠𝑐𝑜𝑟𝑒𝑓 ∙ 𝑠𝑐𝑜𝑟𝑒ℎ𝑡 ∙ 𝑠𝑐𝑜𝑟𝑒𝑙𝑖𝑚𝑏 ∙ 𝑠𝑐𝑜𝑟𝑒𝑐𝑜𝑣𝑒𝑟 ∙ 𝑑𝑖𝑠𝑡𝑐𝑜𝑙𝑜𝑟

∙ 𝑑𝑖𝑠𝑡ℎ𝑖𝑝𝑠, 
(3.30) 

where 𝑠𝑐𝑜𝑟𝑒𝑓 denotes the score of face. 𝑠𝑐𝑜𝑟𝑒ℎ𝑡 represents score of head-torso. 

Finally, 𝑠𝑐𝑜𝑟𝑒𝑙𝑖𝑚𝑏 means the score of all limbs. 

 

Figure 3-38 Example of hip joints far from each other. 

Configuration with maximum score will be picked out for each segment. These 

configurations will be sorted in the descending sense. We can set a threshold to decide 

the configurations to be used.  
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Chapter 4 Experimental Results 
 

In this chapter, our system is evaluated on a testing dataset consisting of 150 test 

images sampled from two famous evaluation datasets: “Iterative Image Parsing” 

dataset in [23] and “Leeds Sports Pose Extended” dataset in [24].  

Our system is based on a bottom-up detection scheme. Hence, the recall rates for 

each body part will be evaluated. The criterion used for limb is the same as the 

criterion used in [5]. The criterion for limb is that a body part is considered correctly 

localized if the endpoints of its segment lie within 50% of the ground-truth length 

from their actual positions. The criteria for head consists of the distance between 

centers, size ratio and orientation difference. Distance between centers should be less 

than the ground-truth width of head. Size ratio should be larger than 0.6 and less than 

1. Orientation difference should be less than 20 degrees. The recall rate of body parts 

of the best fit configuration for each testing image is also calculated. Both results are 

provided in Table 4-1. 

Table 4-1 Recall rates of body parts 
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With the fitting performance of body parts of the best fit configuration, we’d like 

to know the score ranks of the best fit configurations. These score ranks are 

represented as the histogram in Figure 4-1. In this figure, we can find most scores of 

best fit configurations rank within the top ten but may still appear as an outlier. This is 

because the background false alarm may collect more body part candidates than the 

correct configurations; the score of a false alarm may be higher than the score of a 

correct one. This is also a dilemma in pose estimation. 

 

Figure 4-1 Histogram of score rank of best fit configuration. 

 

On the other hand, the false alarms of head-torso can be suppressed to some 

extent by introducing the face or limbs information. This effect is provided in Figure 

4-2. We first choose the head-torso candidates with the highest score which fits the 

ground-truth head-torso annotation. After that, we rank this head-torso candidate with 

false alarm of head-torso for each testing image. This leads to the blue lines in Figure 
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4-2. For the red line in Figure 4-2, we first rank the configurations by scores. After 

that, we fetch out the head-torso candidates used by each configuration with the order 

arranged by the scores of configurations. Finally, we find out the rank of head-torso 

candidate used by the best fit configuration. In this figure, we can find that all the 

values on the red line are smaller than ten. This means the information of face and 

limb can enhance the correctness of head-torso candidate and suppress false alarms. 

The variation on the red line is caused by the dilemma just mentioned above. A false 

alarm one may collect more body parts than a correct one does. 

 

Figure 4-2 Illustration of performance enhancement by consideration of face and limb. 

 

Finally, several real examples are provided in Figure 4-3 and Figure 4-4.The left 

image is the input image. The second one shows the bounding box. The third one is 

the result of segmentation. The final one is the representation of the best fit partial 
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configuration. In Figure 4-3, simple background cases are considered. In Figure 4-4, 

complex background cases are provided. 

 

 

Figure 4-3 Several experimental results with clear background. 
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Figure 4-4 Several experimental results with complex background. 

 

(a)                                 (b) 

Figure 4-5 Missing detection caused by failure of image decomposition. 
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With the experimental results provided above, we can say that our system can 

handle large pose variation and provides the correct bounding box, silhouette and 

partial configuration at the same time. However, there still exist two problems. One is 

that we can’t guarantee the score of the correct configuration will be the highest. 

Another one is that our system is highly dependent on the performance of 

segmentation. If the torso of the target human is not well segmented, as shown in 

Figure 4-5, the system will fail to detect the target. Moreover, if the torso of the target 

human is over segmented, the system will fail, too. This failure may be reduced by 

constructing a segmentation pyramid. Note that our system can handle the case of 

multiple persons if the torsos of these persons are separated into different segments 

and are detected by the head-torso detectors. 
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Chapter 5 Conclusion 
 

 This thesis focuses on the detection of human with arbitrary poses and 

view-points in static images. A bottom-up detection scheme is adopted with restricted 

definitions of body parts. Stronger models are used to describe limb and head-torso in 

order to handle the shape variation. After that, a label assignment based approach is 

adopted for configuration inference to increase the endurance of occlusion and 

missing parts. Furthermore, segmentation information and native property of limb are 

introduced to reduce the searching space. Finally, detection results are provided with 

partial pose estimation and segmentation at the same time. Currently, the system is 

highly dependent on the results of segmentation, which may lead to failure in some 

cases. Besides, the searching strategy used for information integration is the 

exhaustive search. This introduces heavy computational cost. Both aspects just 

mentioned will be the focus of future improvement. 
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