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Bottom-up Pose Invariant
Human Detection with Mutually
Compatible Body Part Configuration

Student : Yao-Sheng Wang Advisor : Prof. Sheng-Jyh Wang

Department of Electronics Engineering, Institute of Electronics
National Chiao Tung University

Abstract

In this thesis, we focus on the detection of human with arbitrary poses in
different view-points in static images. To handle this issue, recently representative
works need to produce lots of detectors.to cover the cases of human with arbitrary
poses in different view-points. In this way, the computation cost will be increased
exponentially. To prevent this'dilemma, we restrict body parts for detection to be limb,
head, face or torso, which have high-probability-to be observed in arbitrary poses and
view-points. Compared to related works in the literature, several different opinions
are proposed. Firstly, a patch based approach is proposed to model the limb instead of
parallel lines or well-segmented half limb used in related works. Secondly, a strong
classifier with the “Deformable Part Model” proposed by Felzenszwalb et al. [1] is
adopted to cover more variation on head-torso shape, instead of using the rectangular
shape assumption for torso. Thirdly, we consider configuration inference as a label
assignment problem, instead of a model fitting problem, in order to handle the
limitation caused by occlusion or missing parts. Finally, instead of exhaustive search,
segmentation information and native property of limb are adopted to reduce the

searching space.
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Chapter 1 Introduction

Human detection has been an active topic in computer vision for well over 15
years. The reason is the abundance of applications that can benefit from such
technology. Examples include pedestrian detection for automotive safety, surveillance
system for indoor care or crime alerts, and human computer interface...etc. However,
up to now, there still exists no approach that can produce satisfactory results in
general, with unconstrained settings while dealing with all of the following challenges:
(1) illumination condition, (2) cluttered background, (3) occlusion, (4) view-point
variation, (5) variable visual appearance, and (6) pose variation from a number of
movable joints. In all of the six challenges, pose variation combined with view-point
variation, which leads to no fixed shape of human body, is the main bottleneck. Hence,
in this thesis, these two problems.will be the main focus.

Before presenting our” proposed “method, we first briefly introduce the
background of human detection..and discuss  the dilemma for some recent
representative works. Human detection scheme can be classified into three kinds of
approaches: top-down approach, bottom-up approach and hybrid approach.
Tow-down approaches use global models of the human body to detect humans by
minimizing a given model to image criteria. Representative works include D.M.
Gavrila et. al. [2] and Felzenszwalb et al. [1]...etc. D.M. Gavrila et. al. [2] adopt a
silhouette matching approach to detect pedestrian, while Felzenszwalb et al. [1] using
“Deformable Part Model” leaned by latent SVM training scheme to model the human
body. Bottom-up approaches can be separated into two stages: bottom-up detection of
parts and top-down procedure to obtain the best assembly. Representative works
contain Alex Yong-Sang et al. [3] and Bourdev et al. [4]...etc. Alex Yong-Sang et al. [3]

use the combination of lines and ellipses to describe body parts, while Bourdev et. al.
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[4] cluster body parts collected from training data into group, which are similar in
appearance and spatial condition, and name those groups as “Poselet”. Both works
have constraints on the definition of parts, which should contain enough spatial
information for inferring the positions of body center or other parts. In summary,
although these works provide state-of-the-art performance, in consideration of the
challenge we focused on, which is appearance variation introduced by the change of
pose and view-point, we will find that all the works mentioned above will come into
the same dilemma. That is the number of demanded detectors will increase
exponentially in order to deal with more body poses. What’s more, if this way
combined with the most popular searching scheme, exhaustive search, the
computation cost will be un-acceptable.

To avoid falling into the dilemma-mentioned-above, we adopt the bottom-up
detection scheme and constrain the targets for detection to fulfill a specific criterion,
which is that targets should have high probability to be found in arbitrary pose and
view-point. In Figure 1-1, we can-easily find the best set of targets will be head, torso,
arms and legs, which are the body parts in anatomical sense. Similar parts’ definition

had been adopted for human recognition in Huttenlocher et al. [5] and had been

extended for human detection and pose estimation in many works, such as [6-9].

Figure 1-1 Human in arbitrary poses
In [6], Greg Mori et al. partition a given image into small segments and make

several assumptions. They assume the half limb will be well-segmented and the shape
2



of torso will approximate a rectangle. Finally, they search the best assembly with a
greedy method. In [7] and [8], the authors assume the limbs to consist of strait lines
and also assume torso is in rectangular shape. For assembly, one adopts “Integer
Quadratic Programing”, while another generate “Topological Human Body Model”,
inspired by “Shock Graphs”, to evaluate the combination. In [9], the authors describe
the body parts by “Shape Context Descriptor” and use the “Pictorial Structural Model”
to infer the assembly.

In this thesis, compared with the aforementioned works [6-9], we model limb as
a combination of patches to release the strong constraints from the well-segmented
and strait line assumptions. Instead of assuming the torso shape as rectangular, we
describe the torso with the “Deformable Part. Model” proposed by Felzenszwalb et al.
[1] to allow larger variation on torso shape.-Inthe assemble step, since our problem is
human detection but not pose estimation, instead-of fitting the whole model to the
image with a “Pictorial Structure Model”, we.only focus on the role assignment of
detected parts and remove the false-alarms by a greedy method. What’s more, to
prevent the use of the exhaustive search, segmentation information and natural
property of limbs will be used.

This thesis is organized as follows. Detail information of related works will be
provided in Chapter 2. In Chapter 3, the proposed algorithm will be discussed step by
step. After that, experimental results will be given in Chapter 4. Finally, some

conclusion and future work will be mentioned in Chapter 5.



Chapter 2 Backgrounds

Human detection has been an active topic for a long time, and many algorithms
have been proposed. In this chapter, some related works for human detection will be
introduced. These algorithms can be roughly classified into two types; top-down and
bottom-up, depending on the detection scheme adopted. The tow-down detection
scheme uses global models of the human body to detect humans by minimizing a
given model to image criteria, while the bottom-up detection scheme consists of two
steps, bottom-up detection of parts and top-down inference of the best body
configuration. In Section 2.1, several representative works in the top-down detection
scheme will be mentioned. In Section 2.2, works in the bottom-up scheme will be
presented.

2.1 Human Detection in Top-down Detection Scheme

In [2] and [10], D.M. Gavrila et-al. provide an algorithm, which describes the
pedestrian with global silhouette; named as templates, and establishes a template tree
as shown in Figure 2-1 to represent and match variety of shape exemplars efficiently.
The similarity between an image and exemplars is evaluated by the “Distance
Transform” matching method as shown in Figure 2-1. Finally, the author adopts
Bayesian model to set the matching threshold for each node to allow the unpromising

paths in the tree traversal process eliminated early on.

( Raw )
/ l \ ‘ Image ‘
ture extraction
v
/ ! \ / I \ ( Feature | Feature
‘ Image ‘ Templat
___ (binary) (binary)
DT DT
[ ot DT
Image ‘ Templat
O

Figure 2-1 (a) Template Tree [2] (b) Distance Transform Matching [2]
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In [11], Dalal and Triggs first propose the famous descriptor, “histograms of
oriented gradients” (HOGs), to describe the global shape of human body. The main
idea is that the local appearance and shape of target object can be well characterized
by the distribution of intensity gradients, which include orientations and magnitudes.
The descriptors are based on evaluating well-normalized local histograms of image
gradient orientations in a dense grid. An illustration of HOGs is provided in Figure
2-2. The gradients are first calculated by using difference filters, such as “Sobel
Filter”. Next, these gradients are quantized and accumulated into discrete orientation
bins of four cells, which equal to one block. After that, normalization will be applied
on this block to handle the local variations in illumination and foreground-background
contrast. A real example is provided in.Figure 2-2, where the left image is a training
image or testing image. We partition the image into cells and calculated the HOGs for
all the cells as shown in rightiimage. After that, we concatenate all the HOGs of each
cell into a single vector, which will be the feature vector used to describe the global
shape of human body. Collecting lots of positive and negative training images, we
compute the feature vectors and then pass them into the “linear-SVM” training
scheme proposed in [12]. Finally, the human detector will be obtained. Overview of

the system is shown in Figure 2-3.

(a) (b)
Figure 2-2 (a) Illustration of HOGs [13] (b) Left: Original image, Right: HOGs feature map [11]
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Figure 2-3 Overview of algorithm provided by Dala et al. [11]

Single rigid template or detector is not expressive enough to describe the object
with highly articulated deformation, such as human body. Hence, in [1], Felzenszwalb
et al. propose a “deformable part model” to handle the deformation of human body.
From left to right, the model consists of root filter, part filter and deformation cost as
shown in Figure 2-4. In Figure 2-4, a real detection result is provided. The frames of
root filters are shown in red, while_the frames of part filters which capture the

deformation are shown in blue.
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(a) (b)
Figure 2-4 (a) Deformable Part Model (DPM) (b) Detection results of DPM [1]

In Figure 2-5, the whole detection process is illustrated. We can find that the
resolutions used to detect root filter and part filter are different in the feature pyramid.
This implies that the root filter will roughly cover the entire object while the part
filters will capture details in finer resolution. An example is clear shown in Figure 2-6.
Face detection can be taken to demonstrate the idea clearly, where the root filter

captures the face boundary in a coarse-resolution but the part filters detect the details



on face, such as eyes, nose and mouth.

response of part filters

response of root filter

transformed responses

color encoding of filter
response values

low value high value

combined score of
root locations

Figure 2-5 Overview of algorithm provided by Felzenszwalb et al. [1]

Figure 2-6 Root filter in red and part filters in yellow. [1]



Although the deformations of objects are captured by the movable parts, there
exists anchor for each part filter. These anchors are the positions where the penalties
are lowest for the part filters. These positions are latent variables, which are obtained
in the training step by the “MI-SVM”, or named as “latent-SVM” here, training
scheme provided in [14]. A real example is shown as the third image in Figure 2-4. As
the part filter is away from the anchor position, the higher penalty will be assigned.

Equation definition can be seen as the second term of the following equation:

n n
score(po, -, p) = ) F - $(H,p) = ) di- (dx,dy, dxt,dyD),  (2.1-1)
i=0 i=1
where
(dx;, dy;) = (x5, ¥ w1(2(x0, Y0) + v;). (2.1-2)

are denoted as the distance between the anchor and the current position for i-th part.
Besides, in this equation, p; = (%, ¥4, l;) specifies the top-left corner position of the
filter at (x;,y;) in the [;-th level of the-feature pyramid H, and p, means the
location of the root filter. “v;” is a two.dimensional vector specifying the position of
the anchor for the i-th part filter relative to the position of the root filter. Moreover,
“d;” is a four dimensional vector specifying the coefficients of a quadratic function,
which defines the deformation cost for each possible displacement from the position
of the part to the position of the anchor. For example, if d; = (0,0,1,1), then the
deformation cost for the i-th part is defined as the squared distance between the
current position of the part filter to the position of the anchor.

In Equation 2.1, the overall score is defined as summation of detection scores
from the root filter and the part filters, plus the deformation cost. “F/“ represents the
coefficients of the i-th part filter. “¢p(H, p;)”” means the feature vector with the top-left
corner location at p;. The detection score for the i-th part is defined as F; - ¢ (H, p;).

Note that, for each location of the root filter, only one instance will be contained.
8



Hence, we will find the instance with the highest score, which means the best choice
of part filter locations.
2.2 Human Detection in Bottom-up Detection Scheme

In [4] and [15], Bourdev et al. introduced a new notion of parts as “poselets”, in
which the key idea is to define parts that are tightly clustered both in the configuration
space and the appearance space, as shown in Figure 2-7. The poselets are produced by
a search procedure. A patch is randomly chosen in the image of a randomly picked
person as a seed of poselet, and other examples are found by searching in images of
other people for a patch where the configuration of key-points, such as shoulders or
hips, is similar to that in the seed. After that, the HOGs feature will be computed for
each of associated image patches. They are used as positive examples for training a
linear support vector machine. At test time;-a multi-scale sliding window is used to
find strong activations of the poselet filters. Note that these poselets must have strong
spatial information to estimate the possible locations of key-points which provides the
ability to compute mutual consistency between activations. With these mutual

consistencies, we can cluster the activations and produce the hypotheses of humans.

Figure 2-7 Examples of Poselets [4]

In Figure 2-8, an example to illustrate the overall detection procedure is
9



introduced. As shown in Figure 2-8, detection results of different poselet detectors are
shown in different colors, and the size of the blobs means the detection scores. Mutual
consistency is to calculate how close the locations of key-points are estimated by two
different activations. This information is used to re-score the activations. Activation
with more supporting member agreeing with the estimated key-points will lead to a
higher score, while the activation not in this case will be damped. This is shown in
Figure 2-8. In Figure 2-8, the authors use a saliency based agglomerative clustering
with pairwise distances based on consistency of the empirical key-point distributions
predicted by each poselet. Finally, the bounding boxes and segmentations are

predicted by the poselets in each cluster as shown in Figure 2-8.

(a) (b)
(c) (d)

Figure 2-8 Illustration of algorithm provided by Bourdev et al. [15] (a) Detection results of Poselet in
different color, called activations (b) Illustration of Mutual Consistency (c) Saliency based clustering in
greedy manner (d) Detection and segmentation results.

In [3], Alex Yong-Sang Chia et al. assume that the target object can be described
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by the combination of shape-tokens, which consist of several line segments and
ellipses. An overview of this contour based recognition method is provided in Figure
2-9. In the first step, lots of shape-tokens will be extracted from training set, and then
clustered into different code-words of the codebook. Next, a discriminative sub-set of
codebook will be extracted. Instead of cluster size, the extraction is based on the score
calculated from shape and geometric qualities and a radial ranking will be applied.
Note that for each shape-token, the relative position of object center will be recorded.
Hence, the final positions of objects will be decided by a voting scheme. Besides, the

bounding boxes will be determined based on the shape-tokens used.

Training set

Extract
shape-tokens .

Shape-tokens

Learn a
- - - shape-
Detect Learn discriminative tokens
objects in x-codeword- . . codebook
test images combinations N Sect. 3
Sect. 6.1 Sect. 4
4= | ()| <
—1
Detection Discriminative Shape-tokens
results  x-codeword-combinations codebook

Figure 2-9 Overview of algorithm provided by Alex Yong-Sang Chia et al. [3]

Up to now, the definitions of parts used for detection are learned from training
data and these parts need to contain strong spatial information in order to infer the
locations of key-points on body configuration or the center of target object. The
following references in [6-9] adopt different ways. They directly define the parts for
detection in the natomical sense, which means that the parts will be head, torso,
forearm, upper-arm, thigh or shank. These references are closely related to our work
in this thesis.

In [6], Mori et al. first partition the testing image into segments, and then detect

11



the body parts, such as limb, torso and head, based on information of segments. For
limb, the author assumes the half limbs, such as forearm, upper-arm, thigh or shank,
will be well segmented, which means the half limb will be represented by single
segments. In order to detect half limbs, lots of hand-segmented half limbs are
extracted for training. Several examples are shown in Figure 2-10. Features used to
describe the half limb are contour, shape, shading and focus. Sigmoid function is used
to transform the feature value into a probability-like quantity. These values will be
combined linearly and the weights will be learned from training data with a linear
regression training scheme. Finally, the number of candidates to be extracted can be
seen as the threshold for half limb detection.

For torso, the shape is assumed to.be rectangular, and may consist of more than
one segment. The features used.are the same as the features used for half limb only
without shading. The training of weights for feature combination is totally the same.
For inference of configuration, we need to.know the orientation of torso and the
locations of body joints. Hence, for each torso. candidate and each orientation, the best
matching head will be decided. A candidate head may consist of one or two segments.
The same set of cues, contour, shape and focus are used to evaluate the score of a
candidate head. The combination score of head and torso consists of the score of head
and the score of torso, plus the simple score to describe the relative positions. Finally,
we sort the possible combination of head and torso by their score and choose a finite
number of combinations as candidates for the inference of configuration. Several

examples are shown in Figure 2-10.
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(a) (b)
Figure 2-10 (a) Examples of human-segmented half limbs for training,
(b) Torso candidates are provided by combination of segments. [6]

As having the part candidates and information of joints, the next step is the
inference of configuration. The method adopted by the author is the exhaustive search.
For each torso candidate, the best limb will be independently selected for each joint.
The number of possible configurations is evaluated as(5) -8+ 7+ 623 - T . L means
the number of half limb candidate, which is usually around 5~7, and T means the
number of head-torso candidates, which is set to be 50. Here, the author assumes that
for each configure, at least three half limbs can be found. Besides, there are 8 kinds of
role for each half limb candidate. Hence, the number of possible combination of three
half limbs will be 8- 7 -6. However, the polarity of half limbs is also considered.
Hence, a multiplication of 23 will be needed. This exhaustive search will lead to 2-3
million partial configurations. A “Constraint Satisfaction” strategy will be used to
suppress physically impossible configures. The constraints used are relative widths,
length given torso, adjacency and symmetry in clothing. With this strategy, the
number of left configures will be approximately 1000. Finally, these configures will
be sorted by the total scores, which are the linear combination of scores of limbs and

head-torso. Several examples are shown in Figure 2-11.
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Figure 2-11 Several detection results of [6]

In [7], the author first preprocesses the image by using the “local Pb operator” to
compute the soft edge map. After that, “Canny’s hysteresis™ is used to convert the soft
edge map into contours, which are recursively split into piecewise straight lines.
Finally, “constrained delaunay triangulation” (CDT) is applied to transform the
scale-invariant discrete line structure into-a set-of triangles.

As the triangulation map is ready, the candidates of limb and torso will be
extracted with the assumption-of being a combination-of parallel lines. Constraint for
torso is oriented upward. With body parts, the canfiguration inference can be seen as a
label assignment problem, which means the decision of the role for each part
candidate in the configuration. The best configuration will be inferred by the
discussion of simple unary constraints and pairwise constraints, which are aspect ratio,
low-level score, scale consistency, appearance consistency, orientation consistency
and connectivity. These constraints will be modeled by Gaussian distributions. The

inference problem can be modeled as the minimization of the following equation:

PN il m@), L) + Y d(x), 231)
k l

llJlZ

where

) i)
£l = Lt” (2.3-2)

o
In the equation, f,; means the Gaussian model for the k-th constraint. {/;} denotes
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body label. m(l;) represents the part candidate which is assigned with [; body label.
Besides, d(m(l)) is used to measure the quality of an individual part candidate.
Minimizing Equation 2.3 can be further written as an integer quadratic programming
problem (IQP), which is expressed as follows:

min Q(x) = x'Hx + d'x subject to Ax = b,x € {0,1}", (2.4-1)

where
HGD = ) f(l@,p@, 1), p(). 242)
k

Directly optimize Equation 2.4 is an NP hard problem. An approximation is deducted
which is a linear bounding function allowing efficient inference as shown in the

following equation:

min L(x) = Y;(q; + ¢p)%; - LX) <Q(x) for all x, (2.5-1)
where
q; king Z]_ H(i, )x;. (2.5-2)

Finally, the greedy search is adopted. We fix-one candidate for specific label and find
the best assignment for other candidates. We repeat the procedure to find the
configuration with minimum constraint cost. An example for illustration of the overall

system is provided in Figure 2-12.

pe Ak oo % o ¢
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Figure 2-12 Illustration of algorithm provided in [7] (a) Input image (b) Edge map (c) Result of

Constrained Delaunay Triangulation (d) Part candidates in parallel lines with same color (e)
Configuration found by Integer Quadratic Programming (f) Approximate Segmentation

In [8], instead of finding two parallel line segments to identify limb candidate
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directly as shown in [7], the authors relax the constraint so that they need only one
straight line segment to handle the missing segment caused by cluttering, occlusion or
shape variation. As one straight line is extracted, the “Distance Transform (DT)”
matching provided in [10] will be applied. The matching score between parallel line
templates in different sizes and orientations and the distance transform of edge map
obtained by “Canny Edge Detector” will be evaluated at every possible position. The
formula form is provided as follows:

1
DTr, = mz Iz (1), (2.6)

teT;

where T, represents the prior shape of limb, which is parallel lines. |T;| denotes the
number of edge points in T;. Iz means.the DT of binary edge map I. The templates
used for torso is the same as the‘templates for limb. The scale of torso will be inferred
from the scale of limbs based on‘the anthropometric data provided in [16]. For head,
the template shape is a circle.

With part candidates, the best body configuration is inferred by the lowest value
of dissimilarity Dy as expressed in the following equation:

Dy =wygDg + W¢Diop + WqDgppy + Wi Dyyg. (2.7)

In Equation 2.7, {w} means weights which are learned from training data. D, is a
term dedicated to pruning configurations that are not physically valid. Dy,
corresponds to a topological matching between the part assembly and a model of the
human skeleton. This model is inspired by the “shock graphs” mentioned in [17].
Dgpp €ncodes prior information about the symmetry in clothing and support these
assemblies for which the appearance of left and right limbs is similar. The last term
D, corresponds to a more global reasoning about the configuration, which is
dedicated to estimating a combined image likelihood of the assembly by explicitly

taking into account self-occlusion.
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A Dbrief illustration of the system flow is shown in Figure 2-13.

(a) Source (b) Edges (c) Segments

(d) Limbs (e) Parts (f) Result

Figure 2-13 Illustration of algorithm provided in [8].

In [9], the authors claim that the performance of detection is highly dependent on
the discriminative part classifiers. Hence, in this work, densely sampled ‘“shape
context descriptor” provided in [18] is adopted to describe body parts. Moreover, the
Adaboost training scheme proposed by [19] is applied. Finally, with part candidates,
the inference of configure follows the same steps as proposed in [5] with the usage of
“Pictorial Structural Model”. The equation form of this model is provided as follows:

N
p(LID) & pllo)- | [pCilty - | | w(uly). 28)
i=0 (i.))€E
In this equation, p(L|D) means that given the image feature, D, what will the
probability of configuration L be. This probability will be proportional to the
multiplication of three terms shown in the right portion of Equation 2.8. p(l,)
denotes the probability for the location of torso to be at I,. [[N,p(d;|l;) represents
the probability for the rest part to be placed at [;. d; means the evidence map for the
the i-th part. Finally, [I¢ ezp(Li|l;) denotes the spatial relation between the
position of the i-th part and the position of the j-th part. One thing needs to be

17



mentioned is that torso candidates will be detected first in this work. Several results of

this work are provided in Figure 2-14.

Figure 2-14 Several detection results provided in [9].
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Chapter 3 Proposed Method

Recall the goal of our work is to provide a human detection method to handle the
intra-class variation caused by the change of poses and view-points as much as
possible. In order to prevent the demand of lots of detectors to cover the intra-class
variation, bottom-up scheme and constrained body parts defined in anatomical sense
are going to be used. One thing needs to be mentioned is that, instead of considering
head and torso separately, we detect them at the same time in order to avoid the high
false alarm rate introduced by each of them alone. Moreover, the face information will
be extracted to support the identification of head-torso candidates.

In the adopted bottom-up scheme, our system can be divided into two portions,
information collection and information integration, as the last two steps in Figure 3-1.
Information collection is the step.of detecting parts. Information integration is the step
to integrate the detection results; that is, to decide which parts should belong to the
same person and what are these parts: face, head-torso, arm, leg or false alarm from
background.

In the information collection step, despite of the existence of constraint on the
definition of parts for detection, the computation cost is still high due to the
exhaustive search on the scale, position and orientation of parts. Hence, an extra step
to reduce the searching space is introduced. Here, we will first partition the image into
segments to create a discrete searching space.

Hence, our system consists of three portions: image decomposition, collection of
information and information integration, as shown in Figure 3-1. In Section 3.1,
image decomposition will be discussed. After that, the method of detection for limbs,
faces and head-torsos will be mentioned in Section 3.2. Finally, in Section 3.3, the

way to deal with information integration will be provided.
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Image Image Information Information Detection
Decomposition Integration Collection Results

Figure 3-1 Flowchart of our algorithm

3.1 Image Decomposition

As aforementioned, we will partition the image into segments and use the region
information to reduce the searching space, with the assumption that it is rare to have
body parts existing within smooth regions.

Segmentation can be regarded as a pixel clustering problem. There are lots of
clustering algorithms in the literature and these algorithms can be classified into four
kinds of methods: “partition-based methods”,  “hierarchical clustering methods”,
“probabilistic model-based clusteringmethods”. and. “spectral clustering methods”.
Here, the proposed method belongs to “spectral clustering methods”.

“Spectral clustering methods” are graph partition based methods. Hence, the first
thing is to establish the graph. Here, image pixels are defined to be nodes in the graph.
The definition of edges is called affinity matrix. Each element in the affinity matrix
represents the relation between two pixels or two nodes. There are three kinds of
methods for the definition of affinity matrix which are “K-nearest Neighbors”,
“Radius Based Method” and “Gaussian Model Based Method”. As a graph is obtained,

we can write the cost function as shown in the following equation:
. 2
mmz Agj- (i — )", (3.1)
ij
where i,j are indexes of nodes in the graph or indexes of pixels in the image. A4; ;
denotes the affinity relation between node; and node;. a; & a; are cluster labels
for node; and node;. With this equation, our goal will be to find the optimal cluster
labels for each pixel. Equation 3.1 can be represented as a general quadratic form as
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follows:
mina’ ‘L a, (3.2)

where L =D — A is called as “Graph Laplacian Matrix”. D = Z?’:lA(i,j) is the
degree matrix of graph. A denotes the affinity matrix of graph and N is the number of
nodes. Finally, a represents the matrix of cluster labels for all nodes. Here, the
definition of the affinity matrix, A, is adopted from the representative work, spectral
matting, proposed by Levin et al. in [20]. Note that instead of global affinity
calculation, only local affinity will be calculated. This means that we only consider
the affinities among pixels in a local region. For a local region as w,, the definition

of A'is provided in the following equation:

A= Zqu, (3.3-1)
where
1 T 7 €
Ay(i)) = m<1+(li—yq) -<2q+mU) -(G—w)) (L)) € wy (3.3-2)

0 otherwise.

In Equation 3.3, I; and I; denote the colors of the i-th and the j-th pixels in input
image I. p, is the 3x1 mean color vector of image in the region, w,. Z, is the
covariance matrix in the same region. Finally, |w,| means the number of pixels in
the region and U represents the 3x3 identity matrix. Note that the graph Laplacian
matrix is also called matting Laplacian in [20].

The general method to solve Equation 3.2 is to find the eigenvectors of the
matting Laplacian and sort these eigenvectors based on the eigenvalues in ascending
order. After that, they map data points into the space constructed by eigenvectors.
Finally, K-means method is applied to classified data points into clusters.

One thing needs to be noticed is that the computation complexityfor obtaining

eigenvectors is O(N?3), where N denotes the number of pixels in [20]. This leads to
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slow speed when handling large images. Hence, instead of taking each pixel as a node,
we group pixels into cells and decompose the cell-based matting Laplacian, L.. The
equation for L. is provided as follows:

L.=m"-L-m, (3.4)
where m is the mapping of pixels into cells. m denotes the mapping relation

normalized by the number of pixels in each cell. Finally, two different segmentation

results are provided in Figure 3-2 and Figure 3-3, respectively.

Figure 3-3 Result of segmentation. Different color means different segment.
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3.2 Information Collection

In this section, information collection will be presented as detection of body
parts. The body parts to be detected can be separated into three types, which are limbs,
head-torso and face. Method for detection of limbs will be discussed in Section 3.2.1.
After that, the adopted algorithm for detection of head-torso and face will
subsequently be mentioned in Sub-section 3.2.2 and 3.2.3.
3.2.1 Detection of Limb

In this sub-section, the implementation for limb detection and the reason for this
implementation will be described in detail. Firstly, we will review the methods for
limb detection adopted in [6-9] and describe the limitations of these works. After that,
the ideas to overcome the limitations will .be provided. Finally, the implementation
detail will be described step by step.

Go back to the related works. In [6], the authors assume the half limb, which
means forearm, upper-arm, thigh or'shank, will be well segmented as shown in Figure

3-4. This assumption will fail in the case shown-in Figure 3-4.

(a) (b)
Figure 3-4 (a) Example of well-segmented half limb [6] (b) Failure of well-segmented approach.
In [7-8], limbs are assumed as the combination of parallel lines or at least one
side of limb can be detected as a straight line as shown in Figure 3-5. This assumption

cannot handle the shape variation as shown in Figure 3-5. In [9], the shape context
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descriptor is used to describe body parts. However, for simple shapes, such as limbs
only, shape context is too complicated for description and may introduce high

computation cost.

——
——

H_

(a) (b)
Figure 3-5 (a) Examples of limb candidates with assumption of parallel lines (b) Negative example

In order to prevent these-limitations, we describe each limb as a combination of
patches, which are simple masks with nine different orientations as shown in Figure
3-6. With this description, limbs will be detected by exhaustive search. In this way,
instead of using the restriction of well segmented limbs, we only need the limbs to
have clear boundary on both sides and we allow arbitrary connections on the ends of
limbs, as shown in Figure 3-7. Moreover, the variation of limb shape shown in Figure
3-5 can be handled by the displacement and scale change of patches. One example is

provided in Figure 3-8.

| V1@ 1o eSS

Figure 3-6 Masks for limb patch detection
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Figure 3-8 Example of detection results of limb patches

Up to now, we have the descriptor for limbs and use a detection scheme with
exhaustive search. Exhaustive search for all the positions, orientations and scales is
quite inefficient. Hence, instead of exhaustive search, we’d like to find some other
information to reduce the searching space. The information used here will be
segmentation boundary from the previous image decomposition step and the natural
characteristic of limbs: limbs often appear at regions with high density of isotropic
orientation. In order to use the information, we make two assumptions: (1) the

boundary of limbs will be included in the boundary of segmentation, and (2) the
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density of isotropic orientation of limbs will be relatively high in the local region.
Based on these assumptions, density maps for each orientation can be established.
With density maps, we can sample a few initial points and apply the exhaustive search
method for the positions and scales in local region.

In the following, we will follow the order of the block diagram as shown in

Figure 3-9 to describe the limb detection step by step.

Orientation . . . .
Density Sta rtlll'rg P.o"t Limb Pa:tch Refinement Detection
Map Localization Detection Results

Figure 3-9 Flowchart of limb detection'system in our work

Image

HOGs

Feature
Map

To establish the density maps, “Histogram of Oriented Gradient” (HOGS) is first
computed to encode the orientation information as shown in Figure 3-10. After that,
one specific orientation is extracted from the HOGS map, as shown in Figure 3-10. It
is easy to find that there exist lots of background noise in smooth regions. The noise
leads to lots of meaningless initial points and increase the computation cost. In order
to retain meaningful information and filter out noise, a morphological method is
applied on the segmentation map. The segmentation boundary map is then extracted
out as shown in Figure 3-10. We use this segmentation boundary map to retain the
useful orientation information and an example of the filtered result is shown in Figure
3-10. Finally, Gaussian smooth filter is convolved with the filtered orientation map,
and the density map for specific orientation will be obtained as shown in Figure 3-10.
We repeat all the steps until all the density maps in different orientations are

produced.
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Figure 3-10 Illustration for production of orientation density map

Up to now, the density maps for all orientations are obtained. The next step is the
extraction of discrete points as the initial points. The algorithm used here is the
“mean-shift” algorithm and the features are position and density value. After all the
points are clustered, the position of the center for each cluster will be taken as the
position of the initial point. However, there are two problems for the direct usage of
the original “mean-shift” algorithm. One is the slow speed and another is
unreasonable distribution of clusters.

The first problem is caused by the iterative re-assignment for all the points on the
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density map till convergence. To solve this problem, we can approximate the result by
assigning all the points only one time. Firstly, we sort all the points on the density
map in the descent order. After that, one point is taken and the distances to the centers
of the established clusters are computed for each iteration. If no cluster exists or all
the distances are larger than the clusters’ radii, we establish a new cluster for the
current point. We repeat the steps until all points are assigned.

The second problem can be seen in Figure 3-11. There are too many points
spreading along the orientation which means that there are too many initial points for
a single limb candidate. To avoid the waste of computation, a modified distance
equation is provided as follows:

dist = wy X ori + wy X orthy;+ w3z X d, ,w; = wy, > wy, (3.5)
where ori means orientation; orth,y; rmeans. orthogonal orientation, and d,
denotes density value. In Equation 3.5, smaller weights are provided along the
orientation which means a larger radius is-used-along this direction. The difference

can be seen in Figure 3-11. The red dashed circle is the result of the modified process,

and the yellow dashed circle is the result without modification.

(a) (b) (©)
Figure 3-11 Produce starting points for limb detection. (a) Distribution of starting points without

madification. (b) lllustration of modification. (c) Distribution of starting points with modification.

After having obtained the initial points, we can exhaustively test all possible
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positions and scales along the orthogonal orientation, as shown in Figure 3-12. Once a
patch is detected, as shown in Figure 3-12 with the bright green bounding box, its
estimated scale and position will be used as prior information to detect the remaining
patches on the same limb, as shown in Figure 3-12 with the red bounding boxes. With
this detection scheme, we can reduce the searching space dramatically.

The last step in limb detection is refinement. This step can be divided into three
portions: non-maximum suppression, connection of fragments on the same segment

and connection of fragments on different segments.

Figure 3-12 Illustration of patch based limb detection. (a) Starting patch detection.

(b) Detection of rest patches on the same limb.

Firstly, as mentioned previously, more than one initial point may be adopted for a
single limb, as shown in Figure 3-11. Hence, a ‘“nhon-maximum suppression”
algorithm is implemented. One thing needs to be mentioned is that we only consider
the suppression for limb candidates on the same segment. An illustration of the
algorithm is provided in Figure 3-13. Linear equation for one of limb candidates,
called a basic candidate, is firstly generated. After that, we calculate the shortest
distances from the end-points of another candidate, as shown in Figure 3-13. The

summation of distances is compared to the width of the basic candidate. Moreover, we
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check the distance between centers of limb candidates to prevent the case of
suppression shown in Figure 3-13. If both the distance summation of end-points to
line of basic candidate is less than the width of basic candidate and the distance
between centers is less than a half length of the basic candidate, we further compare
the scores of limb candidates. We choose the larger one and suppress the other. The
score used here is composed of four ingredients: width, length, degree of deviation
and the average detection score from patches as member of limbs. Here, limb
candidate with a larger width and longer length will be favored. The degree of
deviation is defined as the average of deviations collected from the displacements
between neighboring patches along the orthogonal orientation, as illustrated in Figure
3-13. Due to the rigidness of half limb,.the limb candidate with the smaller deviation

is favored.

(a) (b) (©)
Figure 3-13 Illustration of non-maximum suppression.
Secondly, due to the discrete orientation angle of patch detector shown in Figure
3-6, we expect the disconnection for the patches on the same limb, as illustrated in
Figure 3-14. Hence, we need to apply an extra step to connect these fragments back to
a single limb. The criteria used are the width ration between fragments, the distance
between end-points and the difference between orientations. The threshold for width

ration is two. The threshold for distance between end-points is set to the maximum
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width of fragments. Finally, the threshold for orientation difference is 20 degrees.

The third portion is similar to the second portion just mentioned. It is caused by
the color difference on different regions of limb. An example is shown in Figure 3-14.
The connection criteria used is the same as the ones used in second portion. One thing
needs to be noticed is that the fragments to be connected should fulfill one criterion.
That is, over 80 percents of the segment region on which the fragment is detected
should be covered by the region of fragment. This can be seen in Figure 3-14. Finally,

we merge the segments which are connected together.

(@) (b) (©)

Figure 3-14 Refinement step.in flowchart of limb detection sub-system.

3.2.2 Detection of Head-torso

In this sub-section, instead of detecting head and torso separately, we detect them
together. The reason is that the shapes of head and torso are short of decisive
information to be distinguished from background noise. Hence, in order to suppress
false alarms, we consider the combination of head and torso. The following is the
discussion of the adopted head-torso detection method and the targets to be detected.
It can be seen in Figure 3-15 that the head-torsos are oriented in multiple directions
and the shape boundaries are highly deformed due to different clothing, occlusions,
foreshortening, difference from side-view and frontal view, and also the relative

displacement between head and torso. Hence, a single template or detector as
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provided in [11] is needed. Here, the “deformable part model” proposed by [1] is
applied to capture the shape deformation by using deformable part filters. Note that
the feature used in [1] is HOGs. Instead of providing 18 directions, only 10 directional
training data can fulfill the demand for the training of the detector training. That’s
because the training/testing scheme will automatic flipped the image along the
vertical orientation to handle the head-torso in mirror-symmetric direction. Finally,

detectors in different 10 directions are provided as shown in Figure 3-16.

Figure 3-16 Detectors of head-torso in 10 directions.
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With trained detectors, the next step is the application of detectors to detecting
head-torso candidates. The searching scheme used in [1] is exhaustive search, which
consists of “image (feature) pyramid” plus “sliding window” as shown in second row
of Figure 3-17. This searching scheme leads to high computation cost. Hence, we find
extra information to reduce the searching spaces of parameters, which are positions
(x,y) and scale s. In our work, we agree with the assumption used in [21] which
indicates that there exists dominant colors for torso region on human body in most
cases. This assumption can be seen in Figure 3-15. With this assumption, the size of
head-torso can be approximated by the size of segment. That is, we estimate the scale
and position of head-torso candidates by the information of segments. In Figure 3-18,
the bounding box in green denotes the region of torso, and the searching region is
shown in red. Searching region-will be re-scaled for fitting different scales of feature
maps. The estimated scale for searching torso in feature maps for torso is provided in

the following equations:

1.5+ Siz€¢prs0

scalegstimatea = max | round | ——— |, 1 |, (3.6-1)
sbin - >

scaleypperbound = SCAleestimatea — interval — 1,and (3.6-2)

scalejowerbound = SCaleeostimatea + interval + 1, (3.6-3)

where size;,.s, means the diagonal length of green bounding box as shown in
Figure 3-18. The constant 1.5 denotes the size ratio between head-torso and torso.

sbin represents the size of cell used in calculation of HOGs feature pyramid. The
constant 2 means the size of cell in the first scale of HOGs feature pyramid is Sb%

The constant 9 is the size of root filter for head-torso detection. Finally, “interval” is
the scale difference between two resolutions in the HOGs feature pyramid. Extra step

is required to handle the cases as shown in Figure 3-19. In these figures, the color of
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legs or arms is the same with the color of torso. Hence, we need to delete the region of
limbs to avoid false estimation. Finally, two detection results are provided in Figure

3-20.

RErerme.

Figure 3-17 llustration of “Image (Feature) Pyramid” and “Sliding Window Searching Scheme”’.
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Figure 3-19 Extra step for cutting limb regions from segments.

Figure 3-20 Several results of head-torso detection are provided.

3.2.3 Detection of Face

The reason to detect face is to handle the missing cases of head-torso detection
caused by serious deformation, such as foreshortening more than 40 degrees and
serious occlusion...etc. Moreover, faces can be seen as extra information to support
the detection of correct head-torso and the suppression of the false alarms. Both
benefits are mainly from the discriminative features of faces.

The algorithm used for face detection is the famous face detector proposed in
[22]. In this algorithm, Viola and Jones first propose “integral image” to accelerate the
extraction of features. After that, an Ada-boost learning algorithm is applied to select
a small number of critical visual features from a very large set of potential features
extracted from training data. Finally, the selected critical visual features for examining
the testing images are arranged in cascade form for speed-up which filters out most
patches in the first few steps.

The implementation of the face detector is provided in the “Computer Vision
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System Toolbox” on Matlab. There exists both frontal and profile face detectors. Both
detectors are designed for human standing upward only. Hence, an extra step is used
which rotates the image into 18 directions. Finally, to handle multiple detections on
the same face, the non-maximum suppression process is applied. Several detection

results are shown in Figure 3-21.

-— -— —_—

ise ‘ —

Figure 3-21 Several detection results of face detectors. Different colors denote different orientations.

3.3 Information Integration

Up to now, candidates of body parts have been detected and spread over the
whole image as shown in Figure 3-22. With the adoption of a bottom-up detection

scheme, the next two steps will be the combination of body parts to provide possible
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Figure 3-22 Detection results of body parts. Yellow color is for face candidates. Red lines are for limb

candidates. Other colors denote head-torso candidate oriented in different directions.

For the combination step, direct exhaustive combination between part candidates
will introduce lots of unreasonable configurations. To prevent this problem, an extra
filtering step is adopted. With-the dominating color assumption mentioned in Section
3.2.2, each segment is treated as; a torso- candidate. Hence, we first discuss the
possibility for the combination between- part candidates and the specific torso
candidate. After that, only part candidates with high possibilities will be preserved as
a torso candidate to establish configurations. This portion is provided in Section 3.3.1.
With the knowledge of which part candidates can be used to establish the
configurations for each torso candidate, we exhaustively produce all possible
configurations and evaluate their scores in Section 3.3.2. Finally, with these scores,

the best configuration is extracted for each torso candidate.

3.3.1 Combination Pre-filtering
In this sub-section, we will discuss which part candidate can be combined with a
specific torso candidate. For the candidates of head-torso, we detect head-torso

candidates for each segment separately and ask these candidates to overlap the
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segment with a percentage above a specific threshold. Hence, for each segment, it
could be a torso.

For the face candidates, we know the orientation difference between face and
torso can’t be over 90 degrees. Hence, a half circle mask is produced to decide the
ownership of face candidates, as shown in Figure 3-23. Segments covered by the red

half circle mask can be combined with this face candidate.

Figure 3-23 Illustration of the ownership of a specific face candidate for each segment.

Finally, we discuss the possibilities of combinations between limb candidates
and torso candidates. Firstly, we need to know the reasonable combination types
between limb and torso. In our approach, there are four major types. The first one is
that limbs are on the same segment as the torso candidate, as illustrated in Figure 3-24.
The second one is that the limbs segments are directly connected with a torso segment.
An example is also provided in Figure 3-24. The third type is that a segment exists
between a limb segment and a torso segment, which can be seen in Figure 3-24. The
final type is that two segments exist between a limb segment and a torso segment. A
real example is shown in Figure 3-24. Note that we don’t consider the cases with more

than two segments exist between limb segment and torso segment.
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(@) (b)

Figure 3-24 Illustration of combination types between limb and torso.

As we know the combination types, we can model the possibility evaluation
problem as a multi-path optimization problem as shown in Figure 3-25, where “T”
means torso, “L” means limb and “S” means in-between segment. For each path, we
evaluate the cost, which is equal-to the inverse of possibility. After that, we choose the
path with the lowest cost and compare the cost with a pre-defined threshold. If the
cost is lower than the threshold, this limb_candidate will be preserved to establish a

configuration for current torso candidate.

C2

Figure 3-25 Illustration of multi-path problem

Features used to calculate costs are the summation of the areas of in-between
segments in the path and the way that the current limb combines with the first
in-between segment. Examples are shown in Figure 3.26. The torso region is bounded
by the red color boundary. A correct path is bounded by the blue color boundary,

while an incorrect path is bounded by the green color boundary. Large areas of
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in-between segments will lead to a high cost. Limbs combining with neighboring

segments along similar orientations will lead to a low cost. Equations are provided as

follows:
Cost = Penalt -M (3.15-1)
path Ytype Areatorso ’ '
where
Penalty.,,e = S(min(r3 + r4 + r2 —r1,r3 + r4 + rl —r2)), (3.15-2)
S(-) = rescale value into 1~5,and (3.15-3)
Areagegmens = Summation of areas of middle segments. (3.15-4)

Penalty;,,. is decided by the way that the current limb combines with the
neighboring segment. On the other hand, “rd;r2,r3,r4” are the overlapping regions
between the neighboring segment and the mask used for estimating the direction of
the combination. This is illustrated in-Figure:3.27.

Figure 3-27 Illustration of estimation of combination direction.
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3.3.2 Establishment and Score Sorting of Configurations

As we have the part candidates, which can be used as a torso candidate, the next
step will be the establishment of configurations based on these part candidates. The
establishment of configurations can be seen as the labeling of part candidates which is
the decision of what role the specific part candidate will be. For different kinds of part
candidates, there exist different choices. For each face candidate, it may be a face or a
false alarm. For each head-torso candidate, it may be a head-torso or a false alarm.
For each limb candidate, it may be a left/right forearm, a left/right upper-arm, a
left/right shank, a left/right thigh, a left/right full-arm, a left/right full-leg or a false
alarm. How do we decide the role for each part-candidate? Firstly, fixed references
need to be set. The references used here are the body joints, which are center of head,
shoulders and hips. With these fixed body joints, we-can start to evaluate the score or
possibility of each part-candidate to be a specific role.

Where do these joints come from? There-are several sources. For the joint of
head, it may come from the candidates of head-torso or face. For the joints of
shoulders and hips, it may come from the candidates of head-torso or limb. The
shoulder joints from candidates of head-torso are provided by the trade-off between
two possibilities. One is the joints relative to the bounding box of the detection result,
which are annotated by human and are based on the model shown in Figure 3-16. This
is shown in Figure 3-28. Another one is the joints deducted from the positions of part
filters of detection result as shown in Figure 3-28. The reason for this implementation
is due to the unstable performance of part filters. It can be seen in Figure 3-16 that
there exists no part filter to describe the shape of shoulders directly. This is because
the high variance introduced by the movement of two arms. The information used for
trade-off is the detection score of head-torso candidate. The trade-off equation is

provided as follows:
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Jtrade off = Jha (1 - Tatiotradeoff) + Jpf " Tati0trage, s (3.15-1)

where
TatiOtradeoff — exp1.4--detectionscore_ (3.15-2)
Jna represents the joints annotated by human. J,¢ denotes the joints deducted from

the positions of part filters. Finally, 1.4 is used to adjust the value into a suitable

range.

(b)

Figure 3-28 Decision of joints by detection result of head-torso.

(a) Joints relative to root bounding box annotated by human
(b) Joints decided by position of part filters.

Although the trade-off method is applied, sometimes the results of joints are still
not satisfactory. Here, an extra step is adopted. As shown in Figure 3-29, two masks
are used to estimate the width and length of torso from the silhouette. The distance
between joints will be adjusted by the estimated width and length. As all the possible
candidates of joints are ready, the combination list of joints will be established and the

greedy approach will be applied.
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Figure 3-29 Estimation of width and length on silhouette of torso to adjust the positions of joints
estimated from head-torso filters, which-are joints in blue.color. And the modified results are shown in
yellow color.

With the combination list of joints, we can start to evaluate the scores for each
part playing in different roles. ‘Note ‘that there exists no direct criterion to evaluate
whether a part-candidate is a false alarm. The only definition is that the part
candidates not used by the configuration with the highest score for each segment will
be the false alarm. Currently, for each segment, we only record the configuration with
the highest score due to the dominate color assumption for the torso part.

The evaluation of a face candidate to be a face part in a configuration is based on
four criteria. One is the size ratio between the size of face candidate and the size of
torso defined by the shoulder joints and hip joints. Another one is the summation of
the distance from shoulders to the center of face candidate. The third one is the
distance between the center of face candidate and the head joint. The fourth one is the
angle difference between the direction of torso defined by joints and the direction of

face candidate. These criteria are modeled in the following equations:
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_‘Sizebf_4’ (3.16-1)
COTEgjze = €

sizeg
1 1 (3.16-2)
SC€OT€fos = 7 1 o7 Wistrros—12) 1 + o7 (distos-18)
1 3.16-3
scoregiy = n eoll_(angledw_%),and ( )
_||cenf'—cenh|| (3.16-4)
Scoreppy = e stzer

After that, these scores are combined via multiplication as expressed in following

equation:
SCOT€fgce = SCOTEgiz¢ * SCOT€fros * SCOTCgjy * SCOTEfpg. (3.17)
. 1.4 . .
Note that sizey; = leniyyso * 1.5-mti0 for ratiops < 1.4. len,,s, is the length
fs

leNtorso
Widthiorso

defined by body joints. ratiors = is the foreshortening ratio which

describes the level of foreshortening. 1.4 is the smallest value of reasonable ratio
between the length and width-of torso. 1.5 is used to scale the value to the length of
head-torso.

For the evaluation of head-torso candidate, there are four criteria. The first one is
the distances between center of head-torso candidate and the center defined by body
joints used. The second one is the size ratio between the size of head-torso candidate
and the size of head-torso deducted by body joints. The third one is to check the
rationality of distance between the head center of head-torso candidate to the
shoulders of body joints. The fourth one is to check the angle difference between the
direction of head-torso candidate and the direction deducted by body joints. Finally,
the detection score of head-torso candidate is also considered. All these criteria are
modeled as follows:

SCOT€conter = e llcenni—cenyjll/sizey; (3.18-1)

SCOTegi,0 = e~ log(sizens—sizep )| (3.18-2)
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1 1

COT€htos = 11 o=10:(distneos—09) 1 + g10-([@isthros—18)’ (3.18-3)
1
scoregiy = [T 05 @nalea; 30" and (3.18-4)
ScoTeqyy = e*5eorear, (3.18-5)
All the information will be combined as follows:
SCOTeRs = SCOT€conter " SCOTEgize * SCOTChtos * SCOTE iy * SCOTE gty (3.19)

For the evaluation of limb candidate, several criteria will be used. The first one is
the ratio between the limb length and the limb width to suppress the case such as a
small width value with a large length value. One example is shown in Figure 3-30.
The definitions of equations are modeled by the sigmoid functions as follows:
1

Wrpare = LN : (3.20)
14+ e_a (Widthlimb~ )

The parameters [a b] are provided in the following table:

Table 3-1 Parameters for sigmoid function used in Equation 3.20

Forearm -t 4.3
Upper-arm -6 3
Shank -4 4.fy
Thigh -6 3.5
Full-arm -6 6
Full-leg -6 7.5

Two examples for equation curves are shown in Figure 3-31. Note that the width of
limb should be divided by two due to the positive region of limb patch detectors only
covers half width, as shown in Figure 3-6. Note that the parameter a in the sigmoid
function in Equation 3.20 means the attenuation rate in negative value and the
mounting rate in positive value. The parameter b in the sigmoid function in Equation

3.20 means the starting point for attenuation or increment.
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Figure 3-30 Examples of limb candidates with unreasonable length to width ratio.
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Figure 3-31 Two examples of mapping relations from aspect ratio to probability.
The second one is the ratio between the length of limb and the size of torso, which is
used to suppress the case of limbs with a too long length compared to the torso size.
One example can be seen in Figure 3-32. The too-short case will not be considered
here due to the case of foreshortening as shown in Figure 3-32. Equations are
provided as follows:
1

ltrpart = a( sizepj b). (321)
14e engmp

The parameters [a b] are provided in the following table:
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Table 3-2 Parameters for sigmoid function used in Equation 3.21

Forearm 4 2
Upper-arm A 2
Shank 4 2
Thigh 6 1.7
Full-arm 6 1.5
Full-leg 6 0.8

Examples of curves are provided in Figure 3.30.

(a) (b)
Figure 3-32 Examples of ratio between length of limb candidate and size of torso.
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Figure 3-33 Two examples of mapping relations from ratio between limb length

and size of torso to probability.
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The third one is the ratio between limb width and torso size. A too small or too large
width should be suppressed. An example is shown in Figure 3-34. Equations are

provided as follows:

WIr = WitTypperbound * WlTiowerbounds (3.22-1)
1
WtTypperbound = sizep; ,and (3.22-2)
1+ es.(lenlimb_lo)
1
Wt owerbound = sizep; . (3.22-3)
1+ e_s'(lenu'mb_”

Note that there are no different definitions for different roles due to the variance from
clothing. It’s hard to define a specific range for width in a specific role. The curve of

the mapping relation is illustrated in Figure 3-34.
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(a) (b)
Figure 3-34 (a) Examples of unreasonable widths. (b) Curve for mapping relation from ratio between
width of limb candidate and torso size to probability.
The fourth one is the distances to the joints. The definitions of equations are provided
in the following equation:
1
Itols = Sizen] ' (3.23-1)

—1.5:( - — 3.5)
1+e lendpointiimp—jointiert snoutaerll
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1
Itors = sizey; ’ (3.23-2)

—1.5:( - — 3.5)
1+e ”endpmntlimb_]mntrightshoulder”
Itolh = ! d
tofh = _15¢ sizep) v (3.23-3)
1+e lendpointyimp—jointiers nipl|
1
Itorh = o ) 3.93-4
2] 3.5) (3.23-4)

1+ e_1l5.(”endeintlimb_jOintrightshoulder”
Outside a specific distance range for each specific role, the score starts to decay. For
the lower parts of limbs, such as forearm or shank, there exists no obvious definition
of ranges for possible distances. Hence, we produce masks for virtual upper parts of
limbs, such as upper-arm or thigh, and then evaluate the cover rate on the silhouette
with masks and the ratio between the length of virtual upper parts of limbs and size of
torso, which is used to suppress the virtual-upper parts of limbs with unreasonable

lengths. Equation representations of both kinds of scores are shown in following

equation:
. 1 (3.24-1)
vlg = exp(ratlocover - 1) Sizetorso ’
1+ e_a.<lengthvirtual limb )
where

Overlapmasknsilhouette

ratiocoper = (3.24-2)

|ma5kpositive_region|

In this equation, (a,b) is equal to [63.3] for virtual upper-arm, while (a,b) is
equal to [61.7] for virtual thigh. Several illustration figures for virtual limb
evaluation are provided in Figure 3-35.

An extra criterion is adopted for each limb to handle the case as shown in Figure
3-36, where the right shank is taken as the right arm due to the variance of the
estimation of the right shoulder joint. This causes the distance for endpoint of limb to

the right shoulder joint to be less than the distance to the right hip joint. We
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compensate this variance by multiplying the cover rate from endpoint to other joints.
For obvious representation, only two covering masks are provided in Figure 3-36. It is
expected that the cover rate from the right shank to the right shoulder will less than
the cover rate from the right shank to the right hip. Equation is provided as follows:
vlige = exp(ratiocpper — 1), (3.25-1)

where

overlapmasknsithouette (3.25-2)

ratiocpper =

|ma5kpositive_region

Figure 3-35 Illustration of evaluation for virtual limb on silhouette.

Figure 3-36 Illustration of compensation on variance from estimation of shoulder joints by cover rate.
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Finally, the evaluation equations for each role are provided in the following equations:
limb gradeleft forearm = vlg,s(upperarm) - vigc,s(upperarm) - lwrforearm ’ ltrforearm s wtr, (3.26-1)

limb gradeyignt forearm = Vlgrs(upperarm) - vigc,s(upperarm) - Wrgoreqrm * Wrorearm - Wtr,  (3.26-2)

limb gradeest ypperarm = ltols - viges(upperarm) - Wrypperarm * Whipperarm - WET, (3.26-3)

limb gradeyignt upperarm = ltors - vlgc,s(upperarm) - Wrypperarm * Whupperarm * WET, (3.26-4)

limb gradeest shank = vigin(thigh) - vigey, (thigh) - Wrshank * Wsnank - WET, (3.26-5)

limb gradeyignt snank = vigrn(thigh) - vige,n,(thigh) - Wrspank * Wtrspany - Wtr, (3.26-6)

limb gradeese thign = ltolh - vige,, (thigh) - Wreyign - Wtrepign * W, (3.26-7)

limb gradeyigns tnign = ltorh - vlgc,, (thigh) - wrepigp * Wtrepign - wtr, (3.26-8)

limb gradeest fyunarm = ltols - vige,s(upperarm) - Wreyigrm * Wreyiarm * W, (3.26-9)
limb gradeyignt fuiarm = ltors ~vlgc,s(upperarm) - Wregugrm * Weyiarm - Wtr, (3.26-10)
limb gradeest pyineg = ltolh - vigey (thigh) ~ Wreuieg  lrrye, - wtr, and (3.26-11)
limb gradeyignt fuinieg = ltorh - vige p (thigh) - wrey e trpyeq * Wir. (3.26-12)

With the score of each role for-each candidate, we can start to infer the list of
possible configurations. Limb candidates with the first three highest scores are chosen
for each joint instead of choosing the highest one only to handle the error introduced
by position estimation of joints. The number of possible configurations is (3 + 1) -
B3+1):-(3+1)-(3+1)=256.“Plus one” means no limb candidate is chosen for
that joint. We delete unreasonable configurations with limb candidate used by more
than one joint. Moreover, the deletion will be applied on the configuration with at
least one score of limb candidates less than one after multiplication with the
parameter of part-collected compensation. This parameter can be seen as a threshold
to filter out the limb candidates with small scores. Currently, this parameter is
experimentally setto e3>,

For each configuration, three more kinds of scores will be calculated. One is the
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overall cover rate, which represents the ratio of the whole silhouette covered by part
candidates. The background region covered by part candidates will also be calculated
to compensate the result. The overall score of covering condition will be calculated by

the following equation:

1

score =exp | ——— ) - exp(—ratioyp.), (3.27-1)
cover p ( 1— ratiosc) p( bc)
where
silhouette
ratiog.: ratio of silhouette covered = — Covered,and
sithouette gy eq
(3.27-2)
. . baCkgroundcovered
ratiop.:ratio of background covered = - .
sthouette gy eq

An illustration is shown in Figure 3-37.

Figure 3-37 Illustration of evaluation of overall covering rate.

Another score to be calculated is the score of color symmetry, which is the index for
the color similarity between the left limb and the right limb in the configuration. This
is based on the property of color symmetry of left and right limb on human body.
RGB color space is used and the intensity values for each pixel in one color channel
are collected into a histogram with 11 bins. We separate the range of intensity value in
specific channel, which is 0 to 255, into 11 regions. They are 0~23, 24~46, 47~69,
70~92, 93~115, 116~138, 139~161, 162~184, 185~207, 208~230 and 231~255.

Hence, the color difference is calculated in a 33 dimensional feature space. Note that
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the “Integral Image” method proposed by [22] is used to accelerate the establishment
of histogram. The color difference equation is provided as follows.

dist.o10r = €xp(—10 - ||colorijmpr — coloTiimpa|)- (3.28)
The last score for calculation is compatibility of hips joints used for left and right legs.
This score is to suppress the unreasonable case with hips joints far from each other as

shown in Figure 3-38. Equation is provided as follows:

_ ||j0intleft hip — JOINLyight hip”) (3.29)
min(Widthleft&right limb)

Finally, the overall score is formulated in following equation:

diSthipS = exp<

SCOT€yperqi = SCOTEf * SCOT€Rt * SCOT€imp * SCOTCcoper * AiSteoior
(3.30)
' diSthipSi
where scorey denotes the score of face. scorey, represents score of head-torso.

Finally, score;,, means the score of all limbs.

Figure 3-38 Example of hip joints far from each other.
Configuration with maximum score will be picked out for each segment. These
configurations will be sorted in the descending sense. We can set a threshold to decide

the configurations to be used.
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Chapter 4 Experimental Results

In this chapter, our system is evaluated on a testing dataset consisting of 150 test
images sampled from two famous evaluation datasets: “lterative Image Parsing”
dataset in [23] and “Leeds Sports Pose Extended” dataset in [24].

Our system is based on a bottom-up detection scheme. Hence, the recall rates for
each body part will be evaluated. The criterion used for limb is the same as the
criterion used in [5]. The criterion for limb is that a body part is considered correctly
localized if the endpoints of its segment lie within 50% of the ground-truth length
from their actual positions. The criteria for head consists of the distance between
centers, size ratio and orientation difference. Distance between centers should be less
than the ground-truth width of head. Size ratio should be larger than 0.6 and less than
1. Orientation difference should be less than 20 degrees. The recall rate of body parts
of the best fit configuration for each testing image is also calculated. Both results are

provided in Table 4-1.

Table 4-1 Recall rates of body parts

Recall Rates of Part Recall Rates of Best Fit
Detection Configuration

Head 69.33% 52.21%
Head-torso 74.67% 71.33%
Left Forearm 44.36% 24.81%
Right Forearm 37.29% 21.19%
Left Upper-arm 38.28% 31.25%
Right Upper-arm 39.66% 23.28%
Left Shank 62.94% 42.66%
Right Shank 55.38% 51.54%
Left Thigh 55.30% 38.64%
Right Thigh 68.55% 50.00%
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With the fitting performance of body parts of the best fit configuration, we’d like
to know the score ranks of the best fit configurations. These score ranks are
represented as the histogram in Figure 4-1. In this figure, we can find most scores of
best fit configurations rank within the top ten but may still appear as an outlier. This is
because the background false alarm may collect more body part candidates than the
correct configurations; the score of a false alarm may be higher than the score of a

correct one. This is also a dilemma in pose estimation.

Histogram of score rank of the best fit configuration in all configurations
40 f L L L L L L

Number of testing data

0 10 20 30 40 50 60 70
Score rank

Figure 4-1 Histogram of score rank of best fit configuration.

On the other hand, the false alarms of head-torso can be suppressed to some
extent by introducing the face or limbs information. This effect is provided in Figure
4-2. We first choose the head-torso candidates with the highest score which fits the
ground-truth head-torso annotation. After that, we rank this head-torso candidate with

false alarm of head-torso for each testing image. This leads to the blue lines in Figure
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4-2. For the red line in Figure 4-2, we first rank the configurations by scores. After
that, we fetch out the head-torso candidates used by each configuration with the order
arranged by the scores of configurations. Finally, we find out the rank of head-torso
candidate used by the best fit configuration. In this figure, we can find that all the
values on the red line are smaller than ten. This means the information of face and
limb can enhance the correctness of head-torso candidate and suppress false alarms.
The variation on the red line is caused by the dilemma just mentioned above. A false

alarm one may collect more body parts than a correct one does.

Performance Enhancement by Face & Limb
35 F L L L L L

Head-torso rank from the rank of configurations
Head-torso rank from head-torso detection

Head-torso rank

80 100 120
Index of Testing Image

Figure 4-2 Illustration of performance enhancement by consideration of face and limb.

Finally, several real examples are provided in Figure 4-3 and Figure 4-4.The left
image is the input image. The second one shows the bounding box. The third one is

the result of segmentation. The final one is the representation of the best fit partial
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configuration. In Figure 4-3, simple background cases are considered. In Figure 4-4,

complex background cases are provided.

[] LTI LT
i '?r'u-'.!!
: Y el

Figure 4-3 Several experimental results with clear background.
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(@) (b)

Figure 4-5 Missing detection caused by failure of image decomposition.
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With the experimental results provided above, we can say that our system can
handle large pose variation and provides the correct bounding box, silhouette and
partial configuration at the same time. However, there still exist two problems. One is
that we can’t guarantee the score of the correct configuration will be the highest.
Another one is that our system is highly dependent on the performance of
segmentation. If the torso of the target human is not well segmented, as shown in
Figure 4-5, the system will fail to detect the target. Moreover, if the torso of the target
human is over segmented, the system will fail, too. This failure may be reduced by
constructing a segmentation pyramid. Note that our system can handle the case of
multiple persons if the torsos of these persons are separated into different segments

and are detected by the head-torso detectors:.
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Chapter 5 Conclusion

This thesis focuses on the detection of human with arbitrary poses and
view-points in static images. A bottom-up detection scheme is adopted with restricted
definitions of body parts. Stronger models are used to describe limb and head-torso in
order to handle the shape variation. After that, a label assignment based approach is
adopted for configuration inference to increase the endurance of occlusion and
missing parts. Furthermore, segmentation information and native property of limb are
introduced to reduce the searching space. Finally, detection results are provided with
partial pose estimation and segmentation at the same time. Currently, the system is
highly dependent on the results of segmentation, which may lead to failure in some
cases. Besides, the searching strategy used for information integration is the
exhaustive search. This introduces heavy. computational cost. Both aspects just

mentioned will be the focus of future improvement.
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