
國 立 交 通 大 學

資訊工程系

碩 士 論 文

用於球諧函數照明架構之

有效取樣與重建入射光強度之方法

Effective Sampling and Reconstruction of Incident Radiance for

Spherical Harmonic Lighting

研究生：孫毓翔

指導教授：莊榮宏 博士

中 華 民 國 九 十 四 年 七 月

ày¦×Ðóï�Úx�

b[ãø�¥�á �ú��]°

@~ß��Ò ¼0>0: �v�}ÿ

»ñø;�.£G��.�

`�

¦×Ðóï�
×Ç`�	*��Í�Èb[£Ý�îÎ�3åÕ�V��;cXÝ

G]�Ùï��ìÝYÅ��Å[��
Ý¯hÚx�|�§ãÏ��ÙXCWÝï

�[��&Æè�×Íãø�¥�ÝÚx�3�GÝ]°��Ï��ÙX�WÝá

�ú�Ðó�ÎDÄ×ÍG�§��¼í8÷µãø�H�9°øÍ#½à×Í«û

ÒbnÝÐó
�/æ�|ÿÕÎ��«N×ÍcFÝá �ú��ãyøÍÝ÷µ

]P¬��½á �ú���;��î/æ`XbÝøÍ�¡G�í��Ê
¼�á

 �ú�Ý	I�;P°�W�¥��&Æè�×Í�VqAÎ�¿¢|Cá �ú

�¼÷µøÍÝ]°�9Í]°�|¯¸àï¼�×ý0� Â�|-3øÍó��

¥�`²�
��×�¨²�EyNÍøÍ�&ÆK��×Íb[P��¸ÿá

�ú�Ý	I�;�È�b[1D�¬vè>¥�[£�

i

Effective Sampling and Reconstruction of Incident Radiance for
Spherical Harmonic Lighting

Student: Yu-Hsian Sun Advisor: Dr. Jung-Hong Chuang

Department of Computer Science and Information Engineering

National Chiao Tung University

ABSTRACT

Pre-computed radiance transfer accounting for self-shadowing and interreflection allows ob-

jects to be shaded by distant, dynamic, low-frequency lights [SKS02]. In the previous work,

incident radiance function is sampled at points uniformly selected by an off-line process, and a

radial function is then used to interpolate all samples. If lights are near to objects, or occluding

one another, a large number of samples are required. Since interpolation is performed through

all samples, locality can be likely to lose. In this thesis, we present a framework of sampling

and reconstruction in which objects can be shaded by nearby luminaries. Our work dynami-

cally selects sample points according to object geometries and nearby luminaries. The quality

of sampling is controlled by a user-specified error bound. Furthermore, the valid domain of

samples can be used as error bounds to enhance the interpolation.

ii

ACKNOWLEDGMENT

First of all, I would like to thank my advisor, Professor Jung-Hong Chuang and Mr. Wang-

Yeh Lee for their guidance, support, and inspiration throughout my master’s degree. I am

grateful to Mr. Shih-Ling Keng and Mr. Ling-Lin Shih for their comments and encouragements.

Thanks to my colleagues in CGGM lab: Chih-Chun Chen, Tan-Chi Ho, Min-Sheng Chien, Ren-

Hao Jen, Chi-Han Peng, Jong-Hon Lu, Yong-Cheng Chen, Yi-Gin Lin, Roger Hong, Cheng-

Li Hou, and Chao-Wei Juan. It is always a great pleasure to study and exchange ideas with

everyone in CGGM lab during the past two years. It is good to have my friends Chih-Hao

Liang, Chin-Min Lin, Bo-Han Li, and Jin-Jen Huang to stand by my side. Last but not least, I

would like to thank my family for their love and support.

iii

Contents

List of Figures vi

List of Algorithms viii

List of Tables ix

1 Introduction 1

1.1 Literature Review .2

1.2 Thesis Overview .3

1.2.1 Problem Statement .3

1.2.2 Contributions . 4

1.2.3 Thesis Organization .4

2 Literature Review 6

2.1 Fundamentals of Physically-Based Rendering6

2.1.1 Spherical Coordinates .6

2.1.2 Projected Area and Solid Angle .7

2.1.3 Radiometry . 8

2.1.4 Light Reflection .10

2.1.5 Formulations of Local Reflection Integral11

2.2 Reflection Integral and Spherical Harmonic Lighting12

2.2.1 Reflection Integral as a Convolution Process12

2.2.2 Orthonormal Basis Functions and Frequency Domain13

2.2.3 Fast Evaluation of Reflection Integral14

2.2.4 Precomputed Radiance Transfer .17

iv

2.2.5 Limitations of Spherical Harmonic Lighting18

2.3 Caching Techniques for Rendering .20

3 Sampling and Reconstruction of Incident Radiance 24

3.1 Framework Overview .24

3.2 Preprocessing Stage .25

3.2.1 Precomputing Radiance Transfer Coefficients26

3.2.2 Bounding Volume Hierarchy Creation28

3.3 Runtime Stage .30

3.3.1 The BVH and Its Use for Sampling30

3.3.2 The Oracle Function .32

3.3.3 Hierarchy Traversal .35

3.3.4 Incident Radiance Sampling .36

3.3.5 Efficient Reconstruction using Octree37

4 Results 40

5 Conclusion and Future Work 49

5.1 Summary .49

5.2 Future Work .50

5.2.1 GPU Acceleration .50

5.2.2 Higher-order Interpolator .50

5.2.3 Oracle Improvement .50

5.2.4 Real-time Rendering Applications .51

Bibliography 52

v

List of Figures

2.1 Notations of spherical coordinates. .7

2.2 Three types of BRDF. Left to right: diffuse, specular, glossy [DBB03].10

2.3 Visualize spherical harmonics of various bands [RH01].15

2.4 A light probe and its approximation with 9 spherical harmonic coefficients [RH01].16

2.5 A directional function and its approximation with spherical harmonics. Left to

right: the original function, and the approximation withl = (0, 2, ..., 10). The

number of coefficients are 1, 4,...,100, respectively [Gre03].16

2.6 Approximate various BRDF and lighting condition with 25 coefficients [KSS02].17

2.7 Precomputed Radiance Transfer [SKS02]. .17

2.8 ReconstructL(x, ωi) through ICP generated points.19

2.9 An example of irradiance caching [PH04]. .21

3.1 Framework Overview. .26

3.2 BVH construction for the armadillo model.30

3.3 Approximating an 1D function with discreet samples.32

3.4 If the blockers and the receiver are near, higher variations in irradiance oc-

curs [Arv94]. .34

3.5 Computing locational codes for nodes and vertices in a 2D quadtree.38

4.1 Lighting configuration in Fig. 4.2. .41

4.2 Comparisons of the armadillo model for our methods, the previous work with

ICP, and the ground truth. .42

4.3 Sampling distribution of our methods and the ICP algorithm.43

4.4 Different lighting configurations for the church model.43

vi

4.5 Comparisons of the church model for our methods withε = 0.007, ε = 0.004,

the ICP method with 256 samples, 512 samples, and the ground truth.46

4.6 Our methods detect the lighting configurations, and the sample numbers under

the same error bound are adjusted accordingly. Both lighting configurations are

rendered withε = 0.001. 47

4.7 Results of different error bounds for the Buddha model.48

vii

List of Algorithms

3.1 Computetip for a vertexp . 27

3.2 Generate uniform direction samples overS2 . 28

3.3 Recursively Build BVH forO . 31

3.4 BVH Traversal .35

viii

List of Tables

3.1 Coordinate system of each cubemap face [Ope99].37

4.1 Error and timing comparisons of the armadillo model in Fig. 4.2.41

4.2 Error and timing comparison of the church model in Fig. 4.5.44

4.3 Sample numbers and costs under different lighting configurations with our method.45

4.4 Errors and timing statistics for Fig. 4.7. .45

ix

C H A P T E R 1

Introduction

With modern graphics hardware, complex lighting and shading effects seen only in traditional

global illumination methods are now possible to be rendered in real time. One possible approach

is the precomputed radiance transfer [SKS02], which precomputes complex transfer functions

including occlusions and interreflections and encodes this function in textures as spherical har-

monic coefficients. These methods allow for fast display of static objects with complex lighting

conditions, assuming the distant light that is represented by a single environment map. However,

several restrictions limit their applicable areas. For example, the object must not be deformed,

the lighting environment can be rotated but not be translated, and the spatial relationship be-

tween two objects can not be altered. These methods, however, shed some lights on the way to

physically-based, high-quality real-time rendering on graphics hardware.

We present a framework of sampling and reconstruction that allows objects to be shaded

by nearby luminaries under the framework of precomputed radiance transfer. In the previous

work, incident radiance function are reconstructed at sample points uniformly selected by an

off-line process and are interpolated using a radial function over all samples. This method gen-

erally requires a large number of samples to fully reconstruct the incident radiance function.

Furthermore, how many samples are needed is unknown. We propose a hierarchical sampling

scheme that selects sample points according to object geometries and nearby luminaries, result-

ing in dynamically scalable image that has better quality compared to previous methods. We

also bound the errors with the valid domain of samples to better the interpolation.

1

1.1 Literature Review 2

1.1 Literature Review

Real-time rendering has lots of important applications and is currently an active research area.

Traditional graphics hardware has many restrictions. For example, light sources are limited

to point light sources. The lighting model is limited to the Phong model. As graphics hard-

ware evolves, we are possible to render a more physically-based, realistic images in real time.

To shade a point of interest, one must evaluate the local reflectance integral, which is an in-

tegration of the incident radiance functionL(x, ωi) and a bidirectional reflectance distribution

function(BRDF) that models surface reflectance properties over the entire incident hemisphere.

The BRDF is a known function, but incident radiance is not. We can separate the problem of

the evaluation of the local reflection integral into two: one is how to computeL(x, ωi) and the

other is how to efficiently compute the integral itself.

The incident radiance functionL(x, ωi) can be decomposed into direct and indirect illumi-

nations. Direct lighting can be obtained through the monte carlo integration. Indirect illumi-

nation can be obtained by global illumination algorithms such as path tracing [Kaj86], photon

mapping [Jen01], or radiosity. Indirect illumination is usually ignored in rendering algorithms

based on traditional graphics hardware due to its high computational costs, but can be computed

by performing radiosity simulation or approximated by dynamic calculations of ambient occlu-

sionsor some multi-pass rendering algorithms. Simulating the global transportation of light

requires global knowledge of the scene, which is expensive to derive. Precomputation makes

it feasible to add global illumination effects into real-time rendering applications. Daubert et

al. precomputes the interreflection between surface mesostructures and parameterize the result

with viewing and lighting direction [DKS+03]. By this way the dynamic interreflection on sur-

face can be efficiently evaluated with a few texture lookups. Hao et al. precomputes the dipole

approximation integral for subsurface scattering at many lighting directions, and store the result

with a reference point scheme to compress the data set [HV04]. Sloan et al. proposed a method

that pre-calculates self-transfers such as occlusion and interreflection and stores the transfer

function as spherical harmonic coefficients for each vertex [SKS02]. Even if we consider only

direct illumination, we still have to evaluate the local reflection integral. A physically accurate

approach to compute the integral is ray tracing with monte carlo integration, as proposed by

Kajiya [Kaj86] and Cook [CPC84]. However since we must gather radiance values from all

directions to shade a point of interest, the coherence between different rays is so low that the

1.2 Thesis Overview 3

number of rays required may be large. This leads to a slow process and is not inherently suitable

for graphics hardware. This is why most graphics hardware supports only a finite number of

point light sources. We can intuitively think that evaluating the reflection integral with ray trac-

ing is to compute the convolution of the incident radiance function and the surface BRDF in the

directional domain, which is inevitably a slow process. Ramamoorthi and Hanrahan proposed

a framework that evaluates the reflection integral in the frequency domain[RH01, RH04] and

justified the work done by Sloan and Kautz et al. [SKS02, KSS02]

1.2 Thesis Overview

1.2.1 Problem Statement

In the framework of Sloan et al. [SKS02], distant light sources are assumed and in consequence

the radiance field does not vary along surface positions. Incident radiance functionL(x, ωi) on

each pointx is represented with only a single directional functionLp(ω) in spherical harmonics,

wherep is usually the center of the shaded object. The assumption does not hold true if the

light source is not infinite far away, and such violations may result in incorrect shading. It is

indicated that the problem posed by non-distant lights could be solved by a multiple sampling

of the radiance function across the surface with ICP algorithms, but no justifications is given.

Since what we want is a correct shading result, one must take into account both the variation of

the incident radiance functionL(x, ωi) and the transfer functionT (x, ω) to decide the number

and distribution of the samples.

We developed a sampling scheme that deals with non-distant light sources. In general,

L(x, ωi) varies both in positions and directions and can be very complex due to occlusions and

complex light sources. As in [SKS02] and [AKDS04], for each sample pointxi in space we can

compute its incident radiance functionLxi
(ω) and represent it in a vector of spherical harmonic

coefficients. In this framework, eachL(x, ωi) is point-sampled in discreet pointsxi and recon-

structed from these sample points. The error introduced by the approximation is determined

by two factors: the sampling distribution and the reconstruction filter. The work by Annen

et al. [AKDS04] is a higher-order reconstruction filter. Higher-order reconstruction filters can

improve shading results, but cannot capture the local properties of the approximated function.

In the case of the incident radiance function, changes due to occlusions and complex lighting

geometries cannot be captured by higher-order reconstruction filters. To capture the local prop-

1.2 Thesis Overview 4

erties of the function, more samples must be placed at proper locations. For example, more

samples should be placed on the boundary of shadows, as in the work by Ward et al. [WRC88].

We want to address the problem of sample distribution and reconstruction. Our framework dy-

namically decides the sample number and distribution, accounting for the variation ofL(x, ω).

Since it is possible that the variation ofL(x, ω) is too high to be reconstructed in desired com-

putational cost, the framework are able to adjust the sample number, given user-specified error

bounds or computational costs.

To dynamically distribute samples and to decide the number of samples needed, a bounding

volume hierarchy of the object is created as an off-line process. During run time, we evaluate

an estimated error when the incident radiance function for each bounding volume hierarchy

node is being sampled. If the estimated error is larger than a user-specified error bound, more

samples are added and the positions of samples are determined by the hierarchy. The incident

radiance function is reconstructed from samples with the same interpolator used in Sloan et al’s

work [SKS02, AKDS04]. However, to achieve more efficient reconstruction and to capture local

variations of lighting, a valid domain is associated with each sample, and only valid samples

are used for interpolation. Moreover, the samples are inserted to an octree for efficient queries,

when they are generated.

1.2.2 Contributions

Our contributions can be concluded as follows:

• A hierarchical object-space sampling scheme for spherical harmonic lighting that sup-

ports non-distant lights.

• A spatial partitioning data structure that accelerates the reconstruction of incident radi-

ance functions.

• A mechanism that allows users to control the trade-off between the shading quality and

the rendering cost.

1.2.3 Thesis Organization

In Chapter 2, we introduce notations and the backgrounds required for our work. In Chapter 3,

we describe the framework and theoretical details of our work, while Chapter 4 demonstrates

1.2 Thesis Overview 5

the results, which are compared to previous methods, and in Chapter 5, we discuss possible

improvements and the future work.

C H A P T E R 2

Literature Review

This chapter lays the groundwork for physically-based shading on modern graphics hardware.

We start from the foundations of physically-based rendering within a traditional realistic image

synthesis framework. We then show how spherical harmonics and precomputed radiance trans-

fer allow for fast physically-based shading on modern graphics hardware. Finally, we discuss

existing techniques for caching radiance fields and their theoretical backgrounds.

2.1 Fundamentals of Physically-Based Rendering

First we introduce the physical quantities for lighting and rendering. Then we discuss the math-

ematical formulation that models the interaction between the light and the surface. Finally we

discuss how modern graphics hardware is capable of converting simulation results into dis-

playable low-dynamic-range pixels.

2.1.1 Spherical Coordinates

We are interested in quantities about light. Lighting differs from each location and each di-

rection. To define a location in space we use a Cartesian system. In this thesis we assume a

right-handed coordinate system. A point in space, usually denoted asp in this thesis, can be ex-

plicitly written as an element inR3 space,(x, y, z). To denote a vector, we use notations with an

arrow above an English alphabet, like~s. For pure directional quantities, we simply use the term

direction. In this thesis we denote a direction asω, and a differential solid angle around a certain

direction asdω. Solid angle will be introduced later. The set of all possible direction, which

6

2.1 Fundamentals of Physically-Based Rendering 7

*

+

,

/

-

.

Figure 2.1: Notations of spherical coordinates.

can be imagined as directions from the origin to surface points on a unit sphere, is denoted as

S2. When calculating a point’s outgoing radiance due to reflection, we only get interested the

upper hemisphere above the plane formed by the normal at the point of interest. We denote the

set of directions of the upper hemisphere asΩ. Though a direction is an unique element inS2

domain, in practice we often parameterize the directional domain into horizontal angle,φ, and

vertical angle,θ, as shown in Fig. 2.1. The vertical angleθ is the angle between the direction

vectorω andz-axis. The horizontal angleφ is the angle between the projection ofω onto thexy

plane and thex-axis. Most directional functions, such as spherical harmonics, can be explicitly

defined as a function overθ andφ. To convert between the angle notation(θ, φ) and normalized

Euclidean vector notationω = (x, y, z) we use the following relations:

cosθ = z; θ = cos−1(z);

sinθ cos φ = x; φ = tan−1(
y

x
);

sinθ sin φ = y.

2.1.2 Projected Area and Solid Angle

Projected areais defined as the orthogonal projection of a surface of any shape onto a plane

with a unit vectorv as normal. The differential form isdAproj = cos(θ)dA, whereθ is the angle

between the local surface normal and the unit vectorv. We can integratedAproj over the visible

surface area to get the total projected area:

Aproj =

∫
A

cosθdA.

2.1 Fundamentals of Physically-Based Rendering 8

Solid angleis an extension of plane angle from two dimensions to three dimensions. Recall the

definition of a plane angle is “One radian is the plane angle between two radii of a circle that

cuts off on the circumference an arc equal in length to the radius.” And the definition of a solid

angle is extended to: “The solid angle subtended by an object from a pointP is the area of the

projection of the object onto the unit sphere centered atP [SP94]”. Solid angle is expressed in

steradians (sr). The solid angle subtended by the whole sphere is4π sr, that is, the entire area of

a unit sphere. The solid angle of an object is thus the area of the projection of the object onto a

unit sphere. Note that two objects different in shape can still subtend the same solid angle. We

can think of the differential solid angle as representing both a direction and an infinitesimal area

on the unit sphere. We usedω to denote the differential solid angle around a certain direction

ω. Sometimes given a pointP in space, we need to convert between differential solid angle

and differential surface area. Letr be the distance betweenP and the differential areadA, and

θ is the angle between normal ofdA and the vector fromdA to P , the differential solid angle

subtended bydA is:

dω =
cos θdA

r2
. (2.1)

If dAs is a small differential surface element on a sphere of radiusr, then

dAs = r2sinθ dθdφ,

and

dω =
dAs

r2
= sinθdθdφ.

2.1.3 Radiometry

Physically-based rendering is the simulation of light. The basic terminology to describe light is

radiometry, a measurement of optical radiation, which is electromagnetic radiation within the

frequency range between3∗1011 and3∗1016 Hz. This range corresponds to wavelength between

0.01 and 1000 micrometers (µm) and includes the regions commonly called the ultraviolet, the

visible, and the infrared.

The most basic quantity in radiometry is the photon. The energyeλ of a photon with wave-

lengthλ is

eλ =
hc

λ
,

whereh ≈ 6.63 · 10−34J · sec is Planck’s constant, andc is the speed of light.eλ is measured in

joules (J).

2.1 Fundamentals of Physically-Based Rendering 9

Spectral radiant energyQλ in nλ photons with wavelengthλ is

Qλ = nλeλ = nλ
hc

λ
.

Radiant energyQ is the energy computed by integrating the spectral radiant energy over all

possible wavelengths:

Q =

∫ inf

0

Qλdλ.

Radiant fluxor radiant powerΦ describes the flow of radiant energy per unit time:

Φ =
dQ

dt
,

wheret is measured in second. Radiant flux is often just called flux.

Radiant flux densityM or B or E is defined as the differential flux per differential area at

certain surface locationx:

M(x) = B(x) = E(x) =
dΦ

dA
,

whereM is referred to as radiant existence, which is the flux leaving a surface,B is referred

to radiosity, which is exactly the same as radiant existence; andE is referred to as irradiance,

which is the flux arriving at a surface.

Radiant intensityI is defined as the differential flux per differential solid angledω:

I =
dΦ

dω
.

The essential measurement used in the context of rendering isradiance, L, defined as the dif-

ferential flux per differential projected area per differential solid angle:

L =
d2Φ

cosθdAdw
=

dE

cosθ dω
.

Radiance can be described by a five-dimensional function (three for the position and two for

the direction) per wavelength, usually written asLλ(x, ω). It is the most important quantity in

radiometry, since it could most closely represent the color of an object. Most light receivers,

such as cameras and the human eye, are sensitive to radiance, while the response curve of

these sensors may be different. In practice, we often simplify per-wavelength calculation into

tristimulus values,LR(x, ω), LG(x, ω), andLB(x, ω). In this thesis, we simply useL(x, ωi) and

did not distinguish between them, though in the implementation we have to process these three

values, respectively.

2.1 Fundamentals of Physically-Based Rendering 10

2.1.4 Light Reflection

In this section we introduce the theoretical framework used to model the interaction between

light and object surfaces. Radiant energy will be scattered or absorbed by surfaces. We consider

only reflection here.

Reflection is a behavior that light enters and leaves the material at the same point on the sur-

face. The amount of energy been reflected can be modeled by a six dimensional function called

bidirectional reflectance distribution function, or BRDF. BRDF is the ratio between irradiance

and outgoing radiance, usually denoted asρ [DBB03]:

ρ(x, ωi, ωo) =
dL(x, ωo)

dE(x, ωi)
,

wherex is the 2D position on the surface,ωo is the differential solid angle around outgoing

direction of radiance,ωi is the differential solid angle around incident direction of irradiance.

BRDF becomes a 4D function for a given surface location, and a 2D directional function if we

fix both the surface location and outgoing direction. We denote a BRDF with fixed outgoing

direction asρωo(x, ωi) and a BRDF with both outgoing direction and surface location fixed as

ρpωo(ωi). BRDF can be roughly categorized into the following three types, as shown in Fig. 2.2:

diffuse Reflect light uniformly over the entire reflecting hemisphere. The BRDF is simply a

constant, also known as the Lambert’s model.

specular A perfectly mirror surface that reflects incident radiance into mirror directions. The

BRDF is a Dirac delta function.

glossy Most surfaces are neither ideally diffuse nor ideally specular and are called glossy sur-

faces. Their BRDFs are much more complex.

Figure 2.2: Three types of BRDF. Left to right: diffuse, specular, glossy [DBB03].

2.1 Fundamentals of Physically-Based Rendering 11

Given a pointx on the surface, the incident radiance functionL(x, ωi) at the pointx, and the

BRDF ρ(x, ωi, ωo), we are interested in computing the outgoing radianceL(x, ωo) on a given

directionωo. We start from the definition of BRDF, integrate over the hemisphere of directions

on the right side, finally arriving at thelocal reflection integral[RH04]:

ρλ(x, ωi, ωo) =
dL(x, ωo)

dE(x, ωi)

dL(x, ωo) = ρλ(x, ωi, ωo)dE(x, ωi)

L(x, ωo) =

∫
Ωx

ρλ(x, ωi, ωo)dE(x, ωi)

L(x, ωo) =

∫
Ωx

ρλ(x, ωi, ωo)L(x, ωi)cos(Nx, ωi)dω, (2.2)

whereNx is the surface normal at the pointx, andΩx is the hemisphere around the surface

normalNx. The reflected radiance field is given by the integral above. It is an important formula

for rendering and will be evaluated at each shading point. As we can see, it is an integration

of the incident radiance function and the surface BRDF weighted by the projected area over all

possible directions inΩ.

2.1.5 Formulations of Local Reflection Integral

The local reflection integral can be rewritten in various forms. In previous section we introduced

a form that integrate over the hemisphere. This is called thehemispherical formulation. Another

possible form is thearea formulation[AKDS04]. In this formulation we consider the surfaces

of objects in the scene that contribute to the incoming radiance at a pointx. We integrate over

all surface points on the scene surfaceA, taking the occlusion and geometry relationship into

account. The occlusion can be modeled as a binary visibility function between two pointsx and

y [DBB03]:

V (x, y) =

1 if x andy are mutually visible,

0 if x andy are not mutually visible,
∀x, y ∈ A.

The geometry relationship of two surface pointsx andy, called the geometry term [DBB03],

is:

G(x, y) =
cos(Nx, Ψ)cos(Ny, Ψ)

r2
xy

,

whereNx andNy are surface normals at pointx andy, respectively, andΨ is the normalized

unit vector fromx to y. With the geometry term and the visibility function, we can write the

2.2 Reflection Integral and Spherical Harmonic Lighting 12

local reflection integral as:

L(x, ωo) =

∫
A

L(x, ωi)ρ(x, ωi, ωo)V (x, y)G(x, y) dAy.

The area formulation is useful in computing the lighting from nearby geometries, while

the hemispherical form is easier to analyze in the frequency domain. We will have further

discussion in the next section.

2.2 Reflection Integral and Spherical Harmonic Lighting

Computing the reflection integral in the frequency domain is an efficient approach. To see why

and how this works, we will first show that the reflection integral can be viewed as a convolution

in the directional domain. Then we will demonstrate that through orthonormal basis functions,

we can project functions defined in the directional domain into the frequency domain, where

convolution simply becomes a multiplication. The frequency domain analysis of reflection

integral is thoroughly elaborated in the work of Ramamoorthi et al. [RH04].

2.2.1 Reflection Integral as a Convolution Process

The definition of convolution of two functionsf(x) andg(x) is given as:

f(x)⊗ g(x) =

∫
f(x)g(t− x) dx.

Convolution is usually performed in the entire domains off(x) andg(x). In the domain of real

numbers, we integrate over[−∞,∞]. In the directional domain, the entire sphere of directions,

S2, is considered instead. Moreover, we can generalize the notion of convolution to some other

transformationRt [RH04], whereRt is a function oft and write

(f(x)⊗ g(x))(t) =

∫
x

f(x)g(Rt(x)) dx.

WhenRt is a rotation by anglet, the above formula defines the convolution in the angular

domain. In the case of reflection, there is no value on the hemisphere below the surface; hence

we integrate only overΩ, the upper hemisphere.

As in [SKS02], we define atransfer functionTp,ωo(ωi) for a given pointp on surface and

a give viewing directionωo as the multiplication of the binary visibility functionVp(ωi) repre-

senting the occlusion at pointp, the BRDFρp,ωo(ωi), and the projected solid anglecosθ. For

2.2 Reflection Integral and Spherical Harmonic Lighting 13

diffuse surfaces, the BRDF does not depend on the viewing direction, so we can discard theωo

term in the transfer function. Note thatVp(ωi) is defined as the self occlusion of the object:

Vp(ωi) =

1 if p is not occluded in directionωi,

0 if p is occluded in directionωi.

Now the transfer function for diffuse surfaces is:

Tp(ωi) = Vp(ωi)ρp(ωi)cosθ. (2.3)

To see why Equation (2.2) can be seen as a convolution, we can rewrite Equation (2.2) as the

multiplication of the incident radiance function and the transfer function:

Lp(ωo) =

∫
Ω

Lp(ωi)Tp(R0(ωi))dωi (2.4)

= Lp(ωi)⊗ Tp(ωi), (2.5)

wherep is the point of interest andR0 is an identical rotation.

We can now considerLp(ωo) as a convolution of the incident radianceLp and the trans-

fer functionTp. Intuitively, a convolution in spatial domain will become a multiplication in

frequency domain. To transformLp andTp into the frequency domain, we need a set of ortho-

normal basis functions that span the entireΩ domain.

2.2.2 Orthonormal Basis Functions and Frequency Domain

A pair of functionsfi(x) andfj(x) are said to be orthonormal to each other if they are normal-

ized and orthogonal to each other. A functionfi(x) is normalized if∫ b

a

fi(x)fi(x) dx = 1.

Two functionsfi(x) andfj(x) are said to be orthogonal to each other if∫ b

a

fi(x)fj(x) dx = 0.

We may say that if a set of function{fi(x)} are orthonormal to one another, then the convolution

of any two functionsfi andfj in the set is exactly a Kronecker delta functionδij:

∫
fi(x)fj(x) dx = δij =

1 if i = j,

0 if i 6= j.

2.2 Reflection Integral and Spherical Harmonic Lighting 14

Let {Bi(x)} be a complete set of orthonormal functions. Assume thatBi(x) andf(x) have

the same range. The functionf(x) can be expanded as

Fi =

∫
f(x)Bi(x) dx, (2.6)

where

f(x) =
∑

i

FiBi(x). (2.7)

We say thatFi are the coefficients obtained by projectingf(x) onto the basis functionsBi(x).

After projecting two functions,f(x) andg(x), onto the same set of basis functions, the convolu-

tion of f(x) andg(x) will become the sum of products of their respective coefficients [NRH04],

that is,

f(x)⊗ g(x) =

∫
f(x)g(x)dx

=

∫ (∑
i

FiBi(x)

)(∑
j

GjBj(x)

)
dx

=
∑

i

∑
j

FiGj

∫
Bi(x)Bj(x) dx

=
∑

i

∑
j

FiGjδij

=
∑

i

FiGi. (2.8)

If we projectLp andTp in Equation (2.2) onto some basis functions over the hemispherical

domain, the integral will become simply a dot product between their coefficients. Such a set of

functions asBi(x) is called spherical harmonic functions.

2.2.3 Fast Evaluation of Reflection Integral

Spherical harmonics is used extensively in computational chemistry and introduced to the con-

text of computer graphics by Cabral et al. [CMS87]. They form a complete orthonormal basis

set forS2 domain. Spherical harmonics, denoted asY l
m here, are actually the product of terms of

Fourier basis functionscosθeimφ, associated Legendre polynomialsP
|m|
l , and a normalization

factorKm
l , as follows:

Y m
l (θ, φ) = Km

l P
|m|
l (cosθ)eimφ.

The indexing variablel ≥ 0 and−l ≤ m ≤ l can be thought as the frequency of the basis

function, wherem controls the frequency in horizontal directions. Since−l ≤ m ≤ l, we can

2.2 Reflection Integral and Spherical Harmonic Lighting 15

Figure 2.3: Visualize spherical harmonics of various bands [RH01].

combinel andm into a single indexing variablei with i = l(l + 1) + m, wherei ≥ 0. Though

Yi forms a complete system only wheni→∞, most directional functions can be approximated

by a small number of basis functions.

To compute the exact value of a spherical harmonicYi at certain direction, we must evaluate

the associated Legendre polynomial, multiplied by the normalization factor and terms of Fourier

basis function. Normalization term is defined as follows [Gre03]:

K l
m =

√
(2l + 1)

4π

(l − |m|)!
(l + |m|)!

.

Pm
l (x) is computed with the following recursion rules [Gre03]:

Pm
m = (−1)m(2m− 1)!!(1− x2)m/2 (2.9)

(l −m)P l
m = x(2l − 1)Pm

l−1 − (l + m− l)Pm
l−2 (2.10)

Pm
m+1 = x(2m + 1)Pm

m (2.11)

Both Rule (2.10) and (2.11) can be used to compute a higher band (with largerl) solution from

a lower band one. Rule (2.11) introduces more floating point roundoff error and Rule (2.10)

is used whenever possible. Rule (2.9) is the termination rule of the recurrence relation, and

k!! means the product of all odd integers less than or equal tok. Fig. 2.3 visualizes spherical

harmonics withl = (0, 1, 2). Sincem ≥ −l andm ≤ l, there are nine spherical harmonic func-

tions. Positive values are in green and negative values are in blue. To project a known function

defined over all directions,f(ω), onto spherical harmonic coefficients, one usually evaluates

the integral in Equation (2.6) with numerical methods like the quadrature rule. Fig. 2.4 demon-

strates projecting an environmental map that represents incident radiance from the surrounding

environment onto spherical harmonic coefficients, and reconstruct the map using Equation (2.7).

Note that how sharp lighting details are blurred, since only 9 coefficients are used to approx-

imate the environmental map. As the number of coefficients increases, we can preserve more

on sharper features. This is shown in Fig. 2.5. At first a small number of coefficients seems to

2.2 Reflection Integral and Spherical Harmonic Lighting 16

Figure 2.4: A light probe and its approximation with 9 spherical harmonic coefficients [RH01].

Figure 2.5: A directional function and its approximation with spherical harmonics. Left to right:

the original function, and the approximation withl = (0, 2, ..., 10). The number of coefficients

are 1, 4,...,100, respectively [Gre03].

be a very rough approximation, but taking surface material into consideration, it is often suf-

ficient. In [RH01], it is shown that for Lambertian surfaces, nine coefficients are sufficient. It

is proved that for lambertian surfaces, the error introduced by this approximation is negligible

in [RH04]. Kautz et al. proposed a method that stores the spherical harmonic coefficients of

BRDF ρωo(x, ωi) on a texture[KSS02], parameterized by viewing angleωo, to represent arbi-

trary BRDF. The result is shown in Fig. 2.6. In their work, 25 spherical harmonic coefficients

is sufficient to represent surfaces from perfect lambertian to anisotropic glossy metallic one for

each viewing direction. However, their method cannot handle specular surfaces.

Now we know that the reflection integral is a convolution of the incident radiance function

and the transfer function. We can evaluate the convolution by projecting both functions onto

spherical harmonics to obtain two vectors of spherical harmonic coefficients, and the reflected

radiance becomes the dot product of two coefficient vectors as Equation (2.8) shows. If we

assume all emitters are infinitely far away, then the incident radiance function does not depend

on the position. This is an assumption commonly used in environmental-map based rendering

techniques. Now the the incident radiance function can be represented by a vector of spherical

2.2 Reflection Integral and Spherical Harmonic Lighting 17

Figure 2.6: Approximate various BRDF and lighting condition with 25 coefficients [KSS02].

Figure 2.7: Precomputed Radiance Transfer [SKS02].

harmonic coefficients, and can be quickly convoluted. Since the transfer functionTωo(x, ωi) is

different at each shading point, we must precomputed them. In the next section, we introduce

previous works on precomputing the transfer function.

2.2.4 Precomputed Radiance Transfer

Various representations may encapsulate precomputed or acquired global illumination solu-

tions. Light maps store radiosity simulation results in surface diffuse textures and add global il-

lumination to interactive 3D environments. Surface light fields [CBCG02] record 4D exiting ra-

diance sampled over an object’s surface, but both the emitters and the scene must remain static.

Horizon map [Max88] stores precomputed visibility information for surface micro-geometry,

which can efficiently render self-shadowing effects. Polynomial texture maps [MGW01] fit

acquired or precomputed surface BRDF into polynomial functions of incident light vector, al-

lowing for real-time interreflection effects. However, both horizon map and polynomial texture

map are limited to point light sources, since for area light sources costly multi-pass rendering

is required. As shown in Fig. 2.7, Sloan et al. [SKS02] precompute the transfer function for

each vertex, and compute the dot product on graphics hardware, resulting in real-time rendering

with effects like occlusions and interreflections on modern graphics hardware. They callT the

2.2 Reflection Integral and Spherical Harmonic Lighting 18

radiance transfer function or simply the transfer function, and we follow their denotation.

The precomputed radiance transfer framework proposed by Sloan et al. [SKS02], also known

asspherical harmonic lighting[Gre03] that computes Equation (2.2) on frequency domain by

projecting both the incident radiance function and the transfer function onto spherical harmonic

basis functions. Sloan’s work extends the work of Ramamoorthi et al. [RH01], which consid-

ers only diffuse surface and precomputes self-shadowing and self-interreflection. Their goal is

to shade a object with an environmental map as distant light sources in real time. They also

separate surface BRDFs out from the transfer function, thus allowing dynamic changes of sur-

face materials. The framework is further extended by various researchers to address arbitrary

BRDFs [KSS02] and compress high-dimensional transfer functions by clustered principal com-

ponent analysis [SHHS03]. To prevent the transfer function from being recomputed when the

surface BRDF is changed, they further decouple the BRDF from the transfer function. By this

way the dot product becomes a matrix multiplication. For details, see [SKS02] and [SHHS03].

Ng et al. [NRH04] use haar basis functions defined on directional domain instead of spherical

harmonics to handle all-frequency lighting conditions, including specular reflections.

2.2.5 Limitations of Spherical Harmonic Lighting

Though spherical harmonic light provides an efficient way for representing and computing radi-

ance functions, it has its weaknesses and limitations. Spherical harmonics is very inefficient for

high-frequency lighting conditions such as point light sources and perfect specular reflections.

Hence, the scene must remain static, and only infinitely far environmental light sources can be

handled.

Spherical harmonic lighting cannot handle point light sources and specular reflections be-

cause of its frequency domain nature. Remember that though{Yi} forms a complete ortho-

normal basis system,{Yi} is a infinite set; and in practice we can only compute a finite set of

coefficients to represent functionf(ω) defined over the directional domain, such as the incident

radiance function at some pointp. If f(ω) contains high frequency components, a finite set

of coefficients can not be able to accurately representf(ω). Point light sources and specular

reflections are Dirac delta functions in directional domain, thus requiring an infinitely large

number of coefficients. Therefore spherical harmonic lighting is suitable for slow varying, low-

frequency lighting conditions. Luckily most natural lighting environments satisfy this condi-

tion. To overcome this problem, we can choose another set of basis functions that can represent

2.2 Reflection Integral and Spherical Harmonic Lighting 19

(a) Ground truth (b) Sample location (c) Result of reconstruction

Figure 2.8: ReconstructL(x, ωi) through ICP generated points.

high-frequency signals more efficiently, as in [NRH04] and [LSSS04].

The second limitation is the nature of precomputation. Since the transfer function are pre-

computed over an object, once the object is deformed, the precomputed coefficients are in-

valid. One possible solution is to encode all possible deformations in advance and use principal

component data reduction to relate pose deformation to the change of transfer function coef-

ficients [JF03]. However this solution is only applicable to objects that are not deformed too

much–rubber models, for example.

The third limitation, also the problem we’d like to address in this thesis, comes from the

fact that we assume that emitters are infinitely far away. If there are emitters near the object

being shaded, the incident radiance functionL(x, ωi) may vary rapidly alongx. The previous

work [SKS02] simply stated that we may solve this problem through multiple samples over

objects and interpolate through linear combinations of coefficients with the following Equa-

tion [AKDS04]:

Lp =
∑

i

wiLi, (2.12)

where

wi =

1
‖p−xi‖b∑
j

1
‖p−xj‖b

. (2.13)

In Equation (2.13),x is the location of a sample point,Li is a coefficient of a sample, and

b controls the locality of reconstruction result. Both [SKS02] and [AKDS04] distribute the

sample with iterative closest point algorithm(ICP) [LBG80], which is a vector quantization

algorithm also known as LBG because of its inventor. This algorithm distributes samples evenly

2.3 Caching Techniques for Rendering 20

across all vertices, though the samples are unnecessarily fall on mesh surface. While this may be

a good choice if the emitter is not close to the object, it does not give any relationship between

the quality, the number of samples, and error bounds. As the emitters draw near to the object

or occluding one another, very large number of samples are required to capture the local details

of the incident radiance. SinceL(x, ωi) is reconstructed by interpolating all sample points,

reconstruction is slow when there are many samples. The effect ofb in Equation (2.13) relies

on the distance between samples, which is hard to control and predict. As shown in Fig. 2.8, the

armadillo model is illuminated by two distant bluish light sources and one yellow nearby light

source. Though 64 samples are used, the lighting near the head of armadillo is missing. Ground

truth is obtained by samplingL(x, ωi) at every vertex.

Another problem introduced by non-distant light sources is that transfer function stores only

self-occlusion or self-interreflection information. If the emitter intrudes the object’s convex hull,

or there are multiple objects close to one another, the precomputed transfer function becomes

invalid. In this thesis we address the problem of varyingL(x, ωi). The problem of invalid

T (x, ωi), however, may need further investigation.

2.3 Caching Techniques for Rendering

Computing the exact valueL(x, ωi), whether or not indirect illumination is included, is a rather

expensive operation. There are several ways to accelerate this operation, including precompu-

tation and sparse sampling. We discuss sparse sampling here.

The idea behind sparse sampling can be considered as a function approximation from dis-

crete sample points.L(x, ω) is an unknown function, but can be evaluated at certain points

(xi, ωi) wherexi ∈ R3 andωi ∈ S2. We can construct another functionL′(x, ω) from each

point (xi, ωi), trying to minimize the difference betweenL andL′. The difference between two

functionf(x) andg(x) is usually measured byLp norm, as defined in [Wat80]:

normp(f, g) =‖ f − g ‖p=
(∫

| f(x)− g(x) |p
)−p

.

The error introduce by the approximation is related with three factors: the number of samples,

the filter used to reconstruct the function, and the distribution of samples. Increasing the sample

density or simply the sample number leads to better approximation at the expense of higher

sampling costs. If function sampling is expensive, then we should avoid evaluating too many

2.3 Caching Techniques for Rendering 21

(a) Scene rendered with irradiance caching (b) Distribution of caches

Figure 2.9: An example of irradiance caching [PH04].

samples; and proper sample distribution becomes important. After evaluating samples, to con-

struct the approximating function, we must apply some kind of interpolator or filter to existing

samples. Possible choices include linear combination and piecewise polynomial approximating

functions. In general, high order interpolator gives smooth results, but needs more samples

as input and extra computational costs. Several methods exploiting the sparse sampling over

spatial domain. We briefly introduce them since they are somehow related to our work. Ward

et al. [WRC88] proposed a method that greatly improves the rendering speed for ray tracing

diffuse surfaces. The idea is to sparsely sample the incident indirect irradiance function over

surfaces. In diffuse environments, irradianceEindirect(x) due to indirect illumination cannot

change rapidly, hence justifing the motivation of sparse sampling. To decide the sample distri-

bution, Ward et al. proposed a split sphere model that decides the valid domain of each sample

point, which is calledirradiance cachein their work. The split sphere model has the largest gra-

dient possible for an environment without concentrated sources. During the ray tracing process,

at each shading pointp (the first hit point of primary ray), they check if there is any usable

cache nearby. Nearby usable caches are then used to interpolate the irradiance atp. If there is

no usable cache nearby, a new cache is generated atp and stored into an octree constructed from

scene geometry for efficient queries. Since each cache generation involves computing irradi-

anceE(p) at p which dominates the computational costs of ray tracing diffuse environments,

we can control the quality and speed by scaling the valid domain of each cache. The irradiance

2.3 Caching Techniques for Rendering 22

caching is very suitable for rendering scenes containing numerous diffuse objects. Note that

cache distribution is decided by the ray tracing order of pixels and the valid domain of each

cache, although the caches themselves are stored inR3 space. As shown in Fig. 2.9, caches are

placed densely where indirect illumination changes rapidly, e.g., corners of walls. The blocky

artifacts on the pillars and walls due to insufficient sampling can be compensated by computing

gradients of irradiance during cache sampling and by using the gradients when interpolating

irradiance values [WH92].

In [WRC88], they reconstruct the irradianceE(x) at each point of interestx as the weighted

sum of irradiance valuesEp of caches [PH04]:

E(x) =

∑
p wpEp∑

wp

,

wherewp =
(

dmax(Np·Nx)−‖x−p‖
dmax(Np·Nx)

)2

, anddmax is a user-specified upper bound of cache’s valid

domain.

While the irradiance caches are stored inR3 space separated from the scene geometry,

they represent irradiance of each single point on a surface. These information may become

invalid as we move away from the sample position, or the surface normal is rotated. Irradiance

volume [GSHG98] generalizes the idea of irradiance caching by storing irradiance values for all

possible directions of normals at each sample point (densely sampled for around 200 directions)

and arranging sample points in a bilevel uniform grid. Also, irradiance volume stores both

direct and indirect irradiance, while irradiance cache stores only indirect irradiance. Greger

et al. [GSHG98] define asemi-dynamicenvironment in which most surfaces are stationary,

and a few dynamic objects are small relative to the scale of the environment. For example,

positioning a piece of furniture in an architectural application would fall into this category.

With irradiance volume, not only irradiance on existing surfaces can be interpolated, but also

a few dynamic objects moving in this semi-dynamic environment can be shaded by irradiance

volume computed from the stationary geometries. However, a few moving objects cannot affect

the shading results of the stationary geometries, since the irradiance volume is precomputed and

static.

The sample density in an irradiance volume is decided by the number of primitives falling

inside a grid cell. If the number of primitives inside a grid cell exceeds some user-specified

limit, the cell is further divided into another uniform grid, resulting in a bilevel uniform grid.

The sample positions are corner points of grid cells. To shade a pointp with normalNp, one

2.3 Caching Techniques for Rendering 23

must query the irradiance volume to find its corresponding irradiance. To query the irradiance

at p with normalNp, the cell containingp is accessed to find the sample values corresponding

to the directionNp. Since the cell has eight corner points, a trilinear interpolation is used to

reconstruct the final irradiance from the eight values retrieved from the cell. Unlike Ward et al’s

work, irradiance volume gives no error bounds for the interpolation.

Both irradiance caching and irradiance volume require a long computational time, and the

sampling is done off-line. On the other hand, our work targets interactive 3D environments

under the framework of spherical harmonic lighting. Moreover, since irradiance cache and

irradiance volume store irradiance rather than directional radiance, they are limited to diffuse

environments. Our work adopts the idea of the valid domain from irradiance caching, but use a

different sampling strategy. Irradiance caching places the sample points in the progress of ray

tracing, whereas our method distributes our samples as the object hierarchy is traversed. Our

method has some similarities with irradiance volume as we both place samples inR3 rather than

on object surfaces. Unlike irradiance volume, we dynamically determine the sample distribution

and the number of samples; and sample the incident radiance function at runtime. Also, we store

directional radiance values (in spherical harmonic coefficients) rather than irradiance values,

and in consequence, the method can be extended to glossy materials as in [KSS02].

C H A P T E R 3

Sampling and Reconstruction
of Incident Radiance

3.1 Framework Overview

For distant lights, the incident radiance functionL(x, ωi) could not change a lot aroundx and

hence vertices can use the same incident radiance coefficients. For non-distant lights, this is

no longer true. Our goal is to incorporate non-distant light sources to the spherical harmonic

lighting. To prevent from sampling the incident radiance at each vertex, we use the sparse

sampling and from which to reconstruct the spherical harmonic coefficients ofL(p, ω) for a

vertexp. Spare sampling is error-prone, but the error will be decreased when the number of

samples increases. The problems are that we have to decide where should the samples be

placed and when to stop sampling. To dynamically distribute samples and decide the required

number of samples, a bounding volume hierarchy (BVH) of the object is constructed during the

preprocessing stage. At runtime we traverse the hierarchy, and at each node of the hierarchy,

we sample the incident radiance and compute an estimated error. If the error is lower than a

user-specified error bound, we stop traversing the hierarchy and terminate the sampling stage.

After stopping traversing the hierarchy, the spherical harmonic coefficient vectors representing

the incident radiance of every vertices are then reconstructed from those sparse samples.

Previous methods interpolate all samples for the value at a vertex [SKS02, AKDS04]. If

the number of samples is larger than a hundred or more, interpolating through all samples

becomes very slow. In our framework, to preserve the locality of lighting and to accelerate

24

3.2 Preprocessing Stage 25

the reconstruction speed, each sample is associated with a valid domain. During reconstructing

the coefficient vector for the incident radiance at a vertex, only samples whose valid domain

contains the vertex will be considered.

Our framework considers the whole scene geometry as a static object that can be lit by

dynamic emitters. Both the object and the emitters are represented by triangle meshes. The

scene geometry is denoted asO. Geometry of emitters is denoted asGl. A emitter can be

placed at any position as long as it does not intrude the convex hull ofO. The size of an emitter

should be large enough, since spherical harmonic lighting prefers area light sources and cannot

handle point light sources.

As shown in Fig. 3.1, our framework consists of a preprocessing stage involvingO and a run-

time stage that involves bothO andGl. The preprocessing stage computes the transfer function

for each vertex inO and build an axis-aligned bounding volume hierarchy forO. At runtime the

incident radiance function is dynamically sampled and reconstructed. Thus the runtime stage

can be further divided into two stages. The first stage is a breadth-first traversal of the BVH

aiming to determine the number and the distribution of samples by means of the oracle described

in section 3.3.2; and to sample the incident radiance function at the same time. Sampling

L(xi, ω) at a sample positionxi is performed with hardware cubemaps and is described in

Section 3.3.4. The second stage reconstructs the vector of spherical harmonic coefficients~lp

representing the incident radiance function at every vertexp in O by querying the octree data

structure and then evaluates the reflection integral for each vertex using Equation (2.8), which

is discussed in Section 3.3.5. Shading is calculated with spherical harmonic lighting. The final

displaying is done with graphics hardware.

3.2 Preprocessing Stage

The preprocessing stage takes the scene’s geometryO as the input. No prior knowledge of

emittersGl is required. The result is a vector of spherical harmonic coefficients for transfer

function at each vertexp in O, and a BVH ofO. The BVH is organized as an binary tree

flattened to an array. Each BVH node stores information for sampling and error estimation such

as an averaged position of vertices, radius of bounding box, etc.

First we explain in Section 3.2.1 how to compute the transfer function and its spherical

harmonic coefficient vector for each vertex, then in Section 3.2.2 we show how to build the

3.2 Preprocessing Stage 26

Figure 3.1: Framework Overview.

BVH.

3.2.1 Precomputing Radiance Transfer Coefficients

We precalculate the transfer functionTp(ω) for each vertexp of O and projectTp(ω) onto

spherical harmonic basis functions as in [SKS02]. The result is a series of spherical harmonic

coefficients, denoted astip for each spherical harmonic indexi and each vertexp. We denote the

vector formed by these coefficients as a function~t(p) defined over all vertices or the function

value~tp at the vertexp. The transfer function is defined as the product of local surface BRDFρ,

the projected solid anglecosθ, and the visibility functionV (p, ω) formed byO’s self occlusion.

3.2 Preprocessing Stage 27

Algorithm 3.1: Computetip for a vertexp
input : Vertexp and its normalNp and object geometryO

output: tip for p

Φ← GenerateUniformDirectionSample(
√

numberOfRay) ;1

for i← 0 to 15 do2

tip ← 0;3

foreachω = (θ, φ) ∈ Φ do4

convertω into Cartesian coordinateω′;5

ray.origin← p;6

ray.direction← ω′;7

vis← IntersectionTest(O, ray) ;8

tip = tip + Yi(ω)(Np · ω′) · vis;9

tip =
4tipπρp

numberOfRay ;10

Now Equation (2.2) at each vertexp of O,

Lp(ωo) =

∫
Ω

Lp(ω)V (p, ω)ρ(ωo, ω)cosθdω,

can be rewritten as

Lp(ωo) =

∫
Ω

Lp(ω)Tp(ω)dω,

whereTp(ω) is equal toV (p, ω)ρ(ωo, ω)cosθ. Here we assume homogeneous materials across

the object, and in our current implementation, the BRDFs are simply lambertian materials,

which is a constant value, denoted asρo, over the entire object. Note that the simple lambertian

model can be further extended to arbitrary materials as in [KSS02]. The BRDFs should be wave-

length dependent, but in our implementation we approximate them by tristimulus channels; so

there will beTpr, Tpg, Tpb, totally 3 functions to be projected on to spherical harmonic basis.

Since the lamebertian model is simply a constant for each channel, we post-multiply the transfer

functions with the material’s diffuse reflectivity. We computeV (p, ω) for eachp in O by ray-

casting 6400 rays in uniformly sampled directions onS2; see details in algorithm 3.2.

We project the transfer functionTp(ω) at vertexp onto a set of bandsi of spherical harmonic

3.2 Preprocessing Stage 28

Algorithm 3.2: Generate uniform direction samples overS2

input : An integer
√

N , square root of the number of samples desired.

output: Φ, A set of directions(θi, φi).

/ * ξ1 and ξ2 are uniform random variables. * /

for i← 0 to N do1

φ← 2πξ2;2

θ ← arccos(1− 2ξ1);3

Φ← (θ, φ) ∪ Φ;4

functionsYi(ω) to yield coefficienttip in bandi using the following equation

tip =

∫
S2

V (p, ω)ρocosθYi(ω) dω

=
4π

N

∑
V (p, ω)ρocosθYi(ω)

=
4πρo

N

∑
V (p, ω)cosθYi(ω),

whereθ is the angle between the surface normal atp and the ray directionω. The number

of bands effects the accuracy of the reconstructed transfer functionT̃p from tip. We use 16

bands (l = 4) for the approximation, where each band is represented by an IEEE 32-bit float-

ing point number. Note that alltip are computed under the same coordinate system; thus no

rotation is required. Some previous works compute the transfer functions under the coordinate

system formed by the local tangent plane on the surface because the BRDFs are defined over

the tangent plane [KSS02]. In such approaches, rotations of spherical harmonic coefficients

are required. Our implementation computes the coefficients under the same world coordinate

system, and sacrifices some flexibility for simplicity. Algorithm 3.1 shows this process. Inter-

section tests for computingV (p, ω) are computed with an axis-aligned binary space partition

tree for acceleration [PH04].

3.2.2 Bounding Volume Hierarchy Creation

The bounding volume hierarchy is a hierarchical structure of bounding volumes. Vertices in

close spatial proximity are put in clusters and the clusters are enclosed in bounding volume.

There are three possible strategies to build a BVH [Eri05]: top-down, bottom-up, and in-

sertion. Usually a bottom-up or insertion approach may result in a tree that is more balanced

3.3 Runtime Stage 29

than a top-down approach, but is much slower and complex to construct. We adopt a top-down

approach because it is fast, simple, and less error-prone. The degree of children is also an issue.

Higher degrees decreases the maximum depth of the hierarchy, but in the mean time increase

the cost of hierarchy traversal. As stated in [Eri05], we find that the binary tree structure is a

reasonable choice.

For example, since in practice our vertices number will not exceed 100000, the depth of a

full binary tree will never exceed 18. Moreover, a binary tree can be flattened into an array

without pointers for indexing; that is, for a nodeni with array indexi, the children ofni are

n2i+1 andn2i+2. This is much more cache-friendly, since during a breadth-first search, children

with the same parent node will be placed in nearby memory addresses.

The hierarchy is built in a top-down approach. We start from the bounding box of all vertices

in O and build an axis-aligned bounding box for the entire object. We then find the longest

axis of the bounding box and split the node into two children. The split point is the vertices’

coordinate median on the longest axis. This involves sorting the vertices along the longest axis.

Splitting with vertices’ coordinate median gives us a balanced and near full binary tree, but not

necessarily a BVH with optimal bounding volume [Eri05]. However, it still tends to produce a

hierarchy with vertex clusters that are near to one another because a typical mesh for spherical

harmonic lighting is finely and evenly tessellated. Since the vertices are distributed evenly over

the object, split according to their coordinate median tends to minimize the bounding volume of

nodes. Algorithm 3.3 shows this process. Fig. 3.2 shows the construction process of the BVH

for the armadillo model. Note that some bounding boxes are quite large, since our strategy does

not guarantee optimum sizes of bounding volumes. In our experiments, however, those large

bounding boxes do not lead to visual artifacts.

Two attributes associated with each node are also precomputed during the creation of the

hierarchy. One is the radius of the bounding volume of each node, which is a variable used in

evaluating the oracle function to be discussed in section 3.3.2. The other is the sample position

for the node, which is the position average of vertices inside the node. Since our bounding

primitive is axis-aligned bounding box, the radius of the bounding volume for each node is set

to be half of the diagonal length of the AABB.

3.3 Runtime Stage 30

(a) The model. (b) Vertices and AABB. (c) Split once.

(d) Split twice. (e) Split 12 times.

Figure 3.2: BVH construction for the armadillo model.

3.3 Runtime Stage

In this section we first explain how the bounding volume hierarchy and the error estimator

are used to distribute samples, and then we discuss how to sample the incident radiance in

Section 3.3.4. Finally how the octree is used for efficient reconstruction is described in Sec-

tion 3.3.5.

3.3.1 The BVH and Its Use for Sampling

For a set of verticesP , the result of shading is the exiting radiance from a vertexp ∈ P to the

camera. The colorC(p) of the vertexp is the exiting radiance, computed a dot product of the

two coefficient vectors for the incident radiance function and the transfer function, respectively,

as shown in Equation (2.8). During run time, the incident radiance coefficient vector~lp is

unknown, while the coefficient vector for the transfer function~tp is precomputed. If we replace

3.3 Runtime Stage 31

Algorithm 3.3: Recursively Build BVH forO
input : A BVH node and verticesV inside the node

output: A binary axis-aligned bounding box tree BVH

node.AABB ← ComputeAABB(V) ;1

node.avgPos← AveragePosition(V) ;2

node.d← DiagonalLength(node.AABB) ;3

laxis← GetLongestAxis(node.AABB) ;4

(V1, V2)← SplitAlongMedian(V , laxis) ;5

BuildBVH(V1, node.leftChild) ;6

BuildBVH(V2, node.rightChild) ;7

the true coefficient vector~lp of the incident radiance function at every vertexp with a vector of

coefficients~lx sampled at some pointx, the error introduced by such approximationC̃(p) is

‖C(p)− C̃(p)‖ = ‖(~t(p) ·~l(p))− (~t(p) ·~lx)‖,

where the function~t(p) is the vector function representing the coefficient vectors for the transfer

function atp ∈ P , and in particular withL1 norm, we have

‖C(p)− C̃(p)‖1 =
∑
p∈P

∣∣∣(~tp ·~lp)− (~tp ·~lx)
∣∣∣ , (3.1)

As shown in Fig. 3.3 for 1D cases, if we partition the domainP , which isR3 in our case

and add more samples to the approximation, we get more accurate results. Previous works

uniformly partition the domain using the ICP algorithm [SKS02] or uniform grid [GSHG98],

here we can do it better. Since the error‖C(p) − C ′(p)‖1 is defined on vertices rather than the

entireR3, we can partition the set of all verticesP rather than uniformly partitionR3. A useful

partition onP is the bounding volume hierarchy.

We cannot apply Equation (3.1) to estimate the error of each hierarchy node, since it still

involves computing~l(p) at every vertex. Since it is impossible to know the exact value of

~l(p) unless all verticesp are sampled, our method tries to estimate them. The oracle can be

seen as a partition strategy. We don’t care about the exact values of error. Only the relative

errors between different hierarchy nodes need to be computed. With relative errors, our method

decides whether or not a node should be partitioned.

3.3 Runtime Stage 32

(a) An 1D function (b) Replace with an constant

(c) Partition the domain and

adding samples

(d) As samples increase, the error

diminishes

Figure 3.3: Approximating an 1D function with discreet samples.

3.3.2 The Oracle Function

Since the transfer function coefficients~t(p) is the combination of the visibility function and

the surface BRDF, the outgoing radiance will never be larger than the incident radiance, as a

result of the energy conservation law. The errors in Equation (3.1) are thus never greater than∑
P

∣∣∣|~lp| − |~lx|∣∣∣, which is further bounded by a looser bound as follows:

max
p∈P

(|~lp|) ||P ||, (3.2)

where||P || is the number of vertices of the setP . The intuition behind Equation (3.2) is that

we will partition a vertex set that has a higher value of|~l(p)|, since discreet sampling introduces

larger errors at this region. Note that the norm of vector of spherical harmonic coefficients

representing the incident radiance is less than or equal to
√

i times theL2 norm of the incident

radiance function. The magnitude of the incident radiance function at the sample pointx can

be obtained by computing theL2 norm of the incident radiance function:

‖Lx(ω)‖2 =

√∫
S2

Lx(ω)2 dω ,

3.3 Runtime Stage 33

and the norm of the vector|~lx| is

∣∣∣~lx∣∣∣ =

√√√√∑
i

(∫
S2

Lx(ω)Yi(ω) dω

)2

.

By applying the Cauchy inequality to the norm of the vector|~lx|, we can see that it is related to

the norm of the incident radiance function and have∣∣∣~lx∣∣∣2 =
∑

i

(∫
S2

Lx(ω)Yi(ω) dω

)2

≤
∑

i

(∫
S2

Lx(ω)2 dω

)(∫
S2

Yi(ω)2 dω

)
= i

(∫
S2

Lx(ω)2 dω

)
= i ‖Lx(ω)‖22 ,

which implies

|~lx| ≤
√

i ‖Lx(ω)‖2.

We can thus use the magnitude of the vector~lx to adequately estimate the magnitude of the

incident radiance function at pointx. In addition to partitioning at brighter regions, vertex setP

having a large number of vertices should also be partitioned first, since the error could be more

appealing.

However, we must perform sampling to know|~l(p)| since~l(p) is known only at run time. As

a consequence, our oracle function is ana posteriorierror estimator; that is, the error estimation

is doneafter |~l(p)| is sampled. We made a few assumptions to further approximate the error.

One assumption is that~l(p) does not vary too much aroundp so that we can take a single

samplex inside setP and use it to approximatemaxp∈P (|~l(p)|). Another assumption is that

the points are evenly distributed on the object surface; so we can use the radius of the bounding

volume ofP to approximate||P ||. Equation (3.2) can now be approximated by:

max
p∈P

(|~lp|) ||P || ≈ r |~lx|,

wherer is the radius of the bounding volume ofP .

Furthermore, we take the possibility of variations into account. The error is higher if there

are more variations in~l(p). We approximate the variation with the ratio of the radius of the

bounding volume to the average distance to emitters. The intuition behind this choice is shown

3.3 Runtime Stage 34

Figure 3.4: If the blockers and the receiver are near, higher variations in irradiance oc-

curs [Arv94].

in Fig. 3.4. If the emitters are far away from our receiver (object), the variation due to nearby

blockers could be smaller, as theB curve in Fig. 3.4 shows. The blockers can be considered

as a type of emitters with less emission. Also, the errors due to the variation are smaller if

the receiver is very small compared to the distance to the emitters. One extreme case is a

scene lit by infinitely far emitters; thereby no irradiance variations can occur. In the oracle, the

variations are approximated by the ratio of the radius of the bounding box of the vertex setP to

the harmonic mean of distances from the sample points to all emitters. The harmonic mean of

a set of distancesdi, wherei = 1...N , is [PH04],

Hd =
N∑
N

1
di

.

By using the harmonic mean we are able to detect the presence of nearby emitters, as a larger

distance has a smaller effect on the harmonic mean. Now we can write our oracle as

r |~lx|
H2

d

, (3.3)

where~lx is the vector of coefficients representing the incident radiance sampled at pointx, r is

the radius of the bounding box of the vertex setP computed in the preprocessing stage, andHd

is the harmonic mean of distances fromx to emitters. The computation of~lx andHd will be

described in section 3.3.

The oracle function in Equation (3.3) computes the estimated error betweenC̃(p) andC(p).

Once the estimated error exceeds a user-specified bound, we must traverse to the next level and

3.3 Runtime Stage 35

Algorithm 3.4: BVH Traversal

input : Desired error boundε and sample limitN

Insert root node intoqueue ;1

while queue not empty andns ≤ N do2

ns ← ns + 1;3

node← Pop(queue) ;4

sample← SampleIncidentRadiance(node.avgPos) ;5

InsertIntoOctree(sample) ;6

ε← Oracle(sample, node) ;7

if ε > ε then8

Push(node.left,queue) ;9

Push(node.right, queue) ;10

evaluate the samples at two children nodes.

3.3.3 Hierarchy Traversal

In order to determine the number and the distribution of samples, the bounding volume hier-

archy is traversed; and samples are then positioned at proper nodes. Starting from the root,

we compute the incident radiance at the sample position precomputed in the preprocessing

stage.The oracle function is then evaluated to check whether the sample is adequate for recon-

struction. If the oracle exceeds the user-specified error bound, two children of this node are

recursively traversed in order to distribute more samples; otherwise, the recursive traversal ter-

minates. Shown in algorithm 3.4, this is performed with a queue. The traversal stops when

the oracles evaluated at all nodes being traversed are below the error bound or the number of

samples exceeds some user-specified limit. During the traversal, the samples are inserted into

an octree for efficient reconstruction, which will be discussed in section 3.3.5. Each sample is

associated with a valid domain, aiming to prevent the global reconstruction results from being

influenced by local, high-intensity samples. The valid domain is defined as a sphere with radius

r centered at the sample’s position.

3.3 Runtime Stage 36

3.3.4 Incident Radiance Sampling

To dynamically sample the incident radiance function at a sample pointx, we exploit the use

of graphics hardware. We also compute the averaged distance fromx to emitters for error

estimation at the same time. EmittersGl are sent down to graphics pipeline six times to render

a cubemap. The cubemap now represents the emission of emitters tox. We then project the

incident radiance represented by the cubemap onto the spherical harmonic bases. Because

cubemapping is formed by perspective projections onto six planes, during the integration we

must take into account the non-uniform solid angle associated with each pixel. Letω(c) be the

solid angle of a pixelc(s, t) of ak × k cubemap face with viewing directionR. The relation of

the cubemap faces and viewing directionsR and their corresponding up vectorsT is shown in

Table 3.1. The vector~c from the sample pointx to the pixelc(s, t) is

~c = (
s

2k
− 1 +

1

k
)S + (

t

2k
− 1 +

1

k
)T + R,

whereS is the cross product ofR andT [Ope99]. The coefficientsli representing the incident

radiance atx is computed by the following equation

li =

∫
S2

L(ω)Yi(ω) dω

=

∫
all pixels

L(c)Yi(ω) dωc

≈
∑

all pixels

L(c)Yi(ωc)ω(c),

whereω(c) is the solid angle associated with pixelc(s, t). We use Equation (2.1) to compute

the solid angelω(c) of a pixelc from the area of the pixel:

ω(c) =
∑

all pixels

L(c)Yi(ωc)
4

k2

ωc ·R
|~c|2

,

where 4
k2 is the area of each pixel. Since eachk × k cubemap face ranges from−1 to 1, so

4
k2 (ωp ·R) is the projected area of pixelp.

The sample position is the average position of all vertices inside the node and is precom-

puted. The number of coefficients for each vector of coefficients~lx for samplex is also 16.

After the sampling and coefficient computation are done, the vector of coefficients is then used

to estimate the error of the node.To estimate the error, we also need the average distance from

3.3 Runtime Stage 37

R up vector (T)

+X −Y

−X −Y

+Y +Y

−Y −Y

+Z −Y

−Z −Y

Table 3.1: Coordinate system of each cubemap face [Ope99].

the sample to all the surrounding emitters. As we render the emitters into the cubemap, we also

render their distances to the sample into another color buffer. In our implementation this is done

with OpenGL’s multiple draw buffers and shaders. Then we read the color buffer back to main

memory and compute the harmonic mean of distances.

3.3.5 Efficient Reconstruction using Octree

To approximate true incident radiance coefficient vector~l′p from a given set of samples{~lx}, we

first need to find all samples{~l′x} ∈ {~lx} whose valid domain containp and then interpolate~l′p

from these valid samples{~l′x} using method used in [SKS02] and [AKDS04].

The major computation for this step is to query and find all samples whose valid domain

containp. To accelerate such query, alinear octree[Eri05] is used. The samples are inserted

to this data structure as soon as they are generated during the sampling stage. Different from

the pointer-based octree, the linear octree uses a hash table. Each node at a certain level inside

the ocree has an unique hash key value. The key value depends on both the node’s level and

position. They are called locational codes [Eri05]. The locational codes in bits are actually

the traversal order of the tree encoded in binary bits. Fig. 3.5 shows the locational codes of a

quadtree. We can see that locational codes are arraged in the form of(0.Y1X1Y2X2Y3X3...).

Deeper levels have longer binary fractions.

In our implementation, the binary fractions are represented by integer values. For example, a

binary fraction [0.1100] is converted to integer value [11100]. The extra bit is called the sentinel

bit. The purpose of the sentinel bit is to distinguish from different keys from different level. For

example, [0.00] and [0.0000] denote two keys at level one and level two. Their integer value are

3.3 Runtime Stage 38

.-/../

*.,.+

*/,/+

.-.. .-./

.-//

.-/./.

.-/.//..

(a) Binary fraction as node keys.

/.0//0

+/-/,

+0-0,

+/.214- /.300,5+/./00/0...- /.0////...,
8

/.7676

/.0//0

(b) Converting vertex position to its associated node key.

Figure 3.5: Computing locational codes for nodes and vertices in a 2D quadtree.

[100] and [10000], respectively. Therefore given a node with key valuek, we can easily find

the key valuek′ of its parent usingk′ = k � 3, where� is the bitwise right shift operator. For

example, the node with integer key value [110] in Fig. 3.5(a) has four children with integer key

values [11000], [11001], [11010], and [11011], respectively.

Furthermore, the locational code of the node containing a certain point can be efficiently

computed from the coordinates of the point. As in Fig. 3.5(b), the coordinates of the point is

normalized to the side length of the root node, ranging from 0 to 1. Converting the coordinates

into binary fractions and interleaving their respective fraction bits in YX order yields the loca-

tional code of the node containing the point. The locational codes of an octree can be computed

in a similar way.

We access each node with a hash table lookup, which is relatively fast compared to travers-

ing a series of pointers. We use a 32-bit integer to define a key, thereby allowing an octree with

a max depth of ten levels, which is sufficient in our experiments. The hash table is implemented

with the C++ standard template library. For a given sample with a valid domain of radiusr,

3.3 Runtime Stage 39

we will insert it into a certain level of the octree, whose side length is greater than2r and less

than4r. By placing in a node with side length greater than2r, the sample will be inserted to

eight nodes at most. By limiting the node’s side length less than4r, we can prevent samples

with small valid domains being accessed by too many vertices, since nodes with larger side

length will be queried more frequently. The samples with the same locational code are stored

in a linked list in each octree node. Since each level of the octree node halves its side length,

we can directly compute the levelL, where a sample with a valid domain of radiusr should be

inserted, as

2r ≤ s

2L
≤ 4r

2L+1 ≤ s

r
≤ 2L+2

log2 2L+1 ≤ log2

s

r
≤ log2 2L+2

L ≤
(
log2

s

r

)
− 1 ≤ L + 1,

which implies

L = b(log2(s/r)− 1)c,

wheres is the side length of the root node of the octree. For any given vertex, we compute

the key of the vertex for each level, and locate the exact node in the respective level to find

the associated linked list of samples, thus requiring ten hash table lookups, without explicit

pointer traversal. Only samples whose valid domain do contain the vertex are considered. We

then interpolate through all valid samples by Equation (2.13), but without the power termb for

simplicity and speed. Intuitively we can think that nearby samples could have higher weights.

The shading ofO is straightforward from now on. For each vertexp, its outgoing radiance

is computed by~tp ·~l′p, the dot product of its precomputed transfer coefficients and reconstructed

incident radiance coefficients. In our implementation the dot product is performed by the CPU.

The results are then written to an OpenGLvertex buffer objectbinded as a color array for the

final rendering. The transformation and rasterization are handled by the graphics hardware.

C H A P T E R 4

Results

In this chapter we present several results from our experiments. All images are rendered using

the OpenGL API. The hardware platform is a Windows PC with AMD Athlon64 3000+ proces-

sor and 512MBytes main memory. The graphics card is an nVidia GeForce6800 with the 8x

AGP interface. To compare with the previous method, we implemented Sloan et al.’s diffuse,

self-shadowing radiance transfer method [SKS02]. We also implemented the iterative closest

point (ICP) algorithm [LBG80] mentioned in their work to find sample locations and to inter-

polate the incident radiance function for every vertex using Equation (2.13).We compare the

visual appearances and the color root mean square error (RMSE) of our sampling and recon-

struction methods to those of both the original method in [SKS02] and the ground truth image.

The ground truth is obtained by sample the incident radiance function at every vertex. Then the

scalability of our methods are demonstrated with various lighting configurations and various

error bounds. In this chapter the method of sampling and reconstruction in [SKS02] is referred

as theICP method, though the ICP is only an algorithm of finding representative points.

Fig. 4.2 compares our sampling and reconstruction methods to that of ICP method. The

demonstrated armadillo model has10 002 vertices and20 000 faces. Our methods capture local

lighting variation details, while the ICP method misses the local color variations on the hands

and face of the armadillo model. The lighting configuration is a square matrix of colored blocks,

shown in Fig. 4.1. Fig. 4.3 shows the sample distribution generated by our methods and the ICP

algorithm. Larger dots denote samples with larger valid domains. Darker areas will have less

sample distribution. The samples generated by the ICP algorithm have no valid domains; so all

dots are of equal size. See Table 4.1 for the comparison of errors and computational costs. The

40

41

Groud truth ICP Our method

ε = 0.01 ε = 0.0078

Number of samples 10 002 128 256 133 250

Sampling cost (sec) 39.682 0.560 1.042 0.586 1.018

Recon. cost (sec) 0.167 0.500 0.775 0.067 0.073

RMSE 0 0.136 0.134 0.096 0.062

Table 4.1: Error and timing comparisons of the armadillo model in Fig. 4.2.

RMSE is the root mean square error that compares the color of ground truth with our methods

and the ICP method, respectively.ε is the user-specified error bound of our methods to control

the number of samples.

The sampling time in our methods consist of both the cost of hierarchy traversal and the

time spent on sampling. The sampling time of the ICP method is the sampling time only, since

the sample location is determined by the off-line ICP process. Though we have to traverse

the hierarchy to place the samples, our overhead on hierarchy traversal is quite small. This is

because most computation time is spent on reading back color buffers to main memory and on

computing spherical harmonic coefficients. The sample number of the ground truth is exactly

the vertex number of the armadillo model. The cost of sampling is nearly linear to the number of

sample points. Note that as the number of samples increases, our interpolation method performs

faster than the ICP method.

Figure 4.1: Lighting configuration in Fig. 4.2.

42

(a) Ground truth.

(b) Our methods with 133 samples.(c) Uniform sampling 128 samples

with ICP method.

(d) Our methods with 250 samples.(e) Uniform sampling 256 samples

with ICP method.

Figure 4.2: Comparisons of the armadillo model for our methods, the previous work with ICP,

and the ground truth.

43

(a) Sample Distribution of

our methods with 135

samples.

(b) Sample Distribution of

the ICP method with 128

samples.

Figure 4.3: Sampling distribution of our methods and the ICP algorithm.

(a) Lighting configuration:far. (b) Lighting configuration:

near.

Figure 4.4: Different lighting configurations for the church model.

44

Fig. 4.5 shows the result of a more complex church model with50 062 vertices and99 486

faces and the lighting configuration as shown in Fig. 4.4(b). The lighting variations on the

walls near the camera are missing for the ICP method. The error and timing statistics are

shown in Table 4.2. Note that the numbers of samples computed by the ICP method are limited

to the power of 2. Still, our methods effectively capture the variation of lighting. Also, our

reconstruction method outperformed the original reconstruction method with a speed up ratio

around ten.

Our methods adjust the number and distribution of samples under different lighting config-

urations. Fig. 4.4 demonstrates the same church model illuminated by two different lighting

configurations–near and far. Far consists of three large planar emitters; andnear consists of

two large planar emitters and three nearby cubic emitters in red, white, and green. Fig. 4.6

shows that both lighting configurations rendered with our methods, with both the error bounds

set to 0.001. Under different configurations, the visual appearances are both similar to the

ground truth, but the number of samples are different. Table 4.3 shows the timings and sample

numbers of both configurations. The church model contains50 062 vertices. “GT time” is the

sampling time of ground truth. “Sampling time” is the sampling time of our methods. Our

methods place only one sample under thefar configuration, and place 3899 samples under the

nearconfiguration.

Fig. 4.7 shows the ground truth of the Buddha model with144 628 vertices and293 232

faces, compared with the results of our methods under different user-specified error bounds.

The number of samples and the RMSEs are shown in Table 4.4. As the specified error bound

increases, the RMSE increases accordingly.

Ground truth Our method ICP

ε = 0.007 ε = 0.004

Number of samples 50 062 159 495 256 512

Sampling time (sec) 164.402 0.551 1.721 0.973 1.953

Recon. time (sec) 0.167 0.552 0.872 6.951 14.178

RMSE 0 0.037 0.016 0.129 0.115

Table 4.2: Error and timing comparison of the church model in Fig. 4.5.

45

far near

Sampling time for ground truth images (sec)161.403 164.406

Error bounds 0.001 0.001

Number of samples 1 3 899

Sampling time (sec) 0.042 13.544

Reconstruction time (sec) 0.119 3.922

Table 4.3: Sample numbers and costs under different lighting configurations with our method.

Figure 4.7(b) Figure 4.7(c) Figure 4.7(d)

Error bounds 0.010 0.020 0.040

Number of samples 4 096 1 426 193

Sampling time (sec) 15.747 5.561 0.736

Recon. cost (sec) 6.597 2.102 0.933

RMSE 0.013 0.029 0.039

Table 4.4: Errors and timing statistics for Fig. 4.7.

46

(a) Ground truth.

(b) Our methods with 154 samples. (c) The ICP method with 256 samples.

(d) Our methods with 495 samples. (e) The ICP method with 512 samples.

Figure 4.5: Comparisons of the church model for our methods withε = 0.007, ε = 0.004, the

ICP method with 256 samples, 512 samples, and the ground truth.

47

(a) Ground truth offar. (b) Our result forfar. (c) Sample dist. of (b).

(d) Ground truth ofnear. (e) Our result fornear. (f) Sample dist. of (e).

Figure 4.6: Our methods detect the lighting configurations, and the sample numbers under

the same error bound are adjusted accordingly. Both lighting configurations are rendered with

ε = 0.001.

48

(a) Ground truth. (b) ε = 0.01 (c) ε = 0.02 (d) ε = 0.04

(e) Sample dist. of (b) (f) Sample dist. of (c) (g) Sample dist. of (d)

Figure 4.7: Results of different error bounds for the Buddha model.

C H A P T E R 5

Conclusion and Future Work

5.1 Summary

We present a hierarchical sampling framework that provides a user-controllable mechanism on

rendering quality and speed for precomputed radiance transfer lighting. We tackle the problem

of non-distant light sources by using the sparse sampling. A bounding volume hierarchy of the

object is created as an off-line process. During run time, we traverse the BVH and evaluate

the estimated error for sampling the incident radiance function at each node of the bounding

volume hierarchy; If the estimated error is smaller than the user-specified error bound, a sample

is assigned to the node; otherwise, children of the node are traversed recursively and more

samples will be assigned for the node. The positions of samples are decided by averaging the

position of the vertices inside the node. Each sample is also associated with a valid domain,

by which the locality of lighting is preserved. Different from the previous works, our method

can handle dynamic non-distant lighting and can be scalable to even mid-range or near-range

emitters. Our interpolation scheme is also faster than that of the previous works by employing

the valid domain and applying the linear octree for speedup.

49

5.2 Future Work 50

5.2 Future Work

5.2.1 GPU Acceleration

The performance bottlenecks in our sampling implementation are reading back buffers contain-

ing the cubemaps and converting them into spherical harmonic coefficients. For reconstruction,

the performance bottleneck is the computation of sample weights. If the sampling and re-

construction of our framework can be mapped onto the GPU, redundant bus transfers will be

avoided and in consequence, a dramatic performance boost is possible.

5.2.2 Higher-order Interpolator

Higher-order interpolation of samples is also an interesting issue for further investigation. It is

desirable to explore the possibilities of combining our sampling framework with a higher-order

interpolator such as the work by Annen et al. [AKDS04]. With the high-order interpolation, the

number of samples can be declined and the sample distribution may vary, and in consequence

the oracle function may have to be adjusted accordingly.

5.2.3 Oracle Improvement

Deriving tighter sampling error bounds is also a challenging task. One feasible direction is to

take the transfer function into account. Our oracle considers only the incident radiance func-

tion and some relevant information. However, since the color of vertices is decided by both the

transfer function and the incident radiance function, the oracle should also predict possible vari-

ations in the transfer function. An extreme example is a black object that reflects no radiance:

we should place no samples because the resulting color is always black, no matter how strong

the incident radiance function is. Similar ideas can be found in the hierarchical refinement of

clustering radiosity [SAG94, WHG99]. Different from the form factor computation, which is

computed on the fly in the hierarchical radiosity methods, the spherical harmonic coefficients

representing the transfer function of each vertex is precomputed in our framework. We may

precompute some attributes of the coefficients at each vertex in every node of the bounding

volume hierarchy. These attributes can be then used in the oracle.

Obtaining tighter error bounds is very important for rendering glossy surfaces, which is

allowed in our framework. Rendering glossy surfaces in general requires tighter error bound

5.2 Future Work 51

derived by an oracle that is able to predict the error on surfaces with glossy transfer functions.

The oracle should be more sensitive to the variation of incident radiance and the viewing para-

meters. By this way the variations in vertex colors can be captured more accurately.

Though our framework works reasonably well for diffuse emitters, it cannot capture the

variations of the incident radiance comes from specular emitters. Our oracle considers only

the variations in the incident radiance that is approximated by the harmonic mean of distances

to emitters, which may fail to deal with the specular emitters since the incident radiance on

the receiver due to the specular emitters could still change rapidly even if the emitters are far

away. How to deal with specular emitters is a challenging problem for most sparse sampling

frameworks. The irradiance cache [WRC88] and the irradiance volume [GSHG98] both assume

diffuse emitters. Fortunately, specular emitters does not abound in most real-time rendering ap-

plications. To handle the variation of the incident radiance due to specular emitters effectively,

some kinds of light ray tracing is possible. However, most light ray tracing techniques such

as [Jen01] can not be suited for, to some extent, the real-time rendering framework. Plausible

sampling of incident radiance accounting for glossy surfaces as well as specular emitters are

worthy to further research.

5.2.4 Real-time Rendering Applications

To fully integrate our method into real-time rendering applications, limitations on the spher-

ical harmonic lighting should be removed. Our method still suffers from the static nature of

precomputed transfer coefficients. The objects being shaded must be moved or rotated rigidly.

No deformations are allowed. One possible solution is to parameterize the precomputed trans-

fer functions in the same way as the deformation does; see [JF03]. To this end, our sampling

hierarchy must be dynamically adjusted to account for the dynamic deformation. Moreover,

most real-time rendering applications such as games will feature indoor environments. Under

indoor environments, however, emitters such as lamps are always inside the scene’s convex

hull, thus violating the assumptions of precomputing radiance transfer. It would be valuable to

extend spherical harmonic lighting to real-time rendering applications, especially for dynamic

or indoor environments.

Bibliography

[AKDS04] Thomas Annen, Jan Kautz, Frédo Durand, and Hans-Peter Seidel. Spherical har-

monic gradients for mid-range illumination. InRendering Techniques 2004: 15th

Eurographics Workshop on Rendering, pages 331–336, June 2004.

[Arv94] James Arvo. The irradiance jacobian for partially occluded polyhedral sources.

In Proceedings of ACM SIGGRAPH 1994, pages 343–350, New York, NY, USA,

1994. ACM Press.

[CBCG02] Wei-Chao Chen, Jean-Yves Bouguet, Michael H. Chu, and Radek Grzeszczuk.

Light field mapping: Efficient representation and hardware rendering of surface

light fields. ACM Transactions on Graphics, 21(3):447–456, July 2002.

[CMS87] Brian Cabral, Nelson Max, and Rebecca Springmeyer. Bidirectional reflection

functions from surface bump maps. InProceedings of ACM SIGGRAPH 1987,

volume 21, pages 273–281, July 1987.

[CPC84] Robert L. Cook, Thomas Porter, and Loren Carpenter. Distributed ray tracing.

In Proceedings of ACM SIGGRAPH 1984, pages 137–145, New York, NY, USA,

1984. ACM Press.

[DBB03] Philip Dutŕe, Philippe Bekaert, and Kavita Bala.Advanced Global Illumination. A

K Peters Ltd., 2003.

[DKS+03] Katja Daubert, Jan Kautz, Hans-Peter Seidel, Wolfgang Heidrich, and Jean-Michel

Dischler. Efficient light transport using precomputed visibility.IEEE Computer

Graphics and Applications, 23(3):28–37, 2003.

[Eri05] Christer Ericson.Real Time Collision Detection. Morgan Kaufmann, 2005.

52

Bibliography 53

[Gre03] Robin Green. Spherical harmonic lighting, the gritty details. Technical report,

SCEA, January 2003.

[GSHG98] Gene Greger, Peter Shirley, Philip M. Hubbard, and Donald P. Greenberg. The

irradiance volume.IEEE Computer Graphics & Applications, 18(2):32–43, 1998.

[HV04] Xuejun Hao and Amitabh Varshney. Real-time rendering of translucent meshes.

ACM Transactions on Graphics, 23(2):120–142, April 2004.

[Jen01] Henrik Wann Jensen.Realistic Image Synthesis Using Photon Mapping. A K Peters

Ltd., 2001.

[JF03] Doug L. James and Kayvon Fatahalian. Precomputing interactive dynamic de-

formable scenes.ACM Transactions on Graphics, 22(3):879–887, July 2003.

[Kaj86] James T. Kajiya. The rendering equation. InProceedings of ACM SIGGRAPH

1986, volume 20, pages 143–150, August 1986.

[KSS02] Jan Kautz, Peter-Pike Sloan, and John Snyder. Fast, arbitrary BRDF shading for

low-frequency lighting using spherical harmonics. In13th Eurographics Workshop

on Rendering, 2002.

[LBG80] Yoseph Linde, Andŕes Buzo, and Robert M. Gray. An algorithm for vector quan-

tizer design.IEEE Transactions on Communication, pages 84–95, 1980.

[LSSS04] Xinguo Liu, Peter-Pike Sloan, Heung-Yeung Shum, and John Snyder. All-

frequency precomputed radiance transfer for glossy objects. InRendering Tech-

niques 2004: 15th Eurographics Workshop on Rendering, pages 337–344, June

2004.

[Max88] Nelson L. Max. Horizon mapping: shadows for bump-mapped surfaces.The Visual

Computer, 4(2):109–117, July 1988.

[MGW01] Tom Malzbender, Dan Gelb, and Hans Wolters. Polynomial texture maps. InPro-

ceedings of ACM SIGGRAPH 2001, pages 519–528, August 2001.

[NRH04] Ren Ng, Ravi Ramamoorthi, and Pat Hanrahan. Triple product wavelet integrals for

all-frequency relighting.ACM Transactions on Graphics, 23(3):477–487, August

2004.

Bibliography 54

[Ope99] OpenGL Architectural Review Board.OpenGL Extension Registry, 1999.

[PH04] Mat Pharr and Greg Humphreys.Physically Based Rendering. Morgan Kaufmann,

2004.

[RH01] Ravi Ramamoorthi and Pat Hanrahan. An efficient representation for irradiance

environment maps. InProceedings of ACM SIGGRAPH 2001, pages 497–500,

August 2001.

[RH04] Ravi Ramamoorthi and Pat Hanrahan. A signal-processing framework for reflec-

tion. ACM Transactions on Graphics, 23(4):1004–1042, October 2004.

[SAG94] Brian Smits, James Arvo, and Donald Greenberg. A clustering algorithm for ra-

diosity in complex environments. InProceedings of ACM SIGGRAPH 1994, pages

435–442, July 1994.

[SHHS03] Peter-Pike Sloan, Jesse Hall, John Hart, and John Snyder. Clustered principal

components for precomputed radiance transfer.ACM Transactions on Graphics,

22(3):382–391, July 2003.

[SKS02] Peter-Pike Sloan, Jan Kautz, and John Snyder. Precomputed radiance transfer for

real-time rendering in dynamic, low-frequency lighting environments.ACM Trans-

actions on Graphics, 21(3):527–536, July 2002.

[SP94] Francois X. Sillion and Claude Puech.Radiosity and Global Illumination. Morgan

Kaufmann, 1994.

[Wat80] G Alistair Watson.Approximation Theory. John Wiley & Sons Ltd, 1980.

[WH92] Gregory J. Ward and Paul S. Heckbert. Irradiance gradients. InProceedings of

Eurographics Workshop on Rendering, 1992.

[WHG99] Andrew Willmott, Paul S. Heckbert, and Michael Garland. Face cluster radiosity.

In Eurographics Rendering Workshop 1999, June 1999.

[WRC88] Gregory J. Ward, Francis M. Rubinstein, and Robert D. Clear. A ray tracing solution

for diffuse interreflection. InProceedings of ACM SIGGRAPH 1988, pages 85–92,

New York, NY, USA, 1988. ACM Press.

	thesis0826.pdf
	thesis0826.pdf
	List of Figures
	List of Algorithms
	List of Tables
	Introduction
	Literature Review
	Thesis Overview
	Problem Statement
	Contributions
	Thesis Organization

	Literature Review
	Fundamentals of Physically-Based Rendering
	Spherical Coordinates
	Projected Area and Solid Angle
	Radiometry
	Light Reflection
	Formulations of Local Reflection Integral

	Reflection Integral and Spherical Harmonic Lighting
	Reflection Integral as a Convolution Process
	Orthonormal Basis Functions and Frequency Domain
	Fast Evaluation of Reflection Integral
	Precomputed Radiance Transfer
	Limitations of Spherical Harmonic Lighting

	Caching Techniques for Rendering

	Sampling and Reconstruction of Incident Radiance
	Framework Overview
	Preprocessing Stage
	Precomputing Radiance Transfer Coefficients
	Bounding Volume Hierarchy Creation

	Runtime Stage
	The BVH and Its Use for Sampling
	The Oracle Function
	Hierarchy Traversal
	Incident Radiance Sampling
	Efficient Reconstruction using Octree

	Results
	Conclusion and Future Work
	Summary
	Future Work
	GPU Acceleration
	Higher-order Interpolator
	Oracle Improvement
	Real-time Rendering Applications

	Bibliography

