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Abstract

In this study, a high efficient carbon fiber tow pneumatic spreading system was

successfully developed by means of numerical simulation and carbon fiber spreading

experiment. Carbon fiber tow was spread on 1:1-scale model of the pneumatic

spreader at various conditions, and photography techniques were simultaneously used

to record the procedures of fibers spread. Based on the investigation, some results can

be summarized as follows:

1.

The three-dimensional numerical analysis was carried out on incompressible fluid
flows by using finite volume method combined with the k-&turbulence model
which solves Reynolds-averaged Naiver-Stokes equations. Comparisons of
numerical results with measured velocity: and pressure distributions were made,
and a good agreement was found in both qualitative and quantitative analysis. The
performance was better than prior studies in one-dimensional orifice formulation.
Agreement among those results® validatedthe assumptions inherent to the
computational calculation and gave confidence to more complex geometries as
well as flow fields.

The work successfully designs a high efficient carbon fiber pneumatic spreading
system. A new variable, spreading evenness, was defined to specify the dispersing
extent of fibers in a carbon fiber tow during the fiber pneumatic spreading process.
By the spreading evenness, a quantitative comparison of a spread carbon fiber tow
can be made and the optimum condition can be easily obtained at fiber spreading
experiments. Also, by the computational modeling and the spreading experiment,
both the dispersing mechanism of carbon fibers and the interaction between the

fibers and the airflow were understood.

3. To identify the non-uniform coating in a carbon fiber tow can be overcome by the

II



pneumatic spreading process; two groups of spread and unspread carbon fiber tow
coated with nickel by electroless plating were compared. The results showed that a
uniform Ni coating could be obtained on each fiber in the spread carbon fiber tow,
and the thickness of the Ni film could be coated on carbon fiber tow less than 0.2
um, and it’s the first time the Ni thin film can uniformly be coated on the fiber

surface in the overall fibers.
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