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Ⅰ.General Introduction 

 

Over the years, a great deal of interest has been given to the nickel coated 

carbon fibers used as functional and reinforced materials in plastic, glass and metal 

matrix composites [1-4]; however, the chemical reactions and wettability between the 

carbon fiber and the matrix have limited their applications. Therefore, many methods 

have been proposed for the preparation of metallic or non-metallic coated fiber tow to 

prevent the chemical reaction [5-9]. The reaction at the carbon-aluminum interface at 

high temperatures to form aluminum carbide has long been considered to affect 

critically the strength of C/Al composites [10, 11]. The formation of aluminum 

carbide at the fiber-matrix interface was considered to induce poor composite 

properties, as observed by Pepper and Pent [12], Xiangun and Hanlin[13]. 

A very thin and uniform coating over a fiber surface can promote the 

characteristics of carbon fiber composites; therefore, many methods have been 

proposed for the preparation of metallic deposition to improve and enhance the 

surface state of carbon fibers. However, the variation in the thickness of the coating 

on a carbon fiber tow has been observed. The variation between fibers on the inside of 

each bundle and those on the outside, however, is up to 20% ~ 90% [15, 16, 17-22]. 

The thickness of the layer on the monofilaments in the center of the fiber tow is 

considerably less than that of the layer deposited on the monofilaments at the outer of 

the tow. The results demonstrate that the EMI shielding capability of the fibers 

decreased as the coating thickness reduced, but the strength of the fibers decreased 

with increasing coating thickness [14, 16, 23-26]. Therefore, significant difference of 

the mechanical behaviors and the physical properties yielded between the inner and 

outer fibers of a tow. The non-uniform activation is caused by the contact of carbon 
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fiber. Bobka et al. [27, 28, 29] reported that oxidation treatment led to a non-uniform 

etching of the fibers when carbon fiber tows were treated by oxygen to modify the 

surface of the filaments. Therefore, the outer filaments are strongly attacked while 

those in the interior of the bundle are hardly attacked. 

The excess of compact carbon filaments is responsible for the non-uniform 

activation and the non-uniformity of the subsequent coating in a carbon fiber tow [21, 

22]. It may not be possible to get an identical thin film and coat less than 0.2 µm thin 

layer on each fiber in a carbon fiber tow [15, 18, 30-31]. The change in the film 

thickness is as a function of the distance from the axis of the fiber tow and as the 

relative concentration of the chemicals as a function of the difference from the axis of 

the fiber tow for different positions in the reactor and for different deposition 

conditions. Deposition onto the central fibers is difficult; reactants are prevented from 

approaching the inner fibers. Thus, if the fibers are separated uniformly, it is 

advantageous for the improvement of fiber coatings [25, 32, 33]. 

Processes and apparatus were developed for pneumatically spreading graphite or 

other carbon filaments from a tow bundle to form a sheet or a ribbon in which the 

filaments were maintained in parallel [34-39]. The developmental history of the 

pneumatic spreading system was listed in Table I, and the schematic diagrams of the 

spreading system were presented in Fig. 1-1~ Fig 1-6. The spread filaments can be 

bonded together in the form of a tape impregnated any of the well-known resins or 

thermoplastic polymers which can be cured or molded under heat and pressure. The 

key component in the pneumatic spreading system is the spreader. The carbon fiber 

tow is comprised of thousands of filaments and the carbon filaments are interacted 

with air in the spreader.  
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Baucom and Marchello were the first to attempt to design a pneumatic spreader 

[40]. They modeled a single fiber suspended in air under both a pressure drop and tow 

tension, and derived a formulation from orifice equation to predict the spread angle of 

a carbon fiber tow in the spreader. Comparisons of the experimental data for a 12k 

tow (containing 12,000 filaments) with the single fiber prediction indicated that the 

results were not satisfactory because there is a large deviation in the spread degree 

between the experiment and the model. They concluded the flow-field is too complex 

in the spreader to know the interaction between the airflow and fibers, for the model 

derived from Bernoullis’ ideal assumptions can not calculate and present the overall 

status of airflow. Also, the model of the single fiber prediction can not describe the 

internal flow-field of the spreader. Newell and Kawabe et al. focused their research on 

the design and processing factors of an effective pneumatic spreading system, 

respectively [41, 42]. They qualitatively examined the spreading characteristics of the 

carbon fiber tow in the spreader under various conditions; however, the discussion of 

the interaction between the flow fluid and the carbon fiber tow was unclear and 

incomplete because the flow field in the spreader remained unknown. Klettet al. 

employed a pressurized air-comb to separate the tow bundle before a coating process 

[34]. Also, they qualitatively illuminated the uniform spreading of a fiber tow exposed 

individual filaments by the air-comb for subsequent coating, but neither the 

procedures of tow spreading in the air-comb nor the spreading degree of the fiber tow 

were discussed. Accordingly, the spreading degree for a carbon fiber tow was 

considered in a very limited sense in the cited works, only a few which considered the 

evenness of a spread tow. When the fiber tow cannot be uniformly spread, some of the 
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fibers pile up tightly. Without effective spreading, the effects of fiber bridging may 

become severe [42]. 

The critical part of the spreading process is the design of the fiber spreader itself. 

None of the cited investigations explored the effect of the airflow by the spreader 

design, and none of them qualitatively and quantitatively analyzed the internal flow 

patterns of the fiber spreader in detail. A highly chaotic or turbulent flow field would 

bring about the variation in air velocity and airflow agitation in the spreader. Agitation 

can entangle fibers, making fiber spreading difficult and damaging the fibers. The 

characteristics of the internal flow field in the pneumatic spreader will be given by the 

design. This present work aims to establish a three-dimensional (3-D) model of the 

spreader by applying a computational fluid dynamics (CFD) method combined with 

far field treatment to study the internal flow field of the spreader. The CFD method 

was also implemented to visualize velocity fields, pressure and streamlines 

distribution, and thus elucidates the spreading mechanism of the new design spreader 

to optimize the design factors. The fiber pneumatic spreader is used to estimate 

experimentally the effect of air velocity on a carbon fiber tow. The goal is to develop 

an effective pneumatic fiber spreading system that can uniformly spread the fiber tow 

for post treatment, such as surface treatment or surface coating, and investigate the 

nucleation and growth of EN deposit in a spread and unspread carbon fiber tow, and 

we will exam the controlled mechanism that causes the non-uniform Ni coating by the 

spread carbon fiber tow. Finally, a method will be provided to obtain the thin and 

uniform Ni coating on a carbon fiber tow.  
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