
Jus Measuring: Algorithm and Complexity

Min-Zheng Shieh

August 25, 2004

ABSTRACT

We study the water jug problem and obtain new lower and upper bounds

on the minimum number of measuring steps. These bounds are tight and

significantly improve previous results. We prove that to compute the cru-

cial number µc(x) (i.e., min
x=x·c ||x||1, where c ∈ Nn, x ∈ N, ||x||1 =

∑n
i=1 |xi|)

for estimating the minimum measuring steps is indeed a problem in PNP .

Moreover, we prove that testing whether µc(x) is bounded by a fixed num-

ber is indeed NP-complete and thus the optimal jug measuring problem is

NP-hard, which was also proved independently by [6]. Finally, we give a

pseudo-polynomial time algorithm for computing µc(x) and a polynomial

time algorithm, which is based on LLL basis reduction algorithm, for ap-

proximating the minimum number of jug measuring steps efficiently.

Keywords: Jug problems, lower bound, upper bound, NP, LLL algorithm

CONTENTS

1. Introduction . 5

2. Measurability, Lower and Upper bounds 9

2.1 Measurability . 9

2.2 Lower bound . 10

2.3 Upper bound . 16

3. The complexity of jug measuring problem 22

3.1 NP-hardness of computing µ(x) 22

3.2 A pseudo-polynomial time algorithm for computing µ(x) . . . 25

4. Approximating the jug measuring problem 27

4.1 Convert computing µc(x) to CVP 27

4.2 Approximating CVP . 31

4.3 The complexity of Approximating µc(x) 38

4.4 Experiments and results . 39

5. Conclusion and remarks . 47

LIST OF FIGURES

2.1 Graph representation from the sequence σ′. 15

2.2 Measuring algorithm given µc(x). 18

3.1 A pseudo-polynomial time algorithm for computing µ(x) and x. 26

4.1 A simple algorithm to compute U 32

4.2 A non-recursive implementation of the nearest plane heuristic

algorithm. 37

4.3 Three jugs. c = (15, 21, 35) . 39

4.4 Six jugs. c = (15, 21, 33, 35, 55, 77) 40

4.5 Geometric series: n = 8, ci = 5i−1 42

4.6 Geometric series: n = 8, ci = 5i−1 42

4.7 Geometric series: n = 6, ci = 10i−1 43

4.8 Fibonacci series: n = 25 . 43

4.9 Fibonacci series: n = 28 . 44

4.10 Random case: n = 5, ci ∈ [100000] 44

4.11 Random case: n = 10, ci ∈ [100000] 45

4.12 Random case: n = 20, ci ∈ [100000] 45

4.13 Arithmetic series: n = 20, ci = 1001 + 15(i − 1) 46

4.14 Arithmetic series: n = 20, ci = 1001 + 17(i − 1) 46

1. INTRODUCTION

There is a scene in the movie Die Hard: With a Vengeance, where the actors

need to defuse a bomb by measuring four gallons of water using two jugs

of capacities three and five. This measuring problem is the so called water

jug problem [3, 5, 2], which has been studied for a long time and is a pop-

ular problem for programming contests, a frequent heuristic search exercise

in artificial intelligence and algorithms. Boldi et al. [3] generalized the jug

problem by considering a set of jugs of fixed capacities and they found out

which quantities are measurable and proved upper and lower bounds on the

number of steps necessary for measuring a specified amount of water. More

specifically, the general water jug problem is [3]:given a set of jugs of fixed

capacities, find out which quantities are measurable. In this paper we also

deal with the optimal jug measuring problem, which considers the minimum

number of measuring steps. Suppose we are given n jugs with integer ca-

pacities ci, i ∈ [n], where [n] denotes the set {1, · · · , n}. WLOG, we assume

c1 ≤ c2 ≤ · · · ≤ cn. We can perform three types of elementary operations on

the jugs with the following notations introduced by Boldi et al.[3]:

(1) ↓ i: fill the ith jug (from the source) up to its capacity, and we call it

the fill operation;

(2) i ↑: empty the ith jug (into the drain) completely, and we call it the

empty operation;

1. Introduction 6

(3) i → j: pour the contents of the ith jug to the jth jug, i �= j, and we

call it the pour operation. Note that pour operation never changes the

total sum of the contents, and at the end of this operation, the ith jug

is empty or the jth jug is full.

By following Boldi et al. [3], we formally describe the operation as follows.

Let O denotes the set of all possible elementary operations, that is, O = {↓
i|∀i ∈ [n]} ∪ {i ↑ |∀i ∈ [n]} ∪ {i → j|∀i, j ∈ [n], i �= j}. Let N be the set

of non-negative integers. A state is a vector s ∈ Nn, where si denotes the

amount contained in jug i. The next-state function δ : Nn × O → Nn is

defined as following:

(1) δ(s, ↓ i) = (s1, . . . , si−1, ci, si+1, . . . , sn);

(2) δ(s, i ↑) = (s1, . . . , si−1, 0, si+1, . . . , sn);

(3) δ(s, i → j) = (t1, . . . , tn), where tk = sk for all k /∈ {i, j}, ti =

max{0, si − (cj − sj)}, and tj = min{cj, si + sj}.

We call a finite sequence of elementary operations an algorithm for jug mea-

suring, where each operation is a feasible move. We say a state s is reachable

if δ(0, σ) = s for some algorithm σ ∈ O∗. It is clear that δ(s, ε) = s and for

any algorithm σ ∈ O∗ and o ∈ O we have δ(s, σo) = δ(δ(s, σ), o). A quantity

x ∈ N is measurable via algorithm σ iff one of the components of δ(0, σ)

is equal to x. For convenience, let c = {c1, · · · , cn} and gcd(c) denote the

greatest common divisor of c1, · · · , cn. The set of quantities that are mea-

surable using the capacities in c is denoted by M(c). Boldi et al.[3] proved

the following theorem, which shows that all of the measurable quantities are

exactly the multiples of the greatest common divisor of the capacities.

Theorem 1: [3] M(c) = {m ·gcd(c)| for all non-negative integer m ≤ cn

gcd(c)
}.

1. Introduction 7

We extend the measurability by defining that a quantity x ∈ N is ad-

ditively measurable via algorithm σ iff the sum of the contents in δ(0, σ)

is equal to x. The set of quantities that are additively measurable using

the capacities in c is denoted by M+(c). Obviously, this is more general

than M(c) and can measure larger quantities up to
∑n

i=1 ci. We prove

that all of the additively measurable quantities again are exactly the mul-

tiples of the greatest common divisor of the capacities, that is: M+(c) =

{m · gcd(c)| for all non-negative integer m ≤
∑n

i=1
ci

gcd(c)
}.

Each x ∈ M+(c) has a (one or more) vector representation x = (x1, · · · , xn) ∈
Zn with respect to c, such that x = x · c =

∑n
i=1 xici. It is not hard to see

that such a representation x implies a sequence of operations achieving the

quantity x, and vice versa. Define µ(x) = min
x=x·c ||x||1, where ||x||1 =

∑n
i=1 |xi|.

µ(x) plays an important role on estimating the upper and lower bounds of

measuring steps. Boldi et al. proved the following bounds:

Theorem 2: [3] (1). Every x ∈ M(c) can be measured in at most 5
2
µ(x)

steps. (2). No algorithm can measure x ∈ M(c) in less than 1
2
µ(x) steps.

With a deeper observation we improve the lower bound to 2µ(x) − 1,

which is tight in many cases. We prove that: No algorithm can measure

(0, · · · , 0, x) for all x ∈ M(c) in less than 2µ(x) − 1 steps. Also all the

measurable quantity can be measured in at most 2µ(x) steps.

From the above, given c and x, µ(x) (for convenience, denoted as µc(x))

provides a pretty good estimation on the number of measuring steps. How-

ever it is not clear how to compute µ(x) efficiently. We prove that computing

µc(x) is in PNP . Formal definition of the notation PNP can be found in sev-

eral standard textbooks as in the references [4, 10, 9]. Moreover, we prove

that testing whether µc(x) is bounded by a fixed number is actually NP-

complete. The consequence is that the optimal jug measuring problem is

1. Introduction 8

NP-hard.

Since computing µc(x) is indeed in PNP , we propose a polynoimial time

approximation algorithm which is based on the famous LLL (Lenstra-Lenstra-

Lovasz) basis reduction algorithm. In our experiments, it gives much better

results than its theorectical bounds. We also present some inapproximable

results provided by Havas and Seifert [6] and conclude that the problem of

computing µc(x) is inapproximable in polynomial time within a factor of k,

where k ≥ 1 is an arbitrary constant.

The rest of the paper is organized as follows. In chapter 2, we characterize

additive measurability and prove new lower and upper bounds for the number

of minimum measuring steps. In chapter 3, we prove that computing µc(x) is

in PNP , its bounded version is NP-complete, and the optimal jug measuring

problem is NP-hard. A pseudo-polynomial time for computing µc(x) is also

given. In chapter 4, we give a polynomial time approximation algorithm for

computing µc(x). Inapproximable results are also given. Chapter 5 concludes

the paper.

2. MEASURABILITY, LOWER AND UPPER BOUNDS

2.1 Measurability

First we prove that the additively measurable quantities are exactly the mul-

tiples of the gcd of all of the jug capacities.

Theorem 3: Given c, M+(c) = {m ·gcd(c)| for all non-negative integer m ≤∑n

i=1
ci

gcd(c)
}

Proof. There are two parts to be proved. First we need to prove that for any

non-negative multiple of gcd(c) (bounded by
∑n

i=1 ci), it is additively mea-

surable. Secondly, we need to show that any additively measurable quantity

is a multiple of gcd(c). We prove both parts by induction on n, the number

of jugs. It is trivial for both parts when n = 1. Assume that the theorem

holds up to n − 1.

1. Assume x = m · gcd(c) and x ≤ ∑n
i=1 ci, for some m ∈ N. It is

clear that cn ≥ gcd(c1, c2, c3 . . . , cn−1), since c1 ≤ c2 ≤ c3 · · · ≤ cn.

If x ≤ ∑n−1
i=1 ci, then let y ≡ x(mod gcd(c1, c2, c3 . . . , cn−1)). We know

that x − y is a multiple of gcd(c1, c2, c3 . . . , cn−1) and thus a multiple

of gcd(c). We already know x is a multiple of gcd(c) by assumption,

and then so is y. By theorem 1, we have y ∈ M(c). This implies

that we can reach (0, 0, 0, . . . , y) first. By induction hypothesis, x −
y ∈ M+(c1, c2, . . . , cn−1). So we can reach a state s by using the first

2. Measurability, Lower and Upper bounds 10

n − 1 jugs, where the sum of its contents is equal to x − y. Together

with the quantity y in jug n, we can achieve the total sum x.

If x >
∑n−1

i=1 ci, then let y = x − ∑n−1
i=1 ci ≤ cn. We know that y is a

multiple of gcd(c), since x and
∑n−1

i=1 ci are both multiples of gcd(c) and

thus by theorem 1 we have y ∈ M(c). This implies that we can reach

(0, 0, 0, . . . , x−∑n−1
i=1 ci) first, and then we can reach a state s with the

sum of the full content in each jug equal to x, by filling all of the jugs

other than jug n.

2. Assume x is additively measurable with c. We want to show that

x is a multiple of gcd(c). Let (s1, · · · , sn) be a reachable state with

x =
∑n

i=1 si. It is obvious that each si is measurable. Again by theorem

1, we know each si is a multiple of gcd(c) and thus x is multiple of

gcd(c).

This completes the proof. �

2.2 Lower bound

In this section, we prove the following lower bound, which improves previous

result, 1
2
µ(x), by Boldi et al.[3].

Theorem 4: No algorithm can measure (0, · · · , 0, x), for all x ∈ M(c), in less

than 2µ(x) − 1 steps.

Actually we prove a stronger result:

Theorem 5: Let s = (s1, · · · , sn) be a reachable state, x =
∑n

i=1 si and nne

be the number of non-zero entries of s, then no algorithm can reach s in less

than 2µ(x) − nne steps.

2. Measurability, Lower and Upper bounds 11

It is clear that Theorem 4 is a special case of Theorem 5. We need the

following lemma before proving the theorem.

Lemma 6: Let σ = o1o2 · · · om ∈ O∗ be an arbitrary sequence of m legal oper-

ations such that δ(0, σ) = (t1, t2, · · · , tn). Then for any i ∈ [n], there exists an-

other sequence of m operations ρ such that δ(0, ρ) = (t1, · · · , ti−1, t
′
i, ti+1, · · · , tn),

where t′i = 0 or ci.

Proof. For any i ∈ [n], let ω = o1 · · · ok be the maximum prefix of σ such

that δ(0, ω) = (u1, · · · , un), where ui = 0 or ci, i.e. after the (k + 1)-st

operation the i-th jug is neither full nor empty and this status (non-full and

non-empty) of jug i is kept throughout the rest of operations in σ. We can

assume such maximum prefix of σ always exists, otherwise the lemma is

already true, since jug i will be either empty or full during the operations.

Now we want to construct a sequence of operations ρ = ωo′k+1 · · · o′m,

where for each � ∈ {k + 1, · · · ,m} define o′� to be j ↑ if o� = j → i for some

j, ↓ j if o� = i → j for some j, or o�, otherwise. Note that we simply copy

the operation(s) not related to jug i from σ.

We prove by induction on the number of operations after ok in σ relating

to jug i for the correctness of the above construction. If there is no operation

relating to jug i after ok, then it is clear that σ = ω = ρ and the claim is

trivially true. If there is exactly one operation after ok relating to jug i, then

it must be ok+1 (otherwise we would be able to find a longer prefix ω), and

ok+1 can only be j → i or i → j for some j. (1) If jug i is empty right before

ok+1, then ok+1 must be j → i and jug j must become empty after ok+1,

otherwise we won’t know the amount poured from jug j to jug i. In this case

we let o′k+1 = j ↑. Thus we have ρ as σ except with the (k + 1)-st operation

different. And it affects only the i-th jug, which is empty instead of being

2. Measurability, Lower and Upper bounds 12

filled with the amount ti. (2) If jug i is full right before ok+1, then ok+1 must

be i → j and jug j must become full after ok+1, otherwise, with the same

reasoning, we won’t know the amount poured from jug i to jug j, since jug

i will be partially filled. In this case we let o′k+1 =↓ j. The new sequence ρ

will keep jug i full and won’t affect the rest.

Assume that for up to d jug i related operations to the right of ω in σ,

we can always successfully construct ρ as claimed. Now consider the case of

(d + 1) jug i related operations after ω in σ. Let r > k and or be the last

such operation after ok. Since or is after ok, we know or cannot be i ↑ or ↓ i.

There are two possibilities for or, i.e. j → i or i → j for some j. In both

cases, after the operation of or jug i cannot be empty or full by the choice of

ω.

• Case or = j → i: Right before or, jug i is neither full nor empty and

after or jug i will maintain the same status but with extra water poured

from jug j. Jug j must become empty after or, since jug i is partially

filled. In this case we replace or with j ↑ and obtain a new sequence σ′,

which has d operations related to jug i. Then by induction hypothesis,

we can construct ρ from σ′ as required.

• Case or = i → j: As above right before and after or, jug i must be

partially filled. In this case, jug j must be full after or. We replace or

with ↓ j and obtain a new sequence σ′, which has d operations related

to jug i. Then by induction hypothesis, we obtain ρ from σ′ as required.

�

We say a state s = (s1, · · · , sn) is reachable if there exists a sequence of

operations σ ∈ O∗ such that δ(0, σ) = s. We say that a reachable state s is

2. Measurability, Lower and Upper bounds 13

additively measurable if
∑n

i=1 si is additively measurable. Furthermore, σ is

called optimal, if it is the shortest sequence of operations that reaches s.

The following lemma states that when we empty a jug, it can be full right

before emptying and when we fill water into a jug from the source it can be

empty right before pouring.

Lemma 7: For any reachable state s, there exists an optimal sequence of

operations σ′ = o′1 · · · o′m with δ(0, σ′) = s, such that for any k ∈ [m], if o′k is

i ↑ or ↓ i for some i ∈ [n], then δ(0, o′1 · · · o′k−1) will reach a state with jug i

full or empty, respectively.

Proof. Suppose there is an optimal sequence ρ = o1 · · · om, such that δ(0, ρ) =

s and there exist k ∈ [m] and i ∈ [n] with ok ∈ {i ↑, ↓ i} and δ(0, o1 · · · ok−1) =

(t1, · · · , tn) but ti �= 0 and ci. Without loss of generality, let ok be the

rightmost of such operations in ρ that disagrees with the lemma. Then

by lemma 6, we can find a sequence of operations ω = o′1 · · · o′k−1 such that

δ(0, ω) = (t1, · · · , ti−1, t
′
i, ti+1, · · · , tn), where t′i = 0 or ci. Since ok ∈ {i ↑, ↓ i},

we have δ(0, o1 · · · ok) = δ(0, ωok) and so δ(0, ρ) = δ(0, ωok · · · om). By re-

peating this, we will eliminate all such disagreeing operations and obtain an

optimal sequence of operations as claimed. �

Lemma 8: For any reachable state s with x =
∑n

i=1 si, there exists an optimal

sequence of operations σ = o1 · · · om with δ(0, σ) = s, such that the number

of fill and empty operations in σ is at least µ(x).

Proof. By Lemma 7, there exists an optimal sequence of operations σ such

that the total amount of water from each jug is increased or decreased by

the amount of ci after ↓ i or i ↑ operation for each i ∈ [n]. Note that op-

erations i → j and j → i do not change the total sum. Suppose for each

2. Measurability, Lower and Upper bounds 14

i ∈ [n], there are fi (↓ i)-operations and ei (i ↑)-operations in σ. It is clear

x =
∑n

i=1(fi − ei)ci and thus
∑n

i=1 |fi − ei| ≥ µ(x). From the above we have
∑n

i=1(fi + ei) ≥ ∑n
i=1 |fi − ei| ≥ µ(x). �

We prove the lower bound on the number of pour operations by inspecting

a property of an optimal sequence of operation via a graph representation as

following.

Lemma 9: Let σ = o1 · · · om be an optimal sequence for a reachable state

s = δ(0, σ) that satisfies lemma 7. Let nne be the number of non-zero entries

of s, then the number of pour operations in σ is at least µ(x) − nne.

Proof. We prove the lower bound by constructing a graph G(V,E) from

σ. For jug i, i ∈ [n], σ can be partitioned into disjoint subsequences of

operations, say σ = σi,1 · · ·σi,gi
, where after each subsequence of operations

jug i becomes empty and the first operation of the next subsequence will

change the status of jug i into non-empty. Note that each subsequence of

operations will make jug i empty once, except the last subsequence for which

jug i may end up being non-empty. If the state of jug i changed from empty

to non-empty gi times with respect to σ, then σ will be partitioned into gi

subsequences. For each jug, there will be a unique partition.

For jug i, suppose we partition σ into gi subsequences σi,1 · · ·σi,gi
. We

define the vertex set V = {vi,j|i ∈ [n], j ∈ [gi]}, where vi,j corresponds to

σi,j. For a pour operation o = i → j, if o ∈ σi,a and o ∈ σj,b, where a ∈ [gi]

and b ∈ [gj], then we define an edge (vi,a, vj,b) for operation o. For each

pour operation we define an edge. Thus we define the edge set E to be the

collection of all such edges. So G(V,E) is well defined from σ. It is clear

that the number of pour operations in σ is |E|.

2. Measurability, Lower and Upper bounds 15

For example, consider an instance with c = {14, 28, 31} and x = 20. Let

σ′ = o1o2 · · · o14 =↓ 1◦ ↓ 3 ◦ 1→ 2◦ ↓ 1 ◦ 1→ 2 ◦ 2 ↑ ◦ ↓ 1 ◦ 1→ 2 ◦ 3→ 2 ◦ 2 ↑
◦3→2◦ ↓3 ◦ 3→2 ◦ 2↑. It is clear that δ(0, σ′) = (0, 0, 20), but σ′ is not an

optimal sequence of operations. We construct a graph as in figure 2.1, where

each block (or subsequence) represents a vertex and g1 = g2 = 3, g3 = 2.

v1,1 = o1o2o3 v1,2 = o4o5o6 v1,3 = o7o8o9o10o11o12o13o14

v2,1 = o1o2o3o4o5o6o7 v2,2 = o8o9o10 v2,3 = o11o12o13o14

v3,1 = o1o2o3o4o5o6o7o8o9o10o11 v3,2 = o12o13o14

Fig. 2.1: Graph representation from the sequence σ′.

The number of fill operations associated with a vertex is at most 1, be-

cause ok is ↓ i if and only if δ(0, o1o2 · · · ok−1) = (t1, t2, . . . , ti−1, 0, ti+1 . . . , tn).

Also the number of empty operations associated with a vertex is at most 1.

For each i, let ei be the number of (i ↑)-operations and fi be the number of

(↓ i)-operations in σ. |V | = Σn
i=1gi ≥ Σn

i=1max{ei, fi} ≥ Σn
i=1|fi−ei| ≥ µ(x),

since Σn
i=1(fi − ei)ci = x. Since σ is optimal, G(V,E) has at most nne

connected components, where each component corresponds to at least one

non-empty jug, in other words, each component contains at least one ver-

tex vi,gi
with jug i non-empty. A crucial observation is: if there are more

than nne connected components in G(V,E), then there must exist one con-

nected component whose corresponding operations do not contribute in the

measuring and can be removed without changing the final outcome, since

these operations are redundant. For instance, as in figure 2.1, the connected

2. Measurability, Lower and Upper bounds 16

component of {v1,1, v1,2, v2,1} does not connect to any vi,gi
and thus all the

operations in v1,1, v1,2, and v2,1 related to jug 1 and 2 can be removed without

changing the final jug status. While for any optimal sequence, this cannot

happen.

Since there are at most nne connected components, there are at least

|V | − nne edges in G(V,E). Thus |E| ≥ |V | − nne. Since each edge stands

for a pour operation and |V | ≥ µ(x) , there are at least µ(x) − nne pour

operations in σ. �

By Lemma 8 and Lemma 9, we have Theorem 5 as an immediate conse-

quence. Note that this lower bound is tight for many cases, for example for

all x ∈ M(c).

2.3 Upper bound

Suppose we are allowed to use an extra jug with infinite capacity and x =
∑n

i=1 cixi. Then the algorithm is simply: (1) for each xi > 0 repeat {↓ i; i →
(n + 1)} for xi times; (2) for each xi < 0 repeat {(n + 1) → i; ↑ i} for |xi|
times. It is clear that the total number of measuring steps is 2

∑n
i=1 |xi| steps.

With the above observation, given the optimal representation of x, we obtain

an algorithm as in Figure 2.2, which measures x in 2µ(x)+ l−1 steps, where

l is the minimum number of jugs needed to hold the quantity x. The key

idea is simply simulate the imaginary jug of infinite capacity with the n jugs.

And hence the upper bound won’t be exactly 2µ(x). Note that the upper and

lower bounds are tight when we consider the case that the quantity x must

fit into a jug in the last step. In other words, for x ∈ M(c), given the optimal

representation of x, our algorithm achieves the best possibility. However, it

is not clear how to compute µc(x) and the optimal representation efficiently.

2. Measurability, Lower and Upper bounds 17

Theorem 10: For all x ∈ M+(c), if we need at least l jugs to hold the quantity

x, then the algorithm Measure additively measures x in 2µ(x)+ l−1 steps.

We prove the correctness and analyze the algorithm with the following

two lemmas.

Lemma 11: The algorithm Measure outputs a sequence σ of operations

such that δ∗(0, σ) = s,
∑n

i=1 |si| = xc = x.

Proof. Initially, let F = {i|xi > 0} and E = {i|xi < 0}. The post condition

of the third loop (in line 8) is that for all i ∈ F and j ∈ E, there are xi fill

operations on empty jug i and xj empty operations on full jug j in σ. Note

that after each fill operation some vi with i ∈ F will decrease by 1, and after

each empty operation some vj with j ∈ E will increase by 1. We will show

that the quantity of water in the jugs is x when the algorithm terminates.

We also need to show that the loop invariants hold to ensure the progress of

the algorithm.

The post condition of the first loop (in line 2) is trivial that for all i ∈ F ,

si = ci. This makes the loop invariant of the second loop hold initially.

Next we will show that after an iteration of the second loop (in lines 3-7),

if there still exists an vi < 0, then we can always find j in line 4. There are

two possibilities after pour(j, i) is executed in line 5, i.e., jug j can become

non-empty or empty. Case 1: (Jug j is still non-empty.) The loop invariant

holds, since sj > 0 and vj ≥ 0. Case 2:(Jug j becomes empty.) If vj > 0,

then the loop invariant trivially holds, since jug j will be refilled immediately.

If vj = 0, assume that the loop invariant did not hold, i.e., line 4 failed to find

the j in the following iteration and it implied that for all k ∈ F with vk ≥ 0,

we had sk = 0. While with line 6, we know that for each k ∈ F , vk cannot be

2. Measurability, Lower and Upper bounds 18

Algorithm Measure(c, x, x)

Input: c = (c1, · · · , cn), the capacity of jugs.

x, the quantity to be measured.

x = (x1, · · · , xn), the optimal representation of x that achieves µc(x).

Output: the operation sequence σ, such that δ∗(0, σ) achieves the quantity x.

Variable: s, the state of jugs, which is initialized to be zero state.

v = (v1, · · · , vn), initialized to be x.

begin

1. σ := ε;

2. for all i if (si = 0 and vi > 0) do fill(i);

3. while(∃i s.t. vi < 0) do

4. Find j s.t. sj > 0 and vj ≥ 0;

5. pour(j, i);

6. if (sj = 0 and vj > 0) then fill(j);

7. if (si = ci) then empty(i);

8. while (∃vi > 0) do

9. Find j > n − l with vj = 0 and sj �= cj;

10. pour(i,j);

11. if si = 0 then fill(i);

end

Procedure fill(i)

begin σ := σ ◦ (↓ i); si := ci; vi := vi − 1; end

Procedure empty(i)

begin σ := σ ◦ (i ↑); si := 0; vi := vi + 1; end

Procedure pour(i, j)

begin

1. σ := σ ◦ (i → j);

2. if (si + sj > cj) then {si := si + sj − cj; sj := cj;}
3. else {sj := si + sj; si := 0;}
end

Fig. 2.2: Measuring algorithm given µc(x).

2. Measurability, Lower and Upper bounds 19

greater than 0 (otherwise it would be refilled right the way), and thus all vk

must become 0. Line 7 shows that for all i ∈ E, if vi < 0 then si < ci and thus

the amount of water in the jugs is less than
∑

i∈E;vi<0 ci. Since we have done
∑

i∈F xi fill operations and
∑

i∈E(vi − xi) empty operations, the quantity of

water left in the jugs is exactly
∑

i∈F cixi +
∑

i∈E ci(xi −vi)=x · c−∑
i∈E civi,

which is greater than
∑

i∈E;vi<0 ci– a contradiction! Thus we have that as

long as the loop condition in line 3 holds, line 4 can always find a jug to

perform the pour operation.

The post condition of the second loop (lines 3-7) is clear that for all i ∈ E,

vi = 0, si = 0 and for all i ∈ F with vi > 0, we have si > 0 by line 6. Note

that the quantity of water left in the jugs is
∑

i∈F (xi − vi)ci − ∑
j∈E(vj −

xj)cj=x − ∑
i∈F civi > 0. If for all i ∈ F , vi = 0, then we are done.

We prove the invariant of the third loop (lines 8-11) as following. The

largest l jugs are sufficient to contain the quantity x by the assumption in the

theorem. Note that if
∑

j>n−l cj = x, then the optimal measuring will be by

filling the jugs with indices greater than n−l. So without loss of generality, we

assume
∑

j>n−l cj > x. It is clear that we cannot have for all i > n− l, vi > 0

(actually = 1), otherwise x−∑
i∈F civi < 0. Thus there exists some i > n− l,

vi = 0 and from which some si must be less than ci. Suppose for all j > n− l,

either vj > 0 or (vj = 0 and sj = cj). Then
∑

j>n−l;vj>0 cjvj +
∑

j>n−l;vj=0 cj

=
∑

j>n−l cj > x. But
∑

j>n−l;vj>0 cjvj <
∑

i∈F civi and
∑

j>n−l;vj=0 cj <

(x − ∑
i∈F civi), which is the current total quantity in the jugs. The sum of

the latter two inequalities leads to a contradiction. Thus, whenever there

exists xi > 0, line 9 can always find a suitable jug for pouring.

Finally, when the algorithm terminates, it actually performed |F | fill

operations and |E| empty operations and the net quantity is
∑

i∈F cixi +
∑

j∈E cjxj=x.�

2. Measurability, Lower and Upper bounds 20

Lemma 12: For all x ∈ M+(c), there exists x such that x · c = x and µc(x) =

∑n
i=1 |xi|, and the algorithm Measure outputs a sequence σ of operations

such that |σ| ≤ 2µc(x) + l − 1.

Proof. If x = cn−l+1 + · · · + cn, then it is clear that x = (0, . . . , 0,

l︷ ︸︸ ︷
1, . . . , 1)

satisfies all requirements in this lemma, moreover, µc(x) = l. Since after the

first loop, all vi = 0, we know that |σ| = l ≤ 2µc(x)+ l−1. Thus without loss

of generality, we assume that x < cn−l+1 + · · ·+ cn. The fact that x ∈ M+(c)

ensures the existence of such x.

It is clear that after performing Measure(c, x, x), there are µc(x) fill

and empty operations executed. For the rest, we need to estimate the number

of pour operations executed. Now we try to associate each pour operation

with a fill or empty operations as following.

For any pour operation pour(i, j): Case 1: (Jug i becomes empty.) Then

we associate this pour(i, j) with the closest prior fill(i) operation. Case 2:

(Jug j becomes full.) If there is no empty(j) operation after it, then we

associate it with jug j, else associate it with the next empty(j) operation

after it.

Let F = {i|xi > 0} and E = {i|xi < 0}. Note that the algorithm

Measure starts by filling all jugs with indices in F . Every fill operation

associates with at most one pour operation, since by following the algorithm

for any i ∈ F after a pour operation that empties jug i, there is either an

immediate fill(i) operation or no more pour operation about jug i. Every

empty operation also associates with at most one pour operation, since for

any i ∈ E, the only possible operation between a pour operation that fills

jug i fully and the next empty(i) is a fill operation, not a pour or an empty

operation. These two facts imply there are at most µ(x) pour operations

2. Measurability, Lower and Upper bounds 21

associated with fill and empty operations.

The pour operations associated with jugs are always executed in the third

loop (lines 8-11), and there are at most l−1 pour operations associated with

jugs since when the algorithm terminates, there are at most l − 1 fully filled

jugs among jugs from jug n − l + 1 to jug n. Since each pour operation is

associated with a fill operation, an empty operation or a jug, we conclude

that the number of pour operations is less than µc(x) + l − 1 and thus |σ| ≤
2µc(x) + l − 1. �

From lemma 12, it clear that when l = 1, i.e., the water is eventually

poured into a single jug, the bound is very close to the lower bound. While

there still exists a gap when considering the quantities that exceed the largest

capacity.

3. THE COMPLEXITY OF JUG MEASURING PROBLEM

3.1 NP-hardness of computing µ(x)

We have used µ(x) to bound the number of steps on jug measuring. In

this chapter, we investigate the difficulty of computing µ(x). Given c =

(c1, · · · , cn) ∈ Nn and x ∈ M(c), we define µc(x) = min
x∈Zn,x·c=x

∑n
i=1 |xi|,

where x = (x1, · · · , xn). To study the complexity of computing µc(x), we

investigate a bounded version of it. Define L = {< c, x, u > |µc(x) ≤ u}.
Given c, x and u, we want to determine if µc(x) ≤ u, in other words, we want

to determine if < c, x, u >∈ L. We prove it indeed NP-complete by reducing

the 3-Dimensional Matching to it. 3-Dimensional Matching problem [8, 9, 4]

is a well known NP-complete problem, which is defined as: Given three sets

P = Q = R = [n], and a subset T ⊆ P ×Q×R, is there a subset S of T with

|S| = n such that whenever (p, q, r) and (p′, q′, r′) are distinct triples in S,

p �= p′, q �= q′ and r �= r′? We call such an S a match for the 3-Dimensional

Matching problem.

Theorem 13: The membership problem of L is NP -complete.

Proof. For any instance of the form < c, x, u >, we can nondeterministically

guess an x and verify if x · c = x and
∑n

i=1 |xi| ≤ u. Since all the verification

can be done in polynomial time in terms of the input size, we know L is in

3. The complexity of jug measuring problem 23

NP .

Next, we give a polynomial time reduction from 3-Dimensional Matching

to L. For convenience let |T | = t. To have a match, we need t ≥ n. Given

an instance of 3-Dimensional Matching as above, for each (pi, qi, ri) ∈ T , we

construct a positive number ci = 23t+3n+22t+2n+pi−1+2t+n+qi−1+2ri−1, which

has 3t + 3n + 1 bits in binary representation. Construct x = n × 23t+3n +

(2n − 1)(22t+2n + 2t+n + 1) and u = n. If the instance has a match S, then

we set xi = 1 when (pi, qi, ri) ∈ S; 0 otherwise. Since |S| = n, it is not hard

to see
∑t

i=1 xici = x and
∑t

i=1 |xi| = n ≤ u.

On the other hand, suppose we have xi’s such that
∑t

i=1 xici = x and
∑t

i=1 |xi| ≤ u. Then it is clear that there are at most n non-zero xi’s and
∑t

i=1 xi = n, since because of the construction of ci’s and x, even we add up

the largest ci for n times the terms with lower power of 2 won’t carry over to

23t+3n. We claim that there are exactly n non-zero xi’s and each of them is 1.

We can check the sum
∑t

i=1 xi2
ri−1, which can be simplified to 2n − 1, if all

the nonzero xi is 1 and the corresponding ri’s range over every number from

1 to n. If some xi were greater than 1, then
∑t

i=1 xi2
ri−1 could be merged

into the sum of less than n numbers and each of them would have a distinct

power of 2. But this cannot add up to 2n − 1. Similarly, we can argue for

the other terms. Hence each non-zero xi is 1 and
∑t

i=1 xici = x implies a

match S = {(pi, qi, ri) : for all xi = 1}. It is clear the reduction can be done

in polynomial time. Therefore, L is NP-complete. �

The above result implies that computing µc(x) is NP-hard. Moreover, we

prove it is in PNP with the following fact by Boldi et al. [3].

Fact 1: [3] Let x ∈ M(c), then µc(x) < max{2cn, cn + x}/ gcd(c).

We use L as an oracle and the above bound to compute µc(x) and prove the

3. The complexity of jug measuring problem 24

following result.

Theorem 14: The problem of computing µc(x) is in PNP .

Proof. Let µ be the upper bound from fact 1, which is bounded by a poly-

nomial in terms of the input size. We use L as an oracle. Then we can apply

binary search to find the minimum value of µc(x) by repeatedly querying L.

The algorithm is described as below:

1. Let � = 0, u = µ. If x is not a multiple of gcd(c1, · · · , cn), then output

”No solution”. Query if < c, x, � >∈ L. If YES, then output 0 and

EXIT.

2. If u = � + 1, then output u and EXIT.

3. Let m = �u+�
2
�. Query if < c, x,m >∈ L. If YES, then let u = m, else

let � = m. Go to 2.

This algorithm is a typical binary search with an oracle L and runs in

O(log(µ)) time, which a polynomial with respect to the input size. Since

L ∈ NP , we know that computing µc(x) belongs to the class PNP . �

Corollary 15: The optimal jug measuring problem is NP-hard.

Proof. Consider an instance c and x ∈ M(c). Suppose K is the minimum

number of measuring steps for x. From theorem 4 and 10, we have µc(x) =

�K/2�. Thus it is at least as hard as computing µc(x). �

3. The complexity of jug measuring problem 25

3.2 A pseudo-polynomial time algorithm for computing µ(x)

For x = ci or 0, µc(x) is obviously 1 and 0, respectively.

Lemma 16: For any x ∈ M+(c), if µc(x) > 1, then there exists y ∈ M+(c)

with |x − y| = ci for some i ∈ [n], such that µc(y) + 1 = µc(x).

Proof. Let c · x = x, E = {i|xi < 0}, F = {i|xi > 0}, and Y = {(x +

ci) ∈ M+(c)|i ∈ E} ∪ {(x − cj) ∈ M+(c)|j ∈ F}. By the assumption that

µc(x) > 1, it is clear Y �= ∅. We claim that ∃y ∈ Y , µc(x) = µc(y) + 1. It is

clear to see that if for all y ∈ Y , µc(y) < µc(x)− 1 then we can find an even

better representation for x. Hence µc(y) ≥ µc(x) − 1. But |x − y| = ci for

some i, thus the claim must hold and µc(x) = 1 + miny∈Y µc(y). �

From the proof, we derive a pseudo-polynomial time algorithm to compute

µc(x) for x ∈ M+(c) and the optimal representation of x. The algorithm is

shown in figure 3.1.

Theorem 17: The Search algorithm outputs µc(x) and the optimal x in

O(n · |M+(c)|) time.

Proof. First, we consider that the search is done on a graph starting from

0 until reaching x, where the vertex set is M+(c) and for x, y ∈ M+(c),

(x, y) is an edge iff |x − y| = ci for some ci. Thus there are at most O(n ·
|M+(c)|) edges. It is clear that what Search does is a typical Breadth-

First-Search(BFS) and thus the time complexity is O(n · |M+(c)|). Since the

input size is
∑n

i log |ci| + log |x| and |M+(c)|=�
∑n

i=1
ci

gcd(c)
� can be exponential

in terms of the input size. Therefore Search(c, x) is a pseudo-polynomial

time algorithm. �

3. The complexity of jug measuring problem 26

Algorithm Search(c, x)

Inputs: c, the capacities of jugs; x ∈ M+(c).

Outputs: µ=µc(x) and x = (x1, · · · , xn), where ||x||1 = µc(x).

Variables: m[0..|M+(c)|], temporal storages for µc’s and each is initialized to be ∞.

prev[0..|M+(c)|], prev[y] stores the value visited right before y.

begin

1. y := 0; m[0] := 0;

2. while(x is not reached) do

3. for i = 1 to n do

4. if (y + ci ∈ M+(c) and m[y + ci] > m[y] + 1) then

5. m[y + ci] := m[y] + 1; prev[y + ci] := y; Enqueue(y + ci);

6. if (y − ci ∈ M+(c) and m[y − ci] > m[y] + 1) then

7. m[y − ci] := m[y] + 1; prev[y − ci] := y; Enqueue(y − ci);

8. y :=Dequeue();

9. µ := m[x]; y := x; x = (0, · · · , 0);

10. while(y �= 0) do

11. d := y − prev[y];

12. Find the index i with ci = |d|;
13. if (d > 0) then xi = xi + 1 else xi = xi − 1;

14. y := prev[y];

end

Fig. 3.1: A pseudo-polynomial time algorithm for computing µ(x) and x.

4. APPROXIMATING THE JUG MEASURING PROBLEM

4.1 Convert computing µc(x) to CVP

We have shown that computing µc(x) is indeed NP -hard. In this section

we propose a polynomial reduction from the problem of computing µc(x)

to CVP, and an LLL-based approximation algorithm for computing µc(x).

Our approximation algorithm is based on the fact: computing µc(x) can be

polynomially reduced to the closest lattice vector problem (CVP). First, we

introduce lattice and the closest lattice problem briefly as follows:

Definition 1: A lattice in Rn is the set all integer linear combination m inde-

pendent vectors b1, b2, · · · , bm. The lattice generated by b1, b2, · · · , bm denoted

L(b1, b2, · · · , bm) is the set {∑m
i=1 λibi|∀i ∈ [m], λi ∈ Z}. The independent

vectors b1, b2, · · · , bm are called a basis of the lattice.

Definition 2: The closest lattice vector problem is: suppose we are given a

basis b1, b2, · · · , bm, a vector v ∈ Rn and an integer p, to find the lattice point

u ∈ L(b1, b2, · · · , bm) which is closest to v under lp-norm.

In order to complete the reduction from computing µc(x) to CVP, we

introduce the Hermite normal form:

Definition 3: a matrix A is said to be in Hermite normal form if it has the

form [B 0] where the matrix B is a nonsingular, lower triangle, nonnegative

4. Approximating the jug measuring problem 28

matrix, in which each row has a unique maximum entry, which is located on

the main diagonal of B.

We will give an example after we introduce the unimodular matrices, the

key tool for computing the Hermite normal form. The following operations

on a matrix are called elementary (unimodular) column operations:

1. exchange two columns;

2. multiply a column by −1;

3. adding an integral multiple of one column to another column

Thus a nonsingular matrix U is called unimodular matrix if U is integral and

has determinant 1 or −1.

Theorem 18: [11] Each rational matrix of full row rank can be brought into

Hermite normal form by a series of elementary column operations.

Corollary 19: [11] For each rational matrix A of full row rank, there is a

unimodular matrix U such that AU is the Hermite normal form of A.

For example:

A =

⎡
⎢⎢⎢⎢⎢⎣

1 5 4 7

0 3 6 3

0 0 5 7

⎤
⎥⎥⎥⎥⎥⎦

and its Hermite normal form AU =

⎡
⎢⎢⎢⎢⎢⎣

1 0 0 0

0 3 0 0

0 0 1 0

⎤
⎥⎥⎥⎥⎥⎦

and the unimodular matrix:

U =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 −5 22 −52

0 1 −4 9

0 0 3 −7

0 0 −2 5

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

4. Approximating the jug measuring problem 29

Lemma 20: [11] Given a feasible system Ax = b of rational linear diophan-

tine equations, we can find in polynomial time integral vectors x0, x1, x2, · · · , xt

such that {x|Ax = b; x is integral} = {x0 + λ1x1 + · · ·+ λtxt|λ1, · · · , λt ∈ Z}
with x1, x2, · · · , xt linearly independent. Moreover, [x0 x1 x2 · · · xt] =

U

⎡
⎢⎢⎣

B−1b 0

0 I

⎤
⎥⎥⎦, where AU = [B 0] is the Hermite normal form of A.

By the following theorem and lemma, we can find a reduction from com-

puting µc(x) to CVP. And we can complete the reduction:

Corollary 21: The problem of computing µc(x) can be polynomially reduced

to CVP.

Proof. Assume < (c1, c2, · · · , cn), x > is an instance of the problem of µc(x).

Let the matrix C = [c1 c2 · · · cn]. By corollary 19, there exists uni-

modular matrix U such that CU = [B 0] is the Hermite normal form of

C. Let [v0 v1 v2 · · · vn−1] = U

⎡
⎢⎣ B−1x 0

0 I

⎤
⎥⎦. By lemma 20, we know

v1, v2 · · · , vn−1 are linearly independent vectors and form a basis of a lattice L.

Hence µc(x) = min
v∈{x|c·x=x}

||v||1 = min
λ1,···,λn−1∈Z

||v0 + λ1v1 + · · ·+ λn−1vn−1||1 =

min
w∈L

||w − (−v0)||1. Thus µc(x) is the l1-norm of the vector v ∈ L which is

closest to −v0. It is clear that all computation can be done in polynomial

time. �

After we introduce the closest lattice vector problem and the Hermite nor-

mal form, we can sketch the approximation algorithm for computing µc(x):

Step 1. Transform the instance < (c1, c2, · · · , cn), x > of the problem of com-

puting µc(x) into an instance of CVP by computing the unimodular

matrix U such that [c1, c2, · · · , cn]U is in the Hermite normal form.

4. Approximating the jug measuring problem 30

Step 2. Approximate the closest vector by LLL-based algorithm. µc(x) is

equivalent to the �1-norm of the difference of the target vector v and

the lattice vector closest v.

The complexity of the approximation algorithm depends on the imple-

mentation of these two steps. As we will mention later, the complexity of

the LLL basis reduction algorithm is dependent to the number of basis vec-

tors and the maximum �2-norm of the basis vectors, thus for the computing

the unimodular matrix U such that [c1, c2, · · · , cn]U is in Hermite normal

form, an algorithm giving U with smaller entries usually reduces the running

time of whole approximation algorithm.

For the problem of computing the unimodular matrix U such that CU

is in the Hermite normal form, where C = [c1 c2 · · · cn], we propose an

algorithm which is simpler than the algorithm in [11]. But it works only on

the special case [c1 c2 · · · cn]U , it can’t compute the unimodular matrix U for

any other n by m matrix, where n > 1. The algorithm is shown in figure 4.1,

and it is based on the Euclidean algorithm. It compute the greatest common

divisor of the first and the ith entries by applying Euclidean algorithm with

unimodular operations. Each iteration terminates when the greatest common

divisor is written back to the first entry and 0 is written to the ith entry, thus

when the algorithm terminates, gcd(c1, c2, · · · , cn) will be written to the first

entry and 0 will be written to all the others. This implementation runs in

O(n2 log cn) since each iteration of the Euclidean algorithm takes O(n) time

for there are n entries in a column of U and the Euclidean algorithm runs in

O(log ci) iterations for every i. And each time we execute line 4 in figure 4.1,

the bit-length of entries of ui increases at most O(log q) and q = � ci

c1
�; this

fact imply after the ith iteration of the for-loop, the maximum bit-length of

the absolute value of the entries of U increases at most O(log ci). Thus the

4. Approximating the jug measuring problem 31

maximum bit-length of the absolute value of the entries of U won’t exceed

O(n log cn).

4.2 Approximating CVP

Before we introduce the approximation algorithm for CVP, we introduce

the famous LLL basis reduction algorithm. This algorithm is based on

Gram-Schmidt orthogonalization. Let b1, b2, · · · , bn be a basis of lattice L

and b∗1, b
∗
2, · · · , b∗n be the orthogonal basis of span(b1, b2, · · · , bn) obtained by

the Gram-Schmidt algorithm:

b∗1 = b1,

b∗i = bi −
i−1∑
j=1

〈bi,b
∗
j 〉

〈b∗j ,b∗j 〉
b∗j (i = 2, · · · , n)

We can write the recurrence in the following form:

bi =
i∑

j=1
µi,jb

∗
j where µi,j =

⎧⎪⎨
⎪⎩

1 , i = j
〈bi,b

∗
j 〉

〈b∗j ,b∗j 〉
, i < j

(i = 1, · · · , n)

We say a basis b1, b2, · · · , bn is weakly reduced if its Gram-Schmidt orthog-

onal basis b∗1, b
∗
2, · · · , b∗n satisfies the property:

If bi =
i∑

j=1

µi,jb
∗
j then |µi,j| ≤ 1

2
for 1 ≤ j < i ≤ n

Moreover, we say a basis b1, b2, · · · , bn is reduced or LLL reduced if it is weakly

reduced and satisfies the following inequality:

||b∗i ||22 ≤
4

3
||b∗i+1 + µi+1,ib

∗
i ||22

Let λ(L) be the length of the shortest nonzero vector in the lattice L.

Let d(L) be the volume of the fundamental parallelepiped P = { n∑
i=1

ribi|∀ri ∈
[0, 1)}. A. K. Lenstra, H. W. Lenstra and L. Lovasz proved the following two

theorems in 1982:

4. Approximating the jug measuring problem 32

Algorithm Hermite Normalize(C)

Inputs: C = [c1c2 · · · cn], the capacities of jugs.

Outputs: U = [u1u2 · · ·un] such that [c1c2 · · · cn]U is in the Hermite normal form.

Variables: q, temporal storages � ci

c1
�

begin

1. U := I;

2. for i = 2 to n do

3. while (true) do

4. q := � ci

c1
�; ci := ci − qc1; ui := ui − qu1;

5. if (ci = 0) then break;

6. Swap(ci, c1); Swap(ui, u1);

7. loop

8.next i

end

Fig. 4.1: A simple algorithm to compute U .

4. Approximating the jug measuring problem 33

Lemma 22: [7] Let b1, b2, · · · , bn be a basis of a lattice L and let b∗1, b
∗
2, · · · , b∗n

be its Gram-Schmidt orthogonalization. Then λ(L) ≥ mini ||b∗i ||2.

Proof. Let b ∈ L and b �= 0. Then we can write b =
n∑

i=1
λibi for λi are inte-

gers. Since b �= 0, there exists k = max
λi �=0

i. So we can rewrite b =
k∑

i=1
λ′

ib
∗
i . By

the property of Gram-Schmidt orthogonalization, λ′
k = λk �= 0 is a non-zero

integer. Hence ||b||22 =
k∑

i=1
|λ′

i|2||b∗i ||22 ≥ |λ′
k|2||b∗k||22 ≥ |b∗k||22 ≥ mini |b∗i ||22. This

proves the lemma. �

Theorem 23: [7] Let b1, b2, · · · , bn be a reduced basis of the lattice L. Then:

(1) ||b1||2 ≤ 2(n−1)/2λ(L);

(2) ||b1||2 ≤ 2(n−1)/4 n

√
d(L);

(3)
n∏

i=1
||bi||2 ≤ 2

1
2(

n
2)d(L);

Proof. Since b1, b2, · · · , bn is reduced, ||b∗i ||22 ≤ 4
3
||b∗i+1+µi+1,ib

∗
i ||22 and |µi+1,i| ≤

1
2
. It implies ||b∗i ||22 ≤ 4

3
||b∗i+1||22 + 1

3
||b∗i ||22, thus ||b∗i ||22 ≤ 2||b∗i+1||22. By in-

duction, we have ||b∗1||22 ≤ 2i−1||b∗i ||22. By lemma 22 and ||b1||2 = ||b∗1||2,
||b1||22 ≤ mini 2

i−1||b∗i ||22 ≤ 2n−1 mini ||b∗i ||22 ≤ 2n−1λ(L), this proves property

(1). ||b1||2n
2 ≤ n∏

i=1
2i−1||b∗i ||22 = 2n(n−1)/2d(L), thus we have property (2). And

||bi||22 =
i∑

j=1
µ2

i,j||b∗j ||22 ≤
i−1∑
j=1

1
4
||b∗j ||22+||b∗i ||22 ≤ (1+(2+22+· · ·+2i−1)/4)||b∗i ||22 ≤

2i−1||b∗i ||22, hence
n∏

i=1
||bi||22 ≤ 2(n

2)
n∏

i=1
||b∗i ||22 = 2(n

2)d(L), proving property (3).

�

In general, the LLL algorithm can be decribed as follow:

• Step 1. Make the basis weakly reduced.

4. Approximating the jug measuring problem 34

• Step 2. Check if the basis is reduced. If the basis is reduced, it is done.

• Step 3. Exchange bi and bi+1 with ||b∗i ||22 > 4
3
||b∗i+1 + µi+1,ib

∗
i ||22, then go

to Step 1.

Theorem 24: [7] Given a rational basis b1, b2, · · · , bn of the lattice L, a re-

duced basis b′1, b
′
2, · · · , b′n in L can be found in polynomial time.

Proof. W.L.O.G., we can convert rational basis into integral basis. For any

lattice L formed by integral basis, d(L) ≥ 1. We define D(b1, · · · , bn) =
n∏

i=1
||b∗i ||n−i

2 =
n−1∏
i=1

d(L(b1, · · · , bi)) ≥ 1. It is clear that only Step 3 will

change D(b1, · · · , bn). Each execution of Step 3 reduces D(b1, · · · , bn) by

a factor of 2√
3

or more, since exchanging bi and bi+1 will also exchange b∗i and

b∗i+1 + µi+1,ib
∗
i . And initially, D(b1, · · · , bn) ≤ n∏

i=1
||bi||n−i

2 , which is a polyno-

mial size of input. We can conclude that the algorithm will terminate within

polynomial rounds. And Step 1 and Step 2 runs in polynomial time, thus we

prove the theorem. �

Theorem 23 describes the properties of the LLL reduced bases, and The-

orem 24 implies the LLL basis reduction algorithm runs in polynomial time.

But there are some drawbacks of LLL, and one of them is computing the

Gram-Schmidt orthogalization would involving division and the precision of

floating point numbers isn’t enough. For our application to compute the

µc(x), we are dealing with integers and the precision is one of our demands,

so we choose De Weger’s implementation of the LLL algorithm in [12], p73-

75. This implementation runs in O(n4 log a), where a is the maximum of the

�2-norm of the basis vectors. Substitute a with
√

n · 2O(n log cn), and we know

the time consumed by this implementation is O(n5 log cn).

4. Approximating the jug measuring problem 35

L. Babai [1] provided two polynomial-time approximation algorithms for

CVP. Both algorithms are based on LLL basis reduction algorithm. Assume

we are given an LLL reduced basis {b1, b2, · · · , bn}, a vector x =
n∑

i=1
αibi and

we are to find a vector w ∈ L(b1, b2, · · · , bn) close to x. The first algorithm

is called rounding off heuristic algorithm. It just output w =
n∑

i=1
βibi where

βi is the closest integer to αi. The second algorithm is called nearest plane

heuristic algorithm. It is a recusive algorithm. Let U = span(b1, b2, · · · , bn−1),

and find v ∈ L(b1, b2, · · · , bn) such that the distance between U + v and x

is minimal. Let x′ be the orthogonal projection of x on U + v. Then find

y ∈ L(b1, b2, · · · , bn−1) close to x′−v, and output w = y+v. Both algorithms

guarantee w is close to x.

Theorem 25: [1] The rounding off heuristic algorithm find a vector w such

that ||x − w||2 ≤ (1 + 2n(9
2
)

n
2) min

v∈L(b1,b2,···,bn)
||x − v||2.

Proof. see Babai [1].

Theorem 26: [1] The nearest plane algorithm heuristic algorithm find a vec-

tor w such that ||x−w||2 ≤ 2
n
2 min

v∈L(b1,b2,···,bn)
||x−v||2. Moreover, ||x−w||2 <

2
n
2
−1||b∗n||2.

Proof. Babai [1] showed this by induction on n. Let u be the closest lattice

point to x. For n = 1, we find the nearest lattice point. For n > 1, since

x′ is the orthogonal projection of x, ||x − x′||2 ≤ ||b∗n||2/2 and ||x − x′||2 ≤
||x−u||2. From ||x−x′||2 ≤ ||b∗n||2/2, we obtain by induction that ||x−w||22 ≤
(||b∗1||22 + · · ·+ ||b∗n||22)/4. And by the property of LLL-reduced basis, we have

||x−w||22 ≤ (2n−1 + 2n−2 + · · · + 1)||b∗n||22/4 = (2n − 1)||b∗n||22/4 < 2n−2||b∗n||22,
hence ||x − w||2 ≤ 2

n
2
−1||b∗n||2.

4. Approximating the jug measuring problem 36

We have to consider two cases:

• u ∈ U + v: Clearly, u − v is the closest lattice point to x′ − v in

L(b1, b2, · · · , bn) and therefore ||x′ −w||2 = ||x′ − v− y||2 ≤ 2
n−1

2 ||x′ −
u||2 ≤ 2

n−1
2 ||x−u||2. Since ||x−x′||2 ≤ ||x−u||2, we have ||x−w||2 =√

||x − x′||22| + ||x′ − w||22 ≤
√

1 + 2n−1||x − u||2 < 2
n
2 ||x − u||2

• u /∈ U + v: Clearly, ||x− u||2 ≥ 1
2
||b∗n||2 > 1

2
· 21−n

2 ||x−w||2, hence we

have ||x − w||2 < 2
n
2 ||x − u||2. �

Corollary 27: There exists a polynomial-time algorithm find a vector x such

that c · x = x and ||x||1 ≤ √
n · 2n−1

2 µc(x).

Proof. By Theorem 21 and Theorem 26, we have an algorithm outputs a

vector x such that ||x||1 ≤ √
n||x||2 ≤ √

n2
n−1

2 min
v∈{x|c·x=x}

||v||2 ≤ √
n2

n−1
2 µc(x),

since for any vector v = (v1, v2, · · · , vn), ||v||2 ≤ ||v||1 ≤ √
n||v||2.

We provide a non-recursive implementation for the nearest plane heuris-

tic, see figure 4.2. This implementation provides the same output as Babai’s

nearest plane algorithm. It runs iteratively and computes w with x′ which is

different from orthogonal projection of x, but the lattice point closest to x′

is also closest to x. Clearly, it runs in O(n2) with the Gram-Schmidt orthog-

onalization, the byproduct of LLL basis reduction, as its input. The whole

approximation algorithm runs in O(n5 log cn), either an algorithm which finds

a shorter basis or a better implementation of LLL algorithm will enhance the

performance.

4. Approximating the jug measuring problem 37

Algorithm Non-recursive Nearest Plane Heuristic

Inputs: (b1, b2, · · · , bn), the LLL-reduced basis.

x, the target vectors.

(b∗1, b
∗
2, · · · , b∗n), the Gram-Schmidt orthogalization of (b1, b2, · · · , bn)

Outputs: w, the vector close to x.

Variables: x′, temporal storages for the modified objective vector.

y, temporal storages for the bi’s component of x′.

begin

1. w := 0; x′ := x;

2. for i = n to 1 do

3. y :=
〈x′,b∗i 〉
〈b∗i ,b∗i 〉

bi;

4. w := w + � 〈w,b∗i 〉
〈b∗i ,b∗i 〉

�bi; //where �x� is the integer closest to x

5. x′ := x′ − y;

6.next i

end

Fig. 4.2: A non-recursive implementation of the nearest plane heuristic algorithm.

4. Approximating the jug measuring problem 38

4.3 The complexity of Approximating µc(x)

The algorithm above can only approximate within a very large factor, say

√
n2

n−1
2 , in polynomial time. But it is still far from the inapproximable result

provided by G. Havas and J.-P. Seifert [6]:

Theorem 28: [6] Unless NP ⊆ P , there exists no polynomial-time algorithm

which approximate the shortest GCD multiplier problem in lp-norm within

a factor of k, where k ≥ 1 is an arbitrary constant.

Theorem 29: [6] Unless NP ⊆ DTIME(npoly(log n)), there exists no polynomial-

time algorithm which approximate the shortest GCD multiplier problem in

lp-norm within a factor of n1/(p logγ n), where γ is an arbitrary small positive

constant.

The shortest GCD multiplier problem is: suppose we are given c1, c2, · · · , cn

and to find x = (x1, x2, · · · , xn) such that
∑n

i=1 xici = gcd(c1, c2, · · · , cn) and

||x||p is minimal. It is clear that this problem is a special case of the problem

computing µc(x) when p = 1. Moreover, the problem of computing µc(x)

has the same result if we follow ideas in [6].

Corollary 30: Unless NP ⊆ P , there exists no polynomial-time algorithm

which approximate the computing µc(x) problem within a factor of k, where

k ≥ 1 is an arbitrary constant.

Corollary 31: Unless NP ⊆ DTIME(npoly(log n)), there exists no polynomial-

time algorithm which approximate the computing µc(x) problem within a

factor of n1/ logγ n, where γ is an arbitrary small positive constant.

4. Approximating the jug measuring problem 39

4.4 Experiments and results

We implement the pseudo-polynomial time search algorithm and the LLL-

based approximation algorithms, both of the rounding off heuristic and near-

est plane heuristic algorithms, for computing µc(x). Surprisingly, the round-

ing off algorithm exactly outputs the value of µc(x) for some inputs, such as

c = (15, 21, 35) in [3] and some other c. Moreover, the rounding off heuristic

algorithm outperforms the nearest plane heuristic algorithm in most cases

despite the higher theoretical bound of approximation factor.

Let νc(x) be the output of the nearest plane heuristic algorithm and ξc(x)

be the output of the rounding off heuristic algorithm with c and x as input.

For little n and capacities ci’s, the approximation algorithms give quite

good estimation for µc(x). For example, the figure 4.3 and 4.4 show that the

rounding off heuristic algorithm gives optimal solution and the nearest plane

heuristic algorithm gives good approximation in most cases.

Rounding off ξc(x)
Nearest plane νc(x)

Optimal solution µc(x)

x
35302520151050

10

8

6

4

2

0

Fig. 4.3: Three jugs. c = (15, 21, 35)

4. Approximating the jug measuring problem 40

Rounding off ξc(x)
Nearest plane νc(x)

Optimal solution µc(x)

x
80706050403020100

8

7

6

5

4

3

2

1

0

Fig. 4.4: Six jugs. c = (15, 21, 33, 35, 55, 77)

For large n or capacities ci’s, it is hard to generate a fair evaluation of

approximation performance for some n since the sets of capacities domi-

nate the approximation performance. Currently it is not clear how to find

worst cases and average cases for the LLL-based approximation algorithms.

Thus we pick some special capacities, such as arithmetic sequence, geome-

try sequence, Fibonacci numbers and randomly generated capacities, to be

experimented. The randomly generated capacities c with respect ro m is

generated by uniformly randomly pick n elements from the set [1,m].

We will present the approximation performance for large ci’s by show-

ing the distribution of µc(x), νc(x) and ξc(x), since it is hard to plot curves

which have more than thousands points. The approximation performance

is better if the distribution of the approximation is closer to the distribu-

tion of the optimal solution. Now we illustrate some distribution figures as

follows. Currently we can point out that when ci is a geometry sequence,

the performance of the approximation algorithms are good, see figure 4.5,

4. Approximating the jug measuring problem 41

4.6, and 4.7. And figure and show that the rounding off heuristic algorithm

seems to give optimal solution when ci = fi+1, where fi is the i-th Fibonacci

number, see figure 4.8 and 4.9. The approximation factor of approximation

algorithms increase when n becomes larger, but for the randomly generated

capacities, it seems the factor will not grow as fast as its theoretical upper

bounds. Thus the upper bounds are possible loose, see figure 4.10, 4.11, and

4.12. The distribution of µc(x) for the capacities consisting of arithmetic

sequence is interesting for most k, |{x|µc(x) = k}| = n − 1, see figure 4.13

and 4.14.

LLL-based approximation can handle much larger c and n than the

pseudo-polynomial time search algorithm which require exponential time and

space. By current test results, it seems the LLL-based approximation is capa-

ble of approximating the jugs measuring problem in good factors for random

inputs. But there might be also some good cases for the approximation al-

gorithm, such as geometry sequences and Fibonacci numbers, we conjecture

the shape of the fundamental parallelepiped of the reduced basis is heavily

related to the approximation performance.

4. Approximating the jug measuring problem 42

|{x|ξc(x) = k}||{x|νc(x) = k}||{x|µc(x) = k}|

k

181614121086420

45000

40000

35000

30000

25000

20000

15000

10000

5000

0

Fig. 4.5: Geometric series: n = 8, ci = 5i−1

|{x|ξc(x) = k}||{x|νc(x) = k}||{x|µc(x) = k}|

k

1614121086420

18000

16000

14000

12000

10000

8000

6000

4000

2000

0

Fig. 4.6: Geometric series: n = 8, ci = 5i−1

4. Approximating the jug measuring problem 43

|{x|ξc(x) = k}||{x|νc(x) = k}||{x|µc(x) = k}|

k

2520151050

14000

12000

10000

8000

6000

4000

2000

0

Fig. 4.7: Geometric series: n = 6, ci = 10i−1

|{x|ξc(x) = k}||{x|νc(x) = k}||{x|µc(x) = k}|

k

121086420

45000

40000

35000

30000

25000

20000

15000

10000

5000

0

Fig. 4.8: Fibonacci series: n = 25

4. Approximating the jug measuring problem 44

|{x|ξc(x) = k}||{x|νc(x) = k}||{x|µc(x) = k}|

k

14121086420

200000

180000

160000

140000

120000

100000

80000

60000

40000

20000

0

Fig. 4.9: Fibonacci series: n = 28

|{x|ξc(x) = k}||{x|νc(x) = k}||{x|µc(x) = k}|

k

6050403020100

9000

8000

7000

6000

5000

4000

3000

2000

1000

0

Fig. 4.10: Random case: n = 5, ci ∈ [100000]

4. Approximating the jug measuring problem 45

|{x|ξc(x) = k}||{x|νc(x) = k}||{x|µc(x) = k}|

k

2520151050

35000

30000

25000

20000

15000

10000

5000

0

Fig. 4.11: Random case: n = 10, ci ∈ [100000]

|{x|ξc(x) = k}||{x|νc(x) = k}||{x|µc(x) = k}|

k

2520151050

70000

60000

50000

40000

30000

20000

10000

0

Fig. 4.12: Random case: n = 20, ci ∈ [100000]

4. Approximating the jug measuring problem 46

|{x|ξc(x) = k}||{x|νc(x) = k}||{x|µc(x) = k}|

k

9080706050403020100

50

40

30

20

10

0

Fig. 4.13: Arithmetic series: n = 20, ci = 1001 + 15(i − 1)

|{x|ξc(x) = k}||{x|νc(x) = k}||{x|µc(x) = k}|

k

1009080706050403020100

50

40

30

20

10

0

Fig. 4.14: Arithmetic series: n = 20, ci = 1001 + 17(i − 1)

5. CONCLUSION AND REMARKS

We have characterized the additively measurable quantities, and proved new

lower and upper bounds for the minimum number of measuring steps. We

prove that the problem of computing µc(x) is in the class PNP and is in-

deed NP -hard, since the bounded version is proved to be NP-complete. It

concludes that the optimal jug measuring problem is NP-hard.

BIBLIOGRAPHY

[1] L. Babai, On Lovasz’ Lattice Reduction and the Nearest Lattice Point

Problem, Combinatorica 6:1-13, 1986.

[2] The American Mathematical Monthly, Volume 109 (1), 2002, page 77.

[3] P. Boldi, M. Santini ans S. Vigna, Measuring with jugs, Theoretical

Computer Science, 282 (2002) 259–270.

[4] D.-Z. Du and Ker-I Ko, Theory of Computational Compexity, John Wiley

& Sons Inc., 2000.

[5] C. McDiarmid and J. Alfonsin, Sharing jugs of wine, Discrete Math, 125

(1994) 279–287.

[6] G. Havas and J.-P. Seifert, The Complexity of the Extended GCD Prob-

lem, Springer LNCS vol.1672, 1999.

[7] L. Lovasz, An Algorithmic Theory of Numbers, Graphs and Convexity,

Philadelphia, Pennsylvania, SIAM, 1986.

[8] C. Papadimitriou and K. Steiglitz, Combinatorial Optimization, algo-

rithms and complexity, Prentice Hall, Inc., 1982.

[9] C. Papadimitriou, Computational Complexity, Addison-Wesley Publish-

ing Co, 1995.

Bibliography 49

[10] M. Sipser, Introduction to the Theory Computation, PWS Publishing

Company, 1997.

[11] A. Schrijver, Theory of Linear and Integer Programming, John Wiley

& Sons Inc., 1986.

[12] N. P. Smart The Algorithmic Resolution of Diophantine Equations,

Cambridge, 1998.

