
國 立 交 通 大 學

資訊工程系

碩 士 論 文

感測器網路之安全串流密碼設計

Design of Secure Stream Ciphers on Sensor Networks

研 究 生：蔡志彬

指導教授：陳榮傑 教授

中 華 民 國 九 十 四 年 六 月

感測器網路之安全串流密碼設計

Design of Secure Stream Ciphers on Sensor Networks

研 究 生: 蔡志彬 Student: Jr-Bin Tsai

 指導教授: 陳榮傑 Advisor: Dr. Rong-Jaye Chen

國 立 交 通 大 學

資訊工程研究系

碩 士 論 文

A Thesis

Submitted to Department of Computer Science and

Information Engineering

College of Electrical Engineering and Computer Science

National Chiao Tung University

in partial Fulfillment of the Requirements

for the Degree of Master

in

Computer Science and Information Engineering

June 2005

Hsinchu, Taiwan, Republic of China

中華民國九十四年六月

摘要

無線微型感測器網路近來愈來愈受到重視，其主要的元件即為感測器。感測

器是個輕巧短小、容易大量散佈的裝置，有著簡單的處理器以及特殊的感應器可

以輕易的被程式化來收集相關物理性質的資料。除此之外，感測器具備有無線通

訊的能力，透過無線電的傳輸以及 Ad-hoc routing 的機制可以將收集到的相關

資訊即時、動態的傳送至後端的數據中心做進一步的分析處理。無線感測器網路

的目的即是在建立一個通用、有效能、低花費以及容易散佈的感測器網路平台。

在此網路平台，使用者將可快速且輕易的在感測器上開發各種應用。

 無線微型感測器網路有網路安全問題，無線嵌入式應用程式包含許多已知，

甚至是未知的安全漏洞，而利用這些漏洞所引發的攻擊事件也日漸頻繁，對於系

統的安全更是一大隱憂，而今日無線微型感測器網路，其安全機制的發展受制於

其計算及通訊平台考量，因此若要建立一系列相關的安全機制來防範攻擊，還需

依整個系統平台的特性限制加以考量，我們將發展一套滿足感測器所有限制的串

流密碼系統，然後把它應用到感測器中，我們將探討各種串流密碼系統，找出一

套最適合應用在無線微型感測器網路的串流密碼系統。

 i

Abstract

There is more and more emphasis on Wireless Sensor Network in recent years.

Sensor is a weightless device that is easy to be deployed and programmable to collect

outward related information. Besides, the sensors also possess the communication

ability transmitting the environmental information to the read-end data center. The

objective of Wireless Sensor Networks is to build a sniffing network platform with the

following features: ‘Efficiency’, ‘Low-cost’ and ‘Ease of deployment’. With this

platform, we can develop rapidly and easily diverse applications.

 The Wireless Sensor Network has a network security problem. Wireless

embedded system applications contain security flaws both known and unknown

attacks that take advantage of these flaws have become ubiquitous. Protecting

wireless embedded system applications from attacks requires the development of a

suite of security related services, which are designed according to the constraints of

wireless embedded platforms. We will develop the stream cipher to satisfy all

constrains of sensors. We will explore all kinds of stream ciphers and find the fittest

stream cipher to apply on Wireless Sensor Networks.

 ii

誌謝

 論文的完成，要感謝許多人的幫助;首先要感謝我的指導老師陳

榮傑教授，在論文的研究過程中，給了我不少的意見和方向，讓我可

以順利完成這份論文，也感謝張錫嘉教授，告訴我另一方向的研究，

讓我的論文更加多元化;也感謝口試委員們，張仁俊學長和謝續平教

授，在口試中，提出了許多寶貴的意見，讓我了解到我論文的不足，

也讓我的論文更加完整。

 此外也感謝實驗室的學長們:胡均祥學長，黃凱群學長，林志賢

學長，吳緯凱學長，鄭文鼐學長，感謝他們可以提供意見給我，以及

解決我的問題。還有和我同實驗室的同學們:陳政愷，劉韋廷，梁漢

璋，謝謝他們平時的建議和幫助。也感謝其他朋友們，謝謝你們平時

的關心以及鼓勵。

 最後，我要感謝我的家人，感謝你們對我無悔的付出，全心全意

的支持我，相信我，讓我能順利完成我的學業，僅以此論文獻給我最

愛的家人們。

 iii

Contents

Chinese Abstract .. i

English Abstract ….….……………………………………………………………… ii

Acknowledgement .. iii

Contents …………………………………………………………………………...... iv

List of Figures ……………………………………………………………………..... vi

List of Tables ……...……………………………………………………………….. vii

Chapter 1 Introduction ……………………………………………………………..... 1

1.1 Wireless Sensor Network …………………………………...… 1

1.2 Stream ciphers .. 2

1.3 The organization of the thesis .. 3

Chapter 2 Stream Cipher .. 5

 2.1 Linear feedback shift registers ... 10

 2.2 Boolean functions .. 14

 2.3 LFSR-based keystream generators .. 25

Chapter 3 Cryptanalysis on Stream Ciphers .. 28

 3.1 The divide and conquer attack ... 28

 3.2 The best affine approximation attack ... 34

 3.3 The algebraic attack .. 36

 3.4 Other attacks on filter generators ... 43

Chapter 4 Design of Stream Ciphers on Sensors ... 48

 4.1 Implementing the stream cipher with software .. 52

 4.2 Implementing the stream cipher with hardware ... 55

 4.3 Analyzing the security and conclusion ... 58

Chapter 5 Conclusion and Future Research ... 63

 iv

List of Figure

Figure 2.1: Cryptosystem ... 5

Figure 2.2: Finite state machine of synchronous stream cipher 7

Figure 2.3: Finite state machine of self-synchronous stream cipher 8

Figure 2.4: Binary additive stream cipher architecture 9

Figure 2.5 Feedback shift register .. 10

Figure 2.6: Linear feedback shift register ... 11

Figure 2.7: The filter generator .. 25

Figure 2.8: The combination generator .. 26

Figure 2.9: The clock-control generator ... 26

Figure 2.10 Geffe clock-clock generator .. 27

Figure 3.1: The stream cipher constructed by the combination generator 29

Figure 3.2: Probability density function for H0 and H1 .. 30

Figure 3.3: The filter generator .. 44

Figure 4.1: Scheme of block B ... 50

Figure 4.2: fn ... 50

Figure 4.3: Memory .. 56

Figure 4.4: New instruction .. 57

 v

List of Table

Table 1: Affine functions of three variables ... 16

Table 2: Hamming distance between f(x) and affine functions 18

Table 3: Truth table of f(X1,X2) = X1X2 ... 22

Table 4: Different methods to obtain low degree equations from keystream bits ... 41

Table 5: Characteristics of prototype sensors .. 52

Table 6: Code size of three stream cipher .. 54

Table 7: Code size and execution time of the stream cipher 57

Table 8: Statistic test table of StreamCipher2 .. 61

Table 9: Complexity of attacks .. 61

Table 10: Comparison among the filter generator, RC5, and A5 62

 vi

Chapter 1

Introduction

1.1 Wireless Sensor Network

There is more and more emphasis on Wireless Sensor Network in recent years,

and ‘Sensor’ is a main component in this kind of network. Sensor is a weightless

device with unsophisticated microprocessor and specific detector so that it is easy to

be deployed and programmable to collect outward related information, such as

temperature, pressure, strength of earth quake, etc. Besides, the sensors also

possessed communication ability, transmitting the environmental information to the

read-end data center through RF signaling and some ad-hoc routing methodology to

make more advanced data analysis. The objective of Wireless Sensor Networks is to

build a generic network platform with the following features: ‘Efficiency’,

‘Low-cost’ and ‘Ease of deployment’. With this platform, we can develop rapidly

and easily diverse applications.

We have met some problem when building a modern Wireless Sensor Network;

one of the problems is power consumption. A Wireless Sensor is a mobile device;

for its mobility, and its power must be provided by the device itself. The power

supply for a Wireless Sensor is for example a battery. A Wireless Sensor Network

needs a long lasting battery in order to survive for a long period of time. The other

problem is the network security problem. Wireless embedded system applications

contain security flaws; both known and unknown attacks taking advantage of these

flaws have become ubiquitous. A serious problem that limits the deployment and

acceptance of wireless embedded system applications today is the lack of security

services that are designed according to the unique properties of the computation and

 1

communication platform. Protecting wireless embedded system applications from

attacks requires the development of a suite of security related services, which are

designed according to the constraints of wireless embedded platforms.

Because the sensors have limited processing power, storage, bandwidth, and

energy, they need a different design of network security. Public key cryptosystem

using large and complicated computation, such as RSA, Elliptic Curves

Cryptosystem, is not suitable for a Wireless Sensor Network. Some block cipher

systems in cryptosystems are also not suitable for a Wireless Sensor Network, due to

their complicated architecture and long time computing. Stream cipher, differing

from block cipher system, possesses a quite simple architecture and very fast

encrypting rate and is very suitable for sensors which have limited memory and

computing resources. Therefore, we plan to apply stream cipher on Wireless Sensor

Networks.

1.2 Stream ciphers

 We classify the modern cryptosystems into two groups: one is public key

cryptosystem and the other is the secret key cryptosystem. Secret key cryptosystems

are divided into block cipher and stream cipher. Block cipher includes Triple-DES,

AES, RC6 and so on. Stream cipher usually uses linear feedback shift registers and a

Boolean function as a random number generator. Then the method of encryption is

to use the keystream which the random number generator produces to xor with the

plaintext a bit at a time. The decryption is the same with the encryption, which is to

use ciphertext to xor the keystream. Compared with secret key cryptosystems the

rate of computing of public key cryptosystems is much slower. The encrypting rate

of stream cipher is the fastest among secret key cryptosystems. Because of having

 2

limited or no error propagation, stream cipher may also be advantageous in

situations where transmission errors are highly probable.

 Stream cipher has been developed very fast in recent years. Now in industries

there are a series of related techniques of stream cipher, such as E0[1] in Bluetooth

which is designed in the wireless network interface, and A5[2,3] in GSM and

SOBER[4] which is software in the microprocessor. We plan to find out the most

suitable stream cipher for Wireless Sensor Networks.

1.3 The organization of the thesis

 The rest of this thesis is organized as follows. In Chapter 2, we first introduce

several important components in stream cipher systems: linear feedback shift

registers, Boolean functions, and the secret keystream. We will also introduce the

period, the randomness and linear complexity of linear feedback shift register. Next,

we will introduce the basic properties of Boolean function: balancedness,

correlation-immunity, nonlinearity, algebraic degree, propagation characteristics and

algebraic immunity, and explore their relations with Walsh transformation.

 In Chapter 3, we introduce various attacks on stream cipher. They include

correlation attacks which are to use relations between inputs and outputs of the

Boolean function to attack, the best affine attack which is to use a single linear

feedback shift register to approximate the secret keystream which a generator

produces, and the algebraic attack which is to find the key by solving an overdefined

system of algebraic equations. At last we also introduce other attacks for the filter

generator.

 In Chapter 4, we will propose various kinds of stream ciphers and implement

them with software on sensors. We hope to achieve a balance between security and

 3

all constrains on sensors. By comparing various stream ciphers we may find the

fittest one on Wireless Sensor Networks. We also try to implement it with hardware.

Then we analyze the security of the stream cipher we choose.

 Finally, the conclusion is given in Chapter 5.

 4

Chapter 2

Stream Cipher

 The main purpose of the cryptographic research theory is how to deliver the

secret information securely and reliably to another end on a network. Except for

people possessing a particular secret key can extract the real information from the

information delivered, no one can understand the contents in it. A cryptosystem

approximately contains three main parts : encoding function Ek , decoding function

Dk, and the key k respectively. The practical method of encryption and decryption in

the cryptosystem is illustrated as Figure 1. Alice wants to deliver a message m to

Bob, but does not want other ones to know except Bob. So Alice and Bob should in

advance decide a key k which is suitable for some cryptosystem. Then Alice uses the

encoding function together with the key k to encrypt message m to get ciphertext C

and deliver it to Bob. After Bob receives ciphertext C, he uses the decoding function

together with the key k to decrypt this ciphertext to get correct original message m.

plaintext
m

encrypting
system

decrypting
system

)(mEC
k

=　

Alice Bob

(C)D m=
k

eavesdropper

 Figure 2.1: Cryptosystem

 Cryptosystems are classified into two classes, the public key cryptosystem and

the secret key cryptosystem, according to different forms of key. Secret key systems

are approximately classified into the block cipher and the stream cipher. As far as

the block cipher system is concerned, this cryptosystem is to divide the plaintext into

 5

several blocks and then to encrypt each block one by one. For example, let m =

m1m2…m2L be the plaintext to be encrypted. The block cipher usually divides the

plaintext m into L fixed length blocks and encrypts each block respectively. Taking

the plaintext m for example, m will be divided into M1 = m1m2…mL and M2 =

mL+1mL+2…m2L two blocks. Block cipher will encrypt these two blocks one by one

to get two ciphertexts C1 = c1c2…cL and C2 = cL+1cL+2…c2L.
)(iki MEC = 2,1=i (1)

We can find that encoding function Ek does not vary with time in block ciphers. That

is when M1 is equal to M2, C1 will be equal to C2. In general, to protect the security

of block ciphers L is usually large.

 The method of encryption in stream cipher system is quite different. The stream

cipher contains a keystream generator which produces a pseudorandom sequence,

called the keystream Z = z1z2…The stream cipher uses this keystream to encrypt

every digit in the plaintext one by one to get the ciphertext:

)(izi mEc
i

= 1≥i (2)
ci, zi and mi represent i-th digit in the ciphertext, the keystream and the plaintext

respectively. We can see obviously that the encoding function Ezi in the stream

cipher varies with time.

 According to the different architectures of the keystream generators, we can

classify stream ciphers into two groups, synchronous stream cipher and

self-synchronous stream cipher [5].

Definition 2.1: A synchronous stream cipher is one in which the keystream is

generated independently of the plaintext message and of the ciphertext.

 6

iδ
ψ

ϕ

k

iz

 Figure 2.2: Finite state machine of synchronous stream cipher

A synchronous stream cipher can be represented by the finite state machine, shown

in Figure 2.2. If the state of the keystream generator is δi in i-th time, the state of the

keystream generator in i+1-th time can be written by

),(1 ii k δϕδ =+ (3)
And the keystream of i-th time zi can be produced as follows:

),(ii kz δψ= (4)
where k is a secret key of the stream cipher cryptosystem and δ0 is the initial state of

the keystream generator. In the synchronous stream cipher, the keystream generator

of the transmitter and the receiver must be synchronous. What is so-called

synchronization is to have the same secret key, initial state σ0 and clock. Otherwise,

if these two generators are not synchronous, the decrypting will fail and at this time

the system need provide some auxiliary method to help to resynchronize.

Next we see the other kind of stream cipher.

Definition 2.2: A self-synchronous or asynchronous stream cipher is one in which

the keystream is generated as a function of the key and a fixed number of previous

 7

ciphertext digits.

iδ

ψk

izE

iz

im ic

Figure 2.3: Finite state machine of self-synchronous stream cipher

 A self-synchronous stream cipher can also be represented by a finite state

machine, as shown in Figure 2.3. And the state of the keystream generator in i-th

time is δi = (ci-1, ci-2,…, ci-t) and the keystream of i-th time zi can be represented by:

),(ij kz δψ= (5)

From the above equation we can see that we must define an initial state σ0 = (c-1,

c-2,…, c-t), so this initial state is public. Such stream cipher is capable of

re-establishing proper decryption automatically after loss of synchronization, only

with a fixed number of plaintext characters unrecoverable.

 In this thesis, the stream cipher is discussed in GF(2). We usually use XOR to

be the encrypting and decrypting function in the stream cipher with respect to GF(2).

iiizj zmmEc
i

⊕==)((6)

iiizj zccDm
i

⊕==)((7)

Such stream cipher is called a binary additive stream cipher. A simple binary

additive stream cipher architecture is given as Figure 2.4 illustrates.

 8

 k

⊕ ⊕
i

c

mi
i z

i z

keystream
generator

k

keystream

generator

mi

 Figure 2.4: Binary additive stream cipher architecture

 For a binary additive stream cipher architecture, its security is totally

based on the keystream generator. There have been a lot of relative research

[4,6,7] on this aspect. In summary the keystream of a secure keystream

generator must meet the following conditions.

(1) The keystream needs to have the very large period and usually this period

is not smaller than 3×1016 or 255.

(2) The distribution of 0 and 1 between the keystream sequence must be

random enough.

(3) The linear complexity of the stream cipher generator must be big enough.

What is so-called high or low in the linear complexity is to point whether

we can use a single LFSR only to produce the same keystream sequence

of the stream cipher generator. With respect to the linear complexity and

LFSR, we will explore in detail in section 2.2.

(4) No matter what statistic test we use to compute does not get any

information of the secret key from the keystream.

 9

2.1 Linear feedback shift registers

 The component which the stream cipher uses most frequently is the feedback

shift register. The feedback shift register can very fast produce binary sequences.

The method of production is as Figure 2.5 illustrates.

output

),,,(
110 −　L

uuuf …

0 u
1

u
2−　L

u
1 −　 L u

 Figure 2.5 Feedback shift register

The feedback shift registers of the length L contains L stages which compose the

states of the registers. Each stage is called one degree of the register and L is called

degree or length of registers. The function f is called the feedback function or the

connection function of feedback shift register and the method of its operation is as

follows: The user can assign the first initial state (u0, u1, …, uL-1) and the first output

is u0 and then the state changes (u1, u2, …, uL) where uL = f(u0, u1, …, uL-1). This is

to say when the state makes a shift and uL will be into the end of the register. When

j-th shift clock impulse comes, its output is uj and the state of the feedback shift

register (uj, uj+1, …, uj+L-1) changes into (uj+1, uj+2, …, uj+L) where uj+L = f(uj, uj+1, …,

uj+L-1). For the same reason it will produce infinite sequences u = {ui}i≥0 .

 For infinite sequences u, if the positive integer T > 0 exists, ui+T = ui for all i ≥ 0

will be true and then this sequence is called the periodic sequence and the smallest

value of all T is called the period of this sequence. Because the feedback shift

register has L stages, at most 2L different states exist. So when the output sequence

 10

is very long, the state will appear repeatedly. Therefore the output sequence of

feedback shift register must be a periodic sequence. Because the result is zero by

computing feedback function in the state of all 0 in L stages, the state will be all zero.

So the state of all zero is taken off and there are 2L-1 different states. The period of

the generated infinite sequence u, T, is smaller than or equal to 2L-1.

output i u 1+　i
u

⊕

⊕

⊕

L c 1−　L
c

2
c

1 c

2−　　Li+
u

1 −　 +　 L i u

 Figure 2.6: Linear feedback shift register

 In general, the feedback function often takes the linear function as the

architecture. At this time, we call this the linear feedback shift register and the

feedback function can be represented by:

11221100110),,,(−−− ++++= LLL ucucucucuuuf LL (8)

where ci ∈ {0,1} (0 ≤ i ≤ L-1) and these additive operations are module 2. We can

represent the output sequence u = {ui}i≥0 by the recursive relative equation:

. ,
1
∑
=

− ≥=
L

i
ijij Ljucu (9)

 Figure 2.6 is the general structure of the linear feedback shift register of degree

L. We call coefficient ci feedback coefficient and from feedback coefficient we can

define the feedback polynomial of LFSR g(x):

L
L

L
L xcxcxcxcxg +++++= −
−

121)(L 121 ， 1=Lc (10)

where L is called the degree of the feedback polynomial ,and the number of

 11

feedback coefficient ci (0≤i≤L-1) which is not zero is called tap of the feedback

polynomial.

 Next, we talk about the relation between the feedback polynomial and the

period in LFSR. Let the length of LFSR be L and its output sequence is 2L-1. We

call this sequence m-sequence and call this LFSR maximal-length LFSR.

Definition 2.3: For a polynomial of degree L g(x), if two polynomials of degree

smaller than L a(x), b(x) exist and g(x) = a(x)•b(x) is true, then we call this

polynomial reducible polynomial; reversely, call it irreducible polynomial.

Definition 2.4: Let x be a root of a irreducible polynomial of degree L g(x). If x is a

generator in multiplicative group , we call g(x) a primitive polynomial. LZ
2

Theorem 2.1: If a feedback polynomial of LFSR of length L g(x) is a primitive

polynomial, the sequence which LFSR produces will be m-sequence of the period

2L-1. Such LFSR is a linear feedback shift register of the longest period.

Example 2.1: Let L=3, c1=0, c2=1, c3=1 and the initial state be (1, 0, 0). Then the

structural chart and the continuous change of LFSR are as follows.

output 0 u
1

u
1　L-

u

⊕

 12

Time 0 1 0 0
 1 0 0 1
 2 0 1 0
 3 1 0 1
 4 0 1 1
 5 1 1 1
 6 1 1 0
 7 1 0 0

The feedback polynomial of LFSR is g(x) = 1+x2+x3 and its tap is two. We observe

that the state of the register in t = 7 is the same with that in t = 0. This represents the

recursive state of the output sequence has happened. Therefore, we know the period

of output sequence is 7, that is, 23-1 and this sequence achieves the largest period of

LFSR of degree 3. So, the feedback polynomial of this LFSR is a primitive one.

 In section 2.1, we have proposed the conditions of the good keystream, one of

which must be random enough, that is, the keystream sequence is highly

unpredictable. We can not find in previous research a complete theory to judge

whether a keystream is random. We just use the statistic tests to explain whether the

distribution between 0 and 1 of the keystream sequence is close to some

probabilistic distribution, that is, it achieves enough randomness. The usual statistic

test methods have frequency test, serial test, poker test, run test and autocorrelation

test, etc. If a binary sequence can satisfy these testes, we can say approximately that

this sequence is unpredictable. Until 1967 Golomb proposed the three standards of

testing randomness of the binary periodic sequence [6] with respect to whether it is

enough random or not. A sequence which satisfies these three standards is called the

pseudo-random sequence, or the P-N sequence. We can briefly prove that an m-

sequence which is generated by the linear feedback shift register of the longest

period is a P-N sequence.

 Another condition which the keystream must satisfy is the linear complexity

 13

and this must be large enough. This concept was presented by A Lempel and J. Ziv

[8] in 1976. The linear complexity of a periodic sequence means that it possesses

higher unpredictability. The size of the linear complexity of the keystream sequence

is an important guideline for the secure strength of the stream cipher system.

Definition 2.5: The linear complexity of a periodic sequence m is denoted by (m)

which is defined by the smallest degree of LFSR which can produce the sequence m.

When m = 0, define (m) = 0.

Λ

Λ

Therefore the size of the linear complexity of the keystream is very important for a

stream cipher. We can get the linear complexity of a sequence easily by the

Berlekamp-Massey algorithm [9]. Given a sequence of the length n, we can get its

linear complexity by B-M algorithm within O(n2).

 Through the above description, a good LFSR must satisfy three conditions: the

large period, the unpredictability and the large linear complexity. When we construct

the keystream generator of the stream cipher, we must find LFSR that satisfies these

three conditions to produce the secret keystream. But usually we use a nonlinear

Boolean function combining several LFSRs in order to strengthen the randomness

and the linear complexity of the keystream sequence. We will introduce Boolean

functions in detail in the next section.

2.2 Boolean functions

 First, let GF(2) = V and x = (X1, X2, …, Xn) ∈ Vn is a vector of n elements,

where each Xi ∈ Vn (1 ≤ i ≤ n). The definition of a Boolean function f(x) is the

function from Vn to V, that is, f(x) | Vn → V. We denote all Boolean functions of n

variables by Ωn or ΩV(n). Any Boolean function of Ωn f(x) can be represented

 14

uniquely by the algebraic normal form, called ANF for short, and this representation

is as follows:

nn XaXaaxf +++= K110)(nn XXXaXXaXXa KK K 211231132112 ++++ (11)

where operations of the addition and multiplication in the function are all based on V.

The outputs of Boolean function f(x) form the (0, 1) sequence called truth table,

denoted by f or Tf.

 Let S be a finite set and the number of elements in set S is denoted by #S. Let

f(x) and g(x) be two Boolean functions of n variables and the hamming weight of f(x)

is defined by the number of one in the truth table of f(x) and is denoted by wt(f(x))

or w(f), that is, wt(f) = #{x | f(x) = 1}. The hamming distance of two Boolean

functions is defined by the different numbers between the truth table of them, that is,

d(f, g) = #{x | f(x) ≠ g(x)} = wt(f + g), denoted by d(f(x), g(x)) or d(f, g). Next

define two important properties of a Boolean function: balancedness and algebraic

degree.

Definition 2.6: If wt(f) is 2n-1 for a Boolean function of n variables f(x), then f(x)

possesses balancedness.

Definition 2.7: The algebraic degree of a Boolean function of n variables f(x) is

denoted by deg(f), that is, the number of the biggest term in function.

Example 2.2: Let f(x), g(x) ∈ Ω2, f(x) = X1 + X2 and g(x) = X1X2 and the truth

tables of f(x) and g(x) are Tf = (0,1,1,0) and Tg = (0,0,0,1) respectively. Algebraic

degree and hamming distance of these two functions are deg(f) = 1, deg(g) = 2 and

wt(f) = 2, wt(g) = 1 respectively. From the definition of balancedness, we can know

f(x) is balancedness, but g(x) is not. Besides, hamming distance between two

functions is d(f, g) = 3.

 15

 Let w = (W1, W2, …, Wn), x = (X1, X2, …, Xn) ∈ Vn and we define one

operation: w•x = W1X1+W2X2+…+WnXn are inner product of two vectors of length

n. Next we define an affine function and a linear function.

Definition 2.8: A Boolean function of n variables and deg(f) ≤ 1 can be represented

by f(x) = W0+ W1X1+W2X2+…+WnXn , where Wi ∈ V (0 ≤ i ≤ n). We call such form

of Boolean function an affine function. If W0 = 0, then such function is a linear

function. The set which all affine functions form is denoted by A(n) or AV(n); The

set which all linear functions form is denoted by Ln(x) or LV(n).

A linear function of n variables f(x) can be represented by f(x) = w•x.

Example 2.3: Let f(x) ∈ Ω2 and deg(f) ≤ 1, all possible f(x) are represented as

follows:

A(3)

L(3)
 0,1

X1, X2, X3 X1+1, X2+1, X3+1
X1+X2, X1+X3, X1+X3 X1+X2+1, X1+X3+1, X1+X3+1

X1+X2+X3 X1+X2+X3+1

Table 1: Affine functions of three variables

 The Walsh transform of a Boolean function is defined as follows:

Definition 2.9: The Walsh transform of a Boolean function of n variables is denoted

by Ff(w) or Ff(x)(w) and is defined by

∑
∈

⋅+−=
nGFx

xwxf
f wF

)]2([

)()1()((13)

Besides, let)(
2
1)()(wFwF fnf ⋅=

 16

We regard w•x as a linear function and the meaning of the Walsh transform of the

Boolean function of n variables f(x) is regarded as Ff(w) = #{x | f(x) = w•x } - #{x |

f(x) ≠ w•x }, that is, the number of x in f(x) equal to w•x subtracts the number of x

in f(x) not equal to w•x. Therefore we can easily infer the relation between the

Walsh transform and d(f, w•x).

})(|{#})(|{#)(xwxfxxwxfxwFf ⋅≠−⋅==

})(|{#22 xwxfxn ⋅≠⋅−=

),(22 xwfdn ⋅⋅−=

 (14) 2/)(2),(1 wFxwfd f
n −=⋅ −

Definition 2.10: Nonlinearity of a Boolean function of n variables is denoted by Nf

or Nf(x) and is defined by the minimum distance between f(x) and all affine functions

of n variables. That is

{ }),(min
)(

xwfdN
nAxwf ⋅=

∈⋅
 (15)

Besides, an affine function w•x which is minimally distant from a Boolean function

f(x) is called a best affine function of f(x).

From the equation (14) and the definition of nonlinearity, we can infer the relation

between the Walsh transform of f(x) and Nf.

Theorem 2.2: Nonlinearity of a Boolean function f(x) of n variables is denoted by

)(max
2
12

)]([

1 wFN f
nGFw

n
f n∈

− ⋅−= (16)

Proof: From (14) we know

2/)(2),(1 wFxwfd f
n −=⋅ −

{ } { }2/)(2min),(min 1

)]2([)(
wFxwfd f

n

GFwnAxw n
−=⋅⇒ −

∈∈⋅

 17

)(max2
)]2([

1 wFN f
GFw

n
f n∈

− −=⇒

Example 2.4: f(x) ∈ Ω3 and the truth table of f(x) Tf = {0, 0, 1, 1, 0, 1, 1, 0}

function (0,0,0)(0,0,1)(0,1,0)(0,1,1)(1,0,0)(1,0,1)(1,1,0)(1,1,1) c =0 c =1
f 0 0 1 1 0 1 1 0
c 0 0 0 0 0 0 0 0 4 4

x 1+c 0 0 0 0 1 1 1 1 4 4
x 2+c 0 0 1 1 0 0 1 1 2 6
x 3+c 0 1 0 1 0 1 0 1 4 4

x 1+x 2+c 0 0 1 1 1 1 0 0 2 6
x 1+x 3+c 0 1 0 1 1 0 1 0 4 4
x 2+x 3+c 0 1 1 0 0 1 1 0 2 2

x 1+x 2+x 3+c 0 1 1 0 1 0 0 1 6 6

truth table（c =0） d (f ,wx)

 Table 2: Hamming distance between f(x) and affine functions

From the above Table 2, we know Nf = 2.

Balancedness of a Boolean function can also be represented by Walsh

transform of the Boolean function.

Theorem 2.3: If the Boolean function of n variables f(x) possesses balancedness

then if and only if Ff(0) = 0 will be true.

Proof: From the definition of the Walsh transform of the Boolean function f(x) we

know as w = 0

}1)(|{#}0)(|{#)1()0(
2

)(=−==−= ∑
∈

xfxxfxF
nZx

xf
f

(1) :

Because f(x) possesses balancedness, #{x | f(x) = 0} = #{x | f(x) = 1} = 2n-1. So

we prove Ff(x) = 2n-1 - 2n-1 = 0.

 18

(2) :

From Ff(x) = 0 so we know from (17)

0}1)(|{#}0)(|{# ==−= xfxxfx

}1)(|{#}0)(|{# ===⇒ xfxxfx

Because , we can infer from (18) nxfxxfx 2}1)(|{#}0)(|{# ==+=

12}1)(|{#}0)(|{# −==== nxfxxfx]

So we prove f(x) possesses balancedness.

Next we define the relations between inputs and outputs of a Boolean function:

correlation immunity, propagation characteristics and correlations respectively.

Definition 2.11: If we take randomly m variables from in a Boolean function of n

variables f(x) to make]1)(Pr[],...,|1)(Pr[11
===== xfaXaXxf mii m

 true, where

a1, a2, …, am ∈ V and then call f(x) the function of m-th correlation immunity,

abbreviated the (m, n)CI function.

If a Boolean function is (m, n)CI, then in brief we can fix m variables in the Boolean

function of n variables, its output distribution keeps the same original proportion. In

other words, when we analyze the relation between inputs and outputs of the

Boolean function, even if we fix below m variables, we can not get any hidden

information from output data. If f(x) is (m, n)CI and possesses balancedness, we call

f(x) the resilient function of order m, denoted by the (m, n) resilient function.

Theorem 2.4: if f(x) is (m, n)CI, then f(x) is also (t, n)CI, where 1 ≤ t ≤ m.

Proof: Assume that every input variable of the Boolean function is statistic

independent. As t = m-1, from the Baye’s theorem, we know

 19

],...,|1)(Pr[11 −11
=== mii aXaXxf

−m

11

]1,,...,|1)(Pr[]1Pr[11 ====== − imiii XaXaXxfX
− mmm

11

]0,,...,|1)(Pr[]0Pr[11 =====+ − imiii XaXaXxfX
− mmm

11

 (19)

Because f(x) is (m, n)CI, (19) can be simplified to

],...,|1)(Pr[11 −=== mii aXaXxf
−m

]1)(Pr[]1Pr[=⋅== xfX m]1)(Pr[]0Pr[=⋅=+ xfX m (20)

So from]1)(Pr[],...,|1)(Pr[11 11
===== − xfaXaXxf mii −m

21

 we prove f(x) is (m-1,

n)CI.

As t = m - 2, similarly from the Baye’s theorem, we know

],...,|1)(Pr[21 −=== mii aXaXxf
−m

1212

]1,,...,|1)(Pr[]1Pr[21 ====== − imiii XaXaXxfX
−−− mmm

1211

]0,,...,|1)(Pr[]0Pr[21 =====+ − imiii XaXaXxfX
−−− mmm

21

 (21)

Because f(x) is (m-1, n)CI, (21) can be simplified to

],...,|1)(Pr[21 −=== mii aXaXxf
−m

]1)(Pr[]1Pr[1 =⋅== − xfX m]1)(Pr[]0Pr[1 =⋅=+ − xfX m (22)

So from]1)(Pr[],...,|1)(Pr[21 21
===== − xfaXaXxf mii −m

 we prove f(x) is (m-2,

n)CI.

We use the method like above to infer and will prove f(x) is (t, n)CI for all t, where 1

≤ t ≤ m - 2.

Theorem 2.5: If f(x) is (m, n)CI, deg(f) ≤ n - m. If f(x) is (m, n)resilient, then deg(f)

≤ n - m – 1 where m = n -1 is excluded.

 20

Theorem 2.6: f(x) is (m, n)CI for all w ∈ Vn where 1 ≤ wt (w) ≤ m if and only if

Ff(w) = 0.

Theorem 2.5 explains the relation between correlation immunity and algebraic

degree in the function and between resilient and algebraic degree in the function.

Theorem 2.6 explains the relation between correlation immunity and Walsh

transform in the function. The proofs of these two theorems are in [10] and [11].

Next we define propagation characteristics of the function.

Definition 2.12: Given an n-variable function and α ∈ Vn, if f(x) + f(x + α)

possesses balancedness, then f(x) satisfies propagation characteristics for α.

Definition 2.13: Given an n-variable Boolean function and α ∈ Vn:

(1) If f(x) + f(x + α) possesses balancedness for all α where wt(α) = 1, f(x) satisfies

strict avalanche criteria, called SAC for short.

(2) If we fix any k input variables of f(x) and f(x) still satisfies SAC, f(x) satisfies

SAC of order k, called SAC(k) for short.

(3) If f(x) + f(x + α) possesses balancedness for all α where 1 ≤ wt(α) ≤ α, f(x)

satisfies propagation characteristics of degree l, called PC(l) for short.

(4) If we fix any k input variables of the function, f(x) still satisfies PC(l), f(x)

satisfies PC(l) of order k, called PCk(l) for short.

From (1) and (3) in definition 2.13, we can obviously see PC(1) is the same with

SAC. If an n-variable function Boolean function f(x) satisfies PC(n), this function

possesses perfect nonlinear.

Definition 2.14: Given two binary sequences u = {ui}1≤i≤N and s = {si}1≤i≤N, the

correlation between these two sequences is defined by:

 21

N
suisui iiii }|{#}|{# ≠−=

=α (23)

Definition 2.15: Let x = (X1, X2, …, Xn) ∈ Vn be a vector of n elements and f(x) ∈

Ωn. The probabilistic relation between input variable Xi and output in f(x) is defined

by αi = Pr[Xi = f(x)] - Pr[Xi ≠ f(x)], where i ∈ {1,2,..,n}. If at least one of the

probabilities for all αi are not zero, f(x) possesses the correlation.

From the above definition we know the value of αi is between 1 and -1.We take an

example to explain the correlation of a Boolean function.

Example 2.5: Let f(X1, X2) = X1X2 ∈ Ω2, and the truth table of f(x) is showed in

Table 3. Obviously, for all i, Pr[Xi = f(x)] = 0.75, Pr[Xi ≠ f(x)] = 0.25. Therefore, α1

= α2 = 0.75 – 0.25 ≠ 0, and f(x) possesses the correlation.

X1 X2 f(x)
0 0 0
0 1 0
1 0 0
1 1 1

 Table 3: Truth table of f(X1,X2) = X1X2

After seeing some properties of the Boolean function we define a special function

called a Bent function.

Definition 2.16: Let f(x) ∈ Ωn and n is even. For all w ∈ Vn if

1)1(2
)]2([

)(2 ±=∑ −
∈

⋅+−

nGFx

xwxf
n

 (24)

We call f(x) a Bent function.

 22

Theorem 2.7: Let f(x) ∈ Ωn and n is even. The following properties explain the

same thing:

(1) f(x) is a Bent function.

(2)
1

21 22
−− −=

n
n

fN , and Nf is maximal nonlinearity in all n-variable Boolean

function.

(3)
1

21 22}1)(|{#
−− ±==

n
nxfx ,

1
21 22}0)(|{#
−−==

n
nxfx m

(4) f(x) possesses perfect nonlinearity.

From (3) in the above theorem we know f(x) does not possess balancedness. The

proof of theorem 2.7 is in [12]

Example 2.6: Let f(X1, X2) = X1X2 ∈ Ω2, and this is a 2-variable Bent function.

Nonlinearity of f(x) is Nf = 21 – 20 = 1; From Table 3 we know #{x | f(x) = 1} = 1 =

22-1 – 21-1 and #{x | f(x) = 0} = 3 = 22-1 + 21-1. We discuss propagation characteristics

of f(x) in two cases:

Let α ∈ V2

case1: wt(α) = 1

 case 1-1: α = (0, 1)

 f(x) + f(x + α) = X1X2 + X1(X2 + 1) = X1, which possesses balancedness.

 case1-2: α = (1, 0)

 f(x) + f(x+α) = X1X2 + X2(X1 + 1) = X2, which possesses balancedness.

case2: wt(α) = 1

f(x) + f(x + α) = X1X2 + (X1 + 1) (X2 + 1) = X1 + X2 + 1, which possesses

balancedness.

From case1 and case2, we know f(x) satisfies PC(2) and because f(x) is a 2-variable

function, f(x) possesses perfect nonlinearity.

 23

Next, we define a new property of the Boolean function, algebraic immunity

[13, 16].

Definition 2.17:

1. Take f, g, h ∈ Ωn. Assume that there exists a nonzero function g of low degree

such that f * g = h or (1+f) * g = h, where h is a nonzero function of low degree

and without loss of generality, deg(g) ≤ deg(h). Among all such h’s we denote

the lowest degree h (may be more than one and we take any one of them) by

LDGn(f).

2. Assume there exists a nonzero function g of low degree such that f * g = 0 or

(1+f) * g = 0. Among all such g’s we denote the lowest degree g (may be more

than one and then we take any one of them) by LDAn(f).

Definition 2.18: We define algebraic immunity of an n-variable Boolean f as

 AIn(f) = deg(LDGn(f))

In 1 of above definition 2.17, if deg(g) > deg(h), then f * h = f * f * g = f * g = h, so

one can use h in place of g, that is, we always assume deg(g) ≤ deg(h).

Let f * g = h. When deg(g) < deg(h), (1 + f) * h = h + f * h = h + f * f * g = h + f * g

= h + h = 0. And when deg(g) = deg(h), f * (g + h) = f * g + f * h = f * g + f * f * h =

f * g + f * g = 0. So deg(LDGn(f)) = deg(LDAn(f))

Example 2.7: Let f(X1,X2,X3) = X1X2X3 + X1X2 + X1X3 + X3 ∈ Ω3. We choose g(x)

= X1 + 1 and

f * g = X1X2X3 + X1X2 + X1X3 + X3 + X1X2X3 + X1X2 + X1X3 + X1X3 = X1X3 + X3.

LDGn(f) is X1X3 + X3.

We choose g(x) = X1X3 + X3.

 24

(1+f) * g = (1 + X1X2X3 + X1X2 + X1X3 + X3) * (X1X3 + X3) = X1X3 + X3 + X1X2X3

+ X1X2X3 + X1X3 + X1X3 + X1X2X3 + X1X2X3 + X1X3 + X3 = 0.

LDAn(f) is g(x) = X1X3 + X3.

deg(LDGn(f)) = deg(LDAn(f)) = 2.

2.3 LFSR-based keystream generators

 Whether a stream cipher possesses high cryptographic strength or not is

decided by the design of the keystream generator. A generator can be regarded as a

finite state machine [14] as Figure 2.2 illustrates. It is composed of the output

sequence set {zi}, the state set {δi}, two functions, ϕ and ψ, and an initial state δ0.

The function of the state change ϕ | δi → δi+1 is to transform the current state δi into

next one δi+1. The output function ϕ | δi → zi is to changes δi into zi.

 The main purpose of the design of such keystream generator is to seek

appropriate ϕ and ψ to make the output sequence {zi} have good randomness and

achieve several basic requests in the end of section 2.1. A general stream cipher

usually uses several LFSRs and a nonlinear Boolean function to form a keystream

generator. Based on combinative methods of the LFSR and the Boolean function we

classify the keystream generators into three categories, the filter generator, the

combination generator, the clock-control generator.

f

iz

LFSR

Figure 2.7: The filter generator

 25

 The structure of a filter generator is to use a single LFSR and then a nonlinear

Boolean function to filter its state as Figure 2.7 shows, where a nonlinear Boolean

function f(x) is called the filter function. In recent research on the stream cipher, the

most famous filter generator in the stream ciphers is SNOW [15].

LFSR 1

LFSR 2

LFSR n

f iz

)1(u

)2(u

)(nu

 Figure 2.8: The combination generator

 A combination generator is to take the outputs of the several LFSRs as inputs of

a nonlinear Boolean function to produce the keystream as Figure 2.8 illustrates,

where f(x) is called a combining function. The application of the combination

generator is very universal, such as E0 [1] in Bluetooth whose keystream generator

is the combination generator.

LFSR 1

LFSR 2

LFSR m

)1(u

)2(u

)(mu

LFSR m+1

LFSR n

f

)1(+mu

)(nu

iz

Figure 2.9: The clock-control generator

 26

A filter generator is a special case of the combination generator, where all the

combined sequences are produced by the same LFSR.

 The third keystream generator is a clock-control generator. The main difference

between this and the above two is that this generator uses a single or several LFSRs

as the controller to produce the keystream as in Figure 2.9, where f(x) is called the

control function.

A5 [2,3] in GSM and SOBER [42] in microprocessor all use clock-control

generators as the main structure of the stream cipher cryptosystem. A simple

example of the clock-control generator is as follows:

LFSR 1

LFSR 2

1x

2x

LFSR 3

f

3x

iz

Figure 2.10 Geffe clock-clock generator

Example 2.8: The Geffe clock-control generator is the keystream generator which

consists of three LFSRs as in Figure 2.10, where the control function is

3231)(xxxxxf += . We see obviously that when the output of LFSR3 is one, the

keystream is from LFSR1; On the other hand, when the output of LFSR3 is zero,

the keystream is from LFSR2. Such clock-control generator is to use a single LFSR

as the controller to produce the keystream.

 27

Chapter 3

Cryptanalysis on Stream Ciphers

 The keystream generator produces the pseudo-random keystream by inputing

the secret key. The method of encrypting in the stream cipher is to xor the plaintext

with the keystream and the method of decrypting is also xor the ciphertext with the

same keystream. Therefore, if we know some pairs (plaintext, ciphertext), we know

the corresponding keystream by xoring ciphertexts with plaintexts. Most attacks

usually know some keystream and want to find out the secret key. A first attack is

always the exhaustive search attack. When an adversary knows the keystream and

the combining function, he can guess the feedback polynomial of every LFSR and

its secret key. This complexity is ∏ =
−

n

j

l
j

jL
1

)12(, where n is n LFSRs, lj is degree

of j-th feedback polynomial, and Lj is the number of all primitive polynomials of

degree lj. Other attacks are to improve this complexity. Because a filter generator is a

special case of the combination generator, an attack on the combination generator is

also able to attack the corresponding filter generator. In the following section, we

will introduce all kinds of attacks. Some attacks are aimed at a combination

generator, but can also attack a corresponding filter. Some attacks are aimed at both

generators. And others specially attack a filter generator. From these attacks, we can

construct a more secure stream cipher against all kinds of attacks.

3.1 The divide and conquer attack

 The divide and conquer attack is a kind of ciphertext only attack [17] and it is

to attack a combination generator. From Figure 3-1 we note C, Z, and Y have the

correlation and Z and xj have the correlation so C must contain information of the

 28

output sequence of the LFSR xj. Let the inputs xi
1, xi

2,…, xi
n of the function f in

Figure 3-1 be generated by independent and identically distributed (i.i.d) random

variables (r.v.) Xi
j with probability distribution Px such that P[Xi

j = 0] = p[Xi
j = 1] =

0.5 for all i and j. The function f generates i.i.d. r.v. Zi = f(xi
1, xi

2,…, xi
n) with

probability distribution Pz where P[Zi = 0] = P[Zi = 1] and P[Zi = xi
j] = qi. P[Yi = 0]

= P0.

LFSR 1

LFSR 2

LFSR n

f

)1(x

)2(x

)(nx

⊕
plaintext Y ciphertext C

keystream Z

combining function

Figure 3.1: The stream cipher constructed by the combination generator

The r.v. α as a measure for the correlation between Ci and Xi
j is defined as

NXC
N

i

j
ii /))(21(

1
∑
=

⊕⋅−=α }),,1,0{(/)(21
1

njNXC
N

i

j
ii L∈⊕⋅−= ∑

=

 (25)

The probability P[Ci ⊕ Xi
j = 0] = pe can be determined

)0()(=⊕=== j
ii

j
iie XCPXCPp

)()1()()0(j
iii

j
iii XZPYPXZPYP ≠⋅=+=⋅==

jjjj qPqPqPqP ⋅++−=−⋅−+⋅= 0000 2)(1)1()1((26)

The random variable is binomially distributed with mean value

m

)(
1

j
i

N

i
i XC∑

=

⊕=β

β and variance σβ2

 29

∑
=

−⋅=⊕==
N

i
e

j
ii pNXCEEm

1
)1()()(ββ

 ∑
=

−⋅⋅=⊕==
N

i
ee

j
ii ppNXCVarVar

1

2)1()()(βδ β

The expected value and variance of α, mβ and σβ2 will be

12/))((21)(
1

−⋅=⊕⋅−== ∑
=

e

N

n

i
nn pNXCEEm αα (27)

NppNNVar ee /)1(4/2)/21(2222 −=⋅=⋅−= βα δβδ (28)

For large N, the r.v. α can be assumed to be normally distributed with parameter mβ

and σβ2 due to the central limit theorem.

0m 1m α

2

2

2
)(

2)
2

1()(i

im

i
i eP δ

α

δπ
α

−−

⋅=

00 =m
N/12

0 =δ

121 −⋅= epm
Npp ee /)1(42

1 −⋅=δ

)(11 αPH =)(00 αPH =

Figure 3.2: Probability density function for H0 and H1

 Because of the independence of Zi and Xi
0 and because of the statistics of Xi

0

we have for j = 0: q0 = 0.5 and pe = 0.5 and with (27) and (28) mβ = 0, σβ2 = N. The

above situation will lead to the failure of the divide and conquer attack. In an attack

an actual value α0 for α is determined from N ciphertext digits and N digits

generated by a LFSR of length li with an arbitrary initial state and an arbitrary of the

Li sets of feedback coefficients. There are two hypotheses to be considered.

H1: The N > li digits of the LFSR of length li coincide with N digits generated by the

LFSR i. This case corresponds to α being the correlation of Ci and Xi
j.

H0: The N > li digits of the LFSR of length li do not coincide with N digits generated

 30

by the LFSR i. Therefore Ci and Xi
j are independent.

Figure 3-2 shows the normally distributed probability density function for H0 and

H1.

The value T shall be the decision threshold for the two hypotheses H0 and H1.

(1) for α0 < T, H0 is accepted.

(2) for α0 ≥ T, H1 is accepted.

For pe = 0.5 (i.e. , qi = 0.5 or/and P0 = 0.5) the two probability density function are

identical and therefore no decision can be made. The computational effort depends

on the number of wrong decision, i.e., on the number of values α0 exceeding the

threshold T. Therefore, the probability Pf for a “false alarm” P(α ≥ T | H0) is of

primary interest. To determine the decision threshold, however, the probability Pm

for “missing the event ” P(α < T | H1) must also be taken into account

 ∫
∞

=≥=
T Hf dxxPHTPp)()|(

0|00 αα

∫ ∞−=<=
T

Hm dxxPHTPp)()|(
1|10 αα

With

 dyexQ
x

y

∫
∞

−

= 2

2

2
1)(
π

)(
N

TQp f =

and

)
)1(2

)12((
ee

e
m ppN

TpNQp
−
−−

=

Instead of the threshold T we use for convenience

)1(2

)12(
0

ee

e

ppN
TpN

−
−−

=γ

 31

and)1(2)12(0 eee pppN
N

T
−−−= γ

which give the finial expressions for Pm and Pf

)(γQp = 0m (29)

))1(2)12((0 eeef pppNQp −−−= γ (30)

 The number of “false alarm” (α ≥ T | H0) and consequently the number of tests

necessary depend on the number N of cipher digits used. If we choose N1 such that

jl
j

f L
p

2
1= , we get

))1(2)12((
2

1
0 eeel

j

pppNQ
L j

−−−= γ

If we use 2

2

2
1)(

x

exQ
−

< (x ≥ 0) to compute N1, we can get the upper bound of N1:

2
01))1(2)12((

2
1

0 2
1))1(2)12((

2
1 eee

j

pppN

eeel
j

epppNQ
L

−−−
−

<−−−=
γ

γ

2

0
1

1 21

)1()2ln(
2

1

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−

−+
<⇒

−

e

ee
l

j

p

ppL
N

j γ
 (31)

This upper bound (31) can be used to roughly estimate the number of ciphertext

digits to perform an attack on a system as given in Figure 3.1.

 All steps of the attack are as follows: Let degree of the j-th LFSR be lj.

Step 1: The probabilities qi are determined from function f. The probability P0 is

known from the code (e.g. ASCII) and the language of the plaintext. Using (26) we

calculate the probability pe.

Step 2: For a chosen value Pm the parameter γ0 of (29) is a constant and from (30)

the probability for “false alarm” P(α ≥ T | H0) can be determined as a function of the

N plaintext digits used in (25).

Step 3: To find the LFSR i part of the key, we choose one out of the Li possible

 32

primitive feedback polynomials and generate the corresponding maximal length {si}

of period . 12 −il

Step 4: For each of possible positions of {s12 −il
i} and the N ciphertext digits, the

correlation α is computed. For each event α ≥ T it is assumed that the correct

feedback polynomial and the correct position is used, hence the LFSR i part of the

key is known. Because the event α ≥ T | H0 occurs with probability Pf, our decision

may be wrong. Therefore, additional tests with new ciphertext segments have to be

performed at all positions with (α ≥ T). If H1 is rejected for all of the

positions, return to step 3 and choose another new primitive feedback polynomial to

go on.

12 −il

 In the worst case, all of the 12 −il positions of all the possible Li feedback

polynomials have to be tested. The complexity of this attack is approximately

. This attack is to use the correlation between inputs and outputs in the

Boolean function. Therefore seeking the Boolean function without the correlation

between inputs and outputs in it is the best method to prevent the divide and conquer

attack. The property of correlation immune in the Boolean function is used to resist

this attack. If f is the correlation-immunity of one order Boolean function, then this

attack will not work except using two LFSR simultaneously to attack. Hence the

higher correlation-immunity of Boolean function, the securer the stream cipher

constructed by this function. The concept of correlation attacks of Siegenthaler on

LFSR-based keystream generators was improved by the basic fast correlation attack

of Meier and Staffelbach [18, 19]. Recently, e.g. [20-26], more advanced decoding

techniques have been proposed to mount a fast correlation attack. Their common

method is to find low weight parity check polynomials of LFSR and /or to apply an

iterative decoding procedure to realize the attack. These fast correlation attacks can

∑
=

−
n

j

l
j

jL
1

1)2(

 33

also be applied with minor modifications to the filter generator [27-30].

3.2 The best affine approximation attack

 This section will introduce another attack, which is called the best affine

approximation attack, abbreviated BAA, and we will analyze the method of its

attack and discuss how to prevent this kind of attack.

 The concept of the best affine approximation was first proposed by Rueppel [31]

in 1986. This kind of attack is different from the correlation attack. It does not find

the initial state of LFSRs in the stream cipher, but to construct a new LFSR to

approximate the original cryptosystem from known information. Such attack is to

use the sequence of low complexity to approximate one of high complexity in nature

and then it produces the similar keystream with the original cryptosystem. At last we

can get the approximate plaintext from the ciphertext.

 The BAA attack can attack the combination generator and the filter generator.

We take the combination generator as Figure 2.8 to explain. BAA of the combining

function f(x) is denoted by w•x, where w = (w1, w2, …, wn) and x = (x1, x2, …, xn).

The relation between Pr[f(x) = w•x] = F(f)(w) is :

 ()})(|{#})(|{#
2
1)()(xwxfxxwxfxwF nf ⋅≠−⋅==

 ()n
nf xwxfxwF 22})(|{#

2
1)()(−⋅⋅==⇒

 1])(Pr[2)()(−⋅=⋅=⇒ xwxfwF f

2

)(
2
1])(Pr[)(wF

xwxf f+=⋅=⇒

Theorem 3.1: Let })({)(wFxmaa fw
=

(1) w•x is the BAA of f(x) and the probability that f(x) and w•x are equal is:

 34

axwxf
2
1

2
1])(Pr[+=⋅=

(2) w•x + 1 is the BAA of f(x) and the probability that f(x) and w•x + 1 are equal is:

axwxf
2
1

2
1]1)(Pr[+=+⋅=

The BAA attack is the known plaintext attack. It first computes)(max)(wFa fw
=

from f(x). Let k of w1, w2, …, wn be 1 (1
21

====
kiii www L) and others are all

zero. BAA of f(x) is cxxxxL
kiii ++++= L

21
)(and if , c = 0; else

c = 0. We know from the above equation that

has the highest similarity with the keystream z in all linear combinations of LFSRs.

Because we know the degree of all LFSRs’ feedback polynomials, from the theorem

of the linear complexity [32] we can easily infer the linear complexity of the

sequence z’ is

0)()(≥wF f

0
)()()(}1{' 21

≥⋅++++= j
iii cuuuz kL

kiii lllz +++≤Λ L
21

)'(, where is the degree of the i
jil j-th LFSR’s

feedback polynomial. Furthermore, we can construct a new LFSR to make the

similarity of its output sequence with the keystream sequence of the original stream

cipher to be a
2
1

2
1
+ and this LFSR can replace the combination generator in the

original stream cipher. We take an example to explain.

Example 3.1: The stream cipher constructed by the combination generator consists

of five LFSRs and each degree of their feedback polynomial is l1 = 3, l2 = 4, l3 = 5, l4

= 6, l5 = 7 respectively. The truth table of the combining function f(x) is

 Tf = [00 01 00 11 11 00 11 00 00 11 00 11 11 00 11 00]

When w = (0, 1, 0, 1, 0), f(x) calculates a = 15/16. Therefore the BAA function is x2

+ x4 and (z’) ≤ 10. This BAA function generates the sequence z’ whose similarity

with the original keystream z is 31/32. So we can generate a LFSR whose degree of

Λ

 35

the feedback polynomial are at most 10 to approximate the original sequence and

these two sequences have the 96 percent similarity.

Because the BAA attack decides the similarity between the keystream sequence

and the sequence which BAA of the combining function approximates according to

a, seeking the Boolean function f(x) possessing minimum a as the combining

function is the best method to resist prevents the BAA attack. Because the definition

of a in the combining function is { })(max)(wFa fw
= , its relation with the

nonlinearity of the Boolean function is as follows:

 { } awFN nn
f

Zw

n
f n

⋅−=⋅−= −−

∈

− 111 22)(max
2
12

2

From the above equation we know the smaller a is, the bigger Nf is. Therefore,

seeking the Boolean function possessing minimum a is equal to seeking one

possessing the maximal nonlinearity and this one can be used as the combining

function in the stream cipher to resist the BAA attack. The filter function also

possesses the maximal nonlinearity to resist the BAA attack.

3.3 The algebraic attack

 The algebraic attack was presented in 2003 [33, 34]. Before discussing the

algebraic attack, we first introduce the XL algorithm. In [35] the XL algorithm was

first presented to solve overdefined quadratic systems. Instead of solving a system of

m multivariate quadratic equations with n variables of degree d = 2 as in [35], we

consider also higher degree equations, i.e. study the general case d ≥ 2 [36]. Let D

be the parameter of the XL algorithm. Let li(x0, …, xn-1) = 0 be the initial m

equations, i = 1…m with n variables xi ∈ GF(2). The XL algorithm consists of

multiplying both sides of these equations by products of variables:

 36

1. Multiply: Generate all the products i
k

j i lx
j
•∏ =1

 with k ≤ D – d, so that the total

degree in the xi of these equations is ≤ D.

2. Linearize: Consider each monomial in the xi of degree ≤ D as a new variable and

perform Gaussian elimination on the equations obtained in 1. The ordering on

the monomials must be such that all the terms containing one variable (say x1)

are eliminated last.

3. Get a Simpler Equation: Assume that step 2 yields at least one univariate

equation in the power of x1. Solve this equation over the finite field.

4. Final step: It should not be necessary to repeat the whole process. Once the

value of x1 is known, we expect that all the other variables will be obtained from

the same linear system.

The XL algorithm consists of multiplying the initial m equations li by all possible

monomials of degree up to D – d, so that the total degree of resulting equations is D.

Let R be the number of equations generated in XL, and T be the number of all

monomials. We have

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

•≈⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
•= ∑

−

= dD
n

m
i
n

mR
dD

i 0

 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
≈⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
= ∑

= D
n

D
n

T
D

i 0

 The main problem in the XL algorithm is that in practice not all the equations

generated are independent. Let Free be the exact number of equations that are

linearly independent in XL. When Free ≥ T – D, it is possible by Gaussian

elimination, to obtain one equation in only one variable, and XL will work.

Otherwise, we need a bigger D, or an improved algorithm. [36] has several tables to

show the relation between all parameters (d, n, m, D, R, T, Free) in XL.

 The complexity of XL is mainly in the Gaussian reduction. The fastest practical

 37

algorithm we are aware of is Strassen’s algorithm that requires about

operations.

7log27 T•

 Then we introduce the higher order correlation attack [36] that can affect both a

filter generator and a combination generator. We assume the connection function L is

public and only the state is secret. We also assume that function f that computes the

output bit from the state is public and does not depend on the secret key of the cipher.

We take the filter generator as in Figure 2.7 as an example and f is the filter function.

Let (k0, …, kn-1) be the initial state, then the output of the cipher (i.e. the keystream)

is given by:

 b0 = f (k0, …, kn-1)

 b1 = f(L(k0, …, kn-1))

 b2 = f(L2(k0, …, kn-1))

 ……….

The problem we consider is to recover (k0, …, kn-1) given some bi. In this attack we

assume that we have some m bits of the keystream at some known positions: {(t1,

bt1), …, (tm, btm)} and want to solve a system of multivariate equations that is

overdefined (much more equations than unknowns). This attack works in two cases:

S1 When the Boolean function f has a low algebraic degree d.

S2 When f can be approximated with good probability by a function g that has a low

algebraic degree d.

 More precisely, we assume that:

 f(x0,…, xn-1) = g(x0,…, xn-1) holds: 1. with probability ≥ 1 - ε

 2. and with g of degree d.

In the first scenario S1, when f has just a low algebraic degree, it is known that

 38

the system can be easily broken given keystream bits. So if f has a high

algebraic degree, this stream cipher will be hard to break. Since in S2, we do not

need for the function to have a low algebraic degree (S1), successful attacks can be

mounted given much less keystream bits, and with much smaller complexities. If we

choose m such that (1 - ε)

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
d
n

m ≥ 1/2, we may assume that all these equations are true

and we have to find a solution to our system of m multivariate equations of degree d

with n variables. We take the Boolean function in Toyocrypt [37] as an example The

Boolean function is as follows:

+++= ∑
=

42322310

62

0
1271270),...,(xxxxxxxxxf

i
i iα

∏
=

+
62

0
5953514241383328262523201812921

i
ixxxxxxxxxxxxxxxxxx (32)

with {α0, …, α62} being some permutation of the set of {63,…, 125}.

We put: . Then f(x) = g(x) holds with probability about 1 –

2

∑
=

=
62

0
1270),...,(

i
i i
xxxxg α

-4. That is d = 2 and ε = 2-4. And if we put:

Then f(x) = g(x) holds with probability very close to 1 – 2

42322310

62

0
1270),...,(xxxxxxxxg

i
i i

+=∑
=

α

-17. That is d = 4 and ε =

2-17. We can choose m to (1 - ε)m ≥ 1/2 and apply XL to solve the initial x0,…, x127.

If (1 - ε)m < 1/2, the attack still works; if we repeat it about (1 - ε)-m times, each time

for a different subset of m keystream bits until it succeeds. This complexity is as

follows: m
d

m

mn
n

TWF −− −⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
≈−=)1(

/
)1(/1 εε

ω
ω

To summarize, n = 128, m = 1.3•216, d = 4, ε = 2-17, and (1 - ε)m = 0.52 ≥ 1/2. We

have , . As D = 9, XL works. The complexity of

the attack is basically the complexity of solving a linear system T×T. With Strassen’s

algorithm, we get

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= ∑ =

D

i i
n

T
0 ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= ∑ −

=

4

0

D

i i
n

mR

 39

 1287log 27 2 =•= TWF

In conclusion, we can reduce the cryptanalysis of a stream cipher to solving a

system of multivariate equations that is overdefined. In order to resist the higher

order correlation attack, we must find the Boolean function which possesses the very

high algebraic degree and is approximated with very low probability by a function

that has a low algebraic degree.

 The algebraic attack is to improve the higher order correlation attack to break a

stream cipher. The algebraic attack lowers the degree of these multivariate equations

by multiplying them by well-chosen multivariate polynomials.

 At the time t, the current keystream bit gives an equation f(x) = bt with x being

the current state. The main new idea consists of multiplying f(x), that is usually of

high degree, by a well chosen multivariate polynomial g(x), such that fg is of

substantially lower degree, denoted by d. Then for example if bt = 0, we get an

equation of low degree f(x)g(x) = 0. This in turn gives a multivariate equation of low

degree d on the initial state bits ki. If we get one such equation for each of

sufficiently many keystream bits, we obtain a very overdefined system of

multivariate equations that can be solved efficiently.

 Except S1 and S2 in [36], the algebraic attack [33] presents two new scenarios

as follows:

S3 The multivariate polynomial f has some multiple fg of low degree d, with g

being some non-zero multivariate polynomial.

S4 It is also possible to imagine attacks in which f has some multiple fg, such that

fg can be approximated by a function of low degree with some probability (1 -

ε)

In scenarios S3 and S4, for each known keystream bit bt = f(x) at position t, we get:

 40

 f(x) • g(x) = bt • g(x)

and, since the state at time t is x = Lt(x0,…., xn-1), it boils down to :

 f(Lt(x0,…., xn-1)) • g(Lt(x0,…., xn-1)) = bt • g(Lt(x0,…., xn-1))

This is the equation we are going to use in our attack. We get one multivariate

equation for each keystream bit. This equation may be of very low degree, without f

being of low degree, and without f having an approximation of low degree.

 In the basic version of this attack S3, we also require that g is of low degree.

There are other possibilities. In the basic version of the attack S3, that may be called

S3a, we use the equation written above and we require fg ≠ 0 and fg is of low degree,

and also we need g of low degree. There is another variant, in which we may admit

that for all x such that f(x)g(x) = 0, and the equation can still be used when bt ≠ 0.

This is called the scenario S3b. Another variant, called S3c, allows to relax the

degree condition on g: when bt = 0, we can still use the equation, whatever is the

degree of g, provided that fg ≠ 0 and is of low degree. All the 3 sub-cases of the S3

attack scenario are summarized in the following Table 4.

Degree of Attack scenario

considered f g fg

Use the equation Only

when

Number of

equations

for m

keystream

bits

S1 and S2 low g = 1 low f(x) = bt always m

S3a and S4a high low, g≠0 low, fg≠0 f(x)•g(x) = bt •g(x) always m

S3b and S4b high low, g≠0 fg = 0 g(x) = 0 bt ≠ 0 m/2

S3c and S4c high high low, fg≠0 f(x)•g(x) = 0 bt = 0 m/2

Table 4: Different methods to obtain low degree equations from keystream bits

 41

In this attack, given m keystream bits, let R be the number of multivariate equations

of degree d, and with n variables xi. With one equation, and in scenario S3a, we have

R = m, but we may also combine several scenarios and several different g for the

same f, and get, for example, R = 14•m. We solve them as follows.

Linearization Method: There are about monomials of degree ≤ d in the n

variables x

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
≈

d
n

T

i (assuming d ≤ n/2). We consider each of these monomials as a new

variable Vj. Given equations, we get a system of R ≥ T linear equations

with variables V

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
≥

d
n

R

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

d
n

T i that can be easily solved by Gaussian elimination on a

linear system of size T.

XL Method: When as many as the required keystream bits are not

available, it is still possible to use XL algorithm or solve the system with less

keystream bits, but with more computations.

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

d
n

Om

Therefore the complexity of this algebraic attack is equal to the complexity of the

higher order correlation attack, which is . 7log27 T•

 The method of this attack is by factoring multivariate polynomials. We consider

the terms of high degree in f(x) (regardless the lower degree terms) and look if they

are divisible by a common low degree factor g’(x). Then (for polynomials over

GF(2)) we observe that f(x)•g(x) with g(x) = g’(x) – 1 is of low degree. Take (32) as

an example. We observe that the combination of the parts of degree 4, 17 and 63, is

divisible by a common factor x23x42. Let f(x) = bt, and multiply both sides of it by

g(x) = (x23 - 1). Then we get f(x)x23 – f(x) = bt(x23 - 1). The monomials divisible by

x23 in f will cancel out, and what remains is an equation of degree 3 true with

probability 1. We repeat the same trick for x42, i.e. we put g(x) = (x42 - 1). From this,

 42

we have a simple linearization attack following the scenario S3a. For each

keystream bit, we obtain 2 equations of degree 3 in the xi and thus 2 equations of

degree 3 in the ki. The linearization will work as soon as R > T. We have

 monomials and R = 2m with m = T/2 = 24.182
3

128
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
≈T 17.4 keystream bits. This

attack is in CPU clocks, requiring 16 Gigabytes of memory and

only about 20 kilobytes of keystream.

557log 27 2 =•T

There are many interesting cases in which this attack will work as follows:

1 either f uses a small subset of state bits,

2 or is very sparse,

3 or can be factored with a low degree factor,

4 or can be approximated by one of the above,

5 or its part of high degree is one of the above

We conclude that, in a stream cipher with linear feedback, the filter function should

use many state bits and should not be too sparse, so it has also many terms of high

degree. Moreover the part of high degree should not have a low degree factor, and

should itself also use many state bits. Then no approximation of the part of high

degree should have a low degree factor, or should use a small number of state bits.

The algebraic immunity in the definition 2.18 of section 2-3 is used to resist the

algebraic attack. In recent years, there have been many attacks which improve the

algebraic attack [34, 38].

3.4 Other attacks on filter generators

 In [51] the author introduces some other attacks on the filter generator as

shown in Figure 3.3. These attacks are specially targeted on the filter generator. We

 43

just generally introduce these attacks and will not discuss the details. Note that k is

the degree of the connection polynomial and n is the number of inputs in f.

connection polynomial c

s

f
z

1γnγ

 Figure 3.3: The filter generator

 In [39-41] the special and the general inversion attacks were published and

analyzed. The first one only works for filter functions f which are linear-separable in

the first one or last variable, i.e. f(x1,…,xn) = x1 + g(x2,…,xn) or f(x1,…,xn) =

g((x1,…,xn-1) + xn, where g: GF(2)n-1 → GF(2) is an arbitrary Boolean function. The

general inversion attack is applicable to any filter function. Both attacks have time

complexity of O(2M-1) on average, where M is γn - γ1 and are successful for highly

nonlinear filter functions and less known keystream N. The inversion attack was

improved for certain filter generator configurations in [42] to O(2k-r-1), where r is the

largest gap between LFSR cells, which have taps to the filter function or the

connection polynomial c. The filter generator can be made resistant against the

inversion attack if one chooses γ1 = 0, γn = k – 1 and gcd(γ1,…, γn) = 1. In [43] ideas

from the inversion attack and the conditional correlation attack are used to form a

trellis based decoding procedure. Like the inversion attack, it has a time complexity

of O(2M-1) and is conceptually the same as the basic generalized inversion attack

from [40, 41].

The set of exponents of the connection polynomial with non-zero coefficients is

 44

called the LFSR tapset, denoted T = {0, 4, 15, 17}. Note that the LFSR tapset

contains the indices for inputs to the linear recurrence, combined with the register

length. The filter generator tapset Γ = {0, 1, 6, 13, 16}, contains the inputs to the

filter generator. The values in a tapset are called taps. Given a tapset S, we define the

positive difference set ∆(S) to be the set of positive differences between the taps in

that set. Consequently, ∆(T) = {2, 4, 11, 13, 15, 17}, while ∆(Γ) = {1, 3, 5, 6, 7, 10,

12, 13, 15, 16}. Each of the tapsets is full positive difference set (FPDS), meaning

that no positive difference is repeated. Full positive difference sets are highly

recommended for LFSR-based ciphers [39, 44].

In [45, 46] the decimation attack is proposed for LFSR based keystream

generators. The idea is to consider a decimated sequence z[d], with z[d] = z0, zd,

z2d, …. of the observed keystream sequence z = z0, z1, z2, …. For the generator filter

the decimation attack is applicable to a d with 1 ≤ d ≤ g, d | g and g = gcd(γ1,…, γn)

[39]. For such a d, the decimated keystream sequence z[d] can now be written as

 zdt = f(sdt+γ1, …, sdt+ γn) = f(s’t+γ1/d, …, s’t+ γn/d)

for all t ≥ 0. Thus, the decimated sequence z[d] can be generated from the decimated

LFSR sequence s[d]. If the decimated sequence s[d] can be generated by a smaller

LFSR with length k’ < k, then all known attacks against the filter generator can be

applied to this smaller filter generator. Properties of decimated sequences have been

developed in [31]. If k is chosen as prime or 1 ≤ k ≤ 89, then it always holds that k’

= k and the decimation attack provides no further advantages.

 In [47] N = 2k keystream symbols are used to build an equation system with 2k

nonlinear equations of the form zt = f(st+γ1, …, st+ γn) for 0 ≤ t ≤ 2k – 1and k + γn

linear equations for the variables sk, sk+1, …, s2k+γn -1 from the linear recurrence

relation of the LFSR. For any nonlinear equation the solution set is computed, i.e.

the set of all tuples fulfil the nonlinear equation. Then the solution sets of two

 45

nonlinear equations with overlapping variables are iteratively merged and common

values are removed from the merged set and substituted into the other equations.

This process is called local reduction technique and is iterated until k independent

variables from {s0, s1, …., s2k+γn -1} have a solution or no further merging and

substituting is possible. In the latter case, a tree-based search is done over the

unsolved variables. The attack is only feasible for small values of n and there must

be enough overlapping in the solution sets of the nonlinear equations.

 In [48] tradeoff attacks (Time/Memory/Data tradeoffs) are developed and

analyzed for synchronous stream cipher systems. Two main variants of a tradeoff

attack are discovered, which differ in the generation of special states: Rivest and

BSW sampling. Special states generate output prefixes of a keystream generator

with a predefined bit pattern of l bit length. In the case of BSW sampling the special

states of the keystream generator can be enumerated in an efficient way, i.e. in

polynomial time. Both variants have a tradeoff relationship given by

 TS2N2 = Z2,

where T is time complexity in the realtime phase of the attack (i.e. one time unit

equals the generation of O(log2(Z)) bit keystream), S represents the storage

requirement (typically access on a hard disk), N is the amount of keystream, and Z is

the size of the state space of the stream cipher, i.e. Z = 2k in the case of the filter

generator. The time for preprocessing is P = Z/N and the number of disk operations

in the realtime phase is then given by Tdisk = (T)1/2 in the case of Rivest sampling

and Tdisk = (T)1/22-1 for BSW sampling. In the case of Rivest sampling D2 ≤ T ≤ N is

allowed and (2-lD)2 ≤ T ≤ N for BSW sampling. Such if a keystream generator

allows efficient BSW sampling for an appropriate l > 0 the number of disk

operations and the lower bound on T can be further reduced. Typical values could be

P = Z2/3, T = Z2/3, S = Z1/3, N = Z1/3.

 46

 [49, 50] presented an kO(1)2(1-α)/(1+α)k time bounded attack, the FBDD-attack,

against LFSR-based generators, which computes the secret initial state x ∈ {0, 1}k

from bn consecutive keystream bits, where α denotes the rate of information, which

B reveals about the internal bitstream, and b denotes some small constant. The

algorithm uses Free Binary Decision Diagrams (FBDDs), a data structure for

minimizing and manipulating Boolean function. Let k be the secret key length and n

be n LFSR. This attack can be applied to the combination generator. This attack

computes the secret initial state x from the first k bits of f(x1,…, xn) in the

combination generator in time
k

n
n

Ok 1
1

)1(2 +
−

.

 47

Chapter 4

Design of Stream Ciphers on Sensors

 This Chapter will discuss how to design the secure stream cipher on Wireless

Network Sensors. On Wireless Sensor Networks there are several severe

challenges – these sensors have limited processing power, storage, bandwidth, and

energy. So we must choose a fast and low-storage cryptosystem. The stream cipher

is very fast and can lower power consumption. Since the stream cipher encrypts each

character under a time varying function of the key, it prevents deletion, insertion or

replay of ciphertext, as well as ciphertext searching. One may say that a stream

cipher is inherently more secure than a block cipher because of the additional

dimension offered by the use of memory. This advantage is important on Wireless

Sensor Networks because we will not need extra storage or computing for resisting

replaying attack. Saving storage and power consumption is very important for

sensors so that they can live longer. Then we will design a stream cipher to be

suitable for Wireless Network Sensors - that has small enough storage to be put on

sensors. Of course, this stream cipher must be secure. We will design the stream

cipher to resist all the attacks introduced in Chapter 3. A stream cipher is to use the

generator to produce the pseudo-random keystream. The generator has the filter

generator and combination generator. We will discuss which generator is more

suitable for Wireless Network Sensors. There are two main components to construct

the generator: one is LFSR and the other is a Boolean function.

 First we talk about Boolean functions. They must satisfy some conditions to

resist the attacks introduced in Chapter 3. They must be of high resilient,

nonlinearity, algebraic degree, algebraic immunity and balancedness. We will use

 48

the method of [52] to construct the Boolean function we want. [52] defines linear

and quasilinear variables as follows:

Definition 4.1: If a variable xi is linear for a function f we can represent f in the

form: f(x1,…, xi-1, xi, xi+1,…, xn) = g(x1,…, xi-1, xi+1, ..., xn) ⊕ xi.

 Other equivalent definition of a linear variable is that a variable xi is linear for a

function f if f(δ1) ≠ f(δ2) for any two vectors δ1 and δ2 that differ only in i-th

component.

Definition 4.2: We say that a Boolean function f = f(x1,…, xn) depends on a pair of

its variables (xi, xj) quasilinearly if f(δ1) ≠ f(δ2) for any two vectors δ1 and δ2 of

length n that differ only in i-th and j-th components. A pair (xi, xj) in this case is

called a pair of quasilinear variables in f.

Theorem 4.1: Let n be a positive integer. Let f1(x1, …, xn) and f2(y1, …, yn) be

m-resilient Boolean functions on Vn such that Nf1 ≥ N0, Nf2 ≥ N0. Moreover, there

exist two variables xi and xj such that f1 depends on the variables xi and xj linearly,

and f2 depends on a pair of the variables (xi, xj) quasilinearly. Then the function

f1’(x1, …, xn, xn+1) = (xn+1)f1(x1, …, xn) ⊕ xn+1f2(x1, …, xn) (33)

is an m-resilient Boolean function on Vn+1 with nonlinearity Nf1’ ≥ 2n-1 + N0, and the

function

 f2’(x1, …, xn, xn+1, xn+2) = (xn+1 ⊕ xn+2 ⊕ 1)f1(x1, …, xn) ⊕

(xn+1 ⊕ xn+2)f2(x1, …, xn) ⊕ xn+1 (34)

is an (m+1)-resilient Boolean function on Vn+2 with nonlinearity Nf2’ ≥ 2n + 2N0.

Moreover, f2’ depends on a pair of the variables (xn+1, xn+2) quasilinearly.

 proof: see [52]

 49

Theorem 4.2: nlmax(n, m) = 2n-1 – 2m+1 for (2n-7)/3 ≤ m ≤ n – 2, where nlmax(n, m)

denotes the maximal possible nonlinearity of m-resilient Boolean function on Vn.

 proof: see[52]

&

&

+

++

+

++

f’n f’n+f’’n

f’n+3+f’’n+3 f’n+3

xn+3

xn+1

xn+2

Figure 4.1: Scheme of block B

X1

B

0

.

.

.
.
.
.

Xn

Xn-2

Xn-1

B

& +

X2

X3

X4

Xn-3

Figure 4.2: fn

 f’n+3 = (xn+1 ⊕ 1)f’n ⊕ xn+1f’’n ⊕ xn+2 ⊕ xn+3 (35)

 f’’n+3 = (xn+2 ⊕ xn+3 ⊕ 1)f’n ⊕ (xn+2 ⊕ xn+3) f’’n ⊕ xn+1 ⊕ xn+2 (36)

 50

By theorem 4.1 if f’n and f’’n are m-resilient Boolean functions on Vn with maximal

possible nonlinearity (2n-1 – 2m+1), f’n depends on its last two variables linearly and

f’’n depends on a pair of its variables quasilinearly; then f’n+3 and f’’n+3 are

(m+2)-resilient Boolean functions on Vn+3 with maximal possible nonlinearity

(2n+2 – 2m+3), f’n+3 depending on its last two variables linearly and f’’n+3 depending

on a pair of its last variables quasilinearly.

 It is a little more convenient to rewrite the relations (35), (36) in the form

 f’n+3 = xn+1(f’n ⊕ f’’n) ⊕ f’n ⊕ xn+2 ⊕ xn+3 (37)

 f’n+3 ⊕ f’’n+3 = (xn+1 ⊕ xn+2 ⊕ xn+3)(f’n ⊕ f’’n) ⊕ xn+1 ⊕ xn+3 (38)

The relations (37), (38) allow to realize f’n+3 and f’n+3 ⊕ f’’n+3 as two functions of

five values f’n, f’n ⊕ f’’n, xn+1, xn+2, xn+3 by means of the block B (see Figure 4.1).

Initial functions can be chosen as

 f’4 = x1x2 ⊕ x3 ⊕ x4,

 f’’4 = x2 ⊕ x1(x3 ⊕ x4) ⊕ x3,

 f’4 ⊕ f’’4 = x1 (x2 ⊕ x3 ⊕ x4) ⊕ x2 ⊕ x4.

Comparison with (37), (38) shows that we can take f’1 = 0, f’’1 = x1. Finally, we put

 fn = xn (f’n-1 ⊕ f’’n-1) ⊕ f’n-1 , n ≡ 2 (mod 3) (39)

fn can be represented as Figure 4.2. From theorem 4.2 the function fn is

(2n-7)/3-resilient function on Vn, n ≡ 2 (mod 3), with the nonlinearity 2n-1 – 2(2n-4)/3

and an algebraic degree of each variable in fn is (n+4)/3. The scheme of the function

fn contains 2n – 4 XOR and (2n - 1)/3 AND. It is linear on n. The number of XOR

and AND in other functions constructed by usual methods, in general, is exponential

on n. Hence, our construction has a big advantage on sensors. It uses less storage

and operations and is faster. The Boolean function constructed by this method is (n,

(2n-7)/3, (n+4)/3, 2n-1 – 2(2n-4)/3), that is (n, resilient, algebraic degree, nonlinearity).

If we choose n to be 11, it is (11, 5, 5, 960) and from [13] we know the algebraic

 51

immunity of this Boolean function is 4. We expect these values are enough to be a

secure stream cipher.

 Then we talk about LFSR. On sensors, the key length is not too big, so we

choose it to be 128. In the filter generator, we only need to find one primitive

polynomial of degree 128. Its period is 2128 – 1, and we believe it is long enough.

But if we want to resist the inversion attack and the conditional correlation attack,

the LFSR tapset must be FPDS. Therefore we choose

 179315999128 ++++++= xxxxxxc

T = {7, 9, 31, 59, 99, 128} is FPDS. And the filter generator tapset Γ also need to be

FPDS. Therefore, we choose Γ = {0 1 3 7 12 20 30 44 66 82 127}, and it is FPDS.

In the combination generator, we must choose 11 primitive polynomials and sum of

their degree is 128, e.g. {6, 8, 9, 11, 12, 13, 14, 14, 15, 16, 17}.

In the next section, we will implement them.

4.1 Implementing the stream cipher with software

 In this section, we will discuss how to implement the filter generator and the

combination generator and decide which one is better for Wireless Sensor Networks.

The hardware specification of the sensor we use is as follows:

CPU 8051, 8-bit, 12MHz
512 bytes RAM
16k bytes ROM

Storage

64k flash RAM
OS MicroC OSII
compiler Keil C

Table 5: Characteristics of prototype sensors

We will implement the stream cipher on this hardware structure. We first write c

program and compile it with Keil C and load the hex file Keil C produces into ROM

 52

of sensors. Because the memory of sensors is small, we expect the code size of our

stream cipher is smaller.

 We first choose the filter generator to implement. Let n be 11 and the Boolean

function is (39) in section 4.1. It is as follows:

f = x11{(x8+x9+x10) [(x5+x6+x7)(x1(x2+ x3+x4)+x2+x4)+x5+x7]+x8+x10}

+ x8 [(x5+x6+x7) (x1(x2+x3+x4)+x2+x4)+x5+x7] +x5(x1(x2+x3+x4) +

x2+x4) +x1x2+x3+x4+x6+x7+x9+x10 (40)

The connection polynomial of LFSR is x128 + x99 + x59 + x31 + x9 + x7 + 1. And the

filter generator tapset is Γ = {0 1 3 7 12 20 30 44 66 82 127}. Let this stream cipher

be StreamCipher1 as in Figure 3.3.

 Then we use “Pointer and circular buffer” to StreamCipher1 to become

StreamCipher2. “Pointer and circular buffer” [53] is as follows:

Pointer and circular buffer: is based on the idea of having a pointer pointing at the

beginning of the LFSR in memory. When we clock the LFSR once we do not shift

all the values one step in memory, but rather, we only move the pointer one position.

This gives a compact code description of the LFSR sequence generation, and is

faster than StreamCipher1.

 Next we implement the combination generator. The Boolean function is the

same as StreamCipher1. And we need 11 connection polynomials of LFSR as

follows:

X6 + X + 1

X8 + X5 + X4 + X3 +1

X9 + X4 + 1

X10 + X3 + 1

X11 + X2 + 1

X12 + X7 + X4 + X3 +1

 53

X13 + X4 + X3 + X1 +1

X14 + X12 + X11 + X +1

X14 + X5 + X3 + X +1

X15 + X + 1

X16 + X5 + X3 + X2 +1

We use these LFSRs and the Boolean function f to construct the StreamCipher3 as

Figure 2.8.

 StreamCipher1 StreamCipher2 StreamCipher3
Code Size 3.56k bytes 2.56k bytes 5.77k bytes
time 0.050614 s 0.050409 s 0.167840 s

 Table 6: Code size of three stream cipher

Note that because we use int type to store LFSR, we choose the length of LFSRs to

be less than 16. If we use the length of LFSRs which is larger than 16, we must use

long type to store it, which will cost more code size and more time. Therefore, we

use one int type to store one LFSR.

In Table 6 it is obvious that the filter generator is smaller than the combination

generator. And the filter generator using “Pointer and circular buffer” is the smallest.

Therefore, we choose the filter generator as our generator in the stream cipher. At

last we implement the filter generator with 8051 assembly code and optimize it to be

the smallest by using reuse and loop and so on. It will produce code size of 799

bytes. Key setup and running 128-bit keystream totally approximately cost 0.031426

seconds. The data rate is 128 / 0.031426 = 4073 bits/s. We only XOR the plaintext

with the keystream to complete encrypting.

 54

4.2 Implementing the stream cipher with hardware

 We devise these sensors to last as long as possible on Wireless Sensor

Networks. We want to lower power consumption when sensors encrypt with the

stream cipher. In the same CPU clock rate the algorithm of the faster encrypting

consumes the lower power. Therefore, we want to make our encryption algorithm

faster to lower power consumption. Of course, we also want our algorithm to use

less memory. In order to save power consumption and memory we may change the

hardware specification to better fit our stream cipher.

 First we write the stream cipher algorithm with 8051 assembly code. We use

the filter generator as our stream cipher generator. This filter generator consists of

one LFSR of length 128 and one 11-variable Boolean function. LFSR of length 128

needs 16 addresses to be stored (one address is 8bits), that is from KEY0 to KEYF.

The Boolean function needs 11 inputs from LFSR and one input is one bit.

Therefore we often extract one bit from some address and it needs to do 11 times.

Doing one time needs many operations as follows.

 MOV A, 30H

 ANL A, #08H

 RR A

 RR A

 RR A

 MOV R2, A

Doing these is only to move fourth bit of the value in address 30H to register 2. The

connection polynomial of LFSR also needs to do these operations to compute the

next state. So doing these operations in StraemCipher2 needs totally 17 times. If we

can increase one new instruction to replace these operations, the code size will

 55

reduce much and the speed of encryption will be faster.

 After observing the stream cipher program with assembly code, we find that

increasing this instruction, MOV Rn, ADDRESS.m, is a good idea. This instruction

means to move m-th bit of the value in address ADDRESS to the register n; that is,

this instruction can replace the above all instructions.

01010101 30H

00H

 Figure 4.3: Memory

For example MOV R1, 30H.0 => R1 = 1, MOV R2, 30H.4 => R2 = 0 in Figure 4.3.

By using this instruction we will reduce code size and increase the speed of the

stream cipher. How do we increase this new instruction in 8051? We first find out

the source code of 8051 and modify it to increase this instruction. The source code

of 8051 is VHDL or may be Verilog. But we only simulate it and do not implement

it in reality. So we find a simulation of 8051 written by C++ and modify it to

increase this instruction. How do we modify the simulation of 8051? If we can find

out opcode which is not used in 8051, then we use this opcode as the opcode of our

new instruction. The easier method is to modify the instruction which we do not use

in the stream cipher algorithm to become our new instruction. In this case, we

modify MOV DIRECT, DIRECT as Figure 4.4 below.

 56

1000 0101

dir(src) dir(dest) MOV

30H 31H

1000 0101

m Rn dir(dest) MOV

0001 0001 30H

 Figure 4.4: New instruction

In this Figure, the original instruction MOV dir, dir, is to move the value in address

30H to the value in address 31H. The modified instruction, MOV m, Rn, dir, is to

move m-th bit of the value in address dir to register n, Rn. In Figure 4.4, MOV 11H,

30H is to move second bit (begin from 0) of the value in address 30H to R1. We take

Figure 4.3 as an example, that is, R1 is equal to 0. By using this instruction we can

largely decrease the code size of the stream cipher and increase the speed of the

stream cipher. Table 9 compares the stream cipher not using the modified instruction

and one using the modified instruction with regard to the code size and execution

time. This modification improves by 799 – 578 = 221 (bytes) and 0.031426 –

0.024642 = 0.006784 (s). The improved rate of code size is 221/799 = 27.7% and

the improved rate of execution time is 0.016784/0.031426 = 21.6%.

 original modified
code size (bytes) 799 578
execution time (s) 0.031426 0.024642

 Table 7: Code size and execution time of the stream cipher

 57

4.3 Analyzing security and conclusions

 In the previous section, we obviously know the code size of the filter generator

is smaller than one of the combination generator. On sensors memory is very critical.

Because the filter generator is a special case of the combination generator and they

share the same Boolean function f in (40), that is, they have the same nonlinearity,

resilient, algebraic immunity, so they have the same power to resist some attacks,

such as the BAA attack, the correlation attack, and the algebraic attack. Therefore

we will choose the filter generator as our cryptosystem on sensors.

 The structure of StreamCipher2 is shown in Figure 3.3. Because the connection

polynomial c is a primitive polynomial so the period of the sequence s and z are 2k –

1 if f is balanced [55]. In StreamCipher2 the period of the keystream is 2128 – 1. We

believe it is long enough.

 In Chapter 2 we hope the keystream the generator produces possesses the

randomness. While it is impossible to give a mathematical proof that a generator is

indeed a random bit generator, the tests described below help detect certain kinds of

weakness the generator may have. This is accomplished by taking a sample output

sequence of the generator and subjecting it to various statistical tests. Each statistical

test determines whether the sequence possesses a certain attribute that a truly

random sequence would be likely to exhibit; the conclusion of each test is not

definite, but rather probabilistic. If a sequence passes all five tests, there is no

guarantee that it is indeed produced by a random bit generator [54].

(i) Frequency test (monobit test)

The purpose of this test is to determine whether the number of 0’s and 1’s in a

sequence s are approximately the same, as would be expected for a random

sequence. Let n0, n1 denote the number of 0’s and 1’s in s, respectively. The

 58

statistic used is

n

nnX
2

10
1

)(−
=

which approximately follows a χ2 distribution with 1 degree of freedom if n ≥

10.

(ii) Serial test (two-bit test)

The purpose of this test is to determine whether the number of occurrences of

00, 01, 10, and 11 as subsequences of s are approximately the same, as would

be expected for a random sequence. Let n0, n1 denote the number of 0’s and 1’s

in s, respectively. Note that n00 + n01 + n10 + n11 = (n - 1) since the subsequence

is allowed to overlap. The statistic used is

 1)(2)(
1

4 222
11

2
10

2
01

2
002 10

++−+++
−

= nn
n

nnnn
n

X

which approximately follows a χ2 distribution with 2 degree of freedom if n ≥

21.

(iii) Poker test

Let m be a positive integer such that)2(5 m

m
n

⋅≥⎥⎦
⎥

⎢⎣
⎢ , and ⎥⎦

⎥
⎢⎣
⎢=
m
nk . Divide the

sequence s into k non-overlapping parts each of length, and let ni be the number

of occurrences of the ith type of sequence of length m, 1 ≤ i ≤ 2m. The poker test

determines whether the sequences of length m each appear approximately the

same number of times in s, as would be expected for a random sequence. The

statistic used is

 kn
k

X
m

i
i

m

−= ∑
=

)(2 2

1

2
3

which approximately follows a χ2 distribution with 2m – 1 degree of freedom.

Note that the poker test is a generalization of the frequency test: setting m = 1

in the poker test yields the frequency test.

 59

(iv) Runs test

The purpose of the run test is to determine whether the number of runs of

various lengths in the sequence s is as expected for a random sequence. The

expected number of gaps (or blocks) of length i in a random sequence of length

n is ei = (n – i + 3)/2i+2, where a run of 0’s is called a gap, while a run of 1’s is

called a block. Let k be equal to the largest integer i for which ei ≥ 5. Let Bi, Gi

be the number of blocks and gaps, respectively, of length i in s for each i, 1 ≤ i

≤ k. The statistic used is

 ∑∑
==

−
+

−
=

k

i i

ii
k

i i

ii

e
eG

e
eBX

1

2

1

2)()(

which approximately follows a χ2 distribution with 2k – 2 degrees of freedom.

(v) Autocorrelation test

The purpose of this test is to check for correlations between the sequence s and

(non-cyclic) shifted version of it. Let d be a fixed integer, ⎣ ⎦21 nd ≤≤ . the

number of bits in s not equal to their d-shifts is . The

statistic used is

∑
−−

=
+⊕=

1

0
)(

dn

i
dii ssdA

 dndndAX −
−

−⋅= /)
2

)((2

which approximately follows an N(0, 1) distribution if n – d ≥ 10. Since small

values of A(d) are as unexpected as large values of A(d), a two-sided test

should be used.

Let a significance level of α = 0.5 and the length of keystream is 10000 bits. Table 7

shows the results of StreamCipher2.

 60

test degree of
freedom

passing range other
paratmeter

results

frequency test 1 -3.84 ~ 3.83 no pass X1=1

serial test 2 -5.99 ~ 5.99 no pass X2=1

poker test 7 -14.067 ~ 14.067 m = 3 pass X3=4

runs test 14 -23.685 ~ 23.685 k = 8 pass X4=11.4

autocorrelation no -1.96 ~ 1.96 d = 500 pass X5=1

Table 8: Statistic test table of StreamCipher2

The keystream StreamCipher2 produces is very highly probable to be random.

 Then we hope StreamCipher2 can resist all kinds of attacks. The Boolean

function f in StreamCipher2 is (11, 5, 5, 960) and its AI is 4. We believe 5-resilient is

big enough to resist all correlation attacks. Nonlinearity is equal to 960 and in the

BAA attack a = 0.0625 and the sequence the BAA attack generates is similar with

the original keystream with probability of 0.53125. This value is low enough to

resist the BAA attack. The generator filter tapset and the LFSR tapset are FPDS to

resist the inversion attack and the conditional correlation attack.

attack algebraic BDD Investion tradeoff
complexity O(265) O(2114) O(282) O(285)

 Table 9: Complexity of attacks

Table 8 shows the complexity of other attacks. Let CPU clock rate be 4G, and it

computes at most 248 instructions in one day. Therefore if all complexity is larger

than 264, we say the stream cipher is secure. So StreamCipher2 is secure.

 Compared with RC5 in [56] the filter generator uses less code size and is faster.

RC5 was used as the cryptosystem on Wireless Sensor Network in [56]. The faster

the operations of encrypting are in the same clock rate, the less power consumption

 61

is. This is also very important on sensors and this makes sensors survive longer. At

last, we compare the filter generators, RC5 and A5. RC 5 and A5 are implemented

by 8051 assembly code. The filter generator is implemented by our modified 8051

assembly code. The result is as follows.

 filter generator RC5 A5
code size (bytes) 578 1789 1071
data rate (bits/s) 5194 600 3318

Table 10: Comparison among the filter generator, RC5, and A5

Obviously, our filter generator is faster than RC5 and A5 and uses less code size.

 62

Chapter 5

Conclusion and Future Research

 On Wireless Sensor Networks we aim to develop a secure, lower

power-consumption, and lower code-size cryptosystem. The stream cipher meets

these properties. The stream cipher is divided into the combination generator and the

filter generator. The filter generator needs less code size than the combination

generator. The filter generator is also faster than the combination generator.

Therefore, we choose the filter generator as our cryptosystem on Wireless Sensor

Networks. To resist all kinds of attacks we must find good properties of the LFSR

and the Boolean function. The LFSR must be primitive and have large period. The

Boolean function must have high correlation immunity, nonlinearity, algebraic

degree and algebraic immunity. The LFSR tapset and the filter generator tapset must

be FPDSs. If the Boolean function can be computed fast, it is the best. We use one

LFSR of length 128 and one (11, 5, 5, 960) Boolean function of algebraic immunity

4 to compose the filter generator. This generator can resist most attacks. It is the

secure cryptosystem we apply on Wireless Sensor Networks. The code size of this

stream cipher is 799 bytes and the time when it produces 128-bit keystream is

0.031426 seconds in 12MHz 8051 CPU. If we increase a new instruction to original

8051 CPU, we can reduce code size to 578 bytes and time to 0.024642 seconds. The

performance is greatly improved.

 Furthermore, we can increase the secret key length to strengthen the security of

our stream cipher. For example, we can use LFSR of length 196 or LFSR of length

256 and so on to strengthen the security. But we will need more code size and

memory to do this. We can also increase correlation immunity, nonlinearity,

algebraic degree and algebraic immunity of the Boolean function to have more

power to resist all kinds of attacks. The easiest way is to increase variables of the

Boolean function. For example, we can choose n = 14 in (39) and f as (14, 7, 6, 7936)

the Boolean function of algebraic immunity 5. Of course, this will take more code

size, memory and time. This is trade off. We may figure out a new method of

construction to increase algebraic immunity in the same variables, nonlinearity,

 63

correlation immunity and algebraic degree of the Boolean function. A lot of previous

research is on how to construct the Boolean function to reach the highest

nonlinearity ,correlation immunity and algebraic degree, but few consider algebraic

immunity, so we may modify these methods of construction to increase algebraic

degree and do not change nonlinearity, correlation immunity and algebraic degree. If

we can do so, we will save much code size, memory and computing time while

achieving good security.

 The stream cipher is applied to the sensors. If we want to improve the

performance of sensors, we may develop system on a chip on the sensors. In

addition, we may integrate all the components, e.g. RF, sensors, cryptosystems and

so on, into one chip. This will greatly improve power consumption, the most

important factor on sensors’ performance.

 64

Bibliography

[1] M. Jakobsson and S. Wetzel, “Security Weaknesses in bluetooth,” 1996.

Avaliable: http://www.bluetooth.com.

[2] A. Biryukov, A. Shamir, and D. Wagner, “Real time cryptanalysis of A5 on a

PC,” in Procedding Fast Softeare Encryption 2000, New York:Springer-Verlag,

2000, Vol. 1978, pp.1-18.

[3] P. Ekdahl and T. Johansson, “Another attack on A5,” in Proceedings of 2001

IEEE International Symposium on Information Theory, 2001, pp. 160-167.

[4] G. Rose and P. Hawkes, “The t-class of SOBER stream ciphers,”

Avaliable:www.home.aone.net.au/qualcomm.

[5] H. Beker and F. Piper, “Cipher systems: the protection of communication,”

John Wiley & Sons, New Work, 1982.

[6] S. W. Golomb, “Shift register sequences,” Holden-Day, San Francisco Calif.,

1967.

[7] J. L. Massey, “A self-synchronizing digital scrambler for cryptographic

protection of data,” 84 International Zurich Seminar on Digitial

Communications Applications of Source Coding, Channel Coding & Secrecy

Coding, 1984.

[8] A. Lempel and J. Ziv, “On the complexit of finite sequences,” IEEE

Transaction Information Theory, January 1969 IT-15, pp. 122-127.

[9] J. L. Massey, “Shift-register synthesis and BCH decoding,” IEEE Transaction

on Information Theory, January 1976, IT-22.

[10] T. Siegenthaler, “Correlation immunity of non-linear combining functions for

cryptographic applications,” IEEE Transaction on Information Theory, 1984,

IT-30, pp. 776-780.

[11] X. Guo-Zhen and J. Massey, “A spectral characterization of

 65

correlation-immune combining functions,” IEEE Transaction on Computers,

1988, Vol. C-34, pp. 81-85.

[12] J. F. Dillon, “A survey of bent functions,” NSA Mathematical Meeting, 1972,

pp. 191-215.

[13] Anne Canteaut, Kapaleeswaran Viswanathan, “Results on Algebraic Immunity

for Cryptographically Significant Boolean Functions,” Progress in Cryptology

- INDOCRYPT 2004: 5th International Conference on Cryptology in India,

Chennai, India, December 20-22, 2004. Proceedings.

[14] J. L. Massy, “Cryptography and system theory,” Proceeding 24th Allerton

Conference Communication , Control, Comput., Oct. 1-3, 1986.

[15] P. Ekdahl and T. Hohansson, “SNOW-a new stream cipher,” in Proceedings of

First Open NESSIE Workshop, KU-Leuven, 2000.

[16] C. Carlet, “Improving the algebraic immunity of resilient and nonlinear

functions,” Technical report, Cryptology ePrint Archive of the IACR, 2004.

http://eprint.iacr.org

[17] T. Siegenthaler, “Decrypting a class of stream ciphers using ciphertext only,”

IEEE Transaction on Computers, 1985, C-34, pp. 81-85.

[18] W. Meier and O. Staffelbach, “Fast correlation attacks on stream ciphers,” in

Advances in Cryptology, EUROCRYPT’88, Springer-Verlag 1988, Vol. 330,

pp. 301-314.

[19] W. Meier and O. Staffelbach, “Fast correlation attacks on certain stream

ciphers,” Journal of Cryptology, 1989, Vol. 1, pp. 159-176.

[20] T. Johansson and F. Jonsson, “Improved fast correlation attacks on stream

ciphers via convolutional codes,” in Advances in Cryptology,

EUROCRYPT’99, Springer-Verlag, 1999, pp. 347-362.

[21] Vladimor Chepyzhov, Thomas Johansson, and Bernard Smeets, “A simple

 66

algorithm for fast correlation attacks on stream ciphers,” In Bruce Schneier,

editor, Fast Software Encryption (FSE 2000), Proceedings, Lecture Notes in

Computer Science 1978, pages 181-195. Springer-Verlag, 2001.

[22] Fredrik Jonsson and Thomas Johansson, “Theoretical analysis of a correlation

attack based on convolutional codes,” In Ezio Biglieri and Sergio Verdu,

editors, IEEE International Symposium on Information Theory 2000, page 212,

2000.

[23] Anne Canteaut and Michael Trabbia, “Improved fast correlation attacks using

parity-check equations of weight 4 and 5,” In Bart Preneel, editor, Advances in

Cryptology, EUROCRYPT’00, LNCS 1807, pages 573-588. Springer-Verlag,

2000.

[24] Miodrag J. Mihajevic, Marc P. C. Fossorier, and Hideki Imai, “fast correlation

attack algorithm with list decoding and an application,” In Hideki Imai, editor,

Fast Software Encryption (FSE2001), LNCS 2355, pages 196-210.

Springer-Verlag, 2001.

[25] Phillippe Chose, Antoine Joux, and Michel Mitton, “Fast correlation attacks:

An algorithmic point of view,” In Lars Kundsen, editor, Advances in

Cryptology, EUROCRYPT’02, LNCS 2332, pages 209-221. Springer-Verlag,

2002.

[26] T. Johansson and F. Jönsson, “Fast Correlation Attacks Based on Turbo Code

Techniques,” Advances in Cryptoloty, Crypt’99, Springer-Verlag, 2000, Berlin,

181-197.

[27] Rejane Forre, “A fast correlation attack on nonlinearity feedforward filtered

shift-register sequences,” In Jean-Jacques Quisquater and Joos Vandewalle,

editors, Advances in Cryptology, EUROCRYPT’89, LNCS 434, pages 586-595.

Spring-Verlag, 1990.

 67

[28] Jovan Dj. Golic, Mahmoud Salmasizadeh, Leonie Ruth simpson, and Ed

Dawson, “Fast correlation attacks on nonlinear filter generators,” Information

Processing Letters, 64(1):37-42, October 1997.

[29] Fredrik Jonsson and Thomas Johansson, “A fast correlation attack on

LILI-128,” Information Processing Letters, 81(3): 127-132, February 2002.

[30] Bernhard Lohlein, “Attacks based on conditions against the Nonlinear Filter

Generator,” Technical report, Cryptology ePrint Archive of the IACR, 2003.

http://eprint.iacr.org.

[31] R. A. Rueppel, “Analysis and design of stream cipher,” Springer-Verlag, Berlin

etc., 1986. [43]

[32] 丁存生，蕭國鎮，流密碼學及其應用，國防工業出版社，1993。

[33] N. Courtois and W. Weier, “Algebraic attacks on stream ciphers with linear

feedback,” In Advances in Cryptology – EUROCRYPT 2003, volume LNCS

2656, pages 346-359. Springer-Verlag, 2003.

[34] N. Courtois, “Fast algebraic attacks on stream ciphers with linear feedback,” In

Advances in Cryptology- CRYPTO 2003, volume LNCS 2729, pages 176 –

194. Springer-Verlag, 2003.

[35] Adi Shamir, Jacques Patarin, Nicolas Courtois, Alexander Klimov, “Efficient

Algorithms for solving Overdefined Systems of Multivariate Polynomial

Equations,” Eurocrypt’2000, LNCS 1807, Springer, pp. 392-407.

[36] Nicolas Courtois, ”Higher order correlation attacks, XL algorithm and

cryptanalysis of Toyocrypt,” ICISC 2002, November 2002, LNCS 2501,

pp.267-287, Springer, A preprint with a different version of the attack is

available at http://eprint.iacr.org/2002/87/.

[37] M. Mihaljevic, H. Imai, “Cryptanalysis of Toyocrypt-HS1 stream cipher,”

IEICE Transactions on Fundamentals, vol. E85-A, pp.66-73, Jan. 2002.

 68

Available at http://www.csl.sony.co.jp/ATL/papers/IEICEjan02.pdf.

[38] W. Meier, E. Pasalic, C. Carlet, “Algebraic attacks and Decomposition of

Boolean Functions,” Advances in Cryptology - EUROCRYPT 2004, Interlaken,

Proceedings, LNCS 3027, pp. 474 – 491.

[39] Jovan Dj. Golic, ”On the security of nonlinear filter generators,” In Dieter

Gollmann, editor, Fast Software Encryption (FSE 1996), LNCS 1039, pages

173-187. Springer-Verlag, 1996.

[40] Jovan Dj. Golic, Andrew Clark, and Ed Dawson, “Inversion attack and

branching,” In Josef Pieprzyk, Reihaneh Safavi-Naini, and Jennifer Seberry,

editors, Information Security and Privacy, Fourth Australasian Conference,

ACISP’99, LNCS 1587, pages 88-102. Springer-Verlag, 1999.

[41] Jovan Dj. Golic, Andrew Clark, and Ed Dawson, “Generalized inversion attack

on nonlinear filter generators,” IEEE Transactions on Computers, 49(10):

1100-1109, October 2000.

[42] A. Gorska and K. Gorski, “Improved inversion attacks on nonlinear filter

generators,” Information Processing Letters, 38(16): 870-871, August 2002.

[43] Sabine Leveiller, Joseph Boutros, Philippe Guillot, and Gilles Zemor,

“Cryptanalysis of nonlinear filter generators with {0, 1}-metric Viterbi

decoding,” In Bahram Honary, editor, Cryptography and Coding VIII, LNCS

2260, pages 402-414. Springer-Verlag, 2001

[44] B. Löhlein, “Analysis of modifications of the conditional correlation attack,”

1999. Accepted at 3rd IEEE/ITG Conference on Source and Channel Coding,

17-19 Jan. 2000, Munich.

[45] Richard A. Games and Joseph J. Rushanan, “Blind synchronization of

m-sequences with even span,” In Tor Helleseth, editor, Advances in Cryptology,

EUROCRYPT’93, Lecture Notes in Computer Science 765, pages 168-180.

 69

Springer-Verlag, 1994.

[46] Eric Filiol, “Decimation attack on stream ciphers,” In Bimal Roy and Eiji

Okamoto, editors, Progress in Cryptology, INDOCRYPT 2000, LNCS 1977,

pages 31-42. Springer-Verlag, 2000.

[47] S.S. Bedi and N.R. Pilai, “Cryptanalysis of the nonlinear feedforward

generator,” In Bimal Roy and Eiji Okamoto, editors, Progress in Cryptology,

INDOCRYPT 2000, LNCS 1977, pages 188-194. Springer-Verlag, 2000.

[48] Alex Biryukov and Adi Shamir, “Cryptanalytic time/memory/data tradeoffs for

stream ciphers,” In Tsutomu Matsumoto, editor, Advances in Cryptology,

ASIACRYPT’00, Lecture Notes in Computer Science 1976, pages 1-13.

Springer-Verlag, 2000.

[49] Matthias Krause, “BDD-based cryptanalysis of keystream generators,”

Technical report, Cryptology ePrint Archive of the IACR, 2001. TR-2001-092,

http://eprint.iacr.org.

[50] Matthias Krause, “BDD-based cryptanalysis of keystream generators,” In Lars

Knudsen, editor, Advances in Cryptology, EUROCRYPT’2002, Lecture Notes

in Computer Science 2332, pages 222-237. Springer-Verlag, 2002.

[51] B. Löhlein, “Attacks based on conditional correlations against the nonlinear

filter generator,” Technical report, Cryptology ePrint Archive of the IACR,

2003. http://eprint.iacr.org.

[52] Turiy Tarannikov, “On resilient Boolean functions with maximal possible,”

Crypto ePrint Archive, http://eprint.iacr.org, No. 2000/005.

[53] Patrik Ekdahl, Tomas Johanson, “SNOW – a new stream cipher,” Proceeding

of first NESSIE Workshop, Heverlee, Belgium, 2000.

[54] A. J. Menezes, P. C. V. Oorschot, and S. A. Vanstone, Handbook of Applied

Cryptography, pp.169-190, 1996.

 70

[55] Markus Schneider, “Methods of generating binary pseudo-random sequences

for stream cipher encryption (in German),” PhD thesis, Faculty of Electrical

Engineering, University of Hagen, Germany, September 1999. Berichte ausder

Kommunikationstechnik, Band 4, Shaker Verlag.

[56] Perrig, R. Szewczyk, V. Wen, D. culler, and J. Tygar, “SPINS: Security

Protocols for Sensor Networks,” In Seventh Annual ACM International

Conference on Mobile Computing and Networks (Mobicom 2001), Rome Italy,

July 2001.

 71

