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摘要 

 

無線微型感測器網路近來愈來愈受到重視，其主要的元件即為感測器。感測

器是個輕巧短小、容易大量散佈的裝置，有著簡單的處理器以及特殊的感應器可

以輕易的被程式化來收集相關物理性質的資料。除此之外，感測器具備有無線通

訊的能力，透過無線電的傳輸以及 Ad-hoc routing 的機制可以將收集到的相關

資訊即時、動態的傳送至後端的數據中心做進一步的分析處理。無線感測器網路

的目的即是在建立一個通用、有效能、低花費以及容易散佈的感測器網路平台。

在此網路平台，使用者將可快速且輕易的在感測器上開發各種應用。 

 無線微型感測器網路有網路安全問題，無線嵌入式應用程式包含許多已知，

甚至是未知的安全漏洞，而利用這些漏洞所引發的攻擊事件也日漸頻繁，對於系

統的安全更是一大隱憂，而今日無線微型感測器網路，其安全機制的發展受制於

其計算及通訊平台考量，因此若要建立一系列相關的安全機制來防範攻擊，還需

依整個系統平台的特性限制加以考量，我們將發展一套滿足感測器所有限制的串

流密碼系統，然後把它應用到感測器中，我們將探討各種串流密碼系統，找出一

套最適合應用在無線微型感測器網路的串流密碼系統。 
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Abstract 
 

There is more and more emphasis on Wireless Sensor Network in recent years. 

Sensor is a weightless device that is easy to be deployed and programmable to collect 

outward related information. Besides, the sensors also possess the communication 

ability transmitting the environmental information to the read-end data center. The 

objective of Wireless Sensor Networks is to build a sniffing network platform with the 

following features: ‘Efficiency’, ‘Low-cost’ and ‘Ease of deployment’. With this 

platform, we can develop rapidly and easily diverse applications. 

 The Wireless Sensor Network has a network security problem. Wireless 

embedded system applications contain security flaws both known and unknown 

attacks that take advantage of these flaws have become ubiquitous. Protecting 

wireless embedded system applications from attacks requires the development of a 

suite of security related services, which are designed according to the constraints of 

wireless embedded platforms. We will develop the stream cipher to satisfy all 

constrains of sensors. We will explore all kinds of stream ciphers and find the fittest 

stream cipher to apply on Wireless Sensor Networks. 
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Chapter 1 

Introduction 

 

1.1 Wireless Sensor Network 

There is more and more emphasis on Wireless Sensor Network in recent years, 

and ‘Sensor’ is a main component in this kind of network. Sensor is a weightless 

device with unsophisticated microprocessor and specific detector so that it is easy to 

be deployed and programmable to collect outward related information, such as 

temperature, pressure, strength of earth quake, etc. Besides, the sensors also 

possessed communication ability, transmitting the environmental information to the 

read-end data center through RF signaling and some ad-hoc routing methodology to 

make more advanced data analysis. The objective of Wireless Sensor Networks is to 

build a generic network platform with the following features: ‘Efficiency’, 

‘Low-cost’ and ‘Ease of deployment’. With this platform, we can develop rapidly 

and easily diverse applications.  

We have met some problem when building a modern Wireless Sensor Network; 

one of the problems is power consumption. A Wireless Sensor is a mobile device; 

for its mobility, and its power must be provided by the device itself. The power 

supply for a Wireless Sensor is for example a battery. A Wireless Sensor Network 

needs a long lasting battery in order to survive for a long period of time. The other 

problem is the network security problem. Wireless embedded system applications 

contain security flaws; both known and unknown attacks taking advantage of these 

flaws have become ubiquitous. A serious problem that limits the deployment and 

acceptance of wireless embedded system applications today is the lack of security 

services that are designed according to the unique properties of the computation and 
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communication platform. Protecting wireless embedded system applications from 

attacks requires the development of a suite of security related services, which are 

designed according to the constraints of wireless embedded platforms. 

Because the sensors have limited processing power, storage, bandwidth, and 

energy, they need a different design of network security. Public key cryptosystem 

using large and complicated computation, such as RSA, Elliptic Curves 

Cryptosystem, is not suitable for a Wireless Sensor Network. Some block cipher 

systems in cryptosystems are also not suitable for a Wireless Sensor Network, due to 

their complicated architecture and long time computing. Stream cipher, differing 

from block cipher system, possesses a quite simple architecture and very fast 

encrypting rate and is very suitable for sensors which have limited memory and 

computing resources. Therefore, we plan to apply stream cipher on Wireless Sensor 

Networks. 

 

1.2 Stream ciphers  

 We classify the modern cryptosystems into two groups: one is public key 

cryptosystem and the other is the secret key cryptosystem. Secret key cryptosystems 

are divided into block cipher and stream cipher. Block cipher includes Triple-DES, 

AES, RC6 and so on. Stream cipher usually uses linear feedback shift registers and a 

Boolean function as a random number generator. Then the method of encryption is 

to use the keystream which the random number generator produces to xor with the 

plaintext a bit at a time. The decryption is the same with the encryption, which is to 

use ciphertext to xor the keystream. Compared with secret key cryptosystems the 

rate of computing of public key cryptosystems is much slower. The encrypting rate 

of stream cipher is the fastest among secret key cryptosystems. Because of having 
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limited or no error propagation, stream cipher may also be advantageous in 

situations where transmission errors are highly probable. 

 Stream cipher has been developed very fast in recent years. Now in industries 

there are a series of related techniques of stream cipher, such as E0[1] in Bluetooth 

which is designed in the wireless network interface, and A5[2,3] in GSM and 

SOBER[4] which is software in the microprocessor. We plan to find out the most 

suitable stream cipher for Wireless Sensor Networks. 

 

1.3 The organization of the thesis 

 The rest of this thesis is organized as follows. In Chapter 2, we first introduce 

several important components in stream cipher systems: linear feedback shift 

registers, Boolean functions, and the secret keystream. We will also introduce the 

period, the randomness and linear complexity of linear feedback shift register. Next, 

we will introduce the basic properties of Boolean function: balancedness, 

correlation-immunity, nonlinearity, algebraic degree, propagation characteristics and 

algebraic immunity, and explore their relations with Walsh transformation. 

 In Chapter 3, we introduce various attacks on stream cipher. They include 

correlation attacks which are to use relations between inputs and outputs of the 

Boolean function to attack, the best affine attack which is to use a single linear 

feedback shift register to approximate the secret keystream which a generator 

produces, and the algebraic attack which is to find the key by solving an overdefined 

system of algebraic equations. At last we also introduce other attacks for the filter 

generator. 

 In Chapter 4, we will propose various kinds of stream ciphers and implement 

them with software on sensors. We hope to achieve a balance between security and 
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all constrains on sensors. By comparing various stream ciphers we may find the 

fittest one on Wireless Sensor Networks. We also try to implement it with hardware. 

Then we analyze the security of the stream cipher we choose. 

 Finally, the conclusion is given in Chapter 5. 
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Chapter 2 

Stream Cipher 

 

 The main purpose of the cryptographic research theory is how to deliver the 

secret information securely and reliably to another end on a network. Except for 

people possessing a particular secret key can extract the real information from the 

information delivered, no one can understand the contents in it. A cryptosystem 

approximately contains three main parts : encoding function Ek , decoding function 

Dk, and the key k respectively. The practical method of encryption and decryption in 

the cryptosystem is illustrated as Figure 1. Alice wants to deliver a message m to 

Bob, but does not want other ones to know except Bob. So Alice and Bob should in 

advance decide a key k which is suitable for some cryptosystem. Then Alice uses the 

encoding function together with the key k to encrypt message m to get ciphertext C 

and deliver it to Bob. After Bob receives ciphertext C, he uses the decoding function 

together with the key k to decrypt this ciphertext to get correct original message m. 

  

plaintext  
m 

encrypting  
system   

decrypting   
system   

)(mEC
k

=　  

Alice   Bob   

(C)D m= 
k 

eavesdropper

        Figure 2.1: Cryptosystem 
 

 Cryptosystems are classified into two classes, the public key cryptosystem and 

the secret key cryptosystem, according to different forms of key. Secret key systems 

are approximately classified into the block cipher and the stream cipher. As far as 

the block cipher system is concerned, this cryptosystem is to divide the plaintext into 
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several blocks and then to encrypt each block one by one. For example, let m = 

m1m2…m2L be the plaintext to be encrypted. The block cipher usually divides the 

plaintext m into L fixed length blocks and encrypts each block respectively. Taking 

the plaintext m for example, m will be divided into M1 = m1m2…mL and M2 = 

mL+1mL+2…m2L two blocks. Block cipher will encrypt these two blocks one by one 

to get two ciphertexts C1 = c1c2…cL and C2 = cL+1cL+2…c2L.  
)( iki MEC =  2,1=i  (1)

We can find that encoding function Ek does not vary with time in block ciphers. That 

is when M1 is equal to M2, C1 will be equal to C2. In general, to protect the security 

of block ciphers L is usually large. 

 The method of encryption in stream cipher system is quite different. The stream 

cipher contains a keystream generator which produces a pseudorandom sequence, 

called the keystream Z = z1z2…The stream cipher uses this keystream to encrypt 

every digit in the plaintext one by one to get the ciphertext: 

)( izi mEc
i

=  1≥i  (2)
ci, zi and mi represent i-th digit in the ciphertext, the keystream and the plaintext 

respectively. We can see obviously that the encoding function Ezi in the stream 

cipher varies with time. 

 According to the different architectures of the keystream generators, we can 

classify stream ciphers into two groups, synchronous stream cipher and 

self-synchronous stream cipher [5]. 

 

Definition 2.1: A synchronous stream cipher is one in which the keystream is 

generated independently of the plaintext message and of the ciphertext. 
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   Figure 2.2: Finite state machine of synchronous stream cipher 

 

A synchronous stream cipher can be represented by the finite state machine, shown 

in Figure 2.2. If the state of the keystream generator is δi in i-th time, the state of the 

keystream generator in i+1-th time can be written by 

),(1 ii k δϕδ =+  (3)
And the keystream of i-th time zi can be produced as follows: 

),( ii kz δψ=  (4)
where k is a secret key of the stream cipher cryptosystem and δ0 is the initial state of 

the keystream generator. In the synchronous stream cipher, the keystream generator 

of the transmitter and the receiver must be synchronous. What is so-called 

synchronization is to have the same secret key, initial state σ0 and clock. Otherwise, 

if these two generators are not synchronous, the decrypting will fail and at this time 

the system need provide some auxiliary method to help to resynchronize. 

Next we see the other kind of stream cipher. 

 

Definition 2.2: A self-synchronous or asynchronous stream cipher is one in which 

the keystream is generated as a function of the key and a fixed number of previous 
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ciphertext digits. 

 

iδ

ψk

izE  

iz

im ic

 

Figure 2.3: Finite state machine of self-synchronous stream cipher 

 

 A self-synchronous stream cipher can also be represented by a finite state 

machine, as shown in Figure 2.3. And the state of the keystream generator in i-th 

time is δi = (ci-1, ci-2,…, ci-t) and the keystream of i-th time zi can be represented by: 

),( ij kz δψ=                                                 (5) 

From the above equation we can see that we must define an initial state σ0 = (c-1, 

c-2,…, c-t), so this initial state is public. Such stream cipher is capable of 

re-establishing proper decryption automatically after loss of synchronization, only 

with a fixed number of plaintext characters unrecoverable. 

 In this thesis, the stream cipher is discussed in GF(2). We usually use XOR to 

be the encrypting and decrypting function in the stream cipher with respect to GF(2). 

iiizj zmmEc
i

⊕== )(                                       (6) 

iiizj zccDm
i

⊕== )(                                        (7) 

Such stream cipher is called a binary additive stream cipher. A simple binary 

additive stream cipher architecture is given as Figure 2.4 illustrates. 
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  k   
 

⊕ ⊕ 
i

c  
 

mi 
i z   

i z   

keystream    
generator   

  
  

k   
  

keystream 

generator 

mi 

 

    Figure 2.4: Binary additive stream cipher architecture 

 

 For a binary additive stream cipher architecture, its security is totally 

based on the keystream generator. There have been a lot of relative research 

[4,6,7] on this aspect. In summary the keystream of a secure keystream 

generator must meet the following conditions. 

(1) The keystream needs to have the very large period and usually this period 

is not smaller than 3×1016 or 255. 

(2) The distribution of 0 and 1 between the keystream sequence must be 

random enough. 

(3) The linear complexity of the stream cipher generator must be big enough. 

What is so-called high or low in the linear complexity is to point whether 

we can use a single LFSR only to produce the same keystream sequence 

of the stream cipher generator. With respect to the linear complexity and 

LFSR, we will explore in detail in section 2.2. 

(4) No matter what statistic test we use to compute does not get any 

information of the secret key from the keystream. 
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2.1 Linear feedback shift registers 

 The component which the stream cipher uses most frequently is the feedback 

shift register. The feedback shift register can very fast produce binary sequences. 

The method of production is as Figure 2.5 illustrates. 

 

  

output   

),,,(
110 −　L

uuuf …  

0 u   
1

u  
2−　L

u  
1 −　 L u   

     Figure 2.5 Feedback shift register 

 

The feedback shift registers of the length L contains L stages which compose the 

states of the registers. Each stage is called one degree of the register and L is called 

degree or length of registers. The function f is called the feedback function or the 

connection function of feedback shift register and the method of its operation is as 

follows: The user can assign the first initial state (u0, u1, …, uL-1) and the first output 

is u0 and then the state changes (u1, u2, …, uL) where uL = f(u0, u1, …, uL-1). This is 

to say when the state makes a shift and uL will be into the end of the register. When 

j-th shift clock impulse comes, its output is uj and the state of the feedback shift 

register (uj, uj+1, …, uj+L-1) changes into (uj+1, uj+2, …, uj+L) where uj+L = f(uj, uj+1, …, 

uj+L-1). For the same reason it will produce infinite sequences u = {ui}i≥0 . 

 For infinite sequences u, if the positive integer T > 0 exists, ui+T = ui for all i ≥ 0 

will be true and then this sequence is called the periodic sequence and the smallest 

value of all T is called the period of this sequence. Because the feedback shift 

register has L stages, at most 2L different states exist. So when the output sequence 
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is very long, the state will appear repeatedly. Therefore the output sequence of 

feedback shift register must be a periodic sequence. Because the result is zero by 

computing feedback function in the state of all 0 in L stages, the state will be all zero. 

So the state of all zero is taken off and there are 2L-1 different states. The period of 

the generated infinite sequence u, T, is smaller than or equal to 2L-1. 

 

  

output   i u   1+　i
u  
 

⊕
 

⊕
 

⊕ 
  

L c   1−　L
c  

2
c  

1 c   

2−　　Li+
u  

1 −　 +　 L i u   

      Figure 2.6: Linear feedback shift register 

 

 In general, the feedback function often takes the linear function as the 

architecture. At this time, we call this the linear feedback shift register and the 

feedback function can be represented by: 

11221100110 ),,,( −−− ++++= LLL ucucucucuuuf LL                   (8) 

where ci ∈ {0,1} ( 0 ≤ i ≤ L-1 ) and these additive operations are module 2. We can 

represent the output sequence u = {ui}i≥0 by the recursive relative equation: 

.  ,     
1
∑
=

− ≥=
L

i
ijij Ljucu                                        (9) 

 Figure 2.6 is the general structure of the linear feedback shift register of degree 

L. We call coefficient ci feedback coefficient and from feedback coefficient we can 

define the feedback polynomial of LFSR g(x): 

L
L

L
L xcxcxcxcxg +++++= −
−

121)( L 121 ， 1=Lc                    (10) 

where L is called the degree of the feedback polynomial ,and the number of 
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feedback coefficient ci (0≤i≤L-1) which is not zero is called tap of the feedback 

polynomial. 

 Next, we talk about the relation between the feedback polynomial and the 

period in LFSR. Let the length of LFSR be L and its output sequence is 2L-1. We 

call this sequence m-sequence and call this LFSR maximal-length LFSR. 

Definition 2.3: For a polynomial of degree L g(x), if two polynomials of degree 

smaller than L a(x), b(x) exist and g(x) = a(x)•b(x) is true, then we call this 

polynomial reducible polynomial; reversely, call it irreducible polynomial. 

 

Definition 2.4: Let x be a root of a irreducible polynomial of degree L g(x). If x is a 

generator in multiplicative group , we call g(x) a primitive polynomial. LZ
2

 

Theorem 2.1: If a feedback polynomial of LFSR of length L g(x) is a primitive 

polynomial, the sequence which LFSR produces will be m-sequence of the period 

2L-1. Such LFSR is a linear feedback shift register of the longest period. 

 

Example 2.1: Let L=3, c1=0, c2=1, c3=1 and the initial state be (1, 0, 0). Then the 

structural chart and the continuous change of LFSR are as follows. 

 

  

output  0 u   
1

u  
1　L-

u  

⊕  
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Time 0 1 0 0 
 1 0 0 1 
 2 0 1 0 
 3 1 0 1 
 4 0 1 1 
 5 1 1 1 
 6 1 1 0 
 7 1 0 0 

 

The feedback polynomial of LFSR is g(x) = 1+x2+x3 and its tap is two. We observe 

that the state of the register in t = 7 is the same with that in t = 0. This represents the 

recursive state of the output sequence has happened. Therefore, we know the period 

of output sequence is 7, that is, 23-1 and this sequence achieves the largest period of 

LFSR of degree 3. So, the feedback polynomial of this LFSR is a primitive one. 

 In section 2.1, we have proposed the conditions of the good keystream, one of 

which must be random enough, that is, the keystream sequence is highly 

unpredictable. We can not find in previous research a complete theory to judge 

whether a keystream is random. We just use the statistic tests to explain whether the 

distribution between 0 and 1 of the keystream sequence is close to some 

probabilistic distribution, that is, it achieves enough randomness. The usual statistic 

test methods have frequency test, serial test, poker test, run test and autocorrelation 

test, etc. If a binary sequence can satisfy these testes, we can say approximately that 

this sequence is unpredictable. Until 1967 Golomb proposed the three standards of 

testing randomness of the binary periodic sequence [6] with respect to whether it is 

enough random or not. A sequence which satisfies these three standards is called the 

pseudo-random sequence, or the P-N sequence. We can briefly prove that an m- 

sequence which is generated by the linear feedback shift register of the longest 

period is a P-N sequence. 

 Another condition which the keystream must satisfy is the linear complexity 
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and this must be large enough. This concept was presented by A Lempel and J. Ziv 

[8] in 1976. The linear complexity of a periodic sequence means that it possesses 

higher unpredictability. The size of the linear complexity of the keystream sequence 

is an important guideline for the secure strength of the stream cipher system. 

Definition 2.5: The linear complexity of a periodic sequence m is denoted by (m) 

which is defined by the smallest degree of LFSR which can produce the sequence m. 

When m = 0, define (m) = 0. 

Λ

Λ

 

Therefore the size of the linear complexity of the keystream is very important for a 

stream cipher. We can get the linear complexity of a sequence easily by the 

Berlekamp-Massey algorithm [9]. Given a sequence of the length n, we can get its 

linear complexity by B-M algorithm within O(n2). 

 Through the above description, a good LFSR must satisfy three conditions: the 

large period, the unpredictability and the large linear complexity. When we construct 

the keystream generator of the stream cipher, we must find LFSR that satisfies these 

three conditions to produce the secret keystream. But usually we use a nonlinear 

Boolean function combining several LFSRs in order to strengthen the randomness 

and the linear complexity of the keystream sequence. We will introduce Boolean 

functions in detail in the next section. 

 

2.2 Boolean functions 

 First, let GF(2) = V and x = (X1, X2, …, Xn) ∈ Vn is a vector of n elements, 

where each Xi ∈ Vn (1 ≤ i ≤ n). The definition of a Boolean function f(x) is the 

function from Vn to V, that is, f(x) | Vn → V. We denote all Boolean functions of n 

variables by Ωn or ΩV(n). Any Boolean function of Ωn f(x) can be represented 
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uniquely by the algebraic normal form, called ANF for short, and this representation 

is as follows: 

nn XaXaaxf +++= K110)( nn XXXaXXaXXa KK K 211231132112 ++++   (11) 

where operations of the addition and multiplication in the function are all based on V. 

The outputs of Boolean function f(x) form the (0, 1) sequence called truth table, 

denoted by f or Tf. 

 Let S be a finite set and the number of elements in set S is denoted by #S. Let 

f(x) and g(x) be two Boolean functions of n variables and the hamming weight of f(x) 

is defined by the number of one in the truth table of f(x) and is denoted by wt(f(x)) 

or w(f), that is, wt(f) = #{x | f(x) = 1}. The hamming distance of two Boolean 

functions is defined by the different numbers between the truth table of them, that is, 

d(f, g) = #{x | f(x) ≠ g(x)} = wt(f + g), denoted by d(f(x), g(x)) or d(f, g). Next 

define two important properties of a Boolean function: balancedness and algebraic 

degree. 

Definition 2.6: If wt(f) is 2n-1 for a Boolean function of n variables f(x), then f(x) 

possesses balancedness. 

 

Definition 2.7: The algebraic degree of a Boolean function of n variables f(x) is 

denoted by deg(f), that is, the number of the biggest term in function. 

 

Example 2.2: Let f(x), g(x) ∈ Ω2, f(x) = X1 + X2 and g(x) = X1X2 and the truth 

tables of f(x) and g(x) are Tf = (0,1,1,0) and Tg = (0,0,0,1) respectively. Algebraic 

degree and hamming distance of these two functions are deg(f) = 1, deg(g) = 2 and 

wt(f) = 2, wt(g) = 1 respectively. From the definition of balancedness, we can know 

f(x) is balancedness, but g(x) is not. Besides, hamming distance between two 

functions is d(f, g) = 3. 

 15



 Let w = (W1, W2, …, Wn), x = (X1, X2, …, Xn) ∈ Vn and we define one 

operation: w•x = W1X1+W2X2+…+WnXn are inner product of two vectors of length 

n. Next we define an affine function and a linear function. 

Definition 2.8: A Boolean function of n variables and deg(f) ≤ 1 can be represented 

by f(x) = W0+ W1X1+W2X2+…+WnXn , where Wi ∈ V (0 ≤ i ≤ n). We call such form 

of Boolean function an affine function. If W0 = 0, then such function is a linear 

function. The set which all affine functions form is denoted by A(n) or AV(n); The 

set which all linear functions form is denoted by Ln(x) or LV(n). 

 

A linear function of n variables f(x) can be represented by f(x) = w•x. 

Example 2.3: Let f(x) ∈ Ω2 and deg(f) ≤ 1, all possible f(x) are represented as 

follows: 

 
A(3) 

L(3)  
 0,1 

X1, X2, X3 X1+1, X2+1, X3+1 
X1+X2, X1+X3, X1+X3 X1+X2+1, X1+X3+1, X1+X3+1 

X1+X2+X3 X1+X2+X3+1 
  

Table 1: Affine functions of three variables 

 

 The Walsh transform of a Boolean function is defined as follows: 

Definition 2.9: The Walsh transform of a Boolean function of n variables is denoted 

by Ff(w) or Ff(x)(w) and is defined by 

∑
∈

⋅+−=
nGFx

xwxf
f wF

)]2([

)()1()(                                  (13) 

Besides, let )(
2
1)()( wFwF fnf ⋅=  
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We regard w•x as a linear function and the meaning of the Walsh transform of the 

Boolean function of n variables f(x) is regarded as Ff(w) = #{x | f(x) = w•x } - #{x | 

f(x) ≠ w•x }, that is, the number of x in f(x) equal to w•x subtracts the number of x 

in f(x) not equal to w•x. Therefore we can easily infer the relation between the 

Walsh transform and d(f, w•x). 

})(|{#})(|{#)( xwxfxxwxfxwFf ⋅≠−⋅==  

})(|{#22 xwxfxn ⋅≠⋅−=  

),(22 xwfdn ⋅⋅−=  

                                   (14) 2/)(2),( 1 wFxwfd f
n −=⋅ −

Definition 2.10: Nonlinearity of a Boolean function of n variables is denoted by Nf 

or Nf(x) and is defined by the minimum distance between f(x) and all affine functions 

of n variables. That is 

{ }),(min
)(

xwfdN
nAxwf ⋅=

∈⋅
                                       (15) 

Besides, an affine function w•x which is minimally distant from a Boolean function 

f(x) is called a best affine function of f(x). 

 

From the equation (14) and the definition of nonlinearity, we can infer the relation 

between the Walsh transform of f(x) and Nf. 

Theorem 2.2: Nonlinearity of a Boolean function f(x) of n variables is denoted by 

)(max
2
12

)]([

1 wFN f
nGFw

n
f n∈

− ⋅−=                                    (16) 

Proof: From (14) we know 

2/)(2),( 1 wFxwfd f
n −=⋅ −  

{ } { }2/)(2min),(min 1

)]2([)(
wFxwfd f

n

GFwnAxw n
−=⋅⇒ −

∈∈⋅
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)(max2
)]2([

1 wFN f
GFw

n
f n∈

− −=⇒                               

 

Example 2.4: f(x) ∈ Ω3 and the truth table of f(x) Tf = {0, 0, 1, 1, 0, 1, 1, 0} 

function (0,0,0)(0,0,1)(0,1,0)(0,1,1)(1,0,0)(1,0,1)(1,1,0)(1,1,1) c =0 c =1
f 0 0 1 1 0 1 1 0
c 0 0 0 0 0 0 0 0 4 4

x 1+c 0 0 0 0 1 1 1 1 4 4
x 2+c 0 0 1 1 0 0 1 1 2 6
x 3+c 0 1 0 1 0 1 0 1 4 4

x 1+x 2+c 0 0 1 1 1 1 0 0 2 6
x 1+x 3+c 0 1 0 1 1 0 1 0 4 4
x 2+x 3+c 0 1 1 0 0 1 1 0 2 2

x 1+x 2+x 3+c 0 1 1 0 1 0 0 1 6 6

truth table（c =0） d (f ,wx )

      Table 2: Hamming distance between f(x) and affine functions 

 

From the above Table 2, we know Nf = 2. 

Balancedness of a Boolean function can also be represented by Walsh 

transform of the Boolean function. 

Theorem 2.3: If the Boolean function of n variables f(x) possesses balancedness 

then if and only if Ff(0) = 0 will be true. 

Proof: From the definition of the Walsh transform of the Boolean function f(x) we 

know as w = 0 

}1)(|{#}0)(|{#)1()0(
2

)( =−==−= ∑
∈

xfxxfxF
nZx

xf
f  

 

(1)  : 

Because f(x) possesses balancedness, #{x | f(x) = 0} = #{x | f(x) = 1} = 2n-1. So 

we prove Ff(x) = 2n-1 - 2n-1 = 0. 
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(2)  : 

From Ff(x) = 0 so we know from (17) 

0}1)(|{#}0)(|{# ==−= xfxxfx  

}1)(|{#}0)(|{# ===⇒ xfxxfx  

Because , we can infer from (18) nxfxxfx 2}1)(|{#}0)(|{# ==+=

12}1)(|{#}0)(|{# −==== nxfxxfx ] 

So we prove f(x) possesses balancedness.                          

 

Next we define the relations between inputs and outputs of a Boolean function:  

correlation immunity, propagation characteristics and correlations respectively. 

Definition 2.11: If we take randomly m variables from in a Boolean function of n 

variables f(x) to make ]1)(Pr[],...,|1)(Pr[ 11
===== xfaXaXxf mii m

 true, where 

a1, a2, …, am ∈ V and then call f(x) the function of m-th correlation immunity, 

abbreviated the (m, n)CI function. 

 

If a Boolean function is (m, n)CI, then in brief we can fix m variables in the Boolean 

function of n variables, its output distribution keeps the same original proportion. In 

other words, when we analyze the relation between inputs and outputs of the 

Boolean function, even if we fix below m variables, we can not get any hidden 

information from output data. If f(x) is (m, n)CI and possesses balancedness, we call 

f(x) the resilient function of order m, denoted by the (m, n) resilient function. 

Theorem 2.4: if f(x) is (m, n)CI, then f(x) is also (t, n)CI, where 1 ≤ t ≤ m. 

Proof: Assume that every input variable of the Boolean function is statistic 

independent. As t = m-1, from the Baye’s theorem, we know  
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],...,|1)(Pr[ 11 −11
=== mii aXaXxf

−m

11

 

]1,,...,|1)(Pr[]1Pr[ 11 ====== − imiii XaXaXxfX
− mmm

11

 

]0,,...,|1)(Pr[]0Pr[ 11 =====+ − imiii XaXaXxfX
− mmm

11

       (19) 

Because f(x) is (m, n)CI, (19) can be simplified to 

],...,|1)(Pr[ 11 −=== mii aXaXxf
−m

 

]1)(Pr[]1Pr[ =⋅== xfX m ]1)(Pr[]0Pr[ =⋅=+ xfX m              (20) 

So from ]1)(Pr[],...,|1)(Pr[ 11 11
===== − xfaXaXxf mii −m

21

 we prove f(x) is (m-1, 

n)CI. 

As t = m - 2, similarly from the Baye’s theorem, we know 

],...,|1)(Pr[ 21 −=== mii aXaXxf
−m

1212

 

]1,,...,|1)(Pr[]1Pr[ 21 ====== − imiii XaXaXxfX
−−− mmm

1211

 

]0,,...,|1)(Pr[]0Pr[ 21 =====+ − imiii XaXaXxfX
−−− mmm

21

    (21) 

Because f(x) is (m-1, n)CI, (21) can be simplified to 

],...,|1)(Pr[ 21 −=== mii aXaXxf
−m

 

]1)(Pr[]1Pr[ 1 =⋅== − xfX m ]1)(Pr[]0Pr[ 1 =⋅=+ − xfX m            (22) 

So from ]1)(Pr[],...,|1)(Pr[ 21 21
===== − xfaXaXxf mii −m

 we prove f(x) is (m-2, 

n)CI. 

We use the method like above to infer and will prove f(x) is (t, n)CI for all t, where 1 

≤ t ≤ m - 2.               

 

Theorem 2.5: If f(x) is (m, n)CI, deg(f) ≤ n - m. If f(x) is (m, n)resilient, then deg(f) 

≤ n - m – 1 where m = n -1 is excluded. 
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Theorem 2.6: f(x) is (m, n)CI for all w ∈ Vn where 1 ≤ wt (w) ≤ m if and only if 

Ff(w) = 0. 

 

Theorem 2.5 explains the relation between correlation immunity and algebraic 

degree in the function and between resilient and algebraic degree in the function. 

Theorem 2.6 explains the relation between correlation immunity and Walsh 

transform in the function. The proofs of these two theorems are in [10] and [11]. 

Next we define propagation characteristics of the function. 

Definition 2.12: Given an n-variable function and α ∈ Vn, if f(x) + f(x + α) 

possesses balancedness, then f(x) satisfies propagation characteristics for α. 

 

Definition 2.13: Given an n-variable Boolean function and α ∈ Vn: 

(1) If f(x) + f(x + α) possesses balancedness for all α where wt(α) = 1, f(x) satisfies 

strict avalanche criteria, called SAC for short. 

(2) If we fix any k input variables of f(x) and f(x) still satisfies SAC, f(x) satisfies 

SAC of order k, called SAC(k) for short. 

(3) If f(x) + f(x + α) possesses balancedness for all α where 1 ≤ wt(α) ≤ α, f(x) 

satisfies propagation characteristics of degree l, called PC(l) for short. 

(4) If we fix any k input variables of the function, f(x) still satisfies PC(l), f(x) 

satisfies PC(l) of order k, called PCk(l) for short. 

From (1) and (3) in definition 2.13, we can obviously see PC(1) is the same with 

SAC. If an n-variable function Boolean function f(x) satisfies PC(n), this function 

possesses perfect nonlinear. 

Definition 2.14: Given two binary sequences u = {ui}1≤i≤N and s = {si}1≤i≤N, the 

correlation between these two sequences is defined by: 

 21



N
suisui iiii }|{#}|{# ≠−=

=α                (23) 

 

Definition 2.15: Let x = (X1, X2, …, Xn) ∈ Vn be a vector of n elements and f(x) ∈ 

Ωn. The probabilistic relation between input variable Xi and output in f(x) is defined 

by αi = Pr[Xi = f(x)] - Pr[Xi ≠ f(x)], where i ∈ {1,2,..,n}. If at least one of the 

probabilities for all αi are not zero, f(x) possesses the correlation. 

 

From the above definition we know the value of αi is between 1 and -1.We take an 

example to explain the correlation of a Boolean function. 

Example 2.5: Let f(X1, X2) = X1X2 ∈ Ω2, and the truth table of f(x) is showed in 

Table 3. Obviously, for all i, Pr[Xi = f(x)] = 0.75, Pr[Xi ≠ f(x)] = 0.25. Therefore, α1 

= α2 = 0.75 – 0.25 ≠ 0, and f(x) possesses the correlation. 

X1 X2 f(x) 
0 0 0 
0 1 0 
1 0 0 
1 1 1 

  

    Table 3: Truth table of f(X1,X2) = X1X2 

 

After seeing some properties of the Boolean function we define a special function 

called a Bent function. 

Definition 2.16: Let f(x) ∈ Ωn and n is even. For all w ∈ Vn if  

1)1(2
)]2([

)(2 ±=∑ −
∈

⋅+−

nGFx

xwxf
n

             (24) 

We call f(x) a Bent function. 
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Theorem 2.7: Let f(x) ∈ Ωn and n is even. The following properties explain the 

same thing: 

(1) f(x) is a Bent function. 

(2) 
1

21 22
−− −=

n
n

fN , and Nf is maximal nonlinearity in all n-variable Boolean 

function. 

(3) 
1

21 22}1)(|{#
−− ±==

n
nxfx , 

1
21 22}0)(|{#
−−==

n
nxfx m  

(4) f(x) possesses perfect nonlinearity. 

 

From (3) in the above theorem we know f(x) does not possess balancedness. The 

proof of theorem 2.7 is in [12] 

Example 2.6: Let f(X1, X2) = X1X2 ∈ Ω2, and this is a 2-variable Bent function. 

Nonlinearity of f(x) is Nf = 21 – 20 = 1; From Table 3 we know #{x | f(x) = 1} = 1 = 

22-1 – 21-1 and #{x | f(x) = 0} = 3 = 22-1 + 21-1. We discuss propagation characteristics 

of f(x) in two cases: 

Let α ∈ V2

case1: wt(α) = 1 

 case 1-1: α = (0, 1) 

  f(x) + f(x + α) = X1X2 + X1(X2 + 1) = X1, which possesses balancedness. 

 case1-2: α = (1, 0) 

  f(x) + f(x+α) = X1X2 + X2(X1 + 1) = X2, which possesses balancedness. 

case2: wt(α) = 1 

f(x) + f(x + α) = X1X2 + (X1 + 1) (X2 + 1) = X1 + X2 + 1, which possesses 

balancedness. 

From case1 and case2, we know f(x) satisfies PC(2) and because f(x) is a 2-variable 

function, f(x) possesses perfect nonlinearity.                
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Next, we define a new property of the Boolean function, algebraic immunity 

[13, 16]. 

Definition 2.17:  

1. Take f, g, h ∈ Ωn. Assume that there exists a nonzero function g of low degree 

such that f * g = h or (1+f) * g = h, where h is a nonzero function of low degree 

and without loss of generality, deg(g) ≤ deg(h). Among all such h’s we denote 

the lowest degree h (may be more than one and we take any one of them) by 

LDGn(f). 

2. Assume there exists a nonzero function g of low degree such that f * g = 0 or 

(1+f) * g = 0. Among all such g’s we denote the lowest degree g (may be more 

than one and then we take any one of them) by LDAn(f). 

 

Definition 2.18: We define algebraic immunity of an n-variable Boolean f as 

    AIn(f) = deg( LDGn(f) ) 

 

In 1 of above definition 2.17, if deg(g) > deg(h), then f * h = f * f * g = f * g = h, so 

one can use h in place of g, that is, we always assume deg(g) ≤ deg(h).  

Let f * g = h. When deg(g) < deg(h), (1 + f) * h = h + f * h = h + f * f * g = h + f * g 

= h + h = 0. And when deg(g) = deg(h), f * (g + h) = f * g + f * h = f * g + f * f * h = 

f * g + f * g = 0. So deg( LDGn(f) ) = deg( LDAn(f) ) 

 

Example 2.7: Let f(X1,X2,X3) = X1X2X3 + X1X2 + X1X3 + X3 ∈ Ω3. We choose g(x) 

= X1 + 1 and  

f * g = X1X2X3 + X1X2 + X1X3 + X3 + X1X2X3 + X1X2 + X1X3 + X1X3 = X1X3 + X3. 

LDGn(f) is X1X3 + X3.  

We choose g(x) = X1X3 + X3. 
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(1+f) * g = (1 + X1X2X3 + X1X2 + X1X3 + X3) * (X1X3 + X3) = X1X3 + X3 + X1X2X3 

+ X1X2X3 + X1X3 + X1X3 + X1X2X3 + X1X2X3 + X1X3 + X3 = 0. 

LDAn(f) is g(x) = X1X3 + X3. 

deg( LDGn(f) ) = deg( LDAn(f) ) = 2.             

 

2.3 LFSR-based keystream generators 

 Whether a stream cipher possesses high cryptographic strength or not is 

decided by the design of the keystream generator. A generator can be regarded as a 

finite state machine [14] as Figure 2.2 illustrates. It is composed of the output 

sequence set {zi}, the state set {δi}, two functions, ϕ and ψ, and an initial state δ0. 

The function of the state change ϕ | δi → δi+1 is to transform the current state δi into 

next one δi+1. The output function ϕ | δi → zi is to changes δi into zi. 

 The main purpose of the design of such keystream generator is to seek 

appropriate ϕ and ψ to make the output sequence {zi} have good randomness and 

achieve several basic requests in the end of section 2.1. A general stream cipher 

usually uses several LFSRs and a nonlinear Boolean function to form a keystream 

generator. Based on combinative methods of the LFSR and the Boolean function we 

classify the keystream generators into three categories, the filter generator, the 

combination generator, the clock-control generator. 

 

f

iz

LFSR

 

Figure 2.7: The filter generator 
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 The structure of a filter generator is to use a single LFSR and then a nonlinear 

Boolean function to filter its state as Figure 2.7 shows, where a nonlinear Boolean 

function f(x) is called the filter function. In recent research on the stream cipher, the 

most famous filter generator in the stream ciphers is SNOW [15]. 

 
LFSR 1 

LFSR 2 

LFSR n 

f iz

)1(u

)2(u

)(nu
 

        Figure 2.8: The combination generator 

 

 A combination generator is to take the outputs of the several LFSRs as inputs of 

a nonlinear Boolean function to produce the keystream as Figure 2.8 illustrates, 

where f(x) is called a combining function. The application of the combination 

generator is very universal, such as E0 [1] in Bluetooth whose keystream generator 

is the combination generator.  
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Figure 2.9: The clock-control generator 
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A filter generator is a special case of the combination generator, where all the 

combined sequences are produced by the same LFSR. 

 The third keystream generator is a clock-control generator. The main difference 

between this and the above two is that this generator uses a single or several LFSRs 

as the controller to produce the keystream as in Figure 2.9, where f(x) is called the 

control function. 

A5 [2,3] in GSM and SOBER [42] in microprocessor all use clock-control 

generators as the main structure of the stream cipher cryptosystem. A simple 

example of the clock-control generator is as follows: 

 
LFSR 1 

LFSR 2 

1x

2x

LFSR 3 

f

3x

iz

 

Figure 2.10 Geffe clock-clock generator 

 

Example 2.8: The Geffe clock-control generator is the keystream generator which 

consists of three LFSRs as in Figure 2.10, where the control function is  

3231)( xxxxxf +=  . We see obviously that when the output of LFSR3 is one, the 

keystream is from LFSR1; On the other hand, when the output of LFSR3 is zero, 

the keystream is from LFSR2. Such clock-control generator is to use a single LFSR 

as the controller to produce the keystream. 
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Chapter 3 

Cryptanalysis on Stream Ciphers 

 The keystream generator produces the pseudo-random keystream by inputing 

the secret key. The method of encrypting in the stream cipher is to xor the plaintext 

with the keystream and the method of decrypting is also xor the ciphertext with the 

same keystream. Therefore, if we know some pairs (plaintext, ciphertext), we know 

the corresponding keystream by xoring ciphertexts with plaintexts. Most attacks 

usually know some keystream and want to find out the secret key. A first attack is 

always the exhaustive search attack. When an adversary knows the keystream and 

the combining function, he can guess the feedback polynomial of every LFSR and 

its secret key. This complexity is ∏ =
−

n

j

l
j

jL
1

)12( , where n is n LFSRs, lj is degree 

of j-th feedback polynomial, and Lj is the number of all primitive polynomials of 

degree lj. Other attacks are to improve this complexity. Because a filter generator is a 

special case of the combination generator, an attack on the combination generator is 

also able to attack the corresponding filter generator. In the following section, we 

will introduce all kinds of attacks. Some attacks are aimed at a combination 

generator, but can also attack a corresponding filter. Some attacks are aimed at both 

generators. And others specially attack a filter generator. From these attacks, we can 

construct a more secure stream cipher against all kinds of attacks. 

 

3.1 The divide and conquer attack 

 The divide and conquer attack is a kind of ciphertext only attack [17] and it is 

to attack a combination generator. From Figure 3-1 we note C, Z, and Y have the 

correlation and Z and xj have the correlation so C must contain information of the 
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output sequence of the LFSR xj. Let the inputs xi
1, xi

2,…, xi
n of the function f in 

Figure 3-1 be generated by independent and identically distributed (i.i.d) random 

variables (r.v.) Xi
j with probability distribution Px such that P[Xi

j = 0] = p[Xi
j = 1] = 

0.5 for all i and j. The function f generates i.i.d. r.v. Zi = f(xi
1, xi

2,…, xi
n) with 

probability distribution Pz where P[Zi = 0] = P[Zi = 1] and P[Zi = xi
j] = qi. P[Yi = 0] 

= P0. 
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Figure 3.1: The stream cipher constructed by the combination generator 

 

The r.v. α as a measure for the correlation between Ci and Xi
j is defined as 

NXC
N

i

j
ii /))(21(

1
∑
=

⊕⋅−=α }),,1,0{(    /)(21    
1

njNXC
N

i

j
ii L∈⊕⋅−= ∑

=

   (25) 

The probability P[Ci ⊕ Xi
j = 0] = pe can be determined 

)0()( =⊕=== j
ii

j
iie XCPXCPp

)()1()()0(    j
iii

j
iii XZPYPXZPYP ≠⋅=+=⋅==  

jjjj qPqPqPqP ⋅++−=−⋅−+⋅= 0000 2)(1)1()1(                  (26) 

The random variable  is binomially distributed with mean value 

m

)(
1

j
i

N

i
i XC∑

=

⊕=β

β and variance σβ2
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The expected value and variance of α, mβ and σβ2 will be 
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=

e
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i
nn pNXCEEm αα                      (27) 

NppNNVar ee /)1(4/2)/21( 2222 −=⋅=⋅−= βα δβδ               (28) 

For large N, the r.v. α can be assumed to be normally distributed with parameter mβ 

and σβ2 due to the central limit theorem. 
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Figure 3.2: Probability density function for H0 and H1 

 

 Because of the independence of Zi and Xi
0 and because of the statistics of Xi

0 

we have for j = 0: q0 = 0.5 and pe = 0.5 and with (27) and (28) mβ = 0, σβ2 = N. The 

above situation will lead to the failure of the divide and conquer attack. In an attack 

an actual value α0 for α is determined from N ciphertext digits and N digits 

generated by a LFSR of length li with an arbitrary initial state and an arbitrary of the 

Li sets of feedback coefficients. There are two hypotheses to be considered. 

H1: The N > li digits of the LFSR of length li coincide with N digits generated by the 

LFSR i. This case corresponds to α being the correlation of Ci and Xi
j. 

H0: The N > li digits of the LFSR of length li do not coincide with N digits generated 
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by the LFSR i. Therefore Ci and Xi
j are independent. 

Figure 3-2 shows the normally distributed probability density function for H0 and 

H1. 

The value T shall be the decision threshold for the two hypotheses H0 and H1. 

(1) for α0 < T, H0 is accepted. 

(2) for α0 ≥ T, H1 is accepted. 

For pe = 0.5 (i.e. , qi = 0.5 or/and P0 = 0.5) the two probability density function are 

identical and therefore no decision can be made. The computational effort depends 

on the number of wrong decision, i.e., on the number of values α0 exceeding the 

threshold T. Therefore, the probability Pf for a “false alarm” P(α ≥ T | H0) is of 

primary interest. To determine the decision threshold, however, the probability Pm 

for “missing the event ” P(α < T | H1) must also be taken into account 
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and )1(2)12( 0 eee pppN
N

T
−−−= γ  

which give the finial expressions for Pm and Pf

)(γQp = 0m                     (29) 

))1(2)12(( 0 eeef pppNQp −−−= γ                                 (30) 

 The number of “false alarm” (α ≥ T | H0) and consequently the number of tests 

necessary depend on the number N of cipher digits used. If we choose N1 such that 

jl
j

f L
p

2
1= , we get 

 ))1(2)12((
2

1
0 eeel

j

pppNQ
L j

−−−= γ  

If we use 2

2

2
1)(

x

exQ
−

<  (x ≥ 0) to compute N1, we can get the upper bound of N1: 

2
01 ))1(2)12((

2
1

0 2
1))1(2)12((

2
1 eee

j

pppN

eeel
j

epppNQ
L

−−−
−

<−−−=
γ

γ  

2

0
1

1 21

)1()2ln(
2

1

  

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−

−+
<⇒

−

e

ee
l

j

p

ppL
N

j γ
                 (31) 

This upper bound (31) can be used to roughly estimate the number of ciphertext 

digits to perform an attack on a system as given in Figure 3.1. 

 All steps of the attack are as follows: Let degree of the j-th LFSR be lj. 

Step 1: The probabilities qi are determined from function f. The probability P0 is 

known from the code (e.g. ASCII) and the language of the plaintext. Using (26) we 

calculate the probability pe. 

Step 2: For a chosen value Pm the parameter γ0 of (29) is a constant and from (30) 

the probability for “false alarm” P(α ≥ T | H0) can be determined as a function of the 

N plaintext digits used in (25). 

Step 3: To find the LFSR i part of the key, we choose one out of the Li possible 
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primitive feedback polynomials and generate the corresponding maximal length {si} 

of period . 12 −il

Step 4: For each of  possible positions of {s12 −il
i} and the N ciphertext digits, the 

correlation α is computed. For each event α ≥ T it is assumed that the correct 

feedback polynomial and the correct position is used, hence the LFSR i part of the 

key is known. Because the event α ≥ T | H0 occurs with probability Pf, our decision 

may be wrong. Therefore, additional tests with new ciphertext segments have to be 

performed at all positions with (α ≥ T). If H1 is rejected for all of the  

positions, return to step 3 and choose another new primitive feedback polynomial to 

go on. 

12 −il

 In the worst case, all of the 12 −il  positions of all the possible Li feedback 

polynomials have to be tested. The complexity of this attack is approximately 

. This attack is to use the correlation between inputs and outputs in the 

Boolean function. Therefore seeking the Boolean function without the correlation 

between inputs and outputs in it is the best method to prevent the divide and conquer 

attack. The property of correlation immune in the Boolean function is used to resist 

this attack. If f is the correlation-immunity of one order Boolean function, then this 

attack will not work except using two LFSR simultaneously to attack. Hence the 

higher correlation-immunity of Boolean function, the securer the stream cipher 

constructed by this function. The concept of correlation attacks of Siegenthaler on 

LFSR-based keystream generators was improved by the basic fast correlation attack 

of Meier and Staffelbach [18, 19]. Recently, e.g. [20-26], more advanced decoding 

techniques have been proposed to mount a fast correlation attack. Their common 

method is to find low weight parity check polynomials of LFSR and /or to apply an 

iterative decoding procedure to realize the attack. These fast correlation attacks can 

∑
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−
n

j

l
j

jL
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also be applied with minor modifications to the filter generator [27-30]. 

 

3.2 The best affine approximation attack 

 This section will introduce another attack, which is called the best affine 

approximation attack, abbreviated BAA, and we will analyze the method of its 

attack and discuss how to prevent this kind of attack. 

 The concept of the best affine approximation was first proposed by Rueppel [31] 

in 1986. This kind of attack is different from the correlation attack. It does not find 

the initial state of LFSRs in the stream cipher, but to construct a new LFSR to 

approximate the original cryptosystem from known information. Such attack is to 

use the sequence of low complexity to approximate one of high complexity in nature 

and then it produces the similar keystream with the original cryptosystem. At last we 

can get the approximate plaintext from the ciphertext. 

 The BAA attack can attack the combination generator and the filter generator. 

We take the combination generator as Figure 2.8 to explain. BAA of the combining 

function f(x) is denoted by w•x, where w = (w1, w2, …, wn) and x = (x1, x2, …, xn). 

The relation between Pr[f(x) = w•x] = F(f)(w) is : 

 ( )})(|{#})(|{#
2
1)()( xwxfxxwxfxwF nf ⋅≠−⋅==  

 ( )n
nf xwxfxwF 22})(|{#

2
1)()( −⋅⋅==⇒  

 1])(Pr[2)()( −⋅=⋅=⇒ xwxfwF f  

 
2
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1])(Pr[ )( wF

xwxf f+=⋅=⇒  

Theorem 3.1: Let })({ )( wFxmaa fw
=  

(1) w•x is the BAA of f(x) and the probability that f(x) and w•x are equal is: 
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(2) w•x + 1 is the BAA of f(x) and the probability that f(x) and w•x + 1 are equal is: 

axwxf
2
1

2
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The BAA attack is the known plaintext attack. It first computes )(max )( wFa fw
=  

from f(x). Let k of w1, w2, …, wn be 1 ( 1
21

====
kiii www L ) and others are all 

zero. BAA of f(x) is cxxxxL
kiii ++++= L

21
)(  and if , c = 0; else 

c = 0. We know from the above equation that  

has the highest similarity with the keystream z in all linear combinations of LFSRs. 

Because we know the degree of all LFSRs’ feedback polynomials, from the theorem 

of the linear complexity [32] we can easily infer the linear complexity of the 

sequence z’ is 

0)()( ≥wF f

0
)()()( }1{' 21

≥⋅++++= j
iii cuuuz kL

kiii lllz +++≤Λ L
21

)'( , where  is the degree of the i
jil j-th LFSR’s 

feedback polynomial. Furthermore, we can construct a new LFSR to make the 

similarity of its output sequence with the keystream sequence of the original stream 

cipher to be a
2
1

2
1
+  and this LFSR can replace the combination generator in the 

original stream cipher. We take an example to explain. 

Example 3.1: The stream cipher constructed by the combination generator consists 

of five LFSRs and each degree of their feedback polynomial is l1 = 3, l2 = 4, l3 = 5, l4 

= 6, l5 = 7 respectively. The truth table of the combining function f(x) is 

 Tf = [00 01 00 11 11 00 11 00 00 11 00 11 11 00 11 00] 

When w = (0, 1, 0, 1, 0), f(x) calculates a = 15/16. Therefore the BAA function is x2 

+ x4 and (z’) ≤ 10. This BAA function generates the sequence z’ whose similarity 

with the original keystream z is 31/32. So we can generate a LFSR whose degree of 

Λ
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the feedback polynomial are at most 10 to approximate the original sequence and 

these two sequences have the 96 percent similarity.            

 

Because the BAA attack decides the similarity between the keystream sequence 

and the sequence which BAA of the combining function approximates according to 

a, seeking the Boolean function f(x) possessing minimum a as the combining 

function is the best method to resist prevents the BAA attack. Because the definition 

of a in the combining function is { })(max )( wFa fw
= , its relation with the 

nonlinearity of the Boolean function is as follows: 

 { } awFN nn
f

Zw

n
f n

⋅−=⋅−= −−

∈

− 111 22)(max
2
12

2

 

From the above equation we know the smaller a is, the bigger Nf is. Therefore, 

seeking the Boolean function possessing minimum a is equal to seeking one 

possessing the maximal nonlinearity and this one can be used as the combining 

function in the stream cipher to resist the BAA attack. The filter function also 

possesses the maximal nonlinearity to resist the BAA attack. 

 

3.3 The algebraic attack 

 The algebraic attack was presented in 2003 [33, 34]. Before discussing the 

algebraic attack, we first introduce the XL algorithm. In [35] the XL algorithm was 

first presented to solve overdefined quadratic systems. Instead of solving a system of 

m multivariate quadratic equations with n variables of degree d = 2 as in [35], we 

consider also higher degree equations, i.e. study the general case d ≥ 2 [36]. Let D 

be the parameter of the XL algorithm. Let li(x0, …, xn-1) = 0 be the initial m 

equations, i = 1…m with n variables xi ∈ GF(2). The XL algorithm consists of 

multiplying both sides of these equations by products of variables: 
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1. Multiply: Generate all the products i
k

j i lx
j
•∏ =1

 with k ≤ D – d, so that the total 

degree in the xi of these equations is ≤ D. 

2. Linearize: Consider each monomial in the xi of degree ≤ D as a new variable and 

perform Gaussian elimination on the equations obtained in 1. The ordering on 

the monomials must be such that all the terms containing one variable (say x1) 

are eliminated last. 

3. Get a Simpler Equation: Assume that step 2 yields at least one univariate 

equation in the power of x1. Solve this equation over the finite field. 

4. Final step: It should not be necessary to repeat the whole process. Once the 

value of x1 is known, we expect that all the other variables will be obtained from 

the same linear system. 

The XL algorithm consists of multiplying the initial m equations li by all possible 

monomials of degree up to D – d, so that the total degree of resulting equations is D. 

Let R be the number of equations generated in XL, and T be the number of all 

monomials. We have 
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 The main problem in the XL algorithm is that in practice not all the equations 

generated are independent. Let Free be the exact number of equations that are 

linearly independent in XL. When Free ≥ T – D, it is possible by Gaussian 

elimination, to obtain one equation in only one variable, and XL will work. 

Otherwise, we need a bigger D, or an improved algorithm. [36] has several tables to 

show the relation between all parameters (d, n, m, D, R, T, Free) in XL.  

 The complexity of XL is mainly in the Gaussian reduction. The fastest practical 
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algorithm we are aware of is Strassen’s algorithm that requires about  

operations. 

7log27 T•

 Then we introduce the higher order correlation attack [36] that can affect both a 

filter generator and a combination generator. We assume the connection function L is 

public and only the state is secret. We also assume that function f that computes the 

output bit from the state is public and does not depend on the secret key of the cipher. 

We take the filter generator as in Figure 2.7 as an example and f is the filter function. 

Let (k0, …, kn-1) be the initial state, then the output of the cipher (i.e. the keystream) 

is given by: 

 b0 = f   (k0, …, kn-1) 

 b1 = f( L(k0, …, kn-1)) 

 b2 = f( L2(k0, …, kn-1)) 

 ………. 

The problem we consider is to recover (k0, …, kn-1) given some bi. In this attack we 

assume that we have some m bits of the keystream at some known positions: {(t1, 

bt1), …, (tm, btm)} and want to solve a system of multivariate equations that is 

overdefined (much more equations than unknowns). This attack works in two cases: 

S1 When the Boolean function f has a low algebraic degree d. 

S2 When f can be approximated with good probability by a function g that has a low 

algebraic degree d. 

 More precisely, we assume that: 

 f(x0,…, xn-1) = g(x0,…, xn-1) holds: 1. with probability ≥ 1 - ε 

           2. and with g of degree d. 

 

In the first scenario S1, when f has just a low algebraic degree, it is known that 
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the system can be easily broken given  keystream bits. So if f has a high 

algebraic degree, this stream cipher will be hard to break. Since in S2, we do not 

need for the function to have a low algebraic degree (S1), successful attacks can be 

mounted given much less keystream bits, and with much smaller complexities. If we 

choose m such that (1 - ε)

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
d
n

m ≥ 1/2, we may assume that all these equations are true 

and we have to find a solution to our system of m multivariate equations of degree d 

with n variables. We take the Boolean function in Toyocrypt [37] as an example The 

Boolean function is as follows: 
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with {α0, …, α62} being some permutation of the set of {63,…, 125}. 

We put: . Then f(x) = g(x) holds with probability about 1 – 

2
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-4. That is d = 2 and ε = 2-4. And if we put:  

Then f(x) = g(x) holds with probability very close to 1 – 2
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-17. That is d = 4 and ε = 

2-17. We can choose m to (1 - ε)m ≥ 1/2 and apply XL to solve the initial x0,…, x127. 

If (1 - ε)m < 1/2, the attack still works; if we repeat it about (1 - ε)-m times, each time 

for a different subset of m keystream bits until it succeeds. This complexity is as 

follows:  m
d
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To summarize, n = 128, m = 1.3•216, d = 4, ε = 2-17, and (1 - ε)m = 0.52 ≥ 1/2. We 

have , . As D = 9, XL works. The complexity of 

the attack is basically the complexity of solving a linear system T×T. With Strassen’s 

algorithm, we get 
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  1287log 27 2 =•= TWF

In conclusion, we can reduce the cryptanalysis of a stream cipher to solving a 

system of multivariate equations that is overdefined. In order to resist the higher 

order correlation attack, we must find the Boolean function which possesses the very 

high algebraic degree and is approximated with very low probability by a function 

that has a low algebraic degree. 

 The algebraic attack is to improve the higher order correlation attack to break a 

stream cipher. The algebraic attack lowers the degree of these multivariate equations 

by multiplying them by well-chosen multivariate polynomials. 

 At the time t, the current keystream bit gives an equation f(x) = bt with x being 

the current state. The main new idea consists of multiplying f(x), that is usually of 

high degree, by a well chosen multivariate polynomial g(x), such that fg is of 

substantially lower degree, denoted by d. Then for example if bt = 0, we get an 

equation of low degree f(x)g(x) = 0. This in turn gives a multivariate equation of low 

degree d on the initial state bits ki. If we get one such equation for each of 

sufficiently many keystream bits, we obtain a very overdefined system of 

multivariate equations that can be solved efficiently. 

 Except S1 and S2 in [36], the algebraic attack [33] presents two new scenarios 

as follows: 

S3 The multivariate polynomial f has some multiple fg of low degree d, with g 

being some non-zero multivariate polynomial. 

S4 It is also possible to imagine attacks in which f has some multiple fg, such that 

fg can be approximated by a function of low degree with some probability (1 - 

ε) 

 

In scenarios S3 and S4, for each known keystream bit bt = f(x) at position t, we get: 
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 f(x) • g(x) = bt • g(x) 

and, since the state at time t is x = Lt(x0,…., xn-1), it boils down to : 

 f(Lt(x0,…., xn-1)) • g(Lt(x0,…., xn-1)) = bt • g(Lt(x0,…., xn-1)) 

This is the equation we are going to use in our attack. We get one multivariate 

equation for each keystream bit. This equation may be of very low degree, without f 

being of low degree, and without f having an approximation of low degree. 

 In the basic version of this attack S3, we also require that g is of low degree. 

There are other possibilities. In the basic version of the attack S3, that may be called 

S3a, we use the equation written above and we require fg ≠ 0 and fg is of low degree, 

and also we need g of low degree. There is another variant, in which we may admit 

that for all x such that f(x)g(x) = 0, and the equation can still be used when bt ≠ 0. 

This is called the scenario S3b. Another variant, called S3c, allows to relax the 

degree condition on g: when bt = 0, we can still use the equation, whatever is the 

degree of g, provided that fg ≠ 0 and is of low degree. All the 3 sub-cases of the S3 

attack scenario are summarized in the following Table 4. 

 

Degree of Attack scenario 

considered f g fg 

Use the equation Only 

when 

Number of 

equations 

for m 

keystream 

bits 

S1 and S2 low g = 1 low f(x) = bt always m 

S3a and S4a high low, g≠0 low, fg≠0 f(x)•g(x) = bt •g(x) always m 

S3b and S4b high low, g≠0 fg = 0 g(x) = 0 bt ≠ 0 m/2 

S3c and S4c high high low, fg≠0 f(x)•g(x) = 0 bt = 0 m/2 

Table 4: Different methods to obtain low degree equations from keystream bits 
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In this attack, given m keystream bits, let R be the number of multivariate equations 

of degree d, and with n variables xi. With one equation, and in scenario S3a, we have 

R = m, but we may also combine several scenarios and several different g for the 

same f, and get, for example, R = 14•m. We solve them as follows. 

Linearization Method: There are about  monomials of degree ≤ d in the n 

variables x
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i (assuming d ≤ n/2). We consider each of these monomials as a new 

variable Vj. Given  equations, we get a system of R ≥ T linear equations 

with  variables V
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T i that can be easily solved by Gaussian elimination on a 

linear system of size T. 

XL Method: When as many as the required  keystream bits are not 

available, it is still possible to use XL algorithm or solve the system with less 

keystream bits, but with more computations. 
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Therefore the complexity of this algebraic attack is equal to the complexity of the 

higher order correlation attack, which is . 7log27 T•

 The method of this attack is by factoring multivariate polynomials. We consider 

the terms of high degree in f(x) (regardless the lower degree terms) and look if they 

are divisible by a common low degree factor g’(x). Then (for polynomials over 

GF(2)) we observe that f(x)•g(x) with g(x) = g’(x) – 1 is of low degree. Take (32) as 

an example. We observe that the combination of the parts of degree 4, 17 and 63, is 

divisible by a common factor x23x42. Let f(x) = bt, and multiply both sides of it by 

g(x) = (x23 - 1). Then we get f(x)x23 – f(x) = bt(x23 - 1). The monomials divisible by 

x23 in f will cancel out, and what remains is an equation of degree 3 true with 

probability 1. We repeat the same trick for x42, i.e. we put g(x) = (x42 - 1). From this, 
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we have a simple linearization attack following the scenario S3a. For each 

keystream bit, we obtain 2 equations of degree 3 in the xi and thus 2 equations of 

degree 3 in the ki. The linearization will work as soon as R > T. We have 

 monomials and R = 2m with m = T/2 = 24.182
3

128
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
≈T 17.4 keystream bits. This 

attack is in  CPU clocks, requiring 16 Gigabytes of memory and 

only about 20 kilobytes of keystream. 

557log 27 2 =•T

 

There are many interesting cases in which this attack will work as follows: 

1 either f uses a small subset of state bits, 

2 or is very sparse, 

3 or can be factored with a low degree factor, 

4 or can be approximated by one of the above, 

5 or its part of high degree is one of the above 

We conclude that, in a stream cipher with linear feedback, the filter function should 

use many state bits and should not be too sparse, so it has also many terms of high 

degree. Moreover the part of high degree should not have a low degree factor, and 

should itself also use many state bits. Then no approximation of the part of high 

degree should have a low degree factor, or should use a small number of state bits. 

The algebraic immunity in the definition 2.18 of section 2-3 is used to resist the 

algebraic attack. In recent years, there have been many attacks which improve the 

algebraic attack [34, 38]. 

 

3.4 Other attacks on filter generators 

 In [51] the author introduces some other attacks on the filter generator as 

shown in Figure 3.3. These attacks are specially targeted on the filter generator. We 
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just generally introduce these attacks and will not discuss the details. Note that k is 

the degree of the connection polynomial and n is the number of inputs in f. 

connection polynomial c

s

f 
z 

1γnγ  

 
      Figure 3.3: The filter generator 

 

 In [39-41] the special and the general inversion attacks were published and 

analyzed. The first one only works for filter functions f which are linear-separable in 

the first one or last variable, i.e. f(x1,…,xn) = x1 + g(x2,…,xn) or f(x1,…,xn) =  

g((x1,…,xn-1) + xn, where g: GF(2)n-1 → GF(2) is an arbitrary Boolean function. The 

general inversion attack is applicable to any filter function. Both attacks have time 

complexity of O(2M-1) on average, where M is γn - γ1 and are successful for highly 

nonlinear filter functions and less known keystream N. The inversion attack was 

improved for certain filter generator configurations in [42] to O(2k-r-1), where r is the 

largest gap between LFSR cells, which have taps to the filter function or the 

connection polynomial c. The filter generator can be made resistant against the 

inversion attack if one chooses γ1 = 0, γn = k – 1 and gcd(γ1,…, γn) = 1. In [43] ideas 

from the inversion attack and the conditional correlation attack are used to form a 

trellis based decoding procedure. Like the inversion attack, it has a time complexity 

of O(2M-1) and is conceptually the same as the basic generalized inversion attack 

from [40, 41]. 

The set of exponents of the connection polynomial with non-zero coefficients is 
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called the LFSR tapset, denoted T = {0, 4, 15, 17}. Note that the LFSR tapset 

contains the indices for inputs to the linear recurrence, combined with the register 

length. The filter generator tapset Γ = {0, 1, 6, 13, 16}, contains the inputs to the 

filter generator. The values in a tapset are called taps. Given a tapset S, we define the 

positive difference set ∆(S) to be the set of positive differences between the taps in 

that set. Consequently, ∆(T) = {2, 4, 11, 13, 15, 17}, while ∆(Γ) = {1, 3, 5, 6, 7, 10, 

12, 13, 15, 16}. Each of the tapsets is full positive difference set (FPDS), meaning 

that no positive difference is repeated. Full positive difference sets are highly 

recommended for LFSR-based ciphers [39, 44]. 

In [45, 46] the decimation attack is proposed for LFSR based keystream 

generators. The idea is to consider a decimated sequence z[d], with z[d] = z0, zd, 

z2d, …. of the observed keystream sequence z = z0, z1, z2, …. For the generator filter 

the decimation attack is applicable to a d with 1 ≤ d ≤ g, d | g and g = gcd(γ1,…, γn) 

[39]. For such a d, the decimated keystream sequence z[d] can now be written as 

 zdt = f(sdt+γ1, …, sdt+ γn) = f(s’t+γ1/d, …, s’t+ γn/d) 

for all t ≥ 0. Thus, the decimated sequence z[d] can be generated from the decimated 

LFSR sequence s[d]. If the decimated sequence s[d] can be generated by a smaller 

LFSR with length k’ < k, then all known attacks against the filter generator can be 

applied to this smaller filter generator. Properties of decimated sequences have been 

developed in [31]. If k is chosen as prime or 1 ≤ k ≤ 89, then it always holds that k’ 

= k and the decimation attack provides no further advantages. 

 In [47] N = 2k keystream symbols are used to build an equation system with 2k 

nonlinear equations of the form zt = f(st+γ1, …, st+ γn) for 0 ≤ t ≤ 2k – 1and k + γn 

linear equations for the variables sk, sk+1, …, s2k+γn -1 from the linear recurrence 

relation of the LFSR. For any nonlinear equation the solution set is computed, i.e. 

the set of all tuples fulfil the nonlinear equation. Then the solution sets of two 
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nonlinear equations with overlapping variables are iteratively merged and common 

values are removed from the merged set and substituted into the other equations. 

This process is called local reduction technique and is iterated until k independent 

variables from {s0, s1, …., s2k+γn -1} have a solution or no further merging and 

substituting is possible. In the latter case, a tree-based search is done over the 

unsolved variables. The attack is only feasible for small values of n and there must 

be enough overlapping in the solution sets of the nonlinear equations. 

 In [48] tradeoff attacks (Time/Memory/Data tradeoffs) are developed and 

analyzed for synchronous stream cipher systems. Two main variants of a tradeoff 

attack are discovered, which differ in the generation of special states: Rivest and 

BSW sampling. Special states generate output prefixes of a keystream generator 

with a predefined bit pattern of l bit length. In the case of BSW sampling the special 

states of the keystream generator can be enumerated in an efficient way, i.e. in 

polynomial time. Both variants have a tradeoff relationship given by 

  TS2N2 = Z2, 

where T is time complexity in the realtime phase of the attack (i.e. one time unit 

equals the generation of O(log2(Z)) bit keystream ), S represents the storage 

requirement (typically access on a hard disk), N is the amount of keystream, and Z is 

the size of the state space of the stream cipher, i.e. Z = 2k in the case of the filter 

generator. The time for preprocessing is P = Z/N and the number of disk operations 

in the realtime phase is then given by Tdisk = (T)1/2 in the case of Rivest sampling 

and Tdisk = (T)1/22-1 for BSW sampling. In the case of Rivest sampling D2 ≤ T ≤ N is 

allowed and (2-lD)2 ≤ T ≤ N for BSW sampling. Such if a keystream generator 

allows efficient BSW sampling for an appropriate l > 0 the number of disk 

operations and the lower bound on T can be further reduced. Typical values could be 

P = Z2/3, T = Z2/3, S = Z1/3, N = Z1/3. 
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 [49, 50] presented an kO(1)2(1-α)/(1+α)k time bounded attack, the FBDD-attack, 

against LFSR-based generators, which computes the secret initial state x ∈ {0, 1}k 

from bn consecutive keystream bits, where α denotes the rate of information, which 

B reveals about the internal bitstream, and b denotes some small constant. The 

algorithm uses Free Binary Decision Diagrams (FBDDs), a data structure for 

minimizing and manipulating Boolean function. Let k be the secret key length and n 

be n LFSR. This attack can be applied to the combination generator. This attack 

computes the secret initial state x from the first k bits of f(x1,…, xn) in the 

combination generator in time 
k

n
n

Ok 1
1

)1( 2 +
−

. 
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Chapter 4 

Design of Stream Ciphers on Sensors 

 

 This Chapter will discuss how to design the secure stream cipher on Wireless 

Network Sensors. On Wireless Sensor Networks there are several severe 

challenges – these sensors have limited processing power, storage, bandwidth, and 

energy. So we must choose a fast and low-storage cryptosystem. The stream cipher 

is very fast and can lower power consumption. Since the stream cipher encrypts each 

character under a time varying function of the key, it prevents deletion, insertion or 

replay of ciphertext, as well as ciphertext searching. One may say that a stream 

cipher is inherently more secure than a block cipher because of the additional 

dimension offered by the use of memory. This advantage is important on Wireless 

Sensor Networks because we will not need extra storage or computing for resisting 

replaying attack. Saving storage and power consumption is very important for 

sensors so that they can live longer. Then we will design a stream cipher to be 

suitable for Wireless Network Sensors - that has small enough storage to be put on 

sensors. Of course, this stream cipher must be secure. We will design the stream 

cipher to resist all the attacks introduced in Chapter 3. A stream cipher is to use the 

generator to produce the pseudo-random keystream. The generator has the filter 

generator and combination generator. We will discuss which generator is more 

suitable for Wireless Network Sensors. There are two main components to construct 

the generator: one is LFSR and the other is a Boolean function. 

 First we talk about Boolean functions. They must satisfy some conditions to 

resist the attacks introduced in Chapter 3. They must be of high resilient, 

nonlinearity, algebraic degree, algebraic immunity and balancedness. We will use 
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the method of [52] to construct the Boolean function we want. [52] defines linear 

and quasilinear variables as follows: 

Definition 4.1: If a variable xi is linear for a function f we can represent f in the 

form:  f(x1,…, xi-1, xi, xi+1,…, xn) = g(x1,…, xi-1, xi+1, ..., xn) ⊕ xi. 

 

 Other equivalent definition of a linear variable is that a variable xi is linear for a 

function f if f(δ1) ≠ f(δ2) for any two vectors δ1 and δ2 that differ only in i-th 

component. 

Definition 4.2: We say that a Boolean function f = f(x1,…, xn) depends on a pair of 

its variables (xi, xj) quasilinearly if f(δ1) ≠ f(δ2) for any two vectors δ1 and δ2 of 

length n that differ only in i-th and j-th components. A pair (xi, xj) in this case is 

called a pair of quasilinear variables in f. 

 

Theorem 4.1: Let n be a positive integer. Let f1(x1, …, xn) and f2(y1, …, yn) be 

m-resilient Boolean functions on Vn such that Nf1 ≥ N0, Nf2 ≥ N0. Moreover, there 

exist two variables xi and xj such that f1 depends on the variables xi and xj linearly, 

and f2 depends on a pair of the variables (xi, xj) quasilinearly. Then the function 

f1’(x1, …, xn, xn+1) = (xn+1)f1(x1, …, xn) ⊕ xn+1f2(x1, …, xn)                (33) 

is an m-resilient Boolean function on Vn+1 with nonlinearity Nf1’ ≥ 2n-1 + N0, and the 

function 

 f2’(x1, …, xn, xn+1, xn+2) = (xn+1 ⊕ xn+2 ⊕ 1)f1(x1, …, xn) ⊕  

(xn+1 ⊕ xn+2)f2(x1, …, xn) ⊕ xn+1           (34) 

is an (m+1)-resilient Boolean function on Vn+2 with nonlinearity Nf2’ ≥ 2n + 2N0. 

Moreover, f2’ depends on a pair of the variables (xn+1, xn+2) quasilinearly. 

 proof: see [52] 
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Theorem 4.2: nlmax(n, m) = 2n-1 – 2m+1 for (2n-7)/3 ≤ m ≤ n – 2, where nlmax(n, m) 

denotes the maximal possible nonlinearity of m-resilient Boolean function on Vn. 

 proof: see[52] 
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Figure 4.2: fn 

 f’n+3 = (xn+1 ⊕ 1)f’n ⊕ xn+1f’’n ⊕ xn+2 ⊕ xn+3             (35) 

 f’’n+3 = (xn+2 ⊕ xn+3 ⊕ 1)f’n ⊕ (xn+2 ⊕ xn+3) f’’n ⊕ xn+1 ⊕ xn+2           (36) 
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By theorem 4.1 if f’n and f’’n are m-resilient Boolean functions on Vn with maximal 

possible nonlinearity (2n-1 – 2m+1), f’n depends on its last two variables linearly and 

f’’n depends on a pair of its variables quasilinearly; then f’n+3 and f’’n+3 are 

(m+2)-resilient Boolean functions on Vn+3 with maximal possible nonlinearity 

(2n+2 – 2m+3), f’n+3 depending on its last two variables linearly and f’’n+3 depending 

on a pair of its last variables quasilinearly. 

 It is a little more convenient to rewrite the relations (35), (36) in the form 

 f’n+3 = xn+1(f’n ⊕ f’’n) ⊕ f’n ⊕ xn+2 ⊕ xn+3             (37) 

 f’n+3 ⊕ f’’n+3 = (xn+1 ⊕ xn+2 ⊕ xn+3)(f’n ⊕ f’’n) ⊕ xn+1 ⊕ xn+3             (38) 

The relations (37), (38) allow to realize f’n+3 and f’n+3 ⊕ f’’n+3 as two functions of 

five values f’n, f’n ⊕ f’’n, xn+1, xn+2, xn+3 by means of the block B (see Figure 4.1). 

Initial functions can be chosen as 

 f’4 = x1x2 ⊕ x3 ⊕ x4, 

 f’’4 = x2 ⊕ x1(x3 ⊕ x4) ⊕ x3, 

 f’4 ⊕ f’’4 = x1 (x2 ⊕ x3 ⊕ x4) ⊕ x2 ⊕ x4. 

Comparison with (37), (38) shows that we can take f’1 = 0, f’’1 = x1. Finally, we put 

 fn = xn (f’n-1 ⊕ f’’n-1) ⊕ f’n-1 , n ≡ 2 (mod 3)             (39) 

fn can be represented as Figure 4.2. From theorem 4.2 the function fn is 

(2n-7)/3-resilient function on Vn, n ≡ 2 (mod 3), with the nonlinearity 2n-1 – 2(2n-4)/3 

and an algebraic degree of each variable in fn is (n+4)/3. The scheme of the function 

fn contains 2n – 4 XOR and (2n - 1)/3 AND. It is linear on n. The number of XOR 

and AND in other functions constructed by usual methods, in general, is exponential 

on n. Hence, our construction has a big advantage on sensors. It uses less storage 

and operations and is faster. The Boolean function constructed by this method is (n, 

(2n-7)/3, (n+4)/3, 2n-1 – 2(2n-4)/3), that is (n, resilient, algebraic degree, nonlinearity). 

If we choose n to be 11, it is (11, 5, 5, 960) and from [13] we know the algebraic 
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immunity of this Boolean function is 4. We expect these values are enough to be a 

secure stream cipher. 

 Then we talk about LFSR. On sensors, the key length is not too big, so we 

choose it to be 128. In the filter generator, we only need to find one primitive 

polynomial of degree 128. Its period is 2128 – 1, and we believe it is long enough. 

But if we want to resist the inversion attack and the conditional correlation attack, 

the LFSR tapset must be FPDS. Therefore we choose  

  179315999128 ++++++= xxxxxxc

T = {7, 9, 31, 59, 99, 128} is FPDS. And the filter generator tapset Γ also need to be 

FPDS. Therefore, we choose Γ = {0 1 3 7 12 20 30 44 66 82 127}, and it is FPDS. 

In the combination generator, we must choose 11 primitive polynomials and sum of 

their degree is 128, e.g. {6, 8, 9, 11, 12, 13, 14, 14, 15, 16, 17}. 

In the next section, we will implement them. 

 

4.1 Implementing the stream cipher with software 

 In this section, we will discuss how to implement the filter generator and the 

combination generator and decide which one is better for Wireless Sensor Networks. 

The hardware specification of the sensor we use is as follows: 
 

CPU 8051, 8-bit, 12MHz 
512 bytes RAM 
16k bytes ROM 

Storage 

64k flash RAM 
OS MicroC OSII 
compiler Keil C  

Table 5: Characteristics of prototype sensors 

We will implement the stream cipher on this hardware structure. We first write c 

program and compile it with Keil C and load the hex file Keil C produces into ROM 
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of sensors. Because the memory of sensors is small, we expect the code size of our 

stream cipher is smaller. 

 We first choose the filter generator to implement. Let n be 11 and the Boolean 

function is (39) in section 4.1. It is as follows: 

f = x11{(x8+x9+x10) [(x5+x6+x7)(x1(x2+ x3+x4)+x2+x4)+x5+x7]+x8+x10} 

+ x8 [(x5+x6+x7) (x1(x2+x3+x4)+x2+x4)+x5+x7] +x5(x1(x2+x3+x4) + 

x2+x4) +x1x2+x3+x4+x6+x7+x9+x10                          (40) 

The connection polynomial of LFSR is x128 + x99 + x59 + x31 + x9 + x7 + 1. And the 

filter generator tapset is Γ = {0 1 3 7 12 20 30 44 66 82 127}. Let this stream cipher 

be StreamCipher1 as in Figure 3.3. 

 Then we use “Pointer and circular buffer” to StreamCipher1 to become 

StreamCipher2. “Pointer and circular buffer” [53] is as follows: 

Pointer and circular buffer: is based on the idea of having a pointer pointing at the 

beginning of the LFSR in memory. When we clock the LFSR once we do not shift 

all the values one step in memory, but rather, we only move the pointer one position. 

This gives a compact code description of the LFSR sequence generation, and is 

faster than StreamCipher1. 

 Next we implement the combination generator. The Boolean function is the 

same as StreamCipher1. And we need 11 connection polynomials of LFSR as 

follows: 

X6 + X + 1 

X8 + X5 + X4 + X3 +1 

X9 + X4 + 1 

X10 + X3 + 1 

X11 + X2 + 1 

X12 + X7 + X4 + X3 +1 
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X13 + X4 + X3 + X1 +1 

X14 + X12 + X11 + X +1 

X14 + X5 + X3 + X +1 

X15 + X + 1 

X16 + X5 + X3 + X2 +1 

We use these LFSRs and the Boolean function f to construct the StreamCipher3 as 

Figure 2.8. 

 StreamCipher1 StreamCipher2 StreamCipher3 
Code Size 3.56k bytes 2.56k bytes 5.77k bytes 
time 0.050614 s 0.050409 s 0.167840 s 

 
       Table 6: Code size of three stream cipher 

 

Note that because we use int type to store LFSR, we choose the length of LFSRs to 

be less than 16. If we use the length of LFSRs which is larger than 16, we must use 

long type to store it, which will cost more code size and more time. Therefore, we 

use one int type to store one LFSR. 

In Table 6 it is obvious that the filter generator is smaller than the combination 

generator. And the filter generator using “Pointer and circular buffer” is the smallest. 

Therefore, we choose the filter generator as our generator in the stream cipher. At 

last we implement the filter generator with 8051 assembly code and optimize it to be 

the smallest by using reuse and loop and so on. It will produce code size of 799 

bytes. Key setup and running 128-bit keystream totally approximately cost 0.031426 

seconds. The data rate is 128 / 0.031426 = 4073 bits/s. We only XOR the plaintext 

with the keystream to complete encrypting.  
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4.2 Implementing the stream cipher with hardware 

 We devise these sensors to last as long as possible on Wireless Sensor 

Networks. We want to lower power consumption when sensors encrypt with the 

stream cipher. In the same CPU clock rate the algorithm of the faster encrypting 

consumes the lower power. Therefore, we want to make our encryption algorithm 

faster to lower power consumption. Of course, we also want our algorithm to use 

less memory. In order to save power consumption and memory we may change the 

hardware specification to better fit our stream cipher. 

 First we write the stream cipher algorithm with 8051 assembly code. We use 

the filter generator as our stream cipher generator. This filter generator consists of 

one LFSR of length 128 and one 11-variable Boolean function. LFSR of length 128 

needs 16 addresses to be stored (one address is 8bits), that is from KEY0 to KEYF. 

The Boolean function needs 11 inputs from LFSR and one input is one bit. 

Therefore we often extract one bit from some address and it needs to do 11 times. 

Doing one time needs many operations as follows. 

 MOV A, 30H 

 ANL A, #08H 

 RR A 

 RR A 

 RR A 

 MOV R2, A 

Doing these is only to move fourth bit of the value in address 30H to register 2. The 

connection polynomial of LFSR also needs to do these operations to compute the 

next state. So doing these operations in StraemCipher2 needs totally 17 times. If we 

can increase one new instruction to replace these operations, the code size will 

 55



reduce much and the speed of encryption will be faster. 

 After observing the stream cipher program with assembly code, we find that 

increasing this instruction, MOV Rn, ADDRESS.m, is a good idea. This instruction 

means to move m-th bit of the value in address ADDRESS to the register n; that is, 

this instruction can replace the above all instructions. 

 

01010101 30H

00H

 
          Figure 4.3: Memory 

 

For example MOV R1, 30H.0 => R1 = 1, MOV R2, 30H.4 => R2 = 0 in Figure 4.3. 

By using this instruction we will reduce code size and increase the speed of the 

stream cipher. How do we increase this new instruction in 8051? We first find out 

the source code of 8051 and modify it to increase this instruction. The source code 

of 8051 is VHDL or may be Verilog. But we only simulate it and do not implement 

it in reality. So we find a simulation of 8051 written by C++ and modify it to 

increase this instruction. How do we modify the simulation of 8051? If we can find 

out opcode which is not used in 8051, then we use this opcode as the opcode of our 

new instruction. The easier method is to modify the instruction which we do not use 

in the stream cipher algorithm to become our new instruction. In this case, we 

modify MOV DIRECT, DIRECT as Figure 4.4 below. 

 56



1000 0101 

dir(src) dir(dest) MOV 

30H 31H 

1000 0101 

m Rn dir(dest) MOV 

0001 0001 30H 

 
      Figure 4.4: New instruction 

 

In this Figure, the original instruction MOV dir, dir, is to move the value in address 

30H to the value in address 31H. The modified instruction, MOV m, Rn, dir, is to 

move m-th bit of the value in address dir to register n, Rn. In Figure 4.4, MOV 11H, 

30H is to move second bit (begin from 0) of the value in address 30H to R1. We take 

Figure 4.3 as an example, that is, R1 is equal to 0. By using this instruction we can 

largely decrease the code size of the stream cipher and increase the speed of the 

stream cipher. Table 9 compares the stream cipher not using the modified instruction 

and one using the modified instruction with regard to the code size and execution 

time. This modification improves by 799 – 578 = 221 (bytes) and 0.031426 – 

0.024642 = 0.006784 (s). The improved rate of code size is 221/799 = 27.7% and 

the improved rate of execution time is 0.016784/0.031426 = 21.6%. 

 

 original  modified 
code size (bytes) 799 578 
execution time (s) 0.031426 0.024642 

 

    Table 7: Code size and execution time of the stream cipher 
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4.3 Analyzing security and conclusions 

 In the previous section, we obviously know the code size of the filter generator 

is smaller than one of the combination generator. On sensors memory is very critical. 

Because the filter generator is a special case of the combination generator and they 

share the same Boolean function f in (40), that is, they have the same nonlinearity, 

resilient, algebraic immunity, so they have the same power to resist some attacks, 

such as the BAA attack, the correlation attack, and the algebraic attack. Therefore 

we will choose the filter generator as our cryptosystem on sensors. 

 The structure of StreamCipher2 is shown in Figure 3.3. Because the connection 

polynomial c is a primitive polynomial so the period of the sequence s and z are 2k – 

1 if f is balanced [55]. In StreamCipher2 the period of the keystream is 2128 – 1. We 

believe it is long enough. 

 In Chapter 2 we hope the keystream the generator produces possesses the 

randomness. While it is impossible to give a mathematical proof that a generator is 

indeed a random bit generator, the tests described below help detect certain kinds of 

weakness the generator may have. This is accomplished by taking a sample output 

sequence of the generator and subjecting it to various statistical tests. Each statistical 

test determines whether the sequence possesses a certain attribute that a truly 

random sequence would be likely to exhibit; the conclusion of each test is not 

definite, but rather probabilistic. If a sequence passes all five tests, there is no 

guarantee that it is indeed produced by a random bit generator [54]. 

(i) Frequency test (monobit test) 

The purpose of this test is to determine whether the number of 0’s and 1’s in a 

sequence s are approximately the same, as would be expected for a random 

sequence. Let n0, n1 denote the number of 0’s and 1’s in s, respectively. The 
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statistic used is 
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which approximately follows a χ2 distribution with 1 degree of freedom if n ≥ 

10. 

(ii)  Serial test (two-bit test) 

The purpose of this test is to determine whether the number of occurrences of 

00, 01, 10, and 11 as subsequences of s are approximately the same, as would 

be expected for a random sequence. Let n0, n1 denote the number of 0’s and 1’s 

in s, respectively. Note that n00 + n01 + n10 + n11 = (n - 1) since the subsequence 

is allowed to overlap. The statistic used is  
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which approximately follows a χ2 distribution with 2 degree of freedom if n ≥ 

21. 

(iii)  Poker test 

Let m be a positive integer such that )2(5 m

m
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sequence s into k non-overlapping parts each of length, and let ni be the number 

of occurrences of the ith type of sequence of length m, 1 ≤ i ≤ 2m. The poker test 

determines whether the sequences of length m each appear approximately the 

same number of times in s, as would be expected for a random sequence. The 

statistic used is 

 kn
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which approximately follows a χ2 distribution with 2m – 1 degree of freedom. 

Note that the poker test is a generalization of the frequency test: setting m = 1 

in the poker test yields the frequency test. 
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(iv) Runs test 

The purpose of the run test is to determine whether the number of runs of 

various lengths in the sequence s is as expected for a random sequence. The 

expected number of gaps (or blocks) of length i in a random sequence of length 

n is ei = (n – i + 3)/2i+2, where a run of 0’s is called a gap, while a run of 1’s is 

called a block. Let k be equal to the largest integer i for which ei ≥ 5. Let Bi, Gi 

be the number of blocks and gaps, respectively, of length i in s for each i, 1 ≤ i 

≤ k. The statistic used is  

 ∑∑
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which approximately follows a χ2 distribution with 2k – 2 degrees of freedom. 

(v) Autocorrelation test 

The purpose of this test is to check for correlations between the sequence s and 

(non-cyclic) shifted version of it. Let d be a fixed integer, ⎣ ⎦21 nd ≤≤ . the 

number of bits in s not equal to their d-shifts is . The 

statistic used is  
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which approximately follows an N(0, 1) distribution if n – d ≥ 10. Since small 

values of A(d) are as unexpected as large values of A(d), a two-sided test 

should be used. 

 

Let a significance level of α = 0.5 and the length of keystream is 10000 bits. Table 7 

shows the results of StreamCipher2. 
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test degree of 
freedom 

passing range other 
paratmeter

results 

frequency test 1 -3.84 ~ 3.83 no pass X1=1 

serial test 2 -5.99 ~ 5.99 no pass X2=1 

poker test 7 -14.067 ~ 14.067 m = 3 pass X3=4 

runs test 14 -23.685 ~ 23.685 k = 8 pass X4=11.4 

autocorrelation no -1.96 ~ 1.96 d = 500  pass X5=1 

Table 8: Statistic test table of StreamCipher2 

 

The keystream StreamCipher2 produces is very highly probable to be random. 

 Then we hope StreamCipher2 can resist all kinds of attacks. The Boolean 

function f in StreamCipher2 is (11, 5, 5, 960) and its AI is 4. We believe 5-resilient is 

big enough to resist all correlation attacks. Nonlinearity is equal to 960 and in the 

BAA attack a = 0.0625 and the sequence the BAA attack generates is similar with 

the original keystream with probability of 0.53125. This value is low enough to 

resist the BAA attack. The generator filter tapset and the LFSR tapset are FPDS to 

resist the inversion attack and the conditional correlation attack. 

attack algebraic BDD Investion tradeoff 
complexity O(265) O(2114) O(282) O(285) 

 

     Table 9: Complexity of attacks 

 

Table 8 shows the complexity of other attacks. Let CPU clock rate be 4G, and it 

computes at most 248 instructions in one day. Therefore if all complexity is larger 

than 264, we say the stream cipher is secure. So StreamCipher2 is secure. 

 Compared with RC5 in [56] the filter generator uses less code size and is faster. 

RC5 was used as the cryptosystem on Wireless Sensor Network in [56]. The faster 

the operations of encrypting are in the same clock rate, the less power consumption 
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is. This is also very important on sensors and this makes sensors survive longer. At 

last, we compare the filter generators, RC5 and A5. RC 5 and A5 are implemented 

by 8051 assembly code. The filter generator is implemented by our modified 8051 

assembly code. The result is as follows. 

 filter generator RC5 A5 
code size (bytes) 578 1789 1071 
data rate (bits/s) 5194 600 3318 

 

Table 10: Comparison among the filter generator, RC5, and A5 

 

Obviously, our filter generator is faster than RC5 and A5 and uses less code size. 
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Chapter 5 

Conclusion and Future Research 

 
 On Wireless Sensor Networks we aim to develop a secure, lower 

power-consumption, and lower code-size cryptosystem. The stream cipher meets 

these properties. The stream cipher is divided into the combination generator and the 

filter generator. The filter generator needs less code size than the combination 

generator. The filter generator is also faster than the combination generator. 

Therefore, we choose the filter generator as our cryptosystem on Wireless Sensor 

Networks. To resist all kinds of attacks we must find good properties of the LFSR 

and the Boolean function. The LFSR must be primitive and have large period. The 

Boolean function must have high correlation immunity, nonlinearity, algebraic 

degree and algebraic immunity. The LFSR tapset and the filter generator tapset must 

be FPDSs. If the Boolean function can be computed fast, it is the best. We use one 

LFSR of length 128 and one (11, 5, 5, 960) Boolean function of algebraic immunity 

4 to compose the filter generator. This generator can resist most attacks. It is the 

secure cryptosystem we apply on Wireless Sensor Networks. The code size of this 

stream cipher is 799 bytes and the time when it produces 128-bit keystream is 

0.031426 seconds in 12MHz 8051 CPU. If we increase a new instruction to original 

8051 CPU, we can reduce code size to 578 bytes and time to 0.024642 seconds. The 

performance is greatly improved. 

 Furthermore, we can increase the secret key length to strengthen the security of 

our stream cipher. For example, we can use LFSR of length 196 or LFSR of length 

256 and so on to strengthen the security. But we will need more code size and 

memory to do this. We can also increase correlation immunity, nonlinearity, 

algebraic degree and algebraic immunity of the Boolean function to have more 

power to resist all kinds of attacks. The easiest way is to increase variables of the 

Boolean function. For example, we can choose n = 14 in (39) and f as (14, 7, 6, 7936) 

the Boolean function of algebraic immunity 5. Of course, this will take more code 

size, memory and time. This is trade off. We may figure out a new method of 

construction to increase algebraic immunity in the same variables, nonlinearity, 
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correlation immunity and algebraic degree of the Boolean function. A lot of previous 

research is on how to construct the Boolean function to reach the highest 

nonlinearity ,correlation immunity and algebraic degree, but few consider algebraic 

immunity, so we may modify these methods of construction to increase algebraic 

degree and do not change nonlinearity, correlation immunity and algebraic degree. If 

we can do so, we will save much code size, memory and computing time while 

achieving good security. 

 The stream cipher is applied to the sensors. If we want to improve the 

performance of sensors, we may develop system on a chip on the sensors. In 

addition, we may integrate all the components, e.g. RF, sensors, cryptosystems and 

so on, into one chip. This will greatly improve power consumption, the most 

important factor on sensors’ performance.
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