Chapter 1

Introduction

The idea of linear cryptanalysis was first introduced by Matsui and Yamagishi [7] in 1992
in an attack on FEAL [8]. The techniques used in this attack were refined by Matsui and
used on DES [9] in a theoretical attack on the full 16-round DES requiring 247 known
plaintext /ciphertext pairs [6]. He then performed an experiment to break the full 16-round
DES with high success probability using 2% known plaintext /ciphertext pairs [10]. After
that Kaliski and Robshaw investigate the use of multiple linear approximations to improve
the success rate of linear cryptanalysis and to reduce the data complexity [11]. In 1994,
Nyberg demonstrated that the success rateiof Matsui’s Algorithm 2 is underestimated by
using the approximate linear hull [12] 7

In this thesis, we focus on thé estimation of the number of test pairs, and the attack
strategies on Substitution- Permutation Networks (SPN). We try to estimate that how
many test pairs do we need, such that thersueeess rate of the attack is sufficiently high.
And we list some strategies of linear eryptanalysis to attack an SPN structure.

This thesis is organized as follows. In"Chapter 2, we survey the background of cryp-
tology, the block ciphers, and the introduction of the attacks. In Chapter 3, we present
linear cryptanalysis on the SPN structure. In Chapter 4, we show the steps of the attack.
We estimate the number of test pairs, and list some attack strategies. In Chapter 5, we
use these strategies to attack a simple SPN structure. In Chapter 6 we summarize the

results in this thesis.

Chapter 2

Background

2.1 Cryptography

Cryptography is the study of mathematical techniques related to aspects of information
security services [1, 13, 2]. A lot of information security services can be identified, but

the following four objects are considered to be foundational:

1. Secrecy (also called privacy or confidentiality): Ensures that the information in a com-
puter system and transmitted information are accessible only for reading by authorized
parties. An attacker may be ableto view detain data (e.g., via a wiretap), but can

not extract meaningful information fromi it:

2. Data Integrity: Ensures that only authorized parties are able to modity computer
system assets and transmit informations-Medification includes insertion, deletion, and

substitution.

3. Authentication: Ensures that the origin of a message or electronic document is cor-
rectly indentified, with an assurance that the identity is not false. Authentication
is usually subdivided into two major classes: entity authentication and data origin
authentication. Data origin authentication implicitly provides data integrity (for if a

message is modified, the source has changed).

4. Non-repudiation: Requires that neither the sender nor the receiver of a message be
able to deny the transmission. Non-repudiation is important in situations in which
disputes may arise over prior transactions. Protocols that ensure non-repudiation

typically require the involvement of a trusted third party.

The term cryptanalysis refers to techniques used to break cryptographic techniques.

Cryptology is the field of study that encompasses both cryptography and cryptanalysis.

Arbitrary length
hash functions

Unkeyed N One-way
Primitives "1 Primitives
Random
sequences

Block ciphers
Symmetric-key
ciphers
Stream ciphers

Arbitrary length
hash functions
(MACs)

Cryptographic Symmetric-key
Primitives Primitives

Signatures

Pseudorandom
sequences

Identification
primitives

Public-key
ciphers

Public-key
Primitives

» Signatures

Identification
primitives

Figure 2.1: A taxonomy of cryptographic primitives (from [1, 2])

2.2 Cryptographic Primitives

The buliding blocks of the cryptographic techniques used to provide information security
services are called cryptographic primitives (tools). Most primitives are functions whose
inputs and outputs are elements of certain spaces of finite-length binary strings. Examples
of primitives include encryption schemes, hash functions, and digital signature schemes.
Figure 2.1 gives a schematic listing of the primitives considered and how they relate.

In the following sections we will introduce ome primitives in Figure 2.1. The remaining
primitives are outside the scope of this thesis.

2.3 Ciphers

Figure 2.2 shows the basic operation of a cipher. Suppose the sender has a large message
to send to the receiver. The sender divides this message into smaller pieces called plain-

3

tezts, which are fixed length. Each plaintext (P) is input into an encryption algorithm,
which takes an encryption key, Kg, as a parameter; the resulting output is called a ci-
phertext (C'). The ciphertext is sent over the insecure channel, and the receiver recovers
the plaintext using a dcryption algorithm, which also takes a decryption key, Kp, as a pa-
rameter. Then the plaintexts are reassembled into the original message. The term cipher

(or encryption scheme) refers to the (parameterized) encryption/decryption algorithms.

Ke Kp

P ; C i P
Encryption Decryption
Sender . > . Receiver
- Algorithm insecure channel Algorithm

Figure 2.2: Operation of a cipher

2.3.1 Symmetric-Key and Public-Key Ciphers

There are two main categories of ciphers. In a symmetric-key cipher, the keys Kg and
Kp are equal, or are easily derived from each other. In this thesis we will assume that
Kg = Kp = K. Clearly that the sender and receiver have to establish a shared key when
using a symmetric-key cipher — this is called the key-distribution problem.

In a public-key cipher [14] (also called asymetrit-key cipher), each communicating
party has a key pair (Kg, Kp) which are'different. the encryption key Kg, also called the
public key, can be widely distributed; while the decryption key K p, also called the pribate
key, is only known to the receiver.

Public-key ciphers provide an elegant solution to the key distribution problem. But
public-key ciphers are much slower than symmetric-key cipher (e.g., 1/1000 the speed
[5]), and require much longer key bits to achieve the same level of security. Therefore,
hybrid techniques incorporating symmetric-key and public-key ciphers are common. For
example, the sender can generate a key K to be used in a symmetric-key cipher. This
key is then encrypted with the receiver’s public key, and sent over the channel. The
receiver decrypts K with his private key, and then they can transmit the messages using

a symmetric-key cipher with the key K.

2.3.2 Block and Stream Ciphers

In Figure 2.1, symmetric-key ciphers can be categorized into block ciphers and stream
ciphers. A block cipher is a bijective mapping form {0,1}" to {0,1}", with the key
K € {0,1}¥x (N is the block size and N is the key length). For a block cipher, a given
plaintext will always map to the same ciphertext with a fixed key; this straightforward

application of a block cipher is called electronic codebook (ECB) mode. There are four

4

"modes for operation” in total for the block ciphers (FIPS Pub 81 in December 1980 [15]).
The corresponding ciphertext will be different when using other three modes.

A stream cipher breaks a message to be encrypted into much smaller plaintexts, typ-
ically individual bits, 1, x9,.... And the key K is expanded into a keystream, 2z, za,
The " ciphertext is obtained by combining x; and z; according some rules, often the
XOR operation.

2.4 Block Cipher Architectures

Claude Shannon [16] gave two principles of the block ciphers in 1949: confusion and
diffusion. Confusion is the obscuring of the relationship between the plaintext and the
ciphertext, and is often a nonlinear substitution on a small subblock. Diffusion involves
spreading out patterns in the plaintext so that thay are no longer detectable in the
ciphertext, and is often a linear transformation (sometimes called diffusion layer) of
subblock connections [17].

Substitution-permutation networks (SPN) [18] and Feistel networks [19] are two main
block cipher architectures. They both use substitution and linear transformation to im-
plement Shannon’s principles. They also are product ciphers and iterated ciphers. A
product cipher is constructed by compesingstwo or more encryption operations, and is
stronger that each of its constituent operations. An iterated cipher is a product cipher
that consists of repeated applicafion of the same encryption step, called a round [1]. In

general, different keying material is“used in-€ach round.

2.4.1 Substitution-Permutation Networks

An R-round substitutino-permutation network (SPN) [18] requires (R+ 1) N-bit subkeys,
K' K? ... K% KB+l Each round consists of three layers: key-mizing, substitution, and
linear transformation. In the key-mixing layer, the N-bit ruond input is bitwise XORed
with the subkey for that round. In the substitution layer, the resulting block is partitioned
into M subblocks of size n (N = Mn), and each subblock becomes the input to a bijective
n X n substitution boz (s-box), which is a bijective mapping from {0, 1}" to {0, 1}". In the
linear transformation layer, the output from the substitution layer is processed through
an invertible N-bit linear transformation. We present the linear transformation as an
invertible N x N binary matrix, and use £ to denote it. The linear transformation is
usually omitted from the last round, because it won't strengthen the security of the SPN
if we include the linear transformation layer. After R rounds, the output is XORed with
the final subkey, K%*!, to form the ciphertext. Figure 2.3 gives an example SPN with
N =16, M =n =4, and R = 3.

The decryption algorithm is to run the SPN ”backwards.” At first the ciphertext is
XORed with K%+ and then from round R down to round 1, with the inverse linear

transformation, inverse s-boxes, and subkey K.

plaintext

— 1] [1]] [1] [L]]
Dx
[[11 [[11 [T 11 [[[1

round 1

Invertible Linear Transformation

— [[[] [[T] [[]] [[[]
Dx:

[[1] [[1] [[]] [[[]

round 2 -«+— sboxes

Invertible Linear Transformation

— [[1] [[T] [[]] [[[]
SPIS

round 3 [[] 1 [[1] [[]] [[[]

[[1 [[1 [[] [T []
D
[111 [111 [111 [T 11

'

ciphertext

Figure 2.3: An SPNsstructure withoNV-.= 16, M =n =4, R=3

2.4.2 Feistel Networks

A Feistel network [19] is a block cipher that modifies half of the current block in each
round. An R-round Feistel network needs'R subkeys, K*', K2,..., K%, Let the left and
right halves of the N-bit input to round ¢ be denoted z} and z%. The right half, 2%, and
the round key, K*, will be the inputs to a round function, f, : {0,1}"/? — {0,1}/2. The
output from f; will be XORed with z% to form Xltz“, the right half of the next round;

and xtLH will be 2%, without changed. This swapping of half blocks occurs in every round

, except the last round. With the notations above, the plaintext will be P = (z}, z})
and the ciphertext will be C' = (xf 27+, Figure 2.4 shows the basic Feistel network
structure.

There are many approaches to design Feistel network round functions. A common
theme is to incorporate the basic features of an SPN round, i.e., some arrangement of
s-boxes and linear transformations [19, 20, 21, 22, 23]. However, a Feistel network round
function does not need to be invertible, allowing greater flexibility to be designed.

While implementation, one of the main advantages of the Feistel network structure is
that encryption and decryption operations are the same. A ciphertext can be decrypted

by processing it througn the encryption algorithm, but reversing the order of the round

plaintext

M

round 1

M«
1/

round 2

y
round (R-1) E f

y
round R E

ciphertext

Figure 2.4: Basic Feistel network architecture

functions and corresponding subkeys. We do not need to generate or store the inverse
components.

Schneier and Kelsey introduced the concept of unbalanced Feistel networks (UFNs)
[24]. In a UFN, 2f and 2%, are not equal in size (conventional Feistel networks are call
balanced in [24]). If the lengths of z% and 2%, are u and v bits, N, + Np = N, then
fi: {0,132 — {0, 1}z, the inputs to the next round, 25 and 2% are defined as

vl = gl (filah, K') @ af),

where || is the concatenation operator. Clearly this is a modified version of the structure
in Figure 2.4. Schneier and Kelsey give preliminary arguments that in certain cases a
UFN may have increased resistance to certain attacks. Variations of the UFN approach
are used in ciphers such as CAST-256 [25] and MARS [26].

2.4.3 Other Block Cipher Architectures

Besides SPNs and Fesitel networks, there are lots of ciphers that use other structures.
However, most retain the basic concept of constructing a cipher from repeated rounds.

We give two exapmples here.

The first one is IDEA (International Data Encryption Algorithm) [27], earlier called
IPES [28, 29] (Improved Proposed Encryption Standard), which is a 8-round block cipher.
IDEA has a 64-bit input, the round input is split into four 16-bit words, and these are
combined with each other and with six 16-bit subkeys using a combination of binary
operations on {0,1}!% from different algebraic groups. Figure 2.5 show the structure of
IDEA. IDEA has been extensively analyzed and widely implemented [17].

Another one is RC6 [30], which has a 128-bit block size and consists of 20 rounds.
RC6 can be viewed as two 64-bit Feistel networks operating in parallel, with interactions
occuring in each round. RC6 uses data-dependent rotations bitwise rotations of data

words in which the amount of ratation depends on other intermediate values.

X, X X, X,

z:)é) z;—ﬂg z— 2;48-)]

N
L/
z—(O~t] —

N
LV

fany
j 9

{%’)
7 more
rounds

9 9 9 9 output
Z)GF Z, ‘$ Z 4$ Z, (> }transformaion
Yl YZ Y3 Y4

X; :16-bit plaintext subblock
Y, : 16-hit ciphertext subblock
Z' : 16-bit key subblock
P - bit-by-bit XOR of 16-bit subblocks
[HH: addition modulo 2t of 16-bit integers

(+): multiplication modulo 2:%+1 of 16-bit integers
with the zero subblock correspondingto 2

Figure 2.5: Encryption process of IDEA

2.5 Block Cipher Standards

Standardization is very important for people in the world when communicating with

others using ciphers. Here we discuss three important standards.

2.5.1 Data Encryption Standard (DES)

The first major initiative was a call for proposals in 1973 for a cipher standard by the
National Bureau of Standards (NBS, now the National Institute of Standards and Tech-
nology(NIST)) of the U.S. Department of Commerce. But cryptography was still in its
infancy at this time. The NBS received only one candidate — a block cipher called Lu-
cifer [18, 31], developed by Horst Feistel and his colleagues at IBM in 1971. The NBS
published a modified vesion of Lucifer, called the Data Encryption Standard [9] (DES).
DES is a 16-round Feistel network with a 64-bit block size and a 56-bit key (the small key
size was a sourse of criticism at the beginning [32]). The publication of DES marked the
beginning of the widespread study of block ciphers. Many cryptanalysis are developed to
find weaknesses in DES [33, 34, 35, 6, 36]. In addition, many DES-like block ciphers are
proposed and studied [37, 38, 39, §].

2.5.2 Advanced Encryption Standard (AES)

On January 2, 1997, NIST began a process of choosing a replacement for DES, called
the Advanced Encryption Standard [40] (AES). AES were required to be block ciphers
with block size of 128 bits and key lengths of 128, 192, and 256 bits. In August 1999,
five of the candidates were chosen by, NIST &g finalists: MARS [26], RC6 [30], Rijndael
[41, 42|, Serpent [43], and Twofishi{44]. Ons@©ctober 2, 2000, Rijndael was selected to be
the Advanced Encryption Standard,.and published in the Federal Register on December
4, 2001 [45].

Rijndael is an SPN with 16 8 X8 sshoxes-in-each substitution layer, and all s-boxes are
identical. The linear transformation: ¢ensists of two steps: a byte permutation, and the
parallel application of four copies of highly diffusive 32-bit linear transformation. Figure

2.6 shows a single round of Rijndael.

| 320-bit LT | | 2-hit LT | | 2-hit LT | | 2-hit LT |
[T T T 1T T 1T T T T T T T T 7]
| B |

Figure 2.6: One round of Rijndael (the AES)

Rijndael actually supports block sizes and key lengths from 128 to 256 bits, increments
of 32 bits. However, the AES only uses a 128-bit block size and key lengths of 128, 192,
and 256 bits. The number of rounds varies according to the block size and key length, as
shown in Table 2.1.

128-bit block size
key length (bit) | 128 | 192 | 256
number of rounds | 10 | 12 | 14

Table 2.1: The relation between key lengths and the numbers of rounds in AES

2.6 Attacks on Block Ciphers

There are a lot of attacks on block ciphers. Generally, the goal of an attack is to decrypt
any ciphertext. A successful attack is to derive the key (a total break), or to construct an
algorithm to decrypt ciphertexts without the key (global deduction) [46].

The attack model specifies the information available to the attacker [1]. The most

comn types of attack models are enumerated as follows:

1. Ciphertext-only attack: attacker possesses one or more ciphertexts.

2. Known-plaintext attack: attacker possesses one or more plaintexts and the correspond-

ing ciphertexts.

3. Chosen-plaintext/ciphertext attack: attacker can choose a set of plaintexts/ciphertexts,

and ask the corresponding ciphertexts/plaintexts.

4. Adaptive chosen-plaintext/ciphértest attiek: attacker can submit plaintexts/ciphertexts
for encryption/decryption, with the freedom to.base later choices on the results of ear-

lier submissions.

The data complezity of an attack is.the number of data required. The time complexity
of an attack is the number of steps required, where a "step” is often a single encryption,
or some other appropriate computational unit [17].

We describe some attacks on block ciphers. We will usr N to denote the number of

bits in the key.

2.6.1 Exhaustive Key Search

For a known (plaintext, ciphertext) pair, (P, C), erhaustive key search is to encrypt P
with each of the 2¥% keys, and discard the keys that do not produce the corresponding
ciphertext, C. A small number of (plaintext, ciphertext) pairs are required to identify the
correct key. Exhaustive key search is usually considered the ”"benchmark” against which

other attacks are measured.

10

2.6.2 Linear Cryptanalysis

Linear Cryptanalysis, which is introduced by Matsui in 1993 [6], is a known-plaintext
attack (ciphertext-only if plaintexts consist of random ASCII codes) that is considered
to be one of the most powerful attacks on block ciphers. Linear cryptanalysi was the
first attack actually implemented to break DES [10]. Matsui used 2*3 known (plaintext,
ciphertext) pairs to recover 22° key bits, and then used the exhaustive search the remaining
230 key bits. Linear cryptanalysis needs the existence of the relatively large deviation of
the value on a the input bits and output bits of an s-box. In Chapter 3, we will give a

detailed description of linear cryptanalysis on SPN.

2.6.3 Differential Cryptanalysis

Differential cryptanalysis is a chosen-plaintext attack presented by Biham and Shamir in
1990 [47, 48, 49, 33]|. A differential-like attack was also published by Mruphy in 1990,
which was applied to FEAL [50]. Differentail cryptanalysis was the first attack able
to break DES faster than exhaustive key search, with data complexity 2*" and time
complexity 237 [33]. The main difference from linear cryptanalysis is that, efferential
cryptanalysis involves comparing the XOR of two input to the XOR of the corresponding

two outputs.

11

Chapter 3

Linear Cryptanalysis on SPN

In this chapter we will talk about the things need to be known and need to be done
before we break a SPN cryptosystem. First of all, we will make an introduction about the
original idea of Matsui’s linear cryptanalysis in Section 3.1. And then we will In Sections
3.2 and 3.3 we will study the linear approrimation, linear characteristics, and a related
important lemma, Matsui’s Piling-up Lemma. Last of all we talk about some techniques

on linear cryptanalysis.

Notations

We first describe the notations and definitions we will use through this thesis. We let P
be denoted as the plaintext, and'the corresponding ciphertext is C', with the key K. For
each plaintext/ciphertext pair, we call-it-a-text.pair; and Nz be the number of the test
pairs we need when attack.

For an SPN structure, we use the following notations (see Figure 3.1):
e N: block size
e M : the number of s-boxes in one round

e n: size of a s-box

Np: key length

e K': round key of the round ¢

S(+): s-box mapping function
e L: linear transformation mapping function

The following definations are bias and linear probability [51]. These definitions are

very important for us to find the best linear expression.

12

plaintext (P)

N-bit
A
(n-bit 1
T
| | | | | | | |
Pk
HEN [T T
Sll SMl
|

ciphertext(C)

Figure 3.1: Notations

Definition 3.1. Let X be a randomiwvariable, whose value is 0 with probability p or 1
with probability 1 — p. Then the bias of Xis defied as

1

5:p—§

Definition 3.2 ([51]). Let B : {0,1}¢ — {0,1}? be bijective, and let a,b € {0,1}¢ be
fized. If X € {0,1}4 is a uniformly distributed random variable, then the linear probability
LP(a,b) is defined as

LP(a,b)™ (2 - Prx{aeX =be B(X)} — 1) (3.1)

If B is parameterized by a key, K, we write LP(a,b; K), and the expected liner probability
ELP(a,b) is defined as

ELP(a,b) ™ expx[LP(a, b; K)], (3.2)
where K is a random variable uniformly distributed over the space of keys.

The values a and b in Definition 3.2 are called input and output masks (or selections

13

pattern [42]). For our purposes, the bijective mapping B will be an s-box, a single round,
or a sequence of consecutive encryption rounds.

The LP values lie in the interval [0, 1]. If X and B(X) are uncorrelated, then a ¢ X
and b e B(X) will be equal exactly half the time, i.e., Prx{ae X =be B(X)} = 1/2, and
the corresponding LP value will be 0. If LP(a,b) =1, then Prx{ae X =b e B(X)} will
be either 1 or 0. LP(a,b) = 0 if either a=0 and b # 0, or a # 0 and b = 0.

The following lemma derives immediately from Parseval’s Theorem.

Lemma 3.3 ([52]). Let B:{0,1}% — {0,1}? be a bijective mapping parameterized by
a key, K, and let a,b € {0,1}%. Then

> LPax;K)=) LP(xbK)=1,

x€{0,1}4 x€{0,1}4
> ELP(ax)= Y ELP(xb)=1
x€{0,1}4 x€{0,1}4

3.1 Principle of Linear Attack

The purpose of Linear Attack is to find the following linear expression, which holds with
probability p # 1/2 for randomly given plaintéxt, P, the corresponding ciphertext C' and
the fixed secret key K:

P[ilyi% s 1ia] & C[jl:jZ: - ajb] - K[klvk% .- '7]{70]: (33)

where 71,49, ...,14, 71, J2, - - - » Jp, andiky ko, ... k. denote fixed bit locations.

Since both sides of equation (3.3) essentially represent one-bit information, the mag-
nitude of |p — 1/2| expressed the effectiveness. We will refer to the most effective linear
approximate expression (i.e., |[p — 1/2| is maximal) as the best expression and its proba-
bility as the best probability. Once we succeed in reaching an effective linear expression,
it is possible to determine one key bits K[ky, ko, ..., k.| by the following algorithm based

one the maximum likelihood method:

Algorithm 1 ([6]).

Step 1. Let T be the number of plaintexts such that the left side
of equation (3.3) is equal to zero.

Step 2. If T > N/2 (N denotes the number of plaintexts),

(1) then guess Klki, ko, ..., k] =0 (when p>1/2) or 1
(when p < 1/2),

(2) else guess Klky, ko, ..., k;] =1 (when p > 1/2) or 0
(when p < 1/2).

14

In Algorithm 1, we guess the value of the linear expression K|k, ko, ..., k.. But it is
hard if we only guess the XORed value of the key bits. Therefore, for a practical known-
plaintext attack, we make use of the best expression of (n—1)-round cipher, i.e., we regard
the first round or the final round as having been deciphered using K; or K, in SPN.
Matsui then use the folling type of expression which holds with the best probability of
(n — 1)-round DES cipher:

P[ilai% e 7ia] @ C[jlana e >jb]

(3.4)
D F(Cr K)o 1g) = Kk, ko, - K,

Accord to euqation (3.4), the following maximum likelihood method can be applied
to deduce K, and Kk, ko, ..., k|

Algorithm 2 ([6]).

Step 1. For each candidate K (1=1,2,...) of K, let T} be the
number of plaintexts such that the left side of equation
(3.4) is equal to zero.

Step 2. Let T},,. be the maximal value and T,,;,, be the minimal
value of all T}’s.

(1) If |Thae — N/2[5> | Tonin — N/2|, then adopt the
key candidates cooresponding to 7),.. and guess
Klky, ko, ... ko= 0 (when p- > 1/2) or 1 (when
p<1/2).

(2) If |Thae — NJ2}. < N pim-= NJ2|, then adopt the
key candidate ‘eoeresponding*to 7)., and guess
Klky, ko, ... k] ="1T0(when p > 1/2) or 0 (when
p<1/2).

This algorithm is very improtant and most of the linear cryptanalysis on other cryp-
tosystems are based on Matsui’s Algorithm 2. The next aim is to find the linear expression
of equation (3.4) which will enhance the success rate of Algorithm 2.

As applied Algorithm 2 to SPNs, the attack proceeds as in Figure 3.2. Note that P,
C, and X are plaintext, ciphertext, and intermediate input to round 2, and a and b are
input and output masks.

We view rounds 2.. .. R as a single key-dependent function mapping {0, 1}V — {0, 1},
where K = (K1, k2,..., KT) is the key being used. Ideally, we want to precompute masks
a,b € {0,1}"\0 that maximize LP(a, b; K). We will study it in Section 3.3.

3.2 Linear Approximations of S-boxes

In this section we study linear approximation of S-boxes. Our approach is to investigate
the probability that a value on an input bit coincides with a value on an output bit. More

15

P

l

round 1 l«— GuesK!=K'
X, Formae X,
rounds
2..R

Formb«C,

1. Find N, known test pairs: <BEC>...,.<R.,C,>
2. GuesK! = K'. Encrypt each Pthrough round 1 to obtain X
3.If aeX,=DbeC, thenincrementthe counter Courief|

4. Choose th&' which maximizes |CounteK']-N, /2|

Figure 3.2: Sumniary of liniear cryptanalysis (Algorithm 2)

generally, it is useful to deal with not only omnbit,/position but also an XORed value of
several bit positions.

We start with the following definition:
Definition 3.4 ([6]). For a given S-box S : {0,1}" — {0,1}", and let o € {0, 1}",
B € {0,1}", we define Ns(a, 3) as the number of times out of all the input patterns of S,

such that an XORed value of the input bits masked by o coincides with an XORed value
of the output bits masked by (3. That is to say,

Ns(a, 3) & #{X |¥X € {0.1}",a e X = Be S(X)}, (3.5)

where o @ X denotes the inner product of o and X over GF(2).

Accroding to Definition 3.2 and 3.4, we can define that, for an s-box S,

) .]\/TS(Oé7 6)

LP%(a, 3) = (2 o

—1)%

16

Example 1: Suppose S is a bijective 4 x 4 s-box:

X [S(X)
0000 || 1110
0001 || 0100
0010 || 1101
0011 || 0001
0100 || 0010
0101 || 1111
0110 || 1011
0111 | 1000
1000 || 0011
1001 || 1010
1010 | 0110
1011 || 1100
1100 || 0101
1101 || 1001
1110 || 0000
1111 || 0111

It is easily to see that Ng(8,15) = 2.

From the example 1, we can see that the second input bit (from left) of S coincides
with an XORed value of all outpuf: bits with probability 2/16 = 0.125. According the
SPN structure, if S is the leftest s-box in the first: round, then we have the following
linear expression:

P[2] @ K [2]="S{P[1,2,3,4])[1,2, 3, 4],

that is,
P[2] @ S(P[1,2,3;4)[1,2,3,4] = K'[2].

For an s-box S, we can make a table of all the Ng(«, §) values for all @ and 3. This
is called the linear approximation table. Table 3.1 is a linear approximation table of the
s-box given in example 1.

According to the linear approximation table, we choose the one such that LP%(a, 3)

N,
(recall that LP(a, 3) = (2 - M
XORed value of the input and output bits is correlated; this is good for us to attack the

—1)%) is maximal. That is, the probability of the

system. For example, the most effective linear approximation in table 3.1 are Ng(1,7),
Ns(2, 14), NS(S, 9), and Ns(& 15)

3.3 Linear Characteristics

In the previous section, we studied how to find the best linear expression of one s-box.
But what we need is a linear experssion with plaintext bits, ciphertext bits, and the key
bits. Therefore we have to find several s-boxes to produce a linear expression like equation

3.3. Here is an example:

17

g
af O] 1] 2] 3] 4] 5] 6] 7] 8]9]10]11]12]13]14]15
0f16] 8] 8] 8[8] 8] 8] 8] 8] 8] 8[8] 8] 8] 8] 8
1] 8] 8] 6] 6] 8] 8] 6]14[10]10] 8| 8[10|10] 8] 8
2 8] 8[6] 6[8] 8] 6] 6] 8] 8]10[10] 8] 8] 2]10
3] 8] 8[8] 8[8] 8] 8] 8]10] 2] 6[6]10][10] 6] ©
A 810 8] 6] 6] 4] 6] 8] 8] 6] 8[10]10[4]10] 8
5] 8] 6] 6] 8[6] 8[12[10] 6] 8] 4[10] 8] 6] 6] 8
6] 8]10[6]12[10] 8] 810 8] 6|10[12] 6] 8] 8] 6
7] 8] 6] 8[10]10] 4[10] 8] 6] 8]10| 8[12]10]| 810
8 8] 8[8] 8[8] 8] 8] 8] 6[10]10[6[10] 6] 6] 2
o 8] 8] 6] 6[8] 8] 6] 6] 4] 8] 6[10] 8[12[10] 6
10 8[12] 610 4] 8]10] 6[10[10] 8] 8[10]10[8] 8
1) 812 8] 4|12 8|12] 8] 8] 8] 8| 8] 8] 8] 8] 8
12| 8] 6[12] 6] 6] 8|10] 8[10] 8|10[12] 8|10[8] 6
13 8[10]10] 8] 6[12] 810 4] 6[10] 8[10] 8] 8][10
14 8J10]10] 8] 6] 4] 8][10] 6] 8] 8] 6] 4]10[6] 8
15] 8] 6] 4] 6] 6] 8]10] 8] 8] 6]12] 6] 6] 8[10] 8

Table 3.1: Linear Approximation Table for example 1

Example 2: Figure 3.3 shows a simple SPN, structure. In the first round, we choose the

second s-box with input mask 8 and-eutput mask:.15. Then we have one expression:
Pl1) & KA1} = SEPI281)) (1,2, 3, 4.

And then, following the arrows, all four $sboxesin round 2 are selected after permutation.

So we have four more expressions now:

P[] @ K?[1] = S{(P'[1,2,3,4])[1,2, 3,4],

P'[5] @ K*[5] = Si(P'[5,6,7,8])[1,2,3,4],
P9 @ K?[9] = S;(P'[9,10,11,12))[1, 2,3, 4],
P'[13) @ K?[13] = S}(P'[13,14,15,16))[1,2, 3, 4].

Consequently, we can obtain the following expression by combining the expressions above
and adding the final round key K3:

P[] @C[,...,16) = K'[1] ® K?*[1,5,9,13] ® K*[1,...,16].

From Figure 3.3, there is a path from plaintext side to ciphertext side, and we use it
to fine a linear expression of the SPN. We call this path as a trail. From the figure above,
we can see that a trail can be viewed as a sequence of input masks for each round. For
example, the sequences in Figure 3.3 is ((8000), (8888), (F'F'F'F')) (in hexadecimal). This

is called the linear characteristics (or simply characteristics) of a trail.

18

pil] P[Z‘LG]
D
Y
P' v J% J% i
D2
 J Y \ 4 v
P' YYVY YYVY YVYY YvYVvVYy
SIS
B T

Figure 3.3: A trail of a SPN with M = n =4 (N = 16), R = 2, and the permutation of
Kam and Davida [3]

Definition 3.5 ([2]). A one-round characteristic- for rout t is a pair of N-bit masks,
Qf = (a', b?); we view a' and b -as input and output-masks for round t.

Definition 3.6 ([2]). A T-round characteristic for rounds 1...T is a (T + 1)-tuple of
N-bit masks, Q = (a, a2, ... al al#): we viewal as the intput for round t (1 <t <T),

and a1 is the output mask for round I

What we want to know is the total probability of a trail (i.e., LP(a,b), where a and
b are input and output masks of the SPN). To compute the total probability, we can use
Matsui’s Piling-up Lemma [6]:

Lemma 3.7 (Piling-up lemma [6]). Let X; (1 < ¢ < n) be independent random
variables whose values are O with probability p; or 1 with probability 1 — p;. Then the
probability that X1 ® Xo @ --- B X, =0 is

1 . 1
L F— .
5+ E(p 2) (3.6)

Therefore we can treat different linear approximation expressions of a s-box (e.g.,
P[2] @ S(X)[1,2,3,4] = K'[2] we mentioned before) as distinct independent random
variables Xj, and Pr{X; = 0} = (Ng(a,)/2™). Then the total probability can be
calcultate easily.

By the Piling-up Lemma, we define the linear characteristic probability (LCP) and
expected linear characteristic probability (ELCP):

19

Definition 3.8. Let Q' = (a',b") be a one-round characteristic for round t, and K* is
the subkey of round t. Let the M s-boxes of round t be enumerated from left to right as
St Sk ... SY, and the input and output masks for St be denoted af and 3. The LCP
and ELCP of Q2 are defined as

M
LeP Q) = T Lp%(at,), (3.7)
i=1
ELCPHQY) Y exp, [LCPHQ: KY)]. (3.8)
Definition 3.9. Let Q = (a',a? ...,a" a’™') be a T-round characteristic for rounds

1...T, and let K = (K k2, ..., KT) be the vector of subkeys being used for these rounds.
The LCP and ELCP of Q) are defined as

Lep(©) €] LepPia’, ('), (3.9)
ELOP(Q) < [ELCP!(a!, L(a")). (3.10)

FEzxample 3: From Figure 3.3, we can obtain that Q = ((8000), (8888), (FFF'FF)). The

linear characteristic probabilities are:

e (s000) EF o) L8R % so00), (Foo0)) - 2,

LOP?({(8888), (FFELY)) = f[LP% ((8888), (FFFF)) = (136)4;
LCP({(8000), (8888), (FFFF))) = ﬁ LCPY Q) = (1%)5.

t=1

Choosing the Best Trail

As we said in Section 3.1, the attacker typically runs a search algorithm to find the trail,
which has characteristic Q = (a',a?,...,a”, a’"), with the key K = (K, k%,..., K7),
such that LP(a,a”*!; K) is maximal.

But direct computation of LP(a,b;K) is generally infeasible, so we compute the

expected value of LP(a,b; K), denoted Er|a, bl:
Erla,b] “ exp[LP(a, b; K)), (3.11)

where C is randomly chosen from the key set.

Harpes et al. [53] presented that
LP(a,b; K) ~ Er[a,b],

20

and
Erla,b] = ELCP(Q).

Thus, we can find the trail by computing expected linear characteristic probability.
We need the information of the key while computing the ELCP value, but we do not

have the key. Fortunately, we hae the following lemma:

Lemma 3.10 ([2]). Let 1 <t <T, and let a,b, K' € {0,1}". Then LCP'(a,b; K*') is
independent of K¢, and therefore

LCP'(a,b; K') = ELP'(a,b). (3.12)

Corollary 3.11 ([2]). Let Q be a T-round characteristic, and let K be the vector of

subkeys for the T' rounds under consideration. Then LCP(Q' K) = ELCP(Q).

Therefore, we can find the best trail by computing the value LC'P(£2), and we choose
the one with the maximal LC P ().

3.4 Subkeys Attack

Once we have the trail and its linear characteristic probability (or bias), we can begin to
extract the subkey bits of the first or the last round. Here we attack first round (extract

subkey bits in K!) for the example.

SR b~ P[16]
> Dk
v]
P v J% J% J;
Dk
Y Y Y y
P' YVYYY YYVY YVYVYY YVYVYY
Dk
JTI

Figure 3.4: A trail for attack

21

In example 2, we find a tail in Figure 3.3 and its corresponding linear approximation
expression. The subkey bits we are going to extract are those involved in the first round
of the trail. For example, in the round 1 of Figure 3.4, only the first s-box has a nonzero
input. Then the subkey bits begin extracted are the corresponding position of the input
bits of the s-box, i.e., the circled part in Figure 3.4.

Since linear cryptanalysis is a known-plaintext attack, we need some test pairs (plain-
text/ciphertext pairs), and suppose we have N pairs. We maintain a counter array for
each possible subkeys. Then from the Figure 3.2, we partially encrypt the plaintext for
each subkeys. If the expression in the figure holds, then we increment the corresponding
counter of that subkey.

Last of all, we expect the counter, which is farthest from N7 /2, is the most likely

subkey.

3.5 Techniques of Linear Cryptanalysis

In this section we introduce some techniques of linear cryptanalysis. With these tech-

niques, we can increase the success rate and reduce test pairs we need.

3.5.1 Key Ranking

Key ranking is a technique used by Matsui-in applying linear cryptanalysis to DES [6].
Matsui used two linear approximation expressions, each of which provides candidate for
13 key bits. And he adopts the teliahility of key candidates into consideration. The key
candidates means that he stores not.ofly the most’ likely key bits but also the i likely
candidates. That is, he stores the key K/, K%,... in order where K/ is the i*" likely dey
bits. If K failed, that is, for a test pair (P, C), the result after we encrypt P by K] is
not equal to C, then K} is used and so on until the correct one is found. With htis simple
improvement, Matsui increased the success rate. In his test , the successfully attacked
the 26 key bits of the full 16-round DES with 2% test pairs. The remaining 30 key bits
can be found by exhaustive key search. Compared to his original attack, more key bits

are attacked with fewer test pairs needed.

3.5.2 Multiple Linear Approximations

Kaliski and Robshaw [11] proposed a new idea on linear cryptanalysis by using multiple
linear approximations. Suppose that they have n linear approximations, which involve
the same key bits but differ in the plaintext and ciphertext bits that they use. For each
linear approximation, they assign a different weight a;, where a; = ¢;/ > ¢;. Then for
each possible key bits K 5-, j = 1,2,..., and for each linear approximation i, let T; be

the number of test pairs such that the left side of equation (3.3) is equal to 0. Then we

22

calculate U7 = Z aiTij for each 7. And the rest parts are just like the Matsui’s Algorithm
i=1

2, i.e., we find which U7 is the farthest from Nz /2 and we assume it to be the most likely
key bits.

This technique is supposed to increase the success rate and reduce the data complexity.
However, int their expriments, the increase of effectiveness on DES is somewhat limited.
BIt this is still an important technique since it may be generally applicable to other block

ciphers and be extremely effective in reducing data complexity.

23

Chapter 4

Attack Strategies on SPN

In this chapter we start to attack on SPN. We divide the whole attack process into three

phases:
Trails-Finding Phase: Find all possible trails by given s-box and permution mappings.
Attacking Phase:

(1) Calculate the ELC'P(a,b) value and find the best trail whose ELC'P(a,b)

value is maximal (a is the mask of plaintext and b is the mask of ciphertext).
(2) Evaluate the number of plaintext/ciphértext pairs we need for this trail.

(3) Attack and guess theikey 'bits; land ' then save some other possible candidate

subkeys.

Backtracking Phase: If the subkey we guessed is wrong, then use another candidate

subkey.

Figure 4.1 shows the flow chart of attack process. In the following sections we will

talk about each part.

4.1 Trails-Finding

Before the attack, we have to find all possible trails for the given s-box mappings and
linear transformations. We can use a recursive algorithm to find the trails. First of all,
for any input mask a’ for round t, we divide it into M sub-masks, ai,...,ays, to be
the input masks of the M s-boxes. An s-box for which the input and output masks are
nonzero is called active. Second, for each active s-box with input sub-mask «;, search
the linear approximation table and find all possible output sub-masks, and then combine
them. For example, if we use the s-box mapping in Example 1 and the input sub-mask
is 1 (0001). From Table 3.1, there are 8 possible output sub-masks (the LP value is not
equal to zero): 9,10,...,15.

24

Trails-Finding Phase

Attacking Phase
y
Find the trail with maximal
E.[a, b] value

Y

Evaluate the plaintext/
ciphertext pairs we need

Y

Attack the subkey
Save the candidate subkeys

Y
Back-Tracking Phase

Figured.1: Flow chart of the attack

For effeciency, we can also set a threshold wulue-to omit the output sub-masks with
smaller L P value. In the previous example, if weget the threshold: ” L P value must larger
then 1/4.” Then for the input sub-mask 1] there are only one possible output sub-mask
now: 7.

After finding all possible output masks, we do the linear transformation to get the
input mask for the next round, a**. If we are at the final round, then save the trail to a
list and return to try next possible input mask.

But the number of all possible trails is too large and we will spend too much time
on finding trails. Therefore, we only use the input masks such that the number of active
s-boxes in the first round is 1. For example, we use the mask 0100, but do not use 0011.
Thus, the number of the input masks for the first round will be reduced from 2V (= 2Mm)
to M2".

Here is the algorithm.

25

Algorithm 4.1. TraILs-FINDING(a!, ¢)
L. (ag,...,ay) < a
2. Find all possible output masks by, bo, ...
3. for each b; do
(1) a™! — L(b;)
(2) if (t = R) then

(i) save this trail to list

(ii) return

(3) else call TRAILS-FINDING(a'™!, ¢ + 1)

After finding all the possible trails, we select a trail with maximal LCP value.

4.2 Mininum Number of test pairs

Here we want to know how many test pairs we need to attack for a given trail. Assume
that the trail T" has the maximal LC' P value and its bias is . Now we want to know the
mininum number of test pairs for this trail.

Let the corresponding linear approximation expression of 1" to be

P[p17p2: s 7pa] b O[jlana v ajb] = K[k17k27 .. -akc]-

Let K* be the real key and K’ be thekeywerguessed. For each pair of plaintext P; and
ciphertext C;, we define I; ir = P[pispo. - - -, paf @ Cj1, Jo. - - -, Jo) B K'[k1, ko, ... k] D1

to be a random variable.

Definition 4.1. An experiment satisfied the following conditions is called a binomial
experiment.

1. The experiment consists of a sequences of n tests, where n is fized.

2. The tests are identical, and each of them can result

Thus,
Ii,K’ ~ Bln(l,p), (41)
where
% +e K =K~
b= 1 *
5 K # K*.
Suppose we need N, pairs and let g = > %I,k be a random variable. From

equation (4.1), we know that g is also a binomial random variable:

K~ Bin(NLap)u (4-2)

26

where

B {%+€ LK = K™,
L K#K"
When N7 — oo, we have
k'~ NNp, Nep(1 —p)). (4.3)

And then by Central Limit Theorem, we have the following equation:

K p(l —p)
K= N ~ N(p, TL) (4.4)

N

[
+
-2 | &

Figure 4.2: Tworcasess of-¢istribution of g with e > 0

Figure 4.2 shows the distribution/ofs x with @ > 0. The left one shows the case when
K’ # K*, and the right one shows another. In this figure, the two curves intersect at a
point, denote p’. The the probability value of p’ will be in the interval (1/2,1/2 + ¢). If
these two curves are the same, p’ will be at the probability 1/2 + /2.

In order to guess the key with heigher probability, we hope that the following two

equations hold:

— 1)
Pr{ o >-+o|K #£K)<2, (4.5)
2 2 2
— 1 ¢ 0
p < -+ - |K'=K'} <~ 4.
where (1 —) is the success rate of this attack using this trail.
Now we discuss the two cases separately.
Case 1: K' # K*
From equation(4.4), we have
1 1
1~ N(=, —). 4.7
o~ NG (@.7)

27

Applied into equation (4.5), it becomes

2

— 1 ¢
:PI'{K/—§>§}

— 1
PI‘{K/>—+%}

1 bV < 0. (48)

If we want the success rate to be 95%, that is, § = 0.05, the equation (4.8) will become

1— (I)(&‘\/ NL) S
= O(s\/N7) > 0.975 = D(1.96)
= 8\/NL > 1.96
= 6\/NL 2

= Nt 42 (49)

= (0.025

N S

If we set the success rate to be 99.9%, i.e., 6 = 0.001, then (4.8) will be

1 20 (e \fNp)s g — 0.0005
= Oey/Nz) = 0:9995 = (1.96)

= eAN . >327
:>€\/NL 4
= Ny 16573 (4.10)
Case 2: K' = K*
Similar to Case 1, we have
1 1 — 4e?
1~ N(= , . 4.11
o~ NG+ e) (@)
Applied into equation (4.6), it will be
— 1 =
P < =+ =
<5ty
— 1 €
:PI'{ K/—§—€>—§}
1
K —5 —¢€ — e N
— Pr{ 2 VAL
1 — 4g2 V1 — 42
AN

= cp(—g,/l_wa) < g (4.12)

025 ,6=0.
L @(ee NL)S{OOE), 0.05

1 4e2 0.0005 5 = 0.001

No —_ J196 ,6=005
1—4e2 = | 3.27 .6 =0.001

, Mg {4 .6 =0.05

= ¢

= &7
1 — 4g2 16,6 =0.001

=Ny 4e7%—16,0 =0.05 (4.13)

N 1672 — 64, = 0.001 (4.14)

From the equations (4.9), (4.10), (4.13), and (4.14), we can see that the results in

Case 1 and 2 are very close. Table 4.1 is the success rate of Matsui’s Algorithm, and the

results are also similar to ours. Therefore, we will set N = 1672,

NL 2e72 | 472 | 872 | 1672
Success Rate | 48.6% | 78.5% | 96.7% | 99.9%

Table 4.1: The successyrafié of:Matsui’s Algorithm 2 ([6])

4.3 Attack Strategies

4.3.1 Basic Strategy

According the Matsui’s Algorithm 2 (in Section 3.1), our basic idea of linear cryptanalysis
is to guess one of the round keys, with a trail with maximal linear probability value. There
are two ways for us to start the attack: we can guess the round keys from the first one,

K, or the last one, K1,

Attack from K! to K&+l

Figure 4.3 shows the concept of this strategy. We first guess the first round key K! = K’,
and them encrypt each plaintext P, to X; through round 1. Next we use the input
and output masks, a and b, of the trail with maximal linear probability to check if
the expression a @ X; = b e (; holds. If it holds, then we increase the counter of K’,
Counter|[K’]. In the final step, we choose the K’ which maximizes |Counter[K'| — N /2|.
Once K! is known, round 1 can be stripped off, and linear cryptanalysis can be reapplied
to obtain K2, adn so on, until sll subkeys are known.

Algorithm 4.2 gives the detail steps of this strategy. Note that we denote T" be the set

of test pairs.

29

round 1 l«—Guess Kt =K'

X, Form a-« X,

rounds
2..R

l

C Form b+ C,

Figure 4.3: Attack strategy: from K?! to K** (from [4])

Algorithm 4.2. StrRATEGY1(T, N})
1. for each possible round key K’ do

Counter[K'] < 0
2. for each test pair (P, G;) €T do

(1) for each possible round key K* do
(i) Encrypt P; threugh reund1-to obtain X;

(ii) if (ae X; = b e (().then
Counter|K'| < Counter|K'] + 1
3. mazr «+— —1
4. for each possible round key K’ do

(1) Counter[K'] + |Counter|K'| — N1./2|
(2) if (Counter[K'] > max) then
(i) max «— Counter|[K’|

(ii) mazxkey «— K’

5. output(mazkey)

Attack from K%t! to K!

Figure 4.4 is the concept of this strategy. This one is similar to previous one, except that

we start from the last round key, K%', The algotithm below shows the details of this

30

P Form a-P,

T

rounds
1.R

Formbs (K™ C))
= b.xi

Rl «—Guess KR =K'

O —f X —» X —p

Figure 4.4: Attack strategy: from K% to K (from [5])

strategy.

Algorithm 4.3. STRATEGY2(T, N)
1. for each possible round key A" do

Counter|K'] < 0
2. for each test pair (P;, &) € T do

or each possible rotnd key (o)
1) f h ibl d key K”d
(i) if (ae P, = be X;) then

Counter|K'| « Counter[K']| + 1
3. max «— —1

4. for each possible round key K’ do

(1) Counter[K'| < |Counter|K'] — N1./2|
(2) if (Counter[K'| > max) then
(i) mazx «— Counter|K’|

(ii) mazxkey «— K’

5. output(mazkey)

31

4.3.2 Using Multiple Linear Approximations

As we described in Section 3.5.2, we need to find two or more trails that attack the same
key bits when using multiple linear approximations. We choose the trails which their
input masks a; (or output masks b;) are the same. We use them because they attack the
same key bits in K* (or KT if we choose the same output masks). For each trail 7; with
bias ¢;, we assign a weight a; = ¢;/ > &;. And the counters Counter|[K'] are increased by
a; insdeed of 1. We also choose the key bits which is the farthest from N /2.

The algotirhm shows below. Note that we denote T7, be the set of the trails we choose.

Algorithm 4.4. MLA(T, Nz, T1)
1. for each possible round key K’ do

Counter|K'] < 0
2. for each test pair (P;,C;) € T do

1) for each possible round key o
fi h bl d key K’ d
(i) for each trail 7; € T}, do
(a) @i —ei/ D &

(b) Encrypt P; through round 1 to obtain X;
(c) if (ae X; =beC;) then

Counter|K'] « Counter[K/} + a;
3. maxr «— —1

4. for each possible round key K’ do

(1) Counter[K'] «— |Counter|K'] — N1./2|
(2) if (Counter[K'| > max) then

(i) maz < Counter[K'|

(il) mazxkey — K’

5. output(mazkey)

4.4 Backtracking

In Section 3.5.1, we introduced the idea of candidate keys. Suppose we store r possible
candidate keys whose counters are close to N7 /2, where r is a flexible parameter could
be modified. At the end, if the key we extracted tested to be wrong, we can go back
to choose another candidate subkey systematically. Figure 4.5 shows this backtracking

scheme. If we run out all possible candidate keys, then we declare this attack failed.

32

round 1

most possible subkey

candidate subkey 1

T

y

N

most possible subkey

candidate subkey 1

candidate subkey r

\\

candidate subkey r

round £

, —

most possible subkey candidate subkey | candidate subkey r round R=1 %\
!
7 /
wrong / 7
-
-
-~
-~
—~ 7 wrong
- -

output the
key

Figure 4.5: Backtracking Scheme

33

Chapter 5

Computer Experiments

Our experiment is to attack a simple SPN. The structure of this SPN is showed in Figure
5.1. It is a 4-round SPN with block size N = 16, s-box size n = 4, key length Ng = 32,
and 4 s-boxes in a round. Table 5.1 shows the s-box and the permutation mappings. The
subkey K' = K[t +1,...,t + 16].

e P
| & |
[I I T
L] L]

| %i%%

—

S
L T

roundl —

round2 —

K

i

[N o U o S iy

- T T
| & |
I

Figure 5.1: The SPN we will attack

round3 —

round4 —

We run the experiment on Pentium III 733 CPU with 256MB RAM under FreeBSD
using C language. We simulate 100 tests with different keys. Each test we randomly

34

X O |1} 2134|567 |89]|10]11]12]13|14]15
S(X)| 144131 215118 |3]10/6 12|59 /0|7
X 11213145167 |8(9]10]11 12|13 |14 |15 |16
LX) 1|59 |13]2|6|10[14|3] 7 |[11[15|4 |8 |12]|16

Table 5.1: S-box and permutation mappings

choose around 8 x ¢7%(= 16/LP(a, b)) test pairs (data complexity). We set the number
of candidate keys to be 1 to 10 for backtracking. The following table shows the difference

between the two strategies.

| Strategy | Data Complexity (NV7) | Time Complexity (Average) |
Basic (From K' to K1) 2272 1.79 mins
Muliple Linear Approximations 2272 8.11 mins

Table 5.2: Data complexity and time complexity

‘ Number of Candidate Subkeys ‘1‘ 2 ‘ 3 ‘ 4 ‘ 5 ‘ 6 ‘ 7 ‘ 8 ‘ 9 ‘10‘
Basic (From K* to K7*+1) 6122234 |44[52[62|70| 78|96
Muliple Linear Approximations | 8 | 20 | 27 | 36 | 46 | 55 | 65 | 72 | 82 | 98

Table5.3: Success rate

35

Chapter 6

Conclusion

In this thesis, we discussed about the linear cryptanalysis on a simple substitution-
permutation networks. T apply ilnear cryptanalysis, we first analyze the linear approx-
imation of the s-box. From the table we know which input and output masks of the
s-box act in a nonrandom fashion. Then we combine several s-boxes from their input and
output masks to form a trail through the entire SPN. The characteristic of the trail tells
us the linear characteristic probability and the linear expression of this trail. Then we
start to attack the key bits by partially encrypting (decrypting) the test pairs, and count
the number that the expression holds._ At the,end we choose the key bits whose counter
is farthest from N7, /2. 7 : v,

We then propose the attack algorithm of -the SPN.in Chapter 4. We first describe how
to find the trails systematically,~and set the threshold value to limit the number of the
trails. Next we use the techniques in Statisties-to compute the approximate value of N7.
We then know that how many pairs de we need to achieve the success rate we want. Then
we propose two kinds of strategies to attack SPN. The first one is from the basic idea
of linear cryptanalysis. We give two versions of this strategy: from K' and from KT+,
The other one we use the technique called multiple linear approximation. We use more
then one trails that attack the same key bits to increase the success rate of the attack.
Final we introduce the backtracking strategy. We store r candidate subkeys to improved
our success rate. In Chapter 5, we try to attack a simple SPN and we show the data
complexity, time complexity, and the success rate under different number of candidate
subkeys.

In the future, we think there are two way to study. First one is to compue the number
of test pairs, Nz, more precisely. We need to analyze the distribution of N, and try to
find a formula to compute N7, easily. Second, we can compute the number of candidate
subkeys, r. From the distribution of N7, we can estimate the probability that the real
key lies in the first r candidates. We want to know the value r such that the probability
is not too small. We hope that r will be not too large under some conditions in order to

increase the success rate of the attack.

36

Bibliography

1]

[10]

A. J. Menezes, P. C. van Oorschot, and S. A. Vanstone, Handbook of Applied Cryp-
tography. CRC Press, 1997, ISBN: 0849385237.

L. T. Keliher, “Linear cryptanalysis of substitution-permutation networks,” Ph.D.

dissertation, Queen’s University, Kinston, Ontario, Canada, October 2003.

J. B. Kam and G. I. Davida, “Structured design of substitution-permutation en-
cryption networks,” IFEE Transactions on Computers, vol. 28, no. 10, pp. 747-753,
1979.

L. Keliher, H. Meijer, and S. Tavares, “New method for upper bounding the maxi-
mum average linear hull probability for SPNs,” in Advances in Cryptology - EURO-
CRYPT 2001, ser. Lecture Notegtin Corﬁputer Science, B. Pfitzmann, Ed., vol. 2045.
Springer-Verlag, 2001, pp. 420-436.

D. R. Stinson, Cryptography: Theory and Practice, 2nd ed. Chapman & Hall/CRC,
2002, ISBN: 1-58488-206-9.

M. Matsui, “Linear cryptanalysis method for DES cipher,” in Advances in Cryptology
- FEUROCRYPT 93, ser. Lecture Notes in Computer Science, T. Helleseth, Ed., vol.
765. Springer-Verlag, 1994, pp. 386-397.

M. Matsui and A. Yamagishi, “A new method for known plaintext attack of FEAL
cipher,” in Advances in Cryptology - EUROCRYPT "92, ser. Lecture Notes in Com-
puter Science, R. A. Rueppel, Ed., vol. 658. Springer-Verlag, 1993, pp. 81-91.

A. Shimizu and S. Miyaguchi, “Fast data encipherment algorithm FEAL,” in Ad-
vances in Cryptology - EUROCRYPT ’87, ser. Lecture Notes in Computer Science,
D. Chaum and W. L. Price, Eds., vol. 304. Springer-Verlag, 1988, pp. 267-280.

FIPS 46, Data Encryption Standard. Federal Information Processing Standards Pub-
lication 46, U.S. Department of Commerce, NationalBureau of Standards, National

Technical Information Service, Springfield, Virginia, 1977.

M. Matsui, “The first experimental cryptanalysis of the Data Encryption Standard,”
in Advances in Cryptology - CRYPTO 94, ser. Lecture Notes in Computer Science,
Y. G. Desmedt, Ed., vol. 839. Springer-Verlag, 1994, pp. 1-11.

37

[11]

[12]

[16]

[17]

18]

[19]

[20]

[21]

22]

B. S. Kaliski Jr. and M. J. B. Robshaw, “Linear cryptanalysis using multiple approxi-

M

in Advances in Cryptology - CRYPTO 9/, ser. Lecture Notes in Computer
Science, Y. G. Desmedt, Ed., vol. 839. Springer-Verlag, 1994, pp. 26-39.

mations,’

K. Nyberg, “Linear approximation of block ciphers,” in Advances in Cryptology -
EUROCRYPT 94, ser. Lecture Notes in Computer Science, A. De Santis, Fd., vol.
950. Springer-Verlag, 1995, pp. 439-444.

W. Stallings, Cryptography and Network Security: Priciples and Practice, 2nd ed.
Prentice Hall, 1998, [ISBN: 0-13-869017-0.

W. Diffie and M. E. Hellman, “New directions in cryptography,” IEEE Transactions
on Information Theory, vol. IT-22, no. 6, pp. 644-654, November 1976.

FIPS 81, DES Modes of Operation. Federal Information Processing Standards Pub-
lication 81, U.S. Department of Commerce, NationalBureau of Standards, National

Technical Information Service, Springfield, Virginia, 1980.

C. E. Shannon, “Communication theory of secrecy systems,” Bell System Technical
Journal, vol. 28, no. 4, pp. 656-715, 1949.

B. Schneier, Applied C’Typtogmphyf PrbtoCols, Algorithms, and Source Code in C,
2nd ed. John Wiley and Sons, 1996, ISBN: 0-471-12845-7.

H. Feistel, “Cryptography =and computer privaéy,” Scientific American, vol. 228,
no. 5, pp. 15-23, 1973. :

H. Feistel, W. A. Notz, and J. L Smith;“Some cryptographic techniques for machine
to machine data communications,” Proceedings of the IEEE, vol. 63, no. 11, pp. 1545—
1554, 1975.

K. Aoki, T. Ichikawa, M. Kanda, M. Matsui, S. Moriai, J. Nakajima, and T. Tokita,
“Camellia: A 128-bit block cipher suitable for multiple platforms — design and
analysis,” in SAC 2000, ser. Lecture Notes in Computer Science, D. R. Stinson and
S. E. Tavares, Eds., vol. 2012. Springer-Verlag, 2001, pp. 39-56.

M. Kanda, “Practical security evaluation against differential and linear cryptanalyses
for Feistel ciphers with SPN round function,” in SAC' 2000, ser. Lecture Notes in
Computer Science, D. R. Stinson and S. E. Tavares, Eds., vol. 2012. Springer-
Verlag, 2001, pp. 324-338.

M. Kanda, Y. Takashima, T. Matsumoto, K. Aoki, and K. Ohta, “A strategy for con-
structing fast round functions with practical security against differential and linear
cryptanalysis,” in SAC 98, ser. Lecture Notes in Computer Science, S. F. Tavares
and H. Meijer, Eds., vol. 1556. Springer-Verlag, 1999, pp. 264-279.

38

23]

[24]

[29]

[30]

M. Kanda, S. Moriai, K. Aoki, H. Ueda, M. Ohkubo, Y. Takasima, K. Ohta, and
T. Matsumoto, “E2 — a candidate cipher for AES,” The First Advanced Encryption
Standard Candidate Conference, Proceedings, Ventura, California, August 1998.

B. Schneier and J. Kelsey, “Unbalanced Feistel networks and block cipher design,” in
FSFE, ser. Lecture Notes in Computer Science, D. Gollmann, Ed., vol. 1039. Springer-
Verlag, 1996, pp. 121-144.

C. M. Adams, “The CAST-256 encryption algorithm,” The First Advanced Encryp-
tion Standard Candidate Conference, Proceedings, Ventura, California, August 1998.

C. Burwick, D. Coppersmith, E. D’Avignon, R. Gennaro, S. Halevi, C. Jutla, S. M.
Matyas Jr., L. O’Connor, M. Peyravian, D. Stafford, and N. Zunic, “MARS —
a candidate cipher for AES,” The First Advanced Encryption Standard Candidate
Conference, Proceedings, Ventura, California, August 1998.

X. Lai, On the Design and Security of Block Ciphers, vol. 1 of ETH Series in Infor-
matino Processing. Hartung-Gorre Verlag Konstanz, 1992, ISBN: 3-89191-573-X.

X. Lai and J. L. Massey, “A proposal for a new block encryption standard,” in
Advances in Cryptology - EUROGRYPT 90, ser. Lecture Notes in Computer Science,
[. Damgard, Ed., vol. 473. Springer=Verlag, 1990, pp. 389-404.

X. Lai, J. L. Massey, and S. Murphy, “Markov ciphers and differential cryptanalysis,”
in Advances in Cryptology = FUROCRYPT ‘91, ser. Lecture Notes in Computer
Science, D. W. Davies, Ed., vol..547. Springer-Verlag, 1991, pp. 17-38.

R. L. Rivest, M. J. B. Robshaw, R. Sidney, and Y. L. Yin, “The RC6 block ci-
pher,” The First Advanced Encryption Standard Candidate Conference, Proceedings,
Ventura, California, August 1998.

A. Sorkin, “Luciher, a cryptographic algorithm,” Cryptologia, vol. 8, no. 1, pp. 2241,
1984.

W. Diffie and M. E. Hellman, “Exhaustive cryptanalysis of the NBS Data Encryption
Standard,” Computer, vol. 10, no. 6, pp. 7484, June 1977.

E. Biham and A. Shamir, Differential Cryptanalysis of the Data Encryption Standard.
Springer-Verlag, 1993, ISBN: 0-387-97930-1.

2

L. R. Knudsen, “Truncated and higher order differentials,” in Fast Software Encryp-
tion, ser. Lecture Notes in Computer Science, B. Preneel, Ed., vol. 1008. Springer-

Verlag, 1994, pp. 196-211.

39

)

[35] S. K. Langford and M. E. Hellman, “Differential-linear cryptanalysis,” in Advances in
Cryptology - CRYPTO °9/, ser. Lecture Notes in Computer Science, Y. G. Desmedt,

Ed., vol. 839. Springer-Verlag, 1994, pp. 17-25.

[36] S. Vaudenay, “An experiment on DES statistical cryptanalysis,” in ACM Conference
on Computer and Communications Security, 1996, pp. 139-147.

[37] C. M. Adams, “Constructing symmetric ciphers using the CAST design procedure,”
Designs, Codes and Cryptography, vol. 12, no. 3, pp. 283-316, 1997.

[38] L. Brown, J. Pieprzyk, and J. Seberry, “LOKI — a cryptographic primitive for
authentication and secrecy applications,” in Advances in Cryptology - AUSCRYPT
90, ser. Lecture Notes in Computer Science, J. Seberry and J. Pieprzyk, Eds., vol.
453. Springer-Verlag, 1990, pp. 229-236.

[39] J. Kilian and P. Rogaway, “How to protect des against exhaustive key search,” in
Advances in Cryptology - CRYPTO ’96, ser. Lecture Notes in Computer Science,
N. Koblitz, Ed., vol. 1109. Springer-Verlag, 1996, pp. 252-267.

[40] National Institute of Standards and Technology, “Announcing request for candidate
algorithm nominations for the Advanced Encryption Standard (AES),” Federal Reg-
ister, vol. 62, no. 177, pp. 48 051-48 058, September 1997.

[41] J. Daemen and V. Rijmen, “AES“'proposal: Rijndal,” http://www.iaik.tu-
graz.ac.at/research/krypto/AES /old /“rijmen /rijndael /, 1999.

[42] ——, The Design of Rijndael>+AES— The Advanced Encryption Standard. Springer-
Verlag, 2002, ISBN: 3540425802.

[43] R. Anderson, E. Biham, and L. Knudsen, “Serpent: A flexible block cipher with

maximum assurance,” http://www.cl.cam.ac.uk/ rjal4/serpent.html, 1998.

[44] B. Schneier, J. Kelsey, D. Whiting, D. Wagner, C. Hall, and N. Ferguson, “Twofish:
A 128-bit block cipher,” http://www.schneier.com/paper-twofish-paper.html, June
1998.

[45] FIPS 197, Advanced Encryption Standard (AES). Federal Information Processing
Standards Publication 197, U.S. Department of Commerce, NationalBureau of Stan-

dards, National Technical Information Service, Springfield, Virginia, 2001.

[46] L. R. Knudsen, “Block ciphers — analysis, design and applications,” Ph.D. disserta-
tion, University of Aarhus, Aarhus, Denmark, July 1994.

[47] E. Biham and A. Shamir, “Differential cryptanalysis of DES-like cryptosystems,” in
Advances in Cryptology - CRYPTO ’90, ser. Lecture Notes in Computer Science,
A. Menezes and S. A. Vanstone, Eds., vol. 537. Springer-Verlag, 1990, pp. 2-21.

40

[48]

[49]

[52]

[54]

[55]

——, “Differential cryptanalysis of DES-like cryptosystems,” Journal of Cryptology,
vol. 4, no. 1, pp. 3-72, 1991.

——, “Differential cryptanalysis of the full 16-round DES,” in Advances in Cryptology
- CRYPTO 92, ser. Lecture Notes in Computer Science, E. F. Brickell, Ed., vol. 740.
Springer-Verlag, 1992, pp. 487 496.

S. Murphy, “The cryptanalysis of FEAL-4 with 20 chosen plaintexts,” Journal of
Cryptology, vol. 2, no. 3, pp. 145-154, 1990.

S. Vaudenay, “On the security of CS-Cipher,” in FSE °99, ser. Lecture Notes in
Computer Science, L. R. Knudsen, Ed., vol. 1636. Springer-Verlag, 1999, pp. 260—
274.

W. Meier and O. Staffelbach, “Nonlinearity criteria for cryptographic functions,” in
Advances in Cryptology - EUROCRYPT °89, ser. Lecture Notes in Computer Science,
J.-J. Quisquater and J. Vandewalle, Eds., vol. 434. Springer-Verlag, 1989, pp. 549—
562.

C. Harpes, G. G. Kramer, and J. .. Massey, “A generalization of linear cryptanalysis
and the applicability of Matsui'stPiling<up Lemma,” in Advances in Cryptology -
EUROCRYPT 95, ser. Lecture Notesin-Computer Science, L. C. Guillou and J.-J.
Quisquater, Eds., vol. 921. ~Springer-Verlag, 1995, pp. 24-38.

Y. G. Desmedt, Ed., Advances in.Cryplology ~ CRYPTO "94: 14th Annual Interna-
tional Cryptology Conference,:Santa Barbara, California, USA, August 1994. Pro-

ceedings, ser. Lecture Notes in Computer ‘Science, vol. 839. Springer-Verlag, 1994.

D. R. Stinson and S. E. Tavares, Eds., Selected Areas in Cryptography: 7th Annual In-
ternational Workshop, SAC 2000, Waterloo, Ontario, Canada, August 14—15, 2000,

Proceedings:, ser. Lecture Notes in Computer Science, vol. 2012. Springer-Verlag,
2001.

41

