2k Sof t=IP EHFE AN & 3 i

An information hiding technique for

Soft-IP protection

oy oA imitiy

s e s g4

Hi 2 W@ o pqF 4 E

An information hiding technique for

Soft-IP protection

Foyo4d imiiy Student Shi-Wei Chen
R my R Advisor: Chang-Jiu Chen
B = 2 i+ 7
AU N A G

A Thesis
Submitted to Department.of Computer:Science anatimtion Engineering
College of Electrical Engineering and Computer Soge
National Chiao Tung University
in
partial Fulfilment'of'the Requirements
for the Degree of Master
in
Computer Science and Information Engineering
June 2005

Hsinchu, Taiwan, Republic of China

W3 Sof t-1P enF 2 "E ik $L i

Frd imidiy ¥R my R

SERF R

Rt
-n 0y
i
4%

B2

d AT E KT Aol Bkt e foAg < AR M T Bl AR e 0 A ST T
D FOEE R R 57 FIRERFRAIFTFRE > LR EAFR T T AKX
AR e B AR IR o Al - BATOR B ——R B R A ER
fefgE A ch 2 (T R4 ~ Intellectual Property) o & 3B % 3 Jf
B OBV EL [PRERET AL - AAgm Y > APRI- B

d b LR G R T O SOFLAIP R i 5 B i M TR G4

=

¢ chState £ATHA 0 8 7 AP REIT VAR ARG B State %S L BT 5 TR R

f?:m:ﬁh‘?h o BB A ATHE I At 2 R G gy AMHF S Er LT 1 R

WiBg ehg > ¥ 7 fI1% Scan-Chain 7 f il b T 2B ? 43§ "EH T o
Fgp kA ens 2 -8 B 8bit e F R MK & UART Receiver R B ¥ » # 3] ehi

SET TR @A FET G2 R R kD State it EFTR

An information hiding technique for

Soft-IP protection

Student : Shi-Wei Chen Advisor : Dr. Chang-Jiu Chen
Department of Computer Science and Information Engieering

National Chiao-Tung University

Abstract

As the progress of EDA tools and manufacturing netbgies, we get shorter
and shorter time-to-market. In order to catch uphwhe decreasing time-to-market,
reuse pre-defined and pre-verified components &viiable. This creates a new
market of selling reusable pre-defined componerits. (Intellectual Property). But
the IP must be protected by some techniques froticiomas duplication. In this thesis,
we propose a new method-to “protect Soft-IP by kidiformation in FSMs. We
re-encode the state coding in‘the way that themiffce of two states of selected edge
in a specific path is equal to the information wanivto hide. Through analysis, we
found our method has the property of hard to besdesl, hard to be removed, and
hard to be faked. Using scan-chain, we can detbether a specific FSM hides our
information or not. We hide eight 8-bit informatidata in a UART receiver using our
method. The result shows that the UART receiveik@aorrectly and we can hide the

eight 8-bit information in it without adding newasgs.

Acknowledgment

SERE PUPERES AAH D PRSI AR AR RO
TR R ﬂ:u’gmu I RGBH o P S R AL o v 328 £
PIPR 251 =k oo f e « H R RGBT B RS = P9 e % - (P
SOV RS g Ry PR - B

Contents

P i
A B S T R A C T . e e ettt ettt ettt ii
ACKN OW LED GMENT .t ettt e e e e eanens iii
LIST OF FIGURE ... oot rer e Vi
[S O o N =] I T viii
Chapter 1 INTrOUCTIONueeeieie e e e e a e e e e e 1
Chapter 2 Related WOIKSuuueiiieeie s e e e e e e e e 5
2.10OBJECTIVE AND METRICS OF INDIRECT IP PROTECTION ..cuitieieieeeeeeneeeeeennn 5
2.2INDIRECT |IP PROTECTION TECHNIQUES ...uituiitiiiiiiiiieeiieeteeaeeieeaee e sesnnseanss 6
2.2.1 Hierarchical WatermMarkingcoceoeoie e 6
Ay 1< g b= \Y Lo = I I < TP 6
2. 2.3 L00IC LEVEL ...t ettt ettt ae e st et e e b e neene e e e nneaennen 13
2.2.4 Field Programmable Gate ALEQYS.............eiveiusifuseeeeeerreesesieesies e ssesesne e 14
2.2.5 Standard Ceall Place and ROULE . .o im i i i et et e e e e s e et r e e e e e seearreeeeeeeeesrnneeees 15
Chapter 3 Background of the'Proposed'Methodccccceveeeeiiiiiiiiiiicciiine, 16
3.1BASIC DEFINITIONS .o i it e e eee e 16
3.2MOTIVATION AND B ASIC CON OB P T aaittiie e eeneneesensenenseensesensesensesensenseaensenenss 16
3.3COMPARE WITH EVEN/ODD ENCODING .. .cutieeeeeee e eeaeeaneaaans 18
3.4THE DETECTION OF THE SIGNATURE ...vutuitiiit et eeaeeeaeneeaneeaeneeaensensneenaeenns 20
Chapter 4 State Difference ENCOUINGuuummmeiiiiiiiiiiiiiiiiiiiiieeea e 21
A L INPUTS AND OUTPUT S e tttieet ettt eae et e e et e et e e s e ama e seea s e enseaanreaneeeneeanen 21
4. 2THE ENCODING PROCESS.e ittt ettt ettt e et e rme e e e e e eean e e e eenanaenan 22
E A /NN s I YA (o4 (0] = TR 23
N N [T =7 1 25
4 5FORMULATING THE ENCODING REQUIREMENT INTO INLPccociiiiin, 29
4 .6 GENERATING THE GATE “LEVEL NET “LIST ttuirtniuieneneenenseeneeensenenseaeneensnsensens 31
4,7 THE DETECTING PROCE SS ... iuiuitititit ittt ettt ettt etaeaeasareeeasn e e reaeaeasnsnenrnrens 34
4. BA COMPLETE EXAMPLE «..vniieiiie ettt ettt ettt e et e e ee e ee e e e e e e e e ee e erenanaenen 34
4. 9EVALUATION OF STATE DIFFERENCE ENCODINGvuieiiiieieiieeeee e aeaenenns 39
4.9.1 The RODUSINESS EVAIUGLIONeeeeeeeee ettt e et et e et e e e e e seaete e et eeeeeasansseeeeesseananes 40
4.9.2 The OVErNEAd EVAIUBLIONveeeeeie ettt et e e e et e et eeesesaaareeeseesssasassseeeeessesnannes 41
Chapter 5 Experimental RESUILS..........coiiiiimm e 43

Chapter 6 Conclusions and Future WOrKScceevviiiiiiiieieeeeeeeecccciiiveeeceeeees 53

R O O O CES .. e e e e e e e e 55

List of Figure

Figure 2-1 The STG of original deSigNueeereiiieiieeeiiiiiiier e e e eeeeeee 7
Figure 2-2 Modified STGcooieeeeeiiiiiiis i e e e e e e e e e e e e aeeeeeeeeeeees 8
Figure 2-3 An alternative way to embed the watermal...............cccceeeeeeviiviveveeinnnns 9
Figure 2-4 The improvement version of FIQUIe 2-3ceiiiiiiiieieeeeeeeeeeeeee 9

Figure 2-5 An example of applying the method desdred in [7] : (a) the original

FSM, (b) adding transitions to embed watermark, (caugmenting input and

o To (o 1o T I 1 7= T IS 1 To] o 1= 11

Figure 2-6 The explanation of embedding the signata ‘A7’ in the register

asSIgNMENT SOIULION ... i i e e e 13

Figure 3-1 An example of staté-difference encadin@) the original STG of FSM (b)

the STG after applying state difference encoding tbide 0x10, 0x20, 0x30.18

Figure 3-2 An example of even/odd encoding (a) tlegiginal FSM (b) a possible

solution of even/odd enCOdINGuvvmmmmeeeeeeeeeeeniir e e e e e e eeeeeees 19
Figure 4-1 The encoding procedure of state differare encoding...............ccco....... 23
Figure 4-2 The Kiss2 file format.............uuuciiiiiiii e 23

Figure 4-3 An example of valid vector (a) the FSMan only hide three

information without valid vector (b) with valid vector, A->E can be used to

hide the fourth iINformMatioN........coou e 24

\Y

Figure 4-4 An example of the approach to solve thadata item “00” in the

information sequence. (a) The information sequends divided into two parts.

(b) the sample FSM. (c) a solution of sub sequente(d) a solution of sub

1T 0 [1<] g (o PP 26
Figure 4-5 The FSM of Figure 4-4(b) with shadow stas.............ccccoevviiieeeennnnnne. 28
Figure 4-6 The pseudo code of path finder......cceeeeuvviiiiiiiiieee 29
Figure 4-7 The constraints of Figure4-1(b) for INLP...........ccccoeiiiiiiiiiiiiiiiieeeeeiies 30
Figure 4-8 The pseudo code Of INLP SOIVEr.......cccceeiiiiiiiiiiiiiiiicccee e 31.
Figure 4-9 Asimple FSM ...l e e e e e e e e e e e vvennnneennnes 32
Figure 4-10 The Verilog description of the FSM in kgure 4-9.............cceevvvvvvvnnns 33
Figure 4-11 The pseudo codeof HDL generatorccooevvvveveveevvvvnnnniinneennn 33
Figure 4-12 The architecture of UART r€CEIVENccccceeeeeeiiiiieieeeeee e 35
Figure 4-13 The STG Of UART FECEIVENccceeieeee e 36.
Figure 4-14 The encryption process of informationeguence.............ccccevvvvevvnnnns 36
Figure 4-15 The three constraints of UART reCeiver..........cccccccccieeiiiieiieeeeeeeeeee, 37

Figure 4-16 The state encoding, valid vector, hidaeinformation, and inputs used

(o) Ve (=] (=T o 1] g To T o] oo =TS 38

Figure 4-17 The architecture of UART receiver withverification circuit 39

Vii

List of Table

Table 4-1 The state encoding Of UART r€CEIVET ..o .eeeeeiiiiiieiiiiiiiiiiiiiieee e e e eeeeeeaen 38
Table 5-1 The statistic data of benchmark ISCAS'OL.........cccccoiviiiiiiiiiiiiiiieeeee, 45
Table 5-2 State bits of each circuit when hiding dierent data items 49

Table 5-3 The number of literals before and after mbedding 128 bits information

viii

Chapter 1 Introduction

As the progress of deep-submicron manufacturingcgeees recent years,
semiconductor density reaches a level that allolvelements of an entire system
being merged onto a single chip. Unfortunately, design productivity has not kept
the pace. A study described in [11] shows that senductor densities are increasing
about 58% per year while design productivity ondyances 21% annually. Thus, we
need a new design methodology to fill the gap betwsardware capacity and design
productivity and the system-on-a-chip (SoC) desiggthodology shows up. In this
new design methodology, designers integrate seyembesigned and pre-verified
cores, also called intellectual property (IP); oatsingle chip. These cores may be
obtained from internal sources 'or a third-party den By reusing these cores,
designers save a great amount of time and workctnabe spent on developing new
products. As a consequence, the design producingtgases dramatically.

Traditionally, IP can be classified into behaviodalkscription (soft IP), structural
description (firm IP), or physical description (HalP) according to the degrees of
freedom left to the user to manipulate it. Hardsl@enerally in form of routed layout
for specified process technology and with very lgesdom for further migrations.
On the other hand, soft IP, in contrast to hargiByides the most freedom for use. It
is possible to map soft IP to a variety of finaydats based on different synthesis
strategies and process technologies. HowevertdPsaker must synthesize, optimize,
and validate for the soft IP before integratingnito the system. Firm IP is in the
position between hard IP and soft IP. It provideserflexibility and reconfigurability
than hard IP and better reuse potential than $bffFirm IP is usually in form of

technology-independence gate-level net-list or Hikcription and can or can not be

mapped to different process technologies deperahritye IP designer.

Since an IP represents a digital circuit desigrdspecific function but do not
has a concrete physical manifestation, it is pésdir customers to resell the IP as
their own even without understanding the detailtheflP. This problem has become a
great concern of IP vendors and thereby the vigloli the SoC design methodology
depends on how to protect IPs from malicious dagilbkm or unauthorized use.

In nowadays, there exist two main approaches grdkection, direct protection
and indirect protection. The goal of direct proi@ctis to prevent unauthorized users
to use the IP. Hence, direct protection tries tkenthe medium in which IPs are
stored and exchanged more secure. This is usualte dy applying encryption
algorithms like RSA to IPs. Then the encrypteddRsplaced in a public IP exchange
medium, and only authorized users can get privatetk decrypt them. The direct
protection may potentially not be'effective in aliag infringement due to that once
the IP is decrypted, the user can do-anything tapt to the IP. Thus, indirect
protection must be applied to the IP. simultaneotslyavoid malicious duplication.
Most researches related to IP protection includimg thesis focus on indirect IP
protection.

The purpose of indirect protection is to obtainraque signature from IPs or
embed one into IPs. This allows the IP designetetermine whether a given IP has
been infringed upon. Indirect protection can furthee divided into two kinds
according to whether the original design is modifog not. Active protection embeds
a signature which represents the authorship téRfand in most cases, it will modify
the IP. While passive protection tries to obtasigmature from existing feature, hence,
it will not alter the IP.

Over the past few years, a considerable numbetudies have been made on

indirect IP protection using watermarking technigl&atermark is a signature used to

2

identify the authorship and watermarking means mabed the watermark into
something that we want to protect. Originally watarking is used in video/audio
application since the watermark is hardly visibteaadible by human eyes and ears.
Moreover, the watermark can be extracted and ifiediteven the original picture or
music has changed by applying some algorithms Reatently, watermarking is also
used to protect IPs. There is a similar techniqueR protection, called fingerprinting,
which is generating a signature from a design udimg existing features and
properties at a specified abstraction level.

Although a lot of methods are proposed for indirgmotection using
watermarking technique, most of them are focus ard HP protection since it is
easier and is efficient for detecting the watermatkrd IPs can only be used in a
specific process technology. Thus, as long.as tloeegs technology of silicon
foundries progresses, the chip.designers: must-ibeset IPs again even though the
design of these IPs are the same.- This-sSituatidtemthe designers quite annoying.
Hence, selling soft IP or firm IP instead of hardwill solve the problem since soft IP
provides more flexibility for users and the designan resynthesize them to match
new process technology. However, soft IP and fiFmate still not prevalent today
because of the lack of soft or firm IP protectidhus, our study is mainly focus on
soft IP protection in order to solve the embarraggroblem.

In this thesis, we present a new method to embsijraature into finite state
machine (FSM) by using a special state encodinghdwsynthesis process. We first
choose a path in the FSM and encode the statbe way that the difference of every
two state along the path equals to a part of theasure we embed. Since the state
encoding will not change at all levels under théaworal level, our approach can
protect the IP in the design hierarchy from firmtéPthe routed layout. Besides, our

method can hide longer signature with less or ewerarea overhead compared to

3

other proposed method.

The remainder of this paper is organized as theviong. Chapter 2 discusses
some researches related to IP protection. Chapterd@luces the concept of our
method. Chapter 4 details the proposed approaelh i@hapter 5 evaluates the
approach through an experiment. Chapter 6 givesauelusions and the directions

for future development.

Chapter 2 Related Works

In this chapter, we will introduce the objectivedametrics of an indirect IP

protection method, and some IP protection methloaishtave already been proposed.

2.1 Objective and Metrics of indirect IP protection

For a successful indirect IP protection techniqtueshould have the following
properties:

1. Proof of Authorship and Authenticity : the signature embedded in IP must
be unambiguous.

2. Correctness of functionality:-the added functionality should not affect the
correctness of original functignality.

3. Low overhead: the hardware-overhead should be low.

4. Ease of detection: the signature should be detectable with a lowst co
technique.

The following metrics are defined to evaluate ac#peindirect IP protection
technique.

1. Pu : the probability of uniqueness. It means the otlhdd another design
carries an identical signature.

2. Pm : the probability of a miss. It means the oddd tha signature is not
detected after tampering although the signatulieegists.

3. Pr : the probability of false alarm. It means the @dbat a signature is

detected unintentionally. Generallfpu = P .

2.2 Indirect IP protection techniques

In this section, we introduce some indirect IP gctibn techniques according to

the design abstraction level they applied to.

2.2.1 Hierarchical Watermarking

In [5], the author proposes a method to protediyiiharking each step of the
synthesis and layout processes with a specificrwesek. At the layout level, typical
mixed signal constraints, such as symmetry, graymlustering, fixed objects, and
alignment are used to form the watermark. At the ¢gvel, the watermark is used to
generate a pseudo-random sequence of symbolsaahdggmbol represents a given
standard cell. At the structural level, the desgyoonverted to a directed graph and
some specific constraints can be.applied to it.viagermark is coded in these
constraints.

As we can see, this method is robust becausestraséiple watermarks. If one
of them is removed, other watermarks can still dected. On the other hand, the

method is the most costly and complex comparedheranethods.

2.2.2 Behavioral Level

In [2], A. L. Oliveria proposes a method to waterkneSMs by adding a set of
new states in such a way that when the speciat sgguence is applied to the
modified FSM, the added states are traversed nedefined order. For example,
consider the STG shown in Figure 2-1. Assume wet t\eaembed a three bit
signature 010, we then create three new states:,rs together with statess and
change the source and destination of the involdgg® in Figure 2-1. Then, we will

obtain the STG shown in Figure 2-2. Note that thiy wvay to traverse states

6

ri,rz,rs inthis order is to apply the sequence 010 froenréset state. Once
statesi,r2,rs are traversed, the FSM enters statesThen we can claim that the
sequence of traversed statesrz,rs exhibits a specific property that can be used to
identify the design. We shall note that the stateg 2,rs must maintain the original
outputs and state transitions of sequence 010 fece are some input sequences

that contain the same prefix as 010 but are ncalequd10.

0/1,1/0

Figure:2-1.The STG of original design

0/1, 1/0

0/1, 1/0

-/l

Figure 2-2 Modified STG

It seems that the area overhead of this methodrishigh because the number
of states of the watermarked STG is more than tasceuch as the original STG. The
authors use a simple technique to avoid this prob(@onsider the FSM in Figure 2-3,
the authors attach a small FSM with the originadVl=$he function of this small FSM
is to monitor the primary input and keeps trackhaf presence of the author signature.
If the author signature has been inputted, theldr& asserts a signal to notify the

presence of the author signature.

> P Combinational
Registers Logic
Primary
. Outputs
Primary
Inputs L leo
Decoder D Gl
0 Ll
+] — > DG
’ m- 4>[)
En RstLd m
T f T m+] 1:) >

Figure 2-3 An alternative way to embed the watermak

However, there still is a problem of this new methBecause the small FSM is
attached to the original FSM, the small FSM hasimgtto do but the primary input
with the original FSM. Hence, the small FSM is, etispe detected and removed.
Again, the authors use anothersimple technigquliee it. The authors try to make a
relationship between the registers used-by-themalig-SM and the registers used by
the small FSM by a mapping. Thus, the-attackersncaeasily distinguish which

register is used by the attached FSM. This istiiéied in Figure 2-4.

__p.| Combl
Regs Logic
A Blr™ —
—> — Primary
Fxtra Outputs
Regs T |
| ||
Primary
Inputs

Figure 2-4 The improvement version of Figure 2-3

9

This method has three main advantages : (1) siogteutation. (2) the
signature can be detected in lower-level derivesigite (3) the modification can be
directly added to a synthesized design insteadsymnthesis. But the area overhead
may be unacceptable for embedding large signatimeauthors claim that they can
use MD5 to shorten the signature to 128 bits withass of strength of the authorship
proof.

In [7], the author proposes a simple techniqueatewnark sequential functions
which may be Completely or Incompletely specifidMs. The main idea of this
method is to represent the watermark as the primatyut sequence that shall be
produced only when a special input sequence whkicimspecified in the original
FSM is applied. By using unused path to encode nvetek, the functional
correctness of the FSM is guaranteed. For exarkare 2-5(a) is the STG of a
simple FSM which has two input.bits and ene outputAssume a watermafkl is
enough for identify this design, Figure-2-5(b) is@ssible result of applying this
method to the FSM of Figure 2-5(a). It uses twopaasied transitions, gto ¢ when

input sequence is 00 andtg ¢ when input sequence is 11, to encode the watermark

10

00/1

Figure 2-5 An example of applying the method desdsed in [7] : (a) the original FSM, (b) adding

transitions to embed watermark, (¢) augmenting inptiand adding transitions

There is a special case that all transitions ofgiken FSM are specified. In this
case, we have no choice but tg increase the nuaflpeimary inputs by one. Figure
2-5(c) shows augmenting a new input and addingsttians into Figure 2-5(a). The
main advantage of this method is simple computadimhthe ease of detection of the
watermark. And the signature is detectable in lelseel derived design.

In [6], Inki Hing and Miodrag Potkonjak propose &timod for soft-IP protection
by inserting the author signature into the proadsgegister assignment during
behavior synthesis. This method takes advantaggedact that there are usually
more than one solutions of register assignmeningarval graph is an undirected
graph that each node in this graph representsemgister in behavioral description. In
the interval graph, an edge between two nodes ntbarige time of the registers
represented by these two nodes is overlapped. Tlinese registers can not be used at

one time and edges in an interval graph are aldedc@ming constraints. Register

11

assignment means to find a way to color an integvabh such that for every two
nodes with an edge between them can not be the salore The solution of coloring
problem is not unique, so legal register assignngenbt unique, too.

There are three steps to apply Inki Hing and MigdPatkonjak’s method to a
FSM. First, we must obtain an interval graph fréma behavioral description of the
FSM. Then, we use a special way to add the autbpature into the interval graph.
Starting from node v1, if the first bit we wanthwle is ‘1’, we add a new edge
between v1 and v3. Otherwise, we add a new edgeebatvl and v2. Repeat this
step until all signature bits are added into therwal graph. Last, use any method for
solving coloring problem to obtain a register asgignt of the modified interval
graph. Besides the second step, other two stegh@same as normal process of
register assignment. Figure 2-6.shows the prodessbedding a signature of 14 bits
ASCII code ‘A7’ into an interval graph. ' Figure 2a is the original interval graph,
Figure 2-6(b) contains all the-edges with-encods#das we want to embed, and

Figure 2-6(c) is the result interval graph.

(b)

12

Start node [vi J{v2 w3][va] [vs][vel]]lv7]

Embedded [T HoJ[o o] [o][o][t]= [A]
Start node [v8 J{ vo J{vio][vir] [viz][vi3][vi4]
o oBdnde [][][V][w] [w][] [vE]

(c) Embedded (o L]l][o PO J] = [@]

Figure 2-6 The explanation of embedding the signata ‘A7’ in the register assignment solution

The advantages of this method are easy computatidrihe embedded author
signature is difficult to be observed. Also, theptimal register assignment due to
the extra constraints provides a robust proofttnate is a signature embedded. On
the other hand, there are some disadvantagessaitthod. This method is not
suitable for embedding long signature since onestegcan only embed one bit. The

other problem is that given a lower-level desigs difficult to detect the signature.

2.2.3 Logic Level

In [3], D. Kirovski proposes a less resilient bumpgler watermarking technique
in gate level. In this technique, the watermarntejgresented as a set of primary

13

outputs that does not appear in the original logiwork. These gates are selected
according to the pseudo-random bits generated fhenauthor’s signature. There are
several steps to apply this method. First, in otdemsure that each watermark of
different author signature is unique, all gatethmcircuit must save in a standard way.
Then, every gate is assigned an unique identifidrsome gates will be picked up
according the pseudo-random. Last, these gatebasthme primary output and these
gates form the watermark.

In assigning identifiers to each gate, we must enthat every gate has different
identifier in order to prevent the watermark frormsimterpretation. Since to check
two gates are functionally identical is difficulye authors propose a heuristic way to
assign identifiers according to eight criteriageneral, it is merely impossible that all
the eight criteria of two gates are identical. Utidoately, this case still exists. If two
gates are not distinguishable-using these eigteraj we assign random unique

identifiers to them and memorize the-assignmeniuiure proof of authorship.

2.2.4 Field Programmable Gate Arrays

In [8], the watermark is in form of a bit streandadtirectly placed in the design
of FPGA. This is done by using the lookup tablenofised configurable control logic
blocks. Each unused lookup table hides one bin@bit stream. Then all the control
logic blocks which hides data are routed with ladl obriginal control blocks. This
method is refined in [9]. The signature is modiflegfore being embedded in the
control blocks so as to mimic the property of tReseng design.

In [10], the author tries to partition a large @agure into small sections and
uniformly embeds these small pieces of signatutberdesign. The method ensures
higher levels of robustness because it is diffictdtremove all small watermarks

using pattern matching and removal techniques.

14

2.2.5 Standard Cell Place and Route

In [1], two methods are proposed. The first metplades constraints on the
physical location of standard cells. These constsaian be easily coded into a
signature. Thus, the signature is embedded inayeut by these constraints. The
second method put specific constraints on thezatahin of detailed routing. The

constraints usually involve wire width, spacing @he choices of topological routing.

15

Chapter 3 Background of the Proposed

Method

In this chapter, we introduce our method and makeesexplanation of it. We
also discuss about the detection of the signatugaie level and physical level in this

chapter.
3.1 Basic Definitions

This section introduces some general definitionnitie state machines.

Definition 1: A Mealy-type FSMisidefined as M 2'(4, Q, q0,J, A), where
2’ is a finite set of input symbols] is.a finite set of output symbols, Q is a finge s
of states, qOLI Q is the initial(reset) state J(g, a) : Q x 2 - Q is the transition
function, and 1(qg,a): Q x 2 S 4 isithe output function.

Definition 2 : The output of a sequence: =(ay, ..., &) applied to states q
denoted byi (g, @) represents the output of the FSM after a sequehagputs (g, ...,
a), Is applied in state g. The output of ' such ausege is defined to be
A@,2) = A(5(I(...0(a)...), &1), &)

Definition 3: The destination state of a sequenge = (ay, ..., &) denoted by
o' (q,«) represents the final state reached by an FSM afequence of inputs
(a1, ..., &) and is applied in state g. This state is defiaed
o(q,a)= o(o(...0(d(@, a), &), ...), &)

Definition 4 : State gand g are equivalent iff{ (¢, @) = A (¢, @) for every
sequencer. Two FSMs M and M’ are equivalent iff their restdtes are equivalent.

Definition5: FSMsM=(,4,Q, q0,0,4)and M= (2,4, Q’, g0, 0", 1)
are equivalent iff{ (0o, @) = 2’(do’, @) for every input sequence

3.2 Motivation and Basic Concept

Based on the methods discussed in chapter 2, winchthat all IP protection

methods have some disadvantages. In HDL leveletisano way to hide information.

16

Although some methods can protect IP in gate levehysical level, they can only
protect the IP in the specified level. Some othethuds can extend the protection
from behavioral level to gate level by using reglisissignment or other approaches,
but the protection will be destroyed when the IRapped to lower level.

Thus, we want to find a new IP protection methat thas two main properties :
(1) the method is used in behavioral level sindealv@ral level provides better
reusability (2) the method can provide thoroughextion from behavioral level to
physical level. Besides, the method must satisfyréguirements mentioned in
Section 3.1.

The main idea of our method is to embed the awglgmature in the difference of
state number in a FSM. In this way, the first prbpes satisfied because the FSM
description is in behavioral level: The state nupmid not change as long as the
CAD tool we use does not do-any optimization afspate numbers. Thus, the author
signature we embedded can be extracted-in. behalevsd, gate level, and physical
level.

Figure 3-1 uses a simple example to explain tha aleour method. Figure 3-1(a)
is the original FSM. The signature we want to emigeak10, 0x20, 0x30. First, we
choose an arbitrary path from the reset state drendath must contains three edges
for embedding three number of the signature. Hgeechoose A->B->C->D. Then
we must find a set of state numbers such that statder of A and state number of B
are differenced by 0x10, state number of B anestatmber of C are differenced by
0x20, state number of C and state number of D iffiexehced by 0x30. Figure 3-1(b)

shows a possible state encoding of the FSM usingnethod.

17

(a) 0 °

1

0
Q /O 0x10
E |= A >
0x20
0x30 : :
o€ 48
(b)

Figure 3-1 An example of state difference encodin@) the original STG of FSM (b) the STG after

16

applying state difference encoding.to hide 0x10, @8, 0x30
With very low probability; it is possible that wart find another meaningful
signature from the FSM whicha signature has-bedredded in. To decrease the
probability of this situation, we can first encrype author signature with some
encryption algorithms like RSA, and then we embyedencrypted signature into the
FSM. In this way, it is almost impossible to findagher signature that is meaningful

when decrypted from the modified FSM.

3.3 Compare with Even/Odd Encoding

There is an easier way to embed the author signaito a FSM by using
even/odd encoding which is similar to the methaoebus [6]. The states will first be
assigned an order from 1 to the number of statesn Twe hide the first bit in thé'1
state using the way that if the bit is 0, we cham$nsition that the start state is the

1% state and encode the destination state as eviire ltfit is 1, encode the destination

18

state as odd. Repeat this step until all bits leen hidden in the FSM.

There is a serious problem of the even/odd encodingsider the example
shown in Figure 3-2. This is a result of applying®odd encoding. As we can see,
statel, state2, and state4 can hide arbitrarylsetause they have both transitions
that the destination state are odd and even. Bdrdata, only (000), (010), (011) can
not be hidden in the FSM. 5 out of 8 combinatiorespossible, and thus even/odd

encoding can not be used in IP protection.

statel

O | O

state?
state3

stated

state5 [q]
(b) il

Figure 3-2 An example of even/odd encoding (a) thegiginal FSM (b) a possible solution of

even/odd encoding
Using state difference encoding, a path “A->C->E->B->D” will only present
the sequence of code |A-C|, |C-E|, |E-A|, |A-DIP|DBesides, for each state, the code
can be hidden is restricted to some specific valdesce, fake signature is difficult to

be created.

19

3.4 The Detection of the Signature

Our state difference encoding uses two techniquéetect the signature we hide.
In behavioral and gate level, we only need to satauthe given FSM and observe the
value of the state registers. In physical leveltake advantages of the scan-chain.
Using scan-chain, we can set the FSM to a spegtdite and run one step. Then we

dump the state value to observe if there is anyagige hidden in the given FSM.

20

Chapter 4 State Difference Encoding

In this chapter, we use a more formal way to inticelour state difference

encoding method.

4.1 Inputs and Outputs

The inputs of our method are listed as follows :

1. The FSM that need protection. The definition of FBMIready discussed
in section 3.1.

2. The predefined path, path =s{ate, stateq, ... , state }. A predefined path
is a path that the information will hide'in. Thiath can be generated by a path finder
or provided by the user. If thepath is given by tiser, the associated valid vector
should be given, too.

3. The information sequence, info 3r{fay,"infoy, ... ,info, }. Information
sequence means the ASCII code sequence that weavamibed to the FSM. This is
equal to the author signature mentioned before.vani@able m is determined by the
path length and the total length of the informasaquence. If the length of
information sequence ig, then the variable m 8/ m. The information sequence
can firstly be encrypted by an arbitrary encryptabgorithm or just plain text of
ASCII codes. The encryption process is recommegdent this process decreases the
probability of fake meaningful signature found lnetFSM which we have already
hidden a signature in.

The outputs of our method are :

1. The modified FSM. The function of the modified FSWI be the same as

the original FSM. Only the state encoding will bedlent since we use state

21

difference encoding to hide information in the FSM.

2. The valid vector, valid_vector =9alid_vectog, valid_vectos, ... ,
valid_vectof.; }. We will encounter a situation which usually wés in no feasible
state encoding when the original FSM has a feedlmagk Thus, we introduce the
valid vector to prevent this situation. The detdilalid vector will be discussed in
section 4.3. We shall note that the variable héssame as the variable used in
predefined path. This means the length of validarewill be one less than the

predefined path.

4.2 The Encoding Process

The encoding process of our method is divided thtee steps, as shown in
Figure 4-1.

® Stepl, Path Finder: the goal.of path finder is to find a path toéid
information from the-FSM (in kiss2 format, whichshown in Figure4-2)
given by user and pass the path, valid vector th@dformation to INLP
solver.

® Step2, INLP Solver: INLP solver tries to find a legal state encodihgt
embeds the information. Sometimes, INLP solverrgatrfind a legal state
encoding of the path passed by path finder. Indase, we go back to step
1 and find another path. Repeat this step ungéballstate encoding is
found.

® Step3, HDL Generator: This is the easiest part of the state difference
encoding process. The HDL generator takes the FiS&hdy user and the
state code found by INLP solver to generate a ngi i gate level
description that embeds the information. The uaerahoose that the
modified FSM is in Verilog form or VHDL form.

22

|
User Input

|

I I
I

! Statesjiihcoded I

1. FSM | |
2. Information . .
| |

| 1| INLP solver |

| |

| |

| |

I I

|

|

|

|

/ 1. The path
2. Valid vector
b J
1. Input Sequence Get a path
For 2. The path |
verification 3. The valid vector
No Solution
!
|

Figure 4-1 The encoding procedure of state differaze encoding

3 => the number ofiinputs. .

3 => the number of outputs
10 => the number of Edges,
5 => thenumberof Stites %
st => thé"r%éset state, it miist one of the states

-10 st0 st1 001 "-.:!;hga dQSC f)tLQn of a single transition

ifg,mcéﬁg when the FSMIS in state stO
and'input.is.-10:the FSM will move to
state stl and put 001 on output

Figure 4-2 The kiss2 file format

4.3 Valid Vector

In ideal case, a path with n edges can hide nnmétion in it using our method.
But in fact, most FSMs have loops or self-loopsiider to reset the FSM or wait for
the arriving of some signals. This restricts unding a long path to hide the
information. Consider the case illustrated in Fegdr3(a). We want to hide the
information sequence ‘0x10, 0x20, 0x30, 0x40’ ia trath “A->B->C->D->A". It can

be found that once three information have beendndd edge “A->B, B->C, C->D",

23

the state encoding of state A, B, C, and D arergeted and there is almost no room
for adjusting the encoding to match the fourth pietinformation, “0x40”. As a

result, the edge “D->A” can not be used to hideinfation.

0x20

0x30 < >
9 48

Selected Path : A->B->C->D->A->E

ValidVector: 1 1 1 0 1
(b)

Figure 4-3 An example of valid vector (a) the FSMan only hide three information without valid

vector (b) with valid vector, A->E can be used to ide the fourth information

If we can make some of the edges hiding informagiod others not, we can hide
one more information in the FSM of Figure4-3(a)higing the fourth information in
the edge A->E and disregarding the edge “D->Ahie path “A->B->C->D->A->E".
The choice of edges is what we called “valid véctarvalid vector is a bit sequence
of 0 and 1 incorporated with the predefined pdth.hit of valid vector is 1, the edge
is used for hiding information. Otherwise, if thi¢ @f valid vector is 0, we will omit

24

the edge.

The valid vector is not only useful for hiding l@rgnformation and increase the
utility rate of the edges. It is helpful for digtute the hidden information to the whole
path. Thus, it is harder for the attackers to fatl what information we hide and the

protection of our method will be stronger.

4.4 Finding the path

Although the path which is used to hide informattam be provided by the user,
the path finder is still required for the case tth&t user does not provide the path.
There are some problems we encountered in implenggtite path finder. The first
problem is the restriction in path selecting duea ttata item “00” in information
sequence. It is possible that the‘information segeieontains a data item “00”.
Because we use the state difference encoding nilyecboice of hiding “00” is to find
a state with a self loop transition and-use-tl@agition to hide the “00”. Without the
“00” condition, we can simplify the path findingquess as finding a path in FSM
such that the number of “1” in valid vector equalshe number of data item in the
information sequence.

In order to solve the problem, we use the data @0 as delimiter to divide
the information sequence into several sub sequédie, each sub sequence is a
simple path finding problem. There are two requieats of the simple path finding
problem :

1. The end node of the path must contain a self-laaprder to hide the

delimiter “00".

2. The efficiency length has to be larger than the Inemof items in the sub

sequence.

As shown in Figure 4-4, the information sequence0D3 14, 55, 00 is divided into

25

two sub sequences 13, 00 and 14, 55, 00. Thenmaewio paths to hide these sub

sequences respectively.

Information Sequence : 13 00;14 55 00

RN

sub suk
sequence 1 sequence 2

(@)

[\

Hidden Info.: 13 00
Path : S1->S2->S2
Valid vector : 1 1

(©

00
Q5@
Hidden Info.: 14 55 0cC
Path : S2->S3->S4->S5->S1->S2->S2
Valid vector : 1 i1 0 0 0 1
(d)
Figure 4-4 An example of the approach to solve thaata item “00” in the information sequence.

26

(a) The information sequence is divided into two pas. (b) the sample FSM. (c) a solution of sub

sequence 1. (d) a solution of sub sequence 2.

The second problem we encountered is that we wdirid all possible paths in
a given FSM but the original model can not sataiy requirement due to valid
vector. Consider the FSM in Figure 4-4(b) and tathp
“S1->S2->S3->54->S5->S1->S2->52->S3->54->S5->S1->82" with valid vector
(0,1,0,0,0,0,1,0,1,1,0,0, 1). The gaibs through the whole loop twice. The
edge “S2->S3” in first loop hides information, libhe same edge in the second loop
does not. However, using traditional path findihgpathm can not see the difference
between the first loop and second loop. Thus, vesl ne extend the original FSM
with shadow states. For each state S, we creasomiated shadow state S’. The state
S’ is the same as the original statesincluding micwy edges, outgoing edges, and
self-loop edges. For every edge with state S ama¢ion state, we create a new edge
from the start state to state S'. In the same Waaygvery edge with state S as start
state, we create a new edge fram S’ to the end.stae modified FSM of Figure
4-4(b) is shown in Figure 4-5. The problem is sdlbg using the new FSM to find a
path. If one edge in the new path has a shadow atatlestination state, we define the
corresponding valid vector bit is ‘0. In other vdst, there will be no data hidden in
this edge. Otherwise, if the edge has a normag sistlestination state, we will hide a
data in this edge. By using this modified FSM, \&e ase normal path finding
algorithm to find all paths. For example, the paigcussed above can be represented
by “S1->S2’->S3->S4'->S5->S1'->S2’->S2->S3'->54-55S1'->S2'->S2".

Although now we can enumerate every path in the Stli& very inefficient that
finding a path from the beginning every time. Besicthis approach may lead to the
degradation of protection. Thus, we use a randgonoaggh to find a path. If M is the

FSM that we want to protect and M has n edgestl¥;itmse generate n / 8 (this

27

number will increase 1 when n is not divided byr@8ndom numbers such that every
bit of random number is mapped to one edge. Thesdgh a ‘1’ in its mapping
random number bit are selected to hide informatiiotihe number of one’s is not
equal to the number of information items we wartitte, just re-generate the random
number again. In order to make the edge sequence nraadomly, we randomly pick
one edge up to form another sequence in order., Weronnect these edges together
to form a path by applying the all pair shortegaithm to the edges to find the path
from one edge’s destination state to another edsjais state. If all edges can be
connected, we get a path for hiding information asedpass it to next step.
Sometimes, there is no path between two edgeslbpairashortest path algorithm

will fail. In this case, we go back to the randoomber generation step and do the

whole procedure again. The pseudo code of patefiisdshown in Figure 4-6.

Figure 4-5 The FSM of Figure 4-4(b) with shadow stas

28

Path Finder(number of edges n , number of data items d)

{

Repeat:
do

{
1f(n divided by 8)
generate n/8 random numbers
else
generate n/8 + 1 random numbers

count the number of ‘1" in random numbers

\}Vhﬂe(the numberof ‘1" = d)

for(i=1tod)

{ pick a random edge j from 1 to d such that the jth selected edge
will be 1n ith position of new order

}

for(i=1tod)

{
use all pair shortest path algorithm'to find. the path from the
destination state:of 1th/edge ito the ‘statt state of 1+1th edge

if(there 1s no path betweenath’edge and i+1th edge)
goto Repeat

Figure 4-6 The pseudo code of path finder

4.5 Formulating the encoding requirement into INLP

In order to acquire a state encoding, we formulageproblem as an integer
non-linear problem (INLP), and then we use a tatled LINGO to solve the INLP.
We use two constraint and a cost function to créredNLP :

1. Unique Constraint. Every state must have different state encoding.

2. Feasible Constraint The absolute state difference of start stateesad

state of the'! not excluded edge should be equal to thieidden data for

29

every i.

3. Cost Function. We can perform variant optimization for encodihy.
general, the cost function is set in order to aegaiset of minimum state
encoding.

Here we use Figure 4-1(b) as an example. The pativamt to hide information

is A->B->C->D->A->E excluded the edge D->A. The tioh information sequence is
0x10, 0x20, 0x30, and 0x40. Figure 4-7 shows thgquenconstraint, feasible

constraint and the cost function of Figure 4-1(b).

Unique Constraint

Al=F B!=C C!=D
Al=C B!=C CI1=E
AJsB B

Al=E

Feasible Constraint

I A= B1=0x10
[B-C1=0x20
| C-D'1=0x30
[A-EI=0x4C

Cost Function

Cost=A+B+C+D+E
Figure 4-7 The constraints of Figure4-1(b) for INLP
In implementing the INLP solver, we simply list ebnstraints in a
command, create the environment of LINGO, andIddIGO to solve the INLP. For
a path given by path finder, we generate the féasinstraints such that the start
state and destination state of selected edgesjaed ® the ith data item we want to
hide. We also generate the unique constraints thattthe encoding of every state

must not be equal to the encoding of another siate every state must have its own

30

unique encoding in FSM. Then, we generate thefaostion to minimize the state
encoding. There are two kinds of cost function e ase. One is to minimize the
sum of every state encoding and the other is tomime the maxima state encoding
of a single state. These two cost functions resulgssimilar state encoding in
LINGO, so we do not need to bother which one shaskl The pseudo code of INLP

solver is shown in Figure 4-8.

INLP solver(a path p given by path finder , FSM M, information sequence 1)
{

for(j = 1 to number of information data items)

{

generate the constraint
| the start state of jth selected edge inp -
the destination state of jth selected edge inp | = jth data item in I

}

for(every two different.states’T, - 1M,)

{

generate the constraint
state code of ["must not equal to’state-code of J

}

generate the cost function
minimize the sum of every.state encoding'of M

Figure 4-8 The pseudo code of INLP solver

4.6 Generating the gate-level net-list

With the state code generated by LINGO and the E88tription given by the
user, we shall create a new FSM in Verilog fornveiDL form with the information
sequence hidden between states.

Because some EDA tools will perform optimizatidtelistate minimization on
the circuit when it found its input is a FSM, tidarmation sequence we hide in the

FSM will be destroyed. In order to prevent the Fi8dMn optimization, we tear every

31

bit of state variable apart and store them in sgpdatches. For every bit of next
function and output function, consider every sitaivhich makes this bit become 1,
and combine all situations by a big OR gate. Cardide case of Figure 4-9. The
FSM has three states, one input, and one outpuevesy transition, we produce a
product term to describe the happening of thisasibn. The happening condition of
the left transition in Figure 4-9 is when the FSMn state ‘101’ and input equals 1.
The two product terms of the transition in Figur@ g¢hould be

p0 = state[2] and notstate[1] andstate[0] and input

pl= notstate[2] andstate[1] andstate[0] and not input

With these product terms, we can generate evenyf lniéxt state by adding the
corresponding product term to the bit of statealalg. For the left transition of Figure
4-6, the destination state is “011”. Then we addldbrresponding product teqd to
bit 1 and bit 0 of next state. The.destinationestdtright transition of Figure 4-9 is
“101”, thus we adgb1to bit O and bit2 of next.state. The next stat€igtire 4-9
should be

next_statp] = pl1

next_statfl] = pOorpl

next_statf] = p0

Finally, we generate the output of this FSM. Wemintombine all product
terms which make the output become 1 by an OR @& output of Figure 4-9
should be

output=pOorpl

1/1

(o)
101 » 101
N

0/1
pl

101

\ 4

p0

Figure 4-9 A simple FSM

32

The final FSM of Figure 4-10 in Verilog form is shio in Figure 4-9.

mwodule F3M[clk, clr, scaninput, scanmode, I, O):
input clk, eclr, scaninput, scanmode, I:
output O
wire [2:0] 32T:
wire [Z:0] N 3T:
wire [1:0] p:

assign p[0] = ST[2] & ~ST[1] & ST[O] & I:
assign p[1] ~3T[2] & ST[1] £ ST[O] & ~I:

assign M _3T[Z] = pl:
assign M _3T[1] = pO | pl:
assign N _3T[0] = poO:

assign O = p0 | pl:

ScanDFF dof clk, clr, N _3T[0], scaninput, scanmode, ST[O], 1'bl j:
ScanDFF dlf clk, clr, N 3T[1], ST[O], scammode, 3T[1], 1'bO):
SeanDFF d2 (clk, clr, N _3T[Z], 3T[1], sScammode, 2T[Z], 1'bl):

endmodule

Figure 4-10 The Verilog description of the FSM in kgure 4-9
Figure 4-11 is the pseudo:code of HDL.generator.

HDL generator(state encoding e, ESM M)

{
for(every edge g.of M)
{

generate a product term 1n the form
p(g) = AND of every bit of the start state and input
}

for(every state s of M)

{
for(every edge g of M)
{

if(the destination state of g == s)

{

for(every bit b of next function)

{
add the product term p(g) to b

}

}

generate the cost function
sum of every state encoding in M

}

Figure 4-11 The pseudo code of HDL generator

33

4.7 The Detecting Process

How do we verify whether a given FSM hides our ination? First we shall
prepare the modified FSM we want to detect ang#ih, valid vector, the
information sequence of our signature. Then, fehgaair of input state and input, we
fed them into the suspicious FSM and observe tk&ragion state of each step. If all
destination states are equal to the destinatida efacorresponding edge in our path,
the designer of this FSM is suspicious for copy a@esign.

In gate level, this procedure can be done by simhulating the suspicious
FSM using any EDA tool with simulator and obseitve $tate transition sequence.
But how do we detect the design that already begtterm a chip ? In physical level,
it is harder to find out the current state of a E&Mdrtunately, most design of circuit
contains scan-chain or JTAG-for.debugging the @rde can use the scan-chain to
scan in the start state of the path and-let-the FgMbne step. Then we scan out the
current state of the FSM and compare it with thi p&/hat if the target circuit does
not have scan-chain ? In this case, we use a nifficeili method to find the current
state. In a traditional FSM, the state variablstigsed in a latch or a register and the
latches can easily be identified. We can make § obphe combination part of the
FSM. Then we can feed the state and input to tpg cwcuit to observe the next state
that it sends to the latches. But how do we knaavatder of latches ? We can firstly
use an arbitrary order to feed the start statesplemific edge and observe the
destination state. If the destination state do¢snaich, try another order until we

found a match or all possible orders have beed.trie

4.8 A Complete Example

In this section, we use the control circuit of aART receiver to show the

34

complete procedure of our IP protection method.divale the whole UART receiver
into control circuit, shift register, and latch foonvenience and we implement the
control circuit by FSM in order to hide an infornwat sequence in it. The architecture
of UART receiver is shown in Figure 4-12. In thislatecture, we use eight times
faster clock frequency to ensure the correctnesiata sampling. The most

significant bit of three shift registers of thichitecture is ‘1’ in normal situation and
other bits are all ‘0’. The shift register 1 triggehe sampling action in the fourth
frame. The shift register 2 counts 8 clocks to uheiee the end of data receiving. The
shift register 3 controls the eight latches to hofaut data. When eight data is arrived,
the UART receiver will send a signal RCV_REQ toifyathe environment the

arriving of the input data.

|| shift_Reg3

counter3

— —» ERROR
—» RCV_REQ

+—— RCV_ACK

‘ ! ‘ Countrol Circuit :

. 8 outputs
Shift_Reg1 Shift_Reg2 7 inputs
Shift_Reg1.load=*100" Shift_Reg1.load is sync.load CLKis 8times
Shift_Reg2.lcad="1000000" Shift_Reg2.load is sync.load faster than Baud
Shift_Reg3.load="100000000" Shift_Reg3.load is async.load Rate

Figure 4-12 The architecture of UART receiver
Figure 4-13 is the STG of the control part of UARSEeiver. The five inputs in
Figure 4-13 are represented for RCV_IN, RCV_ACKymerl, counter2, counter3

respectively. The eight outputs are shiftl, loastift2, load2, shift3, load3,

35

RCV_REQ, ERROR respectively. The reset state te §t@and the error state is state

7. The information sequence we use here is the AG@Ee of “NCTU IPP”.

(1**": (01,01,01,00) (”0“) == (10,00,00,00) ***0*) == (10,10,00,00)
(0,07, %) == (00,00,00,00) (FAx7) = 10‘—’100000)
(*7,%,1,7) == (10,01,10,00)
(1,0.77,*) == (00,00,00,10) (0,* ***)== (00,00,00,10)

(*7.%7,0) == (110,10,00,00)

£ EEy (0,*** 1) == (00,00,10,10)
L ==L (1%1) => (00,00,10,10)

(1,1,5%%) == (00,00,00,00)

* = *) == (00,00,00,00) (1,057 ==

(00,00,00,10)

(0,*,*,*) == (00,00,00,00)
(1,077, == (00,00,00,00)

Figure 4-13 The STG of UART receiver
In the first place, we use:a tool “crypt” in SUNI&ds operating system to
encrypt the information sequence with the key “1234%He whole process is shown in
Figure4-14. The encrypted data of “NCTU IPP” is 0&8DD855F3BD908. Though

we can use more powerful encryption tool like 3DRSA, AES to encrypt the

information sequence, we use crypt here due tolsiityp

plane text
“NCTU IPP? | Key
1234 [T

i

encrypted text
40 C8 DD 85 5F 3B D9 08

Sun Solaris tool

crypt

Figure 4-14 The encryption process of informationequence

In order to add the encrypted text into the UARGereer controller, we divide

the encrypted data into eight 8-bits data and ne & path which is long enough to

36

hide data. The path we found is state8 -> stateflatel -> state2 -> state3 -> state4

-> stateb -> state8 -> stateO -> satel -> statesate3 -> state6 -> state8 -> state7

and the corresponding valid vectoris 1, 1, 1,,1,D, 0, 0, 0, O, 1, O, 1. This means

the first state8 -> state0 edge, the first state$tatel edge, the first statel -> state2

edge, the first state2 -> state3 edge, the statsBate4 edge, the state4 -> state5 edge,

the state3 -> state6 edge, and the state8 -> stdtgr are used to hide information.

Then, generate the three constraints of UART receind call LINGO to solve it.

Figure 4-15 shows the three constraints of

encoding .

Unique Constraint

State0 != State] ~ Statel !=State2 State2 != State? State3 != State4
State0 != State2
State0 != State”
State0 != State4

State0 != State!

State] != State® State2 != State4 _State31!= States

State] != State4 State2 != States State3 != State6
State] != State! State2 = State6 State3 I= State7
State] != State6 State2:l= State7—State3 == State®

State0 != State6 ~ Statel != State’ State2 !='Statet
State0 != State7

State0 != Statet

State] != Statet

Feasible Constraint

| State8 - State0 | = 0x4(
| State0 - Statel | = 0xC¢

| Statel - State2 | = 0xDLC
| State2 - State3 | = 085

| State3 - State4 | = 0xSF
| State4 - State5 | = 0x3E
| State3 - State6 | = 0xD9
| State7 - State8 | = 0x0¢

Cost Function

UAREIingr used to acquire the state

State4 != Statef State5 != State6 State6 != State7 State7 != Statet
State4 != State6 State5 != State7 State6 != Statet
State4 != State7 State5 != State¢

State4 1= Statef

Cost = State0 + Statel + State2 + State3 + State4 + State5+ State6 + State7 + State8

Figure 4-15 The three constraints of UART receiver

Then use LINGO to solve the INLP and we get a smhushown in Table 4-1.

State O 040
State 1 108
State 2 02B
State 3 0BO
State 4 051

37

In order to detect signature through the path, aedrthe information sequence

State 5 016
State 6 189
State 7 008
State 8 000

Table 4-1 The state encoding of UART receiver

we hide and valid vector. We also need the inp@azh state. Figure 4-16 shows all
the data we need to find the hidden data. For elartipe edge state8 -> state0 may

possibly hide the data 0x40. We set the curreme staFSM to state8 (which is 000

is this case) and give the input (1,

1,***) t@ethSM. Then make the FSM run one
step and observe the current state. Repeat tipsisté the whole path is traversed. If

all state differences with valid vector ‘1.are th@me, the FSM may be copied from

38

our design.
000 040 108 bD 02B
State8 | state0 | statet *| State2
(1) Q) (1) @
(1!0!*1*!*) (0!0!*!*1*) (*1*31!*!*)
o
000 016 3B 051 0BO
State8 K State5) State4 | State3 |
(0) (1) (1)
(1.1,5%7%) (12555, (0,%7,1)
(0)
040 108 02B (S
"| state0 "| state1 "| State2
(0) (0) (0)
(1.0,%%%) (0,0.*,%,%) 71,55
008 000 189 0BO
P - .
State? % State8 (0) Stateb 1) State3
(0!1,*,*,*) (1,1,*,*,*) (1’11-,*,1-’1)

Figure 4-16 The state encoding, valid vector, hidaeinformation, and inputs used by detecting

process

We implement the UART receiver in Xilinx FPGA indar to make sure the
UART receiver work correctly. The whole architeeus shown in Figure 4-17. We
connect the FPGA to a PC by serial connection aedcommunication software
‘TeraTerm’ to send data to the FPGA. After recegvihe data, the UART receiver
will show the data in seven-segment display. Ireotd extract the information
sequence we hide, we design a simple FSM to feeduirent state and inputs which
are stored in a separated ROM into the UART receiMae simple FSM will scan in
the start state of a edge in our path, controltART receiver to run one step and
scan out the current state. Finally the simple FBllws the state number in two

seven-segment displays. The difference calculasideft for users.

Scan out

state cod UART_ RX_DTE /
: Read the / circuit i
| patterns from Scan‘in pattern 5
he ROM Scan-Chain /
Control Circuit Received data
§ 7
- patterns in ROM l

| 7-segment-display

FPGA Board

Figure 4-17 The architecture of UART receiver withverification circuit

4.9 Evaluation of State Difference Encoding

In this section, we want to discuss about the roimss of our state difference

encoding and the overhead we made.

4.9.1 The Robustness Evaluation

An attacker may try to attack the circuit protecbhydour method in three ways.
The first way is trying to find out the informati@equence we embedded and
removing them. The second way is to hide anotHernmation sequence in the FSM
or find another meaningful information sequencenftbe FSM and claim that the
FSM is designed by him. The third way is to randppitk up the edge used to hide
information and the state difference will exactig tsame as ours.

Using our method, it is very hard to attack the F®Mirst approach. In order to
remove our information sequence, the attacker ensbde all states again. But only
changing the state encoding will cause the outptitedFSM malfunction. Unless the
attacker corrects the output which matches it@ €atoding, the FSM will not work
correctly. To remove our information sequence iehsa way, the attacker has to
change almost the whole FSM which-takes-a greatiabadf time.

What if the attacker uses the second.approach &uBeacnve use the state
difference to hide information, the data item caruked is already specified and very
restricted. The attacker can only use these restiritata to form his information
sequence. This will greatly decrease the probglihiat a fake information sequence
is found from our protected FSM. Although the dtexanay find a small but
meaningful information sequence, we can claim thatinformation sequence is
longer and thus provides more authorship. We cghducombine our method with
some powerful encryption algorithms. By using eption, the attacker has to find an
encrypted information sequence from our FSM usesfricted data and the decrypted
information of this information sequence has tort@aningful. The probability of this
situation is much lower.

Let we consider the third way. If a FSM has m stated n edges and assumes

40

we want to hide 16 data items in the FSM, m istgrethan 16 and any two states can
be used to hide information. The probability the €dges picked up randomly will

be equal to the edges we select is 1/(n)(n-1)(n{R}15). If n is 100, then the
probability will be 1/2.816*18". Thus, it is almost impossible to happen to pipk u

the same edges to hide information.

4.9.2 The Overhead Evaluation

Because we use the difference of states to hidenration, we do not have any
overhead of the FSM ideally. In fact, our method amly make the area of the FSM
increase in one case. Take Figure 4-13 and Tabléodexample, the FSM has only
nine states and can be encoded using four bitsud&@ine bits to encode them
because each data item of hidden information.semuisrtoo large to hide in the state
difference of four bits encoding..If the FSM hasrestates, we may divide the
information sequence into more data.items.-so eathittm is smaller and can be
hide in the FSM with less state variable bits.

Besides to increase the bits of state variablecaveuse an alternative approach
to hide large signature in a small FSM. If the &fgSM is really small that the states
and edges we can use is not enough to maintambiustness of authorship proof, we
add additional redundant states to hide the infionaequence. With these
redundant states, we can divide the informatiomeege into more small pieces, thus
provide more protection.

On the other hand, the computation overhead ofraihod is bigger than other
methods. Firstly, we must find a path in the ST®@mginal FSM. Then we solve the
INLP made from the path and the information segaebisually, The INLP solver
can not find a feasible solution. Then we callpla¢h finder to find another path and

run INLP solver again. This situation usually logps or more times before finding a

41

legal state encoding. Although we spend more timt@eé computation of state

encoding, we can hide an information sequencedar-8M with less area overhead.

42

Chapter 5 Experimental Results

In this chapter, we applied our IP protection mdttmthe benchmark ISCAS’91
to evaluate the overhead of our method. The ISCAS@nchmark includes 53
different FSMs which all are in kiss2 format. Theesof the circuits in ISCAS'91
varies widely. The original information used to leden in the FSMs is “DESIGN
BY SWCHEN". Firstly, we encrypt the plain text ASClcode to
OXC9A7EC8BI9CB77FBDCAA393E2A1E1AESE by “crypt” witkey “1234”. As
mentioned before, we can divide the informationusege to appropriate data items
by situations. In our experiment, the informatia@ysence is divided into 12 cases
from 5 items to 16 items and hides them:in the FRMb&enchmark respectively.
Table 5-1 shows the statistics data of ISCAS’ 91chemark. The columns of Table 5-1
from left to right are the inputs of the circuihet outputs, the number of edges, the

number of states, and the number of minimum-stiéderdquired to encode the states.

Circuit Inputs Outputs| # of edges# of states| # of state bits
bbara 4 2 60 10 4
bbsse 7 7 56 16 4
bbtas 2 2 24 6 3
beecount 3 4 28 7 3
cse 7 7 91 16 4
dk14 3 5 56 7 3
dk16 2 3 108 27 5
dk17 2 3 32 8 3
dk27 1 2 14 7 3

43

dk512 1 3 30 15
exl 9 19 138 20
ex2 2 2 72 19
ex3 2 2 36 10
ex4 6 9 21 14
ex5 2 2 32 9
ex6 5 8 34 8
ex7 2 2 36 10
keyb 7 2 170 19
kirkman 12 6 370 16
lion9 2 1 25 9
markl 5 16 22 15
opus 5 6 22 10
planet 7 19 115 48
planetl 7 19 115 48
pma 8 8 73 24
sl 8 6 107 20
s27 4 1 34 6
s208 11 2 153 18
s298 3 6 1096 218
s386 7 7 64 13
s420 19 2 137 18
s510 19 7 77 47
s820 18 19 232 25
s832 18 19 245 25

44

s1488 8 19 251 48 6
s1494 8 19 250 48 6
sand 11 9 184 32 5
scf 27 56 166 121 7
shiftreg 1 1 16 8 3
sse 7 7 56 16 4
styr 9 10 166 30 5
tbk 6 3 1569 32 5
tma 7 6 44 20 5
train1l 2 1 25 11 4

Table 5-1 The statistic data of benchmark ISCAS’91

Table 5-2 shows the required statesbits when hidifigrent number of data
items. Note that no matter how many data itemd$imigen, the total information
length is 128 bits. As we can see in Figure 5-2 ryuired state bits are almost
determined by the length of a single dataitermdmmal case, the more parts 128 bits
information is divided, the smaller data length pem and the less required state bits.
But sometimes the reverse condition likes 14 itamt$ 15 items of circuit dk16 will
happen. This is because we use a random approaatktap a path for information
hiding. Some grids in Table 5-2 are written as lM&kause the data items are too
many to be hidden in the circuit. This can be soleg adding new states and new

edges, but we did not implement the function yet.

Circuit Ori. | 5 6 7 8 9 10
items| items| items| items| items| items
bbara 4 26 23 19 15 14 N/A

45

bbsse 26 22 19 16 15 14
bbtas 26 N/A| N/A| N/A| N/A| N/A
beecount 26 22 N/A| N/Al N/A| N/A
cse 26 22 19 16 15 13
dk14 26 22 N/A| N/A| N/A| NA
dk16 26 22 19 16 15 13
dk17 26 22 19 N/A| N/A| N/A
dk27 26 22 N/A| N/A| N/A| NA
dk512 26 22 19 16 15 14
ex1 26 22 19 16 15 13
ex2 26 23 19 N/A| N/A| N/A
ex3 26 22 19 17 16 N/A
ex4 26 22 19 16 15 13
exs 26 22 19 17 N/A| N/A
ex6 26 22 19 N/A| N/A| N/A
ex’ 26 22 N/A| N/A| N/A| NA
keyb 26 22 19 16 15 13
kirkman 26 22 19 16 15 14
lion9 26 22 19 17 N/A| N/A
markl 26 22 19 16 15 14
opus 26 22 19 17 15 14
planet 26 22 19 16 15 13
planetl 26 22 19 16 15 13
pma 26 22 19 16 15 13
sl 26 22 19 16 15 13

46

s27 3 26 N/A| N/A| N/A| N/A | NA
s208 5 26 22 19 16 15 14
s298 8 26 22 19 16 15 13
s386 4 26 22 19 16 16 14
s420 5 26 22 19 16 15 13
s510 6 26 22 19 16 15 13
s820 5 27 22 19 16 15 13
s832 5 26 22 19 16 15 13
s1488 6 26 22 19 16 15 13
s1494 6 26 22 19 16 15 13
sand 5 26 22 19 16 15 14
scf 7 26 22 19 16 15 13
shiftreg 3 26 22 19 N/A| N/A| N/A
sse 4 26 22 19 16 16 13
styr 5 26 22 19 16 15 13
tbk 5 26 22 19 16 15 13
tma 5 26 22 19 16 15 13
trainll 4 26 23 19 16 16 14
Circuit Ori. |11 12 13 14 15 16
items| items| items| items| items| items
bbara 4 N/A| N/A| N/A| N/A | NA | N/A
bbsse 4 13 12 N/A| N/A| N/A| N/A
bbtas 3 N/A| N/A| N/A| NA | N/A | NA
beecount| 3 N/A| N/A| N/A| N/A| N/A| NA

47

cse 12 11 11 N/A| N/A| N/A
dk14 N/A | N/A | N/A | NJA | N/A | N/A
dk16 12 11 10 9 10 9
dk17 N/A | N/A | N/A | NJA | N/A | N/A
dk27 N/A | N/A | N/A | NJA | N/A | N/A
dk512 12 11 11 N/A| N/A| N/A
exl 12 11 10 9 10 N/A
ex2 N/A | N/A | N/JA | NJA | N/A | N/A
ex3 N/A | N/A | N/A | N/A | N/A | N/A
ex4 13 11 N/A| N/A| N/A| NA
ex5 N/A | N/A | N/A | NJA | N/A | N/A
ex6 N/A | N/A=N/A- | N/A | N/A | N/A
ex’ N/A | NJA | "N/A FN/A | N/A | N/A
keyb 12 12 10 9 10 9
kirkman 12 17 11 9 N/A| N/A
lion9 N/A | N/A | N/A | NJA | N/A | N/A
markl 12 11 N/A| N/A| N/A| N/A
opus N/A | N/A | N/A| N/A | NA | N/A
planet 12 11 11 9 9 8
planetl 12 11 11 9 10 9
pma 12 12 11 9 10 9
sl 12 11 10 9 9 9
s27 N/A | N/A | NJA | NJA | NJA | N/A
s208 12 11 11 9 10 N/A
s298 12 11 10 9 9 8

48

s386 4 12 12 N/A| N/A| N/A| N/A
s420 5 12 12 11 9 9 N/A
s510 6 12 11 10 9 9 9
s820 5 12 11 10 9 9 9
s832 5 12 11 11 9 9 9
s1488 6 12 11 10 9 10 8
s1494 6 12 11 10 10 9 9
sand 5 12 12 10 9 10 8
scf 7 12 11 11 9 10 9
shiftreg 3 N/A | N/A | NJA | NJA | NJA | N/A
sse 4 N/A| N/A| N/A| N/A| N/A | N/A
styr 5 12 11 11 9 10 9
tbk 5 12 12 10 9 9 9
tma 5 12 11 11 9 9 N/A
trainll 4 N/ATTENIA [*N/A | N/A | N/A | N/A

Table 5-2 State bits of each circuit when hiding ffierent data items

Although Table 5-2 shows that twice to six timestestbits are required, we can
claim that this is because we only divide the infation sequence into 16 data items.
Some circuits in the benchmark are large enouglhiting more items. If the FSM

we want to protect has a lot of states, we canddithe information sequence into

more parts and thus the required state bits wilekese.

Then we use the tool “SIS” (Synthesis of both $yooous and asynchronous
circuits) to count the literals of each circuiable 5-3 shows the literals of each
circuit before and after embedding the informatidhe first column is the name of

each circuit. The second column is the number tefdls counted by SIS without

49

optimization. After applying the optimization sdrifscript.algebraic” which is a
build-in script of SIS, the number of literal isostm in the third column of Table 5-3.
The fourth column shows the number of literals raftmbedding the information and

applying the optimization script “script.algebraic”

Circuit # of ori. lits # of ori. litsf With 128
after bits
optimization | embedded

bbara 133 96 244

bbsse 216 153 323

bbtas 53 32 159

beecount 74 59 194

cse 424 255 390

dk14 177 145 287

dk16 502 362 493

dk17 110 99 246

dk27 42 30 181

dk512 104 77 230

ex1l 511 303 763

ex2 252 183 344

ex3 111 95 211

ex4 146 105 215

exs 110 78 207

ex6 211 120 253

ex’ 114 94 217

keyb 605 317 394

50

kirkman 485 305 1070
lion9 47 36 220
markl 162 112 227
opus 147 96 213
planet 1102 653 780
planetl 1102 653 802
pma 581 230 497
sl 857 468 472
s27 18 14 183
s208 181 86 521
s298 244 138 3151
s386 347 158 337
s420 383 174 438
s510 424 303 504
s820 757 359 854
s832 769 376 920
s1488 1387 751 1249
s1494 1393 762 1438
sand 1126 637 792
scf 1865 953 981
shiftreg 20 8 189
sse 216 153 308
styr 1020 598 758
tbk 1829 953 1814
tma 386 197 367

51

trainll 67 59 212

Table 5-3 The number of literals before and after mbedding 128 bits information

52

Chapter 6 Conclusions and Future Works

In this research, we propose a new methodstate difference encoding- to
hide information in a finite state machine. The midiea of our method is to embed
the signature which is represented in a sequenrdarfmation in the difference of
states. The state difference encoding has thewwipadvantages :

1. This method is used in behavioral level and belral/ievel provides better

reusability.

2. This method can provide thorough protection frorhaworal level to
physical level.

3. Difficult to observe the signature since it is emibed in the state code.

4. Difficult to fake another signature because theecoatiich can be used is
restricted.

5. The signature can be.extracted whenever in bera\ewel, gate level, or
physical level.

On the other hand, our state difference encodisgcbeain disadvantages :

1. Complex computation. Using our method must finchthgor information
hiding, formulate the state code requirement imdNLP, and solve the
INLP.

2. Hard of detection. The detection procedure incldded the input state and
inputs into the FSM, let the FSM run one step, extdact the current state
of the FSM.

There is still something which could be improvadur method. The path finder

of our method uses random number to find a patinoigh this approach is efficient,

the overhead of the selected path varies. We aasmarter algorithm to pick up a

53

path in order to reduce the overhead instead afarnselection. Now, almost the
whole computation time is spent on the INLP sobde&d The INLP solver takes the
same time to solve the INLP no matter the INLPd&a&slution. Thus, we can tear the
whole INLP to many ILPs and solve these ILPs retpely to speed up the
computation time. The product term of the modifi€®M generated by HDL
generator now is directly derived from edges ofdhginal FSM. This will cause the
number of literals increases significantly. We cambine some optimization

algorithms to the HDL generator to further optimibe generated FSM.

54

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

References

A. B. Kahng, S. Mantik, I. L. Markov, M. Potkgk, P. Tucker, W. Huijuan,
and G. Wolfe, "Robust IP watermarking methodolodoeghysical design,"
presented dbesign Automation ConferencE998.

A. L. Oliveira, "Techniques for the creation difjital watermarks in sequential
circuit designs,Computer-Aided Design of Integrated Circuits andt&ms,
IEEE Transactions grvol. 20, pp. 1101, 2001.

D. Kirovski, H. Yean-Yow, M. Potkonjak, and Gong, "Intellectual property
protection by watermarking combinational logic $ygis solutions,"
Computer-Aided Desigri998.ICCAD 98.Digest of Technical Paperd998
IEEE/ACM International Conference on

E. Charbon and I. H. Torunoglu, "On intelledtpaoperty protection,”
presented atustom Integrated Circuits Conferen@900.

E. Charbon, "Hierarchical watermarking in ICsgn,"” presented &ustom
Integrated Circuits Conferenc&998.

I. Hong and M. Potkonjak, "Behavioral.synthesishniques for intellectual
property protection," presented@¢sign Automation ConferenckE99.

I. Torunoglu and E. Charbon, "Watermarking-twhsepyright protection of
sequential functions Solid-State Circuits, IEEE Journal,ofol. 35, pp. 434,
2000.

J. Lach, W. H. Mangione-Smith, and M. Potkonj4kPGA fingerprinting
techniques for protecting intellectual property,égented aCustom
Integrated Circuits Conferenc&998.

J. Lach, W. H. Mangione-Smith, and M. Potkonj&ignature hiding
techniques for FPGA intellectual property protecficComputer-Aided
Design 1998.ICCAD 98.Digest of Technical Paperd 998IEEE/ACM
International Conference on

J. Lach, W. H. Mangione-Smith, and M. Potkdnj&Robust FPGA intellectual
property protection through multiple small waterksat presented ddesign
Automation Conferenc&999

R. K. Gupta and Y. Zorian, "Introducing coraded system desigrlesign &
Test of Computers, IEEKoI. 14, pp. 15, 1997.

55

