

國 立 交 通 大 學

資訊工程系

碩碩碩碩 士士士士 論論論論 文文文文

保護 Soft-IP 的資訊隱藏技術

An information hiding technique for

Soft-IP protection

研 究 生：陳仕偉

指導教授：陳昌居 博士

中中中中 華華華華 民民民民 國國國國 九九九九 十十十十 四四四四 年年年年 六六六六 月月月月

An information hiding technique for

Soft-IP protection

研 究 生：陳仕偉 Student：Shi-Wei Chen

指導教授：陳昌居 Advisor：Chang-Jiu Chen

國 立 交 通 大 學

資 訊 工 程 學 系

碩 士 論 文

A Thesis

Submitted to Department of Computer Science and Information Engineering

College of Electrical Engineering and Computer Science

National Chiao Tung University

in

partial Fulfillment of the Requirements

for the Degree of Master

in

Computer Science and Information Engineering

June 2005

Hsinchu, Taiwan, Republic of China

 i

保護保護保護保護 SoftSoftSoftSoft----IPIPIPIP 的資訊隱藏技術的資訊隱藏技術的資訊隱藏技術的資訊隱藏技術

研究生：陳仕偉 指導教授：陳昌居

 國立交通大學 資訊工程學系

摘要摘要摘要摘要

 由於近年來電腦輔助設計軟體和超大型積體電路製程的進步，產品從研發到

推出市場的時間愈來愈短。為了因應急劇縮短的研發時間，必須重複使用事先設

計好的元件。因此在這種情況下，創造了一個新的商機——販售事先經過設計且

能夠重複使用的元件(即矽智財、Intellectual Property)。但是這個市場必須

要有保護的機制以避免 IP 被惡意的濫用或是轉售。在本論文中，我們提出一個

藉由在有限狀態機中隱藏資訊以保護 Soft-IP 的新方法。這個方法將有限狀態機

中的 State 重新編碼，使得在特定路徑上相鄰兩個 State 編碼的差值即為所要隱

藏的資訊。經過分析發現，我們的方法具有難以被查覺、難以被篡改，以及難以

被假造的特性，並且利用 Scan-Chain 即可檢測在特定電路中是否有隱藏資訊。

我們用我們的方法將 8 個 8bit 的資訊隱藏在 UART Receiver 電路中，得到的結

果顯示，這些電路不僅仍然正常運作，而且只用原來的 State 就能隱藏資訊。

 ii

An information hiding technique for

Soft-IP protection

Student : Shi-Wei Chen Advisor : Dr. Chang-Jiu Chen

Department of Computer Science and Information Engineering

National Chiao-Tung University

Abstract
As the progress of EDA tools and manufacturing technologies, we get shorter

and shorter time-to-market. In order to catch up with the decreasing time-to-market,

reuse pre-defined and pre-verified components is inevitable. This creates a new

market of selling reusable pre-defined components (i.e. Intellectual Property). But

the IP must be protected by some techniques from malicious duplication. In this thesis,

we propose a new method to protect Soft-IP by hiding information in FSMs. We

re-encode the state coding in the way that the difference of two states of selected edge

in a specific path is equal to the information we want to hide. Through analysis, we

found our method has the property of hard to be observed, hard to be removed, and

hard to be faked. Using scan-chain, we can detect whether a specific FSM hides our

information or not. We hide eight 8-bit information data in a UART receiver using our

method. The result shows that the UART receiver works correctly and we can hide the

eight 8-bit information in it without adding new states.

 iii

Acknowledgment

 這兩年的研究生生活中，首先感謝指導老師陳昌居老師提供了穩定的環境和

資源讓我能專心研究，同時也感謝黃年畤學長和沈銘峰同學的大力協助，沒有他

們的話，我不可能完成這項研究。當然也感謝同實驗室的夥伴們，以及家人們給

予我的支持和鼓勵促使這篇論文得以順利完成，謝謝大家。

 iv

Contents

摘要摘要摘要摘要 ..i

ABSTRACT..ii

ACKNOWLEDGMENT ..iii

LIST OF FIGURE ..vi

LIST OF TABLE...viii

Chapter 1 Introduction..1

Chapter 2 Related Works..5

2.1 OBJECTIVE AND METRICS OF INDIRECT IP PROTECTION5

2.2 INDIRECT IP PROTECTION TECHNIQUES ...6
2.2.1 Hierarchical Watermarking ..6

2.2.2 Behavioral Level ...6

2.2.3 Logic Level ..13

2.2.4 Field Programmable Gate Arrays...14

2.2.5 Standard Cell Place and Route...15

Chapter 3 Background of the Proposed Method ..16

3.1 BASIC DEFINITIONS ...16

3.2 MOTIVATION AND BASIC CONCEPT...16

3.3 COMPARE WITH EVEN/ODD ENCODING ..18

3.4 THE DETECTION OF THE SIGNATURE ..20

Chapter 4 State Difference Encoding...21

4.1 INPUTS AND OUTPUTS..21

4.2 THE ENCODING PROCESS..22

4.3 VALID VECTOR...23

4.4 FINDING THE PATH ...25

4.5 FORMULATING THE ENCODING REQUIREMENT INTO INLP29

4.6 GENERATING THE GATE -LEVEL NET -LIST ...31

4.7 THE DETECTING PROCESS..34

4.8 A COMPLETE EXAMPLE ...34

4.9 EVALUATION OF STATE DIFFERENCE ENCODING ...39

4.9.1 The Robustness Evaluation ..40

4.9.2 The Overhead Evaluation ...41

Chapter 5 Experimental Results...43

 v

Chapter 6 Conclusions and Future Works ..53

References...55

 vi

List of Figure

Figure 2-1 The STG of original design...7

Figure 2-2 Modified STG ..8

Figure 2-3 An alternative way to embed the watermark..9

Figure 2-4 The improvement version of Figure 2-3 ..9

Figure 2-5 An example of applying the method described in [7] : (a) the original

FSM, (b) adding transitions to embed watermark, (c) augmenting input and

adding transitions... 11

Figure 2-6 The explanation of embedding the signature ‘A7’ in the register

assignment solution..13

Figure 3-1 An example of state difference encoding (a) the original STG of FSM (b)

the STG after applying state difference encoding to hide 0x10, 0x20, 0x30 .18

Figure 3-2 An example of even/odd encoding (a) the original FSM (b) a possible

solution of even/odd encoding...19

Figure 4-1 The encoding procedure of state difference encoding..........................23

Figure 4-2 The kiss2 file format..23

Figure 4-3 An example of valid vector (a) the FSM can only hide three

information without valid vector (b) with valid vector, A->E can be used to

hide the fourth information...24

 vii

Figure 4-4 An example of the approach to solve the data item “00” in the

information sequence. (a) The information sequence is divided into two parts.

(b) the sample FSM. (c) a solution of sub sequence 1. (d) a solution of sub

sequence 2. ..26

Figure 4-5 The FSM of Figure 4-4(b) with shadow states28

Figure 4-6 The pseudo code of path finder ..29

Figure 4-7 The constraints of Figure4-1(b) for INLP...30

Figure 4-8 The pseudo code of INLP solver...31

Figure 4-9 A simple FSM...32

Figure 4-10 The Verilog description of the FSM in Figure 4-933

Figure 4-11 The pseudo code of HDL generator ...33

Figure 4-12 The architecture of UART receiver ...35

Figure 4-13 The STG of UART receiver ..36

Figure 4-14 The encryption process of information sequence36

Figure 4-15 The three constraints of UART receiver ...37

Figure 4-16 The state encoding, valid vector, hidden information, and inputs used

by detecting process ...38

Figure 4-17 The architecture of UART receiver with verification circuit39

 viii

List of Table

Table 4-1 The state encoding of UART receiver..38

Table 5-1 The statistic data of benchmark ISCAS’91 ..45

Table 5-2 State bits of each circuit when hiding different data items49

Table 5-3 The number of literals before and after embedding 128 bits information

..52

 1

Chapter 1 Introduction

As the progress of deep-submicron manufacturing processes recent years,

semiconductor density reaches a level that allows all elements of an entire system

being merged onto a single chip. Unfortunately, the design productivity has not kept

the pace. A study described in [11] shows that semiconductor densities are increasing

about 58% per year while design productivity only advances 21% annually. Thus, we

need a new design methodology to fill the gap between hardware capacity and design

productivity and the system-on-a-chip (SoC) design methodology shows up. In this

new design methodology, designers integrate several pre-designed and pre-verified

cores, also called intellectual property (IP), onto a single chip. These cores may be

obtained from internal sources or a third-party vendor. By reusing these cores,

designers save a great amount of time and work that can be spent on developing new

products. As a consequence, the design productivity increases dramatically.

Traditionally, IP can be classified into behavioral description (soft IP), structural

description (firm IP), or physical description (hard IP) according to the degrees of

freedom left to the user to manipulate it. Hard IP is generally in form of routed layout

for specified process technology and with very less freedom for further migrations.

On the other hand, soft IP, in contrast to hard IP, provides the most freedom for use. It

is possible to map soft IP to a variety of final layouts based on different synthesis

strategies and process technologies. However, a soft IP user must synthesize, optimize,

and validate for the soft IP before integrating it into the system. Firm IP is in the

position between hard IP and soft IP. It provides more flexibility and reconfigurability

than hard IP and better reuse potential than soft IP. Firm IP is usually in form of

technology-independence gate-level net-list or HDL description and can or can not be

 2

mapped to different process technologies depending on the IP designer.

Since an IP represents a digital circuit designed for specific function but do not

has a concrete physical manifestation, it is possible for customers to resell the IP as

their own even without understanding the details of the IP. This problem has become a

great concern of IP vendors and thereby the viability of the SoC design methodology

depends on how to protect IPs from malicious duplication or unauthorized use.

In nowadays, there exist two main approaches on IP protection, direct protection

and indirect protection. The goal of direct protection is to prevent unauthorized users

to use the IP. Hence, direct protection tries to make the medium in which IPs are

stored and exchanged more secure. This is usually done by applying encryption

algorithms like RSA to IPs. Then the encrypted IPs are placed in a public IP exchange

medium, and only authorized users can get private key to decrypt them. The direct

protection may potentially not be effective in avoiding infringement due to that once

the IP is decrypted, the user can do anything they want to the IP. Thus, indirect

protection must be applied to the IP simultaneously to avoid malicious duplication.

Most researches related to IP protection including this thesis focus on indirect IP

protection.

The purpose of indirect protection is to obtain a unique signature from IPs or

embed one into IPs. This allows the IP designer to determine whether a given IP has

been infringed upon. Indirect protection can further be divided into two kinds

according to whether the original design is modified or not. Active protection embeds

a signature which represents the authorship to the IP and in most cases, it will modify

the IP. While passive protection tries to obtain a signature from existing feature, hence,

it will not alter the IP.

Over the past few years, a considerable number of studies have been made on

indirect IP protection using watermarking technique. Watermark is a signature used to

 3

identify the authorship and watermarking means to embed the watermark into

something that we want to protect. Originally watermarking is used in video/audio

application since the watermark is hardly visible or audible by human eyes and ears.

Moreover, the watermark can be extracted and identified even the original picture or

music has changed by applying some algorithms to it. Recently, watermarking is also

used to protect IPs. There is a similar technique for IP protection, called fingerprinting,

which is generating a signature from a design using the existing features and

properties at a specified abstraction level.

Although a lot of methods are proposed for indirect protection using

watermarking technique, most of them are focus on hard IP protection since it is

easier and is efficient for detecting the watermark. Hard IPs can only be used in a

specific process technology. Thus, as long as the process technology of silicon

foundries progresses, the chip designers must buy these IPs again even though the

design of these IPs are the same. This situation makes the designers quite annoying.

Hence, selling soft IP or firm IP instead of hard IP will solve the problem since soft IP

provides more flexibility for users and the designer can resynthesize them to match

new process technology. However, soft IP and firm IP are still not prevalent today

because of the lack of soft or firm IP protection. Thus, our study is mainly focus on

soft IP protection in order to solve the embarrassing problem.

In this thesis, we present a new method to embed a signature into finite state

machine (FSM) by using a special state encoding during synthesis process. We first

choose a path in the FSM and encode the states in the way that the difference of every

two state along the path equals to a part of the signature we embed. Since the state

encoding will not change at all levels under the behavioral level, our approach can

protect the IP in the design hierarchy from firm IP to the routed layout. Besides, our

method can hide longer signature with less or even no area overhead compared to

 4

other proposed method.

 The remainder of this paper is organized as the following. Chapter 2 discusses

some researches related to IP protection. Chapter 3 introduces the concept of our

method. Chapter 4 details the proposed approach itself. Chapter 5 evaluates the

approach through an experiment. Chapter 6 gives our conclusions and the directions

for future development.

 5

Chapter 2 Related Works

In this chapter, we will introduce the objective and metrics of an indirect IP

protection method, and some IP protection methods that have already been proposed.

2.1 Objective and Metrics of indirect IP protection

For a successful indirect IP protection technique, it should have the following

properties:

1. Proof of Authorship and Authenticity : the signature embedded in IP must

be unambiguous.

2. Correctness of functionality : the added functionality should not affect the

correctness of original functionality.

3. Low overhead : the hardware overhead should be low.

4. Ease of detection : the signature should be detectable with a low cost

technique.

The following metrics are defined to evaluate a specific indirect IP protection

technique.

1. uP : the probability of uniqueness. It means the odds that another design

carries an identical signature.

2. mP : the probability of a miss. It means the odds that the signature is not

detected after tampering although the signature still exists.

3. fP : the probability of false alarm. It means the odds that a signature is

detected unintentionally. Generally, uP = fP .

 6

2.2 Indirect IP protection techniques

In this section, we introduce some indirect IP protection techniques according to

the design abstraction level they applied to.

2.2.1 Hierarchical Watermarking

In [5], the author proposes a method to protect IP by marking each step of the

synthesis and layout processes with a specific watermark. At the layout level, typical

mixed signal constraints, such as symmetry, grouping, clustering, fixed objects, and

alignment are used to form the watermark. At the gate level, the watermark is used to

generate a pseudo-random sequence of symbols, and each symbol represents a given

standard cell. At the structural level, the design is converted to a directed graph and

some specific constraints can be applied to it. The watermark is coded in these

constraints.

As we can see, this method is robust because it uses multiple watermarks. If one

of them is removed, other watermarks can still be detected. On the other hand, the

method is the most costly and complex compared to other methods.

2.2.2 Behavioral Level

In [2], A. L. Oliveria proposes a method to watermark FSMs by adding a set of

new states in such a way that when the special input sequence is applied to the

modified FSM, the added states are traversed in a predefined order. For example,

consider the STG shown in Figure 2-1. Assume we want to embed a three bit

signature 010, we then create three new states 1r , 2r , 3r together with states iv and

change the source and destination of the involved edges in Figure 2-1. Then, we will

obtain the STG shown in Figure 2-2. Note that the only way to traverse states

 7

1r , 2r , 3r in this order is to apply the sequence 010 from the reset state. Once

states 1r , 2r , 3r are traversed, the FSM enters states iv . Then we can claim that the

sequence of traversed states 1r , 2r , 3r exhibits a specific property that can be used to

identify the design. We shall note that the states 1r , 2r , 3r must maintain the original

outputs and state transitions of sequence 010 since there are some input sequences

that contain the same prefix as 010 but are not equal to 010.

q0

q1

q4

q2

q5

q3

q6

0/1

0/1

0/1

0/1, 1/0

1/1

1/1 1/1

1/0

0/0 -/1

-/1

Figure 2-1 The STG of original design

 8

q0

q1

q4

q2

q5

q3

q6

0/1

0/1

0/1, 1/0

1/1

1/1 1/1

1/0

0/0 -/1

-/1

v0

v1

v4

v2

v5

v3

v6

0/1

0/1

0/1

0/1, 1/0

1/1

1/1 1/1

1/0

0/0 -/1

-/1

r1

r2

r3

0/1 0/1

1/0

0/1

-/1

1/0

Figure 2-2 Modified STG

It seems that the area overhead of this method is very high because the number

of states of the watermarked STG is more than twice as much as the original STG. The

authors use a simple technique to avoid this problem. Consider the FSM in Figure 2-3,

the authors attach a small FSM with the original FSM. The function of this small FSM

is to monitor the primary input and keeps track of the presence of the author signature.

If the author signature has been inputted, the small FSM asserts a signal to notify the

presence of the author signature.

 9

Figure 2-3 An alternative way to embed the watermark

However, there still is a problem of this new method. Because the small FSM is

attached to the original FSM, the small FSM has nothing to do but the primary input

with the original FSM. Hence, the small FSM is easy to be detected and removed.

Again, the authors use another simple technique to solve it. The authors try to make a

relationship between the registers used by the original FSM and the registers used by

the small FSM by a mapping. Thus, the attackers can not easily distinguish which

register is used by the attached FSM. This is illustrated in Figure 2-4.

Figure 2-4 The improvement version of Figure 2-3

 10

This method has three main advantages : (1) simple computation. (2) the

signature can be detected in lower-level derived design. (3) the modification can be

directly added to a synthesized design instead of resynthesis. But the area overhead

may be unacceptable for embedding large signature. The authors claim that they can

use MD5 to shorten the signature to 128 bits without loss of strength of the authorship

proof.

In [7], the author proposes a simple technique to watermark sequential functions

which may be Completely or Incompletely specified FSMs. The main idea of this

method is to represent the watermark as the primary output sequence that shall be

produced only when a special input sequence which is unspecified in the original

FSM is applied. By using unused path to encode watermark, the functional

correctness of the FSM is guaranteed. For example, Figure 2-5(a) is the STG of a

simple FSM which has two input bits and one output bit. Assume a watermark 01 is

enough for identify this design, Figure 2-5(b) is a possible result of applying this

method to the FSM of Figure 2-5(a). It uses two unspecified transitions, q0 to q2 when

input sequence is 00 and q2 to q3 when input sequence is 11, to encode the watermark.

 11

q1

q3 q2

q0
11/0

1-/0

00/1

00/0

(a)

q1

q3 q2

q0
11/0

1-/0

00/1

00/0

(b)

q1

q3 q2

q0
110/0

1-0/0

000/1

000/0

(c)

00/1

11/0

000/1

110/0

Figure 2-5 An example of applying the method described in [7] : (a) the original FSM, (b) adding

transitions to embed watermark, (c) augmenting input and adding transitions

There is a special case that all transitions of the given FSM are specified. In this

case, we have no choice but to increase the number of primary inputs by one. Figure

2-5(c) shows augmenting a new input and adding transitions into Figure 2-5(a). The

main advantage of this method is simple computation and the ease of detection of the

watermark. And the signature is detectable in lower-level derived design.

In [6], Inki Hing and Miodrag Potkonjak propose a method for soft-IP protection

by inserting the author signature into the process of register assignment during

behavior synthesis. This method takes advantage of the fact that there are usually

more than one solutions of register assignment. An interval graph is an undirected

graph that each node in this graph represents one register in behavioral description. In

the interval graph, an edge between two nodes means the life time of the registers

represented by these two nodes is overlapped. Thus, these registers can not be used at

one time and edges in an interval graph are also called timing constraints. Register

 12

assignment means to find a way to color an interval graph such that for every two

nodes with an edge between them can not be the same color. The solution of coloring

problem is not unique, so legal register assignment is not unique, too.

There are three steps to apply Inki Hing and Miodrag Potkonjak’s method to a

FSM. First, we must obtain an interval graph from the behavioral description of the

FSM. Then, we use a special way to add the author signature into the interval graph.

Starting from node v1, if the first bit we want to hide is ‘1’, we add a new edge

between v1 and v3. Otherwise, we add a new edge between v1 and v2. Repeat this

step until all signature bits are added into the interval graph. Last, use any method for

solving coloring problem to obtain a register assignment of the modified interval

graph. Besides the second step, other two steps are the same as normal process of

register assignment. Figure 2-6 shows the process of embedding a signature of 14 bits

ASCII code ‘A7’ into an interval graph. Figure 2-6(a) is the original interval graph,

Figure 2-6(b) contains all the edges with encoded values we want to embed, and

Figure 2-6(c) is the result interval graph.

(a) (b)

 13

(c)

Y

Y

R

R

R

R Y

B

B

B

B

W

W

W

W

G

G

G

G

Y

Y

R

R

R

R Y

B

B

B

B

W

W

W

W

G

G

G

G

1
0

0

1

1

1 1

0

0

0 0

0

1

1

v1 v2 v3 v4 v5 v6 v7

v3 v4 v6 v8 v10 v12 v1

1 10 0 0 0 0 A

v8 v9 v10 v11 v12 v13 v14

v2 v3 v7 v8 v9 v11 v13

0 11 1 0 1 1 7

Figure 2-6 The explanation of embedding the signature ‘A7’ in the register assignment solution

The advantages of this method are easy computation and the embedded author

signature is difficult to be observed. Also, the unoptimal register assignment due to

the extra constraints provides a robust proof that there is a signature embedded. On

the other hand, there are some disadvantages of this method. This method is not

suitable for embedding long signature since one register can only embed one bit. The

other problem is that given a lower-level design, it is difficult to detect the signature.

2.2.3 Logic Level

In [3], D. Kirovski proposes a less resilient but simpler watermarking technique

in gate level. In this technique, the watermark is represented as a set of primary

 14

outputs that does not appear in the original logic network. These gates are selected

according to the pseudo-random bits generated from the author’s signature. There are

several steps to apply this method. First, in order to ensure that each watermark of

different author signature is unique, all gates in the circuit must save in a standard way.

Then, every gate is assigned an unique identifier and some gates will be picked up

according the pseudo-random. Last, these gates will become primary output and these

gates form the watermark.

In assigning identifiers to each gate, we must ensure that every gate has different

identifier in order to prevent the watermark from misinterpretation. Since to check

two gates are functionally identical is difficult, the authors propose a heuristic way to

assign identifiers according to eight criteria. In general, it is merely impossible that all

the eight criteria of two gates are identical. Unfortunately, this case still exists. If two

gates are not distinguishable using these eight criteria, we assign random unique

identifiers to them and memorize the assignment for future proof of authorship.

2.2.4 Field Programmable Gate Arrays

In [8], the watermark is in form of a bit stream and directly placed in the design

of FPGA. This is done by using the lookup table of unused configurable control logic

blocks. Each unused lookup table hides one bit of the bit stream. Then all the control

logic blocks which hides data are routed with all the original control blocks. This

method is refined in [9]. The signature is modified before being embedded in the

control blocks so as to mimic the property of the existing design.

In [10], the author tries to partition a large signature into small sections and

uniformly embeds these small pieces of signature in the design. The method ensures

higher levels of robustness because it is difficulty to remove all small watermarks

using pattern matching and removal techniques.

 15

2.2.5 Standard Cell Place and Route

In [1], two methods are proposed. The first method places constraints on the

physical location of standard cells. These constraints can be easily coded into a

signature. Thus, the signature is embedded in the layout by these constraints. The

second method put specific constraints on the realization of detailed routing. The

constraints usually involve wire width, spacing and the choices of topological routing.

 16

Chapter 3 Background of the Proposed

Method

In this chapter, we introduce our method and make some explanation of it. We

also discuss about the detection of the signature in gate level and physical level in this

chapter.

3.1 Basic Definitions

This section introduces some general definitions of finite state machines.

Definition 1 : A Mealy-type FSM is defined as M = (Σ,Δ, Q, q0,δ,λ), where

Σ is a finite set of input symbols, Δ is a finite set of output symbols, Q is a finite set

of states, q0 ∈ Q is the initial (reset) state, δ(q, a) : Q ×Σ →Q is the transition

function, and λ(q, a) : Q ×Σ →Δ is the output function.

Definition 2 : The output of a sequence α = (a1, …, ak) applied to states q

denoted byλ(q,α) represents the output of the FSM after a sequence of inputs (a1, …,

ak), is applied in state q. The output of such a sequence is defined to be

λ(q,α) =λ(δ(δ(…δ(q, a1)…), ak-1), ak).

Definition 3 : The destination state of a sequence α = (a1, …, ak) denoted by

δ(q,α) represents the final state reached by an FSM after a sequence of inputs

(a1, …, ak) and is applied in state q. This state is defined as

δ(q,α) = δ(δ(…δ(δ(q, a1), a2), …), ak).

Definition 4 : State qi and qj are equivalent iffλ(qi,α) =λ(qj,α) for every

sequenceα. Two FSMs M and M’ are equivalent iff their reset states are equivalent.

Definition 5 : FSM s M = (Σ,Δ, Q, q0,δ,λ) and M’ = (Σ,Δ, Q’, q0’,δ’,λ’)

are equivalent iffλ(q0,α) =λ’(q0’,α) for every input sequenceα.

3.2 Motivation and Basic Concept

Based on the methods discussed in chapter 2, we can find that all IP protection

methods have some disadvantages. In HDL level, there is no way to hide information.

 17

Although some methods can protect IP in gate level or physical level, they can only

protect the IP in the specified level. Some other methods can extend the protection

from behavioral level to gate level by using register assignment or other approaches,

but the protection will be destroyed when the IP is mapped to lower level.

Thus, we want to find a new IP protection method that has two main properties :

(1) the method is used in behavioral level since behavioral level provides better

reusability (2) the method can provide thorough protection from behavioral level to

physical level. Besides, the method must satisfy the requirements mentioned in

Section 3.1.

The main idea of our method is to embed the author signature in the difference of

state number in a FSM. In this way, the first property is satisfied because the FSM

description is in behavioral level. The state number will not change as long as the

CAD tool we use does not do any optimization about state numbers. Thus, the author

signature we embedded can be extracted in behavioral level, gate level, and physical

level.

Figure 3-1 uses a simple example to explain the idea of our method. Figure 3-1(a)

is the original FSM. The signature we want to embed is 0x10, 0x20, 0x30. First, we

choose an arbitrary path from the reset state a and the path must contains three edges

for embedding three number of the signature. Here, we choose A->B->C->D. Then

we must find a set of state numbers such that state number of A and state number of B

are differenced by 0x10, state number of B and state number of C are differenced by

0x20, state number of C and state number of D are differenced by 0x30. Figure 3-1(b)

shows a possible state encoding of the FSM using our method.

 18

(a)

(b)

Figure 3-1 An example of state difference encoding (a) the original STG of FSM (b) the STG after

applying state difference encoding to hide 0x10, 0x20, 0x30

With very low probability, it is possible that we can find another meaningful

signature from the FSM which a signature has been embedded in. To decrease the

probability of this situation, we can first encrypt the author signature with some

encryption algorithms like RSA, and then we embed the encrypted signature into the

FSM. In this way, it is almost impossible to find another signature that is meaningful

when decrypted from the modified FSM.

3.3 Compare with Even/Odd Encoding

There is an easier way to embed the author signature into a FSM by using

even/odd encoding which is similar to the method used in [6]. The states will first be

assigned an order from 1 to the number of states. Then, we hide the first bit in the 1st

state using the way that if the bit is 0, we choose a transition that the start state is the

1st state and encode the destination state as even. If the bit is 1, encode the destination

 19

state as odd. Repeat this step until all bits have been hidden in the FSM.

There is a serious problem of the even/odd encoding. Consider the example

shown in Figure 3-2. This is a result of applying even/odd encoding. As we can see,

state1, state2, and state4 can hide arbitrary data because they have both transitions

that the destination state are odd and even. For 3 bit data, only (000), (010), (011) can

not be hidden in the FSM. 5 out of 8 combinations are possible, and thus even/odd

encoding can not be used in IP protection.

(a)

(b)

Figure 3-2 An example of even/odd encoding (a) the original FSM (b) a possible solution of

even/odd encoding

Using state difference encoding, a path “A->C->E->A->D->D” will only present

the sequence of code |A-C|, |C-E|, |E-A|, |A-D|, |D-D|. Besides, for each state, the code

can be hidden is restricted to some specific values. Hence, fake signature is difficult to

be created.

 20

3.4 The Detection of the Signature

Our state difference encoding uses two techniques to detect the signature we hide.

In behavioral and gate level, we only need to simulate the given FSM and observe the

value of the state registers. In physical level, we take advantages of the scan-chain.

Using scan-chain, we can set the FSM to a specific state and run one step. Then we

dump the state value to observe if there is any signature hidden in the given FSM.

 21

Chapter 4 State Difference Encoding

In this chapter, we use a more formal way to introduce our state difference

encoding method.

4.1 Inputs and Outputs

The inputs of our method are listed as follows :

1. The FSM that need protection. The definition of FSM is already discussed

in section 3.1.

2. The predefined path, path = { state0, state1, … , staten }. A predefined path

is a path that the information will hide in. This path can be generated by a path finder

or provided by the user. If the path is given by the user, the associated valid vector

should be given, too.

3. The information sequence, info = { info1, info2, … , infom }. Information

sequence means the ASCII code sequence that we want to embed to the FSM. This is

equal to the author signature mentioned before. The variable m is determined by the

path length and the total length of the information sequence. If the length of

information sequence is α, then the variable m isα/ m. The information sequence

can firstly be encrypted by an arbitrary encryption algorithm or just plain text of

ASCII codes. The encryption process is recommended since this process decreases the

probability of fake meaningful signature found in the FSM which we have already

hidden a signature in.

The outputs of our method are :

1. The modified FSM. The function of the modified FSM will be the same as

the original FSM. Only the state encoding will be different since we use state

 22

difference encoding to hide information in the FSM.

2. The valid vector, valid_vector = { valid_vector1, valid_vector2, … ,

valid_vectorn-1 }. We will encounter a situation which usually results in no feasible

state encoding when the original FSM has a feedback loop. Thus, we introduce the

valid vector to prevent this situation. The detail of valid vector will be discussed in

section 4.3. We shall note that the variable n is the same as the variable used in

predefined path. This means the length of valid vector will be one less than the

predefined path.

4.2 The Encoding Process

The encoding process of our method is divided into three steps, as shown in

Figure 4-1.

� Step1 , Path Finder : the goal of path finder is to find a path to hide

information from the FSM (in kiss2 format, which is shown in Figure4-2)

given by user and pass the path, valid vector, and the information to INLP

solver.

� Step2 , INLP Solver : INLP solver tries to find a legal state encoding that

embeds the information. Sometimes, INLP solver can not find a legal state

encoding of the path passed by path finder. In this case, we go back to step

1 and find another path. Repeat this step until a legal state encoding is

found.

� Step3 , HDL Generator : This is the easiest part of the state difference

encoding process. The HDL generator takes the FSM given by user and the

state code found by INLP solver to generate a new FSM in gate level

description that embeds the information. The user can choose that the

modified FSM is in Verilog form or VHDL form.

 23

Figure 4-1 The encoding procedure of state difference encoding

.i 3 => the number of inputs

.o 3 => the number of outputs

.p 10 => the number of edges

.s 5 => the number of states

.r st0 => the reset state, it must one of the states

-10 st0 st1 001 the description of a single transition
 : it means when the FSM is in state st0
 : and input is -10 the FSM will move to
 : state st1 and put 001 on output

Figure 4-2 The kiss2 file format

4.3 Valid Vector

In ideal case, a path with n edges can hide n information in it using our method.

But in fact, most FSMs have loops or self-loops in order to reset the FSM or wait for

the arriving of some signals. This restricts us in finding a long path to hide the

information. Consider the case illustrated in Figure 4-3(a). We want to hide the

information sequence ‘0x10, 0x20, 0x30, 0x40’ in the path “A->B->C->D->A”. It can

be found that once three information have been hidden in edge “A->B, B->C, C->D” ,

 24

the state encoding of state A, B, C, and D are determined and there is almost no room

for adjusting the encoding to match the fourth piece of information, “0x40”. As a

result, the edge “D->A” can not be used to hide information.

 (a)

(b)

A B

D C

E
0x10

0x20

0x30

0 16

4896

64

0x40

Selected Path : A->B->C->D->A->E
Valid Vector : 1 1 1 0 1

Figure 4-3 An example of valid vector (a) the FSM can only hide three information without valid

vector (b) with valid vector, A->E can be used to hide the fourth information

If we can make some of the edges hiding information and others not, we can hide

one more information in the FSM of Figure4-3(a) by hiding the fourth information in

the edge A->E and disregarding the edge “D->A” in the path “A->B->C->D->A->E”.

The choice of edges is what we called “valid vector”. A valid vector is a bit sequence

of 0 and 1 incorporated with the predefined path. If a bit of valid vector is 1, the edge

is used for hiding information. Otherwise, if the bit of valid vector is 0, we will omit

 25

the edge.

The valid vector is not only useful for hiding longer information and increase the

utility rate of the edges. It is helpful for distribute the hidden information to the whole

path. Thus, it is harder for the attackers to find out what information we hide and the

protection of our method will be stronger.

4.4 Finding the path

Although the path which is used to hide information can be provided by the user,

the path finder is still required for the case that the user does not provide the path.

There are some problems we encountered in implementing the path finder. The first

problem is the restriction in path selecting due to a data item “00” in information

sequence. It is possible that the information sequence contains a data item “00”.

Because we use the state difference encoding, the only choice of hiding “00” is to find

a state with a self loop transition and use this transition to hide the “00”. Without the

“00” condition, we can simplify the path finding process as finding a path in FSM

such that the number of “1” in valid vector equals to the number of data item in the

information sequence.

In order to solve the problem, we use the data item “00” as delimiter to divide

the information sequence into several sub sequence. Then, each sub sequence is a

simple path finding problem. There are two requirements of the simple path finding

problem :

1. The end node of the path must contain a self-loop in order to hide the

delimiter “00”.

2. The efficiency length has to be larger than the number of items in the sub

sequence.

As shown in Figure 4-4, the information sequence 13, 00, 14, 55, 00 is divided into

 26

two sub sequences 13, 00 and 14, 55, 00. Then we find two paths to hide these sub

sequences respectively.

(a)

(b)

(c)

(d)

Figure 4-4 An example of the approach to solve the data item “00” in the information sequence.

 27

(a) The information sequence is divided into two parts. (b) the sample FSM. (c) a solution of sub

sequence 1. (d) a solution of sub sequence 2.

The second problem we encountered is that we want to find all possible paths in

a given FSM but the original model can not satisfy our requirement due to valid

vector. Consider the FSM in Figure 4-4(b) and the path

“S1->S2->S3->S4->S5->S1->S2->S2->S3->S4->S5->S1->S2->S2” with valid vector

(0, 1, 0, 0, 0, 0, 1, 0, 1, 1, 0, 0, 1). The path goes through the whole loop twice. The

edge “S2->S3” in first loop hides information, but the same edge in the second loop

does not. However, using traditional path finding algorithm can not see the difference

between the first loop and second loop. Thus, we need to extend the original FSM

with shadow states. For each state S, we create a associated shadow state S’. The state

S’ is the same as the original state including incoming edges, outgoing edges, and

self-loop edges. For every edge with state S as destination state, we create a new edge

from the start state to state S’. In the same way, for every edge with state S as start

state, we create a new edge from S’ to the end state. The modified FSM of Figure

4-4(b) is shown in Figure 4-5. The problem is solved by using the new FSM to find a

path. If one edge in the new path has a shadow state as destination state, we define the

corresponding valid vector bit is ‘0’. In other words, there will be no data hidden in

this edge. Otherwise, if the edge has a normal state as destination state, we will hide a

data in this edge. By using this modified FSM, we can use normal path finding

algorithm to find all paths. For example, the path discussed above can be represented

by “S1->S2’->S3->S4’->S5’->S1’->S2’->S2->S3’->S4->S5->S1’->S2’->S2”.

Although now we can enumerate every path in the STG, it is very inefficient that

finding a path from the beginning every time. Besides, this approach may lead to the

degradation of protection. Thus, we use a random approach to find a path. If M is the

FSM that we want to protect and M has n edges. Firstly, we generate n / 8 (this

 28

number will increase 1 when n is not divided by 8) random numbers such that every

bit of random number is mapped to one edge. The edges with a ‘1’ in its mapping

random number bit are selected to hide information. If the number of one’s is not

equal to the number of information items we want to hide, just re-generate the random

number again. In order to make the edge sequence more randomly, we randomly pick

one edge up to form another sequence in order. Then, we connect these edges together

to form a path by applying the all pair shortest algorithm to the edges to find the path

from one edge’s destination state to another edge’s start state. If all edges can be

connected, we get a path for hiding information and we pass it to next step.

Sometimes, there is no path between two edges and all pair shortest path algorithm

will fail. In this case, we go back to the random number generation step and do the

whole procedure again. The pseudo code of path finder is shown in Figure 4-6.

Figure 4-5 The FSM of Figure 4-4(b) with shadow states

 29

Path Finder(number of edges n , number of data items d)
{

Repeat:
 do
 {
 if(n divided by 8)
 generate n / 8 random numbers
 else
 generate n / 8 + 1 random numbers

 count the number of ‘1’ in random numbers
 }
 while(the number of ‘1’ != d)

 for(i = 1 to d)
 {
 pick a random edge j from 1 to d such that the jth selected edge
 will be in ith position of new order
 }

 for(i = 1 to d)
 {
 use all pair shortest path algorithm to find the path from the
 destination state of ith edge to the start state of i+1th edge

 if(there is no path between ith edge and i+1th edge)
 goto Repeat
 }
}

Figure 4-6 The pseudo code of path finder

4.5 Formulating the encoding requirement into INLP

In order to acquire a state encoding, we formulate the problem as an integer

non-linear problem (INLP), and then we use a tool called LINGO to solve the INLP.

We use two constraint and a cost function to create the INLP :

1. Unique Constraint. Every state must have different state encoding.

2. Feasible Constraint. The absolute state difference of start state and end

state of the ith not excluded edge should be equal to the ith hidden data for

 30

every i.

3. Cost Function. We can perform variant optimization for encoding. In

general, the cost function is set in order to acquire a set of minimum state

encoding.

Here we use Figure 4-1(b) as an example. The path we want to hide information

is A->B->C->D->A->E excluded the edge D->A. The hidden information sequence is

0x10, 0x20, 0x30, and 0x40. Figure 4-7 shows the unique constraint, feasible

constraint and the cost function of Figure 4-1(b).

Figure 4-7 The constraints of Figure4-1(b) for INLP

 In implementing the INLP solver, we simply list all constraints in a

command, create the environment of LINGO, and call LINGO to solve the INLP. For

a path given by path finder, we generate the feasible constraints such that the start

state and destination state of selected edges are equal to the ith data item we want to

hide. We also generate the unique constraints such that the encoding of every state

must not be equal to the encoding of another state since every state must have its own

 31

unique encoding in FSM. Then, we generate the cost function to minimize the state

encoding. There are two kinds of cost function we can use. One is to minimize the

sum of every state encoding and the other is to minimize the maxima state encoding

of a single state. These two cost functions results in a similar state encoding in

LINGO, so we do not need to bother which one should use. The pseudo code of INLP

solver is shown in Figure 4-8.

INLP solver(a path p given by path finder , FSM M, information sequence i)
{

 for(j = 1 to number of information data items)
 {
 generate the constraint
 | the start state of jth selected edge in p -
 the destination state of jth selected edge in p | = jth data item in I
 }

 for(every two different states I, J in M)
 {
 generate the constraint
 state code of I must not equal to state code of J
 }

 generate the cost function
 minimize the sum of every state encoding of M

}

Figure 4-8 The pseudo code of INLP solver

4.6 Generating the gate-level net-list

With the state code generated by LINGO and the FSM description given by the

user, we shall create a new FSM in Verilog form or VHDL form with the information

sequence hidden between states.

Because some EDA tools will perform optimization like state minimization on

the circuit when it found its input is a FSM, the information sequence we hide in the

FSM will be destroyed. In order to prevent the FSM from optimization, we tear every

 32

bit of state variable apart and store them in separate latches. For every bit of next

function and output function, consider every situation which makes this bit become 1,

and combine all situations by a big OR gate. Consider the case of Figure 4-9. The

FSM has three states, one input, and one output. For every transition, we produce a

product term to describe the happening of this situation. The happening condition of

the left transition in Figure 4-9 is when the FSM is in state ‘101’ and input equals 1.

The two product terms of the transition in Figure 4-9 should be

p0 = state [2] and not state [1] and state [0] and input

p1 = not state [2] and state [1] and state [0] and not input

With these product terms, we can generate every bit of next state by adding the

corresponding product term to the bit of state variable. For the left transition of Figure

4-6, the destination state is “011”. Then we add the corresponding product term p0 to

bit 1 and bit 0 of next state. The destination state of right transition of Figure 4-9 is

“101”, thus we add p1 to bit 0 and bit2 of next state. The next state of Figure 4-9

should be

next_state[2] = p1

next_state[1] = p0 or p1

next_state[0] = p0

Finally, we generate the output of this FSM. We simply combine all product

terms which make the output become 1 by an OR gate. The output of Figure 4-9

should be

output = p0 or p1

Figure 4-9 A simple FSM

 33

The final FSM of Figure 4-10 in Verilog form is shown in Figure 4-9.

Figure 4-10 The Verilog description of the FSM in Figure 4-9

Figure 4-11 is the pseudo code of HDL generator.

HDL generator(state encoding e , FSM M)
{
 for(every edge g of M)
 {
 generate a product term in the form
 p(g) = AND of every bit of the start state and input
 }

 for(every state s of M)
 {
 for(every edge g of M)
 {
 if(the destination state of g == s)
 {
 for(every bit b of next function)
 {
 add the product term p(g) to b
 }
 }
 }
 }

 generate the cost function
 sum of every state encoding in M
}

Figure 4-11 The pseudo code of HDL generator

 34

4.7 The Detecting Process

How do we verify whether a given FSM hides our information? First we shall

prepare the modified FSM we want to detect and the path, valid vector, the

information sequence of our signature. Then, for each pair of input state and input, we

fed them into the suspicious FSM and observe the destination state of each step. If all

destination states are equal to the destination state of corresponding edge in our path,

the designer of this FSM is suspicious for copy our design.

In gate level, this procedure can be done by simply simulating the suspicious

FSM using any EDA tool with simulator and observe the state transition sequence.

But how do we detect the design that already been made in a chip ? In physical level,

it is harder to find out the current state of a FSM. Fortunately, most design of circuit

contains scan-chain or JTAG for debugging the circuit. We can use the scan-chain to

scan in the start state of the path and let the FSM run one step. Then we scan out the

current state of the FSM and compare it with the path. What if the target circuit does

not have scan-chain ? In this case, we use a more difficult method to find the current

state. In a traditional FSM, the state variable is stored in a latch or a register and the

latches can easily be identified. We can make a copy of the combination part of the

FSM. Then we can feed the state and input to the copy circuit to observe the next state

that it sends to the latches. But how do we know the order of latches ? We can firstly

use an arbitrary order to feed the start state of a specific edge and observe the

destination state. If the destination state does not match, try another order until we

found a match or all possible orders have been tried.

4.8 A Complete Example

In this section, we use the control circuit of an UART receiver to show the

 35

complete procedure of our IP protection method. We divide the whole UART receiver

into control circuit, shift register, and latch for convenience and we implement the

control circuit by FSM in order to hide an information sequence in it. The architecture

of UART receiver is shown in Figure 4-12. In this architecture, we use eight times

faster clock frequency to ensure the correctness of data sampling. The most

significant bit of three shift registers of this architecture is ‘1’ in normal situation and

other bits are all ‘0’. The shift register 1 triggers the sampling action in the fourth

frame. The shift register 2 counts 8 clocks to determine the end of data receiving. The

shift register 3 controls the eight latches to hold input data. When eight data is arrived,

the UART receiver will send a signal RCV_REQ to notify the environment the

arriving of the input data.

Figure 4-12 The architecture of UART receiver

Figure 4-13 is the STG of the control part of UART receiver. The five inputs in

Figure 4-13 are represented for RCV_IN, RCV_ACK, counter1, counter2, counter3

respectively. The eight outputs are shift1, load1, shift2, load2, shift3, load3,

 36

RCV_REQ, ERROR respectively. The reset state is state 8 and the error state is state

7. The information sequence we use here is the ASCII code of “NCTU IPP”.

Figure 4-13 The STG of UART receiver

In the first place, we use a tool “crypt” in SUN Solaris operating system to

encrypt the information sequence with the key “1234”. The whole process is shown in

Figure4-14. The encrypted data of “NCTU IPP” is 0x40C8DD855F3BD908. Though

we can use more powerful encryption tool like 3DES, RSA, AES to encrypt the

information sequence, we use crypt here due to simplicity.

Figure 4-14 The encryption process of information sequence

In order to add the encrypted text into the UART receiver controller, we divide

the encrypted data into eight 8-bits data and we find a path which is long enough to

 37

hide data. The path we found is state8 -> state0 -> state1 -> state2 -> state3 -> state4

-> state5 -> state8 -> state0 -> sate1 -> state2 -> state3 -> state6 -> state8 -> state7

and the corresponding valid vector is 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 0, 1. This means

the first state8 -> state0 edge, the first state0 -> state1 edge, the first state1 -> state2

edge, the first state2 -> state3 edge, the state3 -> state4 edge, the state4 -> state5 edge,

the state3 -> state6 edge, and the state8 -> state7 edge are used to hide information.

Then, generate the three constraints of UART receiver and call LINGO to solve it.

Figure 4-15 shows the three constraints of UART receiver used to acquire the state

encoding .

Figure 4-15 The three constraints of UART receiver

Then use LINGO to solve the INLP and we get a solution shown in Table 4-1.

State 0 040

State 1 108

State 2 02B

State 3 0B0

State 4 051

 38

State 5 016

State 6 189

State 7 008

State 8 000

Table 4-1 The state encoding of UART receiver

In order to detect signature through the path, we need the information sequence

we hide and valid vector. We also need the input of each state. Figure 4-16 shows all

the data we need to find the hidden data. For example, the edge state8 -> state0 may

possibly hide the data 0x40. We set the current state of FSM to state8 (which is 000

is this case) and give the input (1,1,*,*,*) to the FSM. Then make the FSM run one

step and observe the current state. Repeat this step until the whole path is traversed. If

all state differences with valid vector ‘1’ are the same, the FSM may be copied from

our design.

Figure 4-16 The state encoding, valid vector, hidden information, and inputs used by detecting

 39

process

We implement the UART receiver in Xilinx FPGA in order to make sure the

UART receiver work correctly. The whole architecture is shown in Figure 4-17. We

connect the FPGA to a PC by serial connection and use communication software

‘TeraTerm’ to send data to the FPGA. After receiving the data, the UART receiver

will show the data in seven-segment display. In order to extract the information

sequence we hide, we design a simple FSM to feed the current state and inputs which

are stored in a separated ROM into the UART receiver. The simple FSM will scan in

the start state of a edge in our path, control the UART receiver to run one step and

scan out the current state. Finally the simple FSM shows the state number in two

seven-segment displays. The difference calculation is left for users.

UART_ RX_DTE
circuit

UART_ RX_DTE
circuit

Patterns in ROMPatterns in ROM

Scan-Chain
Control Circuit
Scan-Chain

Control Circuit

7-segment-display

Scan in pattern

Scan out
state code

Read the
patterns from

the ROM

Received data

FPGA Board PC

RS232

UART_ RX_DTE
circuit

UART_ RX_DTE
circuit

Patterns in ROMPatterns in ROM

Scan-Chain
Control Circuit
Scan-Chain

Control Circuit

7-segment-display

Scan in pattern

Scan out
state code

Read the
patterns from

the ROM

Received data

FPGA Board PC

RS232

UART_ RX_DTE
circuit

UART_ RX_DTE
circuit

Patterns in ROMPatterns in ROM

Scan-Chain
Control Circuit
Scan-Chain

Control Circuit

7-segment-display

Scan in pattern

Scan out
state code

Read the
patterns from

the ROM

Received data

UART_ RX_DTE
circuit

UART_ RX_DTE
circuit

Patterns in ROMPatterns in ROM

Scan-Chain
Control Circuit
Scan-Chain

Control Circuit

7-segment-display

Scan in pattern

Scan out
state code

Read the
patterns from

the ROM

Received data

FPGA Board PC

RS232

Figure 4-17 The architecture of UART receiver with verification circuit

4.9 Evaluation of State Difference Encoding

In this section, we want to discuss about the robustness of our state difference

encoding and the overhead we made.

 40

4.9.1 The Robustness Evaluation

An attacker may try to attack the circuit protected by our method in three ways.

The first way is trying to find out the information sequence we embedded and

removing them. The second way is to hide another information sequence in the FSM

or find another meaningful information sequence from the FSM and claim that the

FSM is designed by him. The third way is to randomly pick up the edge used to hide

information and the state difference will exactly the same as ours.

Using our method, it is very hard to attack the FSM by first approach. In order to

remove our information sequence, the attacker must encode all states again. But only

changing the state encoding will cause the output of the FSM malfunction. Unless the

attacker corrects the output which matches its state encoding, the FSM will not work

correctly. To remove our information sequence in such a way, the attacker has to

change almost the whole FSM which takes a great amount of time.

What if the attacker uses the second approach ? Because we use the state

difference to hide information, the data item can be used is already specified and very

restricted. The attacker can only use these restricted data to form his information

sequence. This will greatly decrease the probability that a fake information sequence

is found from our protected FSM. Although the attacker may find a small but

meaningful information sequence, we can claim that our information sequence is

longer and thus provides more authorship. We can further combine our method with

some powerful encryption algorithms. By using encryption, the attacker has to find an

encrypted information sequence from our FSM using restricted data and the decrypted

information of this information sequence has to be meaningful. The probability of this

situation is much lower.

Let we consider the third way. If a FSM has m states and n edges and assumes

 41

we want to hide 16 data items in the FSM, m is greater than 16 and any two states can

be used to hide information. The probability that the edges picked up randomly will

be equal to the edges we select is 1/(n)(n-1)(n-2)…(n-15). If n is 100, then the

probability will be 1/2.816*1031. Thus, it is almost impossible to happen to pick up

the same edges to hide information.

4.9.2 The Overhead Evaluation

Because we use the difference of states to hide information, we do not have any

overhead of the FSM ideally. In fact, our method will only make the area of the FSM

increase in one case. Take Figure 4-13 and Table 4-1 for example, the FSM has only

nine states and can be encoded using four bits. We use nine bits to encode them

because each data item of hidden information sequence is too large to hide in the state

difference of four bits encoding. If the FSM has more states, we may divide the

information sequence into more data items so each data item is smaller and can be

hide in the FSM with less state variable bits.

Besides to increase the bits of state variable, we can use an alternative approach

to hide large signature in a small FSM. If the target FSM is really small that the states

and edges we can use is not enough to maintain the robustness of authorship proof, we

add additional redundant states to hide the information sequence. With these

redundant states, we can divide the information sequence into more small pieces, thus

provide more protection.

On the other hand, the computation overhead of our method is bigger than other

methods. Firstly, we must find a path in the STG of original FSM. Then we solve the

INLP made from the path and the information sequence. Usually, The INLP solver

can not find a feasible solution. Then we call the path finder to find another path and

run INLP solver again. This situation usually loops ten or more times before finding a

 42

legal state encoding. Although we spend more time in the computation of state

encoding, we can hide an information sequence in the FSM with less area overhead.

 43

Chapter 5 Experimental Results

In this chapter, we applied our IP protection method to the benchmark ISCAS’91

to evaluate the overhead of our method. The ISCAS’91 benchmark includes 53

different FSMs which all are in kiss2 format. The size of the circuits in ISCAS’91

varies widely. The original information used to be hidden in the FSMs is “DESIGN

BY SWCHEN”. Firstly, we encrypt the plain text ASCII code to

0xC9A7EC8B9CB77FBDCAA393E2A1E1AE8E by “crypt” with key “1234”. As

mentioned before, we can divide the information sequence to appropriate data items

by situations. In our experiment, the information sequence is divided into 12 cases

from 5 items to 16 items and hides them in the FSMs of benchmark respectively.

Table 5-1 shows the statistics data of ISCAS’91 benchmark. The columns of Table 5-1

from left to right are the inputs of the circuit, the outputs, the number of edges, the

number of states, and the number of minimum state bits required to encode the states.

Circuit Inputs Outputs # of edges # of states # of state bits

bbara 4 2 60 10 4

bbsse 7 7 56 16 4

bbtas 2 2 24 6 3

beecount 3 4 28 7 3

cse 7 7 91 16 4

dk14 3 5 56 7 3

dk16 2 3 108 27 5

dk17 2 3 32 8 3

dk27 1 2 14 7 3

 44

dk512 1 3 30 15 4

ex1 9 19 138 20 5

ex2 2 2 72 19 5

ex3 2 2 36 10 4

ex4 6 9 21 14 4

ex5 2 2 32 9 4

ex6 5 8 34 8 3

ex7 2 2 36 10 4

keyb 7 2 170 19 5

kirkman 12 6 370 16 4

lion9 2 1 25 9 4

mark1 5 16 22 15 4

opus 5 6 22 10 4

planet 7 19 115 48 6

planet1 7 19 115 48 6

pma 8 8 73 24 5

s1 8 6 107 20 5

s27 4 1 34 6 3

s208 11 2 153 18 5

s298 3 6 1096 218 8

s386 7 7 64 13 4

s420 19 2 137 18 5

s510 19 7 77 47 6

s820 18 19 232 25 5

s832 18 19 245 25 5

 45

s1488 8 19 251 48 6

s1494 8 19 250 48 6

sand 11 9 184 32 5

scf 27 56 166 121 7

shiftreg 1 1 16 8 3

sse 7 7 56 16 4

styr 9 10 166 30 5

tbk 6 3 1569 32 5

tma 7 6 44 20 5

train11 2 1 25 11 4

Table 5-1 The statistic data of benchmark ISCAS’91

Table 5-2 shows the required state bits when hiding different number of data

items. Note that no matter how many data items are hidden, the total information

length is 128 bits. As we can see in Figure 5-2, the required state bits are almost

determined by the length of a single data item. In normal case, the more parts 128 bits

information is divided, the smaller data length per item and the less required state bits.

But sometimes the reverse condition likes 14 items and 15 items of circuit dk16 will

happen. This is because we use a random approach to pick up a path for information

hiding. Some grids in Table 5-2 are written as N/A because the data items are too

many to be hidden in the circuit. This can be solved by adding new states and new

edges, but we did not implement the function yet.

Circuit Ori. 5

items

6

items

7

items

8

items

9

items

10

items

bbara 4 26 23 19 15 14 N/A

 46

bbsse 4 26 22 19 16 15 14

bbtas 3 26 N/A N/A N/A N/A N/A

beecount 3 26 22 N/A N/A N/A N/A

cse 4 26 22 19 16 15 13

dk14 3 26 22 N/A N/A N/A N/A

dk16 5 26 22 19 16 15 13

dk17 3 26 22 19 N/A N/A N/A

dk27 3 26 22 N/A N/A N/A N/A

dk512 4 26 22 19 16 15 14

ex1 5 26 22 19 16 15 13

ex2 5 26 23 19 N/A N/A N/A

ex3 4 26 22 19 17 16 N/A

ex4 4 26 22 19 16 15 13

ex5 4 26 22 19 17 N/A N/A

ex6 3 26 22 19 N/A N/A N/A

ex7 4 26 22 N/A N/A N/A N/A

keyb 5 26 22 19 16 15 13

kirkman 4 26 22 19 16 15 14

lion9 4 26 22 19 17 N/A N/A

mark1 4 26 22 19 16 15 14

opus 4 26 22 19 17 15 14

planet 6 26 22 19 16 15 13

planet1 6 26 22 19 16 15 13

pma 5 26 22 19 16 15 13

s1 5 26 22 19 16 15 13

 47

s27 3 26 N/A N/A N/A N/A N/A

s208 5 26 22 19 16 15 14

s298 8 26 22 19 16 15 13

s386 4 26 22 19 16 16 14

s420 5 26 22 19 16 15 13

s510 6 26 22 19 16 15 13

s820 5 27 22 19 16 15 13

s832 5 26 22 19 16 15 13

s1488 6 26 22 19 16 15 13

s1494 6 26 22 19 16 15 13

sand 5 26 22 19 16 15 14

scf 7 26 22 19 16 15 13

shiftreg 3 26 22 19 N/A N/A N/A

sse 4 26 22 19 16 16 13

styr 5 26 22 19 16 15 13

tbk 5 26 22 19 16 15 13

tma 5 26 22 19 16 15 13

train11 4 26 23 19 16 16 14

Circuit Ori. 11

items

12

items

13

items

14

items

15

items

16

items

bbara 4 N/A N/A N/A N/A N/A N/A

bbsse 4 13 12 N/A N/A N/A N/A

bbtas 3 N/A N/A N/A N/A N/A N/A

beecount 3 N/A N/A N/A N/A N/A N/A

 48

cse 4 12 11 11 N/A N/A N/A

dk14 3 N/A N/A N/A N/A N/A N/A

dk16 5 12 11 10 9 10 9

dk17 3 N/A N/A N/A N/A N/A N/A

dk27 3 N/A N/A N/A N/A N/A N/A

dk512 4 12 11 11 N/A N/A N/A

ex1 5 12 11 10 9 10 N/A

ex2 5 N/A N/A N/A N/A N/A N/A

ex3 4 N/A N/A N/A N/A N/A N/A

ex4 4 13 11 N/A N/A N/A N/A

ex5 4 N/A N/A N/A N/A N/A N/A

ex6 3 N/A N/A N/A N/A N/A N/A

ex7 4 N/A N/A N/A N/A N/A N/A

keyb 5 12 12 10 9 10 9

kirkman 4 12 11 11 9 N/A N/A

lion9 4 N/A N/A N/A N/A N/A N/A

mark1 4 12 11 N/A N/A N/A N/A

opus 4 N/A N/A N/A N/A N/A N/A

planet 6 12 11 11 9 9 8

planet1 6 12 11 11 9 10 9

pma 5 12 12 11 9 10 9

s1 5 12 11 10 9 9 9

s27 3 N/A N/A N/A N/A N/A N/A

s208 5 12 11 11 9 10 N/A

s298 8 12 11 10 9 9 8

 49

s386 4 12 12 N/A N/A N/A N/A

s420 5 12 12 11 9 9 N/A

s510 6 12 11 10 9 9 9

s820 5 12 11 10 9 9 9

s832 5 12 11 11 9 9 9

s1488 6 12 11 10 9 10 8

s1494 6 12 11 10 10 9 9

sand 5 12 12 10 9 10 8

scf 7 12 11 11 9 10 9

shiftreg 3 N/A N/A N/A N/A N/A N/A

sse 4 N/A N/A N/A N/A N/A N/A

styr 5 12 11 11 9 10 9

tbk 5 12 12 10 9 9 9

tma 5 12 11 11 9 9 N/A

train11 4 N/A N/A N/A N/A N/A N/A

Table 5-2 State bits of each circuit when hiding different data items

Although Table 5-2 shows that twice to six times state bits are required, we can

claim that this is because we only divide the information sequence into 16 data items.

Some circuits in the benchmark are large enough for hiding more items. If the FSM

we want to protect has a lot of states, we can divide the information sequence into

more parts and thus the required state bits will decrease.

Then we use the tool “SIS” (Synthesis of both synchronous and asynchronous

circuits) to count the literals of each circuit. Table 5-3 shows the literals of each

circuit before and after embedding the information. The first column is the name of

each circuit. The second column is the number of literals counted by SIS without

 50

optimization. After applying the optimization script “script.algebraic” which is a

build-in script of SIS, the number of literal is shown in the third column of Table 5-3.

The fourth column shows the number of literals after embedding the information and

applying the optimization script “script.algebraic”.

Circuit # of ori. lits # of ori. lits

after

optimization

With 128

bits

embedded

bbara 133 96 244

bbsse 216 153 323

bbtas 53 32 159

beecount 74 59 194

cse 424 255 390

dk14 177 145 287

dk16 502 362 493

dk17 110 99 246

dk27 42 30 181

dk512 104 77 230

ex1 511 303 763

ex2 252 183 344

ex3 111 95 211

ex4 146 105 215

ex5 110 78 207

ex6 211 120 253

ex7 114 94 217

keyb 605 317 394

 51

kirkman 485 305 1070

lion9 47 36 220

mark1 162 112 227

opus 147 96 213

planet 1102 653 780

planet1 1102 653 802

pma 581 230 497

s1 857 468 472

s27 18 14 183

s208 181 86 521

s298 244 138 3151

s386 347 158 337

s420 383 174 438

s510 424 303 504

s820 757 359 854

s832 769 376 920

s1488 1387 751 1249

s1494 1393 762 1438

sand 1126 637 792

scf 1865 953 981

shiftreg 20 8 189

sse 216 153 308

styr 1020 598 758

tbk 1829 953 1814

tma 386 197 367

 52

train11 67 59 212

Table 5-3 The number of literals before and after embedding 128 bits information

 53

Chapter 6 Conclusions and Future Works

In this research, we propose a new method － state difference encoding － to

hide information in a finite state machine. The main idea of our method is to embed

the signature which is represented in a sequence of information in the difference of

states. The state difference encoding has the following advantages :

1. This method is used in behavioral level and behavioral level provides better

reusability.

2. This method can provide thorough protection from behavioral level to

physical level.

3. Difficult to observe the signature since it is embedded in the state code.

4. Difficult to fake another signature because the code which can be used is

restricted.

5. The signature can be extracted whenever in behavioral level, gate level, or

physical level.

On the other hand, our state difference encoding has certain disadvantages :

1. Complex computation. Using our method must find a path for information

hiding, formulate the state code requirement into an INLP, and solve the

INLP.

2. Hard of detection. The detection procedure includes feed the input state and

inputs into the FSM, let the FSM run one step, and extract the current state

of the FSM.

 There is still something which could be improved in our method. The path finder

of our method uses random number to find a path. Although this approach is efficient,

the overhead of the selected path varies. We can use smarter algorithm to pick up a

 54

path in order to reduce the overhead instead of random selection. Now, almost the

whole computation time is spent on the INLP solver. And The INLP solver takes the

same time to solve the INLP no matter the INLP has a solution. Thus, we can tear the

whole INLP to many ILPs and solve these ILPs respectively to speed up the

computation time. The product term of the modified FSM generated by HDL

generator now is directly derived from edges of the original FSM. This will cause the

number of literals increases significantly. We can combine some optimization

algorithms to the HDL generator to further optimize the generated FSM.

 55

References

[1] A. B. Kahng, S. Mantik, I. L. Markov, M. Potkonjak, P. Tucker, W. Huijuan,

and G. Wolfe, "Robust IP watermarking methodologies for physical design,"

presented at Design Automation Conference, 1998.

[2] A. L. Oliveira, "Techniques for the creation of digital watermarks in sequential

circuit designs," Computer-Aided Design of Integrated Circuits and Systems,

IEEE Transactions on, vol. 20, pp. 1101, 2001.

[3] D. Kirovski, H. Yean-Yow, M. Potkonjak, and J. Cong, "Intellectual property

protection by watermarking combinational logic synthesis solutions,"

Computer-Aided Design, 1998. ICCAD 98. Digest of Technical Papers. 1998

IEEE/ACM International Conference on.

[4] E. Charbon and I. H. Torunoglu, "On intellectual property protection,"

presented at Custom Integrated Circuits Conference, 2000.

[5] E. Charbon, "Hierarchical watermarking in IC design," presented at Custom

Integrated Circuits Conference, 1998.

[6] I. Hong and M. Potkonjak, "Behavioral synthesis techniques for intellectual

property protection," presented at Design Automation Conference, 1999.

[7] I. Torunoglu and E. Charbon, "Watermarking-based copyright protection of

sequential functions," Solid-State Circuits, IEEE Journal of, vol. 35, pp. 434,

2000.

[8] J. Lach, W. H. Mangione-Smith, and M. Potkonjak, "FPGA fingerprinting

techniques for protecting intellectual property," presented at Custom

Integrated Circuits Conference, 1998.

[9] J. Lach, W. H. Mangione-Smith, and M. Potkonjak, "Signature hiding

techniques for FPGA intellectual property protection," Computer-Aided

Design, 1998. ICCAD 98. Digest of Technical Papers. 1998 IEEE/ACM

International Conference on.

[10] J. Lach, W. H. Mangione-Smith, and M. Potkonjak, "Robust FPGA intellectual

property protection through multiple small watermarks," presented at Design

Automation Conference, 1999.

[11] R. K. Gupta and Y. Zorian, "Introducing core-based system design," Design &

Test of Computers, IEEE, vol. 14, pp. 15, 1997.

