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摘要摘要摘要摘要 

 由於近年來電腦輔助設計軟體和超大型積體電路製程的進步，產品從研發到

推出市場的時間愈來愈短。為了因應急劇縮短的研發時間，必須重複使用事先設

計好的元件。因此在這種情況下，創造了一個新的商機——販售事先經過設計且

能夠重複使用的元件(即矽智財、Intellectual Property)。但是這個市場必須

要有保護的機制以避免 IP 被惡意的濫用或是轉售。在本論文中，我們提出一個

藉由在有限狀態機中隱藏資訊以保護 Soft-IP 的新方法。這個方法將有限狀態機

中的 State 重新編碼，使得在特定路徑上相鄰兩個 State 編碼的差值即為所要隱

藏的資訊。經過分析發現，我們的方法具有難以被查覺、難以被篡改，以及難以

被假造的特性，並且利用 Scan-Chain 即可檢測在特定電路中是否有隱藏資訊。

我們用我們的方法將 8 個 8bit 的資訊隱藏在 UART Receiver 電路中，得到的結

果顯示，這些電路不僅仍然正常運作，而且只用原來的 State 就能隱藏資訊。 
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Abstract 
As the progress of EDA tools and manufacturing technologies, we get shorter 

and shorter time-to-market. In order to catch up with the decreasing time-to-market, 

reuse pre-defined and pre-verified components is inevitable. This creates a new 

market of selling reusable pre-defined components ( i.e. Intellectual Property ). But 

the IP must be protected by some techniques from malicious duplication. In this thesis, 

we propose a new method to protect Soft-IP by hiding information in FSMs. We 

re-encode the state coding in the way that the difference of two states of selected edge 

in a specific path is equal to the information we want to hide. Through analysis, we 

found our method has the property of hard to be observed, hard to be removed, and 

hard to be faked. Using scan-chain, we can detect whether a specific FSM hides our 

information or not. We hide eight 8-bit information data in a UART receiver using our 

method. The result shows that the UART receiver works correctly and we can hide the 

eight 8-bit information in it without adding new states. 
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Chapter 1 Introduction 

As the progress of deep-submicron manufacturing processes recent years, 

semiconductor density reaches a level that allows all elements of an entire system 

being merged onto a single chip. Unfortunately, the design productivity has not kept 

the pace. A study described in [11] shows that semiconductor densities are increasing 

about 58% per year while design productivity only advances 21% annually. Thus, we 

need a new design methodology to fill the gap between hardware capacity and design 

productivity and the system-on-a-chip (SoC) design methodology shows up. In this 

new design methodology, designers integrate several pre-designed and pre-verified 

cores, also called intellectual property (IP), onto a single chip. These cores may be 

obtained from internal sources or a third-party vendor. By reusing these cores, 

designers save a great amount of time and work that can be spent on developing new 

products. As a consequence, the design productivity increases dramatically.  

Traditionally, IP can be classified into behavioral description (soft IP), structural 

description (firm IP), or physical description (hard IP) according to the degrees of 

freedom left to the user to manipulate it. Hard IP is generally in form of routed layout 

for specified process technology and with very less freedom for further migrations. 

On the other hand, soft IP, in contrast to hard IP, provides the most freedom for use. It 

is possible to map soft IP to a variety of final layouts based on different synthesis 

strategies and process technologies. However, a soft IP user must synthesize, optimize, 

and validate for the soft IP before integrating it into the system. Firm IP is in the 

position between hard IP and soft IP. It provides more flexibility and reconfigurability 

than hard IP and better reuse potential than soft IP. Firm IP is usually in form of 

technology-independence gate-level net-list or HDL description and can or can not be 
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mapped to different process technologies depending on the IP designer. 

Since an IP represents a digital circuit designed for specific function but do not 

has a concrete physical manifestation, it is possible for customers to resell the IP as 

their own even without understanding the details of the IP. This problem has become a 

great concern of IP vendors and thereby the viability of the SoC design methodology 

depends on how to protect IPs from malicious duplication or unauthorized use. 

In nowadays, there exist two main approaches on IP protection, direct protection 

and indirect protection. The goal of direct protection is to prevent unauthorized users 

to use the IP. Hence, direct protection tries to make the medium in which IPs are 

stored and exchanged more secure. This is usually done by applying encryption 

algorithms like RSA to IPs. Then the encrypted IPs are placed in a public IP exchange 

medium, and only authorized users can get private key to decrypt them. The direct 

protection may potentially not be effective in avoiding infringement due to that once 

the IP is decrypted, the user can do anything they want to the IP. Thus, indirect 

protection must be applied to the IP simultaneously to avoid malicious duplication. 

Most researches related to IP protection including this thesis focus on indirect IP 

protection. 

The purpose of indirect protection is to obtain a unique signature from IPs or 

embed one into IPs. This allows the IP designer to determine whether a given IP has 

been infringed upon. Indirect protection can further be divided into two kinds 

according to whether the original design is modified or not. Active protection embeds 

a signature which represents the authorship to the IP and in most cases, it will modify 

the IP. While passive protection tries to obtain a signature from existing feature, hence, 

it will not alter the IP. 

Over the past few years, a considerable number of studies have been made on 

indirect IP protection using watermarking technique. Watermark is a signature used to 
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identify the authorship and watermarking means to embed the watermark into 

something that we want to protect. Originally watermarking is used in video/audio 

application since the watermark is hardly visible or audible by human eyes and ears. 

Moreover, the watermark can be extracted and identified even the original picture or 

music has changed by applying some algorithms to it. Recently, watermarking is also 

used to protect IPs. There is a similar technique for IP protection, called fingerprinting, 

which is generating a signature from a design using the existing features and 

properties at a specified abstraction level. 

Although a lot of methods are proposed for indirect protection using 

watermarking technique, most of them are focus on hard IP protection since it is 

easier and is efficient for detecting the watermark. Hard IPs can only be used in a 

specific process technology. Thus, as long as the process technology of silicon 

foundries progresses, the chip designers must buy these IPs again even though the 

design of these IPs are the same. This situation makes the designers quite annoying. 

Hence, selling soft IP or firm IP instead of hard IP will solve the problem since soft IP 

provides more flexibility for users and the designer can resynthesize them to match 

new process technology. However, soft IP and firm IP are still not prevalent today 

because of the lack of soft or firm IP protection. Thus, our study is mainly focus on 

soft IP protection in order to solve the embarrassing problem. 

In this thesis, we present a new method to embed a signature into finite state 

machine (FSM) by using a special state encoding during synthesis process. We first 

choose a path in the FSM and encode the states in the way that the difference of every 

two state along the path equals to a part of the signature we embed. Since the state 

encoding will not change at all levels under the behavioral level, our approach can 

protect the IP in the design hierarchy from firm IP to the routed layout. Besides, our 

method can hide longer signature with less or even no area overhead compared to 
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other proposed method. 

 The remainder of this paper is organized as the following. Chapter 2 discusses 

some researches related to IP protection. Chapter 3 introduces the concept of our 

method. Chapter 4 details the proposed approach itself. Chapter 5 evaluates the 

approach through an experiment. Chapter 6 gives our conclusions and the directions 

for future development. 
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Chapter 2 Related Works 

In this chapter, we will introduce the objective and metrics of an indirect IP 

protection method, and some IP protection methods that have already been proposed. 

2.1  Objective and Metrics of indirect IP protection 

For a successful indirect IP protection technique, it should have the following 

properties: 

1. Proof of Authorship and Authenticity  : the signature embedded in IP must 

be unambiguous. 

2. Correctness of functionality : the added functionality should not affect the 

correctness of original functionality. 

3. Low overhead : the hardware overhead should be low. 

4. Ease of detection : the signature should be detectable with a low cost 

technique. 

The following metrics are defined to evaluate a specific indirect IP protection 

technique. 

1. uP  : the probability of uniqueness. It means the odds that another design 

carries an identical signature. 

2. mP  : the probability of a miss. It means the odds that the signature is not 

detected after tampering although the signature still exists. 

3. fP  : the probability of false alarm. It means the odds that a signature is 

detected unintentionally. Generally, uP  = fP . 
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2.2  Indirect IP protection techniques 

In this section, we introduce some indirect IP protection techniques according to 

the design abstraction level they applied to. 

2.2.1 Hierarchical Watermarking  

In [5], the author proposes a method to protect IP by marking each step of the 

synthesis and layout processes with a specific watermark. At the layout level, typical 

mixed signal constraints, such as symmetry, grouping, clustering, fixed objects, and 

alignment are used to form the watermark. At the gate level, the watermark is used to 

generate a pseudo-random sequence of symbols, and each symbol represents a given 

standard cell. At the structural level, the design is converted to a directed graph and 

some specific constraints can be applied to it. The watermark is coded in these 

constraints. 

As we can see, this method is robust because it uses multiple watermarks. If one 

of them is removed, other watermarks can still be detected. On the other hand, the 

method is the most costly and complex compared to other methods. 

2.2.2 Behavioral Level 

In [2], A. L. Oliveria proposes a method to watermark FSMs by adding a set of 

new states in such a way that when the special input sequence is applied to the 

modified FSM, the added states are traversed in a predefined order. For example, 

consider the STG shown in Figure 2-1. Assume we want to embed a three bit 

signature 010, we then create three new states 1r , 2r , 3r  together with states iv  and 

change the source and destination of the involved edges in Figure 2-1. Then, we will 

obtain the STG shown in Figure 2-2. Note that the only way to traverse states 
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1r , 2r , 3r  in this order is to apply the sequence 010 from the reset state. Once 

states 1r , 2r , 3r  are traversed, the FSM enters states iv . Then we can claim that the 

sequence of traversed states 1r , 2r , 3r  exhibits a specific property that can be used to 

identify the design. We shall note that the states 1r , 2r , 3r  must maintain the original 

outputs and state transitions of sequence 010 since there are some input sequences 

that contain the same prefix as 010 but are not equal to 010. 

q0

q1

q4

q2

q5

q3

q6

0/1

0/1

0/1

0/1, 1/0

1/1

1/1 1/1

1/0

0/0 -/1

-/1

 

Figure 2-1 The STG of original design 
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1/0

0/0 -/1

-/1

v0

v1

v4

v2

v5

v3

v6

0/1

0/1

0/1

0/1, 1/0

1/1

1/1 1/1

1/0

0/0 -/1

-/1

r1

r2

r3

0/1 0/1

1/0

0/1

-/1

1/0

 

Figure 2-2 Modified STG 

It seems that the area overhead of this method is very high because the number 

of states of the watermarked STG is more than twice as much as the original STG. The 

authors use a simple technique to avoid this problem. Consider the FSM in Figure 2-3, 

the authors attach a small FSM with the original FSM. The function of this small FSM 

is to monitor the primary input and keeps track of the presence of the author signature. 

If the author signature has been inputted, the small FSM asserts a signal to notify the 

presence of the author signature. 
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Figure 2-3 An alternative way to embed the watermark 

However, there still is a problem of this new method. Because the small FSM is 

attached to the original FSM, the small FSM has nothing to do but the primary input 

with the original FSM. Hence, the small FSM is easy to be detected and removed. 

Again, the authors use another simple technique to solve it. The authors try to make a 

relationship between the registers used by the original FSM and the registers used by 

the small FSM by a mapping. Thus, the attackers can not easily distinguish which 

register is used by the attached FSM. This is illustrated in Figure 2-4. 

 

Figure 2-4 The improvement version of Figure 2-3 
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This method has three main advantages : (1) simple computation. (2) the 

signature can be detected in lower-level derived design. (3) the modification can be 

directly added to a synthesized design instead of resynthesis. But the area overhead 

may be unacceptable for embedding large signature. The authors claim that they can 

use MD5 to shorten the signature to 128 bits without loss of strength of the authorship 

proof. 

In [7], the author proposes a simple technique to watermark sequential functions 

which may be Completely or Incompletely specified FSMs. The main idea of this 

method is to represent the watermark as the primary output sequence that shall be 

produced only when a special input sequence which is unspecified in the original 

FSM is applied. By using unused path to encode watermark, the functional 

correctness of the FSM is guaranteed. For example, Figure 2-5(a) is the STG of a 

simple FSM which has two input bits and one output bit. Assume a watermark 01 is 

enough for identify this design, Figure 2-5(b) is a possible result of applying this 

method to the FSM of Figure 2-5(a). It uses two unspecified transitions, q0 to q2 when 

input sequence is 00 and q2 to q3 when input sequence is 11, to encode the watermark. 
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q1

q3 q2

q0
11/0

1-/0
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(b)

q1

q3 q2

q0
110/0

1-0/0
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000/0

(c)

00/1

11/0

000/1

110/0

 

Figure 2-5 An example of applying the method described in [7] : (a) the original FSM, (b) adding 

transitions to embed watermark, (c) augmenting input and adding transitions 

There is a special case that all transitions of the given FSM are specified. In this 

case, we have no choice but to increase the number of primary inputs by one. Figure 

2-5(c) shows augmenting a new input and adding transitions into Figure 2-5(a). The 

main advantage of this method is simple computation and the ease of detection of the 

watermark. And the signature is detectable in lower-level derived design.  

In [6], Inki Hing and Miodrag Potkonjak propose a method for soft-IP protection 

by inserting the author signature into the process of register assignment during 

behavior synthesis. This method takes advantage of the fact that there are usually 

more than one solutions of register assignment. An interval graph is an undirected 

graph that each node in this graph represents one register in behavioral description. In 

the interval graph, an edge between two nodes means the life time of the registers 

represented by these two nodes is overlapped. Thus, these registers can not be used at 

one time and edges in an interval graph are also called timing constraints. Register 
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assignment means to find a way to color an interval graph such that for every two 

nodes with an edge between them can not be the same color. The solution of coloring 

problem is not unique, so legal register assignment is not unique, too.  

There are three steps to apply Inki Hing and Miodrag Potkonjak’s method to a 

FSM. First, we must obtain an interval graph from the behavioral description of the 

FSM. Then, we use a special way to add the author signature into the interval graph. 

Starting from node v1, if the first bit we want to hide is ‘1’, we add a new edge 

between v1 and v3. Otherwise, we add a new edge between v1 and v2. Repeat this 

step until all signature bits are added into the interval graph. Last, use any method for 

solving coloring problem to obtain a register assignment of the modified interval 

graph. Besides the second step, other two steps are the same as normal process of 

register assignment. Figure 2-6 shows the process of embedding a signature of 14 bits 

ASCII code ‘A7’ into an interval graph.  Figure 2-6(a) is the original interval graph, 

Figure 2-6(b) contains all the edges with encoded values we want to embed, and 

Figure 2-6(c) is the result interval graph.  

(a) (b)  
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(c) 
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v8 v9 v10 v11 v12 v13 v14
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0 11 1 0 1 1 7  

Figure 2-6 The explanation of embedding the signature ‘A7’ in the register assignment solution 

The advantages of this method are easy computation and the embedded author 

signature is difficult to be observed. Also, the unoptimal register assignment due to 

the extra constraints provides a robust proof that there is a signature embedded. On 

the other hand, there are some disadvantages of this method. This method is not 

suitable for embedding long signature since one register can only embed one bit. The 

other problem is that given a lower-level design, it is difficult to detect the signature. 

2.2.3 Logic Level 

In [3], D. Kirovski proposes a less resilient but simpler watermarking technique 

in gate level. In this technique, the watermark is represented as a set of primary 
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outputs that does not appear in the original logic network. These gates are selected 

according to the pseudo-random bits generated from the author’s signature. There are 

several steps to apply this method. First, in order to ensure that each watermark of 

different author signature is unique, all gates in the circuit must save in a standard way. 

Then, every gate is assigned an unique identifier and some gates will be picked up 

according the pseudo-random. Last, these gates will become primary output and these 

gates form the watermark. 

In assigning identifiers to each gate, we must ensure that every gate has different 

identifier in order to prevent the watermark from misinterpretation. Since to check 

two gates are functionally identical is difficult, the authors propose a heuristic way to 

assign identifiers according to eight criteria. In general, it is merely impossible that all 

the eight criteria of two gates are identical. Unfortunately, this case still exists. If two 

gates are not distinguishable using these eight criteria, we assign random unique 

identifiers to them and memorize the assignment for future proof of authorship.  

2.2.4 Field Programmable Gate Arrays 

In [8], the watermark is in form of a bit stream and directly placed in the design 

of FPGA. This is done by using the lookup table of unused configurable control logic 

blocks. Each unused lookup table hides one bit of the bit stream. Then all the control 

logic blocks which hides data are routed with all the original control blocks. This 

method is refined in [9]. The signature is modified before being embedded in the 

control blocks so as to mimic the property of the existing design. 

In [10], the author tries to partition a large signature into small sections and 

uniformly embeds these small pieces of signature in the design. The method ensures 

higher levels of robustness because it is difficulty to remove all small watermarks 

using pattern matching and removal techniques.  
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2.2.5 Standard Cell Place and Route 

In [1], two methods are proposed. The first method places constraints on the 

physical location of standard cells. These constraints can be easily coded into a 

signature. Thus, the signature is embedded in the layout by these constraints. The 

second method put specific constraints on the realization of detailed routing. The 

constraints usually involve wire width, spacing and the choices of topological routing. 
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Chapter 3 Background of the Proposed 

Method 

In this chapter, we introduce our method and make some explanation of it. We 

also discuss about the detection of the signature in gate level and physical level in this 

chapter. 

3.1  Basic Definitions 

This section introduces some general definitions of finite state machines. 

Definition 1 : A Mealy-type FSM is defined as M = (Σ,Δ, Q, q0,δ,λ), where

Σ is a finite set of input symbols, Δ is a finite set of output symbols, Q is a finite set 

of states, q0 ∈ Q is the initial (reset) state, δ( q, a ) : Q ×Σ →Q is the transition 

function, and λ( q, a ) : Q ×Σ →Δ is the output function. 

Definition 2 : The output of a sequence α = (a1, …, ak ) applied to states q 

denoted byλ(q,α) represents the output of the FSM after a sequence of inputs (a1, …, 

ak ), is applied in state q. The output of such a sequence is defined to be 

λ(q,α) =λ(δ(δ(…δ(q, a1)…), ak-1 ), ak ). 

Definition 3 : The destination state of a sequence α = (a1, …, ak ) denoted by

δ( q,α) represents the final state reached by an FSM after a sequence of inputs 

(a1, …, ak ) and is applied in state q. This state is defined as 

δ( q,α) = δ(δ(…δ(δ(q, a1), a2), … ), ak ). 

Definition 4 : State qi and qj are equivalent iffλ(qi,α) =λ(qj,α) for every 

sequenceα. Two FSMs M and M’ are equivalent iff their reset states are equivalent. 

Definition 5 : FSM s M = (Σ,Δ, Q, q0,δ,λ) and M’ = (Σ,Δ, Q’, q0’,δ’,λ’) 

are equivalent iffλ( q0,α) =λ’( q0’,α) for every input sequenceα. 

3.2  Motivation and Basic Concept  

Based on the methods discussed in chapter 2, we can find that all IP protection 

methods have some disadvantages. In HDL level, there is no way to hide information. 
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Although some methods can protect IP in gate level or physical level, they can only 

protect the IP in the specified level. Some other methods can extend the protection 

from behavioral level to gate level by using register assignment or other approaches, 

but the protection will be destroyed when the IP is mapped to lower level.  

Thus, we want to find a new IP protection method that has two main properties : 

(1) the method is used in behavioral level since behavioral level provides better 

reusability (2) the method can provide thorough protection from behavioral level to 

physical level. Besides, the method must satisfy the requirements mentioned in 

Section 3.1. 

The main idea of our method is to embed the author signature in the difference of 

state number in a FSM. In this way, the first property is satisfied because the FSM 

description is in behavioral level. The state number will not change as long as the 

CAD tool we use does not do any optimization about state numbers. Thus, the author 

signature we embedded can be extracted in behavioral level, gate level, and physical 

level.  

Figure 3-1 uses a simple example to explain the idea of our method. Figure 3-1(a) 

is the original FSM. The signature we want to embed is 0x10, 0x20, 0x30. First, we 

choose an arbitrary path from the reset state a and the path must contains three edges 

for embedding three number of the signature. Here, we choose A->B->C->D. Then 

we must find a set of state numbers such that state number of A and state number of B 

are differenced by 0x10, state number of B and state number of C are differenced by 

0x20, state number of C and state number of D are differenced by 0x30. Figure 3-1(b) 

shows a possible state encoding of the FSM using our method. 
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(a)  

(b)  

Figure 3-1 An example of state difference encoding (a) the original STG of FSM (b) the STG after 

applying state difference encoding to hide 0x10, 0x20, 0x30 

With very low probability, it is possible that we can find another meaningful 

signature from the FSM which a signature has been embedded in. To decrease the 

probability of this situation, we can first encrypt the author signature with some 

encryption algorithms like RSA, and then we embed the encrypted signature into the 

FSM. In this way, it is almost impossible to find another signature that is meaningful 

when decrypted from the modified FSM. 

3.3  Compare with Even/Odd Encoding  

There is an easier way to embed the author signature into a FSM by using 

even/odd encoding which is similar to the method used in [6]. The states will first be 

assigned an order from 1 to the number of states. Then, we hide the first bit in the 1st 

state using the way that if the bit is 0, we choose a transition that the start state is the 

1st state and encode the destination state as even. If the bit is 1, encode the destination 
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state as odd. Repeat this step until all bits have been hidden in the FSM. 

There is a serious problem of the even/odd encoding. Consider the example 

shown in Figure 3-2. This is a result of applying even/odd encoding. As we can see, 

state1, state2, and state4 can hide arbitrary data because they have both transitions 

that the destination state are odd and even. For 3 bit data, only (000), (010), (011) can 

not be hidden in the FSM. 5 out of 8 combinations are possible, and thus even/odd 

encoding can not be used in IP protection. 

(a)  

(b)  

Figure 3-2 An example of even/odd encoding (a) the original FSM (b) a possible solution of 

even/odd encoding 

Using state difference encoding, a path “A->C->E->A->D->D” will only present 

the sequence of code |A-C|, |C-E|, |E-A|, |A-D|, |D-D|. Besides, for each state, the code 

can be hidden is restricted to some specific values. Hence, fake signature is difficult to 

be created. 
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3.4  The Detection of the Signature  

Our state difference encoding uses two techniques to detect the signature we hide. 

In behavioral and gate level, we only need to simulate the given FSM and observe the 

value of the state registers. In physical level, we take advantages of the scan-chain. 

Using scan-chain, we can set the FSM to a specific state and run one step. Then we 

dump the state value to observe if there is any signature hidden in the given FSM. 
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Chapter 4 State Difference Encoding 

In this chapter, we use a more formal way to introduce our state difference 

encoding method. 

4.1  Inputs and Outputs 

The inputs of our method are listed as follows : 

1. The FSM that need protection. The definition of FSM is already discussed 

in section 3.1. 

2. The predefined path, path = { state0, state1, … , staten }. A predefined path 

is a path that the information will hide in. This path can be generated by a path finder 

or provided by the user. If the path is given by the user, the associated valid vector 

should be given, too. 

3. The information sequence, info = { info1, info2, … , infom }. Information 

sequence means the ASCII code sequence that we want to embed to the FSM. This is 

equal to the author signature mentioned before. The variable m is determined by the 

path length and the total length of the information sequence. If the length of 

information sequence is α, then the variable m isα/ m. The information sequence 

can firstly be encrypted by an arbitrary encryption algorithm or just plain text of 

ASCII codes. The encryption process is recommended since this process decreases the 

probability of fake meaningful signature found in the FSM which we have already 

hidden a signature in. 

The outputs of our method are : 

1. The modified FSM. The function of the modified FSM will be the same as 

the original FSM. Only the state encoding will be different since we use state 
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difference encoding to hide information in the FSM. 

2. The valid vector, valid_vector = { valid_vector1, valid_vector2, … , 

valid_vectorn-1 }. We will encounter a situation which usually results in no feasible 

state encoding when the original FSM has a feedback loop. Thus, we introduce the 

valid vector to prevent this situation. The detail of valid vector will be discussed in 

section 4.3. We shall note that the variable n is the same as the variable used in 

predefined path. This means the length of valid vector will be one less than the 

predefined path.  

4.2  The Encoding Process 

The encoding process of our method is divided into three steps, as shown in 

Figure 4-1.  

� Step1 , Path Finder : the goal of path finder is to find a path to hide 

information from the FSM ( in kiss2 format, which is shown in Figure4-2 ) 

given by user and pass the path, valid vector, and the information to INLP 

solver. 

� Step2 , INLP Solver : INLP solver tries to find a legal state encoding that 

embeds the information. Sometimes, INLP solver can not find a legal state 

encoding of the path passed by path finder. In this case, we go back to step 

1 and find another path. Repeat this step until a legal state encoding is 

found. 

� Step3 , HDL Generator : This is the easiest part of the state difference 

encoding process. The HDL generator takes the FSM given by user and the 

state code found by INLP solver to generate a new FSM in gate level 

description that embeds the information. The user can choose that the 

modified FSM is in Verilog form or VHDL form. 
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Figure 4-1 The encoding procedure of state difference encoding 

.i   3     =>    the number of inputs

.o  3     =>    the number of outputs

.p  10   =>    the number of edges

.s   5     =>    the number of states

.r   st0   =>    the reset state, it must one of the states

-10 st0 st1 001     the description of a single transition
         :                 it means when the FSM is in state st0
         :                 and input is -10 the FSM will move to 
         :                 state st1 and put 001 on output

 

Figure 4-2 The kiss2 file format 

4.3  Valid Vector 

In ideal case, a path with n edges can hide n information in it using our method. 

But in fact, most FSMs have loops or self-loops in order to reset the FSM or wait for 

the arriving of some signals. This restricts us in finding a long path to hide the 

information. Consider the case illustrated in Figure 4-3(a). We want to hide the 

information sequence ‘0x10, 0x20, 0x30, 0x40’ in the path “A->B->C->D->A”. It can 

be found that once three information have been hidden in edge “A->B, B->C, C->D” , 
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the state encoding of state A, B, C, and D are determined and there is almost no room 

for adjusting the encoding to match the fourth piece of information, “0x40”. As a 

result, the edge “D->A” can not be used to hide information. 

 (a)  

(b)

A B

D C

E
0x10

0x20

0x30

0 16

4896

64

0x40

Selected Path : A->B->C->D->A->E
Valid Vector :   1    1    1    0    1  

 

Figure 4-3 An example of valid vector (a) the FSM can only hide three information without valid 

vector (b) with valid vector, A->E can be used to hide the fourth information 

If we can make some of the edges hiding information and others not, we can hide 

one more information in the FSM of Figure4-3(a) by hiding the fourth information in 

the edge A->E and disregarding the edge “D->A” in the path “A->B->C->D->A->E”. 

The choice of edges is what we called “valid vector”. A valid vector is a bit sequence 

of 0 and 1 incorporated with the predefined path. If a bit of valid vector is 1, the edge 

is used for hiding information. Otherwise, if the bit of valid vector is 0, we will omit 
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the edge. 

The valid vector is not only useful for hiding longer information and increase the 

utility rate of the edges. It is helpful for distribute the hidden information to the whole 

path. Thus, it is harder for the attackers to find out what information we hide and the 

protection of our method will be stronger. 

4.4  Finding the path 

Although the path which is used to hide information can be provided by the user, 

the path finder is still required for the case that the user does not provide the path. 

There are some problems we encountered in implementing the path finder. The first 

problem is the restriction in path selecting due to a data item “00” in information 

sequence. It is possible that the information sequence contains a data item “00”. 

Because we use the state difference encoding, the only choice of hiding “00” is to find 

a state with a self loop transition and use this transition to hide the “00”. Without the 

“00” condition, we can simplify the path finding process as finding a path in FSM 

such that the number of “1” in valid vector equals to the number of data item in the 

information sequence. 

In order to solve the problem, we use the data item “00” as delimiter to divide 

the information sequence into several sub sequence. Then, each sub sequence is a 

simple path finding problem. There are two requirements of the simple path finding 

problem :  

1. The end node of the path must contain a self-loop in order to hide the 

delimiter “00”. 

2. The efficiency length has to be larger than the number of items in the sub 

sequence. 

As shown in Figure 4-4, the information sequence 13, 00, 14, 55, 00 is divided into 
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two sub sequences 13, 00 and 14, 55, 00. Then we find two paths to hide these sub 

sequences respectively.  

(a)  

(b)  

(c)  

(d)  

Figure 4-4 An example of the approach to solve the data item “00” in the information sequence. 
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(a) The information sequence is divided into two parts. (b) the sample FSM. (c) a solution of sub 

sequence 1. (d) a solution of sub sequence 2. 

The second problem we encountered is that we want to find all possible paths in 

a given FSM but the original model can not satisfy our requirement due to valid 

vector. Consider the FSM in Figure 4-4(b) and the path 

“S1->S2->S3->S4->S5->S1->S2->S2->S3->S4->S5->S1->S2->S2” with valid vector 

( 0, 1, 0, 0, 0, 0, 1, 0, 1, 1, 0, 0, 1 ). The path goes through the whole loop twice. The 

edge “S2->S3” in first loop hides information, but the same edge in the second loop 

does not. However, using traditional path finding algorithm can not see the difference 

between the first loop and second loop. Thus, we need to extend the original FSM 

with shadow states. For each state S, we create a associated shadow state S’. The state 

S’ is the same as the original state including incoming edges, outgoing edges, and 

self-loop edges. For every edge with state S as destination state, we create a new edge 

from the start state to state S’. In the same way, for every edge with state S as start 

state, we create a new edge from S’ to the end state. The modified FSM of Figure 

4-4(b) is shown in Figure 4-5. The problem is solved by using the new FSM to find a 

path. If one edge in the new path has a shadow state as destination state, we define the 

corresponding valid vector bit is ‘0’. In other words, there will be no data hidden in 

this edge. Otherwise, if the edge has a normal state as destination state, we will hide a 

data in this edge. By using this modified FSM, we can use normal path finding 

algorithm to find all paths. For example, the path discussed above can be represented 

by “S1->S2’->S3->S4’->S5’->S1’->S2’->S2->S3’->S4->S5->S1’->S2’->S2”. 

Although now we can enumerate every path in the STG, it is very inefficient that 

finding a path from the beginning every time. Besides, this approach may lead to the 

degradation of protection. Thus, we use a random approach to find a path. If M is the 

FSM that we want to protect and M has n edges. Firstly, we generate n / 8 ( this 
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number will increase 1 when n is not divided by 8 ) random numbers such that every 

bit of random number is mapped to one edge. The edges with a ‘1’ in its mapping 

random number bit are selected to hide information. If the number of one’s is not 

equal to the number of information items we want to hide, just re-generate the random 

number again. In order to make the edge sequence more randomly, we randomly pick 

one edge up to form another sequence in order. Then, we connect these edges together 

to form a path by applying the all pair shortest algorithm to the edges to find the path 

from one edge’s destination state to another edge’s start state. If all edges can be 

connected, we get a path for hiding information and we pass it to next step. 

Sometimes, there is no path between two edges and all pair shortest path algorithm 

will fail. In this case, we go back to the random number generation step and do the 

whole procedure again. The pseudo code of path finder is shown in Figure 4-6. 

 

Figure 4-5 The FSM of Figure 4-4(b) with shadow states 
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Path Finder( number of edges n , number of data items d )
{

Repeat:
    do
    {
        if( n divided by 8 )
              generate  n / 8  random numbers
         else
              generate  n / 8 + 1 random numbers

         count the number of ‘1’ in random numbers
     }
     while(   the number of ‘1’ !=   d  )

     for( i = 1 to d )
     {    
         pick a random edge j from 1 to d such that the jth selected edge 
         will be in ith position of new order
     }

     for( i = 1 to d )
     {
         use all pair shortest path algorithm to find the path from the 
         destination state of ith edge to the start state of i+1th edge

         if( there is no path between ith edge and i+1th edge )
             goto Repeat
     }
}     

 

Figure 4-6 The pseudo code of path finder 

4.5  Formulating the encoding requirement into INLP 

In order to acquire a state encoding, we formulate the problem as an integer 

non-linear problem (INLP), and then we use a tool called LINGO to solve the INLP. 

We use two constraint and a cost function to create the INLP :  

1. Unique Constraint. Every state must have different state encoding. 

2. Feasible Constraint. The absolute state difference of start state and end 

state of the ith not excluded edge should be equal to the ith hidden data for 
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every i. 

3. Cost Function. We can perform variant optimization for encoding. In 

general, the cost function is set in order to acquire a set of minimum state 

encoding. 

Here we use Figure 4-1(b) as an example. The path we want to hide information 

is A->B->C->D->A->E excluded the edge D->A. The hidden information sequence is 

0x10, 0x20, 0x30, and 0x40. Figure 4-7 shows the unique constraint, feasible 

constraint and the cost function of Figure 4-1(b). 

 

Figure 4-7 The constraints of Figure4-1(b) for INLP 

 In implementing the INLP solver, we simply list all constraints in a 

command, create the environment of LINGO, and call LINGO to solve the INLP. For 

a path given by path finder, we generate the feasible constraints such that the start 

state and destination state of selected edges are equal to the ith data item we want to 

hide. We also generate the unique constraints such that the encoding of every state 

must not be equal to the encoding of another state since every state must have its own 
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unique encoding in FSM. Then, we generate the cost function to minimize the state 

encoding. There are two kinds of cost function we can use. One is to minimize the 

sum of every state encoding and the other is to minimize the maxima state encoding 

of a single state. These two cost functions results in a similar state encoding in 

LINGO, so we do not need to bother which one should use. The pseudo code of INLP 

solver is shown in Figure 4-8. 

INLP solver( a path p given by path finder , FSM M, information sequence i )
{

     for(   j  =  1  to  number of information data items )
     {
           generate the constraint 
           | the start state of jth selected edge in p  -  
             the destination state of jth selected edge in p |  =  jth data item in I
     }

     for(  every two different states I, J  in M  )
     {
            generate the constraint
            state code of I must not equal to state code of J
     }

     generate the cost function
     minimize the sum of every state encoding of M

}     

 

Figure 4-8 The pseudo code of INLP solver 

4.6  Generating the gate-level net-list 

With the state code generated by LINGO and the FSM description given by the 

user, we shall create a new FSM in Verilog form or VHDL form with the information 

sequence hidden between states. 

Because some EDA tools will perform optimization like state minimization on 

the circuit when it found its input is a FSM, the information sequence we hide in the 

FSM will be destroyed. In order to prevent the FSM from optimization, we tear every 
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bit of state variable apart and store them in separate latches. For every bit of next 

function and output function, consider every situation which makes this bit become 1, 

and combine all situations by a big OR gate. Consider the case of Figure 4-9. The 

FSM has three states, one input, and one output. For every transition, we produce a 

product term to describe the happening of this situation. The happening condition of 

the left transition in Figure 4-9 is when the FSM is in state ‘101’ and input equals 1. 

The two product terms of the transition in Figure 4-9 should be 

p0 = state [2] and not state [1] and state [0] and input 

p1 = not state [2] and state [1] and state [0] and not input 

With these product terms, we can generate every bit of next state by adding the 

corresponding product term to the bit of state variable. For the left transition of Figure 

4-6, the destination state is “011”. Then we add the corresponding product term p0 to 

bit 1 and bit 0 of next state. The destination state of right transition of Figure 4-9 is 

“101”, thus we add p1 to bit 0 and bit2 of next state. The next state of Figure 4-9 

should be 

next_state[2] = p1 

next_state[1] = p0 or p1 

next_state[0] = p0 

Finally, we generate the output of this FSM. We simply combine all product 

terms which make the output become 1 by an OR gate. The output of Figure 4-9 

should be 

output = p0 or p1 

 

Figure 4-9 A simple FSM 
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The final FSM of Figure 4-10 in Verilog form is shown in Figure 4-9. 

 

Figure 4-10 The Verilog description of the FSM in Figure 4-9 

Figure 4-11 is the pseudo code of HDL generator. 

HDL generator( state encoding e , FSM M  )
{
     for(  every edge g of M  )
     {
           generate a product term in the form
           p( g ) =  AND of every bit of the start state and input     
     }

     for( every state s of M  )
     {
           for(  every edge g of M  )
           {
                  if(  the destination state of g  ==  s  )
                  {
                        for( every bit b of next function )
                        {
                             add the product term p( g ) to b
                        }
                  }
           }
     }

     generate the cost function
     sum of every state encoding in M
}     

 

Figure 4-11 The pseudo code of HDL generator 
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4.7  The Detecting Process 

How do we verify whether a given FSM hides our information? First we shall 

prepare the modified FSM we want to detect and the path, valid vector, the 

information sequence of our signature. Then, for each pair of input state and input, we 

fed them into the suspicious FSM and observe the destination state of each step. If all 

destination states are equal to the destination state of corresponding edge in our path, 

the designer of this FSM is suspicious for copy our design. 

In gate level, this procedure can be done by simply simulating the suspicious 

FSM using any EDA tool with simulator and observe the state transition sequence. 

But how do we detect the design that already been made in a chip ? In physical level, 

it is harder to find out the current state of a FSM. Fortunately, most design of circuit 

contains scan-chain or JTAG for debugging the circuit. We can use the scan-chain to 

scan in the start state of the path and let the FSM run one step. Then we scan out the 

current state of the FSM and compare it with the path. What if the target circuit does 

not have scan-chain ? In this case, we use a more difficult method to find the current 

state. In a traditional FSM, the state variable is stored in a latch or a register and the 

latches can easily be identified. We can make a copy of the combination part of the 

FSM. Then we can feed the state and input to the copy circuit to observe the next state 

that it sends to the latches. But how do we know the order of latches ? We can firstly 

use an arbitrary order to feed the start state of a specific edge and observe the 

destination state. If the destination state does not match, try another order until we 

found a match or all possible orders have been tried. 

4.8  A Complete Example 

In this section, we use the control circuit of an UART receiver to show the 
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complete procedure of our IP protection method. We divide the whole UART receiver 

into control circuit, shift register, and latch for convenience and we implement the 

control circuit by FSM in order to hide an information sequence in it. The architecture 

of UART receiver is shown in Figure 4-12. In this architecture, we use eight times 

faster clock frequency to ensure the correctness of data sampling. The most 

significant bit of three shift registers of this architecture is ‘1’ in normal situation and 

other bits are all ‘0’. The shift register 1 triggers the sampling action in the fourth 

frame. The shift register 2 counts 8 clocks to determine the end of data receiving. The 

shift register 3 controls the eight latches to hold input data. When eight data is arrived, 

the UART receiver will send a signal RCV_REQ to notify the environment the 

arriving of the input data. 

 

Figure 4-12 The architecture of UART receiver 

Figure 4-13 is the STG of the control part of UART receiver. The five inputs in 

Figure 4-13 are represented for RCV_IN, RCV_ACK, counter1, counter2, counter3 

respectively. The eight outputs are shift1, load1, shift2, load2, shift3, load3, 
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RCV_REQ, ERROR respectively. The reset state is state 8 and the error state is state 

7. The information sequence we use here is the ASCII code of “NCTU IPP”.  

 

Figure 4-13 The STG of UART receiver 

In the first place, we use a tool “crypt” in SUN Solaris operating system to 

encrypt the information sequence with the key “1234”. The whole process is shown in 

Figure4-14. The encrypted data of “NCTU IPP” is 0x40C8DD855F3BD908. Though 

we can use more powerful encryption tool like 3DES, RSA, AES to encrypt the 

information sequence, we use crypt here due to simplicity.  

 

Figure 4-14 The encryption process of information sequence 

In order to add the encrypted text into the UART receiver controller, we divide 

the encrypted data into eight 8-bits data and we find a path which is long enough to 



 37

hide data. The path we found is state8 -> state0 -> state1 -> state2 -> state3 -> state4 

-> state5 -> state8 -> state0 -> sate1 -> state2 -> state3 -> state6 -> state8 -> state7 

and the corresponding valid vector is 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 0, 1. This means 

the first state8 -> state0 edge, the first state0 -> state1 edge, the first state1 -> state2 

edge, the first state2 -> state3 edge, the state3 -> state4 edge, the state4 -> state5 edge, 

the state3 -> state6 edge, and the state8 -> state7 edge are used to hide information. 

Then, generate the three constraints of UART receiver and call LINGO to solve it. 

Figure 4-15 shows the three constraints of UART receiver used to acquire the state 

encoding . 

 

Figure 4-15 The three constraints of UART receiver 

Then use LINGO to solve the INLP and we get a solution shown in Table 4-1.  

State 0 040 

State 1 108 

State 2 02B 

State 3 0B0 

State 4 051 
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State 5 016 

State 6 189 

State 7 008 

State 8 000 

Table 4-1 The state encoding of UART receiver 

In order to detect signature through the path, we need the information sequence 

we hide and valid vector. We also need the input of each state. Figure 4-16 shows all 

the data we need to find the hidden data. For example, the edge state8 -> state0 may 

possibly hide the data 0x40. We set the current state of FSM to state8 ( which is 000 

is this case ) and give the input (1,1,*,*,*) to the FSM. Then make the FSM run one 

step and observe the current state. Repeat this step until the whole path is traversed. If 

all state differences with valid vector ‘1’ are the same, the FSM may be copied from 

our design. 

 

Figure 4-16 The state encoding, valid vector, hidden information, and inputs used by detecting 
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process 

We implement the UART receiver in Xilinx FPGA in order to make sure the 

UART receiver work correctly. The whole architecture is shown in Figure 4-17. We 

connect the FPGA to a PC by serial connection and use communication software 

‘TeraTerm’ to send data to the FPGA. After receiving the data, the UART receiver 

will show the data in seven-segment display. In order to extract the information 

sequence we hide, we design a simple FSM to feed the current state and inputs which 

are stored in a separated ROM into the UART receiver. The simple FSM will scan in 

the start state of a edge in our path, control the UART receiver to run one step and 

scan out the current state. Finally the simple FSM shows the state number in two 

seven-segment displays. The difference calculation is left for users. 
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Figure 4-17 The architecture of UART receiver with verification circuit 

4.9  Evaluation of State Difference Encoding 

In this section, we want to discuss about the robustness of our state difference 

encoding and the overhead we made. 
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4.9.1 The Robustness Evaluation 

An attacker may try to attack the circuit protected by our method in three ways. 

The first way is trying to find out the information sequence we embedded and 

removing them. The second way is to hide another information sequence in the FSM 

or find another meaningful information sequence from the FSM and claim that the 

FSM is designed by him. The third way is to randomly pick up the edge used to hide 

information and the state difference will exactly the same as ours. 

Using our method, it is very hard to attack the FSM by first approach. In order to 

remove our information sequence, the attacker must encode all states again. But only 

changing the state encoding will cause the output of the FSM malfunction. Unless the 

attacker corrects the output which matches its state encoding, the FSM will not work 

correctly. To remove our information sequence in such a way, the attacker has to 

change almost the whole FSM which takes a great amount of time. 

What if the attacker uses the second approach ? Because we use the state 

difference to hide information, the data item can be used is already specified and very 

restricted. The attacker can only use these restricted data to form his information 

sequence. This will greatly decrease the probability that a fake information sequence 

is found from our protected FSM. Although the attacker may find a small but 

meaningful information sequence, we can claim that our information sequence is 

longer and thus provides more authorship. We can further combine our method with 

some powerful encryption algorithms. By using encryption, the attacker has to find an 

encrypted information sequence from our FSM using restricted data and the decrypted 

information of this information sequence has to be meaningful. The probability of this 

situation is much lower.  

Let we consider the third way. If a FSM has m states and n edges and assumes 
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we want to hide 16 data items in the FSM, m is greater than 16 and any two states can 

be used to hide information. The probability that the edges picked up randomly will 

be equal to the edges we select is 1/(n)(n-1)(n-2)…(n-15). If n is 100, then the 

probability will be 1/2.816*1031. Thus, it is almost impossible to happen to pick up 

the same edges to hide information. 

4.9.2 The Overhead Evaluation 

Because we use the difference of states to hide information, we do not have any 

overhead of the FSM ideally. In fact, our method will only make the area of the FSM 

increase in one case. Take Figure 4-13 and Table 4-1 for example, the FSM has only 

nine states and can be encoded using four bits. We use nine bits to encode them 

because each data item of hidden information sequence is too large to hide in the state 

difference of four bits encoding. If the FSM has more states, we may divide the 

information sequence into more data items so each data item is smaller and can be 

hide in the FSM with less state variable bits.  

Besides to increase the bits of state variable, we can use an alternative approach 

to hide large signature in a small FSM. If the target FSM is really small that the states 

and edges we can use is not enough to maintain the robustness of authorship proof, we 

add additional redundant states to hide the information sequence. With these 

redundant states, we can divide the information sequence into more small pieces, thus 

provide more protection. 

On the other hand, the computation overhead of our method is bigger than other 

methods. Firstly, we must find a path in the STG of original FSM. Then we solve the 

INLP made from the path and the information sequence. Usually, The INLP solver 

can not find a feasible solution. Then we call the path finder to find another path and 

run INLP solver again. This situation usually loops ten or more times before finding a 
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legal state encoding. Although we spend more time in the computation of state 

encoding, we can hide an information sequence in the FSM with less area overhead. 
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Chapter 5 Experimental Results 

In this chapter, we applied our IP protection method to the benchmark ISCAS’91 

to evaluate the overhead of our method. The ISCAS’91 benchmark includes 53 

different FSMs which all are in kiss2 format. The size of the circuits in ISCAS’91 

varies widely. The original information used to be hidden in the FSMs is “DESIGN 

BY SWCHEN”. Firstly, we encrypt the plain text ASCII code to 

0xC9A7EC8B9CB77FBDCAA393E2A1E1AE8E by “crypt” with key “1234”. As 

mentioned before, we can divide the information sequence to appropriate data items 

by situations. In our experiment, the information sequence is divided into 12 cases 

from 5 items to 16 items and hides them in the FSMs of benchmark respectively. 

Table 5-1 shows the statistics data of ISCAS’91 benchmark. The columns of Table 5-1 

from left to right are the inputs of the circuit, the outputs, the number of edges, the 

number of states, and the number of minimum state bits required to encode the states. 

Circuit Inputs Outputs # of edges # of states # of state bits 

bbara 4 2 60 10 4 

bbsse 7 7 56 16 4 

bbtas 2 2 24 6 3 

beecount 3 4 28 7 3 

cse 7 7 91 16 4 

dk14 3 5 56 7 3 

dk16 2 3 108 27 5 

dk17 2 3 32 8 3 

dk27 1 2 14 7 3 
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dk512 1 3 30 15 4 

ex1 9 19 138 20 5 

ex2 2 2 72 19 5 

ex3 2 2 36 10 4 

ex4 6 9 21 14 4 

ex5 2 2 32 9 4 

ex6 5 8 34 8 3 

ex7 2 2 36 10 4 

keyb 7 2 170 19 5 

kirkman 12 6 370 16 4 

lion9 2 1 25 9 4 

mark1 5 16 22 15 4 

opus 5 6 22 10 4 

planet 7 19 115 48 6 

planet1 7 19 115 48 6 

pma 8 8 73 24 5 

s1 8 6 107 20 5 

s27 4 1 34 6 3 

s208 11 2 153 18 5 

s298 3 6 1096 218 8 

s386 7 7 64 13 4 

s420 19 2 137 18 5 

s510 19 7 77 47 6 

s820 18 19 232 25 5 

s832 18 19 245 25 5 
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s1488 8 19 251 48 6 

s1494 8 19 250 48 6 

sand 11 9 184 32 5 

scf 27 56 166 121 7 

shiftreg 1 1 16 8 3 

sse 7 7 56 16 4 

styr 9 10 166 30 5 

tbk 6 3 1569 32 5 

tma 7 6 44 20 5 

train11 2 1 25 11 4 

Table 5-1 The statistic data of benchmark ISCAS’91 

Table 5-2 shows the required state bits when hiding different number of data 

items. Note that no matter how many data items are hidden, the total information 

length is 128 bits. As we can see in Figure 5-2, the required state bits are almost 

determined by the length of a single data item. In normal case, the more parts 128 bits 

information is divided, the smaller data length per item and the less required state bits. 

But sometimes the reverse condition likes 14 items and 15 items of circuit dk16 will 

happen. This is because we use a random approach to pick up a path for information 

hiding. Some grids in Table 5-2 are written as N/A because the data items are too 

many to be hidden in the circuit. This can be solved by adding new states and new 

edges, but we did not implement the function yet. 

 

Circuit Ori. 5 

items 

6 

items 

7 

items 

8 

items 

9 

items 

10 

items 

bbara 4 26 23 19 15 14 N/A 
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bbsse 4 26 22 19 16 15 14 

bbtas 3 26 N/A N/A N/A N/A N/A 

beecount 3 26 22 N/A N/A N/A N/A 

cse 4 26 22 19 16 15 13 

dk14 3 26 22 N/A N/A N/A N/A 

dk16 5 26 22 19 16 15 13 

dk17 3 26 22 19 N/A N/A N/A 

dk27 3 26 22 N/A N/A N/A N/A 

dk512 4 26 22 19 16 15 14 

ex1 5 26 22 19 16 15 13 

ex2 5 26 23 19 N/A N/A N/A 

ex3 4 26 22 19 17 16 N/A 

ex4 4 26 22 19 16 15 13 

ex5 4 26 22 19 17 N/A N/A 

ex6 3 26 22 19 N/A N/A N/A 

ex7 4 26 22 N/A N/A N/A N/A 

keyb 5 26 22 19 16 15 13 

kirkman 4 26 22 19 16 15 14 

lion9 4 26 22 19 17 N/A N/A 

mark1 4 26 22 19 16 15 14 

opus 4 26 22 19 17 15 14 

planet 6 26 22 19 16 15 13 

planet1 6 26 22 19 16 15 13 

pma 5 26 22 19 16 15 13 

s1 5 26 22 19 16 15 13 
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s27 3 26 N/A N/A N/A N/A N/A 

s208 5 26 22 19 16 15 14 

s298 8 26 22 19 16 15 13 

s386 4 26 22 19 16 16 14 

s420 5 26 22 19 16 15 13 

s510 6 26 22 19 16 15 13 

s820 5 27 22 19 16 15 13 

s832 5 26 22 19 16 15 13 

s1488 6 26 22 19 16 15 13 

s1494 6 26 22 19 16 15 13 

sand 5 26 22 19 16 15 14 

scf 7 26 22 19 16 15 13 

shiftreg 3 26 22 19 N/A N/A N/A 

sse 4 26 22 19 16 16 13 

styr 5 26 22 19 16 15 13 

tbk 5 26 22 19 16 15 13 

tma 5 26 22 19 16 15 13 

train11 4 26 23 19 16 16 14 

 

Circuit Ori. 11 

items 

12 

items 

13 

items 

14 

items 

15 

items 

16 

items 

bbara 4 N/A N/A N/A N/A N/A N/A 

bbsse 4 13 12 N/A N/A N/A N/A 

bbtas 3 N/A N/A N/A N/A N/A N/A 

beecount 3 N/A N/A N/A N/A N/A N/A 
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cse 4 12 11 11 N/A N/A N/A 

dk14 3 N/A N/A N/A N/A N/A N/A 

dk16 5 12 11 10 9 10 9 

dk17 3 N/A N/A N/A N/A N/A N/A 

dk27 3 N/A N/A N/A N/A N/A N/A 

dk512 4 12 11 11 N/A N/A N/A 

ex1 5 12 11 10 9 10 N/A 

ex2 5 N/A N/A N/A N/A N/A N/A 

ex3 4 N/A N/A N/A N/A N/A N/A 

ex4 4 13 11 N/A N/A N/A N/A 

ex5 4 N/A N/A N/A N/A N/A N/A 

ex6 3 N/A N/A N/A N/A N/A N/A 

ex7 4 N/A N/A N/A N/A N/A N/A 

keyb 5 12 12 10 9 10 9 

kirkman 4 12 11 11 9 N/A N/A 

lion9 4 N/A N/A N/A N/A N/A N/A 

mark1 4 12 11 N/A N/A N/A N/A 

opus 4 N/A N/A N/A N/A N/A N/A 

planet 6 12 11 11 9 9 8 

planet1 6 12 11 11 9 10 9 

pma 5 12 12 11 9 10 9 

s1 5 12 11 10 9 9 9 

s27 3 N/A N/A N/A N/A N/A N/A 

s208 5 12 11 11 9 10 N/A 

s298 8 12 11 10 9 9 8 
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s386 4 12 12 N/A N/A N/A N/A 

s420 5 12 12 11 9 9 N/A 

s510 6 12 11 10 9 9 9 

s820 5 12 11 10 9 9 9 

s832 5 12 11 11 9 9 9 

s1488 6 12 11 10 9 10 8 

s1494 6 12 11 10 10 9 9 

sand 5 12 12 10 9 10 8 

scf 7 12 11 11 9 10 9 

shiftreg 3 N/A N/A N/A N/A N/A N/A 

sse 4 N/A N/A N/A N/A N/A N/A 

styr 5 12 11 11 9 10 9 

tbk 5 12 12 10 9 9 9 

tma 5 12 11 11 9 9 N/A 

train11 4 N/A N/A N/A N/A N/A N/A 

Table 5-2 State bits of each circuit when hiding different data items 

Although Table 5-2 shows that twice to six times state bits are required, we can 

claim that this is because we only divide the information sequence into 16 data items. 

Some circuits in the benchmark are large enough for hiding more items. If the FSM 

we want to protect has a lot of states, we can divide the information sequence into 

more parts and thus the required state bits will decrease. 

Then we use the tool “SIS” ( Synthesis of both synchronous and asynchronous 

circuits ) to count the literals of each circuit. Table 5-3 shows the literals of each 

circuit before and after embedding the information. The first column is the name of 

each circuit. The second column is the number of literals counted by SIS without 
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optimization. After applying the optimization script “script.algebraic” which is a 

build-in script of SIS, the number of literal is shown in the third column of Table 5-3. 

The fourth column shows the number of literals after embedding the information and 

applying the optimization script “script.algebraic”. 

Circuit # of ori. lits # of ori. lits 

after 

optimization 

With 128 

bits 

embedded 

bbara 133 96 244 

bbsse 216 153 323 

bbtas 53 32 159 

beecount 74 59 194 

cse 424 255 390 

dk14 177 145 287 

dk16 502 362 493 

dk17 110 99 246 

dk27 42 30 181 

dk512 104 77 230 

ex1 511 303 763 

ex2 252 183 344 

ex3 111 95 211 

ex4 146 105 215 

ex5 110 78 207 

ex6 211 120 253 

ex7 114 94 217 

keyb 605 317 394 
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kirkman 485 305 1070 

lion9 47 36 220 

mark1 162 112 227 

opus 147 96 213 

planet 1102 653 780 

planet1 1102 653 802 

pma 581 230 497 

s1 857 468 472 

s27 18 14 183 

s208 181 86 521 

s298 244 138 3151 

s386 347 158 337 

s420 383 174 438 

s510 424 303 504 

s820 757 359 854 

s832 769 376 920 

s1488 1387 751 1249 

s1494 1393 762 1438 

sand 1126 637 792 

scf 1865 953 981 

shiftreg 20 8 189 

sse 216 153 308 

styr 1020 598 758 

tbk 1829 953 1814 

tma 386 197 367 
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train11 67 59 212 

Table 5-3 The number of literals before and after embedding 128 bits information 
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Chapter 6 Conclusions and Future Works 

In this research, we propose a new method － state difference encoding － to 

hide information in a finite state machine. The main idea of our method is to embed 

the signature which is represented in a sequence of information in the difference of 

states. The state difference encoding has the following advantages :  

1. This method is used in behavioral level and behavioral level provides better 

reusability. 

2. This method can provide thorough protection from behavioral level to 

physical level.  

3. Difficult to observe the signature since it is embedded in the state code. 

4. Difficult to fake another signature because the code which can be used is 

restricted. 

5. The signature can be extracted whenever in behavioral level, gate level, or 

physical level. 

On the other hand, our state difference encoding has certain disadvantages : 

1. Complex computation. Using our method must find a path for information 

hiding, formulate the state code requirement into an INLP, and solve the 

INLP. 

2. Hard of detection. The detection procedure includes feed the input state and 

inputs into the FSM, let the FSM run one step, and extract the current state 

of the FSM. 

 There is still something which could be improved in our method. The path finder 

of our method uses random number to find a path. Although this approach is efficient, 

the overhead of the selected path varies. We can use smarter algorithm to pick up a 
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path in order to reduce the overhead instead of random selection. Now, almost the 

whole computation time is spent on the INLP solver. And The INLP solver takes the 

same time to solve the INLP no matter the INLP has a solution. Thus, we can tear the 

whole INLP to many ILPs and solve these ILPs respectively to speed up the 

computation time. The product term of the modified FSM generated by HDL 

generator now is directly derived from edges of the original FSM. This will cause the 

number of literals increases significantly. We can combine some optimization 

algorithms to the HDL generator to further optimize the generated FSM. 
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