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Omni-Vision Techniques and Applications

Student: Shen-En Shih Advisor: Dr. Wen-Hsiang Tsai

Institute of Computer Science and Engineering
College of Computer Science

National Chiao Tung University

Abstract

Omni-vision is animportant and effective technique.to make computers be aware
of the surrounded environment. Different from traditional computer vision techniques,
omni-vision ones emphasize more-on capturing the environment.information within a
very wide area at one time without adding a motor control to the camera, moving the
camera periodically, or using multiple cameras. Such techniques can avoid the
difficulties of image stitching, camera hand-off;feature 'tracking over different
cameras, etc. To achieve the capability of capturing information of a wide area, two
special kinds of cameras:are commonly used, which are catadioptric omni-directional
cameras, and fisheye-lens cameras. The formal ones use a specially-designed
reflective mirror to extend the viewing field, and the latter ones use a fisheye-lens to
achieve the goal. However, since the environment information captured from a wide
area is all compressed in a relatively small image, the captured image is inevitably
heavily distorted, which makes the image analysis task much more difficult and
complicated. Although, an easy and feasible way to deal with the heavy distortion is
to unwarp the captured images to yield an image looking like one captured by a
conventional perspective camera. However, since the resolution distributions captured
by omni-directional cameras and by conventional perspective camera are quite
different from each other, an unwrapped image becomes much more blurred in some

regions, making image analysis tasks unstable and unreliable. Furthermore, the



unwarping process needs some computation power, making it unsuitable to real-time
applications and embedded systems with restricted computation power.

To deal with the heavily-distorted images captured by omni-directional cameras,
an accurate and reliable space line detection method without unwarping the distorted
image is proposed. Also, to model the imaging process conducted by an
omni-directional camera, a new camera model along with a convenient calibration
process to calibrate an omni-camera easily is proposed. This new calibration
technique requires only one straight line in the environment without knowing the
position or direction of the line, making it possible for non-technical user to conduct
the calibration work which is a big step toward consumer electronics.

In addition, from the viewpoint of a consumer, the setup procedure of an
omni-vision system should be sufficiently convenient for use by a typical user with no
technical background. In this sense,-anew binocular-omni-vision system is proposed,
which allows the user to place the two. omni-directional cameras freely at any
positions and with any orientations. After the two cameras are placed, the system can
automatically derive the cameras’ positions and orientations via analysis of the space
lines within the environment. As a result, the binocular omni-vision system can
calculate 3D information correctly for use In many advanced human-machine
interaction applications. Furthermore, for _applications / requiring precise 3D
information, an optimization framework . along with three different optimization
algorithms are proposed.as well to tell the user where to place the two omni-cameras,
and what are the best orientations. With these optimization algorithms, the user can set
up a binocular omni-vision system which acquires the most precise 3D data.

Finally, the proposed omni-vision techniques are extended for uses in the
application of indoor parking lot management. The proposed system for this
application utilizes the omni-directional cameras mounted on the ceiling, and
automatically analyzes the acquired images to obtain the locations of the parking
spaces and detect vacant parking spaces. Different from existing similar application
systems, the proposed one requires fewer cameras due to the wider fields of view of
the cameras, and is much more convenient to set up because of the developed
automatic parking-space analysis capability.

The feasibility and effectiveness of all the above proposed methods and systems

are demonstrated by theoretical analyses and good experimental results.

Vi
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Chapter 1 Introduction

1.1 Research Motivation

With the advance of technologies, various types of vision systems have been
designed for many applications [1]-[5], like virtual and augmented reality, video
surveillance, environment modeling, TV games, etc. Most of these applications
require acquisitions of the 3D data, meaning in turn the need of precise system
calibration and setup works to yield accurate 3D data computation results in the
application environment. However, from a consumer’s viewpoint, it is unreasonable to
ask a user to set up a vision systemvery accurately, requiring, e.g., the system
cameras to be affixed at accurate locations in-precise orientations. Contrarily, it is
usually desired to allow a user to choose freely where to set up the system
components. Additionally, many-vision systems used. for the previously-mentioned
applications are composed of traditional projective cameras which collect less visual
information than systems using omni-directional cameras (omni-cameras).

To overcome-these difficulties, a 3D vision system which consists of two
omni-cameras with_a capability of automatic adaptation to any camera setup is
proposed in this dissertation study. While establishing this system, the user is allowed
to place the two cameras freely in any orientations with any displacement. Then, the
system can accurately analyze some environment features, and automatically adapt to
the unknown system configuration by deriving the locations and orientations of the
two cameras. As a result, an accurate and adaptive omni-vision system can be
constructed.

On the other hand, in the binocular omni-vision applications which requires
precise 3D acquisitions, an optimization method is required to tell the user where to
place the cameras, and what are the best orientations. Since many existing
optimization techniques only focused on dealing with binocular vision systems using
conventional perspective cameras, a specially optimization framework and algorithm
are thus required to produce the optimal configuration.

Furthermore, it is noticed that the omni-vision techniques are not yet popular
enough. To bring the omni-vision into our daily life, the omni-vision system must be

able to be easily set up, including the calibration process and the system setup phase.



To this aim, an convenient indoor parking lot management system is desired, which
uses the omni-cameras mounted on the ceiling, and the system must be able to be
easily calibrated and set up by a typical user with no technical background.
Fulfillments of the aforementioned goals of this thesis study together enhance
the state-of-art studies on omni-vision techniques, yielding a further step toward to the

area of consumer electronics.

1.2 Survey of Related Works

The related works are categorized into several directions and reviewed as

follows.

(1) Catadioptric camera

A catadioptric omni-camera-is-a combination of a reflective mirror and a CCD
camera as shown in‘Fig. 1.1(a).-An-image taken by such a kind of camera is shown in
Fig. 1.1(b). With the aid of reflective surface from mirror, a camera of this type can
obtain larger fields.of view in the acquired images. The lens of the CCD camera may
be of a perspective or orthographic projection type, and the mirror surface of a
catadioptric omni-camera. may be ‘In various shapes such as hyperbolic, circular,
parabolic, or conical one, as illustrated in Fig. 1.2. With distinctive mirrors or lenses,
the images and calibration methods of the cameras are different in this category. Some

works of using this type of camera ¢an be found in'[6]-[14].

(2) Dioptric camera

A dioptric omni-camera, looking like a traditional camera, has no reflective
mirror, but is with a “wider-angle” lens. It can capture incoming light rays from a
wider field of view to form an omni-image. An illustration of such an imaging
difference between traditional and catadioptric cameras is shown in Fig. 1.3. The lens
shape design of this group of cameras decides the formed images and their calibration
methods. An example of this kind of omni-camera is the fish-eye camera. An image
acquired by a fish-eye camera is shown in Fig. 1.4. Some works of using fish-eye

cameras can be found in [15]-[17].



(a) (b)

Fig. 1.1 A catadioptric camera.(a amera. (b) Acquired image.

orthographic
camera

paraboloid
mirror

e ——
s FOV
) Fov ] _rov
(@ (b) (c)

Fig. 1.3 FOVs of different camera types. (a) Dioptric camera. (b) Traditional

(perspective) camera. (c) Catadioptric camera. [18]



Fig. 1.4 An image acquired by a fish-eye camera.

(3) Binocular vision systems

A binocular vision'system is composed of two-cameras, typically perspective
ones, which are placed at different.locations. Differently, a binocular omni-vision
system consists of two omni-cameras, which'can be catadioptric or fisheye-lens ones.
An illustration is shown in Fig. 1.5, where two kinds of such camera pairs are seen. In
theory, by using the corresponding pixels in the two images acquired from the
cameras, stereo information can be derived from such correspondences. Most existing
researches were focused on binocular vision systems using perspective cameras
[19][20]; contrarily, researches on binocular vision systems with omni-directional

cameras are less [21] with many open problems waiting to be solved.

(4) Human-machine interface systems

Human-machine interaction has been intensively studied for many years. Laakso

and Laakso [22] proposed a multiplayer game system using a top-view camera, which
4



maps player avatar movements to physical ones, and used hand gestures to trigger
actions. In [23], a special human-machine interface was proposed by Magee et al.,
which uses the symmetry between the left and right human eyes to control computer
applications. Zabulis et al. [24] proposed a vision system composed of eight cameras
mounted at room corners and two cameras mounted on the ceiling to localize multiple
persons for wide-area exercise and entertainment applications. Starck et al. [25]
proposed an advanced 3-D production studio with multiple cameras. The design
considerations were first identified in that study, and some evaluation methods were
proposed to provide an insight into different design decisions.

(a) (b)
Fig. 1.5 Two types of binocular omni-vision systems. (a) Laterally parallel

combination. (b) Longitudinally coaxial combination.

(5) Geometric feature extractions

Geometric features, like points, lines, spheres, etc., in environments encode
important information for on-line calibrations and adaptations [26][27]. Several

methods have been proposed to detect such features in environments. Ying [28][29]
5



proposed several methods to detect geometric features when calibrating catadioptric
cameras, which use the Hough transform to find the camera parameters by fitting
detected line features into conic sections. Duan et al. [30] proposed a method to
calibrate the effective focal length of the central catadioptric camera using a single
space line under the condition that other parameters have been calibrated previously.
\on Gioi et al. [31] proposed a method to detect line segments in perspective images,
which gives accurate results with a controlled number of false detections and requires
no parameter tuning. Wu and Tsai [32] proposed a method to detect lines directly in an
omni-image using a Hough transform process without unwarping the omni-image.
Maybank et al. [33] proposed a method based on the Fisher-Rao metric to detect lines
in paracatdioptric images, which has the advantage that it does not produce multiple
detections of a single space line. Yamazawa et al. [34] proposed a method to
reconstruct 3D line segments in images taken with three omni-cameras in known
poses based on trinocular vision by the use.of the Gaussian sphere and a cubic Hough
space [35]. Li et al. [36] proposed a vanishing point detection method based on
cascaded 1-D Hough transforms, - which requires only a small amount of computation

time without losing accuracy.

(6) System configuration optimization

Several methods have been proposed to derive optimal vision system
configurations. Among them, one popular way is.to assess the 3D measurement error
by the use of the covariancematrix [37]-[42]. For this, Wenhardt et al. [37]
determined the locations of mobile cameras to yield the best 3D model reconstruction
by assessing the covariance of the resulting 3D data in three ways, namely, using the
determinant, eigenvalues, and trace of the covariance matrix, respectively. Hoppe et al.
[40] used the eigenvalues of the covariance matrix to model the 3D measurement
error for precise camera localization and object modeling. Alsadik et al. [39]
established a camera network for precise reconstruction of a cultural heritage object
by the use of the trace of the covariance matrix. Olague and Mohr [41] proposed a
multi-cellular genetic algorithm to decide camera locations, which yield minimal 3D
measurement errors, by the use of the maximum diagonal element of the covariance
matrix. Zhang [38] determined the optimal 2D spatial placement of multiple sensors
participating in a robot perception task utilizing the determinant of the covariance
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matrix. Rivera-Rios, et al. [42] analyzed 3D measurement errors due to feature-point
localization errors and found accordingly the optimal camera pose by the
mean-square-error criterion using the covariance matrix of the 3D measurement data.
In these methods, the precisions of the 3D measurements are all assessed by the use of
the covariance matrix. Additionally, a local-affineness assumption was made when

deriving the covariance matrix (as stated in [43]).

1.3 Contribution of This Study

The main contributions of this dissertation study are summarized in the
following.

1. A new camera model for omni-=directional cameras including catadioptric ones
and fisheye-lens ones Is proposed. This-new model utilizes a new invariant
property found in this study, so that the camera model is simpler than the
conventional one, and can be calibrated more robustly using a small amount of
environment features.

2. A new calibration technique is proposed for the aim of easily calibrating the
omni-directional camera by a typical-user with no technical background. This
new calibration technique requires only one straight line.in the environment
without knowing the position or direction of the line, sothat it is possible to be
calibrated by a non-technical user, yielding a big. step toward consumer
electronics.

3. An easy-to-set-up binocular omni-vision system is proposed in this study, which
allows the user to place the two omni-directional cameras freely at any positions
and with any orientations. After the two cameras are placed, the system can
automatically derive the cameras’ positions and orientations via analysis of the
space lines within the environment. As a result, the binocular omni-vision
system can calculate 3D information correctly, and can be utilized in many
advanced human-machine interaction applications.

4. To the applications requiring the binocular omni-vision systems to acquire
precise 3D information, an optimization framework along with three different
optimization algorithms are proposed. After telling the requirements and
constraints of the 3D application, the optimization algorithm can generate the

optimal system configuration, giving the user the best locations to place the two
7



omni-cameras and their best orientations. With these optimization algorithms,
the user can set up a binocular omni-vision system which acquires the most
precise 3D data.

5. To extend the proposed omni-vision techniques for uses in other applications, a
parking-lot management system is proposed, which uses the omni-directional
cameras (including catadioptric and fisheye-lens ones) mounted on the ceiling.
After the omni-cameras are set up, the system automatically analyzes the
locations of the parking spaces and detects vacant parking spaces after
conducting a background learning process. Different from conventional
parking-lot management system, the proposed system requires fewer cameras
due to the wider fields of view of the used cameras, and is much more
convenient for the user to setup because of its automatic capability of analyzing
parking spaces.

1.4 Dissertation Organization

The remainder..of ‘this dissertation~is organized as follows. In Chapter 2, an
overview of the proposed technigues are given.In Chapter 3, the structure of
omni-cameras and the unifying camera model for catadioptric_omni-cameras and
fisheye-lens cameras are briefly reviewed, followed by an introduction to the
proposed simplified:-camera model. The proposed:space /line detection method is
introduced in Chapter 4, including the problems of existing methods, derivations of
the proposed method, and some experimental results. In Chapter 5, the proposed
easy-to-set-up binocular omni-vision system Is described, which allows the user to
place the two omni-directional cameras freely at any positions and with any
orientations, and can automatically derive the camera poses using environment
features. the proposed optimization framework along with three different optimization
algorithms for applications requiring acquisitions of precise 3D information are
described in Chapter 6, which generates the optimal system configuration to give the
best locations and orientations of the two omni-cameras. The proposed convenient
vision-based parking lot management system is described in Chapter 7, which uses the
omni-cameras mounted on the ceiling to automatically analyze the locations of the
parking spaces and detect vacant parking spaces after conducting the background
learning process. Finally, in the last chapter, conclusions of this study and some

suggestions for future research are included.
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Chapter 2 Overview of Proposed Techniques

and ldeas

In this chapter, we describe the main ideas and techniques of the proposed

methods for used in omni-vision systems.

2.1 A Modified Unifying Model for Omni-cameras

A new modified camera model for omni-cameras, including single viewpoint
catadioptric omni-directional cameras, fisheye-lens cameras, etc., is proposed in this
study. This new camera model is modified from the unifying omni-camera model
proposed by Geyer and Daniilidis [44], and it is with fewer camera parameters than
the original unifying model. In the proposed modified model, we investigated an
important invariant property, so-that-one of the parameters in the original unifying
omni-camera model can be eliminated by replacing it with an optimal approximated
value, and in the meantime preserve an important property regarding to space line
detection. Then, according to this Invariant property,n we design a series of
experiments to find an optimal value to approximate one of the parameters in the
original unifying model proposed by Geyer-and Daniilidis.. Furthermore, since the
proposed modified model has"fewer parameters than the original one, we also
proposed a new calibration model using only one straight line in the 3D world,
without knowing its position, direction, or length.

To sum up, we investigate a new invariant property regarding to the projections
of the straight lines by omni-directional cameras, and accordingly proposed a new
modified unifying omni-camera model which is with fewer parameters than the
original model. Furthermore, a new calibration method is also proposed which can
be used to calibrate an omni-camera using only one straight line with no knowledge
about its position, direction, or length. Comparing with existing omni-camera models,
the proposed one has an great advantage since it can be calibrated reliably from one
straight line, so it facilitates a non-technical user to conduct the calibration process

without difficulty because it requires no extra calibration target.



2.2 Space Line Detection Techniques for Omni-cameras by

Equal-width Curve Extractions

An improved detection method is proposed in this study to robustly detect
straight lines (i.e., space lines) in the 3D world from the images captured by
omni-cameras. The proposed method detects the space lines from the captured
omni-images directly without unwarping the captured omni-images, so the
processing time may be faster than the methods needing unwarpings. Traditionally,
the Hough Transform can be used to detect space lines from omni-images without
unwarping it; however, it is showed in this study that the traditional ways all have
some problems when detecting the space lines, so the results are imprecise and
unrobust. In this study, we firstidentified three main different conventional
approaches to detect space lines, and analyzed.the reasons of the imprecision and
unrobustness. From the analyze results, it is figured out that an equal-width curve
extraction technique can be used to yield a more precise and. robust results when
detecting space lines." As a result, a technique to ‘extract equal-width curves is
proposed using ‘total differential concepts; consequently, an  improved Hough
transform technique is proposed to detect equal-width ~curves using the
previously-mentioned equal-width extraction method.

From the experimental results, the proposed line detection method can detect
space lines more precisely ‘and robustly then the conventional methods. To the
processing time, the proposed method-only-requires a bit longer running time than
the conventional ones, but produces ‘a ‘much more precise results than the

conventional ones.

2.3 Automatic Adaptation Techniques of Binocular

Omni-vision Systems to Any System Setup

From the viewpoint of consumers, one of the important facts when deciding to
buy a new system is the convenience of the system setup process, so a system with a
convenient setting up process is very important in consumer electronics. In this
aspect, a new binocular omni-vision system is proposed in this study, which can be

easily deployed by users without any restrictions on the locations or orientations of

10



the cameras, and then the system can automatically adapt system parameters using
only the straight lines in the environment. Specifically, the proposed vision system,
as shown in Fig. 2.1, consists of two omni-cameras facing the user’s activity area.
Each camera is affixed firmly to the top of a rod, forming an omni-camera stand,
with the camera’s optical axis adjusted to be horizontal (i.e., parallel to the ground).
After the two cameras are placed freely by the user with arbitrary locations and
orientations, we utilize the straight lines within the surrounding environment as a
hint to tell us the orientations of the cameras, and then use these lines to derive the
two cameras’ orientations. After deriving the orientations, the system will ask the
user to stand at the middle region in front of the two cameras, and derive the distance
between the two cameras (i.e., the baseline) with the use of the user’s height. After
deriving the orientations and the baseline, a coordinate system can be defined with
no ambiguity, so the 3D.data can-be computed. correctly. To further improve the
correctness and robustness of the adaptation process, we also take the advantage of
the property that the straight lines-are mostly parallel or perpendicular to each other,
so that the proposed adaptation process-can-be conducted without finding the line
correspondences among the two omni-cameras, and in the meantime improves the
correctness and rabustness of the adaptation results.

To sum up, we proposed a new 3D.vision system using two emni-cameras, which
has a capability of automatic adaptation to any system setup for convenient in-field
uses. The cameras are allowed to be placed freely in the environment at any location
in any orientation, resulting in an-arbitrary-system setup. Then, by the use of space
line features in environments, the proposed vision system can adapt automatically to
the arbitrarily-established system configuration by just asking the user to stand still
for a little moment in the middle region of the activity area in front of the two
cameras. Contrarily, in traditional vision systems, the two cameras may be required
to be parallel to each other, and the distance between the cameras may be required to
be a fixed length. After this adaptation operation, 3D data can be computed correctly

and precisely.
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Fig. 2.1 The proposed binocular omni-vision system.

2.4 Optimal Design and-Placement of Omni-cameras in
Binocular Vision Systems for Accurate 3D Data

Measurement

The optimal design of ‘@ vision system .is an important issue for system
deployments, and in this study,the optimization problem of designing an binocular
omni-vision system is analyzed-and solved by three different optimization methods.
In a binocular omni-vision system, which is composed of two catadioptric
omni-directional cameras with hyperboloidal-shaped mirrors, an optimal system
design includes the optimal shapes of the two hyperboloidal mirrors, the optimal
viewing angles of the perspective cameras, the optimal locations of the cameras, and
the optimal directions of the camera, and in this study, we focused on finding a such
configuration which can yield the most accurate 3D measurements. To solve this
optimization problem, the first step is to design a function to estimate the goodness
of a system configuration, and then design optimization methods which can
minimize the function. In more detail, a criterion function is proposed in this study
to estimate the accuracy of the 3D measurements yielded by a system configuration.
That is, the criterion function takes the system parameters as its input arguments,

including the camera poses, camera parameters, and the location of the feature point
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whose 3D data is going to be measured, and produces a value indicates the accuracy
of the 3D data yielded by the binocular omni-vision system.

For the criterion function, we use error propagation analysis techniques to
estimate the accuracy of the 3D measurement, and the proposed criterion function is
with analytical formulas, making it possible to design an analytical and non-iterative
optimization method. After defining the criterion function, it is then used in an
optimization framework to find the optimal system configurations for different
shapes of system setup environments. For regular cases with rectangular
cuboid-shaped 3D measurement and camera placement areas, two fast algorithms are
proposed to solve the problem, one being bisection-based and relatively slower for
deriving the optimal solution; and the other faster using analytic formulas for
deriving a sub-optimal solution which is proved to be close to the optimal one in
precision. For general cases, an-iterative optimization method is proposed along with
several speeding-up techniques to accelerate the optimization process. Experimental
results of simulations and real-application cases show: the feasibility of the proposed

optimization methods.

2.5 An Omni-vision-based Indoor Parking Lot:System with

the Capability of Automatic Parking Space Detection

A convenient indoor wvision-based parking <lot system using wide-angle
fisheye-lens or catadioptric cameras is-proposed, which is easy to set up by a user
with no technical background. Easiness in the system setup comes mainly from the
use of a new camera model which can be calibrated using only one space line
without knowing its position and direction, as well as from the automatic detections
of the parking space boundaries. Comparing with traditional parking lot systems, the
traditional ones usually use perspective cameras, rather than use wide-angle cameras,
such as fisheye-lens or catadioptric ones, are not commonly adopted yet.
Furthermore, another one problem exists in the traditional systems is the complicated
system setup procedure, including camera calibration, environment learning, object
modeling, etc., whose implementation usually requires the user to have a lot of
technical knowledge. From these viewpoints, an intelligent vision-based system

using omni-cameras for parking lot management is proposed, which has the
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following two merits: 1) the camera system can be set up easily by a common user
with no technical background; 2) parking spaces can be detected precisely; and 3)
vacant parking spaces can be identified automatically for convenient car parking.

In more detail, the omni-cameras mounted on the ceiling can be easily calibrated
using straight lines in the environment using the new camera model and the new
calibration method proposed in this study. After camera calibration is conducted,
parking-space boundary lines are extracted automatically from input omni-images by
a modified Hough transform with a new cell accumulation scheme, which can
generates more accurate equal-width curves using the geometric relations of line
positions and directions. To further improve the detection results of the
parking-space boundary lines, the property that the boundary lines are either parallel
or perpendicular to each other is-taken into consideration to improve the results.
After the boundary lines ‘are detected, the user ‘may easily add or remove the
boundary lines by single clicks on images, and parking spaces can be segmented out
by region growing by the use-of the boundary lines. Finally, vacant parking spaces
can be detected by a background: subtraction.scheme. ‘A real vision-based parking lot
has been established and relevant experiments conducted. Good experimental results

show the correctness, feasibility, and robustness of the proposed methods.
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Chapter 3 Omni-camera Structure and Models

In this chapter, the structure of the catadioptric omni-cameras are introduced first.

Then, the conventional model for omni-cameras are briefly reviewed.

3.1 Catadioptric Omni-camera Structure

The catadioptric omni-camera is composed of a hyperboloidal mirror and a
perspective camera looking toward the mirror, as depicted in Fig. 3.1. A camera
coordinate system (CCS) x-y-z and an image coordinate system u-v are defined in
such a way that the x- and y-axes are parallel to the u- and v-axes, respectively, and
the two focal points of the mirror are-at O(0, 0,.0) and O¢(0, 0, 2c). In this way, the
mirror shape can be expressed [45] by

(Z—ZC) _(X +y ):1, C= ,a2+b2' z<c, 1)

a b?

with its eccentricity.« being defined by c/a > 1. A projection equation describing the
relation between the complementary elevation angle ¢ of a space point P and image

coordinates (u, v) of the projected pixel p can be expressed [32] as

(e -Dsinz

tang = :
/ (e*wF1cost—2¢

(2)

where coszand sinz, as seen from Fig. 3.1, can be expressed by

O Sim:ﬁ- (3)
NTRERVa JUZ+Ve+ f
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Fig. 3.1 Catadioptric omni-camera structure and its camera coordinate system.

3.2 Review of the Unifying Model for Omni-cameras

In the unifying model proposed by Geyer and Daniilidis [44], the relation
between a space point' P-and its corresponding pixel p_is.described by a two-step
mapping via a unit-sphere as illustrated in Fig. 3.2. Specifically; point P is firstly
projected onto a point Ps on the unit sphere like being viewed. from the effective
viewpoint O through the sphere. Then, Ps Is projected perspectively into the pixel p on
the image plane IT like being viewed from the “pinhole” point O¢ (usually the lens
center). The two involved parameters | and f. as illustrated in Fig. 3.2 are defined in
the same way as suggested by Ying and Hu [46].

The unifying model described above has been proved equivalent to models for
perspective, parabolic catadioptric, and hyperbolic catadioptric cameras [44].
Additionally, it was shown by Ying and Hu [47] to be suitable for modeling
fisheye-lens cameras as well.

To the resolution formula, Baker and Nayer [56] proposed a formula to calculate
the resolutions at different pixels in an omni-image as follows. Let dA be an
infinitesimal area on the image plane near a pixel p, which, as illustrated in Fig. 3.3, is
the projection of an area in the space described by an infinitesimal solid angle dv

coming from a point P. The resolution of pixel p is formulated as
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R(e, f,¢):d_A=(82—1)2(82+28008¢+1) £2)

3 3 4)
4 [28+(82 +1)COS¢}

where ¢ is the eccentricity of the mirror, f is the focal length of the camera, and ¢ is

the complementary elevation angle of P.

unit sphere

O(0, 0, 1)

0(0, 0, 0)
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z

k——— 3

hyperboloidal-shaped
mirror

Fig. 3.3 Hlustration for defining the resolution at a pixel.
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Chapter 4 Space Line Detection for
Omni-cameras by Equal-width Curve

Extractions

In this chapter, the problems of existing methods for line detections in
omni-images are described in Section 4.1, the proposed method to deal with this
problem is described in Section 4.2, and some experimental results are presented in
Section 4.3.

4.1 Problems of Existing Methods

The Hough transform is widely used in computer vision applications to detect
shapes in noisy images. It includes three main steps: image thinning, cell value
accumulation, and voting for peak value detection..In the image thinning step, a
standard method isto conduct edge detection to extract edge pixels in the input image.
In the cell value accumulation step, each edge pixel is transformed-into a curve in the
parameter space (also called Hough space), and the values of.the corresponding
elements in the Hough space, called Hough cells, are all .incremented by one.
Subsequently, the voting step is conducted to find the peaks (local maximums) in the
Hough space, which are taken finally as the parameters of the detected shapes.

The cell value accumulation step is essential in the Hough transform, also known
as the evidence gathering step. if a shape to be detected is described by a function F,
then pixels contributing to the accumulation of the (largest) peak cell value in the
Hough space theoretically are just those with their coordinates (u, v) satisfying the
equation F(u, v) = 0. However, since these coordinates (u, v) in practice are with
errors coming from quantization, noise, edge detection, imprecise camera calibration,
etc. [51][52], the mentioned pixels, with such erroneous coordinates (u, V), instead
will not all lie precisely on the curve F(u, v) = 0. To endure such imprecision, three
different methods exist as described in the following.

The first conventional method is called constant thresholding, the inequality

F(u,v)|<T. (5)
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is used to decide whether an edge pixel with coordinates (u, v) contributes to the
accumulation of a Hough cell value. This method can generate a desired equal-width
curve as shown in Fig. 4.1(a) when detecting simple shapes; however, it generates bad
results when dealing with complicated shapes as shown in Fig. 4.1(b). Furthermore,
even if an equal-width curve can be generated, the relation between the threshold T
and the curve width W is still unclear and it needs further analysis or experiments to
derive a reasonable value for T.

The second method is by examining each Hough cell, which examines each
Hough cell by two steps: (1) use (u, v) and function F to find a parametric equation
describing all the curves going through (u, v); (2) regard the equation as the
description of a hypersurface in the Hough space, and examine each cell to detect
those intersecting this hypersurface; and increment their values. One drawback of this
method is that, which pixels contribute to cell*value accumulations depends on the
cell size, and these pixels together are not.of a desired equal-width shape, as shown
later in the experimental results.

The third method is with-the use of an.inverse function. More specifically, the
Hough cells with their values contributed by an edge pixel with coordinates (u, v) are
determined by: (1) enumerate the first. n — 1 parameters of the Hough space, where n
is the dimension of the space; and (2) derive the n parameter by the inverse function
of F and the coordinates (u, v). This method is faster than the previous one, but has
some drawbacks. First, «it cannot generate desired equal-width shapes. Second, the
inverse function might be difficult to.derive. Furthermore, different parameterizations
and different ways of parameter enumerations might yield different results, as shown
in Fig. 4.2.

4.2 Proposed Method

In the cell value accumulation step where pixels contributing to Hough cell
values are determined, it is desired, as described previously, to develop a method for
detecting pixels of an equal-width shape both centered at the thin curve F(u, v) = 0
and with an equal width W everywhere on the curve.

Given a pixel P with coordinates (u, v), two cases can be identified. One is that

F(u, v) <0, where the coordinates (u’, v') of the closest pixel P' on the curve F =0, as
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depicted in Fig. 4.3, can be estimated by the use of the direction of the gradient vector

at (u, v) to be

M T
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--------------------------

\l\l. \. | »u
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Fig. 4.1 Pixels (marked in dotted blocks) contributing to'a Hough cell value when

detecting (a) a line, and:(b) a curve.

(a) (b)
Fig. 4.2 Hough cells (dotted blocks) with values contributed by an edge pixel when

enumerating parameter (a) A, and (b) B.

VF(u,v)

WY 6
VEWY)| (®)

u,v)=(u,v)+d

where d is an unknown distance. Then, the function value F(u’, v’) at (u’, v') can be

linearly estimated by the use of the first-order directional derivative to be
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Cony |4 VE@UV)
F,v')=F(u,v)+VF(u,v) (d —||VF(u,v)||J' (7)

Also, because pixel P* with coordinates (u’, v') is on the curve, we have F(u’, v') = 0,
so that (7) implies that

F=F@u"v")>0

%) (VE(u,v)
F=F(,v)<0

T 7/ > U

Fig. 4.3 lllustration-of proposed-dynamic thresholding method.

VE(u,v) |
F(u,v)+VF(u,v)-(d WJ—O,

or equivalently, that

d:—F(u,v)-( IVE ) ]— —(LY)

VF - ' (®)
(uv)-VE@U,Y) ) |[VF V)|

Then, as illustrated in Fig. 4.3, the inequality d < W/2 can be used to determine
whether a pixel with coordinates (u, v) is within the equal-width curve shape. This

inequality, when combined with (8), leads to

_ —Fv) w
IVE@u,v)| 2°

or equivalently, to

—F(u,v)<||VF(u,v)||-V?V. (9)
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In the other case that F(u, v) > 0, similarly, the coordinates (u’, v') of the closest
point P' on the curve F = 0 can be linearly estimated by the negated gradient vector

—VF(u, v), so that coordinates (u’, V') can be expressed as

VFE(u,v)

S

Then, following similar derivations, we can get

F(u,v) <|[VFu,v)| VEV : (10)

The two inequalities of (9) and (10) can be combined to get

| (U, <|IVE V)| V?V , (11)

which is of the form of the Inequality of (5) used.in the constant thresholding method.
But differently, the threshold T-can-now be taken to be (||VF(u, v)||-W)/2 whose value
can be dynamically determined for pixels with-different coordinates (u, v) as well as
for Hough cells with-different parameters related to the function F,in order to detect a
desired equal-width.curve shape in the image space.

Theoretically, the dynamic thresholding. method proposed above is based on
linear approximation. Accordingly, the estimated function value F(u’, v') will become
inaccurate when the desired curve width W becomes-large. However, since the curve
width is used to overcome small errors-in-the input data, the width W may be taken to
be a small number. So, the proposed method is expected to yield good results in most

applications.

4.3 Experimental Results

In this section, the validity, effectiveness, and robustness of the proposed
dynamic thresholding method for the Hough transform are shown by comparing the
proposed method with four other methods as listed in Table 4.1 for detecting four
different types of shapes as listed in Table 4.2. Among these shapes, The curve of a

space line projected on an image taken by the omni-camera can be described by [32]:
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Cu?*+C,uv+CyV°*+C,u+Cyv+C, =0, (12)

where the coefficients are

C=A-B*(C’-1);  C,=2AV1-A-B;

C,=1-A*-C,’B?; C,=2ABC,f ;
2
C,=2BCI-A—B’f; C,=B’f?;and C, =5 *2

g -1
The range of the two parameters A and B are both taken to be from -1 to 1 and the

Hough space dimension is chosen to be 64x64.

Table 4.1 Used Hough transform algorithms.

No. accumulation method described in...
(H1) the proposed method Section 4.2
(H2) constant threshold 1.0 Section 4.1
(H3) constant threshold 100 Section 4.1
(H4) examining each cell Section 4.1
(H5) inverse function Section 4.1

Table 4.2 Shapes used in experiments.

shape equation cell size
(S1) line v=Au+B A:0.1;B: 10
—u\ _v. Uo: 10; vo: 10;
(S2) circle / ellipse (UUOJ +(VVOJ -1

A B A: 10;B: 10
] ] . A:10; B: 0.1,

(S3) sine and cosine v = Asin(Bu) +C cos(Du)
C:10;D: 0.1
(S4) space lines in omni-images described in (12) A:0.1;B:0.1

The pixels contributing to the peak in the Hough space for detecting each of the
four shapes listed in Table 4.2 using each of the five methods listed in Table 4.1 are

drawn in Fig. 4.4. Recalling that these pixels are desired to form an equal-width shape,
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one can see that the proposed method yields the best results for both simple and
complex shapes as shown in the leftmost column in the figure, and that the
conventional methods cannot generate equal-width curves, especially when detecting

complicated shapes.

Fig. 4.4 Pixels (in red) ‘contributing to peak cell value..From left to right: results of
algorithms H1 to H5, and from top to bottom: results for shapes S1 to S4. The

proposed method yields the best results as shown in the leftmost column.

To test the robustness of each different cell-value accumulation method, the
ground-truth curve is first drawn on an image. Then, the pixels on the curve are
perturbed within a circle with a diameter of 5 pixels to generate curve pixels with
small errors. Also, 1% pixels of the entire image are randomly noisified as noise
pixels. The true positive rate (TPR) and the false positive rate (FPR) for each of the

five methods are calculated accordingly respectively by:

# of curve pixels contributing to the peak cell value
total # of the original curve pixels

TPR =
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# of noise pixels contributing to the peak cell value
total # of the noise pixels '

FPR =

As stated previously, it is desired that the curve pixels all contribute to the
peak-value accumulation, so a high TPR is desired. Contrarily, noise pixels which
make such contributions should be as few as possible, so a low FPR is desired. As can
be seen in Fig. 4.5, the proposed method yields very high TPRs and very low FPRs
for all the four types of shapes, showing its robustness; and this is not the case for

each of the other four methods.

100%

T5%

50%

25%

0%

m(51) line m(52) ellipse m (53 sine/cosine W (54) space lines in omni-images

Fig. 4.5 TPR and FPR of five Hough transform algorithms for detecting four types
of shapes. The proposed method yields high TPRs-and low FPRs for all the

shapes, and the others do not.
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Chapter 5 Binocular Omni-vision Systems with
an Automatic Adaptation capability to Any
System Setup for 3D Vision Applications

In this chapter, the proposed 3D omni-vision system, which uses two
omni-cameras and has a capability of automatic adaptation to any system setup for
convenient in-field uses is described. Specifically, the proposed vision system, as
shown in Fig. 5.1, consists of two omni-cameras facing the user’s activity area. Each
camera is affixed firmly to the top of a rod, forming an omni-camera stand, with the
camera’s optical axis adjusted to.be horizontal . (ie., parallel to the ground). The
cameras are allowed to be placed freely in the-environment at any location in any
orientation, resulting in an arbitrary system setup. Then, by the use of space line
features in environments, the proposed vision system can adapt automatically to the
arbitrarily-established system configuration by just.asking the user to stand still for a
little moment in the middle region of the activity area in front of the two cameras.
After this adaptation-operation, 3D data can be computed correctlyand precisely.

In the following,an overview of the adaptation process is described in Section 5.1,
and the details of the proposed technigques for use in the system are presented in

Sections 5.2 through 5.4, followed by experimental results present in Section 5.5.

5.1 Overview of the Adaptation Process

After the omni-cameras are placed by a user, the poses of the cameras are
unknown to the vision system. To derive the unknown poses of the cameras, an
in-field adaptation process is proposed in this study, which uses line features in
environments to automatically compute the locations and orientations of the cameras.
In this stage, a user with a known height is asked to stand in the middle region in front
of the two cameras to complete the adaptation. A sketch of the adaptation process is
described in the following. To simplify the expressions, we will call the left and right
cameras as Cameras 1 and 2, and their camera coordinate systems as CCSs 1 and 2,

respectively.
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(b)

Fig. 5.1 Configuration and an illustration of-the-usage of proposed system. (a) An

illustration. (b) Real system used in this study. () An omni-image of a user wearing

a finger cot (marked as red).

Algorithm 5.1. Sketch of the proposed adaptation process.
Step 1. Place the two camera stands at proper locations with appropriate orientations
to meet the requirement of the application activity.
Step 2. Perform the following steps to calculate the included angle ¢ between the
two optical axes of the cameras as shown in Fig. 5.1(a).
2.1. Capture two omni-images I1 and |2 of the application activity environment
with Cameras 1 and 2, respectively.
2.2. Detect space line features Li in omni-image I1 using the Hough transform
technique proposed previously.
2.3. Detect space line features R; in omni-image 12 similarly.

2.4. Calculate angle ¢ using the detected line features Li and Ri in a way as
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proposed in Section 5.3.
Step 3. Perform the following steps to calculate the locations and orientations of the
two cameras.

3.1. Ask a user to stand in the middle region in front of the two omni-cameras
and take two images of the user.

3.2. Extract from the acquired images a pre-selected feature point on the user’s
body, and compute the respective orientations of the two cameras, as
described in Section 5.4.

3.3. Detect the user’s head and foot in the images, compute the in-between
distance up to a scale, and use the distance as well as the corresponding
known height of the user to calculate the locations of the cameras, as
described in Section 5.4.

Via the above algorithm, the meaning of system adaptation, which is the main
theme of this study, can be made clearer.now: only-withthe input of the knowledge of
the user’s height (see Step 3.3),-the proposed system can infer the required values of
the cameras’ locations and orientations for use in-computing the 3D data of space
points. This is not the case when using a conventional stereo vision system with two
cameras in which the configuration of the cameras are fixed'with their orientations and
baseline unchangeable. This merit of the proposed. system makes it easy to conduct
system setup in any room space by any people for more types of applications, as

mentioned previously.

5.2 Space Line Detection in Omni-images

The structure of omni-cameras used in this study and the associated coordinate
systems are defined as shown in Fig. 5.2. An omni-camera is composed of a
perspective camera and a hyperboloidal-shaped mirror. The geometry of the mirror

shape can be described in the camera coordinate system (CCS) as:

(Z-c)? X2+Y?
Y

=1,a?+b?>=c% Z<c. (13)

The relation between the camera coordinates (X, Y, Z) of a space point P and the
image coordinates (u, v) of its corresponding projection pixel p may be described [53]

as:
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Fig. 5.2 Camera and hyperboloidal-shaped mirror structure.
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where ¢ is the eccentricity of the mirror shape with its value equal to c/a, and « and &

are the elevation and azimuth angles of P, .respectively. The azimuth angle & can be

expressed in terms of the image and camera coordinates as

v
X2 4Y?2 _\/u2+v2 '

X . u
IX24Y2 Ju? 42
Now, given a space line L, we can construct a plane S which goes through L and
the origin Om of a CCS as shown in Fig. 5.3. Let Ns = (I, m, n) denote the normal
vector of S. Then, any point P = (X, Y, Z) on L satisfies the following plane equation:

(16)

:sin@ =

cosé =

Ns-P = IX + mY + nZ = 0. (17)

where “-” denotes the inner-product operator. Combining (17) with (14) and (16), we

get
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/V image plane

Fig. 5.3 Hlustration of a.space line L projected on an omni-image as ..

IRcos@ + mRsind + nRtana = 0, (18)

where R = x?+YZ:Dividing (18) by R/AIZ+m24n? leads to

| cos@ msin @ ntan o
+ +

=0,
J2em2aen? JI2+m2+n?  J124m? +n?
which can be transformed into the following form
Acos@++1—- A> —B?sin@+Btana =0 (19)
with the two parameters A and B defined as
Ae 1 g N (20)

JZimiin? JZrmiin?
Accordingly, the normal vector Ns of plane S, originally being (I, m, n), can now be

expressed alternatively as

N, = (A V1-A’—B?, B). 21
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It is assumed that m > 0 in (19) and (21) above. In case that m < 0, we may consider
Ns = (I, —m, —n) instead, which also represents the same space plane S. Also, it can
be seen from (20) that, parameters A and B satisfy the constraint A2 + B? < 1, implying
that the Hough space is of a circle shape.

The parameters A and B are used in the Hough transform to detect space lines in
omni-images. These two parameters are skillfully defined in (20), leading to several
advantages. First, removals of vertical space lines can be easily achieved by ignoring
periphery regions as described later in this section. Next, since the possible values of
A and B range from -1 to 1, the size of the Hough space is fixed within this range.
This is a necessary property in order to use the Hough transform technique, and is an
improvement on a previous work [32]. Also, the parameters A and B are used directly
to describe the directional vector ‘of the space line L. Hence, one may divide the
Hough space into more cells to-yield a better precision.

Combining (19) with (14) through (16), we can derive a-conic section equation to

describe the projection.of a space line L onto an omni-image as follows:
Fog(u,v)=Cu®*+Cuv+Cv* +C,u+Cv+C, =0, 22

where the coefficients C: through Cs are:

C, =A*~B¥(C;*-1); C,=2AJ1< A2=B? ;

C,=1- A’ =C,%B; C,=2ABC.f ;
2
C,=2BC,1I-AT_Bif:  C,=B%f?; =S 1

g2 -1

The quadratic formula (22) will be called the target equation in the Hough transform
subsequently, since the goal of the detection process is to find curves described by it
in an omni-image.

We define the Hough space to be two-dimensional with the parameters A and B
described previously. Furthermore, we define the cell support for a cell at (A, B) in the
Hough space as the set of those pixels which contribute to the accumulation of the
value of that cell. Let L denote a space line described by the two parameters (A, B).
Two properties of cell supports are desirable: (1) the pixels of the projection I of L
onto the omni-image are all included in the cell support for the cell (A, B); and (2) the

pixels not on I are not included in this cell support. Furthermore, it is desired that the
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shape of the cell support is of a certain fixed width and not too “thin,” so that (edge)
pixels originally belonging to I. but with small detection errors can still contribute to
the cell value. In short, a cell support is desired to be a space line projection with a
certain width everywhere along the line, which is called an equal-width projection
curve hereafter. For this, the technique proposed previously can be utilized in the
accumulation task, leading to a more precise and accurate detection results as shown
later in some experimental results.

In man-made environments, most lines are either parallel to the floor (which is
called horizontal space lines hereafter) or perpendicular to the floor (which is called
horizontal space lines). If we can eliminate vertical space lines from the detection
results, the rest of them are much more likely to be horizontal ones which are desired.
So, a constraint on the vertical space line is derived for the purpose of removing such
lines.

As mentioned earlier, the omni-camera stands are vertically placed on the floor,
with the Y-axis of the camera coordinate system being a vertical line as depicted in
Fig. 5.1(a). As a result, the directional vector vi of a vertical space line L is just (0, 1,
0). Let S be the space plane going through L and the origin On which is at camera
coordinates (0, 0, 10). Also, let Ns = (I, m;'n) be the normal vector of plane S. By

definition, normal vector Ns is perpendicular to v, leading to the constraint:

Ns-v. = (I, m, n)-(0, 1, 0) = m=0. (23)

This constraint, when combined with+(20), results in"the equality A> + B? = 1, which
shows subtly that the Hough cells ‘of vertical space lines are located in the periphery
region of the circular Hough space (as mentioned earlier). As a result, vertical space
lines can be easily removed by just ignoring the periphery region of the Hough space.
In the proposed method, this is achieved automatically by applying a filter on the
Hough space as described next.

After the Hough space is generated, the last thing to do is to extract cells with
peak values, called peak cells, which represent the detected space lines. The simplest
way to accomplish this is to find the cells with large values. However, if we do so to
get peak cells like those shown in Fig. 5.4(a), we might get a bad detection result like
that shown in Fig. 5.4(b) with many of the detected space lines being too close to one

another, from which less useful space lines may be extracted.
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To solve this problem, we notice that the line edges in an environment mostly are
not so close mutually, meaning that two detected horizontal lines usually are separated
for a certain distance. This in turn means that extracted peak cells should not be too
close to one another. To find the peak cells which are not too close to each other, a
filter is applied on the Hough space:

—|-1 -1 24 -1 -1|. (24)

-1 -1 -1 -1 -1f

Then, we extract peak cells by choosing the cells with large values in the filtered
Hough space to yield a better detection result, as.shown by Figs. 5.4(c) and 5.4(d).
Importantly, it is noted that"when applying the filter to-the Hough space, one of
the side effects is the removal. of -the periphery region. This.is a desired property
mentioned previously: the removal of the periphery region is equivalent to the
removal of vertical space lines. Thus, expectedly we can get more horizontal lines as
desired. To sum up, we have proposed a new.method to detect horizontal space lines
in omni-images, with several novel techniques also proposed:in this section to
improve the detectionresult. The proposed method for horizontal space line detection

is summarized as an algorithm in‘the following.

Algorithm 5.2. Detection of horizontal lines in the form of conic sections.

Input: an omni-image I.

Output: 2-tuple values (Ai, Bi) as defined in (20) which describe detected horizontal
space lines in I.

Step 1. Extract the edge points in | by an edge detection algorithm.

Step 2. Set up a 2D Hough space H with two parameters A and B, and set all the
initial cell values to be zeros.

Step 3. For each detected edge point at coordinates (u, v) and each cell C with
parameters (A, B), if (u, v, A, B) satisfies the dynamic thresholding constraint,
increase the value of C by one.

Step 4. Apply the filter described by (24) to Hough space H, choose those cells with
maximum values, and take their corresponding parameters (A, Bi) as output.
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(c) (d)

Fig. 5.4 Comparison of traditional peak cell extraction method and proposed one.

(a) Hough space. (b) 50 detected space lines using traditional method. (c)

Post-processed Hough space. (d) 50 detected space lines using proposed method.

5.3 Calculation of Included Angle between Two Cameras’
Optical Axes Using Detected Lines

In the proposed vision system, the omni-cameras are mounted on two vertical
stands with the optical axes being parallel to the floor plane as mentioned previously,
but the cameras’ optical axes are allowed to be non-parallel, making an included angle
¢ as depicted in Fig. 5.1(a). To accomplish the 3D data computation work under an
arbitrary system setup, the included angle ¢ must be calculated first. A method to

calculate the angle ¢ using a single manually chosen horizontal space line is proposed
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first. However, in order to conduct the adaptation process automatically, we have to
calculate the angle ¢ using multiple automatically extracted horizontal space lines. To
achieve this, a novel statistical-based method is proposed next in this section, which
utilizes all the detected space lines from the two omni-images taken with the cameras.

Firstly, a method to calculate the angle ¢ between the two cameras’ optical axes
IS proposed, using a single horizontal space line L in the environment. Let (A1, B1) be
the parameters corresponding to line L in an omni-image taken with Camera 1, v =
(vx, Wy, Vz) be the directional vector of L in CCS 1, and S: be the space plane going
through line L and the origin of CCS 1. The normal vector of S; can be derived,
according to (21), to be

n, = (Ay J1= A’= B, B). (25)

Since S1 goes through line L, we get to know that v¢ and ni; are perpendicular,

resulting in the following equality:

Voo =V, A +V,\[1- A’ ~B? +V,B, =0. (26)

Furthermore, since.L, being horizontal, -is parallel to the XZ-plane as shown in Fig.
5.1(a), we get another constraint vy= 0:"This constraint can be combined with (26) to

get

Vo =(Vx, Vy, Vo) = (B1,.0; <As). (27)

Next, by referring to Fig. 5.5(a), it can be seen that the angle ¢ between the X-axis of
CCS 1 and space line L is

¢ = tan~1(~A1/By). (28)

Similarly, let (A2, B2) be the parameters corresponding to the horizontal space line
L in Camera 2. By following the same derivations described above, the angle ¢

between the X-axis of CCS 2 and line L can be derived to be

&= tan—1(-A2/By).

As depicted in Fig. 5.5(b) where L; and L> specify identically the single horizontal
space line L, the angle ¢ between the two cameras’ optical axes can now be computed

easily to be
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Fig. 5.5 Ilustration of the angles ¢1, ¢ and ¢. (a) The definition of ¢. (b) Relation
between ¢1, ¢ and @.

¢ = ¢ ~ b =tan L (—As/B1) =tan-(=A./Bo). (29)

Next, to calculate the angle ¢ correctly and reliably from all the detected space lines, a
statistical-based method is proposed as follows. Recall that horizontal space lines can
be detected from an omni-image using Algorithm 5.2, Let L: be a space line so
detected from the‘left omni-image with parameters (A:, B1), and let L, be another
detected similarly from the right omni-image with parameters:(A., B.). As stated
previously, the angle ¢ can be calculated using (29) if the space lines L1 and L are an
identical horizontal space line L in the environment.

However, the line correspondence problem of deciding whether L; and L. are
identical or not is difficult for several reasons, especially for a wide-baseline stereo
system like the one proposed in this study. First, the respective viewpoints and
viewing fields of the two cameras differ largely. Thus, environment features, like
lighting and color, involved in the image-taking conditions at the two far-separated
cameras might vary largely as well. Also, the extrinsic parameters of the two cameras
are unknown; therefore, the involved geometric relationship is not available for use to
determine the line correspondences. To get rid of these difficulties, we propose a
novel statistics-based method to reliably find the angle ¢ without the need to find such
line correspondences.

More specifically, the proposed method makes use of two important properties.
First, it is noticed that the correct value of the angle ¢ can still be calculated using (29)

even when the two space lines L; and L are not an identical one, but are parallel to
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each other. This can be seen from the fact that the angles ¢ and ¢ remain the same if
L1 and L. are parallel so that the computed angle ¢ is still correct, as desired. Second,
it can be seen that in man-made environments, many of the line edges are parallel to
one another in order to make the environment neat and orderly. For example, tables,
shelves, and lights are always placed to be parallel to walls and to one another.
Combining these two properties, we can conclude that any two detected space lines L
and L, are very likely to be parallel to each other. Based on this observation, we
assume every possible line pair L1 and L2 to be parallel, and compute accordingly a
candidate value for angle ¢, where L1 is one of the space lines detected from the left
omni-image, and L. is another detected from the right omni-image. Then, we infer a
correct value for angle ¢ from the set of all the computed candidate values via a
statistical approach based on the concept of “voting.”

In more detail, the proposed method is designed-to-include three main steps. First,
we extract space linesfrom the left omni-image as described in Algorithm 5.2, and
denote the line parameters (A, B)-of them-as li. Similarly, we detect space lines from
the right omni-image with their parameters denoted as rj. In addition, we define two
weights w(li) and.w(rj) for | and rj, respectively, to be the cell values in the
post-processed Hough space derived in Step 4 of Algorithm 5.2, which represent the
trust measures of the detected space lines. Then, from each possible pair (l;, rj), we
calculate a value ¢ for angle ¢.using (29), as well as a‘third weight w;; defined as
w(li)xw(rj). The value wij may be-regarded as the trust measure of the calculated angle
#j. Finally, we set up a set of bins, each for a distinct value of ¢, and for each
computed value ¢, we increase the value of the corresponding bin by the weight wi;.
After such a weight accumulation work is completed, the bin with the largest value is
found out and the corresponding angle g is taken as the desired value for angle ¢.

An experimental result so obtained is shown in Fig. 5.6. In Figs. 5.6(a) and 5.6(b),
fifty space lines with parameters li and rj were detected using Algorithm 5.2 from the
left and right omni-images, respectively. For each possible pair (li, rj) where 1<i, j<50,
the corresponding angle ¢;j and weight wi; were calculated and accumulated in bins as
described previously. The accumulation result is shown in Fig. 5.6(c) with the

maximum occurring at ¢ = —23°, which is taken finally as the value of angle ¢.
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Fig. 5.6 Experimental result of proposed adaptation method for detecting included
angle ¢. (a) and (b) Left/right omni-images, with the detected space lines

superimposed oniit: (¢) Accumulation result with maximum at ¢= —23°.

5.4 Proposed Technique for Deriving Camera Poses

The world coordinate system X-Y-Z is defined as depicted in Fig. 5.7. The X-axis
goes through the two camera centers O1 and O»; the Y-axis is taken to be parallel to
the Y-axes of both CCSs; the Z-axis is defined to be perpendicular to the XY-plane;
and the origin is defined to be the origin O;0f CCS 1. It is noted here that, since the
two omni-cameras are affixed firmly on the omni-camera stands and adjusted to be of
an identical height as described previously, the axes X, Z, X1, Z1, X2, and Z are all on
the same plane as illustrated in Fig. 5.7. Since the two omni-cameras are allowed to be
placed arbitrarily at any location with any orientation, it is necessary to find the
baseline D and the orientation angles £ and /£ (as defined in Fig. 5.7) in advance to
calculate the 3D data of space points. The proposed method of deriving the orientation

angles and the baseline are described in the following.
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Let the camera coordinates of CCS 1 be denoted as (X1, Y1, Z1), and those of CCS
2 as (X2, Y2, Z2), as shown in Fig. 5.7. As mentioned previously, the two CCSs
X1-Y1-Z1 and X2-Y2-Z> are allowed to be oriented arbitrarily (with Y1 and Y2 parallel to
each other), and the only knowledge acquired by the proposed system is the angle ¢
between the two optical axes Z: and Z», which is derived using the detected space
lines, as described previously in Section 5.3.

To derive the angles £ and /%, the user is asked to stand in the middle region in
front of the two omni-cameras so that a feature point Puser on the user’s body may be
utilized to draw a mid-perpendicular plane of the line segment O:0- as shown in Fig.
5.7. Let (X1, Y1, Z1) be the coordinates of Puser in CCS 1, and (u1, vi) be the
corresponding pixel’s image coordinates in the left omni-image. From (14) and (16),
we have the equality:

[X, Yo z] =X +Y2[cosg sing tana,]', (30)

where cosé, siné, and tanos are-computed from (ug;, va) according to (14) and (16).
This equality shows that the directional vector between O and Pyser is (COS6, Siné,
tanas) in CCS 1. An angle 1 is defined-on the XZ-plane as illustrated in Fig. 5.7,
which can be expressed as ya = tan-*(tanea/cosé). Similarly, the angle y» defined on
the XZ-plane can betderived to be tan—(tanaz/cosé). Accordingly, we can derive S
to be

2 2’

ﬁl:"”1_(%_V/2_;/1+¢j:Wl+%+¢_£ 31)

Fig. 5.7 A top-view of the coordinate systems. The baseline D, orientation angles
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A and /5, and a point Puser on the user’s body are also drawn.

and f is just » = B — ¢. This completes the derivations of the orientation angles £
and /% of the two cameras.

To compute the baseline D, we make use of a fact about triangulation in binocular
computer vision: the 3D data can be determined up to a scale without knowing the
value of the baseline D [54]. Specifically, within the omni-images taken of the user
standing in front of the two cameras as mentioned previously, we extract two points
on the head and the feet of the user, respectively. Let Phead and Proot denote their real
3D data, respectively. On the other hand, as stated previously, we can compute the 3D
data up to a scale of the two points, which we denote as P'head and P'root, respectively,
using triangulation calculations [54] with the baseline D being one unit. Then, the

relations between the data Phead; Pfoot, Phead, @nd P’soot can be expressed as

Phead = D -P'head; and...Prot = D -P'fo0t, (32)

where D is the actual baseline value. Let'H’ be the Euclidean distance between P'head
and P'rot; and let H-be the real distance between Pread and Pfoot, Which is just the
known height of the.user. Then, the baseline D can finally be computed as D = H/H".
After finding the baseline D, the system parameters are now-all adapted. To sum
up, the three steps of the proposed adaptation method are briefly described as follows.
First, the included angle ¢ between the two optical axes are determined using space
line features as discussed in Section 5.3. Then, by asking the user to stand at the
middle point in front of the two omni-cameras, the orientation angles £ and /% of the
two cameras are calculated as described in this section. Finally, the baseline D is

calculated using the height H of the user as described in this section.
5.5 Experimental Results

Some experimental results are given here to show the adaptation ability under
different cameras and environments. Two types of cameras were used, which are
perspective cameras and catadioptric omni-cameras, and three different environments
were considered, which are a corridor, a hall, and a room, as shown in Figs. 5.8(a)
through 5.8(c).

Four different experiments were conducted: Experiment 1 is conducted in the

corridor with omni-cameras; Experiment 2 in the hall with omni-cameras; Experiment
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3 in the room with omni-cameras; and Experiment 4 also in the room but with
perspective cameras. In each experiment, the two cameras were oriented in different
angles (i.e., —30°, —15°, 0°, 15°, and 30°). Fifty space line features were first extracted
as proposed in Section 5.2. Then, the angle ¢ was automatically calculated using these
lines as proposed in Section 5.3. The results are shown in Fig. 5.8(d). The X-axis
specifies the ground truth of the angle ¢, and the Y-axis specifies the absolute error of
the calculated angle ¢.

In Experiments 1 and 2, since the lines in the corridor and hall are relatively
simple and obvious, the adaptation result is accurate with errors of about 2° as shown
by the green and purple curves in Fig. 5.8(c). Also, since we use omni-cameras in
these experiments, the lines can still be captured even when the two cameras were
oriented with a large angle. Thus, the adaptation result remains accurate when the
angle ¢ is large. In Experiment 3, since the space’ lines in the room are more
complicated, the adaptation becomes more difficult:" However, since the
omni-cameras can capture a large-field of view of the environment, a plenty number
of space lines can'be captured. Therefore, the adaptation result'is accurate as well,
with errors of about 4° as shown by the red curve in Fig. 5.8(c). In contrast, the
adaptation errors are about 10° when perspective cameras were used, as shown by the
blue curve in Fig. 5.8(c), and they become unacceptable (larger than 20°) when the
included angle ¢ is large. These experimental results show the feasibility of the
proposed adaptation methods; as well as the power of the omni-cameras in the
automatic adaptation process.

Another series of experiments are conducted to test the adaptation ability and the
3D acquisition precision in the room environment. In each experiment in this series,
the two cameras were placed at a distance about 180cm to each other, and both were
oriented randomly within the range of +40° After the cameras were set up, two
omni-images of the environment were captured as shown, for example, in Figs. 5.9(a)
and 5.9(d), respectively, and used to calculate the included angle ¢ according to Step
2 of Algorithm 5.1. Next, a user was asked to stand in the middle region in front of the
two cameras, as shown in Figs. 5.9(b) and 5.9(e), to calculate the orientation angles
and /% and the baseline D according to Step 3 of Algorithm 5.1. After these adaptation
tasks were done, a board with 60 landmarks was held by the user, as shown in Figs.

5.9(c) and 5.9(f), to test the precision of the resulting 3D computation.
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Fig. 5.8 Experimental results under different cameras and environments. (a) A
corridor. (b) A hall. (c) A room. (d) Adaptation results of angle ¢.
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Fig. 5.9 Sample omni-images of an experiment. (a)(d) Taking a shot of the
environment to calculate ¢. (b)(e) A user standing in the middle region in front
of the cameras to calculate baseline D and orientation angles g1 and /. (c)(f) A

board held by the user to test the 3D computation precision.

In these experiments, three different degrees of adaptation were implemented and
the corresponding results compared: (1) no adaptation was conducted with the camera
orientations and baseline set to be 1 = £ = 0°and D = 180 cm (D is the ground-truth
value); (2) the left omni-camera was set up to face forward with the values p1 = 0°, D

= 180cm, and S adapted to be —¢; and (3) all the parameters S, f, and D were
43



adapted according to the proposed method. Denoting (Xi, Yi, Zi) as the ground-truth
location of a landmark point, and (X', Yi’, Zi) as the calculated location, we define the

3D error E of each landmark point as

E=J(X =X P+ (Y= P +(z, -2 [ X F+YEr 2. (33)
The comparison results are shown in Fig. 5.10 in which the vertical axis specifies the
average of the 3D errors, and the horizontal axis specifies the system orientation angle

which is defined as the maximum of the two orientation angles 1 and f.

——no adaptation -----adapt f, —— adapt 3, % and D

20%

15%

10%

5%

standard deviaion of 3D error

system orientation angle
(a)

——no adaptation ------adapt f, —— adapt B frand D

g

30 error
ka
g

T T T T T
o* 10°* 20° 30° 40* 50°

system orientation angle
(b)
Fig. 5.10 Experimental results of three different degrees of adaptations. (a) The
3D errors. (b) The standard deviations of the 3D errors. The proposed adaptation

methods yield the best results as shown by the purple curves.
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As can be seen from Figs. 5.10(a) and 5.10(b), when no parameter is adapted
with the results shown by the blue curve, the 3D errors are seen to become larger
as the orientation angle becomes larger, showing the necessity of an automatic
system adaptation process. When only the orientation f of the right
omni-camera is adapted with the result shown by the red curve, it is observed that
the 3D errors are sometimes lower but vary largely. This results from the fact that
the left omni-camera is assumed to face forward in this case. Thus, if the left
omni-camera is actually placed to face forward in the experiment, the error
measure is lowered; otherwise, the error is large as expected. Finally, when all
the parameters f1, f» and D are adapted with the results shown by the purple
curve, the 3D errors are lower than 8% even when the system orientation angle is
large. This shows the feasibility, reliability, and validity of the proposed system
adaptation method.
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Chapter 6 Optimal Design and Placement of
Omni-cameras in Binocular Vision Systems for

Accurate 3D Data Measurement

In this chapter, the problem of automatically designing an optimal stereo vision
system using two omni-directional catadioptric cameras to yield the highest 3D data
accuracy is studied. Factors of the system configuration considered in the design
include camera pose, FOV, and mirror shape. To find the optimal vision system
configuration, we derived analytic formula to model the 3D measurement error, which
takes into consideration the variations of pixel-quantization precisions and angular
resolutions in images by« conducting errorpropagation analysis in the data
computation process. .The formula is.then used in. the -proposed optimization
framework to find the optimal system configurations for different shapes of system
setup environments. For regular cases .with - rectangular cuboid-shaped 3D
measurement and camera placement areas, the two proposed fast algorithms can be
used to solve the prablem, one being bisection-based ‘and relatively slower for
deriving the optimal-solution; and the other faster using analytic formulas for deriving
a sub-optimal solution which is proved to be close to the optimal one in precision.
Experimental results of simulations and real application cases show the feasibility of
the proposed method.

In the following, the proposed optimization framework to find the optimal system
configuration is described in Section 6.1. The proposed formulas to model the
catadioptric omni-cameras are derived in Section 6.2. The proposed formulas to
measure of 3D data accuracy for use in the optimization process is derived in Section
6.3. The proposed three optimization algorithms for finding the optimal system
configuration are presented in Sections 6.4 and 6.5. Finally, experimental results and

conclusions are given in Sections 6.6 and 6.7, respectively.
6.1 Overview of the Optimization Framework

As illustrated in Fig. 6.1, to facilitate the determination of the optimal system
configuration of a binocular omni-vision system, which includes the intrinsic

parameters, locations, and orientations of the two omni-cameras of the system, for the
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purpose of acquiring the most accurate 3D data. Some observable properties of this
frame are: (1) if the two omni-cameras are close to each other, the length of the line
segment L connecting the two cameras, namely, the baseline, will become small, and
the computed 3D data accuracy will so be low; (2) if the baseline is very large, the
space points in front of the cameras will become relatively close to L, and the
resulting accuracy will so be low as well; and (3) since the distortion of an image
taken by an omni-camera is significant, the resolution also varies significantly in the
taken image so that, if a feature point is located in a higher resolution area, the
computed 3D data accuracy will become higher, and vice versa. According to these
observed facts, it can be seen that optimal system configurations do exist; therefore, it
is meaningful to propose an optimization framework, as conducted in this study, for
use in finding the optimal system configuration.

The proposed optimization framework, as depicted in Fig. 6.1, includes three
main steps. First, an area where the 3D.data are measured isspecified, called the 3D
measurement area; and an area-where the cameras can be placed is also specified,
called the camera placement area.  Then, the optimal locations, optical axes, and
intrinsic parameters of the two omni-cameras are derived according to one of the three
proposed system optimization algorithms presented in ‘later sections. The three
optimization algorithms are based on.the use of an analytic formula indicating the
degree of accuracy of the computed 3D data; which is derived according to error
propagation analysis. The found optimal configuration-isjust the one with the highest
degree of 3D data accuracy, which.is shown-to the user to tell him/her how to place

(and/or design) the cameras.

Specify 3D measurement area and
camera placement area

Formulas for describing degree
of 3D measurement accuracy

Calculate the optimal system
configuration by the proposed
optimization method

Design the system according to the
derived optimal system configuration

Fig. 6.1 Proposed optimization framework.
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6.2 Related Formulas for Omni-cameras

By assuming the perspective camera in the omni-camera is well-calibrated and
distortion-free, the only parameter of the perspective camera is its viewing angle 2 zmax.
Also, as specified in the projection equation (2), the eccentricity & describes all the
distortion effect produced by the mirror. Therefore, the intrinsic parameters of an
omni-camera to be determined are the viewing angle 2 zmax Of the perspective camera
and the eccentricity ¢ of the mirror. In the following, we first derive the formula for
the eccentricity ¢ under the assumption that the viewing angle 2 zmax 0f the perspective

camera is fixed. Then, we provide a guideline to determine the angle 2 zmax.

Theorem 6.1. If the viewing angle of the perspective camera is 2 rmax and the viewing
angle of the omni-camera is 2¢max, then the eccentricity ¢ of the hyperboloidal-shaped

mirror is

g:smqﬁmax +SINT, . (34)

SIN (e~ T )

Proof. According to the projection equation (2), we have

(tan g, —tanz,, )e*~2tang,  secr, e+(tang, . +tanz,, )=0. (35)

Accordingly, two solutions of &can.be obtained to.be

- taN Prrax SEC Tmax 1N T SECHra  _  SIN P SIN T (36)
tan ¢, —tan 7., SIN(Brax — Trax)

The solution & with the minus sign is proved to be invalid as follows. First, &1, as an

eccentricity, is larger than one, i.e.,

_sing, ., —sinz,,.
Sin(¢max = Tnax

Next, since the viewing angle 2¢max 0of the omni-camera is larger than the viewing

>1. (37)

1

angle 2zmax Of the perspective camera, we have 7> @max > mmax > 0, leading to
cot(@max/2) < cot(zmax/2), which, according to the cotangent half-angle formula [55],

results in
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cot(¢mﬁxj— SIN G SIN T =cot(1”‘7axj, (38)

2 1-cos¢g,., 1l-cosz,,,

or equivalently,
sing,.,, —SINT,,
SIN(Aex — Trrax)

which is a contradiction to (37). Therefore, the other solution described by (34) should

=5, <1, (39)

be taken as the desired result. O

The effect of choosing different viewing angle 2 zmax Of the perspective camera is
shown by some images in Fig. 6.2 obtained from simulations with a checkerboard
placed in front of the omni-camera, and the hyperboloidal mirror designed according
to Theorem 6.1 in such a way that the entire checkerboard can be viewed. As seen
from Fig. 6.2, the taken omni-images are not severely influenced by the magnitude of
the viewing angle, implying that one may choose freely the viewing angle as long as

the camera is distortion-free.

(b)
Fig. 6.2 Simulated omni-images using perspective cameras with different viewing
angles: (a) 20°; (b) 40°; and (c) 60°.

To the resolution formula, Baker and Nayer [56] proposed a formula to calculate
the resolutions at different pixels in an omni-image as follows. Let dA be an
infinitesimal area on the image plane near a pixel p, which, as illustrated in Fig. 6.3, is
the projection of an area in the space described by an infinitesimal solid angle dv

coming from a point P. The resolution of pixel p is formulated as

d_A=(52—1)2(52+25003¢+1) ¢ (40)
dv [284—(82 +1)cos¢§}3 ’

R(e, f,9) =
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where ¢ is the eccentricity of the mirror, f is the focal length of the camera, and ¢ is

the complementary elevation angle of P.

P a7 image plane

k——— 3

hyperboloidal-shaped
mirror

zZ=

0 (0,0,0)

Fig. 6.3 lllustration for defining the resolution at a pixel.

6.3 Formula to Derive the Degree of Accuracy

A criterion function measuring the degree of accuracy of the computed 3D data is
proposed in this section, for wuses in -the optimization algorithms proposed in the
following sections.

A right-handed world coordinate system X-Y-Z is defined, as shown in Fig. 6.4, in
such a way that the camera centers Os.and O, are located at (—D, 0, 0) and (D, 0, 0),
respectively, and the XY-plane contains the space point P. An assumption that, the two
optical axes a: and az lie on the XY-plane, is made in the following derivations, and
this assumption is analyzed more thoroughly later in this section.

As depicted in Fig. 6.4, the two axes a1 and a, are defined by the angles a1 and ,
respectively. To calculate the 3D data of P, two images are acquired first by the two
omni-cameras, and a feature detection process is applied to extract the two pixels p:
and p2 corresponding to P in the two omni-images. Then, the complementary
elevation angles ¢ and ¢ are derived by (2) using the coordinates of p: and pa,

respectively. Finally, the angles 6 and & as depicted in Fig. 6.4 are computed by:

h=o—¢g,and &= — ¢. (41)
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Fig. 6.4 Top-view illustration of triangulation process and error propagation.

Proposition 6.1. As depicted in Fig. 6.4, the position.(Py; Py) of space point P can be

calculated in terms of .61 and & as

sin(&;+46,) sin 4, sin &,
T(6,6,) =(P, P )=| D—2%—% 2D—-2 L, 42
%) ~(BaF) [ sin(@, <0, sm(@—@)} #2)
and the differentials'of Px and Py are
dP, 2D sin @, cosv,dd, =sin g, cos 6,d 6, 43)
dP, | “sin’(6,—4)| sin?6,dg, —sin’ 6d0, '

Proof. As depicted in Fig. 6:4, the position of the feature point P can be calculated by

two parametric equations

P=0, +s,:(cosg,sing);, P=0,+s,-(coséb,,sinb,) (44)

where P, O1, and Oy are regarded as 2D coordinate vectors, and s; and s; are unknown

parameters. Eq. (44) is equivalent to:

P,=-D+s,cos6, =D+s,c086,; P, =s;sin6, =s,sind,, (45)

which may be solved to get s; and sz, leading to the results

sing, cosd, +cosb,sing, D sin(6,+6,) .

Px= D— : : ,
sin @, cos &, —cos 6, sin 6, sin(6, - 6,)

P,= 2D— sing;sin 6, - ZDS!nezsmell (46)
sin g, cos &, —cos b, sin 6, sin(6,-6,)
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And, the differentials of Py and Py can be derived accordingly to be those described by
(43).o0

The infinitesimals dé& and dé& are derived by considering the varying
pixel-quantization precisions and angular resolutions as follows. As can be seen from
Fig. 6.4, if the feature detection process to extract p: and p2 in the two images is
inaccurate so that the angles ¢ and ¢, are with errors d¢: and d¢», respectively, then
an inaccurate triangulation result Pe, as depicted in Fig. 6.4, will be produced. Assume
that the pixel quantization and feature detection process introduces an error within a
small area dA, then, as depicted in Fig. 6.3, the measured angle ¢ will be with an error
dvrelated to the angular resolution function R. In the sense that dvis a 2D solid angle
and the angle d¢ is the corresponding 1D angle, and under the assumption that the

back-projected cone forming by dv is circular, the value of d¢ can be estimated by

dg =+Vdv = +,[dA/R,, (47)

in which the term dw.is expressed-by the resolution formula (40). Also, by taking the
differentiations of the equations:-in (41), one can get a relation between d¢ and d& as

dd=—d¢, which, after being combined with (47), leads to

06 =+ JTATR . (49)

Accordingly, the errors déy and.d 6 can be derived to-be

dg, =+ /L ,and d6, =+ /d—A. (49)
R(e, f,,4) R(e,, f,,4,)

To assess the 3D measurement error of a feature point P, an error function E(P) is
proposed in the following, and the degree of accuracy of the point P is defined as

—E(P) in the sequel.

Theorem 6.2. With reference to Fig. 6.4, when the triangulation process yields an
imprecise point Pe due to small errors dé: and dé;, the 3D measurement error E(P),

which is the distance between the actual point P and the measured point Pe, is

E(P) = max(E,(P),E,(P)) (50)

where
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E.(P) = JGZ(P)+2G,(P)G, (P) cos(6, —6,) +G,2(P)JdA

sin(6, —6,)
E,(P) = \/Glz(P) - 2Gl(P)C':-Z-(P) cos(d, - 0) +G,*(P) JdA |
sin(6, - 6,)
oP o,p
G,(P) =

Regom &= =0y &1

Proof. The measurement error E, which by definition is the distance between P and P,
may be computed from (43) to be

E(P) = [|dT||= \/(dPX)Z +(dp)’

. 2 . . A 2
\/(ZDsm szelj _2cos(0,-0) 2Dsin6,d6, 2Dsin6,do, +(2Dsm eldezJ

sin(6, —6)) sin(@,—8) sin(@,—6€,) | sin(@,-6,)
Sin(@,~ ) - (52)
From Fig. 6.4, it can'be derived; from the law of sines, that
OPl [|O,P
2 ZoR| 0P (53)
sin(@,— &) sing, ..sing,
By combining (52) and (53), we get
| (0:P|d6)* “2¢c0s(8;=6(OP|dB)(O,P|d6,) + (O,P|do,)’
E(P) = _ ., (54)
sin(g,-6,)
which, when combined with (49), leads to (50) and (51). O

6.4 Fast Configuration Optimization for Regular Cases

The optimization framework proposed previously can deal with general cases, in
which the 3D measurement area and the camera placement area may both be of
irregular shapes, and the two used perspective cameras may be different from each
other. However, in regular indoor vision systems (called the regular cases), the two
perspective cameras are of the same type, and the 3D measurement area and the

camera placement area can be specified by two rectangular cuboids as illustrated in
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Fig. 6.5. In the following, the formal definition of the optimization problem for such
regular cases is first derived. Then, the derivation of the proposed optimization
algorithm for generating the corresponding optimal system configuration is proposed,
followed by another sub-optimal but analytic optimization method, which is shown
additionally there to be a good approximation to the optimal solution.

Sy

Fig. 6.5 An illustration of the regular cases.

As described in the optimization framework, a system configuration includes all
the necessary parameters to design-a vision-system,and an optimization process needs
to find the optimal system configuration which yields the best 3D measurement
accuracy. A criterion function Ey for the optimization is defined in this study to be the

maximum measurement error within the 3D measurement area W, i.e.,

E, (W) =max(E(P)), (55)

where E(P) is the measurement error of a feature point P as derived by (50) in
Theorem 6.2. By choosing the maximum value, all the 3D measurements errors are
ensured to be lower than the value Ew. Next, as assumed, the two perspective cameras
used in the omni-cameras are identical, so their focal lengths f; and f. are both equal to
f, and their viewing angles 2zmax1 and 27zmaxe are both equal to 2zmax. The two
omni-cameras are identical in structure and placed symmetrically, so the two optical

axes a; and a; are coplanar so that the two optical axes can be defined by the two
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angles a1 and a2 as shown in Fig. 6.5. Then, a system configuration can be defined to
be the parameter set (Dy, Dy, a1, o2, &1, &), where (1) the omni-cameras are placed, as
seen from the top, at O1(—Dx, —Dy) and O2(Dx, —Dy), respectively; (2) the orientations
of their optical axes are defined by a1 and o, respectively; and (3) the eccentricities
of the mirrors are & and &, respectively. Hence, the optimization problem is just to
find the optimal parameter set (Dx', Dy, o1, @', &, &) derived in the following
way:
(Dx, Dy, on", &', &, &) = argmin ~ (E,(W)). (56)
(Dx.Dy,a1,@5,61,6,)
Since it is desired that the captured image be fully filled up with the 3D
measurement area, the cameras should be oriented to face the 3D measurement area.
Accordingly, the optical axes a; and-a; can be figured out to be just the bisectors of

the angles spanned by the measurement area as depicted in Fig. 6.5, that is, the optical

axis a1 of the left omni-camera:-is-the bisector of the viewing.angle formed by OW,

and OW, , and the optical axis-az-is the hisector of the viewing angle formed by

oW, and OW, . Inview of these facts, the anglé ¢max and the optical-axis angles o
and o can be calculated in terms of Dy and Dy as follows. First;.the fact > = 7— a1
can be derived from Fig. 6.5. Then, from the triangle formed by O1, W2, and Q2, we
have Dy = (Dx + 1)xtan(en - émax). Similarly, from the triangle formed by Oz, W1, and
Q1, we have Dy = (Dx — 1) x tan(ea + ¢max). Accordingly, the two unknowns ¢ and

¢max Can be solved respectively to be

o, =05[ tan"*(D, /D, ~1)+tan"*(D, /D, +1) |;

57
frex =0.5[ tan (D, /D, ~1)—tan (D, /D, +1) |. 7

Then, based on Theorem 6.1, the eccentricities & and & are

f=c, :8:S|r:l¢max +sInz, ., | (58)
SIN(A ey — Trrax)

where 27max IS the viewing angle of the perspective cameras. To sum up, the

optimization problem (56) is now reduced to include two parameters as follows:

(D,’,D,")=argmin(E, W))=arg min(max(E(P))) . (59)
(

(D,.Dy) D,.D,) \ PW
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For further simplifications, two claims are given as follows.

Claim 6.1. The function E described by (55) can be rewritten as
Ew(W) = rQ%Vx(E(P)): max(E(O), E(W2)), (60)

if the two terms R(¢, f, ¢1) and R(¢, f, ¢2) are equal, where points O and W are located
at (0, 0) and (1, 0), respectively.

Proof. At first, by referring to Fig. 6.6(a), the measurement error of a point P at
coordinates (Px, 0) can be derived using (50) and (51) with

0, =cos™ h+b, 0, =cos™ K5
1~ ’ 2 = ’
J(B+D,) +D} J(R-D,)’+D,?
J(P.+D, D, J(B-D,)7+D}
Gi(P) = , and G2(P) = . (61)

R(é‘, f,¢1) VR(E, f1¢2)

Next, the function E(P) is proved to be an even.function as follows. From Fig.

6.6(a), the angles ¢1 and ¢ can be seen to be

¢ = |oa — B, and ¢ = |2 — 64|. (62)
From the resolution-formula (40), we can. get the equality R(e, T, ¢) = R(¢, f, —¢) for

any angle ¢. Accordingly, we have

R(g f, ¢1) =R(g 1, ea— A1); R(g, T, o) =R(& 1, a0 — 6). (63)
Let P’ be the point located at (—Px, 0), and let the related angles &', &', ¢1', and ¢’ be
defined as those shown in Fig. 6.6(a). Since the triangles AO;0.P’ and AO;O2P are

similar, we get 6i' = 7— 6 and &' = 7 — 6. Combining these facts with (62), we have
h'=lon— O =|(7r— ) — (71— )| = |-+ 6 = ¢,
$' =l - & =|(r— o) — (7= Q)| = |-a1 + 6] = ¢r. (64)

Thus, the following equality can be derived:

Gl(P.):\/(_Px+Dx) +Dy :\/(DX_PX) +Dy ZGZ(P) (65)

JR(& f.4) VR f.4,)

The function E1(P) can be proved accordingly to be an even function by
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£, () = JCL(P)+ 2G,(P)G, (P)cos(6, —6) + ;" (P)JaA
sin(6, - 6,)

_JG,2(P') +2G,(P')G,(P') cos(6; —6) + G/ (P')JdA
- sin(6, —6,)

=E(P).  (66)

Similarly, we can prove Ex(P) = E2(P’), meaning that E>(P) is an even function, too.
Finally, we prove in the following the property that if R(¢, f, ¢1) and R(e, f, #) are
equal, the maximum of E(P) will occurs at O(0, 0) or W»(1, 0). Firstly, let Px" be a
value of Py such that the case & — 6 = 90° occurs. When 0 < Py < P,", we get 90° < &
— 61 < 180° so that cos(& - &) < 0, implying that E>(P) < E1(P) according to (21),

which leads to the following fact:

E(P)=E,(P): (67)
Furthermore, by applying the law of cosines and the.assumption R(e, f, ¢1) = R(g, f,

#), E2(P) can be reduced in the-following way:

Jo,Pl'~2[o;Pfjo,Pleos (8- 9)+|0.P | oo,
sin(6,-6,) sin(6,-6,)

E,(P) = (68)

Accordingly, since the angle & — 6 decreases from 180° to 90° when Py increases
from 0 to Py", the maximum of E(P) occurs at P= 0.-For the other case that Py" < Py
<1, we can get 0° < 6= 6 < 90°s0 that cos(é& - 61) > 0,implying that E1(P) < Ex(P),

which leads to the following fact according to (68):

E(P)=E/(P). (69)

Furthermore, according to (61), E1(P) can be expressed as

Joo,[+4pa,-Po; |l00,f +4(P+D,.D,)-(P,-D,.D,)

5(P)= sin(6, - 6,) sin(6, -6,

(70)

Accordingly, since the angle & — 6 decreases from 90° to 0° when Py increases, the
maximum of E(P) occurs at Px = 1. Combine the results of the two cases, we get the
conclusion that the maximum occurs at O(0, 0) or W>(1, 0).

Finally, since both E1(P) and Ex(P) are even functions, this conclusion may also
be proved to hold for the “left-side” range -1 < Px < 0. Therefore, the overall

conclusion described by (60) may be drawn. |

57



In the above proof, the assumption R(g, f, ¢1) = R(e, f, ¢) is made, which is
proved later by simulation results to be appropriate with very little affection on the 3D
measurement precision of the derived system configuration (see the experimental

results shown in a later section).

(b)

Fig. 6.6 Analysis of function Ew. (a) Illustrations of related terms. (b) Drawing of

distribution of measurement errors E of a configuration.

Claim 6.2. A larger value of Dy always yields a smaller value of the criterion function
Ew.

Proof. The inscribed angle theorem says that an angle & inscribed in a circle is a half

of the central angle 26 that subtends the same arc on the circle [57]. That is, if the

58



viewing angle is 2¢max, the possible positions of the cameras can be figured out to be
constrained on the dashed circle shown in Fig. 6.7(a), and the upper bound of Dy
occurs at the bottom of the circle. Also, while recalling that the two cameras are
omni-directional, we assume their viewing angle 2¢max to be larger than 120°. So we

have

max(Dy) = cotgmax < cot(60°) ~ 0.6. (71)

With this upper bound, the function E is plotted in Fig. 6.7(b), which shows that a

larger value of Dy yields a smaller value of E. m
With Claim 6.1, Eq. (59) can be re-formulated as

(Dy", Dy’) = argmin(max(E(O), E(W,))). (72)

(D, D)
Also, recall that the upper bound of Dy is-limited by the camera deployment constraint,
which we denoted as & in Fig.6.5. With Claim 6.2, the optimal value D" in (72) can
be derived to be min(&, 0.6), leaving D« to be the only parameter to be optimized
according to the following constraint:
Dx* . arg min (maX(Emid(Dw Dy*)’ Ebound (Dx' Dy*)))! (73)
DX

where Epoung and Emigare defined. as

Ebound(Dx, Dy*) D E(WZ); Emid(Dx, Dy*) o E(O)- (74)

5

00010203040506
Dy

Fig. 6.7 Finding the optimal value of Dy. (a) An illustration to find the upper
bound. (b) A plot of Ey, for different values of 2 zmax: 20°, 40°, and 60°.
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An optimization algorithm to solve Dx" in (73) by a bisection scheme is proposed
in the following. By referring to the plots of Emig and Enound depicted in Fig. 6.8(a), the
optimal solution Dy is found at the intersection of the two functions of Emig and Epound.
So, if the two functions intersect each other, the intersection point may be defined to
be the optimal solution Dy"; otherwise, the optimal solution Dy is defined to be the
maximum value which will also be derived later in this section.

In more details, at first we define a new function Eqpt as

Eopt(Dx, Dy’) = Emid(Dx, Dy") — Ebound(Dx, Dy). (75)
Then, the optimal solution Dy" is just the root of Eqp, which can be derived by a
bisection scheme. Before the scheme is conducted, the initial range of the root must
be determined. The lower bound lowerpx of Dy is obviously zero, and the upper bound
upperox is derived as follows. From Fig. 6.8(b), we have

0,0,] =

ocwz} = 0SC(7~ 2hx) = CSC(2 dhnen). (76)
And the coordinates of the circle-center O is

Oc = (0, cot(7 — 2¢max)) = (0, —COt(2 dmax)). (77)

According to the Pythagorean Theorem, we have

sz = OCOZ|2 ¥ Ocoé g = CSC2(2¢maX) 4 [Dy* —COt(2¢max)]2

=1- Dy*[Dy* —2C0t(2¢max)], (78)
and the first derivative of Dy with respect to-2énax is

(D)
(24 )

Since D,” > 0, the first derivative of D, is smaller than zero, meaning that Dy

= 2Dy (—CSC?(2 gmax)). (79)

decreases as 2¢max increases, or equivalently, that the maximum of Dy occurs when

@max 1S minimized. So, the upper bound of Dy can be derived from (78) to be

UPPErpy = \/1— D, [D,” —2cot(2¢)] - (80)

A method to solve the optimization problem is proposed below.
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Fig. 6.8 lllustrations of finding the optimal solution D" and its upper bound. (a)

Plot of Emig and Epound Versus Dx when Dy = 0.1 and 2 zmax = 60.0°. (b) Derivation

of the upper bound of Dx.

Algori
Input:

thm 6.1. Finding the optimal configuration (Dx’; Dy").

the viewing angle2 zimax @nd the focal length f of the cameras.

Output:the optimal system configuration (Dx’, Dy), meaning-that the omni-cameras

Steps.
Step 1.

Step 2.

2.1
2.2
2.3

are placed at.O1(-Dy’, Dy )-and O2(Dyx, Dy’), and oriented as shown in Fig.
6.5.

Calculate & according to the deployment size as stated, and set D," = min(&,
0.6).
Set variable lowerpx = 0 and calculate Eqpi(lowerpx, Dy") as follows and assign
the result to the variable lower.
Set Dx = lowerpx and calculate ‘¢max according to (57).
Calculate the eccentricity ¢ according to (58).
Calculate Emig and Epound by (74) with O1 = (-Dy, Dy") and O, = (Dx, Dy"), and
calculate Eopt by (75).

Step 3. Calculate the upper bound upperpx of D" by (80).

Step 4. Calculate Eop(upperpx, Dy") in a way similar to Steps 2.1 through 2.3, and

assign the result to the variable upper.

Step 5. If lower and upper are with opposite signs, then find the root in a bisecting

5.1.
5.2.

fashion as follows.
Set variable newpx = (lowerpx + upperpx)/2.

Calculate Eqpi(newpy, Dy?) in a way similar to Steps 2.1 through 2.3 and
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assign the result to the variable new.
5.3. If (new < lower), then set lower = new and lowerpx = newpy; otherwise, set
upper = new and upperpx = NEWpx.
5.4. If (upperpx — lowerpy) < o, where &'is a predefined precision threshold, then
take (Dx", Dy") = (newpx, &) as the output and exit; otherwise, go to Step 5.1.
Step 6. If lower > 0 and upper > 0 or if lower < 0 and upper < 0, then choose Dx" to

be the upper bound upperpx, and take (Dx", Dy") = (upperpx, &) as the output.

The method proposed in Algorithm 6.1 is further simplified to get an analytic
formula for deriving a sub-optimal solution. Let v; and v2 be two vectors, and & be the

included angle. We have

Vi£V2|? = (Vi£Va) - (ViEVa) = |Val® % 2|va|[vo|cos 6 + |va|. (81)
By referring to Fig. 6.9;the formula of the measurement error Emig can be derived,
using (74), (50), (51),7and (81), to-be

. = mex([O0]*2/0.0[0,0]c05(Gpus =) +10.0] VA
Emid(DxlDy ): .

SIN(Gisz = Omia)\ R(€, f01i0)

>

max ([0,0+0,0],[0,0<G,0}dA ~max (2D, 2D, ) VdA
SIN(Grigz = i)y R(&s T i) SNz — O\ R(E, T dia)

Referring to Fig. 6.9 and based on.the double-angle formula of the sine function, we

(82)

can get

id2 — Omi =0 2D, D
Sin(emidZ — Hmidl) — ZSin(ledz > ledl) Cos(emldz gmldl) — y —x

2 D +(D,)* (83)

Thus, the function Emig in (82) can be rewritten as

B [D2+(D,")’ |\dA B [D2+(D,")’ |\dA o
- 2D,'D, R(g,f,¢mid)_min(DX,Dy*)\/R(e,f,¢mid) (&4

max (2D,’,2D, )

Emid (Dx ’ Dy*)

Similarly, the measurement error Enound Of the feature point W2(1, 0) can be simplified,
using (50), (51), (74) and (81), to be
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max(y[OW; 2|0V, [ O 005(6c — G /O] WA

SiN(Orpe — O R (E T )
max(21 f+@,y, 2Dx)m

Ebound (Dx1 Dy*) =

= : 85
Sin(emaXZ_emaxl)\}R(g’ f'¢max) ( )
From the geometry shown in Fig. 6.9, we have
sin(@,..,-6...) = 1—(01W2'02W2 ? = 2D.5, (86)
max2 ~maxl ‘OW ‘W‘ ) 2 2 )
Vo [[VoVV3 \/(DX +(Dy) +l) -4D,
Thus, the function Enound in (85) can be rewritten to be
. 2 :
c © D*)_\/(DX2+(Dy J2-1) 14D/ max(4/1+(Dy )Z,DX)M o
B D,D, R T ) |
By combining (84) and.(87), the-function Eqp: can be re-formulated as
E,.(D,.D,") (D (D, )')éA
wE T min (D, D, )R, T i)
. (88)

max(. @, 7, DX)\/( D2 +(D,’) #1)° —4D2JdA
D,D,\/R(&, T, drs)

To calculate the optimal system configuration, the‘value Dy" is firstly derived in

the same way as stated in Algorithm*6.1.-Then, the optimal solution Dy” is just the
root of the function Eopn described by (88). However, the root does not have an
analytic formula since the involved terms ¢mid, ¢max and & are all with complicated
formulas with respect to Dy. In order to derive an analytic solution for the root, we
first propose a skillful approximation method to produce a new function Eop' to
approximate the original one Eopt, and then derive an analytic formula to compute a
sub-optimal solution Dy'. This sub-optimal solution Dy’ is a good approximation to the
optimal one Dx" as will be shown later in this section.

To simplify the function Eop described by (88), we assume further

R(g, 1, dmid) = R(g, f, dmax), (89)
which is a special case of the assumption R(g, f, ¢1) = R(g, f, ¢2) made before in the
proof of Claim 1. This new assumption can be proved as well later by simulation
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results to be proper with very little affection on the 3D measurement precision of the
derived system configuration (see Fig. 6.10). Consequently, Equation (88) may now

be simplified to be

' )= L 8
Eyp (D, Dy)_(\/mJ

A
* * . 90
D,>+(D,")’ max(\/1+(Dy ), DX)\/[DX2 +(D,")? +1*-4D,? (0)
X y _
min(D,", D, ) D,D,”

Thus, the root Dy’ of the equation Eopt'(Dx, Dy") = 0 satisfies

(D,)*+(D,)’
min(D,", D, )

JID,)*+(D,)’ +1F - 4(D,)’

— max( 1+ D*Z,D') -
(Vi+@)% 0, oD,

(91)

dj s

6,

max2 ~ Ymax1

O1(-Dy, -D,) O,(Dy, -Dy)

Fig. 6.9 Related parameters involved in Emig and Epound.

Theorem 6.3. The solution of Dy’ in (91) is

, (92)

o \/—4(Dy*)4 —(C-2)(D,")? ~C*+C+5
* 3C

where

C=3/05Q-8(D,")° —48(D, )" —46.5(D,")’ -5.5;

Q= \/27(1+ (D,")*)(128(D,")° +352(D,")° +288(D,")* +75(D,")* +23) . (93)
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Proof. To deal with the involved min/max function in (91), four cases are discussed
separately, which are: (1) Dy’ < Dy" and D¢’ < (1+(Dy)?)°; (2) Dy’ < Dy and Dy’ >
(1+(Dy)?)°%% (3) DY = Dy and Dy < (1+(Dy)?)°%; and (4) DY > Dy" and Dy >
(1+(Dy")A)°5. It is proved next that only Case (3) is valid.

For Case (1), we have the assumptions Dy’ < D,” and Dy’ < (1+(Dy")?)%®, so that (91)

can be reduced to be

(D,)*+(D,)* — (D)’ +(D,)’ +1* —4(D, )’
D—X' =, /1+ (D,) Dx'Dy* : (94)

or equivalently, to be

D, (D)’ +(D,)’1= 1+ (D, )’ [(D, )’ +(D,) +1F —4(D,)* .~ (95)
Defining A = (Dy')? and B = (Dy")?, Eq:(95) can-be expressed as

AZ — 2A + (3B2 3B +1)= 0. (96)
Since the discriminant of (96) is4 = 4(3B% + 3B + 1).<.0, the solution of A does not
exist, or equivalently, Dy does not exist. As a result, the-assumptions made for Case
(2) are invalid.

The assumptions made for Case(2)are Dy’ < D," and Dy’ >(1+(D,")?)°®. Since
these two inequalities are contradictory to-each other, Case (2) is also out of
consideration.

For Case (4), the two assumptions are Dy’ >.Dy and Dy’ > (1+(Dy)?)°°. Thus,

Equation (91) can be rewritten to be

(D))’ +(D,) = \/[(DX')2 +(D, )" +1* -4(D;)* . (97)

Defining A = (Dx)?, B = (Dy")? and taking the squares of both sides of the above

equation, we have (A + B)?> = (A + B + 1) — 4A, or equivalently, 2A = 2B + 1.

However, from the second assumption Dy’ > (1+(Dy")?)%°, we get A > B + 1, which is

a contradiction to the equation 2A = 2B + 1 derived previously. Therefore, the
assumptions made for Case (4) are also invalid.

As a result, Case (3) is the only valid one, for which the two assumptions are Dy’

> Dy and Dy’ < (1+(Dy")?)%°. Accordingly, Equation (91) can be rewritten to be
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(D,)*+(D,)* — (D)’ +(D,)’ +1I* —4(D, )’
e JL+(D,) ok , (98)

y

or equivalently, to be

aA®+bA%2+cA+d=0 (99)
where A = (Dy)%, B=(Dy)?, a=1,b=B-1,¢c=2-B2 and d = —(B + 1) To find
the solution of A for the cubic function (99), we first calculate its discriminant A,

according to [58], as

A = 18abcd - 4b%d + b?c? — 4ac® - 27a%d?
= —(B + 1)(128B* + 352B° + 288B2 + 75B + 23), (100)
which is smaller than zero because B = (Dy")2 > 0. Thus, we get to know that the cubic
polynomial equation has only ane real root which canbe described by (92) according
to [58]. m
The above-described process-of generating the sub-optimal configuration (Dy/,

D,") is summarized as an algorithm-below.

Algorithm 6.2. Finding a sub-optimal configuration (Dx’-Dy’) by -analytic formulas.

Input: the viewing angle 2 zmax and the focal length f of the cameras.

Output: the sub-optimal configuration (D, Dy ), meaning that.the omni-cameras are

placed at O1(-Dy’, Dy") and Oz(Dy’, Dy"), and oriented as'shown in Fig. 6.5.

Steps.

Step 1. Calculate & according to the ‘deployment size as stated previously in this
section, and set Dy = min(&, 0.6).

Step 2. Calculate the upper bound upperox of Dy™ by (80).

Step 3. Calculate Dy’ by (92) derived in Theorem 6.3.

Step 4. Set Dy’ = min(Dy/, upperpx).

Step 5. Output the optimal system configuration (Dx/, Dy").

The sub-optimal configuration (D, Dy") is shown to be a good approximation to
the optimal one (Dx", Dy") as follows. Recalling that the goal of the optimization is to
minimize the measurement error Ew defined by (73), we use the function Ew as a
criterion to analyze the precision of the approximate one. In Fig. 6.10, we plot the

curves of the measurement error values of the optimal and sub-optimal configurations
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for all the possible values of Dy, from which we see that the measurement errors are
very close to each other, meaning that the sub-optimal configuration also yields
precise 3D measurement results as the optimal configuration does. Also, we use a

difference ratio defined by

(Ew —Ew)/EW (101)
to determine the goodness of the performance of the sub-optimal configuration, where
Ew and E.' denote the measurement errors using the optimal and sub-optimal
configurations, respectively. As shown in the figure, the difference ratio is smaller

than 0.4%, showing that the sub-optimal solution is indeed a good approximation.

7 P optimal 100%
sub-optimal 1 o

6 ] —— difference ratio 80%

5 1 - 60%

Ew ] difference
47 - 40%.  ratio
31 L20%

2: 0%
00_01 02 O 04 <05 06

Dy

Fig. 6.10 Comparison of optimal configuration” (Dx",/ Dy) and sub-optimal

configuration (Dy, Dy").with viewing angle 2 zmax = 60%

6.5 Optimization for General Cases

To design a system configuration for the general case, the 3D measurement area
and the camera placement area are specified first. To make the descriptions of the
possibly irregular shapes of the two areas easy, each area is described by multiple
sampled points, called the 3D measurement locations and camera placement locations,
respectively. For example, a cuboid can be described by 10000 evenly-distributed
points. The occlusion problem can be handled by just eliminating the camera locations
where the 3D measurement locations will be partially occluded if the camera was
placed there [59].

After the 3D measurement locations and the camera placement locations are both

identified, the optimal system configuration can be found out as follows (see Fig. 6.11
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for a flowchart). At First, two locations are chosen from the camera placement
locations to be the positions of the left and right cameras, respectively. Then, the
cameras are oriented to face the 3D measurement area to determine the extrinsic
parameters of the omni-cameras. Also, their intrinsic parameters, including the
mirror-shape parameter and the viewing angle of the perspective camera, are
determined by the optimization method proposed in the previous section.

To decide which configuration yields the most precise 3D measurements, a
measure indicating the degree of accuracy of the computed 3D data defined as
min(—E(M;i)) is calculated, where —E(M;) is the degree of accuracy of a 3D
measurement location M; as derived in Theorem 6.2. It is noted that, by choosing the
minimum value, all the 3D measurement locations are ensured to be at least with this
degree of accuracy. Then, to«find the ‘optimal system configuration, the
previously-described steps_.are executed repeatedly for all possible camera locations as
shown by the loop in/Fig. 6.11, and the configuration with the highest degree of
accuracy is picked out finally as-the-desired result.

After the positions of the-two omni-cameras are decided,. it is necessary to
determine the optical axis and the viewing angle of each omni-camera. To solve this
problem, the cameéra should face the 3D -measurement locations, and this in turn
determines the orientations of the camera. Specifically; let M; denote the points in the
3D measurement locations, and O the chosen location of each -omni-camera (i.e., the
camera center). Then, the problem may be solved, as-depicted in Fig. 6.12, by three
steps: (1) find the smallest viewing cone containing all the 3D measurement locations
Mi and with O as its apex; (2) set the optical axis as the viewing cone axis; and (3)
take the viewing angle 2 gmax of the omni-camera to be the aperture of the cone.

To speed up the optimization method described in Fig. 6.11, three techniques are
proposed as follows.

(1) Longest baseline first. When picking up the locations of the cameras in Step 3,
the ones with large baselines (i.e., the distance between the cameras) are
picked up first.

(2) Farthest 3D point first. When calculating the 3D data accuracy in Step 6, the
3D points which are farther from the two cameras are calculated first.

(3) Early stopping. If the computed 3D data accuracy is larger than that of the

so-far best configuration, then the current configuration cannot be a better
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one, and so the algorithm continues to perform Step 3 for the next
configuration.
These techniques were implemented and tested by experiments, and the results
show that they reduced the running time from 56.6 seconds down to 22.3, indicating a
speedup of about 2.5 times.

1. Specify 3D measurement area and camera placement area

\2

2. Handle occlusion problem

\}

3. Pick two locations for left and right cameras

\)
4. Determine optical axes directions and
the omni-camera viewing angles

8

5. Determine the mirror shape parameters (optional) and the
perspective camera viewing angles (optional)

\)

6. Calculate-degree of accuracy of 3D.data

All possible locations No

processed?

Yes

7. Show the optimal configuration with highest degree of accuracy

Fig. 6.11 Proposed optimization process to deal with general cases.

3D measurement locations

viewing cone

viewing angle

camera center O

Fig. 6.12 An illustration of finding the optical axis and the viewing angle.
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Three optimization methods have been proposed in the previous and this section,
which are for the regular-optimal, regular-suboptimal, and general cases, respectively.
These methods have their own advantages and disadvantages as described in the
following.

(1) If the 3D measurement area and the camera placement area are both
approximately of rectangular shapes, the first and second methods can be
used; otherwise, the third one.

(2) If the optimization process can be done in an off-line fashion, the third
method is suitable; otherwise, the first two methods should be used.

(3) If it requires a fast computation time, or the system has a low computation
capability, the first two methods are suitable; and among the two, the second
is the faster one but a little bit less accurate.

Some possible applications are-listed next to. demonstrate the uses of the three
optimization methods..When designing..a vision system for home entertainment,
exhibitions, wide-area video surveillance, etc., since the camera positions can be
derived in advance_and the environment-may-be irregular-shaped and possibly with
occlusions, the third optimization method should be used. However, if the cameras
can be oriented automatically by computer, the first optimization method may be used
in an online fashion.to achieve better 3D measurement accuracies: On the other hand,
if the cameras are mounted, for example, on . unmanned vehicles to collect wide-area
3D information in realtime, the second optimization method should be used because
fast computations according to analytic-formulas-can be conducted, and the saved

computation power can be used for navigation, learning, event recognition, etc.

6.6 Experimental Results

In this section, the experimental results of a case study of finding the optimal
system configuration in a simulated indoor environment are described first. And the
proposed method is then compared with four existing methods by experimental results
for a real laboratory environment.

A room with size 10mx2.5mx3m, as depicted in Fig. 6.13(a), was considered, and
the 3D data of a user’s body moving within the 3D measurement area were required to

be calculated accurately. Also, the omni-cameras need be designed and placed in the
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camera placement area. In the following, the optimal system configuration for this
simulation case study is derived first using the proposed method. Then, comparisons
of the 3D measurement accuracies yielded by the optimal system configuration and
some non-optimal ones are presented.

To find the optimal system configuration, a coordinate system is defined first as
depicted in Fig. 6.13(a) with the floor being taken to be the plane Z = 0, and the
viewing angles 2zmax Of the perspective cameras chosen to be 60°. Next, about 100
evenly distributed points were generated in the 3D measurement area, and about 1000
similarly distributed points were generated in the camera placement area. Then, the
optimization process proposed in the last section (as depicted in Fig. 6.11) was
applied to such a general case of environment. And the generated configuration with
the minimum 3D measurement error was chosen finally to be the desired optimal
system configuration S:”,. which, -as illustrated-inFig. .6.13(a), includes: (1) the
locations Oz and O ofithe two camerasat (+-3.92m, —0.5m;2.5m), respectively; (2)
the optical axes a; and.a oriented-in-accordance with the vectors (+0.093, 0.996, 0.0),
respectively; and (3).the eccentricities & and & of the mirrors both being 1.8967. The
images taken by the.two cameras were simulated by a ray tracing.program POV-Ray,
with two examples shown in Figs. 6.13(b)-and 6.13(c).

Alternatively, the above problem of vision system design can be seen as a 2D one,
in which only the XY-plane is considered, and the two cameras are installed at the
middle height of 2.5m (recalling.that the room is with‘a height of 5m). As depicted in
Fig. 6.14, let W be the boundary line- Ww,of the 3D measurement area which is
nearer to the camera placement area, and let C be the boundary line of the camera
placement area which is farther to the workspace. The 2D coordinate system is
defined in such a way that the coordinates of Wy and W» are (-1, 0) and (1, 0),
respectively. In this sense, a unit in the coordinate system represents 5m in real space,
so that the distance & between the line segments W and C, as depicted in Fig. 6.14,
can be derived to be 0.1. Then, with the use of &, the two proposed optimization
schemes described by Algorithms 6.1 and 6.2 were performed to such a regular case

of environment to derive the optimal two camera locations.
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Fig. 6.13 Optimal system configuration for the general case derived by the

proposed optimization process. (a) An illustration of theoptimal system
configuration. (b)(c) Simulated images taken. by the two cameras, with 3D

measurement area drawn as .a checkerboard cube.
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Fig. 6.14 The corresponding 2D problem of the case study.
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The optimal camera locations derived by Algorithm 6.1 are (70.753, —0.1) in the
2D coordinate system, which then were mapped back to the world coordinate system
as (+3.766m, —0.5m). Subsequently, the proposed methods were applied to find the
optical axes directions and eccentricities, yielding the optimal system configuration
S2”, which includes: (1) the locations O: and O of the two cameras at (33.766m,
—0.5m, 2.5m), respectively; (2) the optical axes a: and a, oriented in accordance with
the vectors (+0.163, 0.987, 0.0), respectively; and (3) the eccentricities & and & of the
mirrors both being 2.0067. In a similar way, the sub-optimal system configuration Sz
were derived by applying Algorithm 6.2 and the related proposed methods, which
includes: (1) the locations O; and O> of the two cameras at (- 3.822m, —0.5m, 2.5m);
(2) the optical axes a1 and a; oriented in accordance with the vectors (+0.172, 0.985,
0.0), respectively; and (3) the eccentricities & and & both being 2.0194. It can be seen
that the data of the two configurations S,” and S3” are quite close as expected.

To compare the.3D ‘measurement accuracies yielded by the three different
optimal system configurations Si",-Sz", and S3~ derived. previously, three additional
system configurations S:,'Sz and Sz were chosen arbitrarily, in which the two cameras
are located at (+2.5m, —0.5m, 2.5m) in configuration Sz, at (+1.67m, —0.5m, 2.5m) in
Sz, and at (£3.33m, —0.5m, 2.5m) In-Ss. Their optical axes” directions, and the
eccentricities of the two mirrors were calculated similarly by the proposed methods.

Similar to the experiments described in 1) of this.section, about 10,000 points
were uniformly generated ‘in‘the 3D.measurement-area. Each of the 10,000 point was
firstly back-projected onto the two omni-images with coordinates (us, v1) and (uz, v2).
Then, Gaussian noise with zero means and standard deviations 1.0 (pixel) were
applied to the four coordinate values (two for each omni-image), and the estimated
location of the 3D point was calculated accordingly by mid-point triangulation [54].
The distance between the ground-truth 3D point and the estimated 3D point was then
computed as the 3D measurement error. The minimum, maximum, and standard
deviation of the 3D measurement errors resulting from the 10,000 points are listed in
Table 6.1. Also, the proposed function E was used to estimate the maximum 3D
measurement errors, whose minimum, maximum, and standard deviation values are
also listed in Table 6.1 for comparison. Note that, since the values calculated by the
use of E are unitless, they were scaled in such a way that the standard deviations are

the same as the one derived with Gaussian noise added.
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Recall that a good system configuration is one with a small maximum 3D
measurement error (listed in the 3" column with bold fonts in Table 6.1). Accordingly,
we can see that the three optimal system configurations Si*, S2°, and Ss” are better.
Also, recall that the function E is proposed to estimate these maximum values for use
as a criterion to find the optimal system configuration. The effectiveness of E in this
aspect can be seen from the similarity of the maximum values max listed in the 3"

columns of Table 6.1 to those listed in the 61 column.

Table 6.1 3D Measurement Errors

Estimated 3D measurement error

System 3D measurement errors (by proposed method)

config.
J min [cm] max [cm] std. [cm] min? max® std.?

S 0.395 12.287 1,965 4.127 12.499 1.965
S." 0.393 12673 2.000 3.860 11.799 2.000
Ss” 0.385 . 12.379 1.985 4.004 11.579 1.985

S1 0.342 22.773 3.235 1.655 17.159 3.235
Sz 0.314 36.685 5.326 1.078 27.236 5.326
S3 0.362 15.196 2.223 2.704 12.950 2.223

aThe values are scaled such that the standard deviations .are the same as the ones
derived with Gaussian noise added.

6.7 Comparisons with Existing Methods

Recalling that the propased method.to assess the 3D measurement error is based
on analytic error propagation analysis, another approach found popular in the
literature is to use the covariance matrix to assess the 3D measurement error [37]-[42]
as surveyed previously. Four different methods of this approach were implemented by
programs in this study. They are briefly introduced first here and then compared with
the proposed method by experimental results in this section.

When using the covariance matrix to assess the 3D measurement error yielded by
a binocular vision system, let P be a feature point in the space, (ui, vi) be the
coordinates of the pixel P' corresponding to P in the left-camera image, and (uz, v2) be
those of P' in the right-camera image. By mid-point triangulation [54], if the 3D
location of P is calculated by a function f(u1, vi, Uz, v2), then, according to [60], the

covariance matrix Xp of the measured 3D location data of P can be assessed by
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=, =(of /op) =, (of /op)' (102)

where p is the vector (us, vi, Uz, V2), Zp is the covariance matrix of p, and T denotes the
operation of matrix transpose. The covariance matrix X, can be estimated in
complicated ways [37]-[41] or by constant values [38][42]. For simplicity, the matrix
was estimated by an identity matrix in our implementations, and the first-order
derivatives of f were obtained by a finite difference approach [61] with the difference
taken to be 10710 After the covariance matrix Zp is derived, the four implemented
methods use the following data of Xp to assess the 3D measurement error: (1) the
determinant [37][38], (2) the trace [37][39], (3) the maximum eigenvalue [37][40],
and (4) the maximum diagonal element [41]. These four different methods are named
DET, TR, MAXEIG, and MAXDIAG, respectively, subsequently.

A simulation environment for comparisons of the proposed error model with
others is constructed as follows. The 3D measurement area is defined to be
rectangular-shaped with two corners located at (1,0, —1) and (1, 0, 1), including
about 100,000 equidistant points-for use as the 3D measurement locations. The two
omni-cameras were-placed at (£0.7, —0.1, 0), and the viewing angles of the used
perspective cameras-are 60° and the resolution of acquired images-is 600x600. In each
simulation, two omni-images were taken firstly, and the projections of each 3D
measurement location L were extracted as two pixels li and r; in the left and right
omni-images, respectively. To simulate the imprecision  introduced by the feature
detection process, noise values within the-range from —1.0 to 1.0 were introduced into
the coordinates of the extracted pixels 1i and ri. The mid-point triangulation process
[54] was then conducted to compute the 3D position Li’ of each landmark point
located at L; using the coordinates of image pixels li and ri. Since the coordinate
values were interfered with noise, the calculated 3D position Li' is slightly different
from the ground truth L;. With the recall that the measurement error is defined as the
distance between the actual point and the measured one, the measurement error
yielded by the simulation was computed accordingly to be ||Li — Li/||.

The above simulation was conducted several times, and an average measurement
error was calculated for each landmark point as plotted in Fig. 6.15(a). These average
measurement errors are considered as ground-truth values, and were compared with

the measurement errors calculated by the proposed error model and those proposed by
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the four implemented existing methods shown in Figs. 6.15(b) through 6.15(f),
respectively. The peak signal-to-noise ratio (PSNR) values and the running times of
the five methods are listed in Table 6.2, from which one can see that the proposed
error model yields the highest PSNR, and the TR method is the best of the four
existing methods in this aspect but worse than the proposed model by a factor of
102367 -1.760) = 100607 ~ 4,04, and the running time of the proposed method is smaller
than that of the TR method by a factor of 273.97/8.56 ~ 32.01.

(d)

Fig. 6.15 Images for:3D measurement errors (with darker.colors mdrcatrng smaller
errors) calculated by (a) simulations, (b) proposed method, (c) method DET
[37][38], (d) method TR [37][39], (e) method MAXEIG [37][40], and (f) method
MAXDIAG [41].

Table 6.2 PSNR Values and Running Times in the Simulation

Method PSNR Running Time
Proposed error model 23.67dB 8.56 milliseconds
Method DET [37][38] 12.07dB 273.22 milliseconds

Method TR [37][39] 17.60dB 273.97 milliseconds
Method MAXEIG [37][40] 15.32dB 344.03 milliseconds
Method MAXDIAG [41] 15.24dB 277.24 milliseconds




Next, we describe the derivation of the optimal configuration of a vision system
for a real laboratory environment to compare the proposed optimization methods with
the conventional ones. In the environment, a user was allowed to move freely in a
specified 3D measurement area, and the two omni-cameras were placed within a
specified camera placement area. The optimal positions and orientations of the two
omni-cameras were computed for this environment by the proposed method and the
four existing methods mentioned previously.

Specifically, as shown in Fig. 6.16(a), the floor of the environment is the
XY-plane, the 3D measurement area is the cuboid with two diagonal points being (5.0,
2.0, 2.0) and (-5.0, 0.0, 0.0), and the camera placement area is the rectangle on the
plane Z = 0 with two diagonal points being (5.0, 0.0, 1.0) and (-5.0, —0.5, 1.0). The
goal of the optimization algorithmtis to find the ‘optimal positions O; and O of the
two omni-cameras, and their optical axes directions.a-and az, such that the 3D
measurements of an object located in the 3D.measurement-area are as accurate as
possible. The two cameras are-hyperboloidal. catadioptric ones with eccentricity &
being 1.6571, the viewing. angle of the perspective camera is 2zmax = 38°, and the
omni-image size is.600x600.

The optimization process was conducted firstly for a general case. At first, some
points, for use as 3D measurement locations, were sampled within the 3D
measurement area with a fixed interval 10cm, and some points, for use as the camera
placement locations, were sampled within the camera placement area with a fixed
interval 1cm. Then, for each possible positions O; and O, of the cameras, the
directions of the optical axes were derived according to the proposed method, and the
3D measurement error were assessed by the error model proposed previously. Finally,
the poses of the two omni-cameras which yield the minimum 3D measurement error
were taken to be the parameters of the best system configuration. The result of this
process says that two cameras should be placed at (+3.78, —0.5, 1.0), respectively, and
the optical axes be oriented in accordance with the vectors (:0.14, 0.99, 0.0),

respectively.
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Fig. 6.16 Environment where experiments were conducted. () An illustration.

(b)(c) Two omni-images captured inthe environment.

To test the 3D measurement accuracy using such® a system configuration, a
checker board were placed on the planes with Y"=70.0, 1.0, and 2.0 in the 3D
measurement area, as shown /in’ Figs.” 6.17(a) and 6.17(b). The image pixels
corresponding to all the cross points were manually picked out from the captured
omni-images, and the obtained coordinates of these pixels were disturbed with
additive noise within the range [-5, 5] to simulate errors introduced by the feature
detection process. Then, by mid-point triangulation, the 3D data of the cross points
were derived, called the measured data. Finally, the 3D measurement errors were
taken to be the distances between the measured data and the ground-truth data, the
latter being measured manually in advance. The 3D measurement errors of the cross
points on the calibration board at plane Y = 0.0 are drawn in Fig. 6.17(c), whose shape,
as can be found, is consistent with that of Fig. 6.6(b) or Fig. 6.15(b), though depicted
in different ways. Also, these results of the proposed method are listed in Table 6.3
for comparison with those obtained similarly of the aforementioned four existing
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methods. As can be seen from the table, the proposed method yields the minimum

measurement errors, and runs faster than the others for about 20 times.

2

error 51y
ke

Fig. 6.17 Testing the 3D. measurement accuracy of‘the derived best system
configuration. (a)(b) A checkerboard-is placed at-Y =0 to test the accuracy. (c) The

3D measurement errors of the points on the board.

Table 6.3 The Optimization Results of the Methods

Camera Positions Maximum 3D Run Time

Method o Measurement .
(unit: meter) Error (unit: cm)  (unit: sec)
Proposed method (£3.78,-0.5, 1.0) 26.290 11.413
Method DET [37][38] (£4.02, 0.5, 1.0) 29.185 216.927
Method TR [37][39] (£3.95, 0.5, 1.0) 28.007 217.241
Method MAXEIG [37][40]  (£3.94, -0.5, 1.0) 27.843 254.599
Method MAXDIAG [41]  (£3.88, -0.5, 1.0) 26.877 220.423
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6.8 Conclusion

The issue of designing the optimal configuration of a stereo vision system with
two catadioptric omni-cameras to compute 3D data with minimum errors is
investigated in this study. The solution includes the poses and the mirror-shape
parameters of the omni-cameras. An analytic formula is derived to model the 3D
measurement error, which takes into consideration the error propagation in the data
computation process. Two fast and elegant optimization algorithms have been
designed accordingly for “regular” environments with rectangular cuboid-shaped 3D
measurement and camera placement areas. One of them, based on a bisection scheme,
is optimal but relatively slower, which may be used for off-line applications. And the
other, using analytic formulas to calculate approximate solutions, is faster for realtime
applications with the computed precision being sub-optimal but close to that of the
former. An algorithm for.dealing with general environments with irregular-shaped 3D
measurement and camera placement-areas has also been developed for general uses.
Experimental results.show the feasibility of the proposed method.

In real applications, a manufacturer may produce omni-cameras according to the
derived optimal mirror shape. Then, a consumer may bring them back and deploy
them in the optimal or nearly-optimal pose using the proposed algorithms. As a result,
a stereo vision system which yield precise 3D measurement results can be set up.
Future studies may be directed to generalizing the proposed optimization method to a

stereo vision system with more than.two omni-cameras.
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Chapter 7 A Convenient Vision-based System
for Automatic Detection of Parking Spaces in

Indoor Parking Lots Using Wide-angle Cameras

The details of the proposed convenient indoor vision-based parking lot system
using wide-angle fisheye-lens or catadioptric cameras is described in this chapter,
which is easy to set up by a user with no technical background. Easiness in the system
setup comes mainly from the use of a new camera model which can be calibrated
using only one space line without knowing its position and direction, as well as from
the allowance of convenient changes of the detected parking space boundaries. After
camera calibration based on the new. camera model is completed, parking-space
boundary lines are extracted automatically frominput wide-angle images by a
modified Hough transform with a new cell accumulation scheme, which can generates
more accurate equal-width curves-using the geometric relations of line positions and
directions. Also, the:user-may easily add or remove the boundary lines by single
clicks on images, and parking spaces can be segmented out by region growing by the
use of the boundary lines. Finally, vacant parking spaces can. be detected by a
background subtraction scheme. A real vision-based parking lot has been established
and relevant experiments conducted. Good experimental results show the correctness,
feasibility, and robustness of the proposed methods.

In the following, an overview of the proposed method is first described. Then, the
details of the proposed camera model and calibration scheme are described next,
followed by the proposed space line detection method and the proposed parking space
segmentation and vacancy detection techniques. Three different series of experiments
are also stated and discussed, followed by some conclusions provided in the last

section.

7.1 Overview of Proposed Method

The indoor parking lot system proposed in this study utilizes multiple wide-angle
cameras affixed on the ceiling and looking downward vertically. The system

operations can be divided into four stages as shown in Fig. 7.1: camera calibration,
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space line detection, parking space segmentation, and vacancy detection. In the first
stage, a new camera model is proposed, leading to the uses of fewer parameters than
conventional models and a single space line for calibrating the model. This is why the
proposed calibration process can be done by a user with no technical background. In
the second stage, space lines appearing in the captured image are detected by an edge
detection process, followed by a Hough transform based on a new cell accumulation
scheme. Equal-width curves are so generated, leading to more precise space line

detection results for use as the boundary lines of the parking spaces.

[ Camera Calibration | — — — — — — — — — — — — — — — :

| Calibrate from a single line using:the proposed method |

Edge detecion Hough transform based on new |
| accumulation scheme |
| Choose cells I+ |
| with largest values <+—  Post processing on Hough cells |

| Parking Space Segmentation = — % ——————————

Find the directionof boundary-lines of parking spaces

\

Automatically extract the boundary lines

\

T
I
I
I
I
: Manually adjust the boundary lines
I
I
I

Y

Generate parking space regions by mouse clicking & region growing

acancy Detection = =— =— — — 4 ——————————

Background learning of vacant parking spaces

Y

Vacancy detection by background subtraction

Y
I
|
|
|

Fig. 7.1 The proposed parking lot system.
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In the third stage, the detected boundary lines are analyzed and displayed
automatically, and the user can then simply click on the image to add or remove the
boundary lines. In addition, by clicking on any position within each parking space, the
space region is generated by a region growing process. Finally, after “learning” the
background parameters of the vacant parking spaces for various environment
conditions, vacant spaces can be found by background subtraction for uses in parking
management.

The proposed vision-based parking lot system has at least the following merits: 1)
wide-angle cameras are used so that less cameras are needed to cover the area of a
given parking lot; 2) the camera system can be calibrated using only one line in the
environment, so that the system can be set up easily by a user with no technical
background; 3) the proposed Hough transform with the new cell accumulation scheme
generates equal-width curves, so that the proposed system is capable of dealing
directly with distorted.images captured. by wide-angle.cameras and the space line
detection results are.more precise than those yielded by conventional methods; 4)
unlike many previous studies which specify parking spaces manually, the proposed

method detects them automatically for convenient system setup as well.

7.2 Proposed CalibrationMethod using Only-One Space
Line

To design an easy-to-setup wvision-based  parking lot system, the camera
calibration process must be easy to carry out by normal users with no technical
knowledge. In this section, a simplified camera model is proposed for this aim. A
calibration method is proposed accordingly which makes use of only one space line in
the environment without knowing its position and direction.

The proposed modified unifying camera model is based on the use of an optimal
approximation value of the parameter | which is the distance from the effective
viewpoint O to the pinhole point O as shown in Fig. 7.2. The model has two merits: 1)
it reserves important characteristics of space lines as shown in this section; and 2) it
can be calibrated easily by the use of a single space line as described later in this
dissertation. These merits make the corresponding system setup process easy to

conduct.
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Fig. 7.2 An illustration of a.two-step spherical mapping.

The rationale of finding a fixed optimal value of parameter | can be explained as
follows. In Fig. 7:3(a), the image of.a space line, called line image hereafter, is
marked as a blue curve; and .in Fig. 7.3(b), this line image is shown to be fit well
enough by conic sections with different values of the parameter | while the two
vanishing points are fixed (marked-in.yellow in the figure). This phenomenon leads to
two conclusions: 1) the parameter | cannot be well calibrated from line images; and 2)
reversely, the value of the parameter | did not affect the space line detection process.
The first conclusion is consistent with some previous studies [46][48]. Specifically,
the parameter | was fixed in the simulation experiments described in Geyer and
Daniilidis [46], so the parameter | was not derived in the calibration process; and as
seen in Deng et al. [48], the parameter | is assumed to be known before the calibration.
The second conclusion makes it possible to find an optimal value of the parameter | to
approximate that of any kind of wide-angle camera, without affecting the space line

detection process.
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(b)
Fig. 7.3 Fitting a space line using different values of I. (a) Space line to be fit
(marked as blue). (b) Fitting results using | = 2.0, 1.5, 1.0, 0.8, and 0.5 with larger

ellipses corresponding to smaller values-of I, and the two yellow crosses indicate

the fixed vanishing points.

To find the optimal value-of1,-we define first the range of parameter | of each
kind of wide-angle:camera. For parabolic catadioptric cameras, the value of I is
known to be 1.0 [44]; for hyperbolic catadioptric cameras, the value of | is smaller
than 1.0 and larger_than 0.0 [44]; and for fisheye-lens cameras, the value of | is larger
than 1.0 [47]. In this study, we define the interesting range of the parameter | to be 0.5
< | < 2.0, which includes the commonly used values of I. For .example, the values of |
derived in [46][48] are 0.8, 0.966 and 1.0, that derived .in [49] is 0.9663, and that
derived in [50] is 1.07.

The optimal value I” found by a simulation process as described in the
following.

1) Generate simulated line images li with size 1000x1000 for a set of sampled
values of | in the interesting range 0.5 < | < 2.0 and for a set of sampled
positions and directions of space lines;

2) For each sample value I;” in the range 0.5 < |;” < 2.0, do the following steps
2.1) find the best-fitting curve 1" to each line image I, with | = Ij" by a

Levenberg—Marquardt process;

2.2) compute the distance distij between Ii and Ij” as

dist; :%gu P~ P

(103)
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where n denotes the number of pixels on the line image i, px a pixel on I;,

p«” the nearest pixel on Ij" to pk, and ||px — p[| the distance between py and

*

Pk ;

2.3) calculate the average distance distj of all distj of all I; as a measure of
optimality of the sampled value I;", with a smaller distj meaning a better fit
of ;" to all I;.

3) Choose as the desired optimal value I” the ;" with the smallest distj which is

called also the average fitting error and denoted as dist subsequently.

An experimental result of the above process is shown in Fig. 7.4, where Fig.
7.4(a) shows a line image 1; marked in blue and a best-fitting curve Iij” marked in red;
Fig. 7.4(b) shows the trend of the value of distj for different I;” values, from which it
can be seen that an optimal value of Ii" does exist and is located at 1.24 for choice as I,
and that the line images can e well-approximated-by Eq. (2) with | = 1" resulting in an

average fitting error dist ~ 1.1941 pixels:

Pk
Pk

(@)

25 \

dist . ~ _—

(pixels) N~ —
1
0.5
o T T T T 1
05 0.8 11 14 17 2
|
(b)

Fig. 7.4 Finding the optimal value I". (a) A line image Ii (marked in blue) and its
best-fitting curve 1~ (marked in red). (b) The trend of the average distj of the
distances between the best-fitting curve and the line images. The optimal value of I;*
is 1.24, with dist; = dist being about 1.1941 pixels.
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As a result of utilizing the aforementioned second conclusion, we propose a
camera model which is identical to the unifying one proposed in [44] but with its
parameter | fixed to be the optimal value 1.24 derived previously. One merit of this
model is that it leads to the possibility of calibrating wide-angle cameras using only
one line image. This property is a great advantage over the conventional models
[45][44], by which the camera cannot be calibrated reliably from line images as
proved previously. It also facilitates a non-technical user to conduct the calibration
process without difficulty as mentioned previously.

Based on the proposed camera model using the fixed parameter | = 1.24, the idea
of the proposed calibration process using a single line can be divided into three steps.
First, a space line is chosen with its line image (in the shape of a conic-section curve)
marked manually. Then, the best-fitting ellipse to.this line image is computed, from
which the unknown camera parameters and the.space line are estimated roughly.
Finally, a Levenberg—Marquardt algorithm. is_conducted. to find the precise values of
the camera parameters.

In more detail, let L be a chosen space line, Iy its line image, and E_ the
best-fitting ellipse to .. As derived in [45][46], I.can be expressed as

PP -1)n2 #1Pa2(1P=2nn,  SfAn

ez X (lU

ey , (104)

u
F(uv)=|v (I°=2)nn,  (1P=2)a +1n / 2fnn (v [=0
1 —f.n.n, —f,n,n, —fn? |1

where (u, v) are coordinates of pixels-on Iy, (nx, Ny, n;) is the normal vector of the
plane TT formed by line L and the origin of the camera’s lens center, and (I, f¢) are the
parameters used in the unifying camera model as described in Sec. II.A. Also, let the

ellipse EL be described by

T

ulla b dju
b ¢ e||v|=0. (105)
1/|d e fil1

Note that when n; = 0, the line image is a straight one going through the image center
so that the parameter fe, which is the effective focal length of the camera, cannot be
calibrated [46][62]. Ignoring this, we may rewrite Eq. (104), after dividing it by n,? #
0, to be
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JTl(P-1)G%+12 (IP-1)GH -G

u
vi| (P-1)GH  (P-1)H*+1> —fH | v|=0, (106)
1 ~f,G —f.H -2 |1

where G = ny/n;, and H = ny/n,.

Now, the problem is to estimate roughly the values of the parameters (I, fe, G, H)
such that Eqgs. (105) and (106) are close to each other. Since only rough estimation is
needed, we first simplify (106) by assuming | = 1.0. Accordingly, the problem is
reduced to finding the parameters (fe, G, H) which satisfy

1 0 .G a b d
0 1 —-fH|~|b c e[, (107)
—fG —fiH —f? d e f

where “~” means “equals up to a'scale.” Let A be the hidden unknown parameter for

this scaling. Then, we have

A 0 211G a'b d
0 A —AfHI=b ¢ e]. (108)
AfG -AfH Af? d el f

One solution to the above equation for use as rough estimates of the parameters is:
A=2"2vf = -—; G=—:;and H=—. (109)
A A

A Levenberg—Marquardt process is conducted finally to derive the precise values
of (fe, G, H), with the initial values being specified by (109) and the criterion being to

minimize the value of

T (1P-1)G*+1? (IP-1)GH  -fG

u u
vi| (P-1)GH (P-1)H*+1> —fH v (110)
1 ~f.G —f H —f2 |1

with respect to all the pixels (u, v) on the line image I.. After this optimization process
is done, the parameter fe of the camera model is derived, completing the calibration
process (as shown in Fig. 7.5).

Four results of this calibration process are shown in Fig. 7.5. The calibrated

values fe for Figs. 7.5(a) and 7.5(b) are 319.90 and 319.57, respectively, and those for
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Figs. 7.5(c) and 7.5(d) are 266.73 and 269.53, respectively. The validity of the
proposed calibration method can be shown by the good fitness of the best-fitting
ellipse to the manually-marked line image in each case, and the closeness of the
calibrated values fe in the first two cases using a fisheye-lens camera and in the

remaining two cases using a hyperbolic catadioptric camera.

() (d)
Fig. 7.5 Calibration results with yellow curves indicating manually-marked pixels,
and red ellipses being the best-fitting results. (a)(b) Results using a fisheye-lens
camera with calibrated values fe being 319.90 and 319.57, respectively. (c)(d)
Results using a hyperbolic catadioptric camera with calibrated values fe being

266.73 and 269.53, respectivley.

7.3 Review of the Proposed Space Line Detection Method

One of the important features in man-made environments is straight line, and as
formulated by (104), these space lines are projected by wide-angle cameras to form

conic sections in the resulting image, called the line images so far. In this section, the
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proposed method for detecting the conic-section curve is described, which, differently
from conventional methods, generates equal-width regions along a curve, as shown in
Fig. 7.6. As a result, the proposed method can detect thick curves in images more
reliably, overcome the noise produced by edge detection, and be utilized in
accordance with the proposed camera model (described in a previous chapter) for
more accurate detection of parking-space boundary lines.

The proposed space line detection method is based on the Hough transform with a
new cell accumulation scheme to achieve the ability to detect equal-width thick
curves. As described by (104), a line image, which appears to be a conic section in the
acquired wide-angle image, can be parameterized by the normal vector (nx, ny, n;) of
the plane IT formed by the corresponding space line and the origin of the camera. The

normal vector can be expressed as

(nx,ny,nz):(A,B, 1—A2—BZ), (111)

where

n n
A= i , B= 2 ! (112)
JnZ+ns+n? JnZ+n24n,?
and 0 <A, B < 1. The parameters (A, B) are quantized into nxn values to form Hough
cells in this study, with the line images (conic-section curves).corresponding to the
cells being described by the equation F(u, v) = 0 in (104), and the values (nx, ny, n;) in
(104) defined by (111) and (112).

Fig. 7.6 An illustration of an equal-width curve along a curve F = 0 with width r,
defined to be the regions of all the gray circles (not all drawn), or equivalently, the

thick area bounded by the two dashed curves.
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The first step in the proposed detection method is to obtain a binary version I, of
the input wide-angle image by edge detection. Then, for each Hough cell at
parameters (A, B) and for each ‘black’ pixel p in B with coordinates (u, v), if p is in
the equal-width curve region of the line specified by the parameter (A, B), then the
cell value at (A, B) is incremented by one.

In more detail, by referring to Fig. 7.7, it can be figured out that a pixel (u, v) is in
the equal-width region with width r if and only if the curve F = 0 intersects the circle
C centered at (u, v) with radius r. Furthermore, according to the intermediate value
theorem [63], the curve F = 0 intersects the circle C if there exists a point (u’, v') = (u
+ Au, v + Av) on C such that F(u’, v') and F(u, v) are with opposite signs. Accordingly,
if F(u, v) is positive, we try to find the point (u’, v') on C with the minimum value of
F(u’, v'), and then determine whether F(u’, v') and F(u, v) are with opposite signs.
Reversely, if F(u, v) is negative, we try to find. the point (u’, v') on C with the
maximum value of F(u’; V"), and then determine whether F(u’;v') and F(u, v) are with
opposite signs. For ;ithe first case-with F(u,.v) = 0, since F(u’, v') should be the
minimum value and since the gradient VF 'specifies the direction of increasing the
function value F(u, V), the vector (Au, Av) should be in the negated direction of the
gradient VF. So, under the constraint-that the length of (Au, Av) Is the radius r, the
vector (Au, Av) may be expressed as [-VF(u, V)/||VF(u, v)||]xr. For the second case
with F(u, v) <0, since F(u’, v*) should be the maximum value, it can be derived by a
similar reasoning that the vector.(Au, Av) should be with the same direction of the
gradient VF so that it can be expressed as [VF(u, v)/|[VF(u, v)|[]xr. As a summary, we

have

Fig. 7.7 An illustration for determining whether a pixel at (u, v) lies inside an

equal-width curve or not.
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~VF(u,v) .

—t fF(u,v)>0
MR R e
=+ , and = : (113)
v V| |Av AV VF (u,v) ¢ IFFUY) <0

[VF (uv)]

Accordingly, the function value F(u’, v') can now be derived by the 2"-order Taylor

expansion to be:

F(u',v-):F(u,v)WF(u,v)T{A“}%BﬁHF(u,v)Kﬂ, (114)

AV

where HF(u, v) is the Hessian matrix of function F described by

0°F  O%F
ou® . ouov.

HF = —— (115)
ouov  ov?

whose details may be derived from (104) and are omitted here.

In conclusion, to detect an equal-width line in a binarized wide-angle image Iy by

the proposed Hough transform, we conduct the following process.

1) For each pixel p with coordinates (u, v) in I and“for each Hough cell with
parameters (A; B), calculate (Au, Av).and (u’, V') by (113),and F(u, v) and F(u’,
V') by (104) and (114), respectively.

2) If F(u, v) and F(u’, V") are with opposite signs, decide the pixel p at (u, v) to be
in the equal-width region of the line specified by the parameters (A, B), and
increment the value of the Hough cell'with (A, B) by one.

3) Find out the parameters (A, B) of the desired line images (conic-section curves)
from the resulting Hough space by the following steps.

3.1) Enhance the local maximums of the Hough space by applying the

following sharpening filter:

1 -1 -1 -1 -1 —1. (116)

3.2) Pick out all the Hough cells with values larger than a pre-selected

threshold ¢ and take the cells’ parameters (A, B) for use as those of the
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detected line images.

4) Use the derived parameters (A, B) to draw the conic sections of the detected

line images on the input image as the output.

By the way, the curve width r used in (113) is defined by considering the error
introduced in the edge detection process as well as the error introduced by the
approximation of the parameter |. The former is approximated to be 1 pixel, and the
latter 1.2 pixels, according to the data shown in Fig. 7.4. As a result, the width r used
in this study is takento be r = 1.0 + 1.2 = 2.2 pixels.

A result of the above line image detection method is shown in Fig. 7.8. The input
image captured by a hyperbolic catadioptric camera is shown in Fig. 7.8(a), with the
Canny edge detection result obtained from it shown in Fig. 7.8(b). The generated
Hough space is shown in Fig. 7.8(c), and the result of applying the filter (116) in Fig.
7.8(d). Finally, some cells. with larger values were picked out, and the line images
corresponding to the cells’ parameters (A, Bi) were drawn as shown in Figs. 116(e)
and (f), where the numbers of drawn lines are 30 and 50, respectively.

Next, the effectiveness of the proposed.cell accumulation scheme is analyzed
more thorough as follows. As stated previously, each Hough cell is specified by two
parameters A and B;and corresponds toa conic-section curve F(u; v) = 0 in the input
image. Since the parameters A and B_and the image coordinates u and v are all
quantized to be discrete, the function value F(u, V) for a certain.coordinate pair (u, v)
may not be exactly zero</A conventional way to deal with this problem is to define a
threshold T and consider pixels with-coordinates (u, v) satisfying the following

inequality as being on the conic section described by F(u, v) = 0:

|F(uv)[<T. (117)

Two results yielded by this method are shown in Figs. 7.9(a) and (b) with
different thresholds T = 40 and 150, respectively. As can be seen, the generated conic
sections are not with equal widths. This phenomenon results from some undesirable
operations which cause some edge pixels not belonging to the conic section to be
accumulated into wrong Hough cells, and vice versa. In contrast, the proposed method
described in Sec. I1l.A yields equal-width curves as shown in Figs. 7.9(c) and (d) for
different curve widths r = 1 and 2 pixels, respectively. These results show the

capability of the proposed method for detecting equal-width curves, which is superior
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to conventional methods and suitable for applications requiring higher line detection

accuracy.

Fig. 7.8 Results of the proposed space line detection method. (a) The input image.
(b) Canny edge result. (c) The Hough space. (d) The Hough space after applied the
filter (116). (e)(f) Results of 30 and 50 lines, resepctively.
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(@) (b)

(c) (d)
Fig. 7.9 Comparison of conventional and proposed accumulation method. (a)(b)
Non-equal-width results yielded by conventional method with thresholds T = 40
and 150, respectively. (c)(d) Equal-width results yielded by proposed method with

width r = 1 and 2, respectively.

Some experiments were also conducted to compare the space line detection
results yielded by the conventional Hough cell accumulation scheme and those by the
proposed method. An input image and the corresponding Canny edge detection result
are shown in Figs. 7.10(a) and (b), respectively. The 10 and 30 detected space line
images yielded by the conventional scheme are drawn in Figs. 7.10(c) and (d),
respectively, and those yielded by the proposed method are shown in Figs. 7.10(e) and
(), respectively. As can be found from the figures, the curves detected by the

conventional scheme mostly go through the image center, which are not good results.
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This undesirable phenomenon may be explained from the simulation results shown in
Fig. 7.9. Specifically, as can be seen from Fig. 7.9(b), the conventional scheme
generates a thicker curve when the real curve appears nearer to the image center, and
vice versa. This means that each Hough cell corresponding to a curve nearer to the
image center will collect “votes” from a thicker line band in the input image (i.e.,
more edge pixels will be “accumulated” into such a cell), and vice versa. Therefore,
when using the conventional scheme to detect curves by picking up Hough cells with
larger votes, those curves nearer to the image center are more likely to be chosen first,
yielding the results as shown in Figs. 7.10(c) and (d). In contrast, since the proposed
method generates equal-width curves everywhere, this phenomenon does not appear

in the detection results yielded by the proposed method as shown in Figs. 7.10(e) and

(M.

7.4 Parking Space Segmentation and Vacancy Detection

Each parking space is usually-marked by some colored boundary lines. In this
section, some properties of such boundary lines are first derived. Then, a method to
detect such boundary lines is proposed. Finally, a method to mark the regions of
parking spaces using-boundary lines, and a simple vacancy detection method based on
background subtraction are proposed, by which whether a'car.is parked in a parking
space can be decided.

Three properties of the"boundary-lines-of parking spaces can be identified: (1)
lying on the ground; (2) being either parallel or perpendicular to one another; and (3)
being ignorable if too far away from the camera. These properties are discussed in
more detail as follows.

As stated previously, the wide-angle cameras used in the proposed parking lot
system are affixed on the ceiling to look right downward; so, the optical axis of the
camera, namely, the Z-axis of the camera coordinate system as shown in Fig. 7.2, is
vertical with respect to the ground specified as the XY-plane. Given a boundary line L
on the ground, its directional vector (di, diy, diz) is parallel to the XY-plane, so we

have

di = 0. (118)
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Let (A1, B1) be the Hough parameters of line L1 found by the space line detection
method, and (nix, N1y, Niz) be the normal vector of the plane formed by L: and the
camera origin. Then, from (111) we have

Fig. 7.10 Comparisons of space line detection results yielded by conventional and
proposed method. (a) Input image. (b) Edge detection result. (c)(d) 10 and 30
detected curves using conventional method. (e)(f) 10 and 30 detected curves using

proposed method.
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(nlx,nly,nlz):(Ai,Bl,wfl—Af—Blz). (119)

In addition, since (nix, N1y, N1z) is perpendicular to the directional vector (dix, diy, diz)
of L1, we have

(n1x1nly’nlz)'(dlwdly’dlz)zo’ (120)
which, when combined with (118) and (119), leads to

Aldlx + Bldly = O ! (121)

so that the directional vector (dix, diy, di1z) can be expressed in terms of A1 and B as:

(dlx’dly’dlz):(Bl’_Ai’O)' (122)
Let (A2, B2) be the parameters of another boundary line L. Then, the directional
vector (dax, day, d2;) of L can be derived similarlyto be

(dzx’dzy’dn):(Bz!_Az’O)- (123)

Now, since the two boundary lines Ly and L. are either parallel or perpendicular

to each other, two ‘cases can be identified. For the first case where the two boundary
lines are parallel, their directional vectors satisfy

(dlx’dly’dlz)zﬂ“(dZX’dZy’de) ! (124)

which, when combined with (122) and (123), leads to

(AB)=4(AB,). (125)
where A is a scalar value. For the other case where the two lines are perpendicular, the

inner product of their directional vectors satisfy

(dy.dyy,dy; )-(dyy. 0,y dyy ) =0, (126)

which, with the use of (122) and (123), leads to

(A,B.)-(A:B,)=0. (127)

Moreover, in order to ignore boundary lines which are too far away, we check the
elevation angle y of each boundary line, which is defined in a way as illustrated in
Fig. 7.11 so that if the larger the angle ¥is, the farther the boundary line is from the

camera. According to our experimental experience, if the camera is mounted at 2.5
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meters high, the farthest usable boundary line is at a distance about 10.0 meters from
the camera. As a result, the maximum value of ¥is tan"}(10.0/2.5) = 75.96°, which is

equivalent to ni, < sin( ¥) = 0.970. Using this result with (119), we can derive another

constraint on the parameters (A, B) as ny; = \fl— A’ -B? <0.970, or equivalently, as

wide-angle
camera

N1 = (N1x, Ny, N1,)

ground plane (XY-plane)

\ L, (boundary line)

Z
Fig. 7.11 Definition of the elevation angle ¥ of.a boundary line L.

A?+B?>0.059. (128)
As can be seenfrom Figs. 7.8(e) and (f), the results of the line image detection
method are too noisy to be used directly. Next,.a.method is proposed to make use of
the geometric properties mentioned previously to generate a better segmentation
result.
As defined above, let L1 and L2 betwo-boundary lines with parameter pairs (A,
B1) and (A2, By), respectively. If (A1, B1) and (Az, By) are treated as two vectors, then if
the two lines are parallel to each other, (125) can be derived. Similarly, if the two
lines are perpendicular to each other, (127) can be derived. Recalling that the
boundary lines are either mutually parallel or perpendicular, we define the direction &
of the boundary lines in such a way that the parameters (A, B) of each boundary line
are either “parallel” or “perpendicular” to (cosé, sind), i.e., are equal, up to a scalar, to
either (cosé, siné) or (cos(90°+6), sin(90°+46)).
To find the correct value of the direction 6, we first generate the Hough space and
apply the filter as stated in Sec. I11. From this Hough space, about 0.3% of the Hough
cells with the largest values and satisfying (128) are chosen and put into a set S. Also,

we create 90 bins in the range 0°~90° for different values of é. For each cell with
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parameters (A;, Bi) in the set S, we find the closest bin b; with value & such that (Ai, Bi)
is either parallel or perpendicular to (cosé, siné), and increment bin bj by the value of
the Hough cell with (Ai, B;). After applying a Gaussian filter with standard deviation o
= 1, the bin with the largest accumulation value is chosen to be the direction of the
boundary lines 6.

An experimental result of the above process is described in the following. An
image captured by a hyperbolic catadioptric camera for use as the input is shown in
Fig. 7.8(a). By following the line image detection method proposed in Sec. I, the 2D
Hough space, after applying the filter, becomes as that shown in Fig. 7.8(d). The
results of the accumulated bin values of @ are shown in Fig. 7.12(a), where the largest
bin is with value @ = 76.5° which is taken finally as the direction of the boundary
lines.

After the direction @ of the boundary lines is derived, the boundary lines which
do not satisfy the direction @ are.removed as follows. For each Hough cell in the set S
with parameters (Aj; Bi), if there-exists a-real.number Gvsser Within the range —10° <
Gotset < 10° such that the two vectors (Ai, Bi) and (cos(@ + Gofrset), SIN(O + Obrrser)) are
parallel or perpendicular to each other, then the cell is considered to satisfy the
direction 6 and so kept in the set S; otherwise, ‘it is removed. Afterwards, the
connected components S;.in the set S are found according to the criterion that two

cells with parameter values (A1, B1) and (A2, B2) are connected if

|A1 — A2[ < 0.05 and |B. — B2 <0.05. (129)
Finally, the center of each connected component S; is calculated and their parameters
(Ai, Bi) are then used to specify the boundary lines. By this process, the result
corresponding to Fig. 7.12(a) is shown in Fig. 7.12(b), in which one can see that all

the boundary line of the parking spaces have been detected.
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Fig. 7.12 An example of parking space detection results with input image shown

in Fig. 7.8(a). (a) Cell accumulation result of the direction @ of boundary lines. (b)
Results of boundary lines found by proposed method, showing improvement over
line detection results shown in Figs. 7.8(e) and (f).

Two more steps:are proposed-next to segment out the regions of the parking
spaces in the acquired wide-angle-image. Then, a vacancy detection scheme based on
background subtraction is adopted. Recall that, these three steps.are designed to be
performed easily by a user with no technical background, so that the vision-based
parking lot system can be set up and utilized conveniently as claimed.

The first step is to adjust the boundary lines manually by clicking on the image to
add and remove boundary line, one line a time. The boundary lines are first divided
into two “mutually” perpendicular groups, as shown in Fig. 7.13(a) and distinguished
by colors. The user may select either group, and then simply click on an existing
boundary line to remove it, or click on any other position to add a new boundary line
going through the mouse position. It is important to note that, with the direction &
found previously, the boundary line can now be uniquely determined with only one
point marked by the user; without &, there will be an infinite number of lines going
through the point marked by the user. For example, from the detection results shown
in Fig. 7.13(a), the result after two lines added and one line removed manually is
shown in Fig. 7.13(b).

The second step is to find parking-space regions. In this step, the user may simply
click on any position of a parking space in the image, and a region growing algorithm
is performed immediately to find the region of the parking space using the boundary

lines. Two results are shown in Figs. 7.13(c) and (d).
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The final step is to find vacant parking spaces. To implement this, the user has to
capture beforehand an image of each parking space when it is vacant, and consider the
image as the background of the parking space. Subsequently, to determine the
vacancy of the parking space, each pixel in the acquired wide-angle image is
considered as a foreground pixel if the absolute difference between the pixel’s value
and that of the background pixel is larger than a threshold value in at least one of the
R, G, and B channels. And then, if the number of foreground pixels is larger than 20%
of that of the pixels in the parking-space region, the parking space is considered to be
occupied; otherwise, vacant. An experimental result is shown in Fig. 7.14.

Fig. 7.13 Parking space segmentation. (a) Boundary lines detected by proposed
method are divided into two groups marked by red and blue, respectively. (b)
Boundary lines after manually adjusted. (c)(d) Regions of two green-marked
parking spaces found automatically by proposed scheme.
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Fig. 7.14 Parking space vacancy detection. (a) Input image. (b) Vacant parking
spaces marked as green regions.

7.5 Experimental Results of Proposed Calibration Method

The proposed camera calibration method-described in Sec. 11 uses the image of
only a space line, without knowing its position or direction, to derive the parameters
of the proposed general model for fisheye-lens, parabolic catadioptric, and hyperbolic
catadioptric cameras. By assuming-that the image center has already been calibrated
by the use of the circular boundary of the omni<image as-done in [48], the effective
focal length value fe Is the only remaining one to be calibrated. For this, a series of
experiments were rconducted .using space lines lying on the ‘ground at different
positions, with the camera affixed on the ceiling and-looking downward. Specifically,
as illustrated in Fig. 7.15, one of the parameters of a space line L is its elevation angle
v, so several simulated space lines.with different.elevation angles  in the range of

°~90° were generated for uses in the experiments. The parameters fo of these
simulated lines were all set to be f." = 500, and their line images generated to be of the
size 800x800 identically. Also, the coordinates of the pixels on each line image were
disturbed by Gaussian noise with zero mean and varying standard deviations . Then,
the proposed calibration method was applied to derive the parameter fe using these
simulated line images. This process was repeated 100 times, and the mean and
variances of the derived values of fe are plotted in Figs. 7.16(a), (b), and (c) for
different noise levels o = 1.0, 3.0, and 5.0 pixels, respectively. Recalling that the
actual value of the parameter f. is fe = 500, one can see from the figures that the
parameter fe can be robustly calibrated under a large noise level when the elevation
angle ¥ > 15° Note also that a space line with an elevation angle ¥ near 0° will

appear to be a short and nearly straight line segment going through the image center,
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so that the parameter f. cannot be calibrated reliably using it, as expected according to
the theory of the proposed calibration method.

The main objective of the proposed methods is the ease for a non-technical user
to set up the system. In this section, achievement of this goal is demonstrated — the
user only has to select a single space line with its position and direction unknown.
Images like those shown in Fig. 7.17 were captured by a hyperbolic catadioptric
camera with MapCam MRC530N manufactured by EeRise, Inc. Four experimental
results are shown in Figs. 7.17(a)-(d). In each experiment, the user only has to choose
arbitrarily an obvious space line in the captured image, and marked roughly the pixels
on the line as yellow points by mouse dragging. Then, the proposed calibration
method was applied to derive the value of the effective focal length fe using the
yellow points. The values of fe so. derived for the cases shown in Figs. 7.17(a)-(d) are
265.34, 258.14, 276.84, and 272.36, respectively,.and the best-fitting ellipses to the
marked space lines are:shown in red. With parameter fe = 265.34, the boundary lines
of the parking spaces.were finally-found and drawn in Fig. 7.17(e) using the proposed
detection method. .Also conducted- were similar experiments with a fisheye-lens
camera manufactured by Hunt Electronic, Inc. with model No. HLC-1NAD, and the
results are shown"in Fig. 7.18. The results of both experiment series show the
feasibility and robustness of the proposed. calibration. method by the fitness of the
drawn red ellipses to the marked yellow points; the closeness of the calibrated values
fe to the real value, and the nearly perfect overlapping. of the drawn boundary lines on

the real ones.

ceiling
camera

n=(ny Ny, n,)

ground (XY-plane)

\/ L (space line)
Z

Fig. 7.15 Definition of the elevation angle ¥ of a space line L on the ground.
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Fig. 7.16 Computed means and variances of calibrated values fe for simulated space
lines with different elevation angles ¥ where standard deviaion of Gaussian noise is

1.0 pixel for (a), 3.0 pixels for (b), and 5.0 pixels for (c).
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Fig. 7.17 Applying proposed calibrate method to derive the parameter fe of a
hyperbolic catadioptric camera. (a)-(d) Four results with calibrated values f. =
265.34, 258.14, 276.84, and 272.36, respectively. (e) Boundary lines found by the
proposed detection method with fe = 265.34.
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Fig. 7.18 Use of proposed calibration method to calibrate a fisheye-lens camera.
(a)-(d) Four results with calibrated values fe = 323.74, 331.12, 339.74, and 328.57,
respectively. (e) The boundary lines found by proposed detection method with fe =
331.12.
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7.6 Experimental Results of Parking Space Segmentation

In the proposed boundary line detection method, the direction of the boundary
lines, denoted as 6, is computed first and the boundary lines are derived accordingly.
Some experiments were conducted to test the capability of this scheme of finding & as
described next. First, an image of an indoor parking lot was captured by a hyperbolic
catadioptric camera, as shown in Fig. 7.19(a). Then, this image was rotated through
the angles 30°, 60°, and 90° as shown in Figs. 7.19(b), (c) and (d), respectively. The
boundary line directions & in these four images were firstly derived. Then, the
boundary lines were detected automatically and superimposed on the original images
as shown in Figs. 7.19(a)-(d), respectively. From the figures, one can see that the
boundary lines fit well to the real ones.appearing in the captured images, meaning that
the directions of the boundary lines were found correctly by the proposed method.

Fig. 7.19 Automatic detection results of boundary lines. Rotation angles of these
images are (a) 0° (b) 30° (c) 60° and (d) 90° respectively. The detected

boundary lines are drawn and superimposed on the images.
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To demonstrate that the direction @ of the boundary lines can be robustly found
even under bad conditions, two more experiments were conducted with input images
shown in Figs. 7.20(a) and (b), in which noise was present, cars were parked in the
spaces, and the lighting situations were poor. The results of the first experiment are
shown in Figs. 7.20(c), (e), and (g), and those of the second are shown in Figs. 7.20(d),
(P, and (h). Specifically, the edge detection results are shown in Figs. 7.20(c) and (d),
respectively, in which one can see that the boundary lines were poorly detected; Also,
some of the boundary lines are missing, as shown in Figs. 7.20(e) and (f). However,
the directions of the detected and drawn boundary lines are correct, meaning that the
direction @ can be derived precisely even under bad conditions. With this correct
value of &, the boundary lines can be adjusted easily by the proposed method as

demonstrated by the results shown in Figs. 7.20(g) and (h).

7.7 An Example of Setting up an Indoor Parking Lot System

A real indoor vision-based parking lot system was established and its use for this
study is introduced in this section. A fisheye-lens camera manufactured by Hunt
Electronic with madel No. HLC-INAD was affixed on the ceiling of the parking lot.
An image as shown.in Fig. 7.21(a) was acquired at midnight firstly and used both for
calibration and for detecting the boundary lines of the parking spaces. Specifically, a
space line in the image was chosen arbitrarily according to a rule of thumb that the
line should be long enough and not straight. The line pixels were traced and marked
in yellow as shown in Fig. 7:21(b), with.calibrated parameter f. = 331.1.

Afterwards, the direction & of the boundary lines was derived, and the boundary
lines detected automatically, with the results drawn in Fig. 7.21(c). Subsequently,
boundary lines were added or removed by single clicks on the image as described
previously. A result of such adjustments is shown in Fig. 7.21(d). At last, the parking
spaces were segmented out by clicking on any point within the region of each space
and applying a region growing algorithm. The regions of two parking spaces so found
and drawn in green are shown in Figs. 7.21(e) and (f), respectively. After using the
captured image shown in Fig. 7.21(a) as background, the system setup process was
completed, and parking space vacancy detection was started. In one of the
experiments we conducted, this system was maintained to run for 24 hours to detect
vacant parking spaces every minute. The resulting detection accuracy was 99.67%,

which is good enough for real applications.
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Fig. 7.20 Results of two experiments under bad conditions with those of the first
shown in (a)(c)(e)(g), and those of the second shown in (b)(d)(f)(h). (a)(b) Input
images. (c)(d) Edge detection results. (e)(f) Automatic detection results of

boundary lines. (g)(h) Adjusted boundary lines. (continued on next page)
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(9) (h)

Fig. 7.20 (continued from previous page)

7.8 Conclusions

A convenient indoor vision-based parking lot system has been proposed in this
study, which is easy to set up by-a typical userwith no_technical background and can
detect vacant parking spaces automatically. The system uses wide-angle cameras, like
fisheye-lens or catadioptric ones and analyzes parking-space boundary lines based on
a new camera model proposed in-this study. This model approximates optimally one
of the parameters ‘used in a conventional model (the distance | from the effective
viewpoint O to thespinhole point Oc) while reserving some important characteristics of
line images, including the shape of the curve and the locations of the vanishing points.
A new line-based calibration method has also been proposed to calibrate the camera
model using only one space line without knowing its-docation and direction, so that
the calibration process can be done easily-by-a-user without any technical background.
A new Hough transform has been proposed as well to detect space lines, in which a
skillful cell accumulation scheme is used to generate equal-width curves, yielding
more robust and accurate detection result of parking-space boundary lines. A
convenient adjustment method has also been developed such that an user can add or
remove boundary lines by simple clicks on input images.

Currently, the background images should be learned for various lighting
conditions in order to conduct parking-space vacancy detection based on background
subtraction. More intelligent methods may be developed to remove this weakness in

the future study.
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Fig. 7.21 Steps of setting up proposed system. (a) An image captured at midnight.
(b) Manually-marked pixels (in yellow) of a space line for calibration task. (c)
Results of automatic detection of boundary lines. (d) Result of boundary line

adjustment. (e) and (f) Regions of two found parking spaces (marked in green).
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Chapter 8 Conclusions and Suggestions for
Future Works

8.1 Conclusions

In this dissertation, several methods for applications using omni-directional
cameras have been proposed. A new camera model for omni-cameras has been
proposed, which can be used to model various kinds of omni-cameras, and a
convenient calibration method for the new model has also been proposed with the use
of only one straight line without its location and direction unknown in advance. Also,
an improved space line detection method has been proposed to detect straight lines
from images captured by omni-cameras without unwarping them. From the viewpoint
of consumers, a new binocular omni-vision system-has been proposed as well along
with an adaptation algorithm which can automatically adapt the system parameters to
any system setups, so-that the proposed vision system provides a convenient setting
up process without:any restriction on the locations or orientations-of the two cameras.
Furthermore, to design an optimal vision system; the issue of optimally designing the
optimal configuration of a stereo vision system with two catadioptric omni-cameras
has been investigated, and the proposed optimization methods yield the optimal poses
of the cameras and the optimal mirror-shape parameters of the mirrors used in the
omni-cameras. Finally, a convenient indoor vision-based parking lot system has been
proposed in this study, which ¢an be-easily set-up by a typical user with no technical
background and can detect vacant parking spaces automatically. In the following, the

conclusion of each method and suggestions for future researches are given as follows.

(1) A new camera model for omni-cameras has been proposed, which can be used to
model various kinds of omni-cameras, including single viewpoint catadioptric
cameras, fisheye-lens cameras, etc. One of the main features of the proposed
model is that it can be easily calibrated from one straight line without knowing the
location and direction of the line. More specifically, in the proposed modified
model, we have investigated an important invariant property in the projections of
straight lines via omni-directional cameras, and have used this invariant property

to eliminate one of the parameters, i.e., the parameter I, in the original unifying
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model proposed by Geyer and Daniilidis [44]. In more detail, a series of
experiments have been designed and conducted to find the optimal approximate
value of parameter |, leaving only one parameter in the proposed modified model.
Since there is only one parameter left in the camera model, the model can be
easily calibrated, and it has been showed that it can be calibrated more robustly
using only straight lines. A new calibration method has also been proposed using
only one straight line to calibrate an omni-camera, which is a great advantage
since it facilitates a non-technical user to conduct the calibration process without
difficulty because it requires no extra object or measurement in the process.

(2) An improved space line detection method has been proposed to detect straight
lines from the images captured by omni-cameras without unwarping them. Three
different conventional approaches has been first identified and analyzed, and it has
been found out that these conventional methods have problems when detecting
space lines from omni-images, yielding imprecise and unrobust detection results.
From some more thorough-analyses, it turns out that the. main reason of the
imprecision and unrobustness-is because the conventional methods cannot
generate equal-width curves when detecting space lines. To overcome this
problem, a new 'method to generate equal-width curves has been proposed in this
study with the use of total differentials, and.this method has-also been combined
with the Hough Transform to-yield the proposed space line detection method.
From the experimental results, the proposed method yields much more precise and
robust detection results when detecting-space lines from omni-images, and it only
requires a little more computation time when comparing with the conventional
methods. Also, the proposed detection method along with the equal-width curve
extraction techniques can be easily generalized to detect more complex analytical
shapes.

(3) A new binocular omni-vision system has been proposed along with an adaptation
algorithm which can automatically adapt the system parameters to any system
setups. The proposed vision system is aimed to provide a convenient setting up
process without any restriction on the locations or orientations of the two cameras,
so that it is suitable for the use in the area of consumer electronics. Firstly, the
proposed vision system is composed of two omni-cameras facing the user’s

activity area. Each omni-camera is affixed firmly to the top of a rod, forming an
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omni-camera stand, with the camera’s optical axis adjusted to be horizontal (i.c.,
parallel to the ground). To deploy the vision system, the user can just bring the
two camera stands home, and place them freely at the desired locations and with
arbitrary orientations. After the two cameras are placed, the proposed adaptation
process can be used to automatically derive the orientations of the two cameras
with the use of the straight lines in the environment. During this step, the process
also takes the advantage of the property that, the straight lines are mostly parallel
or perpendicular to each other, to improve the correctness and robustness, and
make the process require no line correspondence algorithm. After deriving the
orientations, the system will ask the user to stand at the middle region in front of
the two cameras, and derive the distance between the two cameras (i.e., the
baseline) with the use of the user’s height. Accordingly, a coordinate system can
be defined with no ambiguity, so the 3D data can be computed correctly. The
proposed vision systems has two main.advantages over the traditional ones. First,
the proposed vision system can-be set up freely, meaning that the user can place
the two cameras at the locations he or she wants, and orient them freely. Second,
the proposed "system is with a very large viewing field by the use of
omni-directional cameras, so the users-can move much more freely within the
environment.

(4) The issue of designing the optimal configuration of a stereo vision system with
two catadioptric omni-cameras to compute 3D data-with minimum errors has been
investigated. The solution includes the-poses of the cameras and the mirror-shape
parameters of the hyperboloidal ‘mirrors‘used in the omni-cameras. An analytic
formula is derived to model the 3D measurement error, which takes into
consideration the variations of pixel-quantization precisions and angular
resolutions in images by conducting error propagation analysis in the data
computation process. Two fast and elegant optimization algorithms have been
designed accordingly for “regular” environments with rectangular cuboid-shaped
3D measurement and camera placement areas. One of them, based on a bisection
scheme, is optimal but relatively slower, which may be used for off-line
applications. And the other, using analytic formulas to calculate approximate
solutions, is faster for realtime applications with the computed precision being

sub-optimal but close to that of the former. An algorithm for dealing with general
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environments with irregular-shaped 3D measurement and camera placement areas
has also been developed for general uses. Experimental results show the feasibility
of the proposed method. In real applications, a manufacturer may produce
omni-cameras according to the derived optimal mirror shape. Then, a consumer
may bring them back and deploy them in the optimal or nearly-optimal pose using
the proposed algorithms. As a result, a stereo vision system which yield precise
3D measurement results can be set up.

(5) A convenient indoor vision-based parking lot system has been proposed in this
study, which is easy to set up by a typical user with no technical background and
can detect vacant parking spaces automatically. The system uses omni-cameras
mounted on the ceiling, like fisheye-lens or catadioptric ones, and analyzes
parking-space boundary lines based on a new camera model. The calibration
method uses only one spaceline"without knowing its location and direction, so
that the calibration.process can be.done easily by a user without any technical
background. A new Hough transform has_been proposed as.well to detect space
lines, in which a skillful cell-accumulation.scheme is used to generate equal-width
curves, yielding more robust and accurate detection result of parking-space
boundary lines.”A convenient adjustment method has also been developed such
that a user can add or remove boundary. lines by simple clicks on input images.
Currently, the background  images should be learned for various lighting
conditions in order: to. conduct parking-space «vacancy detection based on

background subtraction.

8.2 Suggestions for Future Works

The following topics may be investigated in the future to further improve the
proposed omni-vision techniques:
(1) Omni-camera calibration using multiple lines —
It is desired to utilize more than one space lines to calibrate omni-cameras.
The geometry relation between these multiple lines should be utilized in the
calibration process, such as the properties of parallel, perpendicular, distance,

length, directions, etc. In this way, omni-cameras can be easily calibrated and
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will be suitable for point localization and/or curve detections of general
shapes.

(2) Thick curve detections in omni-images —
Future studies may be directed to improve the proposed method by focusing
on extracting equal-width curves regarding to the 3D world, rather than the
2D image space. Also, it is also desired to combine the proposed equal-width
extraction techniques with advanced binary thresholding techniques. In this
way, the region of a thick curve can be segmented out, so hopefully the curve
can be extracted accurately and robustly by the proposed method.

(3) Automatic adaptation to any system setups —
Future works may focus on eliminating the coplanrity constraint of the
optical axes. Also, it is-also desired.to develop automatic adaptation
techniques for multiple omni-camera vision systems. In this way, the user can
place the omni-cameras freely in.the environment, and then the vision system
can automatically adapt the system setup using features in the environment.

(4) Derivation of optimal system configuration—
It is possible to generalize the proposed optimization method to a stereo
vision system with more than two omni-cameras. Also, other optimization
methods (e.g., evolutionary algorithms) could be developed and compared to
existing methods to come up with a good optimization method.

(5) Parking lot management system using omni-cameras —
More intelligent methods may be-developed to remove this weakness in the
future study. Also, future ‘studies may be directed to develop a more
convenient system by developing a method to simultaneously calibrate
omni-cameras and detect parking spaces. In this way, the system can further

ease the setting up phase by elimination the calibration process.
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