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精準且有自適能力之環場視覺 

技術及應用之研究 

 研究生：石神恩 指導教授：蔡文祥博士 

國立交通大學資訊學院 

資訊工程與科學研究所 

摘要 

為了能使電腦與四周環境互動，環場視覺是一項極其有效且十分重要的技

術。與傳統電腦視覺技術相比，環場視覺強調其在單一時間點能對大範圍環境取

景之能力，而不用在攝影機上加裝馬達裝置來週期性地轉移攝影機，更不需用多

部攝影機來對環境取景。由上述可知，在環場視覺技術中我們可以避免影像接

合、攝影機換手、多攝影機特徵連續追蹤等複雜問題。為了達到大範圍取景之目

的，有兩種特殊設計的環場攝影機較常被使用，其一是反射式環場攝影機，另一

種是魚眼攝影機。其中，前者是將一個特殊形狀的反射式鏡面擺放在一傳統攝影

機前方，藉由該鏡面來研展攝影機的可視範圍；後者是利用一特殊的魚眼透鏡來

研展其可視範圍。然而，因為極大範圍的環境資訊被濃縮於一張傳統大小的影像

中，環場攝影機所擷取到的影像必定有十分嚴重的扭曲，這也使得後續影像分析

的工作變得困難且複雜許多。雖然將影像扭曲校正回來是其中一種簡單的解決方

式，然而因為扭曲造成影像解析度的不同，校正回來的影像在某些區域會十分地

模糊，在影像分析後會產生不穩定的結果。更甚者，上述扭曲校正的過程也需要

些許運算能力，在即時應用及嵌入式系統中都較不適用。 

為了克服環場攝影機擷取到的嚴重扭曲，我們提出了在扭曲影像上精準且穩

定地偵測空間中直線的方法。另外，我們也針對各種利用環場攝影機偵測空間中

直線的應用，提出改良的攝影機模型，並且也提出一套方便的校正程序來校正環

場攝影機。此校正程序只需使用空間中的一條直線特徵，且不需要測量其位置及
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方向，使得整個校正程序變得十分簡單，且可讓一般使用者方便地進行校正，使

環場視覺技術朝消費電子更邁進一步。 

另外，從消費者的角度上來看，我們應該也要能讓一般使用者方便地架設一

套環場視覺系統。在此方面，我們提出一套新的雙眼視覺系統，此系統可讓使用

者任意地擺放兩部環場攝影機。在擺放完成後，系統會自動利用環境中之直線特

徵來回推攝影機的位置及角度，從而正確地計算立體資訊，以供各種人機互動應

用使用。另一方面，針對需要取得十分精準之立體資訊的應用中，我們也提出一

套最佳化架構以及三個最佳化演算法，其可告訴使用者如何擺放該二部環場攝影

機的位置及角度，以求得最佳之立體資訊。根據這些最佳化演算法，使用者將可

建構出能進行精準立體測量之雙眼環場視覺系統。 

最後，我們也對上述所提出之各種環場視覺技術進行延伸研究，開發一套室

內停車場管控系統。此系統可利用假設於天花板之各環場攝影機，自動地分析停

車場中各停車格之位置，並自動找出空的停車格位置，以利駕駛找尋停車位。與

現有系統相比，我們提出的系統因為攝影機的可視範圍較大，所以只需要較少的

攝影機數量；另外，因為我們提出的系統可自動分析停車格位置，因此其系統建

置過程會便利許多。 

在可行性及效率評估中，我們已對上述各方法及技術進行理論及實驗分析，

並得到良好之實驗結果。 
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College of Computer Science 

National Chiao Tung University 

 

Abstract 

Omni-vision is an important and effective technique to make computers be aware 

of the surrounded environment. Different from traditional computer vision techniques, 

omni-vision ones emphasize more on capturing the environment information within a 

very wide area at one time without adding a motor control to the camera, moving the 

camera periodically, or using multiple cameras. Such techniques can avoid the 

difficulties of image stitching, camera hand-off, feature tracking over different 

cameras, etc. To achieve the capability of capturing information of a wide area, two 

special kinds of cameras are commonly used, which are catadioptric omni-directional 

cameras, and fisheye-lens cameras. The formal ones use a specially-designed 

reflective mirror to extend the viewing field, and the latter ones use a fisheye-lens to 

achieve the goal. However, since the environment information captured from a wide 

area is all compressed in a relatively small image, the captured image is inevitably 

heavily distorted, which makes the image analysis task much more difficult and 

complicated. Although, an easy and feasible way to deal with the heavy distortion is 

to unwarp the captured images to yield an image looking like one captured by a 

conventional perspective camera. However, since the resolution distributions captured 

by omni-directional cameras and by conventional perspective camera are quite 

different from each other, an unwrapped image becomes much more blurred in some 

regions, making image analysis tasks unstable and unreliable. Furthermore, the 
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unwarping process needs some computation power, making it unsuitable to real-time 

applications and embedded systems with restricted computation power. 

To deal with the heavily-distorted images captured by omni-directional cameras, 

an accurate and reliable space line detection method without unwarping the distorted 

image is proposed. Also, to model the imaging process conducted by an 

omni-directional camera, a new camera model along with a convenient calibration 

process to calibrate an omni-camera easily is proposed. This new calibration 

technique requires only one straight line in the environment without knowing the 

position or direction of the line, making it possible for non-technical user to conduct 

the calibration work which is a big step toward consumer electronics. 

In addition, from the viewpoint of a consumer, the setup procedure of an 

omni-vision system should be sufficiently convenient for use by a typical user with no 

technical background. In this sense, a new binocular omni-vision system is proposed, 

which allows the user to place the two omni-directional cameras freely at any 

positions and with any orientations. After the two cameras are placed, the system can 

automatically derive the cameras’ positions and orientations via analysis of the space 

lines within the environment. As a result, the binocular omni-vision system can 

calculate 3D information correctly for use in many advanced human-machine 

interaction applications. Furthermore, for applications requiring precise 3D 

information, an optimization framework along with three different optimization 

algorithms are proposed as well to tell the user where to place the two omni-cameras, 

and what are the best orientations. With these optimization algorithms, the user can set 

up a binocular omni-vision system which acquires the most precise 3D data. 

Finally, the proposed omni-vision techniques are extended for uses in the 

application of indoor parking lot management. The proposed system for this 

application utilizes the omni-directional cameras mounted on the ceiling, and 

automatically analyzes the acquired images to obtain the locations of the parking 

spaces and detect vacant parking spaces. Different from existing similar application 

systems, the proposed one requires fewer cameras due to the wider fields of view of 

the cameras, and is much more convenient to set up because of the developed 

automatic parking-space analysis capability.  

The feasibility and effectiveness of all the above proposed methods and systems 

are demonstrated by theoretical analyses and good experimental results. 
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Chapter 1 Introduction  

 

1.1 Research Motivation  

With the advance of technologies, various types of vision systems have been 

designed for many applications [1]-[5], like virtual and augmented reality, video 

surveillance, environment modeling, TV games, etc. Most of these applications 

require acquisitions of the 3D data, meaning in turn the need of precise system 

calibration and setup works to yield accurate 3D data computation results in the 

application environment. However, from a consumer’s viewpoint, it is unreasonable to 

ask a user to set up a vision system very accurately, requiring, e.g., the system 

cameras to be affixed at accurate locations in precise orientations. Contrarily, it is 

usually desired to allow a user to choose freely where to set up the system 

components. Additionally, many vision systems used for the previously-mentioned 

applications are composed of traditional projective cameras which collect less visual 

information than systems using omni-directional cameras (omni-cameras).  

To overcome these difficulties, a 3D vision system which consists of two 

omni-cameras with a capability of automatic adaptation to any camera setup is 

proposed in this dissertation study. While establishing this system, the user is allowed 

to place the two cameras freely in any orientations with any displacement. Then, the 

system can accurately analyze some environment features, and automatically adapt to 

the unknown system configuration by deriving the locations and orientations of the 

two cameras. As a result, an accurate and adaptive omni-vision system can be 

constructed. 

On the other hand, in the binocular omni-vision applications which requires 

precise 3D acquisitions, an optimization method is required to tell the user where to 

place the cameras, and what are the best orientations. Since many existing 

optimization techniques only focused on dealing with binocular vision systems using 

conventional perspective cameras, a specially optimization framework and algorithm 

are thus required to produce the optimal configuration.  

Furthermore, it is noticed that the omni-vision techniques are not yet popular 

enough. To bring the omni-vision into our daily life, the omni-vision system must be 

able to be easily set up, including the calibration process and the system setup phase. 
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To this aim, an convenient indoor parking lot management system is desired, which 

uses the omni-cameras mounted on the ceiling, and the system must be able to be 

easily calibrated and set up by a typical user with no technical background. 

Fulfillments of the aforementioned goals of this thesis study together enhance 

the state-of-art studies on omni-vision techniques, yielding a further step toward to the 

area of consumer electronics. 

 

1.2 Survey of Related Works  

The related works are categorized into several directions and reviewed as 

follows. 

 

(1) Catadioptric camera 

A catadioptric omni-camera is a combination of a reflective mirror and a CCD 

camera as shown in Fig. 1.1(a). An image taken by such a kind of camera is shown in 

Fig. 1.1(b). With the aid of reflective surface from mirror, a camera of this type can 

obtain larger fields of view in the acquired images. The lens of the CCD camera may 

be of a perspective or orthographic projection type, and the mirror surface of a 

catadioptric omni-camera may be in various shapes such as hyperbolic, circular, 

parabolic, or conical one, as illustrated in Fig. 1.2. With distinctive mirrors or lenses, 

the images and calibration methods of the cameras are different in this category. Some 

works of using this type of camera can be found in [6]-[14]. 

 

(2) Dioptric camera 

A dioptric omni-camera, looking like a traditional camera, has no reflective 

mirror, but is with a “wider-angle” lens. It can capture incoming light rays from a 

wider field of view to form an omni-image. An illustration of such an imaging 

difference between traditional and catadioptric cameras is shown in Fig. 1.3. The lens 

shape design of this group of cameras decides the formed images and their calibration 

methods. An example of this kind of omni-camera is the fish-eye camera. An image 

acquired by a fish-eye camera is shown in Fig. 1.4. Some works of using fish-eye 

cameras can be found in [15]-[17]. 
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(a) 

 

(b) 

Fig. 1.1 A catadioptric camera. (a) Structure of camera. (b) Acquired image. 

 

 

 

 

Fig. 1.2 Illustration of camera and reflective mirror types.  

 

 

 

(a) (b) (c) 

Fig. 1.3 FOVs of different camera types. (a) Dioptric camera. (b) Traditional 

(perspective) camera. (c) Catadioptric camera. [18] 
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Fig. 1.4 An image acquired by a fish-eye camera.  

 

 

(3) Binocular vision systems 

A binocular vision system is composed of two cameras, typically perspective 

ones, which are placed at different locations. Differently, a binocular omni-vision 

system consists of two omni-cameras, which can be catadioptric or fisheye-lens ones. 

An illustration is shown in Fig. 1.5, where two kinds of such camera pairs are seen. In 

theory, by using the corresponding pixels in the two images acquired from the 

cameras, stereo information can be derived from such correspondences. Most existing 

researches were focused on binocular vision systems using perspective cameras 

[19][20]; contrarily, researches on binocular vision systems with omni-directional 

cameras are less [21] with many open problems waiting to be solved. 

 

(4)  Human-machine interface systems 

Human-machine interaction has been intensively studied for many years. Laakso 

and Laakso [22] proposed a multiplayer game system using a top-view camera, which 
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maps player avatar movements to physical ones, and used hand gestures to trigger 

actions. In [23], a special human-machine interface was proposed by Magee et al., 

which uses the symmetry between the left and right human eyes to control computer 

applications. Zabulis et al. [24] proposed a vision system composed of eight cameras 

mounted at room corners and two cameras mounted on the ceiling to localize multiple 

persons for wide-area exercise and entertainment applications. Starck et al. [25] 

proposed an advanced 3-D production studio with multiple cameras. The design 

considerations were first identified in that study, and some evaluation methods were 

proposed to provide an insight into different design decisions. 

 

 

 

 

 

(a) (b) 

Fig. 1.5 Two types of binocular omni-vision systems. (a) Laterally parallel 

combination. (b) Longitudinally coaxial combination. 

 

(5)  Geometric feature extractions 

Geometric features, like points, lines, spheres, etc., in environments encode 

important information for on-line calibrations and adaptations [26][27]. Several 

methods have been proposed to detect such features in environments. Ying [28][29] 
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proposed several methods to detect geometric features when calibrating catadioptric 

cameras, which use the Hough transform to find the camera parameters by fitting 

detected line features into conic sections. Duan et al. [30] proposed a method to 

calibrate the effective focal length of the central catadioptric camera using a single 

space line under the condition that other parameters have been calibrated previously. 

Von Gioi et al. [31] proposed a method to detect line segments in perspective images, 

which gives accurate results with a controlled number of false detections and requires 

no parameter tuning. Wu and Tsai [32] proposed a method to detect lines directly in an 

omni-image using a Hough transform process without unwarping the omni-image. 

Maybank et al. [33] proposed a method based on the Fisher-Rao metric to detect lines 

in paracatdioptric images, which has the advantage that it does not produce multiple 

detections of a single space line. Yamazawa et al. [34] proposed a method to 

reconstruct 3D line segments in images taken with three omni-cameras in known 

poses based on trinocular vision by the use of the Gaussian sphere and a cubic Hough 

space [35]. Li et al. [36] proposed a vanishing point detection method based on 

cascaded 1-D Hough transforms, which requires only a small amount of computation 

time without losing accuracy. 

 

(6) System configuration optimization 

Several methods have been proposed to derive optimal vision system 

configurations. Among them, one popular way is to assess the 3D measurement error 

by the use of the covariance matrix [37]-[42]. For this, Wenhardt et al. [37] 

determined the locations of mobile cameras to yield the best 3D model reconstruction 

by assessing the covariance of the resulting 3D data in three ways, namely, using the 

determinant, eigenvalues, and trace of the covariance matrix, respectively. Hoppe et al. 

[40] used the eigenvalues of the covariance matrix to model the 3D measurement 

error for precise camera localization and object modeling. Alsadik et al. [39] 

established a camera network for precise reconstruction of a cultural heritage object 

by the use of the trace of the covariance matrix. Olague and Mohr [41] proposed a 

multi-cellular genetic algorithm to decide camera locations, which yield minimal 3D 

measurement errors, by the use of the maximum diagonal element of the covariance 

matrix. Zhang [38] determined the optimal 2D spatial placement of multiple sensors 

participating in a robot perception task utilizing the determinant of the covariance 
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matrix. Rivera-Rios, et al. [42] analyzed 3D measurement errors due to feature-point 

localization errors and found accordingly the optimal camera pose by the 

mean-square-error criterion using the covariance matrix of the 3D measurement data. 

In these methods, the precisions of the 3D measurements are all assessed by the use of 

the covariance matrix. Additionally, a local-affineness assumption was made when 

deriving the covariance matrix (as stated in [43]).  

 

1.3 Contribution of This Study  

The main contributions of this dissertation study are summarized in the 

following. 

1. A new camera model for omni-directional cameras including catadioptric ones 

and fisheye-lens ones is proposed. This new model utilizes a new invariant 

property found in this study, so that the camera model is simpler than the 

conventional one, and can be calibrated more robustly using a small amount of 

environment features. 

2. A new calibration technique is proposed for the aim of easily calibrating the 

omni-directional camera by a typical user with no technical background. This 

new calibration technique requires only one straight line in the environment 

without knowing the position or direction of the line, so that it is possible to be 

calibrated by a non-technical user, yielding a big step toward consumer 

electronics. 

3. An easy-to-set-up binocular omni-vision system is proposed in this study, which 

allows the user to place the two omni-directional cameras freely at any positions 

and with any orientations. After the two cameras are placed, the system can 

automatically derive the cameras’ positions and orientations via analysis of the 

space lines within the environment. As a result, the binocular omni-vision 

system can calculate 3D information correctly, and can be utilized in many 

advanced human-machine interaction applications. 

4. To the applications requiring the binocular omni-vision systems to acquire 

precise 3D information, an optimization framework along with three different 

optimization algorithms are proposed. After telling the requirements and 

constraints of the 3D application, the optimization algorithm can generate the 

optimal system configuration, giving the user the best locations to place the two 
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omni-cameras and their best orientations. With these optimization algorithms, 

the user can set up a binocular omni-vision system which acquires the most 

precise 3D data. 

5. To extend the proposed omni-vision techniques for uses in other applications, a 

parking-lot management system is proposed, which uses the omni-directional 

cameras (including catadioptric and fisheye-lens ones) mounted on the ceiling. 

After the omni-cameras are set up, the system automatically analyzes the 

locations of the parking spaces and detects vacant parking spaces after 

conducting a background learning process. Different from conventional 

parking-lot management system, the proposed system requires fewer cameras 

due to the wider fields of view of the used cameras, and is much more 

convenient for the user to set up because of its automatic capability of analyzing 

parking spaces. 

1.4 Dissertation Organization  

The remainder of this dissertation is organized as follows. In Chapter 2, an 

overview of the proposed techniques are given. In Chapter 3, the structure of 

omni-cameras and the unifying camera model for catadioptric omni-cameras and 

fisheye-lens cameras are briefly reviewed, followed by an introduction to the 

proposed simplified camera model. The proposed space line detection method is 

introduced in Chapter 4, including the problems of existing methods, derivations of 

the proposed method, and some experimental results. In Chapter 5, the proposed 

easy-to-set-up binocular omni-vision system is described, which allows the user to 

place the two omni-directional cameras freely at any positions and with any 

orientations, and can automatically derive the camera poses using environment 

features. the proposed optimization framework along with three different optimization 

algorithms for applications requiring acquisitions of precise 3D information are 

described in Chapter 6, which generates the optimal system configuration to give the 

best locations and orientations of the two omni-cameras. The proposed convenient 

vision-based parking lot management system is described in Chapter 7, which uses the 

omni-cameras mounted on the ceiling to automatically analyze the locations of the 

parking spaces and detect vacant parking spaces after conducting the background 

learning process. Finally, in the last chapter, conclusions of this study and some 

suggestions for future research are included. 
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Chapter 2 Overview of Proposed Techniques 

and Ideas  

In this chapter, we describe the main ideas and techniques of the proposed 

methods for used in omni-vision systems.  

 

2.1 A Modified Unifying Model for Omni-cameras  

A new modified camera model for omni-cameras, including single viewpoint 

catadioptric omni-directional cameras, fisheye-lens cameras, etc., is proposed in this 

study. This new camera model is modified from the unifying omni-camera model 

proposed by Geyer and Daniilidis [44], and it is with fewer camera parameters than 

the original unifying model. In the proposed modified model, we investigated an 

important invariant property, so that one of the parameters in the original unifying 

omni-camera model can be eliminated by replacing it with an optimal approximated 

value, and in the meantime preserve an important property regarding to space line 

detection. Then, according to this invariant property, we design a series of 

experiments to find an optimal value to approximate one of the parameters in the 

original unifying model proposed by Geyer and Daniilidis. Furthermore, since the 

proposed modified model has fewer parameters than the original one, we also 

proposed a new calibration model using only one straight line in the 3D world, 

without knowing its position, direction, or length.  

To sum up, we investigate a new invariant property regarding to the projections 

of the straight lines by omni-directional cameras, and accordingly proposed a new 

modified unifying omni-camera model which is with fewer parameters than the 

original model. Furthermore, a new calibration method is also proposed which can 

be used to calibrate an omni-camera using only one straight line with no knowledge 

about its position, direction, or length. Comparing with existing omni-camera models, 

the proposed one has an great advantage since it can be calibrated reliably from one 

straight line, so it facilitates a non-technical user to conduct the calibration process 

without difficulty because it requires no extra calibration target. 
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2.2 Space Line Detection Techniques for Omni-cameras by 

Equal-width Curve Extractions  

An improved detection method is proposed in this study to robustly detect 

straight lines (i.e., space lines) in the 3D world from the images captured by 

omni-cameras. The proposed method detects the space lines from the captured 

omni-images directly without unwarping the captured omni-images, so the 

processing time may be faster than the methods needing unwarpings. Traditionally, 

the Hough Transform can be used to detect space lines from omni-images without 

unwarping it; however, it is showed in this study that the traditional ways all have 

some problems when detecting the space lines, so the results are imprecise and 

unrobust. In this study, we first identified three main different conventional 

approaches to detect space lines, and analyzed the reasons of the imprecision and 

unrobustness. From the analyze results, it is figured out that an equal-width curve 

extraction technique can be used to yield a more precise and robust results when 

detecting space lines. As a result, a technique to extract equal-width curves is 

proposed using total differential concepts; consequently, an improved Hough 

transform technique is proposed to detect equal-width curves using the 

previously-mentioned equal-width extraction method. 

From the experimental results, the proposed line detection method can detect 

space lines more precisely and robustly then the conventional methods. To the 

processing time, the proposed method only requires a bit longer running time than 

the conventional ones, but produces a much more precise results than the 

conventional ones.  

 

2.3 Automatic Adaptation Techniques of Binocular 

Omni-vision Systems to Any System Setup  

From the viewpoint of consumers, one of the important facts when deciding to 

buy a new system is the convenience of the system setup process, so a system with a 

convenient setting up process is very important in consumer electronics. In this 

aspect, a new binocular omni-vision system is proposed in this study, which can be 

easily deployed by users without any restrictions on the locations or orientations of 
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the cameras, and then the system can automatically adapt system parameters using 

only the straight lines in the environment. Specifically, the proposed vision system, 

as shown in Fig. 2.1, consists of two omni-cameras facing the user’s activity area. 

Each camera is affixed firmly to the top of a rod, forming an omni-camera stand, 

with the camera’s optical axis adjusted to be horizontal (i.e., parallel to the ground). 

After the two cameras are placed freely by the user with arbitrary locations and 

orientations, we utilize the straight lines within the surrounding environment as a 

hint to tell us the orientations of the cameras, and then use these lines to derive the 

two cameras’ orientations. After deriving the orientations, the system will ask the 

user to stand at the middle region in front of the two cameras, and derive the distance 

between the two cameras (i.e., the baseline) with the use of the user’s height. After 

deriving the orientations and the baseline, a coordinate system can be defined with 

no ambiguity, so the 3D data can be computed correctly. To further improve the 

correctness and robustness of the adaptation process, we also take the advantage of 

the property that the straight lines are mostly parallel or perpendicular to each other, 

so that the proposed adaptation process can be conducted without finding the line 

correspondences among the two omni-cameras, and in the meantime improves the 

correctness and robustness of the adaptation results.  

To sum up, we proposed a new 3D vision system using two omni-cameras, which 

has a capability of automatic adaptation to any system setup for convenient in-field 

uses. The cameras are allowed to be placed freely in the environment at any location 

in any orientation, resulting in an arbitrary system setup. Then, by the use of space 

line features in environments, the proposed vision system can adapt automatically to 

the arbitrarily-established system configuration by just asking the user to stand still 

for a little moment in the middle region of the activity area in front of the two 

cameras. Contrarily, in traditional vision systems, the two cameras may be required 

to be parallel to each other, and the distance between the cameras may be required to 

be a fixed length. After this adaptation operation, 3D data can be computed correctly 

and precisely. 
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Fig. 2.1 The proposed binocular omni-vision system.  

 

 

2.4 Optimal Design and Placement of Omni-cameras in 

Binocular Vision Systems for Accurate 3D Data 

Measurement  

The optimal design of a vision system is an important issue for system 

deployments, and in this study, the optimization problem of designing an binocular 

omni-vision system is analyzed and solved by three different optimization methods. 

In a binocular omni-vision system, which is composed of two catadioptric 

omni-directional cameras with hyperboloidal-shaped mirrors, an optimal system 

design includes the optimal shapes of the two hyperboloidal mirrors, the optimal 

viewing angles of the perspective cameras, the optimal locations of the cameras, and 

the optimal directions of the camera, and in this study, we focused on finding a such 

configuration which can yield the most accurate 3D measurements. To solve this 

optimization problem, the first step is to design a function to estimate the goodness 

of a system configuration, and then design optimization methods which can 

minimize the function. In more detail, a criterion function is proposed in this study 

to estimate the accuracy of the 3D measurements yielded by a system configuration. 

That is, the criterion function takes the system parameters as its input arguments, 

including the camera poses, camera parameters, and the location of the feature point 
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whose 3D data is going to be measured, and produces a value indicates the accuracy 

of the 3D data yielded by the binocular omni-vision system.  

For the criterion function, we use error propagation analysis techniques to 

estimate the accuracy of the 3D measurement, and the proposed criterion function is 

with analytical formulas, making it possible to design an analytical and non-iterative 

optimization method. After defining the criterion function, it is then used in an 

optimization framework to find the optimal system configurations for different 

shapes of system setup environments. For regular cases with rectangular 

cuboid-shaped 3D measurement and camera placement areas, two fast algorithms are 

proposed to solve the problem, one being bisection-based and relatively slower for 

deriving the optimal solution; and the other faster using analytic formulas for 

deriving a sub-optimal solution which is proved to be close to the optimal one in 

precision. For general cases, an iterative optimization method is proposed along with 

several speeding-up techniques to accelerate the optimization process. Experimental 

results of simulations and real application cases show the feasibility of the proposed 

optimization methods. 

 

2.5 An Omni-vision-based Indoor Parking Lot System with 

the Capability of Automatic Parking Space Detection  

A convenient indoor vision-based parking lot system using wide-angle 

fisheye-lens or catadioptric cameras is proposed, which is easy to set up by a user 

with no technical background. Easiness in the system setup comes mainly from the 

use of a new camera model which can be calibrated using only one space line 

without knowing its position and direction, as well as from the automatic detections 

of the parking space boundaries. Comparing with traditional parking lot systems, the 

traditional ones usually use perspective cameras, rather than use wide-angle cameras, 

such as fisheye-lens or catadioptric ones, are not commonly adopted yet. 

Furthermore, another one problem exists in the traditional systems is the complicated 

system setup procedure, including camera calibration, environment learning, object 

modeling, etc., whose implementation usually requires the user to have a lot of 

technical knowledge. From these viewpoints, an intelligent vision-based system 

using omni-cameras for parking lot management is proposed, which has the 
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following two merits: 1) the camera system can be set up easily by a common user 

with no technical background; 2) parking spaces can be detected precisely; and 3) 

vacant parking spaces can be identified automatically for convenient car parking.  

In more detail, the omni-cameras mounted on the ceiling can be easily calibrated 

using straight lines in the environment using the new camera model and the new 

calibration method proposed in this study. After camera calibration is conducted, 

parking-space boundary lines are extracted automatically from input omni-images by 

a modified Hough transform with a new cell accumulation scheme, which can 

generates more accurate equal-width curves using the geometric relations of line 

positions and directions. To further improve the detection results of the 

parking-space boundary lines, the property that the boundary lines are either parallel 

or perpendicular to each other is taken into consideration to improve the results. 

After the boundary lines are detected, the user may easily add or remove the 

boundary lines by single clicks on images, and parking spaces can be segmented out 

by region growing by the use of the boundary lines. Finally, vacant parking spaces 

can be detected by a background subtraction scheme. A real vision-based parking lot 

has been established and relevant experiments conducted. Good experimental results 

show the correctness, feasibility, and robustness of the proposed methods. 
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Chapter 3 Omni-camera Structure and Models  

In this chapter, the structure of the catadioptric omni-cameras are introduced first. 

Then, the conventional model for omni-cameras are briefly reviewed. 

 

3.1 Catadioptric Omni-camera Structure  

The catadioptric omni-camera is composed of a hyperboloidal mirror and a 

perspective camera looking toward the mirror, as depicted in Fig. 3.1. A camera 

coordinate system (CCS) x-y-z and an image coordinate system u-v are defined in 

such a way that the x- and y-axes are parallel to the u- and v-axes, respectively, and 

the two focal points of the mirror are at O(0, 0, 0) and Oc(0, 0, 2c). In this way, the 

mirror shape can be expressed [45] by 
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Fig. 3.1 Catadioptric omni-camera structure and its camera coordinate system.  

 

3.2 Review of the Unifying Model for Omni-cameras  

In the unifying model proposed by Geyer and Daniilidis [44], the relation 

between a space point P and its corresponding pixel p is described by a two-step 

mapping via a unit sphere as illustrated in Fig. 3.2. Specifically, point P is firstly 

projected onto a point Ps on the unit sphere like being viewed from the effective 

viewpoint O through the sphere. Then, Ps is projected perspectively into the pixel p on 

the image plane  like being viewed from the “pinhole” point Oc (usually the lens 

center). The two involved parameters l and fe as illustrated in Fig. 3.2 are defined in 

the same way as suggested by Ying and Hu [46]. 

The unifying model described above has been proved equivalent to models for 

perspective, parabolic catadioptric, and hyperbolic catadioptric cameras [44]. 

Additionally, it was shown by Ying and Hu [47] to be suitable for modeling 

fisheye-lens cameras as well. 

To the resolution formula, Baker and Nayer [56] proposed a formula to calculate 

the resolutions at different pixels in an omni-image as follows. Let dA be an 

infinitesimal area on the image plane near a pixel p, which, as illustrated in Fig. 3.3, is 

the projection of an area in the space described by an infinitesimal solid angle d 

coming from a point P. The resolution of pixel p is formulated as 
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where  is the eccentricity of the mirror, f is the focal length of the camera, and  is 

the complementary elevation angle of P. 
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Fig. 3.2 An illustration of a two-step spherical mapping.  
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Fig. 3.3 Illustration for defining the resolution at a pixel.  
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Chapter 4 Space Line Detection for 

Omni-cameras by Equal-width Curve 

Extractions  

In this chapter, the problems of existing methods for line detections in 

omni-images are described in Section 4.1, the proposed method to deal with this 

problem is described in Section 4.2, and some experimental results are presented in 

Section 4.3. 

 

4.1 Problems of Existing Methods  

The Hough transform is widely used in computer vision applications to detect 

shapes in noisy images. It includes three main steps: image thinning, cell value 

accumulation, and voting for peak value detection. In the image thinning step, a 

standard method is to conduct edge detection to extract edge pixels in the input image. 

In the cell value accumulation step, each edge pixel is transformed into a curve in the 

parameter space (also called Hough space), and the values of the corresponding 

elements in the Hough space, called Hough cells, are all incremented by one. 

Subsequently, the voting step is conducted to find the peaks (local maximums) in the 

Hough space, which are taken finally as the parameters of the detected shapes. 

The cell value accumulation step is essential in the Hough transform, also known 

as the evidence gathering step. if a shape to be detected is described by a function F, 

then pixels contributing to the accumulation of the (largest) peak cell value in the 

Hough space theoretically are just those with their coordinates (u, v) satisfying the 

equation F(u, v) = 0. However, since these coordinates (u, v) in practice are with 

errors coming from quantization, noise, edge detection, imprecise camera calibration, 

etc. [51][52], the mentioned pixels, with such erroneous coordinates (u, v), instead 

will not all lie precisely on the curve F(u, v) = 0. To endure such imprecision, three 

different methods exist as described in the following. 

The first conventional method is called constant thresholding, the inequality 

 ( , )F u v T . (5) 
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is used to decide whether an edge pixel with coordinates (u, v) contributes to the 

accumulation of a Hough cell value. This method can generate a desired equal-width 

curve as shown in Fig. 4.1(a) when detecting simple shapes; however, it generates bad 

results when dealing with complicated shapes as shown in Fig. 4.1(b). Furthermore, 

even if an equal-width curve can be generated, the relation between the threshold T 

and the curve width W is still unclear and it needs further analysis or experiments to 

derive a reasonable value for T. 

The second method is by examining each Hough cell, which examines each 

Hough cell by two steps: (1) use (u, v) and function F to find a parametric equation 

describing all the curves going through (u, v); (2) regard the equation as the 

description of a hypersurface in the Hough space, and examine each cell to detect 

those intersecting this hypersurface, and increment their values. One drawback of this 

method is that, which pixels contribute to cell value accumulations depends on the 

cell size, and these pixels together are not of a desired equal-width shape, as shown 

later in the experimental results. 

The third method is with the use of an inverse function. More specifically, the 

Hough cells with their values contributed by an edge pixel with coordinates (u, v) are 

determined by: (1) enumerate the first n  1 parameters of the Hough space, where n 

is the dimension of the space; and (2) derive the nth parameter by the inverse function 

of F and the coordinates (u, v). This method is faster than the previous one, but has 

some drawbacks. First, it cannot generate desired equal-width shapes. Second, the 

inverse function might be difficult to derive. Furthermore, different parameterizations 

and different ways of parameter enumerations might yield different results, as shown 

in Fig. 4.2. 

4.2 Proposed Method  

In the cell value accumulation step where pixels contributing to Hough cell 

values are determined, it is desired, as described previously, to develop a method for 

detecting pixels of an equal-width shape both centered at the thin curve F(u, v) = 0 

and with an equal width W everywhere on the curve.  

Given a pixel P with coordinates (u, v), two cases can be identified. One is that 

F(u, v) < 0, where the coordinates (u′, v′) of the closest pixel P' on the curve F = 0, as 
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depicted in Fig. 4.3, can be estimated by the use of the direction of the gradient vector 

at (u, v) to be 

 

 

u

v
F = 0

F = T

F = T

 

(a) 

u

v

F = 0

F = T

F = T

 

(b) 

Fig. 4.1 Pixels (marked in dotted blocks) contributing to a Hough cell value when 

detecting (a) a line, and (b) a curve.  
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(a) 

A

B
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(b) 

Fig. 4.2 Hough cells (dotted blocks) with values contributed by an edge pixel when 

enumerating parameter (a) A, and (b) B.  

 

 
( , )

( ) ( , )
( , )

F u v
u', v' u v d

F u v


  


, (6) 

where d is an unknown distance. Then, the function value F(u′, v′) at (u', v') can be 

linearly estimated by the use of the first-order directional derivative to be 
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( , )

( , ) ( , ) ( , )
( , )

F u v
F u' v' F u v F u v d

F u v

 
      

. (7) 

Also, because pixel P' with coordinates (u', v') is on the curve, we have F(u′, v′) = 0, 

so that (7) implies that 

 

u

v

F = 0

(u, v)

F = F(u, v) < 0
( , )F u v( , )u' v'

d

( , )u'' v''

( , ) 0F F u'' v'' 

W

 

Fig. 4.3 Illustration of proposed dynamic thresholding method.  

 

 
( , )

( , ) ( , ) 0
( , )

F u v
F u v F u v d

F u v

 
     

,  

or equivalently, that 

 
( , ) ( , )

( , )
( , ) ( , ) ( , )

F u v F u v
d F u v

F u v F u v F u v

  
    

   
. (8) 

Then, as illustrated in Fig. 4.3, the inequality d < W/2 can be used to determine 

whether a pixel with coordinates (u, v) is within the equal-width curve shape. This 

inequality, when combined with (8), leads to 

 
( , )

( , ) 2

F u v W
d

F u v


 


,  

or equivalently, to 

 ( , ) ( , )
2

W
F u v F u v    . (9) 
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In the other case that F(u, v) > 0, similarly, the coordinates (u′, v′) of the closest 

point P' on the curve F = 0 can be linearly estimated by the negated gradient vector 

F(u, v), so that coordinates (u′, v′) can be expressed as 

 
( , )

( ', ') ( , )
( , )

F u v
u v u v d

F u v


 


.  

Then, following similar derivations, we can get 

 ( , ) ( , )
2

W
F u v F u v   . (10) 

The two inequalities of (9) and (10) can be combined to get 

 ( , ) ( , )
2

W
F u v F u v   , (11) 

which is of the form of the inequality of (5) used in the constant thresholding method. 

But differently, the threshold T can now be taken to be (F(u, v)W)/2 whose value 

can be dynamically determined for pixels with different coordinates (u, v) as well as 

for Hough cells with different parameters related to the function F, in order to detect a 

desired equal-width curve shape in the image space. 

Theoretically, the dynamic thresholding method proposed above is based on 

linear approximation. Accordingly, the estimated function value F(u′, v′) will become 

inaccurate when the desired curve width W becomes large. However, since the curve 

width is used to overcome small errors in the input data, the width W may be taken to 

be a small number. So, the proposed method is expected to yield good results in most 

applications. 

 

4.3 Experimental Results  

In this section, the validity, effectiveness, and robustness of the proposed 

dynamic thresholding method for the Hough transform are shown by comparing the 

proposed method with four other methods as listed in Table 4.1 for detecting four 

different types of shapes as listed in Table 4.2. Among these shapes, The curve of a 

space line projected on an image taken by the omni-camera can be described by [32]: 
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 2 2

1 2 3 4 5 6 0C u C uv C v C u C v C      , (12) 

where the coefficients are 

  22 2

1 7 1C A B C   ; 2 2

2 2 1C A A B   ; 

 
22 2

3 71C A C B   ; 4 72C ABC f ;  

 2 2

5 72 1C BC A B f   ; 2 2

6C B f ; and 
2

7 2

1

1
C









.  

The range of the two parameters A and B are both taken to be from 1 to 1 and the 

Hough space dimension is chosen to be 6464.  

 

Table 4.1 Used Hough transform algorithms.  

No. accumulation method described in… 

(H1) the proposed method Section 4.2 

(H2) constant threshold 1.0 Section 4.1 

(H3) constant threshold 100 Section 4.1 

(H4) examining each cell Section 4.1 

(H5) inverse function Section 4.1 

 

 

Table 4.2 Shapes used in experiments.  

shape equation cell size 

(S1) line v = Au + B A: 0.1; B: 10 

(S2) circle / ellipse 
2 2

0 0 1
u u v v

A B

    
    

   

 
u0: 10; v0: 10; 

A: 10; B: 10 

(S3) sine and cosine sin( ) cos( )v A Bu C Du   
A: 10; B: 0.1; 

C: 10; D: 0.1 

(S4) space lines in omni-images described in (12) A: 0.1; B: 0.1 

 

The pixels contributing to the peak in the Hough space for detecting each of the 

four shapes listed in Table 4.2 using each of the five methods listed in Table 4.1 are 

drawn in Fig. 4.4. Recalling that these pixels are desired to form an equal-width shape, 
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one can see that the proposed method yields the best results for both simple and 

complex shapes as shown in the leftmost column in the figure, and that the 

conventional methods cannot generate equal-width curves, especially when detecting 

complicated shapes. 

 

 

Fig. 4.4 Pixels (in red) contributing to peak cell value. From left to right: results of 

algorithms H1 to H5, and from top to bottom: results for shapes S1 to S4. The 

proposed method yields the best results as shown in the leftmost column.  

 

To test the robustness of each different cell-value accumulation method, the 

ground-truth curve is first drawn on an image. Then, the pixels on the curve are 

perturbed within a circle with a diameter of 5 pixels to generate curve pixels with 

small errors. Also, 1% pixels of the entire image are randomly noisified as noise 

pixels. The true positive rate (TPR) and the false positive rate (FPR) for each of the 

five methods are calculated accordingly respectively by: 

 
# of curve pixels contributing to the peak cell value

total # of the original curve pixels
TPR  ; 
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# of noise pixels contributing to the peak cell value

total # of the noise pixels
FPR  . 

As stated previously, it is desired that the curve pixels all contribute to the 

peak-value accumulation, so a high TPR is desired. Contrarily, noise pixels which 

make such contributions should be as few as possible, so a low FPR is desired. As can 

be seen in Fig. 4.5, the proposed method yields very high TPRs and very low FPRs 

for all the four types of shapes, showing its robustness; and this is not the case for 

each of the other four methods. 
 

 

Fig. 4.5 TPR and FPR of five Hough transform algorithms for detecting four types 

of shapes. The proposed method yields high TPRs and low FPRs for all the 

shapes, and the others do not.  
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Chapter 5 Binocular Omni-vision Systems with 

an Automatic Adaptation capability to Any 

System Setup for 3D Vision Applications  

In this chapter, the proposed 3D omni-vision system, which uses two 

omni-cameras and has a capability of automatic adaptation to any system setup for 

convenient in-field uses is described. Specifically, the proposed vision system, as 

shown in Fig. 5.1, consists of two omni-cameras facing the user’s activity area. Each 

camera is affixed firmly to the top of a rod, forming an omni-camera stand, with the 

camera’s optical axis adjusted to be horizontal (i.e., parallel to the ground). The 

cameras are allowed to be placed freely in the environment at any location in any 

orientation, resulting in an arbitrary system setup. Then, by the use of space line 

features in environments, the proposed vision system can adapt automatically to the 

arbitrarily-established system configuration by just asking the user to stand still for a 

little moment in the middle region of the activity area in front of the two cameras. 

After this adaptation operation, 3D data can be computed correctly and precisely. 

In the following, an overview of the adaptation process is described in Section 5.1, 

and the details of the proposed techniques for use in the system are presented in 

Sections 5.2 through 5.4, followed by experimental results present in Section 5.5. 

 

5.1 Overview of the Adaptation Process  

After the omni-cameras are placed by a user, the poses of the cameras are 

unknown to the vision system. To derive the unknown poses of the cameras, an 

in-field adaptation process is proposed in this study, which uses line features in 

environments to automatically compute the locations and orientations of the cameras. 

In this stage, a user with a known height is asked to stand in the middle region in front 

of the two cameras to complete the adaptation. A sketch of the adaptation process is 

described in the following. To simplify the expressions, we will call the left and right 

cameras as Cameras 1 and 2, and their camera coordinate systems as CCSs 1 and 2, 

respectively. 
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(a) 

 

  

(b) (c) 

Fig. 5.1 Configuration and an illustration of the usage of proposed system. (a) An 

illustration. (b) Real system used in this study. (c) An omni-image of a user wearing 

a finger cot (marked as red). 

 

Algorithm 5.1. Sketch of the proposed adaptation process. 

 Step 1. Place the two camera stands at proper locations with appropriate orientations 

to meet the requirement of the application activity. 

 Step 2. Perform the following steps to calculate the included angle  between the 

two optical axes of the cameras as shown in Fig. 5.1(a). 

 2.1. Capture two omni-images I1 and I2 of the application activity environment 

with Cameras 1 and 2, respectively. 

 2.2. Detect space line features Li in omni-image I1 using the Hough transform 

technique proposed previously. 

 2.3. Detect space line features Ri in omni-image I2 similarly. 

 2.4. Calculate angle  using the detected line features Li and Ri in a way as 
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proposed in Section 5.3. 

 Step 3. Perform the following steps to calculate the locations and orientations of the 

two cameras. 

 3.1. Ask a user to stand in the middle region in front of the two omni-cameras 

and take two images of the user. 

 3.2. Extract from the acquired images a pre-selected feature point on the user’s 

body, and compute the respective orientations of the two cameras, as 

described in Section 5.4. 

 3.3. Detect the user’s head and foot in the images, compute the in-between 

distance up to a scale, and use the distance as well as the corresponding 

known height of the user to calculate the locations of the cameras, as 

described in Section 5.4. 

Via the above algorithm, the meaning of system adaptation, which is the main 

theme of this study, can be made clearer now: only with the input of the knowledge of 

the user’s height (see Step 3.3), the proposed system can infer the required values of 

the cameras’ locations and orientations for use in computing the 3D data of space 

points. This is not the case when using a conventional stereo vision system with two 

cameras in which the configuration of the cameras are fixed with their orientations and 

baseline unchangeable. This merit of the proposed system makes it easy to conduct 

system setup in any room space by any people for more types of applications, as 

mentioned previously. 

 

5.2 Space Line Detection in Omni-images  

The structure of omni-cameras used in this study and the associated coordinate 

systems are defined as shown in Fig. 5.2. An omni-camera is composed of a 

perspective camera and a hyperboloidal-shaped mirror. The geometry of the mirror 

shape can be described in the camera coordinate system (CCS) as: 

 
2 2 2

2 2

( )
1

Z c X Y

a b

 
  , a2 + b2 = c2, Z < c. (13) 

The relation between the camera coordinates (X, Y, Z) of a space point P and the 

image coordinates (u, v) of its corresponding projection pixel p may be described [53] 

as: 
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Fig. 5.2 Camera and hyperboloidal-shaped mirror structure.  
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( 1)cos
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  
a

 

 
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
; (14) 

 
2 2

cos
r

r f
 


; 

2 2
sin

f

r f
 


; r = 2 2u v , (15) 

where  is the eccentricity of the mirror shape with its value equal to c/a, and a and q 

are the elevation and azimuth angles of P, respectively. The azimuth angle q can be 

expressed in terms of the image and camera coordinates as 

 
2 2 2 2 2 2 2 2

cos ; sin .
X u Y v

X Y u v X Y u v
q q   

   
 (16) 

Now, given a space line L, we can construct a plane S which goes through L and 

the origin Om of a CCS as shown in Fig. 5.3. Let NS = (l, m, n) denote the normal 

vector of S. Then, any point P = (X, Y, Z) on L satisfies the following plane equation: 

 NS·P = lX + mY + nZ = 0. (17) 

where “” denotes the inner-product operator. Combining (17) with (14) and (16), we 

get 
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Fig. 5.3 Illustration of a space line L projected on an omni-image as IL.  

 

 lRcosq + mRsinq + nRtana = 0, (18) 

where R = 2 2X Y . Dividing (18) by 
2 2 2R l m n   leads to 

 
2 2 2 2 2 2 2 2 2

cos sin tan
0

l m n

l m n l m n l m n

q q a
  

     
, 

which can be transformed into the following form 

 
2 2cos 1 sin tan 0A A B Bq q a      (19) 

with the two parameters A and B defined as 

 
2 2 2

l
A

l m n


 
, 

2 2 2

n
B

l m n


 
. (20) 

Accordingly, the normal vector NS of plane S, originally being (l, m, n), can now be 

expressed alternatively as 

 
2 2( ,  1 ,  )SN A A B B   . 21 
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It is assumed that m  0 in (19) and (21) above. In case that m < 0, we may consider 

NS = (l, m, n) instead, which also represents the same space plane S. Also, it can 

be seen from (20) that, parameters A and B satisfy the constraint A2 + B2 ≤ 1, implying 

that the Hough space is of a circle shape. 

The parameters A and B are used in the Hough transform to detect space lines in 

omni-images. These two parameters are skillfully defined in (20), leading to several 

advantages. First, removals of vertical space lines can be easily achieved by ignoring 

periphery regions as described later in this section. Next, since the possible values of 

A and B range from 1 to 1, the size of the Hough space is fixed within this range. 

This is a necessary property in order to use the Hough transform technique, and is an 

improvement on a previous work [32]. Also, the parameters A and B are used directly 

to describe the directional vector of the space line L. Hence, one may divide the 

Hough space into more cells to yield a better precision. 

Combining (19) with (14) through (16), we can derive a conic section equation to 

describe the projection of a space line L onto an omni-image as follows: 

 2 2

, 1 2 3 4 5 6( , ) 0A BF u v C u C uv C v C u C v C       , 22 

where the coefficients C1 through C6 are: 

  22 2

1 7 1C A B C   ; 2 2

2 2 1C A A B   ; 

 
22 2

3 71C A C B   ; 4 72C ABC f ;  

 2 2

5 72 1C BC A B f   ; 
2 2

6C B f ;  
2

7 2

1
.

1
C









  

The quadratic formula (22) will be called the target equation in the Hough transform 

subsequently, since the goal of the detection process is to find curves described by it 

in an omni-image. 

We define the Hough space to be two-dimensional with the parameters A and B 

described previously. Furthermore, we define the cell support for a cell at (A, B) in the 

Hough space as the set of those pixels which contribute to the accumulation of the 

value of that cell. Let L denote a space line described by the two parameters (A, B). 

Two properties of cell supports are desirable: (1) the pixels of the projection IL of L 

onto the omni-image are all included in the cell support for the cell (A, B); and (2) the 

pixels not on IL are not included in this cell support. Furthermore, it is desired that the 
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shape of the cell support is of a certain fixed width and not too “thin,” so that (edge) 

pixels originally belonging to IL but with small detection errors can still contribute to 

the cell value. In short, a cell support is desired to be a space line projection with a 

certain width everywhere along the line, which is called an equal-width projection 

curve hereafter. For this, the technique proposed previously can be utilized in the 

accumulation task, leading to a more precise and accurate detection results as shown 

later in some experimental results. 

In man-made environments, most lines are either parallel to the floor (which is 

called horizontal space lines hereafter) or perpendicular to the floor (which is called 

horizontal space lines). If we can eliminate vertical space lines from the detection 

results, the rest of them are much more likely to be horizontal ones which are desired. 

So, a constraint on the vertical space line is derived for the purpose of removing such 

lines. 

As mentioned earlier, the omni-camera stands are vertically placed on the floor, 

with the Y-axis of the camera coordinate system being a vertical line as depicted in 

Fig. 5.1(a). As a result, the directional vector vL of a vertical space line L is just (0, 1, 

0). Let S be the space plane going through L and the origin Om which is at camera 

coordinates (0, 0, 0). Also, let NS = (l, m, n) be the normal vector of plane S. By 

definition, normal vector NS is perpendicular to vL, leading to the constraint: 

 NSvL = (l, m, n)(0, 1, 0) = m = 0. (23) 

This constraint, when combined with (20), results in the equality A2 + B2 = 1, which 

shows subtly that the Hough cells of vertical space lines are located in the periphery 

region of the circular Hough space (as mentioned earlier). As a result, vertical space 

lines can be easily removed by just ignoring the periphery region of the Hough space. 

In the proposed method, this is achieved automatically by applying a filter on the 

Hough space as described next. 

After the Hough space is generated, the last thing to do is to extract cells with 

peak values, called peak cells, which represent the detected space lines. The simplest 

way to accomplish this is to find the cells with large values. However, if we do so to 

get peak cells like those shown in Fig. 5.4(a), we might get a bad detection result like 

that shown in Fig. 5.4(b) with many of the detected space lines being too close to one 

another, from which less useful space lines may be extracted. 
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To solve this problem, we notice that the line edges in an environment mostly are 

not so close mutually, meaning that two detected horizontal lines usually are separated 

for a certain distance. This in turn means that extracted peak cells should not be too 

close to one another. To find the peak cells which are not too close to each other, a 

filter is applied on the Hough space: 

 

1 1 1 1 1

1 1 1 1 1
1

1 1 24 1 1
25

1 1 1 1 1

1 1 1 1 1

     
 
    
 
    
 
     
      

. (24) 

Then, we extract peak cells by choosing the cells with large values in the filtered 

Hough space to yield a better detection result, as shown by Figs. 5.4(c) and 5.4(d). 

Importantly, it is noted that when applying the filter to the Hough space, one of 

the side effects is the removal of the periphery region. This is a desired property 

mentioned previously: the removal of the periphery region is equivalent to the 

removal of vertical space lines. Thus, expectedly we can get more horizontal lines as 

desired. To sum up, we have proposed a new method to detect horizontal space lines 

in omni-images, with several novel techniques also proposed in this section to 

improve the detection result. The proposed method for horizontal space line detection 

is summarized as an algorithm in the following. 

 

Algorithm 5.2.  Detection of horizontal lines in the form of conic sections. 

Input: an omni-image I. 

Output: 2-tuple values (Ai, Bi) as defined in (20) which describe detected horizontal 

space lines in I. 

 Step 1. Extract the edge points in I by an edge detection algorithm. 

 Step 2. Set up a 2D Hough space H with two parameters A and B, and set all the 

initial cell values to be zeros. 

 Step 3. For each detected edge point at coordinates (u, v) and each cell C with 

parameters (A, B), if (u, v, A, B) satisfies the dynamic thresholding constraint, 

increase the value of C by one. 

 Step 4. Apply the filter described by (24) to Hough space H, choose those cells with 

maximum values, and take their corresponding parameters (Ai, Bi) as output. 
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(a) 

 

(b) 

 

(c) 

 

(d) 

Fig. 5.4 Comparison of traditional peak cell extraction method and proposed one. 

(a) Hough space. (b) 50 detected space lines using traditional method. (c) 

Post-processed Hough space. (d) 50 detected space lines using proposed method. 

 

5.3 Calculation of Included Angle between Two Cameras’ 

Optical Axes Using Detected Lines  

In the proposed vision system, the omni-cameras are mounted on two vertical 

stands with the optical axes being parallel to the floor plane as mentioned previously, 

but the cameras’ optical axes are allowed to be non-parallel, making an included angle 

 as depicted in Fig. 5.1(a). To accomplish the 3D data computation work under an 

arbitrary system setup, the included angle  must be calculated first. A method to 

calculate the angle  using a single manually chosen horizontal space line is proposed 
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first. However, in order to conduct the adaptation process automatically, we have to 

calculate the angle  using multiple automatically extracted horizontal space lines. To 

achieve this, a novel statistical-based method is proposed next in this section, which 

utilizes all the detected space lines from the two omni-images taken with the cameras. 

Firstly, a method to calculate the angle  between the two cameras’ optical axes 

is proposed, using a single horizontal space line L in the environment. Let (A1, B1) be 

the parameters corresponding to line L in an omni-image taken with Camera 1, vL = 

(vx, vy, vz) be the directional vector of L in CCS 1, and S1 be the space plane going 

through line L and the origin of CCS 1. The normal vector of S1 can be derived, 

according to (21), to be 

 
2 2

1 1 1 1 1( ,  1 ,  )n A A B B   . (25) 

Since S1 goes through line L, we get to know that vL and n1 are perpendicular, 

resulting in the following equality: 

 
2 2

1 1 1 1 11 0L x y zv n v A v A B v B       . (26) 

Furthermore, since L, being horizontal, is parallel to the XZ-plane as shown in Fig. 

5.1(a), we get another constraint vy = 0. This constraint can be combined with (26) to 

get 

 
Lv  = (vx, vy, vz) = (B1, 0, A1). (27) 

Next, by referring to Fig. 5.5(a), it can be seen that the angle 1 between the X-axis of 

CCS 1 and space line L is 

 1 = tan1(A1/B1). (28) 

Similarly, let (A2, B2) be the parameters corresponding to the horizontal space line 

L in Camera 2. By following the same derivations described above, the angle 2 

between the X-axis of CCS 2 and line L can be derived to be 

 2 = tan1(A2/B2).  

As depicted in Fig. 5.5(b) where L1 and L2 specify identically the single horizontal 

space line L, the angle  between the two cameras’ optical axes can now be computed 

easily to be 
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

 

(b) 

Fig. 5.5 Illustration of the angles 1, 2 and . (a) The definition of 1. (b) Relation 

between 1, 2 and . 

 

 

  = 1  2 = tan1(A1/B1)  tan1(A2/B2). (29) 

Next, to calculate the angle  correctly and reliably from all the detected space lines, a 

statistical-based method is proposed as follows. Recall that horizontal space lines can 

be detected from an omni-image using Algorithm 5.2. Let L1 be a space line so 

detected from the left omni-image with parameters (A1, B1), and let L2 be another 

detected similarly from the right omni-image with parameters (A2, B2). As stated 

previously, the angle  can be calculated using (29) if the space lines L1 and L2 are an 

identical horizontal space line L in the environment.  

However, the line correspondence problem of deciding whether L1 and L2 are 

identical or not is difficult for several reasons, especially for a wide-baseline stereo 

system like the one proposed in this study. First, the respective viewpoints and 

viewing fields of the two cameras differ largely. Thus, environment features, like 

lighting and color, involved in the image-taking conditions at the two far-separated 

cameras might vary largely as well. Also, the extrinsic parameters of the two cameras 

are unknown; therefore, the involved geometric relationship is not available for use to 

determine the line correspondences. To get rid of these difficulties, we propose a 

novel statistics-based method to reliably find the angle  without the need to find such 

line correspondences. 

More specifically, the proposed method makes use of two important properties. 

First, it is noticed that the correct value of the angle  can still be calculated using (29) 

even when the two space lines L1 and L2 are not an identical one, but are parallel to 
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each other. This can be seen from the fact that the angles 1 and 2 remain the same if 

L1 and L2 are parallel so that the computed angle  is still correct, as desired. Second, 

it can be seen that in man-made environments, many of the line edges are parallel to 

one another in order to make the environment neat and orderly. For example, tables, 

shelves, and lights are always placed to be parallel to walls and to one another. 

Combining these two properties, we can conclude that any two detected space lines L1 

and L2 are very likely to be parallel to each other. Based on this observation, we 

assume every possible line pair L1 and L2 to be parallel, and compute accordingly a 

candidate value for angle , where L1 is one of the space lines detected from the left 

omni-image, and L2 is another detected from the right omni-image. Then, we infer a 

correct value for angle  from the set of all the computed candidate values via a 

statistical approach based on the concept of “voting.” 

In more detail, the proposed method is designed to include three main steps. First, 

we extract space lines from the left omni-image as described in Algorithm 5.2, and 

denote the line parameters (A, B) of them as li. Similarly, we detect space lines from 

the right omni-image with their parameters denoted as rj. In addition, we define two 

weights w(li) and w(rj) for li and rj, respectively, to be the cell values in the 

post-processed Hough space derived in Step 4 of Algorithm 5.2, which represent the 

trust measures of the detected space lines. Then, from each possible pair (li, rj), we 

calculate a value ij for angle  using (29), as well as a third weight wij defined as 

w(li)w(rj). The value wij may be regarded as the trust measure of the calculated angle 

ij. Finally, we set up a set of bins, each for a distinct value of , and for each 

computed value ij, we increase the value of the corresponding bin by the weight wij. 

After such a weight accumulation work is completed, the bin with the largest value is 

found out and the corresponding angle ij is taken as the desired value for angle . 

An experimental result so obtained is shown in Fig. 5.6. In Figs. 5.6(a) and 5.6(b), 

fifty space lines with parameters li and rj were detected using Algorithm 5.2 from the 

left and right omni-images, respectively. For each possible pair (li, rj) where 1≤i, j≤50, 

the corresponding angle ij and weight wij were calculated and accumulated in bins as 

described previously. The accumulation result is shown in Fig. 5.6(c) with the 

maximum occurring at  = 23°, which is taken finally as the value of angle . 
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(a) 

 

(b) 


 

(c) 

Fig. 5.6 Experimental result of proposed adaptation method for detecting included 

angle . (a) and (b) Left/right omni-images, with the detected space lines 

superimposed on it. (c) Accumulation result with maximum at  = 23°.  

 

5.4 Proposed Technique for Deriving Camera Poses  

The world coordinate system X-Y-Z is defined as depicted in Fig. 5.7. The X-axis 

goes through the two camera centers O1 and O2; the Y-axis is taken to be parallel to 

the Y-axes of both CCSs; the Z-axis is defined to be perpendicular to the XY-plane; 

and the origin is defined to be the origin O1 of CCS 1. It is noted here that, since the 

two omni-cameras are affixed firmly on the omni-camera stands and adjusted to be of 

an identical height as described previously, the axes X, Z, X1, Z1, X2, and Z2 are all on 

the same plane as illustrated in Fig. 5.7. Since the two omni-cameras are allowed to be 

placed arbitrarily at any location with any orientation, it is necessary to find the 

baseline D and the orientation angles 1 and 2 (as defined in Fig. 5.7) in advance to 

calculate the 3D data of space points. The proposed method of deriving the orientation 

angles and the baseline are described in the following. 
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Let the camera coordinates of CCS 1 be denoted as (X1, Y1, Z1), and those of CCS 

2 as (X2, Y2, Z2), as shown in Fig. 5.7. As mentioned previously, the two CCSs 

X1-Y1-Z1 and X2-Y2-Z2 are allowed to be oriented arbitrarily (with Y1 and Y2 parallel to 

each other), and the only knowledge acquired by the proposed system is the angle  

between the two optical axes Z1 and Z2, which is derived using the detected space 

lines, as described previously in Section 5.3. 

To derive the angles 1 and 2, the user is asked to stand in the middle region in 

front of the two omni-cameras so that a feature point Puser on the user’s body may be 

utilized to draw a mid-perpendicular plane of the line segment O1O2 as shown in Fig. 

5.7. Let (X1, Y1, Z1) be the coordinates of Puser in CCS 1, and (u1, v1) be the 

corresponding pixel’s image coordinates in the left omni-image. From (14) and (16), 

we have the equality: 

    
T T2 2

1 1 1 1 1 1 1 1cos sin tanX Y Z X Y q q a  , (30) 

where cosq1, sinq1, and tana1 are computed from (u1, v1) according to (14) and (16). 

This equality shows that the directional vector between O1 and Puser is (cosq1, sinq1, 

tana1) in CCS 1. An angle 1 is defined on the XZ-plane as illustrated in Fig. 5.7, 

which can be expressed as 1 = tan1(tana1/cosq1). Similarly, the angle 2 defined on 

the XZ-plane can be derived to be tan1(tana2/cosq2). Accordingly, we can derive 1 

to be 

 2 1 1 2
1 1

2 2 2 2

       
 

    
     

 
, (31) 
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Fig. 5.7 A top-view of the coordinate systems. The baseline D, orientation angles 
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1 and 2, and a point Puser on the user’s body are also drawn.  

and 2 is just 2 = 1  . This completes the derivations of the orientation angles 1 

and 2 of the two cameras. 

To compute the baseline D, we make use of a fact about triangulation in binocular 

computer vision: the 3D data can be determined up to a scale without knowing the 

value of the baseline D [54]. Specifically, within the omni-images taken of the user 

standing in front of the two cameras as mentioned previously, we extract two points 

on the head and the feet of the user, respectively. Let Phead and Pfoot denote their real 

3D data, respectively. On the other hand, as stated previously, we can compute the 3D 

data up to a scale of the two points, which we denote as P′head and P′foot, respectively, 

using triangulation calculations [54] with the baseline D being one unit. Then, the 

relations between the data Phead, Pfoot, P′head, and P′foot can be expressed as 

 Phead = D·P′head,  and  Pfoot = D·P′foot, (32) 

where D is the actual baseline value. Let H′ be the Euclidean distance between P′head 

and P′foot; and let H be the real distance between Phead and Pfoot, which is just the 

known height of the user. Then, the baseline D can finally be computed as D = H/H′. 

After finding the baseline D, the system parameters are now all adapted. To sum 

up, the three steps of the proposed adaptation method are briefly described as follows. 

First, the included angle  between the two optical axes are determined using space 

line features as discussed in Section 5.3. Then, by asking the user to stand at the 

middle point in front of the two omni-cameras, the orientation angles 1 and 2 of the 

two cameras are calculated as described in this section. Finally, the baseline D is 

calculated using the height H of the user as described in this section. 

5.5 Experimental Results  

Some experimental results are given here to show the adaptation ability under 

different cameras and environments. Two types of cameras were used, which are 

perspective cameras and catadioptric omni-cameras, and three different environments 

were considered, which are a corridor, a hall, and a room, as shown in Figs. 5.8(a) 

through 5.8(c). 

Four different experiments were conducted: Experiment 1 is conducted in the 

corridor with omni-cameras; Experiment 2 in the hall with omni-cameras; Experiment 
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3 in the room with omni-cameras; and Experiment 4 also in the room but with 

perspective cameras. In each experiment, the two cameras were oriented in different 

angles (i.e., 30°, 15°, 0°, 15°, and 30°). Fifty space line features were first extracted 

as proposed in Section 5.2. Then, the angle  was automatically calculated using these 

lines as proposed in Section 5.3. The results are shown in Fig. 5.8(d). The X-axis 

specifies the ground truth of the angle , and the Y-axis specifies the absolute error of 

the calculated angle . 

In Experiments 1 and 2, since the lines in the corridor and hall are relatively 

simple and obvious, the adaptation result is accurate with errors of about 2° as shown 

by the green and purple curves in Fig. 5.8(c). Also, since we use omni-cameras in 

these experiments, the lines can still be captured even when the two cameras were 

oriented with a large angle. Thus, the adaptation result remains accurate when the 

angle  is large. In Experiment 3, since the space lines in the room are more 

complicated, the adaptation becomes more difficult. However, since the 

omni-cameras can capture a large field of view of the environment, a plenty number 

of space lines can be captured. Therefore, the adaptation result is accurate as well, 

with errors of about 4° as shown by the red curve in Fig. 5.8(c). In contrast, the 

adaptation errors are about 10° when perspective cameras were used, as shown by the 

blue curve in Fig. 5.8(c), and they become unacceptable (larger than 20°) when the 

included angle  is large. These experimental results show the feasibility of the 

proposed adaptation methods, as well as the power of the omni-cameras in the 

automatic adaptation process. 

Another series of experiments are conducted to test the adaptation ability and the 

3D acquisition precision in the room environment. In each experiment in this series, 

the two cameras were placed at a distance about 180cm to each other, and both were 

oriented randomly within the range of ±40°. After the cameras were set up, two 

omni-images of the environment were captured as shown, for example, in Figs. 5.9(a) 

and 5.9(d), respectively, and used to calculate the included angle  according to Step 

2 of Algorithm 5.1. Next, a user was asked to stand in the middle region in front of the 

two cameras, as shown in Figs. 5.9(b) and 5.9(e), to calculate the orientation angles 1 

and 2 and the baseline D according to Step 3 of Algorithm 5.1. After these adaptation 

tasks were done, a board with 60 landmarks was held by the user, as shown in Figs. 

5.9(c) and 5.9(f), to test the precision of the resulting 3D computation.  
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(a) 

 

(b) 

 

(c) 

 

(d) 

Fig. 5.8 Experimental results under different cameras and environments. (a) A 

corridor. (b) A hall. (c) A room. (d) Adaptation results of angle . 
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(a) 

 

(b) 

 

(c) 

 

(d) 

 

(e) 

 

(f) 

Fig. 5.9 Sample omni-images of an experiment. (a)(d) Taking a shot of the 

environment to calculate . (b)(e) A user standing in the middle region in front 

of the cameras to calculate baseline D and orientation angles 1 and 2. (c)(f) A 

board held by the user to test the 3D computation precision. 

 

In these experiments, three different degrees of adaptation were implemented and 

the corresponding results compared: (1) no adaptation was conducted with the camera 

orientations and baseline set to be 1 = 2 = 0° and D = 180 cm (D is the ground-truth 

value); (2) the left omni-camera was set up to face forward with the values 1 = 0°, D 

= 180cm, and 2 adapted to be ; and (3) all the parameters 1, 2, and D were 
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adapted according to the proposed method. Denoting (Xi, Yi, Zi) as the ground-truth 

location of a landmark point, and (Xi′, Yi′, Zi′) as the calculated location, we define the 

3D error E of each landmark point as 

      
2 2 2 2 2 2

i i i i i i i i iE X X ' Y Y' Z Z ' X Y Z        . (33) 

The comparison results are shown in Fig. 5.10 in which the vertical axis specifies the 

average of the 3D errors, and the horizontal axis specifies the system orientation angle 

which is defined as the maximum of the two orientation angles 1 and 2. 

 

adapt 2no adaptation adapt 1, 2 and D

 
(a) 

adapt 2no adaptation adapt 1, 2 and D

 
(b) 

Fig. 5.10 Experimental results of three different degrees of adaptations. (a) The 

3D errors. (b) The standard deviations of the 3D errors. The proposed adaptation 

methods yield the best results as shown by the purple curves. 
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As can be seen from Figs. 5.10(a) and 5.10(b), when no parameter is adapted 

with the results shown by the blue curve, the 3D errors are seen to become larger 

as the orientation angle becomes larger, showing the necessity of an automatic 

system adaptation process. When only the orientation 2 of the right 

omni-camera is adapted with the result shown by the red curve, it is observed that 

the 3D errors are sometimes lower but vary largely. This results from the fact that 

the left omni-camera is assumed to face forward in this case. Thus, if the left 

omni-camera is actually placed to face forward in the experiment, the error 

measure is lowered; otherwise, the error is large as expected. Finally, when all 

the parameters 1, 2 and D are adapted with the results shown by the purple 

curve, the 3D errors are lower than 8% even when the system orientation angle is 

large. This shows the feasibility, reliability, and validity of the proposed system 

adaptation method.  
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Chapter 6 Optimal Design and Placement of 

Omni-cameras in Binocular Vision Systems for 

Accurate 3D Data Measurement 

In this chapter, the problem of automatically designing an optimal stereo vision 

system using two omni-directional catadioptric cameras to yield the highest 3D data 

accuracy is studied. Factors of the system configuration considered in the design 

include camera pose, FOV, and mirror shape. To find the optimal vision system 

configuration, we derived analytic formula to model the 3D measurement error, which 

takes into consideration the variations of pixel-quantization precisions and angular 

resolutions in images by conducting error propagation analysis in the data 

computation process. The formula is then used in the proposed optimization 

framework to find the optimal system configurations for different shapes of system 

setup environments. For regular cases with rectangular cuboid-shaped 3D 

measurement and camera placement areas, the two proposed fast algorithms can be 

used to solve the problem, one being bisection-based and relatively slower for 

deriving the optimal solution; and the other faster using analytic formulas for deriving 

a sub-optimal solution which is proved to be close to the optimal one in precision. 

Experimental results of simulations and real application cases show the feasibility of 

the proposed method. 

In the following, the proposed optimization framework to find the optimal system 

configuration is described in Section 6.1. The proposed formulas to model the 

catadioptric omni-cameras are derived in Section 6.2. The proposed formulas to 

measure of 3D data accuracy for use in the optimization process is derived in Section 

6.3. The proposed three optimization algorithms for finding the optimal system 

configuration are presented in Sections 6.4 and 6.5. Finally, experimental results and 

conclusions are given in Sections 6.6 and 6.7, respectively. 

6.1 Overview of the Optimization Framework  

As illustrated in Fig. 6.1, to facilitate the determination of the optimal system 

configuration of a binocular omni-vision system, which includes the intrinsic 

parameters, locations, and orientations of the two omni-cameras of the system, for the 
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purpose of acquiring the most accurate 3D data. Some observable properties of this 

frame are: (1) if the two omni-cameras are close to each other, the length of the line 

segment L connecting the two cameras, namely, the baseline, will become small, and 

the computed 3D data accuracy will so be low; (2) if the baseline is very large, the 

space points in front of the cameras will become relatively close to L, and the 

resulting accuracy will so be low as well; and (3) since the distortion of an image 

taken by an omni-camera is significant, the resolution also varies significantly in the 

taken image so that, if a feature point is located in a higher resolution area, the 

computed 3D data accuracy will become higher, and vice versa. According to these 

observed facts, it can be seen that optimal system configurations do exist; therefore, it 

is meaningful to propose an optimization framework, as conducted in this study, for 

use in finding the optimal system configuration. 

The proposed optimization framework, as depicted in Fig. 6.1, includes three 

main steps. First, an area where the 3D data are measured is specified, called the 3D 

measurement area; and an area where the cameras can be placed is also specified, 

called the camera placement area. Then, the optimal locations, optical axes, and 

intrinsic parameters of the two omni-cameras are derived according to one of the three 

proposed system optimization algorithms presented in later sections. The three 

optimization algorithms are based on the use of an analytic formula indicating the 

degree of accuracy of the computed 3D data, which is derived according to error 

propagation analysis. The found optimal configuration is just the one with the highest 

degree of 3D data accuracy, which is shown to the user to tell him/her how to place 

(and/or design) the cameras. 

 

Calculate the optimal system 

configuration by the proposed 

optimization method 

Design the system according to the 

derived optimal system configuration

Specify 3D measurement area and 

camera placement area
Formulas for describing degree 

of 3D measurement accuracy

 

Fig. 6.1 Proposed optimization framework.  
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6.2 Related Formulas for Omni-cameras  

By assuming the perspective camera in the omni-camera is well-calibrated and 

distortion-free, the only parameter of the perspective camera is its viewing angle 2max. 

Also, as specified in the projection equation (2), the eccentricity  describes all the 

distortion effect produced by the mirror. Therefore, the intrinsic parameters of an 

omni-camera to be determined are the viewing angle 2max of the perspective camera 

and the eccentricity  of the mirror. In the following, we first derive the formula for 

the eccentricity  under the assumption that the viewing angle 2max of the perspective 

camera is fixed. Then, we provide a guideline to determine the angle 2max. 

 
 

Theorem 6.1. If the viewing angle of the perspective camera is 2max and the viewing 

angle of the omni-camera is 2max, then the eccentricity  of the hyperboloidal-shaped 

mirror is 

 max max

max max

sin sin

sin( )

 


 





. (34) 

 

Proof. According to the projection equation (2), we have 

    2

max max max max max maxtan tan 2 tan sec tan tan 0            . (35) 

Accordingly, two solutions of  can be obtained to be 

  = max max max max

max max

tan sec tan sec

tan tan

   

 




 = max max

max max

sin sin

sin( )

 

 




. (36) 

The solution 1 with the minus sign is proved to be invalid as follows. First, 1, as an 

eccentricity, is larger than one, i.e., 

 max max
1

max max

sin sin
1

sin( )

 

 



 


. (37) 

Next, since the viewing angle 2max of the omni-camera is larger than the viewing 

angle 2max of the perspective camera, we have  > max > max > 0, leading to 

cot(max/2) < cot(max/2), which, according to the cotangent half-angle formula [55], 

results in 
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 max max max max

max max

sin sin
cot cot

2 1 cos 1 cos 2

   

 

   
     

    
, (38) 

or equivalently, 

 max max
1

max max

sin sin
= 1

sin( )

 


 





, (39) 

which is a contradiction to (37). Therefore, the other solution described by (34) should 

be taken as the desired result. □ 

The effect of choosing different viewing angle 2max of the perspective camera is 

shown by some images in Fig. 6.2 obtained from simulations with a checkerboard 

placed in front of the omni-camera, and the hyperboloidal mirror designed according 

to Theorem 6.1 in such a way that the entire checkerboard can be viewed. As seen 

from Fig. 6.2, the taken omni-images are not severely influenced by the magnitude of 

the viewing angle, implying that one may choose freely the viewing angle as long as 

the camera is distortion-free. 

 

   

(a) (b) (c) 

Fig. 6.2 Simulated omni-images using perspective cameras with different viewing 

angles: (a) 20°; (b) 40°; and (c) 60°.  

 

To the resolution formula, Baker and Nayer [56] proposed a formula to calculate 

the resolutions at different pixels in an omni-image as follows. Let dA be an 

infinitesimal area on the image plane near a pixel p, which, as illustrated in Fig. 6.3, is 

the projection of an area in the space described by an infinitesimal solid angle d 

coming from a point P. The resolution of pixel p is formulated as 

 
2 2 2

2
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2

( 1) ( 2 cos 1)
( , , )

2 ( 1)cos

dA
R f f

d

   
 

   

  
 

   

, (40) 
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where  is the eccentricity of the mirror, f is the focal length of the camera, and  is 

the complementary elevation angle of P. 
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p

P



 

Fig. 6.3 Illustration for defining the resolution at a pixel.  

 

6.3 Formula to Derive the Degree of Accuracy  

A criterion function measuring the degree of accuracy of the computed 3D data is 

proposed in this section, for uses in the optimization algorithms proposed in the 

following sections. 

A right-handed world coordinate system X-Y-Z is defined, as shown in Fig. 6.4, in 

such a way that the camera centers O1 and O2 are located at (D, 0, 0) and (D, 0, 0), 

respectively, and the XY-plane contains the space point P. An assumption that, the two 

optical axes a1 and a2 lie on the XY-plane, is made in the following derivations, and 

this assumption is analyzed more thoroughly later in this section. 

As depicted in Fig. 6.4, the two axes a1 and a2 are defined by the angles a1 and a2, 

respectively. To calculate the 3D data of P, two images are acquired first by the two 

omni-cameras, and a feature detection process is applied to extract the two pixels p1 

and p2 corresponding to P in the two omni-images. Then, the complementary 

elevation angles 1 and 2 are derived by (2) using the coordinates of p1 and p2, 

respectively. Finally, the angles q1 and q2 as depicted in Fig. 6.4 are computed by: 

 q1 = a1  1, and q2 = a2  2. (41) 
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Fig. 6.4 Top-view illustration of triangulation process and error propagation.  

 

Proposition 6.1. As depicted in Fig. 6.4, the position (Px, Py) of space point P can be 

calculated in terms of q1 and q2 as 

   2 1 2 1
1 2

2 1 2 1

sin( ) sin sin
( , ) , ,2

sin( ) sin( )
x yT P P D D

q q q q
q q

q q q q

 
   

  
, (42) 

and the differentials of Px and Py are 

 
2 2 1 1 1 2

2 2 2
2 1 2 1 1 2

sin cos sin cos2

sin ( ) sin sin

x

y

dP d dD

dP d d

q q q q q q

q q q q q q

   
   

   
. (43) 

Proof. As depicted in Fig. 6.4, the position of the feature point P can be calculated by 

two parametric equations 

 1 1 1 1 2 2 2 2(cos ,sin ); (cos ,sin )P O s P O sq q q q       (44) 

where P, O1, and O2 are regarded as 2D coordinate vectors, and s1 and s2 are unknown 

parameters. Eq. (44) is equivalent to: 

 1 1 2 2 1 1 2 2cos cos ; sin sin ,x yP D s D s P s sq q q q        (45) 

which may be solved to get s1 and s2, leading to the results 

 Px = 2 1 2 1

2 1 2 1

sin cos cos sin

sin cos cos sin
D

q q q q

q q q q




 = 2 1

2 1

sin( )

sin( )
D

q q

q q




;  

 Py = 1 2

2 1 2 1

sin sin
2

sin cos cos sin
D

q q

q q q q
= 2 1

2 1

sin sin
2

sin( )
D

q q

q q
. (46) 
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And, the differentials of Px and Py can be derived accordingly to be those described by 

(43). □ 

The infinitesimals dq1 and dq2 are derived by considering the varying 

pixel-quantization precisions and angular resolutions as follows. As can be seen from 

Fig. 6.4, if the feature detection process to extract p1 and p2 in the two images is 

inaccurate so that the angles 1 and 2 are with errors d1 and d2, respectively, then 

an inaccurate triangulation result Pe, as depicted in Fig. 6.4, will be produced. Assume 

that the pixel quantization and feature detection process introduces an error within a 

small area dA, then, as depicted in Fig. 6.3, the measured angle  will be with an error 

d related to the angular resolution function R. In the sense that d is a 2D solid angle 

and the angle d is the corresponding 1D angle, and under the assumption that the 

back-projected cone forming by d is circular, the value of d can be estimated by 

 d d dA R     , (47) 

in which the term d is expressed by the resolution formula (40). Also, by taking the 

differentiations of the equations in (41), one can get a relation between d and dq as 

dq = d, which, after being combined with (47), leads to 

 d dA Rq   . (48) 

Accordingly, the errors dq1 and dq2 can be derived to be 

 
1

1 1 1( , , )

dA
d

R f
q

 
  , and 

2

2 2 2( , , )

dA
d

R f
q

 
  . (49) 

To assess the 3D measurement error of a feature point P, an error function E(P) is 

proposed in the following, and the degree of accuracy of the point P is defined as 

E(P) in the sequel.  

 

Theorem 6.2. With reference to Fig. 6.4, when the triangulation process yields an 

imprecise point Pe due to small errors dq1 and dq2, the 3D measurement error E(P), 

which is the distance between the actual point P and the measured point Pe, is 

  1 2( ) max ( ), ( )E P E P E P  (50) 

where 
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Proof. The measurement error E, which by definition is the distance between P and Pe, 

may be computed from (43) to be 

 E(P) = ||dT|| =    
22

x ydP dP   

2 2

2 1 2 1 1 2 1 2
2 1

2 1 2 1 2 1 2 1
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2 sin 2 sin 2 sin 2 sin
2cos( )
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D d D d D d D dq q q q q q q q
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     

      



. (52) 

From Fig. 6.4, it can be derived, from the law of sines, that 
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2 1 2 1
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sin( ) sin sin
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q q q q
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. (53) 

By combining (52) and (53), we get 

 

2 2

1 1 2 1 1 1 2 2 2 2

2 1

( ) 2cos( )( )( ) ( )
( )

sin( )

O P d O P d O P d O P d
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
, (54) 

which, when combined with (49), leads to (50) and (51). □ 

 

6.4 Fast Configuration Optimization for Regular Cases  

The optimization framework proposed previously can deal with general cases, in 

which the 3D measurement area and the camera placement area may both be of 

irregular shapes, and the two used perspective cameras may be different from each 

other. However, in regular indoor vision systems (called the regular cases), the two 

perspective cameras are of the same type, and the 3D measurement area and the 

camera placement area can be specified by two rectangular cuboids as illustrated in 
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Fig. 6.5. In the following, the formal definition of the optimization problem for such 

regular cases is first derived. Then, the derivation of the proposed optimization 

algorithm for generating the corresponding optimal system configuration is proposed, 

followed by another sub-optimal but analytic optimization method, which is shown 

additionally there to be a good approximation to the optimal solution. 
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Fig. 6.5 An illustration of the regular cases.  

 

As described in the optimization framework, a system configuration includes all 

the necessary parameters to design a vision system, and an optimization process needs 

to find the optimal system configuration which yields the best 3D measurement 

accuracy. A criterion function Ew for the optimization is defined in this study to be the 

maximum measurement error within the 3D measurement area W, i.e., 

  ( ) max ( )w
P W

E W E P


 , (55) 

where E(P) is the measurement error of a feature point P as derived by (50) in 

Theorem 6.2. By choosing the maximum value, all the 3D measurements errors are 

ensured to be lower than the value Ew. Next, as assumed, the two perspective cameras 

used in the omni-cameras are identical, so their focal lengths f1 and f2 are both equal to 

f, and their viewing angles 2max1 and 2max2 are both equal to 2max. The two 

omni-cameras are identical in structure and placed symmetrically, so the two optical 

axes a1 and a2 are coplanar so that the two optical axes can be defined by the two 
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angles a1 and a2 as shown in Fig. 6.5. Then, a system configuration can be defined to 

be the parameter set (Dx, Dy, a1, a2, 1, 2), where (1) the omni-cameras are placed, as 

seen from the top, at O1(Dx, Dy) and O2(Dx, Dy), respectively; (2) the orientations 

of their optical axes are defined by a1 and a2, respectively; and (3) the eccentricities 

of the mirrors are 1 and 2, respectively. Hence, the optimization problem is just to 

find the optimal parameter set (Dx
*, Dy

*, a1
*, a2

*, 1
*, 2

*) derived in the following 

way: 

 (Dx
*, Dy

*, a1
*, a2

*, 1
*, 2

*) =  
1 2 1 2( , , , , , )

arg min ( )w

x yD D
E W

a a  
. (56) 

Since it is desired that the captured image be fully filled up with the 3D 

measurement area, the cameras should be oriented to face the 3D measurement area. 

Accordingly, the optical axes a1 and a2 can be figured out to be just the bisectors of 

the angles spanned by the measurement area as depicted in Fig. 6.5, that is, the optical 

axis a1 of the left omni-camera is the bisector of the viewing angle formed by 1 1O W  

and 1 2OW , and the optical axis a2 is the bisector of the viewing angle formed by 

2 1O W  and 2 2O W . In view of these facts, the angle max and the optical-axis angles a1 

and a2 can be calculated in terms of Dx and Dy as follows. First, the fact a2 =   a1 

can be derived from Fig. 6.5. Then, from the triangle formed by O1, W2, and Q2, we 

have Dy = (Dx + 1)tan(a1  max). Similarly, from the triangle formed by O1, W1, and 

Q1, we have Dy = (Dx  1)  tan(a1  max). Accordingly, the two unknowns a1 and 

max can be solved respectively to be 
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 (57) 

Then, based on Theorem 6.1, the eccentricities 1 and 2 are 

 max max
1 2

max max

sin sin

sin( )

 
  

 


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
, (58) 

where 2max is the viewing angle of the perspective cameras. To sum up, the 

optimization problem (56) is now reduced to include two parameters as follows: 

       * *

( , ) ( , )

, arg min ( ) arg min max ( )
x y x y

x y w
P WD D D D

D D E W E P


  . (59) 
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For further simplifications, two claims are given as follows. 

 
 

Claim 6.1. The function Ew described by (55) can be rewritten as 

 Ew(W) =  max ( )
P W

E P


= max(E(O), E(W2)), (60) 

if the two terms R(, f, 1) and R(, f, 2) are equal, where points O and W2 are located 

at (0, 0) and (1, 0), respectively. 

Proof. At first, by referring to Fig. 6.6(a), the measurement error of a point P at 

coordinates (Px, 0) can be derived using (50) and (51) with 
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x x yP D D
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 
. (61) 

Next, the function E(P) is proved to be an even function as follows. From Fig. 

6.6(a), the angles 1 and 2 can be seen to be 

 1 = |a1  q1|, and 2 = |a2  q2|. (62) 

From the resolution formula (40), we can get the equality R(, f, ) = R(, f, ) for 

any angle . Accordingly, we have 

 R(, f, 1) = R(, f, a1  q1); R(, f, 2) = R(, f, a2  q2). (63) 

Let P′ be the point located at (Px, 0), and let the related angles q1′, q2′, 1′, and 2′ be 

defined as those shown in Fig. 6.6(a). Since the triangles O1O2P′ and O1O2P are 

similar, we get q1′ =   q2 and q2′ =   q1. Combining these facts with (62), we have 

 1′ = |a1  q1′| = |(  a2)  (  q2)| = |a2 + q2| = 2; 

 2′ = |a2  q2′| = |(  a1)  (  q1)| = |a1 + q1| = 1. (64) 

Thus, the following equality can be derived: 
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   . (65) 

The function E1(P) can be proved accordingly to be an even function by 
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Similarly, we can prove E2(P) = E2(P′), meaning that E2(P) is an even function, too. 

Finally, we prove in the following the property that if R(, f, 1) and R(, f, 2) are 

equal, the maximum of E(P) will occurs at O(0, 0) or W2(1, 0). Firstly, let Px
* be a 

value of Px such that the case q2  q1 = 90° occurs. When 0 ≤ Px ≤ Px
*, we get 90o ≤ q2 

 q1 ≤ 180o so that cos(q2  q2)  0, implying that E2(P)  E1(P) according to (21), 

which leads to the following fact: 

 2( ) ( )E P E P . (67) 

Furthermore, by applying the law of cosines and the assumption R(, f, 1) = R(, f, 

2), E2(P) can be reduced in the following way: 
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. (68) 

Accordingly, since the angle q2  q1 decreases from 180o to 90° when Px increases 

from 0 to Px
*, the maximum of E(P) occurs at Px = 0. For the other case that Px

* ≤ Px 

≤ 1, we can get 0o ≤ q2  q1 ≤ 90o so that cos(q2  q1)  0, implying that E1(P)  E2(P), 

which leads to the following fact according to (68): 

 1( ) ( )E P E P . (69) 

Furthermore, according to (61), E1(P) can be expressed as 
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 
. (70) 

Accordingly, since the angle q2 q1 decreases from 90° to 0o when Px increases, the 

maximum of E(P) occurs at Px = 1. Combine the results of the two cases, we get the 

conclusion that the maximum occurs at O(0, 0) or W2(1, 0).  

Finally, since both E1(P) and E2(P) are even functions, this conclusion may also 

be proved to hold for the “left-side” range 1  Px  0. Therefore, the overall 

conclusion described by (60) may be drawn. □ 
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In the above proof, the assumption R(, f, 1) = R(, f, 2) is made, which is 

proved later by simulation results to be appropriate with very little affection on the 3D 

measurement precision of the derived system configuration (see the experimental 

results shown in a later section). 
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Fig. 6.6 Analysis of function Ew. (a) Illustrations of related terms. (b) Drawing of 

distribution of measurement errors E of a configuration. 

 

Claim 6.2. A larger value of Dy always yields a smaller value of the criterion function 

Ew. 

 

Proof. The inscribed angle theorem says that an angle q inscribed in a circle is a half 

of the central angle 2q that subtends the same arc on the circle [57]. That is, if the 
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viewing angle is 2max, the possible positions of the cameras can be figured out to be 

constrained on the dashed circle shown in Fig. 6.7(a), and the upper bound of Dy 

occurs at the bottom of the circle. Also, while recalling that the two cameras are 

omni-directional, we assume their viewing angle 2max to be larger than 120°. So we 

have 

 max(Dy) = cotmax  cot(60)  0.6. (71) 

With this upper bound, the function Ew is plotted in Fig. 6.7(b), which shows that a 

larger value of Dy yields a smaller value of Ew. □ 

With Claim 6.1, Eq. (59) can be re-formulated as 

 (Dx
*, Dy

*) =  2
( , )

arg min max( ( ), ( ))
x yD D

E O E W . (72) 

Also, recall that the upper bound of Dy is limited by the camera deployment constraint, 

which we denoted as xy in Fig. 6.5. With Claim 6.2, the optimal value Dy
* in (72) can 

be derived to be min(xy, 0.6), leaving Dx
* to be the only parameter to be optimized 

according to the following constraint: 

   * * *

mid boundarg min max ( , ), ( , )
x

x x y x y
D

D E D D E D D , (73) 

where Ebound and Emid are defined as 

 Ebound(Dx, Dy
*) = E(W2);    Emid(Dx, Dy

*) = E(O). (74) 
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Fig. 6.7 Finding the optimal value of Dy. (a) An illustration to find the upper 

bound. (b) A plot of Ew for different values of 2max: 20, 40, and 60. 
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An optimization algorithm to solve Dx
* in (73) by a bisection scheme is proposed 

in the following. By referring to the plots of Emid and Ebound depicted in Fig. 6.8(a), the 

optimal solution Dx
* is found at the intersection of the two functions of Emid and Ebound. 

So, if the two functions intersect each other, the intersection point may be defined to 

be the optimal solution Dx
*; otherwise, the optimal solution Dx

* is defined to be the 

maximum value which will also be derived later in this section. 

In more details, at first we define a new function Eopt as 

 Eopt(Dx, Dy
*) = Emid(Dx, Dy

*)  Ebound(Dx, Dy
*). (75) 

Then, the optimal solution Dx
* is just the root of Eopt, which can be derived by a 

bisection scheme. Before the scheme is conducted, the initial range of the root must 

be determined. The lower bound lowerDx of Dx is obviously zero, and the upper bound 

upperDx is derived as follows. From Fig. 6.8(b), we have 

 2cO O  = 2cO W  = csc(  2max) = csc(2max). (76) 

And the coordinates of the circle center Oc is 

 Oc = (0, cot(  2max)) = (0, cot(2max)). (77) 

According to the Pythagorean Theorem, we have 

 Dx
2 = 

2 2

2 2c cO O O O  = csc2(2max)  [Dy
* cot(2max)]

2 

 = 1  Dy
*[Dy

* cot(2max)], (78) 

and the first derivative of Dx
2 with respect to 2max is 

 
2

max

( )

(2 )

xD






 = 2Dy

*(csc2(2max)). (79) 

Since Dy
* > 0, the first derivative of Dx

2 is smaller than zero, meaning that Dx 

decreases as 2max increases, or equivalently, that the maximum of Dx occurs when 

max is minimized. So, the upper bound of Dx can be derived from (78) to be 

 upperDx = * *

max1 [ 2cot(2 )]y yD D   . (80) 

A method to solve the optimization problem is proposed below. 
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(b) 

Fig. 6.8 Illustrations of finding the optimal solution Dx
* and its upper bound. (a) 

Plot of Emid and Ebound versus Dx when Dy
* = 0.1 and 2max = 60.0. (b) Derivation 

of the upper bound of Dx. 

 

Algorithm 6.1. Finding the optimal configuration (Dx
*, Dy

*). 

Input: the viewing angle 2max and the focal length f of the cameras. 

Output:the optimal system configuration (Dx
*, Dy

*), meaning that the omni-cameras 

are placed at O1(Dx
*, Dy

*) and O2(Dx
*, Dy

*), and oriented as shown in Fig. 

6.5. 

Steps. 

Step 1. Calculate xy according to the deployment size as stated, and set Dy
* = min(xy, 

0.6). 

Step 2. Set variable lowerDx = 0 and calculate Eopt(lowerDx, Dy
*) as follows and assign 

the result to the variable lower. 

2.1 Set Dx = lowerDx and calculate max according to (57). 

2.2 Calculate the eccentricity  according to (58). 

2.3 Calculate Emid and Ebound by (74) with O1 = (Dx, Dy
*) and O2 = (Dx, Dy

*), and 

calculate Eopt by (75). 

Step 3. Calculate the upper bound upperDx of Dx
* by (80). 

Step 4. Calculate Eopt(upperDx, Dy
*) in a way similar to Steps 2.1 through 2.3, and 

assign the result to the variable upper. 

Step 5. If lower and upper are with opposite signs, then find the root in a bisecting 

fashion as follows. 

5.1. Set variable newDx = (lowerDx + upperDx)/2. 

5.2. Calculate Eopt(newDx, Dy
*) in a way similar to Steps 2.1 through 2.3 and 
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assign the result to the variable new. 

5.3. If (new < lower), then set lower = new and lowerDx = newDx; otherwise, set 

upper = new and upperDx = newDx. 

5.4. If (upperDx  lowerDx) < , where  is a predefined precision threshold, then 

take (Dx
*, Dy

*) = (newDx, xy) as the output and exit; otherwise, go to Step 5.1. 

Step 6. If lower > 0 and upper > 0 or if lower < 0 and upper < 0, then choose Dx
* to 

be the upper bound upperDx, and take (Dx
*, Dy

*) = (upperDx, xy) as the output. 

 

The method proposed in Algorithm 6.1 is further simplified to get an analytic 

formula for deriving a sub-optimal solution. Let v1 and v2 be two vectors, and q be the 

included angle. We have 

 |v1±v2|
2 = (v1±v2)  (v1±v2) = |v1|

2 ± 2|v1||v2|cosq + |v2|
2. (81) 

By referring to Fig. 6.9, the formula of the measurement error Emid can be derived, 

using (74), (50), (51), and (81), to be 
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Referring to Fig. 6.9 and based on the double-angle formula of the sine function, we 

can get 

 

*

mid2 mid1 mid2 mid1
mid2 mid1 2 * 2

2
sin( ) 2sin( )cos( )

2 2 ( )

y x

x y

D D

D D

q q q q
q q
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  


. (83) 

Thus, the function Emid in (82) can be rewritten as 
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*

mid * *

mid mid

*

( ) ( )
( , )

2 ( , , ) min , ( , , )
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E D D

D D R f D D R f

D D

   

          (84) 

Similarly, the measurement error Ebound of the feature point W2(1, 0) can be simplified, 

using (50), (51), (74) and (81), to be 
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. (85) 

From the geometry shown in Fig. 6.9, we have 
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 (86) 

Thus, the function Ebound in (85) can be rewritten to be 

 

   
2

2 * 2 2 * 2

*

bound *

max

( ) 1 4 max 1 ( ) ,
( , )

( , , )

x y x y x
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By combining (84) and (87), the function Eopt can be re-formulated as 
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. (88) 

To calculate the optimal system configuration, the value Dy
* is firstly derived in 

the same way as stated in Algorithm 6.1. Then, the optimal solution Dx
* is just the 

root of the function Eopt described by (88). However, the root does not have an 

analytic formula since the involved terms mid, max and  are all with complicated 

formulas with respect to Dx. In order to derive an analytic solution for the root, we 

first propose a skillful approximation method to produce a new function Eopt′ to 

approximate the original one Eopt, and then derive an analytic formula to compute a 

sub-optimal solution Dx′. This sub-optimal solution Dx′ is a good approximation to the 

optimal one Dx
* as will be shown later in this section. 

To simplify the function Eopt described by (88), we assume further 

 R(, f, mid)  R(, f, max), (89) 

which is a special case of the assumption R(, f, 1) = R(, f, 2) made before in the 

proof of Claim 1. This new assumption can be proved as well later by simulation 



64 
 

results to be proper with very little affection on the 3D measurement precision of the 

derived system configuration (see Fig. 6.10). Consequently, Equation (88) may now 

be simplified to be  
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Thus, the root Dx′ of the equation Eopt′(Dx, Dy
*) = 0 satisfies 
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Fig. 6.9 Related parameters involved in Emid and Ebound.  

 

 

Theorem 6.3. The solution of Dx′ in (91) is 

 

* 4 * 2 24( ) ( 2)( ) 5

3

y y

x

D C D C C
D '

C

     
 , (92) 

where 

 * 6 * 4 * 23 0.5 8( ) 48( ) 46.5( ) 5.5y y yC Q D D D     ; 

   * 2 * 8 * 6 * 4 * 227 1 ( ) 128( ) 352( ) 288( ) 75( ) 23y y y y yQ D D D D D      . (93) 
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Proof. To deal with the involved min/max function in (91), four cases are discussed 

separately, which are: (1) Dx′ < Dy
* and Dx′  (1+(Dy

*)2)0.5; (2) Dx′ < Dy
* and Dx′ > 

(1+(Dy
*)2)0.5; (3) Dx′  Dy

* and Dx′  (1+(Dy
*)2)0.5; and (4) Dx′  Dy

* and Dx′ > 

(1+(Dy
*)2)0.5. It is proved next that only Case (3) is valid. 

For Case (1), we have the assumptions Dx′ < Dy
* and Dx′  (1+(Dy

*)2)0.5, so that (91) 

can be reduced to be 

 

2 * 2 2 22 * 2

* 2

*

[( ) ( ) 1] 4( )( ) ( )
1 ( )

x y xx y

y

x x y

D ' D D 'D ' D
D

D ' D 'D

  
  , (94) 

or equivalently, to be 

 * 2 * 2 * 2 2 * 2 2 2[( ) ( ) ] 1 ( ) [( ) ( ) 1] 4( )y x y y x y xD D ' D D D ' D D '      . (95) 

Defining A = (Dx′)
2 and B = (Dy

*)2, Eq. (95) can be expressed as 

 A2  2A + (3B2 + 3B  1) = 0. (96) 

Since the discriminant of (96) is 4  4(3B2 + 3B + 1) < 0, the solution of A does not 

exist, or equivalently, Dx′ does not exist. As a result, the assumptions made for Case 

(1) are invalid. 

The assumptions made for Case (2) are Dx′ < Dy
* and Dx′ > (1+(Dy

*)2)0.5. Since 

these two inequalities are contradictory to each other, Case (2) is also out of 

consideration. 

For Case (4), the two assumptions are Dx′  Dy
* and Dx′ > (1+(Dy

*)2)0.5. Thus, 

Equation (91) can be rewritten to be 

 2 * 2 2 * 2 2 2( ) ( ) [( ) ( ) 1] 4( )x y x y xD ' D D ' D D '     . (97) 

Defining A = (Dx′)
2, B = (Dy

*)2 and taking the squares of both sides of the above 

equation, we have (A + B)2 = (A + B + 1)2  4A, or equivalently, 2A = 2B + 1. 

However, from the second assumption Dx′ > (1+(Dy
*)2)0.5, we get A > B + 1, which is 

a contradiction to the equation 2A = 2B + 1 derived previously. Therefore, the 

assumptions made for Case (4) are also invalid.  

As a result, Case (3) is the only valid one, for which the two assumptions are Dx′ 

 Dy
* and Dx′  (1+(Dy

*)2)0.5. Accordingly, Equation (91) can be rewritten to be 
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y x y

D ' D D 'D ' D
D

D D 'D

  
  , (98) 

or equivalently, to be 

 aA3 + bA2 + cA + d = 0 (99) 

where A = (Dx′)
2, B = (Dy

*)2, a = 1, b = B  1, c = 2  B2, and d = (B + 1)3. To find 

the solution of A for the cubic function (99), we first calculate its discriminant , 

according to [58], as 

  = 18abcd  4b3d + b2c2  4ac3  27a2d2 

 = (B + 1)(128B4 + 352B3 + 288B2 + 75B + 23), (100) 

which is smaller than zero because B = (Dy
*)2 > 0. Thus, we get to know that the cubic 

polynomial equation has only one real root which can be described by (92) according 

to [58]. □ 

The above-described process of generating the sub-optimal configuration (Dx′, 

Dy
*) is summarized as an algorithm below. 

 

 

Algorithm 6.2.  Finding a sub-optimal configuration (Dx′, Dy
*) by analytic formulas. 

Input: the viewing angle 2max and the focal length f of the cameras. 

Output: the sub-optimal configuration (Dx′, Dy
*), meaning that the omni-cameras are 

placed at O1(Dx′, Dy
*) and O2(Dx′, Dy

*), and oriented as shown in Fig. 6.5. 

Steps. 

Step 1. Calculate xy according to the deployment size as stated previously in this 

section, and set Dy
* = min(xy, 0.6). 

Step 2. Calculate the upper bound upperDx of Dx
* by (80). 

Step 3. Calculate Dx′ by (92) derived in Theorem 6.3. 

Step 4. Set Dx′ = min(Dx′, upperDx). 

Step 5. Output the optimal system configuration (Dx′, Dy
*). 

 

The sub-optimal configuration (Dx′, Dy
*) is shown to be a good approximation to 

the optimal one (Dx
*, Dy

*) as follows. Recalling that the goal of the optimization is to 

minimize the measurement error Ew defined by (73), we use the function Ew as a 

criterion to analyze the precision of the approximate one. In Fig. 6.10, we plot the 

curves of the measurement error values of the optimal and sub-optimal configurations 
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for all the possible values of Dy, from which we see that the measurement errors are 

very close to each other, meaning that the sub-optimal configuration also yields 

precise 3D measurement results as the optimal configuration does. Also, we use a 

difference ratio defined by 

 (Ew′  Ew
*) / Ew

* (101) 

to determine the goodness of the performance of the sub-optimal configuration, where 

Ew
* and Ew′ denote the measurement errors using the optimal and sub-optimal 

configurations, respectively. As shown in the figure, the difference ratio is smaller 

than 0.4%, showing that the sub-optimal solution is indeed a good approximation. 
 

Ew

Dy

difference 

ratio

 

Fig. 6.10 Comparison of optimal configuration (Dx
*, Dy

*) and sub-optimal 

configuration (Dx′, Dy
*) with viewing angle 2max = 60o.  

6.5 Optimization for General Cases  

To design a system configuration for the general case, the 3D measurement area 

and the camera placement area are specified first. To make the descriptions of the 

possibly irregular shapes of the two areas easy, each area is described by multiple 

sampled points, called the 3D measurement locations and camera placement locations, 

respectively. For example, a cuboid can be described by 10000 evenly-distributed 

points. The occlusion problem can be handled by just eliminating the camera locations 

where the 3D measurement locations will be partially occluded if the camera was 

placed there [59]. 

After the 3D measurement locations and the camera placement locations are both 

identified, the optimal system configuration can be found out as follows (see Fig. 6.11 
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for a flowchart). At First, two locations are chosen from the camera placement 

locations to be the positions of the left and right cameras, respectively. Then, the 

cameras are oriented to face the 3D measurement area to determine the extrinsic 

parameters of the omni-cameras. Also, their intrinsic parameters, including the 

mirror-shape parameter and the viewing angle of the perspective camera, are 

determined by the optimization method proposed in the previous section. 

To decide which configuration yields the most precise 3D measurements, a 

measure indicating the degree of accuracy of the computed 3D data defined as 

min(E(Mi)) is calculated, where E(Mi) is the degree of accuracy of a 3D 

measurement location Mi as derived in Theorem 6.2. It is noted that, by choosing the 

minimum value, all the 3D measurement locations are ensured to be at least with this 

degree of accuracy. Then, to find the optimal system configuration, the 

previously-described steps are executed repeatedly for all possible camera locations as 

shown by the loop in Fig. 6.11, and the configuration with the highest degree of 

accuracy is picked out finally as the desired result. 

After the positions of the two omni-cameras are decided, it is necessary to 

determine the optical axis and the viewing angle of each omni-camera. To solve this 

problem, the camera should face the 3D measurement locations, and this in turn 

determines the orientations of the camera. Specifically, let Mi denote the points in the 

3D measurement locations, and O the chosen location of each omni-camera (i.e., the 

camera center). Then, the problem may be solved, as depicted in Fig. 6.12, by three 

steps: (1) find the smallest viewing cone containing all the 3D measurement locations 

Mi and with O as its apex; (2) set the optical axis as the viewing cone axis; and (3) 

take the viewing angle 2max of the omni-camera to be the aperture of the cone. 

To speed up the optimization method described in Fig. 6.11, three techniques are 

proposed as follows. 

(1) Longest baseline first. When picking up the locations of the cameras in Step 3, 

the ones with large baselines (i.e., the distance between the cameras) are 

picked up first. 

(2) Farthest 3D point first. When calculating the 3D data accuracy in Step 6, the 

3D points which are farther from the two cameras are calculated first. 

(3) Early stopping. If the computed 3D data accuracy is larger than that of the 

so-far best configuration, then the current configuration cannot be a better 
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one, and so the algorithm continues to perform Step 3 for the next 

configuration. 

These techniques were implemented and tested by experiments, and the results 

show that they reduced the running time from 56.6 seconds down to 22.3, indicating a 

speedup of about 2.5 times. 

 
 

2. Handle occlusion problem

3. Pick two locations for left and right cameras

4. Determine optical axes directions and 

the omni-camera viewing angles

5. Determine the mirror shape parameters (optional) and the 

perspective camera viewing angles (optional)

6. Calculate degree of accuracy of 3D data

No

Yes

7. Show the optimal configuration with highest degree of accuracy 

1. Specify 3D measurement area and camera placement area

All possible locations

processed?

 
 

Fig. 6.11 Proposed optimization process to deal with general cases.  

 

 

3D measurement locations

viewing cone

camera center O

cone axis

viewing angle

 

Fig. 6.12 An illustration of finding the optical axis and the viewing angle.  
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Three optimization methods have been proposed in the previous and this section, 

which are for the regular-optimal, regular-suboptimal, and general cases, respectively. 

These methods have their own advantages and disadvantages as described in the 

following. 

(1)  If the 3D measurement area and the camera placement area are both 

approximately of rectangular shapes, the first and second methods can be 

used; otherwise, the third one. 

(2) If the optimization process can be done in an off-line fashion, the third 

method is suitable; otherwise, the first two methods should be used. 

(3) If it requires a fast computation time, or the system has a low computation 

capability, the first two methods are suitable; and among the two, the second 

is the faster one but a little bit less accurate. 

Some possible applications are listed next to demonstrate the uses of the three 

optimization methods. When designing a vision system for home entertainment, 

exhibitions, wide-area video surveillance, etc., since the camera positions can be 

derived in advance and the environment may be irregular-shaped and possibly with 

occlusions, the third optimization method should be used. However, if the cameras 

can be oriented automatically by computer, the first optimization method may be used 

in an online fashion to achieve better 3D measurement accuracies. On the other hand, 

if the cameras are mounted, for example, on unmanned vehicles to collect wide-area 

3D information in realtime, the second optimization method should be used because 

fast computations according to analytic formulas can be conducted, and the saved 

computation power can be used for navigation, learning, event recognition, etc. 

 

6.6 Experimental Results  

In this section, the experimental results of a case study of finding the optimal 

system configuration in a simulated indoor environment are described first. And the 

proposed method is then compared with four existing methods by experimental results 

for a real laboratory environment. 

A room with size 10m2.5m3m, as depicted in Fig. 6.13(a), was considered, and 

the 3D data of a user’s body moving within the 3D measurement area were required to 

be calculated accurately. Also, the omni-cameras need be designed and placed in the 
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camera placement area. In the following, the optimal system configuration for this 

simulation case study is derived first using the proposed method. Then, comparisons 

of the 3D measurement accuracies yielded by the optimal system configuration and 

some non-optimal ones are presented. 

To find the optimal system configuration, a coordinate system is defined first as 

depicted in Fig. 6.13(a) with the floor being taken to be the plane Z = 0, and the 

viewing angles 2max of the perspective cameras chosen to be 60. Next, about 100 

evenly distributed points were generated in the 3D measurement area, and about 1000 

similarly distributed points were generated in the camera placement area. Then, the 

optimization process proposed in the last section (as depicted in Fig. 6.11) was 

applied to such a general case of environment. And the generated configuration with 

the minimum 3D measurement error was chosen finally to be the desired optimal 

system configuration S1
*, which, as illustrated in Fig. 6.13(a), includes: (1) the 

locations O1 and O2 of the two cameras at ( 3.92m, 0.5m, 2.5m), respectively; (2) 

the optical axes a1 and a2 oriented in accordance with the vectors (0.093, 0.996, 0.0), 

respectively; and (3) the eccentricities 1 and 2 of the mirrors both being 1.8967. The 

images taken by the two cameras were simulated by a ray tracing program POV-Ray, 

with two examples shown in Figs. 6.13(b) and 6.13(c). 

Alternatively, the above problem of vision system design can be seen as a 2D one, 

in which only the XY-plane is considered, and the two cameras are installed at the 

middle height of 2.5m (recalling that the room is with a height of 5m). As depicted in 

Fig. 6.14, let W be the boundary line 1 2WW  of the 3D measurement area which is 

nearer to the camera placement area, and let C be the boundary line of the camera 

placement area which is farther to the workspace. The 2D coordinate system is 

defined in such a way that the coordinates of W1 and W2 are (1, 0) and (1, 0), 

respectively. In this sense, a unit in the coordinate system represents 5m in real space, 

so that the distance xy between the line segments W and C, as depicted in Fig. 6.14, 

can be derived to be 0.1. Then, with the use of xy, the two proposed optimization 

schemes described by Algorithms 6.1 and 6.2 were performed to such a regular case 

of environment to derive the optimal two camera locations. 

 



72 
 

X

Y

3D measurement area

0
.5

m

camera 
placement area

2
.5

m

10m

a1 a2

3.92m 3.92mO1 O2  

(a) 

 

(b) 

 

(c) 

Fig. 6.13 Optimal system configuration for the general case derived by the 

proposed optimization process. (a) An illustration of the optimal system 

configuration. (b)(c) Simulated images taken by the two cameras, with 3D 

measurement area drawn as a checkerboard cube. 
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Fig. 6.14 The corresponding 2D problem of the case study.  
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The optimal camera locations derived by Algorithm 6.1 are ( 0.753, 0.1) in the 

2D coordinate system, which then were mapped back to the world coordinate system 

as ( 3.766m, 0.5m). Subsequently, the proposed methods were applied to find the 

optical axes directions and eccentricities, yielding the optimal system configuration 

S2
*, which includes: (1) the locations O1 and O2 of the two cameras at ( 3.766m, 

0.5m, 2.5m), respectively; (2) the optical axes a1 and a2 oriented in accordance with 

the vectors (0.163, 0.987, 0.0), respectively; and (3) the eccentricities 1 and 2 of the 

mirrors both being 2.0067. In a similar way, the sub-optimal system configuration S3
* 

were derived by applying Algorithm 6.2 and the related proposed methods, which 

includes: (1) the locations O1 and O2 of the two cameras at ( 3.822m, 0.5m, 2.5m); 

(2) the optical axes a1 and a2 oriented in accordance with the vectors (0.172, 0.985, 

0.0), respectively; and (3) the eccentricities 1 and 2 both being 2.0194. It can be seen 

that the data of the two configurations S2
* and S3

* are quite close as expected. 

To compare the 3D measurement accuracies yielded by the three different 

optimal system configurations S1
*, S2

*, and S3
* derived previously, three additional 

system configurations S1, S2 and S3 were chosen arbitrarily, in which the two cameras 

are located at (2.5m, 0.5m, 2.5m) in configuration S1, at (1.67m, 0.5m, 2.5m) in 

S2, and at (3.33m, 0.5m, 2.5m) in S3. Their optical axes’ directions, and the 

eccentricities of the two mirrors were calculated similarly by the proposed methods. 

Similar to the experiments described in 1) of this section, about 10,000 points 

were uniformly generated in the 3D measurement area. Each of the 10,000 point was 

firstly back-projected onto the two omni-images with coordinates (u1, v1) and (u2, v2). 

Then, Gaussian noise with zero means and standard deviations 1.0 (pixel) were 

applied to the four coordinate values (two for each omni-image), and the estimated 

location of the 3D point was calculated accordingly by mid-point triangulation [54]. 

The distance between the ground-truth 3D point and the estimated 3D point was then 

computed as the 3D measurement error. The minimum, maximum, and standard 

deviation of the 3D measurement errors resulting from the 10,000 points are listed in 

Table 6.1. Also, the proposed function E was used to estimate the maximum 3D 

measurement errors, whose minimum, maximum, and standard deviation values are 

also listed in Table 6.1 for comparison. Note that, since the values calculated by the 

use of E are unitless, they were scaled in such a way that the standard deviations are 

the same as the one derived with Gaussian noise added. 
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Recall that a good system configuration is one with a small maximum 3D 

measurement error (listed in the 3rd column with bold fonts in Table 6.1). Accordingly, 

we can see that the three optimal system configurations S1
*, S2

*, and S3
* are better. 

Also, recall that the function E is proposed to estimate these maximum values for use 

as a criterion to find the optimal system configuration. The effectiveness of E in this 

aspect can be seen from the similarity of the maximum values max listed in the 3rd 

columns of Table 6.1 to those listed in the 6th column. 
 

Table 6.1 3D Measurement Errors  

System 

config. 

3D measurement errors  
Estimated 3D measurement error 

(by proposed method) 

min [cm] max [cm] std. [cm] mina maxa std.a 

S1
* 0.395 12.287 1.965 4.127 12.499 1.965 

S2
* 0.393 12.673 2.000 3.860 11.799 2.000 

S3
* 0.385 12.379 1.985 4.004 11.579 1.985 

S1 0.342 22.773 3.235 1.655 17.159 3.235 

S2 0.314 36.685 5.326 1.078 27.236 5.326 

S3 0.362 15.196 2.223 2.704 12.950 2.223 

aThe values are scaled such that the standard deviations are the same as the ones 

derived with Gaussian noise added. 

 

6.7 Comparisons with Existing Methods  

Recalling that the proposed method to assess the 3D measurement error is based 

on analytic error propagation analysis, another approach found popular in the 

literature is to use the covariance matrix to assess the 3D measurement error [37]-[42] 

as surveyed previously. Four different methods of this approach were implemented by 

programs in this study. They are briefly introduced first here and then compared with 

the proposed method by experimental results in this section. 

When using the covariance matrix to assess the 3D measurement error yielded by 

a binocular vision system, let P be a feature point in the space, (u1, v1) be the 

coordinates of the pixel P' corresponding to P in the left-camera image, and (u2, v2) be 

those of P' in the right-camera image. By mid-point triangulation [54], if the 3D 

location of P is calculated by a function f(u1, v1, u2, v2), then, according to [60], the 

covariance matrix P of the measured 3D location data of P can be assessed by 
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    
T

P pf p f p       , (102) 

where p is the vector (u1, v1, u2, v2), p is the covariance matrix of p, and T denotes the 

operation of matrix transpose. The covariance matrix p can be estimated in 

complicated ways [37]-[41] or by constant values [38][42]. For simplicity, the matrix 

was estimated by an identity matrix in our implementations, and the first-order 

derivatives of f were obtained by a finite difference approach [61] with the difference 

taken to be 1010. After the covariance matrix P is derived, the four implemented 

methods use the following data of P to assess the 3D measurement error: (1) the 

determinant [37][38], (2) the trace [37][39], (3) the maximum eigenvalue [37][40], 

and (4) the maximum diagonal element [41]. These four different methods are named 

DET, TR, MAXEIG, and MAXDIAG, respectively, subsequently. 

A simulation environment for comparisons of the proposed error model with 

others is constructed as follows. The 3D measurement area is defined to be 

rectangular-shaped with two corners located at (0 and (1, 0, 1), including 

about 100,000 equidistant points for use as the 3D measurement locations. The two 

omni-cameras were placed at (0.7, 0.1, 0), and the viewing angles of the used 

perspective cameras are 60 and the resolution of acquired images is 600600. In each 

simulation, two omni-images were taken firstly, and the projections of each 3D 

measurement location Li were extracted as two pixels li and ri in the left and right 

omni-images, respectively. To simulate the imprecision introduced by the feature 

detection process, noise values within the range from 1.0 to 1.0 were introduced into 

the coordinates of the extracted pixels li and ri. The mid-point triangulation process 

[54] was then conducted to compute the 3D position Li′ of each landmark point 

located at Li using the coordinates of image pixels li and ri. Since the coordinate 

values were interfered with noise, the calculated 3D position Li′ is slightly different 

from the ground truth Li. With the recall that the measurement error is defined as the 

distance between the actual point and the measured one, the measurement error 

yielded by the simulation was computed accordingly to be ||Li  Li′||. 

The above simulation was conducted several times, and an average measurement 

error was calculated for each landmark point as plotted in Fig. 6.15(a). These average 

measurement errors are considered as ground-truth values, and were compared with 

the measurement errors calculated by the proposed error model and those proposed by 
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the four implemented existing methods shown in Figs. 6.15(b) through 6.15(f), 

respectively. The peak signal-to-noise ratio (PSNR) values and the running times of 

the five methods are listed in Table 6.2, from which one can see that the proposed 

error model yields the highest PSNR, and the TR method is the best of the four 

existing methods in this aspect but worse than the proposed model by a factor of 

10(2.367  1.760) = 100.607  4.04, and the running time of the proposed method is smaller 

than that of the TR method by a factor of 273.97/8.56  32.01. 
 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

Fig. 6.15 Images for 3D measurement errors (with darker colors indicating smaller 

errors) calculated by (a) simulations, (b) proposed method, (c) method DET 

[37][38], (d) method TR [37][39], (e) method MAXEIG [37][40], and (f) method 

MAXDIAG [41].  

 

Table 6.2 PSNR Values and Running Times in the Simulation  

Method PSNR Running Time 

Proposed error model 23.67dB 8.56 milliseconds 

Method DET [37][38] 12.07dB 273.22 milliseconds 

Method TR [37][39] 17.60dB 273.97 milliseconds 

Method MAXEIG [37][40] 15.32dB 344.03 milliseconds 

Method MAXDIAG [41] 15.24dB 277.24 milliseconds 
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Next, we describe the derivation of the optimal configuration of a vision system 

for a real laboratory environment to compare the proposed optimization methods with 

the conventional ones. In the environment, a user was allowed to move freely in a 

specified 3D measurement area, and the two omni-cameras were placed within a 

specified camera placement area. The optimal positions and orientations of the two 

omni-cameras were computed for this environment by the proposed method and the 

four existing methods mentioned previously. 

Specifically, as shown in Fig. 6.16(a), the floor of the environment is the 

XY-plane, the 3D measurement area is the cuboid with two diagonal points being (5.0, 

2.0, 2.0) and (5.0, 0.0, 00), and the camera placement area is the rectangle on the 

plane Z = 0 with two diagonal points being (5.0, 00, 1.0) and (5.0, 0.5, 1.0). The 

goal of the optimization algorithm is to find the optimal positions O1 and O2 of the 

two omni-cameras, and their optical axes directions a1 and a2, such that the 3D 

measurements of an object located in the 3D measurement area are as accurate as 

possible. The two cameras are hyperboloidal catadioptric ones with eccentricity  

being 1.6571, the viewing angle of the perspective camera is 2max = 38°, and the 

omni-image size is 600600. 

The optimization process was conducted firstly for a general case. At first, some 

points, for use as 3D measurement locations, were sampled within the 3D 

measurement area with a fixed interval 10cm, and some points, for use as the camera 

placement locations, were sampled within the camera placement area with a fixed 

interval 1cm. Then, for each possible positions O1 and O2 of the cameras, the 

directions of the optical axes were derived according to the proposed method, and the 

3D measurement error were assessed by the error model proposed previously. Finally, 

the poses of the two omni-cameras which yield the minimum 3D measurement error 

were taken to be the parameters of the best system configuration. The result of this 

process says that two cameras should be placed at (3.78, 0.5, 1.0), respectively, and 

the optical axes be oriented in accordance with the vectors ( 0.14, 0.99, 0.0), 

respectively. 
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(a) 

 

(b) 

 

(c) 

Fig. 6.16 Environment where experiments were conducted. (a) An illustration. 

(b)(c) Two omni-images captured in the environment. 

 

To test the 3D measurement accuracy using such a system configuration, a 

checker board were placed on the planes with Y = 0.0, 1.0, and 2.0 in the 3D 

measurement area, as shown in Figs. 6.17(a) and 6.17(b). The image pixels 

corresponding to all the cross points were manually picked out from the captured 

omni-images, and the obtained coordinates of these pixels were disturbed with 

additive noise within the range [5, 5] to simulate errors introduced by the feature 

detection process. Then, by mid-point triangulation, the 3D data of the cross points 

were derived, called the measured data. Finally, the 3D measurement errors were 

taken to be the distances between the measured data and the ground-truth data, the 

latter being measured manually in advance. The 3D measurement errors of the cross 

points on the calibration board at plane Y = 0.0 are drawn in Fig. 6.17(c), whose shape, 

as can be found, is consistent with that of Fig. 6.6(b) or Fig. 6.15(b), though depicted 

in different ways. Also, these results of the proposed method are listed in Table 6.3 

for comparison with those obtained similarly of the aforementioned four existing 
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methods. As can be seen from the table, the proposed method yields the minimum 

measurement errors, and runs faster than the others for about 20 times. 
 

 

(a) 

 

(b) 

X
Z

error

 

(c) 

Fig. 6.17 Testing the 3D measurement accuracy of the derived best system 

configuration. (a)(b) A checkerboard is placed at Y = 0 to test the accuracy. (c) The 

3D measurement errors of the points on the board. 

 

Table 6.3 The Optimization Results of the Methods  

Method 
Camera Positions 

(unit: meter) 

Maximum 3D 

Measurement 

Error (unit: cm) 

Run Time 

(unit: sec) 

Proposed method (3.78, 0.5, 1.0) 26.290 11.413 

Method DET [37][38] (4.02, 0.5, 1.0) 29.185 216.927 

Method TR [37][39] (3.95, 0.5, 1.0) 28.007 217.241 

Method MAXEIG [37][40] (3.94, 0.5, 1.0) 27.843 254.599 

Method MAXDIAG [41] (3.88, 0.5, 1.0) 26.877 220.423 
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6.8 Conclusion  

The issue of designing the optimal configuration of a stereo vision system with 

two catadioptric omni-cameras to compute 3D data with minimum errors is 

investigated in this study. The solution includes the poses and the mirror-shape 

parameters of the omni-cameras. An analytic formula is derived to model the 3D 

measurement error, which takes into consideration the error propagation in the data 

computation process. Two fast and elegant optimization algorithms have been 

designed accordingly for “regular” environments with rectangular cuboid-shaped 3D 

measurement and camera placement areas. One of them, based on a bisection scheme, 

is optimal but relatively slower, which may be used for off-line applications. And the 

other, using analytic formulas to calculate approximate solutions, is faster for realtime 

applications with the computed precision being sub-optimal but close to that of the 

former. An algorithm for dealing with general environments with irregular-shaped 3D 

measurement and camera placement areas has also been developed for general uses. 

Experimental results show the feasibility of the proposed method. 

In real applications, a manufacturer may produce omni-cameras according to the 

derived optimal mirror shape. Then, a consumer may bring them back and deploy 

them in the optimal or nearly-optimal pose using the proposed algorithms. As a result, 

a stereo vision system which yield precise 3D measurement results can be set up. 

Future studies may be directed to generalizing the proposed optimization method to a 

stereo vision system with more than two omni-cameras. 
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Chapter 7 A Convenient Vision-based System 

for Automatic Detection of Parking Spaces in 

Indoor Parking Lots Using Wide-angle Cameras  

The details of the proposed convenient indoor vision-based parking lot system 

using wide-angle fisheye-lens or catadioptric cameras is described in this chapter, 

which is easy to set up by a user with no technical background. Easiness in the system 

setup comes mainly from the use of a new camera model which can be calibrated 

using only one space line without knowing its position and direction, as well as from 

the allowance of convenient changes of the detected parking space boundaries. After 

camera calibration based on the new camera model is completed, parking-space 

boundary lines are extracted automatically from input wide-angle images by a 

modified Hough transform with a new cell accumulation scheme, which can generates 

more accurate equal-width curves using the geometric relations of line positions and 

directions. Also, the user may easily add or remove the boundary lines by single 

clicks on images, and parking spaces can be segmented out by region growing by the 

use of the boundary lines. Finally, vacant parking spaces can be detected by a 

background subtraction scheme. A real vision-based parking lot has been established 

and relevant experiments conducted. Good experimental results show the correctness, 

feasibility, and robustness of the proposed methods. 

In the following, an overview of the proposed method is first described. Then, the 

details of the proposed camera model and calibration scheme are described next, 

followed by the proposed space line detection method and the proposed parking space 

segmentation and vacancy detection techniques. Three different series of experiments 

are also stated and discussed, followed by some conclusions provided in the last 

section. 

 

7.1 Overview of Proposed Method  

The indoor parking lot system proposed in this study utilizes multiple wide-angle 

cameras affixed on the ceiling and looking downward vertically. The system 

operations can be divided into four stages as shown in Fig. 7.1: camera calibration, 
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space line detection, parking space segmentation, and vacancy detection. In the first 

stage, a new camera model is proposed, leading to the uses of fewer parameters than 

conventional models and a single space line for calibrating the model. This is why the 

proposed calibration process can be done by a user with no technical background. In 

the second stage, space lines appearing in the captured image are detected by an edge 

detection process, followed by a Hough transform based on a new cell accumulation 

scheme. Equal-width curves are so generated, leading to more precise space line 

detection results for use as the boundary lines of the parking spaces. 

 

 

 

Edge detection
Hough transform based on new 

accumulation scheme

Post processing on Hough cells

Choose cells 

with largest values

Find the direction of boundary lines of parking spaces

Calibrate from a single line using the proposed method

Camera Calibration

Space Line Detection

Automatically extract the boundary lines

Manually adjust the boundary lines

Generate parking space regions by mouse clicking & region growing

Parking Space Segmentation

Vacancy Detection

Background learning of vacant parking spaces

Vacancy detection by background subtraction

 
 

Fig. 7.1 The proposed parking lot system.  
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In the third stage, the detected boundary lines are analyzed and displayed 

automatically, and the user can then simply click on the image to add or remove the 

boundary lines. In addition, by clicking on any position within each parking space, the 

space region is generated by a region growing process. Finally, after “learning” the 

background parameters of the vacant parking spaces for various environment 

conditions, vacant spaces can be found by background subtraction for uses in parking 

management. 

The proposed vision-based parking lot system has at least the following merits: 1) 

wide-angle cameras are used so that less cameras are needed to cover the area of a 

given parking lot; 2) the camera system can be calibrated using only one line in the 

environment, so that the system can be set up easily by a user with no technical 

background; 3) the proposed Hough transform with the new cell accumulation scheme 

generates equal-width curves, so that the proposed system is capable of dealing 

directly with distorted images captured by wide-angle cameras and the space line 

detection results are more precise than those yielded by conventional methods; 4) 

unlike many previous studies which specify parking spaces manually, the proposed 

method detects them automatically for convenient system setup as well. 

 

7.2 Proposed Calibration Method using Only One Space 

Line  

To design an easy-to-setup vision-based parking lot system, the camera 

calibration process must be easy to carry out by normal users with no technical 

knowledge. In this section, a simplified camera model is proposed for this aim. A 

calibration method is proposed accordingly which makes use of only one space line in 

the environment without knowing its position and direction. 

The proposed modified unifying camera model is based on the use of an optimal 

approximation value of the parameter l which is the distance from the effective 

viewpoint O to the pinhole point Oc as shown in Fig. 7.2. The model has two merits: 1) 

it reserves important characteristics of space lines as shown in this section; and 2) it 

can be calibrated easily by the use of a single space line as described later in this 

dissertation. These merits make the corresponding system setup process easy to 

conduct. 
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Fig. 7.2 An illustration of a two-step spherical mapping.  

 

The rationale of finding a fixed optimal value of parameter l can be explained as 

follows. In Fig. 7.3(a), the image of a space line, called line image hereafter, is 

marked as a blue curve; and in Fig. 7.3(b), this line image is shown to be fit well 

enough by conic sections with different values of the parameter l while the two 

vanishing points are fixed (marked in yellow in the figure). This phenomenon leads to 

two conclusions: 1) the parameter l cannot be well calibrated from line images; and 2) 

reversely, the value of the parameter l did not affect the space line detection process. 

The first conclusion is consistent with some previous studies [46][48]. Specifically, 

the parameter l was fixed in the simulation experiments described in Geyer and 

Daniilidis [46], so the parameter l was not derived in the calibration process; and as 

seen in Deng et al. [48], the parameter l is assumed to be known before the calibration. 

The second conclusion makes it possible to find an optimal value of the parameter l to 

approximate that of any kind of wide-angle camera, without affecting the space line 

detection process. 
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(a) 

 

(b) 

Fig. 7.3 Fitting a space line using different values of l. (a) Space line to be fit 

(marked as blue). (b) Fitting results using l = 2.0, 1.5, 1.0, 0.8, and 0.5 with larger 

ellipses corresponding to smaller values of l, and the two yellow crosses indicate 

the fixed vanishing points. 

To find the optimal value of l, we define first the range of parameter l of each 

kind of wide-angle camera. For parabolic catadioptric cameras, the value of l is 

known to be 1.0 [44]; for hyperbolic catadioptric cameras, the value of l is smaller 

than 1.0 and larger than 0.0 [44]; and for fisheye-lens cameras, the value of l is larger 

than 1.0 [47]. In this study, we define the interesting range of the parameter l to be 0.5 

< l < 2.0, which includes the commonly used values of l. For example, the values of l 

derived in [46][48] are 0.8, 0.966 and 1.0, that derived in [49] is 0.9663, and that 

derived in [50] is 1.07. 

The optimal value l* found by a simulation process as described in the 

following. 

1)  Generate simulated line images Ii with size 10001000 for a set of sampled 

values of l in the interesting range 0.5 < l < 2.0 and for a set of sampled 

positions and directions of space lines; 

2)  For each sample value lj
* in the range 0.5 < lj

* < 2.0, do the following steps  

2.1) find the best-fitting curve Iij
* to each line image Ii, with l = lj

* by a 

Levenberg–Marquardt process; 

2.2) compute the distance distij between Ii and Iij
* as 

 
1

*1 n

ij k k

k

dist p p
n 

   (103) 
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where n denotes the number of pixels on the line image Ii, pk a pixel on Ii, 

pk
* the nearest pixel on Iij

* to pk, and ||pk  pk
*|| the distance between pk and 

pk
*; 

2.3) calculate the average distance distj of all distij of all Ii as a measure of 

optimality of the sampled value lj
*, with a smaller distj meaning a better fit 

of lj
* to all Ii. 

3) Choose as the desired optimal value l* the lj
* with the smallest distj which is 

called also the average fitting error and denoted as dist subsequently. 

An experimental result of the above process is shown in Fig. 7.4, where Fig. 

7.4(a) shows a line image Ii marked in blue and a best-fitting curve Iij
* marked in red; 

Fig. 7.4(b) shows the trend of the value of distj for different lj
* values, from which it 

can be seen that an optimal value of li
* does exist and is located at 1.24 for choice as l*, 

and that the line images can be well approximated by Eq. (2) with l = l* resulting in an 

average fitting error dist  1.1941 pixels. 

 

pk

pk
*

 

(a) 

distj

(pixels)

lj
*

 

(b) 

Fig. 7.4 Finding the optimal value l*. (a) A line image Ii (marked in blue) and its 

best-fitting curve Iij
* (marked in red). (b) The trend of the average distj of the 

distances between the best-fitting curve and the line images. The optimal value of lj
* 

is 1.24, with distj = dist being about 1.1941 pixels. 
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As a result of utilizing the aforementioned second conclusion, we propose a 

camera model which is identical to the unifying one proposed in [44] but with its 

parameter l fixed to be the optimal value 1.24 derived previously. One merit of this 

model is that it leads to the possibility of calibrating wide-angle cameras using only 

one line image. This property is a great advantage over the conventional models 

[45][44], by which the camera cannot be calibrated reliably from line images as 

proved previously. It also facilitates a non-technical user to conduct the calibration 

process without difficulty as mentioned previously. 

Based on the proposed camera model using the fixed parameter l = 1.24, the idea 

of the proposed calibration process using a single line can be divided into three steps. 

First, a space line is chosen with its line image (in the shape of a conic-section curve) 

marked manually. Then, the best-fitting ellipse to this line image is computed, from 

which the unknown camera parameters and the space line are estimated roughly. 

Finally, a Levenberg–Marquardt algorithm is conducted to find the precise values of 

the camera parameters. 

In more detail, let L be a chosen space line, IL its line image, and EL the 

best-fitting ellipse to IL. As derived in [45][46], IL can be expressed as 

  
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, (104)
 

where (u, v) are coordinates of pixels on IL, (nx, ny, nz) is the normal vector of the 

plane  formed by line L and the origin of the camera’s lens center, and (l, fe) are the 

parameters used in the unifying camera model as described in Sec. II.A. Also, let the 

ellipse EL be described by 

 0

1 1

T
u a b d u

v b c e v

d e f

     
     


     
          

. (105) 

Note that when nz = 0, the line image is a straight one going through the image center 

so that the parameter fe, which is the effective focal length of the camera, cannot be 

calibrated [46][62]. Ignoring this, we may rewrite Eq. (104), after dividing it by nz
2 ≠ 

0, to be 
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where G = nx / nz, and H = ny / nz. 

Now, the problem is to estimate roughly the values of the parameters (l, fe, G, H) 

such that Eqs. (105) and (106) are close to each other. Since only rough estimation is 

needed, we first simplify (106) by assuming l = 1.0. Accordingly, the problem is 

reduced to finding the parameters (fe, G, H) which satisfy 
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where “~” means “equals up to a scale.” Let  be the hidden unknown parameter for 

this scaling. Then, we have 
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One solution to the above equation for use as rough estimates of the parameters is: 
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A Levenberg–Marquardt process is conducted finally to derive the precise values 

of (fe, G, H), with the initial values being specified by (109) and the criterion being to 

minimize the value of 

 

   

   

2 2 2 2

2 2 2 2

2

1 1

1 1

1 1

T
e

e

e e e

l G l l GH f Gu u

v l GH l H l f H v

f G f H f

    
    
       
    
         

 

 (110) 

with respect to all the pixels (u, v) on the line image IL. After this optimization process 

is done, the parameter fe of the camera model is derived, completing the calibration 

process (as shown in Fig. 7.5). 

Four results of this calibration process are shown in Fig. 7.5. The calibrated 

values fe for Figs. 7.5(a) and 7.5(b) are 319.90 and 319.57, respectively, and those for 
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Figs. 7.5(c) and 7.5(d) are 266.73 and 269.53, respectively. The validity of the 

proposed calibration method can be shown by the good fitness of the best-fitting 

ellipse to the manually-marked line image in each case, and the closeness of the 

calibrated values fe in the first two cases using a fisheye-lens camera and in the 

remaining two cases using a hyperbolic catadioptric camera. 

 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

Fig. 7.5 Calibration results with yellow curves indicating manually-marked pixels, 

and red ellipses being the best-fitting results. (a)(b) Results using a fisheye-lens 

camera with calibrated values fe being 319.90 and 319.57, respectively. (c)(d) 

Results using a hyperbolic catadioptric camera with calibrated values fe being 

266.73 and 269.53, respectivley. 

 

7.3 Review of the Proposed Space Line Detection Method  

One of the important features in man-made environments is straight line, and as 

formulated by (104), these space lines are projected by wide-angle cameras to form 

conic sections in the resulting image, called the line images so far. In this section, the 
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proposed method for detecting the conic-section curve is described, which, differently 

from conventional methods, generates equal-width regions along a curve, as shown in 

Fig. 7.6. As a result, the proposed method can detect thick curves in images more 

reliably, overcome the noise produced by edge detection, and be utilized in 

accordance with the proposed camera model (described in a previous chapter) for 

more accurate detection of parking-space boundary lines. 

The proposed space line detection method is based on the Hough transform with a 

new cell accumulation scheme to achieve the ability to detect equal-width thick 

curves. As described by (104), a line image, which appears to be a conic section in the 

acquired wide-angle image, can be parameterized by the normal vector (nx, ny, nz) of 

the plane  formed by the corresponding space line and the origin of the camera. The 

normal vector can be expressed as 

    2 2, , , , 1x y zn n n A B A B   , (111) 

where  
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and 0 ≤ A, B ≤ 1. The parameters (A, B) are quantized into nn values to form Hough 

cells in this study, with the line images (conic-section curves) corresponding to the 

cells being described by the equation F(u, v) = 0 in (104), and the values (nx, ny, nz) in 

(104) defined by (111) and (112).  

 
 

F = 0

r

 

Fig. 7.6 An illustration of an equal-width curve along a curve F = 0 with width r, 

defined to be the regions of all the gray circles (not all drawn), or equivalently, the 

thick area bounded by the two dashed curves.  
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The first step in the proposed detection method is to obtain a binary version Ib of 

the input wide-angle image by edge detection. Then, for each Hough cell at 

parameters (A, B) and for each ‘black’ pixel p in B with coordinates (u, v), if p is in 

the equal-width curve region of the line specified by the parameter (A, B), then the 

cell value at (A, B) is incremented by one. 

In more detail, by referring to Fig. 7.7, it can be figured out that a pixel (u, v) is in 

the equal-width region with width r if and only if the curve F = 0 intersects the circle 

C centered at (u, v) with radius r. Furthermore, according to the intermediate value 

theorem [63], the curve F = 0 intersects the circle C if there exists a point (u′, v′) = (u 

+ u, v + v) on C such that F(u′, v′) and F(u, v) are with opposite signs. Accordingly, 

if F(u, v) is positive, we try to find the point (u′, v′) on C with the minimum value of 

F(u′, v′), and then determine whether F(u', v') and F(u, v) are with opposite signs. 

Reversely, if F(u, v) is negative, we try to find the point (u′, v′) on C with the 

maximum value of F(u′, v′), and then determine whether F(u', v') and F(u, v) are with 

opposite signs. For the first case with F(u, v) ≥ 0, since F(u′, v′) should be the 

minimum value and since the gradient F specifies the direction of increasing the 

function value F(u, v), the vector (u, v) should be in the negated direction of the 

gradient F. So, under the constraint that the length of (u, v) is the radius r, the 

vector (u, v) may be expressed as [F(u, v)/||F(u, v)||]r. For the second case 

with F(u, v) < 0, since F(u′, v′) should be the maximum value, it can be derived by a 

similar reasoning that the vector (u, v) should be with the same direction of the 

gradient F so that it can be expressed as [F(u, v)/||F(u, v)||]r. As a summary, we 

have 
 

F = 0

r

(u, v)

 ,F u v

 ', 'u v

r
C

 

Fig. 7.7 An illustration for determining whether a pixel at (u, v) lies inside an 

equal-width curve or not.  
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Accordingly, the function value F(u′, v′) can now be derived by the 2nd-order Taylor 

expansion to be: 
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where HF(u, v) is the Hessian matrix of function F described by 
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whose details may be derived from (104) and are omitted here. 

In conclusion, to detect an equal-width line in a binarized wide-angle image Ib by 

the proposed Hough transform, we conduct the following process. 

1) For each pixel p with coordinates (u, v) in Ib and for each Hough cell with 

parameters (A, B), calculate (u, v) and (u', v') by (113), and F(u, v) and F(u′, 

v′) by (104) and (114), respectively.  

2) If F(u, v) and F(u′, v′) are with opposite signs, decide the pixel p at (u, v) to be 

in the equal-width region of the line specified by the parameters (A, B), and 

increment the value of the Hough cell with (A, B) by one. 

3) Find out the parameters (A, B) of the desired line images (conic-section curves) 

from the resulting Hough space by the following steps. 

3.1) Enhance the local maximums of the Hough space by applying the 

following sharpening filter: 
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. (116) 

3.2) Pick out all the Hough cells with values larger than a pre-selected 

threshold  and take the cells’ parameters (A, B) for use as those of the 
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detected line images. 

4) Use the derived parameters (A, B) to draw the conic sections of the detected 

line images on the input image as the output. 

By the way, the curve width r used in (113) is defined by considering the error 

introduced in the edge detection process as well as the error introduced by the 

approximation of the parameter l. The former is approximated to be 1 pixel, and the 

latter 1.2 pixels, according to the data shown in Fig. 7.4. As a result, the width r used 

in this study is taken to be r = 1.0 + 1.2 = 2.2 pixels. 

A result of the above line image detection method is shown in Fig. 7.8. The input 

image captured by a hyperbolic catadioptric camera is shown in Fig. 7.8(a), with the 

Canny edge detection result obtained from it shown in Fig. 7.8(b). The generated 

Hough space is shown in Fig. 7.8(c), and the result of applying the filter (116) in Fig. 

7.8(d). Finally, some cells with larger values were picked out, and the line images 

corresponding to the cells’ parameters (Ai, Bi) were drawn as shown in Figs. 116(e) 

and (f), where the numbers of drawn lines are 30 and 50, respectively. 

Next, the effectiveness of the proposed cell accumulation scheme is analyzed 

more thorough as follows. As stated previously, each Hough cell is specified by two 

parameters A and B, and corresponds to a conic-section curve F(u, v) = 0 in the input 

image. Since the parameters A and B and the image coordinates u and v are all 

quantized to be discrete, the function value F(u, v) for a certain coordinate pair (u, v) 

may not be exactly zero. A conventional way to deal with this problem is to define a 

threshold T and consider pixels with coordinates (u, v) satisfying the following 

inequality as being on the conic section described by F(u, v) = 0: 

  ,F u v T . (117) 

Two results yielded by this method are shown in Figs. 7.9(a) and (b) with 

different thresholds T = 40 and 150, respectively. As can be seen, the generated conic 

sections are not with equal widths. This phenomenon results from some undesirable 

operations which cause some edge pixels not belonging to the conic section to be 

accumulated into wrong Hough cells, and vice versa. In contrast, the proposed method 

described in Sec. III.A yields equal-width curves as shown in Figs. 7.9(c) and (d) for 

different curve widths r = 1 and 2 pixels, respectively. These results show the 

capability of the proposed method for detecting equal-width curves, which is superior 
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to conventional methods and suitable for applications requiring higher line detection 

accuracy. 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

 

(e) 

 

(f) 

Fig. 7.8 Results of the proposed space line detection method. (a) The input image. 

(b) Canny edge result. (c) The Hough space. (d) The Hough space after applied the 

filter (116). (e)(f) Results of 30 and 50 lines, resepctively. 
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(a) 

 

(b) 

 

(c) 

 

(d) 

Fig. 7.9 Comparison of conventional and proposed accumulation method. (a)(b) 

Non-equal-width results yielded by conventional method with thresholds T = 40 

and 150, respectively. (c)(d) Equal-width results yielded by proposed method with 

width r = 1 and 2, respectively. 

 

Some experiments were also conducted to compare the space line detection 

results yielded by the conventional Hough cell accumulation scheme and those by the 

proposed method. An input image and the corresponding Canny edge detection result 

are shown in Figs. 7.10(a) and (b), respectively. The 10 and 30 detected space line 

images yielded by the conventional scheme are drawn in Figs. 7.10(c) and (d), 

respectively, and those yielded by the proposed method are shown in Figs. 7.10(e) and 

(f), respectively. As can be found from the figures, the curves detected by the 

conventional scheme mostly go through the image center, which are not good results. 
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This undesirable phenomenon may be explained from the simulation results shown in 

Fig. 7.9. Specifically, as can be seen from Fig. 7.9(b), the conventional scheme 

generates a thicker curve when the real curve appears nearer to the image center, and 

vice versa. This means that each Hough cell corresponding to a curve nearer to the 

image center will collect “votes” from a thicker line band in the input image (i.e., 

more edge pixels will be “accumulated” into such a cell), and vice versa. Therefore, 

when using the conventional scheme to detect curves by picking up Hough cells with 

larger votes, those curves nearer to the image center are more likely to be chosen first, 

yielding the results as shown in Figs. 7.10(c) and (d). In contrast, since the proposed 

method generates equal-width curves everywhere, this phenomenon does not appear 

in the detection results yielded by the proposed method as shown in Figs. 7.10(e) and 

(f). 

 

7.4 Parking Space Segmentation and Vacancy Detection  

Each parking space is usually marked by some colored boundary lines. In this 

section, some properties of such boundary lines are first derived. Then, a method to 

detect such boundary lines is proposed. Finally, a method to mark the regions of 

parking spaces using boundary lines, and a simple vacancy detection method based on 

background subtraction are proposed, by which whether a car is parked in a parking 

space can be decided. 

Three properties of the boundary lines of parking spaces can be identified: (1) 

lying on the ground; (2) being either parallel or perpendicular to one another; and (3) 

being ignorable if too far away from the camera. These properties are discussed in 

more detail as follows. 

As stated previously, the wide-angle cameras used in the proposed parking lot 

system are affixed on the ceiling to look right downward; so, the optical axis of the 

camera, namely, the Z-axis of the camera coordinate system as shown in Fig. 7.2, is 

vertical with respect to the ground specified as the XY-plane. Given a boundary line L1 

on the ground, its directional vector (d1x, d1y, d1z) is parallel to the XY-plane, so we 

have 

 d1z = 0. (118) 
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Let (A1, B1) be the Hough parameters of line L1 found by the space line detection 

method, and (n1x, n1y, n1z) be the normal vector of the plane formed by L1 and the 

camera origin. Then, from (111) we have 

 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

 

(e) 

 

(f) 

Fig. 7.10 Comparisons of space line detection results yielded by conventional and 

proposed method. (a) Input image. (b) Edge detection result. (c)(d) 10 and 30 

detected curves using conventional method. (e)(f) 10 and 30 detected curves using 

proposed method. 
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    2 2

1 1 1 1 1 1 1, , , , 1x y zn n n A B A B   . (119) 

In addition, since (n1x, n1y, n1z) is perpendicular to the directional vector (d1x, d1y, d1z) 

of L1, we have 

    1 1 1 1 1 1, , , , 0x y z x y zn n n d d d  , (120) 

which, when combined with (118) and (119), leads to 

 1 1 1 1 0x yAd B d  , (121) 

so that the directional vector (d1x, d1y, d1z) can be expressed in terms of A1 and B1 as: 

    1 1 1 1 1, , , ,0x y zd d d B A  . (122) 

Let (A2, B2) be the parameters of another boundary line L2. Then, the directional 

vector (d2x, d2y, d2z) of L2 can be derived similarly to be 

    2 2 2 2 2, , , ,0x y zd d d B A  . (123) 

Now, since the two boundary lines L1 and L2 are either parallel or perpendicular 

to each other, two cases can be identified. For the first case where the two boundary 

lines are parallel, their directional vectors satisfy 

    1 1 1 2 2 2, , , ,x y z x y zd d d d d d , (124) 

which, when combined with (122) and (123), leads to 

    1 1 2 2, ,A B A B , (125) 

where  is a scalar value. For the other case where the two lines are perpendicular, the 

inner product of their directional vectors satisfy 

    1 1 1 2 2 2, , , , 0x y z x y zd d d d d d  , (126) 

which, with the use of (122) and (123), leads to 

    1 1 2 2, , 0A B A B  . (127) 

Moreover, in order to ignore boundary lines which are too far away, we check the 

elevation angle  of each boundary line, which is defined in a way as illustrated in 

Fig. 7.11 so that if the larger the angle  is, the farther the boundary line is from the 

camera. According to our experimental experience, if the camera is mounted at 2.5 
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meters high, the farthest usable boundary line is at a distance about 10.0 meters from 

the camera. As a result, the maximum value of  is tan-1(10.0/2.5) = 75.96°, which is 

equivalent to n1z ≤ sin() = 0.970. Using this result with (119), we can derive another 

constraint on the parameters (A, B) as n1z = 
2 2

1 11 A B   0.970, or equivalently, as 

 

Z

ground plane (XY-plane)

L1
 
(boundary line)

n1 = (n1x, n1y, n1z)



wide-angle

camera

 

Fig. 7.11 Definition of the elevation angle  of a boundary line L1.  

 

 
2 2

1 1 0.059A B  . (128) 

As can be seen from Figs. 7.8(e) and (f), the results of the line image detection 

method are too noisy to be used directly. Next, a method is proposed to make use of 

the geometric properties mentioned previously to generate a better segmentation 

result. 

As defined above, let L1 and L2 be two boundary lines with parameter pairs (A1, 

B1) and (A2, B2), respectively. If (A1, B1) and (A2, B2) are treated as two vectors, then if 

the two lines are parallel to each other, (125) can be derived. Similarly, if the two 

lines are perpendicular to each other, (127) can be derived. Recalling that the 

boundary lines are either mutually parallel or perpendicular, we define the direction q 

of the boundary lines in such a way that the parameters (A, B) of each boundary line 

are either “parallel” or “perpendicular” to (cosq, sinq), i.e., are equal, up to a scalar, to 

either (cosq, sinq) or (cos(90o+q), sin(90o+q)). 

To find the correct value of the direction q, we first generate the Hough space and 

apply the filter as stated in Sec. III. From this Hough space, about 0.3% of the Hough 

cells with the largest values and satisfying (128) are chosen and put into a set S. Also, 

we create 90 bins in the range 0°~90° for different values of q. For each cell with 
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parameters (Ai, Bi) in the set S, we find the closest bin bi with value qi such that (Ai, Bi) 

is either parallel or perpendicular to (cosqi, sinqi), and increment bin bi by the value of 

the Hough cell with (Ai, Bi). After applying a Gaussian filter with standard deviation  

= 1, the bin with the largest accumulation value is chosen to be the direction of the 

boundary lines q. 

An experimental result of the above process is described in the following. An 

image captured by a hyperbolic catadioptric camera for use as the input is shown in 

Fig. 7.8(a). By following the line image detection method proposed in Sec. III, the 2D 

Hough space, after applying the filter, becomes as that shown in Fig. 7.8(d). The 

results of the accumulated bin values of q are shown in Fig. 7.12(a), where the largest 

bin is with value q = 76.5°, which is taken finally as the direction of the boundary 

lines. 

After the direction q of the boundary lines is derived, the boundary lines which 

do not satisfy the direction q are removed as follows. For each Hough cell in the set S 

with parameters (Ai, Bi), if there exists a real number qoffset within the range 10° ≤ 

qoffset ≤ 10° such that the two vectors (Ai, Bi) and (cos(q + qoffset), sin(q + qoffset)) are 

parallel or perpendicular to each other, then the cell is considered to satisfy the 

direction q and so kept in the set S; otherwise, it is removed. Afterwards, the 

connected components Si in the set S are found according to the criterion that two 

cells with parameter values (A1, B1) and (A2, B2) are connected if  

 |A1  A2| ≤ 0.05 and |B1  B2| ≤ 0.05. (129) 

Finally, the center of each connected component Si is calculated and their parameters 

(Ai, Bi) are then used to specify the boundary lines. By this process, the result 

corresponding to Fig. 7.12(a) is shown in Fig. 7.12(b), in which one can see that all 

the boundary line of the parking spaces have been detected. 
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(a) 

 

(b) 

Fig. 7.12 An example of parking space detection results with input image shown 

in Fig. 7.8(a). (a) Cell accumulation result of the direction q of boundary lines. (b) 

Results of boundary lines found by proposed method, showing improvement over 

line detection results shown in Figs. 7.8(e) and (f). 
 

 

Two more steps are proposed next to segment out the regions of the parking 

spaces in the acquired wide-angle image. Then, a vacancy detection scheme based on 

background subtraction is adopted. Recall that, these three steps are designed to be 

performed easily by a user with no technical background, so that the vision-based 

parking lot system can be set up and utilized conveniently as claimed. 

The first step is to adjust the boundary lines manually by clicking on the image to 

add and remove boundary line, one line a time. The boundary lines are first divided 

into two “mutually” perpendicular groups, as shown in Fig. 7.13(a) and distinguished 

by colors. The user may select either group, and then simply click on an existing 

boundary line to remove it, or click on any other position to add a new boundary line 

going through the mouse position. It is important to note that, with the direction q 

found previously, the boundary line can now be uniquely determined with only one 

point marked by the user; without q, there will be an infinite number of lines going 

through the point marked by the user. For example, from the detection results shown 

in Fig. 7.13(a), the result after two lines added and one line removed manually is 

shown in Fig. 7.13(b). 

The second step is to find parking-space regions. In this step, the user may simply 

click on any position of a parking space in the image, and a region growing algorithm 

is performed immediately to find the region of the parking space using the boundary 

lines. Two results are shown in Figs. 7.13(c) and (d). 



102 
 

The final step is to find vacant parking spaces. To implement this, the user has to 

capture beforehand an image of each parking space when it is vacant, and consider the 

image as the background of the parking space. Subsequently, to determine the 

vacancy of the parking space, each pixel in the acquired wide-angle image is 

considered as a foreground pixel if the absolute difference between the pixel’s value 

and that of the background pixel is larger than a threshold value in at least one of the 

R, G, and B channels. And then, if the number of foreground pixels is larger than 20% 

of that of the pixels in the parking-space region, the parking space is considered to be 

occupied; otherwise, vacant. An experimental result is shown in Fig. 7.14.  

 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

Fig. 7.13 Parking space segmentation. (a) Boundary lines detected by proposed 

method are divided into two groups marked by red and blue, respectively. (b) 

Boundary lines after manually adjusted. (c)(d) Regions of two green-marked 

parking spaces found automatically by proposed scheme. 
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(a) 

 
(b) 

Fig. 7.14 Parking space vacancy detection. (a) Input image. (b) Vacant parking 

spaces marked as green regions. 
 

7.5 Experimental Results of Proposed Calibration Method  

The proposed camera calibration method described in Sec. II uses the image of 

only a space line, without knowing its position or direction, to derive the parameters 

of the proposed general model for fisheye-lens, parabolic catadioptric, and hyperbolic 

catadioptric cameras. By assuming that the image center has already been calibrated 

by the use of the circular boundary of the omni-image as done in [48], the effective 

focal length value fe is the only remaining one to be calibrated. For this, a series of 

experiments were conducted using space lines lying on the ground at different 

positions, with the camera affixed on the ceiling and looking downward. Specifically, 

as illustrated in Fig. 7.15, one of the parameters of a space line L is its elevation angle 

, so several simulated space lines with different elevation angles  in the range of 

0°~90° were generated for uses in the experiments. The parameters fe of these 

simulated lines were all set to be fe
* = 500, and their line images generated to be of the 

size 800800 identically. Also, the coordinates of the pixels on each line image were 

disturbed by Gaussian noise with zero mean and varying standard deviations  Then, 

the proposed calibration method was applied to derive the parameter fe using these 

simulated line images. This process was repeated 100 times, and the mean and 

variances of the derived values of fe are plotted in Figs. 7.16(a), (b), and (c) for 

different noise levels  = 1.0, 3.0, and 5.0 pixels, respectively. Recalling that the 

actual value of the parameter fe is fe
* = 500, one can see from the figures that the 

parameter fe can be robustly calibrated under a large noise level when the elevation 

angle  > 15°. Note also that a space line with an elevation angle  near 0° will 

appear to be a short and nearly straight line segment going through the image center, 
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so that the parameter fe cannot be calibrated reliably using it, as expected according to 

the theory of the proposed calibration method. 

The main objective of the proposed methods is the ease for a non-technical user 

to set up the system. In this section, achievement of this goal is demonstrated  the 

user only has to select a single space line with its position and direction unknown. 

Images like those shown in Fig. 7.17 were captured by a hyperbolic catadioptric 

camera with MapCam MRC530N manufactured by EeRise, Inc. Four experimental 

results are shown in Figs. 7.17(a)-(d). In each experiment, the user only has to choose 

arbitrarily an obvious space line in the captured image, and marked roughly the pixels 

on the line as yellow points by mouse dragging. Then, the proposed calibration 

method was applied to derive the value of the effective focal length fe using the 

yellow points. The values of fe so derived for the cases shown in Figs. 7.17(a)-(d) are 

265.34, 258.14, 276.84, and 272.36, respectively, and the best-fitting ellipses to the 

marked space lines are shown in red. With parameter fe = 265.34, the boundary lines 

of the parking spaces were finally found and drawn in Fig. 7.17(e) using the proposed 

detection method. Also conducted were similar experiments with a fisheye-lens 

camera manufactured by Hunt Electronic, Inc. with model No. HLC-1NAD, and the 

results are shown in Fig. 7.18. The results of both experiment series show the 

feasibility and robustness of the proposed calibration method by the fitness of the 

drawn red ellipses to the marked yellow points, the closeness of the calibrated values 

fe to the real value, and the nearly perfect overlapping of the drawn boundary lines on 

the real ones. 

 

Z

ground (XY-plane)

L (space line)

n = (nx, ny, nz)



camera

ceiling

 

Fig. 7.15 Definition of the elevation angle  of a space line L on the ground.  
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(a) 

 

(b) 

 

(c) 

Fig. 7.16 Computed means and variances of calibrated values fe for simulated space 

lines with different elevation angles  where standard deviaion of Gaussian noise is 

1.0 pixel for (a), 3.0 pixels for (b), and 5.0 pixels for (c).  
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(a) 

 

(b) 

 

(c) 

 

(d) 

 

(e) 

Fig. 7.17 Applying proposed calibrate method to derive the parameter fe of a 

hyperbolic catadioptric camera. (a)-(d) Four results with calibrated values fe = 

265.34, 258.14, 276.84, and 272.36, respectively. (e) Boundary lines found by the 

proposed detection method with fe = 265.34. 
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(a) 

 

(b) 

 

(c) 

 

(d) 

 

(e) 

Fig. 7.18 Use of proposed calibration method to calibrate a fisheye-lens camera. 

(a)-(d) Four results with calibrated values fe = 323.74, 331.12, 339.74, and 328.57, 

respectively. (e) The boundary lines found by proposed detection method with fe = 

331.12. 
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7.6 Experimental Results of Parking Space Segmentation  

In the proposed boundary line detection method, the direction of the boundary 

lines, denoted as q, is computed first and the boundary lines are derived accordingly. 

Some experiments were conducted to test the capability of this scheme of finding q as 

described next. First, an image of an indoor parking lot was captured by a hyperbolic 

catadioptric camera, as shown in Fig. 7.19(a). Then, this image was rotated through 

the angles 30°, 60°, and 90° as shown in Figs. 7.19(b), (c) and (d), respectively. The 

boundary line directions q in these four images were firstly derived. Then, the 

boundary lines were detected automatically and superimposed on the original images 

as shown in Figs. 7.19(a)-(d), respectively. From the figures, one can see that the 

boundary lines fit well to the real ones appearing in the captured images, meaning that 

the directions of the boundary lines were found correctly by the proposed method. 

 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

Fig. 7.19 Automatic detection results of boundary lines. Rotation angles of these 

images are (a) 0°, (b) 30°, (c) 60°, and (d) 90°, respectively. The detected 

boundary lines are drawn and superimposed on the images.  
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To demonstrate that the direction q of the boundary lines can be robustly found 

even under bad conditions, two more experiments were conducted with input images 

shown in Figs. 7.20(a) and (b), in which noise was present, cars were parked in the 

spaces, and the lighting situations were poor. The results of the first experiment are 

shown in Figs. 7.20(c), (e), and (g), and those of the second are shown in Figs. 7.20(d), 

(f), and (h). Specifically, the edge detection results are shown in Figs. 7.20(c) and (d), 

respectively, in which one can see that the boundary lines were poorly detected; Also, 

some of the boundary lines are missing, as shown in Figs. 7.20(e) and (f). However, 

the directions of the detected and drawn boundary lines are correct, meaning that the 

direction q can be derived precisely even under bad conditions. With this correct 

value of q, the boundary lines can be adjusted easily by the proposed method as 

demonstrated by the results shown in Figs. 7.20(g) and (h). 

7.7 An Example of Setting up an Indoor Parking Lot System  

A real indoor vision-based parking lot system was established and its use for this 

study is introduced in this section. A fisheye-lens camera manufactured by Hunt 

Electronic with model No. HLC-1NAD was affixed on the ceiling of the parking lot. 

An image as shown in Fig. 7.21(a) was acquired at midnight firstly and used both for 

calibration and for detecting the boundary lines of the parking spaces. Specifically, a 

space line in the image was chosen arbitrarily according to a rule of thumb that the 

line should be long enough and not straight. The line pixels were traced and marked 

in yellow as shown in Fig. 7.21(b), with calibrated parameter fe = 331.1. 

Afterwards, the direction q of the boundary lines was derived, and the boundary 

lines detected automatically, with the results drawn in Fig. 7.21(c). Subsequently, 

boundary lines were added or removed by single clicks on the image as described 

previously. A result of such adjustments is shown in Fig. 7.21(d). At last, the parking 

spaces were segmented out by clicking on any point within the region of each space 

and applying a region growing algorithm. The regions of two parking spaces so found 

and drawn in green are shown in Figs. 7.21(e) and (f), respectively. After using the 

captured image shown in Fig. 7.21(a) as background, the system setup process was 

completed, and parking space vacancy detection was started. In one of the 

experiments we conducted, this system was maintained to run for 24 hours to detect 

vacant parking spaces every minute. The resulting detection accuracy was 99.67%, 

which is good enough for real applications. 
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(a) 

 

(b) 

 

(c) 

 

(d) 

 

(e) 

 

(f) 

Fig. 7.20 Results of two experiments under bad conditions with those of the first 

shown in (a)(c)(e)(g), and those of the second shown in (b)(d)(f)(h). (a)(b) Input 

images. (c)(d) Edge detection results. (e)(f) Automatic detection results of 

boundary lines. (g)(h) Adjusted boundary lines. (continued on next page) 
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(g) 

 

(h) 

Fig. 7.20 (continued from previous page) 

7.8 Conclusions  

A convenient indoor vision-based parking lot system has been proposed in this 

study, which is easy to set up by a typical user with no technical background and can 

detect vacant parking spaces automatically. The system uses wide-angle cameras, like 

fisheye-lens or catadioptric ones and analyzes parking-space boundary lines based on 

a new camera model proposed in this study. This model approximates optimally one 

of the parameters used in a conventional model (the distance l from the effective 

viewpoint O to the pinhole point Oc) while reserving some important characteristics of 

line images, including the shape of the curve and the locations of the vanishing points. 

A new line-based calibration method has also been proposed to calibrate the camera 

model using only one space line without knowing its location and direction, so that 

the calibration process can be done easily by a user without any technical background. 

A new Hough transform has been proposed as well to detect space lines, in which a 

skillful cell accumulation scheme is used to generate equal-width curves, yielding 

more robust and accurate detection result of parking-space boundary lines. A 

convenient adjustment method has also been developed such that an user can add or 

remove boundary lines by simple clicks on input images.  

Currently, the background images should be learned for various lighting 

conditions in order to conduct parking-space vacancy detection based on background 

subtraction. More intelligent methods may be developed to remove this weakness in 

the future study. 
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(a) 

 

(b) 

 

(c) 

 

(d) 

 

(e) 

 

(f) 

Fig. 7.21 Steps of setting up proposed system. (a) An image captured at midnight. 

(b) Manually-marked pixels (in yellow) of a space line for calibration task. (c) 

Results of automatic detection of boundary lines. (d) Result of boundary line 

adjustment. (e) and (f) Regions of two found parking spaces (marked in green). 
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Chapter 8 Conclusions and Suggestions for 

Future Works  

8.1 Conclusions  

In this dissertation, several methods for applications using omni-directional 

cameras have been proposed. A new camera model for omni-cameras has been 

proposed, which can be used to model various kinds of omni-cameras, and a 

convenient calibration method for the new model has also been proposed with the use 

of only one straight line without its location and direction unknown in advance. Also, 

an improved space line detection method has been proposed to detect straight lines 

from images captured by omni-cameras without unwarping them. From the viewpoint 

of consumers, a new binocular omni-vision system has been proposed as well along 

with an adaptation algorithm which can automatically adapt the system parameters to 

any system setups, so that the proposed vision system provides a convenient setting 

up process without any restriction on the locations or orientations of the two cameras. 

Furthermore, to design an optimal vision system, the issue of optimally designing the 

optimal configuration of a stereo vision system with two catadioptric omni-cameras 

has been investigated, and the proposed optimization methods yield the optimal poses 

of the cameras and the optimal mirror-shape parameters of the mirrors used in the 

omni-cameras. Finally, a convenient indoor vision-based parking lot system has been 

proposed in this study, which can be easily set up by a typical user with no technical 

background and can detect vacant parking spaces automatically. In the following, the 

conclusion of each method and suggestions for future researches are given as follows. 

 

(1) A new camera model for omni-cameras has been proposed, which can be used to 

model various kinds of omni-cameras, including single viewpoint catadioptric 

cameras, fisheye-lens cameras, etc. One of the main features of the proposed 

model is that it can be easily calibrated from one straight line without knowing the 

location and direction of the line. More specifically, in the proposed modified 

model, we have investigated an important invariant property in the projections of 

straight lines via omni-directional cameras, and have used this invariant property 

to eliminate one of the parameters, i.e., the parameter l, in the original unifying 
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model proposed by Geyer and Daniilidis [44]. In more detail, a series of 

experiments have been designed and conducted to find the optimal approximate 

value of parameter l, leaving only one parameter in the proposed modified model. 

Since there is only one parameter left in the camera model, the model can be 

easily calibrated, and it has been showed that it can be calibrated more robustly 

using only straight lines. A new calibration method has also been proposed using 

only one straight line to calibrate an omni-camera, which is a great advantage 

since it facilitates a non-technical user to conduct the calibration process without 

difficulty because it requires no extra object or measurement in the process.  

(2) An improved space line detection method has been proposed to detect straight 

lines from the images captured by omni-cameras without unwarping them. Three 

different conventional approaches has been first identified and analyzed, and it has 

been found out that these conventional methods have problems when detecting 

space lines from omni-images, yielding imprecise and unrobust detection results. 

From some more thorough analyses, it turns out that the main reason of the 

imprecision and unrobustness is because the conventional methods cannot 

generate equal-width curves when detecting space lines. To overcome this 

problem, a new method to generate equal-width curves has been proposed in this 

study with the use of total differentials, and this method has also been combined 

with the Hough Transform to yield the proposed space line detection method. 

From the experimental results, the proposed method yields much more precise and 

robust detection results when detecting space lines from omni-images, and it only 

requires a little more computation time when comparing with the conventional 

methods. Also, the proposed detection method along with the equal-width curve 

extraction techniques can be easily generalized to detect more complex analytical 

shapes.  

(3) A new binocular omni-vision system has been proposed along with an adaptation 

algorithm which can automatically adapt the system parameters to any system 

setups. The proposed vision system is aimed to provide a convenient setting up 

process without any restriction on the locations or orientations of the two cameras, 

so that it is suitable for the use in the area of consumer electronics. Firstly, the 

proposed vision system is composed of two omni-cameras facing the user’s 

activity area. Each omni-camera is affixed firmly to the top of a rod, forming an 
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omni-camera stand, with the camera’s optical axis adjusted to be horizontal (i.e., 

parallel to the ground). To deploy the vision system, the user can just bring the 

two camera stands home, and place them freely at the desired locations and with 

arbitrary orientations. After the two cameras are placed, the proposed adaptation 

process can be used to automatically derive the orientations of the two cameras 

with the use of the straight lines in the environment. During this step, the process 

also takes the advantage of the property that, the straight lines are mostly parallel 

or perpendicular to each other, to improve the correctness and robustness, and 

make the process require no line correspondence algorithm. After deriving the 

orientations, the system will ask the user to stand at the middle region in front of 

the two cameras, and derive the distance between the two cameras (i.e., the 

baseline) with the use of the user’s height. Accordingly, a coordinate system can 

be defined with no ambiguity, so the 3D data can be computed correctly. The 

proposed vision systems has two main advantages over the traditional ones. First, 

the proposed vision system can be set up freely, meaning that the user can place 

the two cameras at the locations he or she wants, and orient them freely. Second, 

the proposed system is with a very large viewing field by the use of 

omni-directional cameras, so the users can move much more freely within the 

environment. 

(4) The issue of designing the optimal configuration of a stereo vision system with 

two catadioptric omni-cameras to compute 3D data with minimum errors has been 

investigated. The solution includes the poses of the cameras and the mirror-shape 

parameters of the hyperboloidal mirrors used in the omni-cameras. An analytic 

formula is derived to model the 3D measurement error, which takes into 

consideration the variations of pixel-quantization precisions and angular 

resolutions in images by conducting error propagation analysis in the data 

computation process. Two fast and elegant optimization algorithms have been 

designed accordingly for “regular” environments with rectangular cuboid-shaped 

3D measurement and camera placement areas. One of them, based on a bisection 

scheme, is optimal but relatively slower, which may be used for off-line 

applications. And the other, using analytic formulas to calculate approximate 

solutions, is faster for realtime applications with the computed precision being 

sub-optimal but close to that of the former. An algorithm for dealing with general 
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environments with irregular-shaped 3D measurement and camera placement areas 

has also been developed for general uses. Experimental results show the feasibility 

of the proposed method. In real applications, a manufacturer may produce 

omni-cameras according to the derived optimal mirror shape. Then, a consumer 

may bring them back and deploy them in the optimal or nearly-optimal pose using 

the proposed algorithms. As a result, a stereo vision system which yield precise 

3D measurement results can be set up.  

(5) A convenient indoor vision-based parking lot system has been proposed in this 

study, which is easy to set up by a typical user with no technical background and 

can detect vacant parking spaces automatically. The system uses omni-cameras 

mounted on the ceiling, like fisheye-lens or catadioptric ones, and analyzes 

parking-space boundary lines based on a new camera model. The calibration 

method uses only one space line without knowing its location and direction, so 

that the calibration process can be done easily by a user without any technical 

background. A new Hough transform has been proposed as well to detect space 

lines, in which a skillful cell accumulation scheme is used to generate equal-width 

curves, yielding more robust and accurate detection result of parking-space 

boundary lines. A convenient adjustment method has also been developed such 

that a user can add or remove boundary lines by simple clicks on input images. 

Currently, the background images should be learned for various lighting 

conditions in order to conduct parking-space vacancy detection based on 

background subtraction.  

 

8.2 Suggestions for Future Works  

 

The following topics may be investigated in the future to further improve the 

proposed omni-vision techniques: 

(1) Omni-camera calibration using multiple lines — 

It is desired to utilize more than one space lines to calibrate omni-cameras. 

The geometry relation between these multiple lines should be utilized in the 

calibration process, such as the properties of parallel, perpendicular, distance, 

length, directions, etc. In this way, omni-cameras can be easily calibrated and 
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will be suitable for point localization and/or curve detections of general 

shapes. 

(2) Thick curve detections in omni-images — 

Future studies may be directed to improve the proposed method by focusing 

on extracting equal-width curves regarding to the 3D world, rather than the 

2D image space. Also, it is also desired to combine the proposed equal-width 

extraction techniques with advanced binary thresholding techniques. In this 

way, the region of a thick curve can be segmented out, so hopefully the curve 

can be extracted accurately and robustly by the proposed method. 

(3) Automatic adaptation to any system setups — 

Future works may focus on eliminating the coplanrity constraint of the 

optical axes. Also, it is also desired to develop automatic adaptation 

techniques for multiple omni-camera vision systems. In this way, the user can 

place the omni-cameras freely in the environment, and then the vision system 

can automatically adapt the system setup using features in the environment. 

(4) Derivation of optimal system configuration — 

It is possible to generalize the proposed optimization method to a stereo 

vision system with more than two omni-cameras. Also, other optimization 

methods (e.g., evolutionary algorithms) could be developed and compared to 

existing methods to come up with a good optimization method. 

(5) Parking lot management system using omni-cameras — 

More intelligent methods may be developed to remove this weakness in the 

future study. Also, future studies may be directed to develop a more 

convenient system by developing a method to simultaneously calibrate 

omni-cameras and detect parking spaces. In this way, the system can further 

ease the setting up phase by elimination the calibration process. 
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