

國 立 交 通 大 學

碩 士 論 文

A study of Monte Carlo Methods for Phantom Go

研 究 生：卜賽德

指導教授：吳毅成 教授

資 訊 科 學 與 工 程 研 究 所

中 華 民 國 102 年 9 月

A study of Monte Carlo Methods for Phantom Go

研 究 生：卜賽德
Student：Buron Cedric

指導教授：吳毅成 Advisor：I-Chen Wu

國 立 交 通 大 學

資 訊 科 學 與 工 程 研 究 所

碩 士 論 文

A Dissertation

Submitted to Institute of Computer Science and Engineering

College of Computer Science

National Chiao Tung University

in partial Fulfillment of the Requirements

for the Degree of

Master of Science

in

Computer Science

September 2013

Hsinchu, Taiwan, Republic of China

中 華 民 國 102 年 9 月

i

A study of Monte Carlo Methods for Phantom Go

研究生：卜賽德 指導教授：吳毅成 博士

國立交通大學資訊科學與工程研究所博士班

摘要

本論文通過研究 imperfect information games 和改進版 Monte Carlo 方法來建立一個有

效的遊戲應用。遊戲是測試人工智慧的重要領域。當今，最有效的方法是 Monte Carlo

法。這些方法是基於概率，並被廣泛用於創建遊戲序，特別是對於圍棋，也 imperfect

information games，比如橋牌，撲克牌或幻影圍棋。幻象遊戲根據 Perfect Information

創建，但每個玩家只能看到自己的棋牌。

Imperfect information 博弈是相當難以處理。由於玩家無法知道遊戲的狀態，因此非常

困難使用 Minimax 演算法，或找到一個 Nash equilibrium。啟用特定的 Monte Carlo 方

法可以把上述問題處理的很好。到現在為止，最好的電子幻影圍棋遊戲是 Flat Monte

Carlo，Cazenave 在 2006 年編寫。我們發展另一種方法 two-level Monte Carlo method，

並作分析比較。

ii

A study of Monte Carlo Methods for Phantom Go

Student：Buron Cedric Advisor：Dr. I-Chen Wu

Institute of Computer Science and Engineering

National Chiao Tung University

Abstract

This thesis deals with imperfect information games and the application of Monte Carlo

methods to build an effective playing program. Games are an important field for testing

Artificial Intelligence. Nowadays, the most efficient methods are Monte Carlo ones. These

methods are based on probabilities, and have been widely used to create playing programs,

particularly for the game of go, but also for imperfect information games, as Bridge, Poker

or Phantom Go; phantom games are created according to a Perfect Information game, but in

which each player only sees his own moves.

Imperfect information games are quite hard to handle. As the different state of the

game is unknown to the players, it is very difficult to use Minimax algorithms, and also to

find a Nash equilibrium. Specific Monte Carlo methods enabled to get good playing

programs in these games. However, till now, the best playing program for Phantom Go was

a Flat Monte Carlo one, written in 2006 by Cazenave. As new methods have been found

since then, we also tried a two-level variant of Monte Carlo, which would enable to take in

consideration what does or does not know each player during the playout.

iii

致謝

首先，我要感謝我的教授吳毅成先生。他在我編撰這篇論文時為

我提供了很大的幫助。沒有吳毅成教授的耐心和專業的指導就不

會有這項成果。我在此對吳毅成教授表示敬佩。在我必須回到法

國的時候，吳毅成教授為我聯繫了巴黎第九大學Cazenave教授。

我再次對吳毅成教授表示無限感激。

我感謝在法國接待我並在實驗中指導我幫助了我的巴黎第九大

學教授 Tristan Cazenave。Cazenave 教授為我提供了實驗的基

礎和環境。同時感謝 Abdallah Saffidine 博士，他給了許多寶

貴的建議也在實驗中解答了我的疑惑。也感謝巴黎第九大學

Miguel Couceiro教授和巴黎第八大學Nicolas Jouandeau教授。

我很榮幸能有機會和你們合作。

感謝台灣交通大學電子遊戲實驗室和法國LAMSADE實驗室的所有

同學。和你們度過了愉快的時光。這段時間裡我們在研究上和精

神上互相支持。

同時感謝台灣交通大學行政處 CS 和 EECS 的所有工作人員，特別

是李倖禎女士和游雅玲女士 。如果沒有你們的幫助，作為國際

交流學生的我會遇到很多困難。

最后我要感謝我的愛人侯驊真女士和我的家人，感謝他們在我六

個月異國的學習過程和六個月的實驗過程中的精神支持和經濟

支持。

iv

Acknowledgements

First of all, I want to thank Professor Wu I-Chen . He provided me great help during

the preparation of this thesis. I want to thank him and express my respect to him for his

patient and professional guidance, without which nothing would have been possible. When I

have had to get back to France, Professor Wu I-Chen contacted professor Cazenave, from

the University of Paris Dauphine. For that also, I want to express my immense gratitude to

him.

I want to thank Professor Tristan Cazenave, who welcomed me in France and helped

and guided me in my research at the University Paris-Dauphine. He provided me with a

basis for my work and research. I would also like to thank Dr. Abdallah Saffidine who gave

me many valuable suggestions about theory and technique and answered my doubts. I am

grateful to Professor Miguel Couceiro, from the University of Paris-Dauphine University

and Professor Nicolas Jouandeau from the University Paris VIII. I am honored to have had

the opportunity to cooperate with them.

I give thanks to my fellows in the lab in Chiao Tung University in Taiwan and to the

Department of LAMSADE in France. If I have had a pleasant time, it is thanks to them.

They gave me spiritual support during my studies. I am very grateful to the staff of NCTU

Administration Office of CS and EECS, especially Ms Li Xingzhen and Ms Yu Aileen. As

an international student, I would have encountered many difficulties without their help.

Finally, I want to thank my companion Miss Hou Huazhen and my relatives. I thank

them for their support during these six months abroad and the their moral and financial

support during this thesis.

v

Contents

摘要 ... i

Abstract .. ii

致謝 ... iii

Acknowledgements ... iv

List of Figures ... vii

List of Tables .. ix

List of Definitions ... x

Chapter 1 Introduction .. 1

Chapter 2 Imperfect information games ... 3

2.1 Elements of game theory .. 3

2.1.1 Definition of a game ... 3

2.1.2 Nash equilibrium .. 11

2.2 Imperfect information games ... 13

2.2.1 The rules of the Go game ... 15

2.2.2 The Phantom Go ... 19

Chapter 3 The Monte Carlo Search and its variants ... 21

3.1 Flat Monte Carlo search ... 21

3.2 Variants ... 25

3.2.1 Monte Carlo Tree Search .. 25

3.2.2 Nested Monte Carlo ... 27

3.2.3 Imperfect Information Monte Carlo Search 29

3.3 Improvements ... 31

vi

3.3.1 AMAF .. 31

3.3.2 RAVE.. 32

3.3.3 UCB .. 33

Chapter 4 Two-level Monte Carlo Search... 34

4.1 Basic idea ... 34

4.2 Complexity ... 38

4.3 Improvements ... 39

Chapter 5 Results .. 41

5.1 Explanation to the results ... 43

5.2 Discussion .. 45

Chapter 6 Conclusion and future work ... 47

Bibliography ... 48

vii

List of Figures

Figure 2.1. Tic-tac-toe endgame ... 7

Figure 2.2. A 9×9 goban ... 15

Figure 2.3. The white stone is captured .. 16

Figure 2.4. The white group is captured ... 16

Figure 2.5. Illustration of the ko rule ... 17

Figure 2.6. The white group is in atari: if Black plays in A, the white stones are captured 17

Figure 2.7. The black group is alive, the white one is dead; the eyes are identified by Δ 18

Figure 2.8. End of a game .. 19

Figure 2.9. A Phantom Go game .. 20

Figure 3.1. Monte Carlo Search for the first move .. 22

Figure 3.2. A Phantom Go game .. 24

Figure 3.3. After the sampling .. 25

Figure 3.4. Final position ... 25

Figure 3.5. MCTS algorithm, inspired from [11] ... 27

Figure 3.6. Nested Monte Carlo, 3 levels ... 29

Figure 3.7. Imperfect Information Monte Carlo Search ... 31

Figure 3.8. Illustration of AMAF ... 32

Figure 3.9 Illustration of UCB ... 33

Figure 4.1. Sample of the Referee’s board by Black .. 36

Figure 4.2. Black plays on C3 .. 36

Figure 4.3. Sample of the White’s board by Black .. 37

viii

Figure 4.4. Sample of the Referee’s board by White ... 37

Figure 4.5. White plays on B8 before making a playout .. 38

Figure 4.6. The playout .. 38

Figure 5.1. Kermit (baseline) VS Kermit160 ... 43

Figure 5.2. Summary of a game between FlatMC (Black) and LvlMC (White) 45

ix

 List of Tables

Table 1. LvlMC (Black) playing against FlatMC (White). The number is the number of

“wins” of Black, above 20 games .. 42

Table 2. FlatMC (Black) playing against LvlMC (White). The number is the number of

“wins” of Black, above 20 games .. 42

Table 3. LvlMC playing against LvlMC. The number is the number of “wins” of Black,

above 20 games .. 43

x

List of Definitions

Definition 2.1.1. Game .. 3

Definition 2.1.2. Two player zero-sum game .. 4

Definition 2.1.3. Strategy profile and outcome function ... 5

Definition 2.1.4. Subgame ... 9

Definition 2.1.5. Subgame; extensive form ... 10

Definition 2.1.6. Nash equilibrium .. 12

Definition 2.2.1. Imperfect information game ... 13

Definition 2.2.2. Incomplete information game .. 14

file:///C:/Users/cburo/Dropbox/Thesis.docx%23_Toc367691238
file:///C:/Users/cburo/Dropbox/Thesis.docx%23_Toc367691239
file:///C:/Users/cburo/Dropbox/Thesis.docx%23_Toc367691240
file:///C:/Users/cburo/Dropbox/Thesis.docx%23_Toc367691241
file:///C:/Users/cburo/Dropbox/Thesis.docx%23_Toc367691242
file:///C:/Users/cburo/Dropbox/Thesis.docx%23_Toc367691243
file:///C:/Users/cburo/Dropbox/Thesis.docx%23_Toc367691244
file:///C:/Users/cburo/Dropbox/Thesis.docx%23_Toc367691245

1

Chapter 1 Introduction

There are mainly two ways to deal with games. The first one is to try to solve the game,

i.e., either find a strategy which leads to win the game or prove that it is impossible to do so.

Some games, as tic-tac-toe, or 8 × 8 Hex are solved, but other ones, as Chess, are not

solved. This does not mean that computers cannot beat humans.

The second way of dealing with games is to build efficient programs, able to beat other

programs and humans. When it is not possible to solve games, often because of their length,

researchers try to build an artificial intelligence (AI) for them. This way of dealing with

games is very interesting because it is more likely to be applied in real life. Indeed, the real

situations are often too big, too complicated to be “solved”.

But even beating humans can be too complicated for computers. The game of Go is a

very ancient game, mainly played in Asian countries, as Taiwan, China, Japan and Korea.

More than that, it is a real challenge for Computer Science researcher, as the best human

players can still beat the best programs on 19 × 19 boards, because there are too many

possibilities to play in an efficient way. This game, as Chess or Hex, is a perfect information

game, as both players know everything which is on the board. In this thesis, we deal with

another problem than the size of the game, imperfect information Games (IIG).

In these games, the player does not have all information about the state of the game.

Notice that these games are different from the incomplete information games (in which

players miss information on the type of the other players) and the games with stochasticity

(intervention of chance). These games are very interesting because they are closer to real

situations, in which we don't know which are the actions and reactions of the environment

and/or other people.

Methods to build playing programs for these games are quite recent, because it is quite

2

hard to handle the issues of the unknown information. Actually, until some improvements

on Monte Carlo methods, it was very hard to build a really good playing program for them.

More classical methods have been tried, but they were quite few successful ones. Recently,

this kind of games has been studied with more success, in particular card games as Poker,

Bridge and Skat. We decided to follow these new methods, even if the card games are quite

far from board games, as Go. After the introduction (Chapter 1) we will clarify the

framework in Chapter 2: we need in game theory, we will present the game we have worked

on, Phantom Go. In the Chapter 3, we will have a look on the different Monte Carlo

methods and improvements we have used. The Chapter 4 will be dedicated to a new method

we have worked on, the two-level Monte Carlo search. We will show our results in the

Chapter 5 and then give a conclusion and some direction for upcoming works.

3

Chapter 2 Imperfect information games

While the Baroque rules of chess could only have been created by humans, the rules of go are so elegant,

organic, and rigorously logical that if intelligent life forms exist elsewhere in the universe, they almost

certainly play go.

Edward LARKER

In this chapter, we give some elements on games with imperfect information, also

called games of imperfect information, or Imperfect Information Games (IIG). To have a

good idea of what is precisely a imperfect information game, we will firstly introduce some

elements of game theory in general. We will then give more elements on IIGs, and finally

make a quick review of the different methods used to deal with such games.

2.1 Elements of game theory

2.1.1 Definition of a game

The formal definition of a game has been given in [32]. It is defined as follows:

In this thesis, we will only consider a particular class of games, the two player

zero-sum games, which are also defined in [32]:

Definition 2.1.1. Game

A game is defined by three sets: The set of players, , the set of strategies,

or policies and the set of payoffs, .

4

Notes about these definitions:

 In classical game theory, the players are supposed to know the rules and the

structure of the game: they only ignore their opponent's strategy. In imperfect

information games, this is not the case: at least one player knows some elements

his opponent ignores.

 We assume that each player tries to maximize his score, but in two player zero-sum

games, this is equivalent to minimize the score of the opponent. In algorithms such

as Minimax, one player tries to maximize his score (we call it “Max player”), while

the other one tries to minimize it (we call it “Min player”).

 The strategy defines what a player is going to do. In sequential games, this can be

expressed as “if the previous player plays A, I play B, if he plays C I play D and if

he plays E I play F”. The players are expected to choose a strategy to maximize

their payoff.

 The payoff is a | |-tuple defining for each terminal position the score of each

player.

We also need some other definitions, from [30]:

Definition 2.1.2. Two player zero-sum game

Let 𝒢 = (𝓝,𝓢,𝓧) be a game.

𝒢 is two player zero-sum game if and only if | | = 2, and

∀𝑠 = (𝑥0, 𝑥1) ∈ 𝓧, 𝑥0 + 𝑥1 = 0.

5

To represent games, we use three different forms: normal form, extensive form and

characteristic form. For most of the games, the normal and extensive forms are the more

convenient ones. The characteristic form is mainly used for cooperative games, which are

quite far from our field of interest. We are therefore going to introduce the two other forms

(extensive and normal). The definitions can be found in [30]

2.1.1.1. The normal form

Games in this form are described by a matrix. In each block of the matrix are

represented the wins of each players according to the strategy they chose. Let take a simple

example.

Definition 2.1.3. Strategy profile and outcome function

A strategy profile is a set of strategies for each player. It is defined for one

and only one strategy for each player.

The outcome function of a game take a strategy profile and give an

outcome = () = (1, , , | |).

The utility function of a player takes an outcome as its parameter and returns

the corresponding payoff of this player: 𝑥𝑖 = 𝑋().

6

In this example, the players are represented in the first column and the first line. The

possible strategies are “Rock”, “Paper”, “Scissors”. The payoffs are the tuples in the table.

The matrix is slightly different for a sequential game, and will not be a square one. Let

take the example of tic-tac-toe.

EXAMPLE 2.1.1. The game of rock-paper-scissors

The game of Rock-paper-scissors is a two-player game. Each

player secretly chooses rock, paper or scissors. Once both have chosen,

they reveal their choice. If both players made the same choice, it is a

drawn. If one player chooses rock (resp. paper, scissors) and the other

one scissors (resp. rock, paper) then the first player wins. We associate

the value 1 to “win”, the value −1 to “loss” and 0 to a drawn. By

using the normal form to describe this game, we get the following

matrix:

 Rock Paper Scissors

Rock (0,0) (1,−1) (−1,1)

Paper (1,−1) (0,0) (−1,1)

Scissors (−1,1) (1,−1) (0,0)

7

As we can see, this representation is kind of redundant. Let consider for instance the

first four lines of the first column. They all correspond to the same move for both players.

As they are in the same column, they correspond to the same strategy for Blue which will

choose A1, but also for Red: as Blue chooses A1, it means that Red will choose in any of

EXAMPLE 2.1.2: THE GAME OF TIC-TAC-TOE

Tic-tac-toe is a two player game, red and blue. It is played on a

3 × 3 grid. The two players alternatively fill one spaces of the grid,

and try to get 3 of their symbols aligned in a row, a column or

diagonally. We there get interested the endgame. There are only three

empty spaces (cf. Figure 2.1)

Figure 2.1. Tic-tac-toe endgame

In this configuration, assuming that Blue is Min player and plays

before Red (Max player), a possible strategy for Blue is “play 𝐴1; if

Red plays 𝐴2, then play 𝐶2, else play 𝐴2”. A possible strategy for

Red is “if Blue plays 𝐴1 play 𝐴2, if Blue plays 𝐴2, play 𝐴1, if Blue

plays 𝐶2, play 𝐴1”. We will write this Blue strategy (𝐴1 𝐶2; 𝐴2) and

the Red one(𝐴2, 𝐴1, 𝐴1). Then, the normal form of this game is as

represented on the next page.

8

these situations A2, and then Blue will play onC2. This representation is therefore very

useful to compare the different payoffs and strategies, but it is often more convenient to

represent the games under the form of a tree, the Extensive form.

2.1.1.2. The extensive form

In this form, games are represented as trees. Each node corresponds to a state of the

game, in which it is either the turn of Max player, either the one of Min player. The edges

correspond to a given move. A terminal state of the game is represented by a leaf. We write

the payoff behind the leaves. A total game corresponds to a path from the root of the game

till a leaf.

Extensive form games are much better to represent sequential games than simultaneous

games. Let take the same example as before, the tic-tac-toe endgame, on Figure 2.1.

EXAMPLE 2.1.2. The game of tic-tac-toe (continuation)

 (𝐴1 𝐶2, 𝐴2) (𝐴2 𝐶2, 𝐴1) (𝐶2 𝐴2, 𝐴1)

(𝐴2, 𝐴1, 𝐴1) (0,0) (−1,1) (−1,1)

(𝐴2, 𝐴1, 𝐴2) (0,0) (−1,1) (0,0)

(𝐴2, 𝐶2, 𝐴1) (0,0) (0,0) (−1,1)

(𝐴2, 𝐶2, 𝐴2) (0,0) (0,0) (0,0)

(𝐶2, 𝐴1, 𝐴1) (0,0) (−1,1) (−1,1)

(𝐶2, 𝐴1, 𝐴2) (0,0) (−1,1) (0,0)

(𝐶2, 𝐴2, 𝐴1) (0,0) (0,0) (−1,1)

(𝐶2, 𝐴2, 𝐴2) (0,0) (0,0) (0,0)

9

Then, the extensive form of this game is:

We can now give a definition for a (sequential) subgame:

Definition 2.1.4. Subgame

A subgame of a game (𝓝, 𝓢,𝓧) is a game (𝓝 = 𝓝,𝓢 , 𝓧 𝓧), for

which:

1. It contains all the nodes that are successors of the initial node.

2. It contains all the nodes that are successors of any node it contains.

EXAMPLE 2.1.3: THE GAME OF TIC-TAC-TOE (EXTENSIVE FORM)

10

Now, let consider a simultaneous game. It is not possible to represent the game strictly

as we represented tic-tac-toe, as the moves are simultaneous. To avoid the problem we

represent the game another way: an information set is represented by a dashed line linking

the different possible states of the set. Notice that we can also represent imperfect

information game the same way. Now, let take the same example as we took for normal

form: Rock-paper-scissors. On the EXAMPLE 2.1.4, we clearly see the information set for

the Min player (blue): as he does not know what Red chose, the three nodes are possible.

We can now give a new definition of what a subgame, from [30]:

Definition 2.1.5. Subgame; extensive form

A subgame of a game (𝓝, 𝓢,𝓧) is a game (𝓝 = 𝓝,𝓢 , 𝓧 𝓧), for

which:

1. The initial node is in a singleton information set.

2. It contains all the nodes that are successors of the initial node.

3. It contains all the nodes that are successors of any node it contains.

4. If a node is in the subgame then all members of its information set

belong to the subgame.

11

2.1.2 Nash equilibrium

2.1.2.1. Nash equilibrium for sequential games

Instinctively, a Nash equilibrium (which has been described in [29]) is a situation for

which any player cannot change his strategy without decreasing his payoff.

EXAMPLE 2.1.4. ROCK-PAPER-SCISSORS: EXTENSIVE FORM

12

There is at least one Nash equilibrium for any two-player zero-sum sequential game.

But in imperfect information games and simultaneous games, the Nash equilibrium cannot

be a “pure” strategy profile.

2.1.2.2. Nash equilibrium for simultaneous games, pure and mixed strategies

To define what is a Nash equilibrium for simultaneous games, we have to define the

notion of mixed strategy.

A pure strategy is a strategy describing deterministically what to do while a mixed

strategy is a set of strategies associated to probabilities.

We now get the following result, from [29]:

There is at least one (possibly mixed) Nash equilibrium for any game of perfect

information.

For instance, a Nash equilibrium of the Tic-tac-toe subgame in EXAMPLE 2.1.1 is

(A1 C2, A2), (A2, A1, A1). The only Nash equilibrium for Rock-Paper-Scissor EXAMPLE

2.1.1 is (
1

3
 rock,

1

3
 paper,

1

3
 scissors) for each player (it is a symmetric game), because

playing differently would lead the adversary to get a counter-strategy more efficient.

Definition 2.1.6. Nash equilibrium

Let (𝓝, 𝓢,𝓧) be a game, and 𝓢 = (, , , |𝓝| a strategy profile; let

 = (1, , , | | a function such that for a strategy profile , 𝑖() =

𝑋(()) . = (𝑠1
 , 𝑠

 , , 𝑠| |
) is a Nash equilibrium if and only if:

∀ 0 | |, ∀ , strategy profile of the - player,

 (𝑠1
 , 𝑠

 , , 𝑠𝑖 1
 , 𝑠𝑖

 , 𝑠𝑖 1
 , , 𝑠| |

) (𝑠1
 , 𝑠

 , , 𝑠𝑖 1
 , 𝑠𝑖, 𝑠𝑖 1

 , , 𝑠| |
).

13

2.2 Imperfect information games

Now, let consider a new concept: games of incomplete information. What is a game of

incomplete information? Instinctively, it is a game for which each player has not the same

information. There are many examples of imperfect information games, from card games to

the point of this thesis: phantom games.

In this section, we firstly define what a game with incomplete information is. Then, we

give an example of such a game, which is also the point of this thesis: Phantom Go.

Incomplete information are different from imperfect information games.

Let give an example of such a game. A simultaneous game can be seen as a sequential

game with imperfect information. We can take the game of rock-paper-scissors (EXAMPLE

2.1.4) and transform it into this equivalent form: player 1 secretly chooses rock, paper or

scissors, and player 2 chooses then his item. This game is exactly equivalent to the original

game. Its equilibrium is strictly the same as the one of the original game (
1

3
 rock,

1

3
 paper,

1

3
 scissors). In this game, player 2 does not know what move player 1 chose before playing

himself. Notice that he knows what are the strategies available to player 1, his payoffs, and

what information player 1 knows about him, which is not the case in incomplete

information games.

Instinctively, incomplete information games correspond to games for which the

Definition 2.2.1. Imperfect information game

A game of imperfect information is a game for which one player at least

does not know the complete history of the game at least at one moment of the

game.

14

information is not the same for both players about the rules or the structure of the game.

Harsanyi in [21] gives a more precise definition of what an incomplete information game is:

An example of such a game would Mafia. In this game, created in 1986 (see for

instance [5]). In this game, each player plays a role, either gangster (a small number of

players) or residents (notice that we do not take the third class of characters, detectives in

consideration because we don’t need it for our explanation). The residents do not know who

the gangsters are. The game has two phases. During the first one, the gangsters secretly

decide to kill one resident. During the second one, the citizens (gangsters and residents)

conjointly decide to kill one citizen. The residents will try to find a gangster, while the

gangsters (without revealing themselves) will try to convince the other citizens to kill

another player. As the residents do not know which players are gangsters, they can be duped.

In this game, some players, the residents, do not know the type of the other ones. This game

is an incomplete information game.

In [21, 19, 20], Harsanyi showed that imperfect and incomplete information games are

Definition 2.2.2. Incomplete information game

A game is said with incomplete information if and only if at some moment

of the game:

1. the strategies available to at least one player (his strategy space) are

not known to every player,

2. the physical outcome of the game is not known to every player,

or

3. the utility function of at least one player are not known to every player

15

equivalent, and that it is practically possible to transform incomplete information games

into imperfect information ones.

From the 50’s many imperfect information games have been studied, and in particular

phantom games, for which rules are the same as a game of perfect information, but for

which each player only knows his own pieces. An example of such a game is Kriegspiel

(phantom Chess). It has been studied by LI in [26]

The topic of this thesis is Phantom Go. This game is taken from Go, but the fact that it

is an imperfect information game changes quite a lot the way of creating a player for it. We

are now going to explain the game.

The Phantom Go is very close to Go. The main rules are the same: Atari, capture,

counting the points and territories are exactly the same as in the game of Go.

2.2.1 The rules of the Go game

We first describe the game of Go (for more information, please refer to [31]). The Go

game is a board game. The board (or “Goban” in Japanese) is a 9×9, 13×13, or 19×19

intersections board, you can see an example on Figure 2.2. At his turn, each of the two

players puts a stone on an intersection. The goal of the game is to create territories and

capture the stones of the opponent by surrounding them.

Figure 2.2. A 9×9 goban

16

2.2.1.1. Capture

A stone is linked to other ones by the lines of the board. If a stone or a group of stones

are surrounded by opponent's stones, they are captured (as on Figure 2.3 and Figure 2.4)

Figure 2.3. The white stone is captured

Figure 2.4. The white group is captured

2.2.1.2. Suicide

Putting a stone so that a group of your own stones is captured (commit a suicide) is

forbidden, except if putting this stone allows you to capture adversary's stones, and thereby

avoid the suicide.

2.2.1.3. Ko

The “ko” rule is made to avoid repetitions in the game: The rule forbids coming back

immediately to a previous position of the game. Concretely, this means you cannot capture a

stone that has just captured you, as shown on Figure 2.5. Nonetheless, you perfectly can do

it one move later, if the move is still allowed.

17

Figure 2.5. Illustration of the ko rule

2.2.1.4. Liberty and Atari

The number of empty intersections linked to a group is called «liberty». When a stone

or a group of stones has only one liberty i.e., the stones can be captured in the next stroke)

the situation is called Atari. An example of this situation is shown on Figure 2.6.

Figure 2.6. The white group is in atari: if Black plays in A, the white stones are captured

2.2.1.5. Living and dead groups and eyes

To be sure that a group of stones is not going to be captured, we constitute what we

call “eyes”. An eye is an empty intersection surrounded by stones of the same player. If

there is only one eye, the rules allow surrounding the group and finishing by putting the last

stone on the eye. But a group having two eyes cannot be captured, as the player cannot put a

18

stone simultaneously on the two eyes. A group of stones with two eyes is called alive, a

group in a situation which does not allow to create these two eyes is said dead. The Figure

2.7 summarizes these situations.

Figure 2.7. The black group is alive, the white one is dead; the eyes are identified by Δ

2.2.1.6. Territories and score

Another side of Go is the constitution of territories. When stones of the same color

circle an area, this area is called “territory”. The game ends when both players consider

there is not anything interesting to do, and pass. At the end of the game, the score is

calculated this way: each captured stone gives one point, each empty intersection of the

territory gives one point. Each opponent's stone on his territory gives one point.

An example is given on Figure 2.8. This example comes from the British go

association. In this game, the stone 𝑎 is considered as dead, as the player admits there is no

way to escape. Moreover, during the game, Black has captured 6 stones, and White 1 stone.

The territory of Black is 18 intersections, the territory of White is 19 intersections. Thus,

Black has 18+6+1=25 and White 19+1=20. Notice also that, as black begins, there may be

some handicaps points for White (“komi”), depending on the size of the board.

There is also another way to count the points (simpler). With the “Chinese rules”, each

empty intersection in a player's territory gets him one point. Each one of his stone on the

http://www.britgo.org/intro/intro3.html
http://www.britgo.org/intro/intro3.html

19

board (which is not on the opponent territory) also gets him one point. For instance, the

score of the Figure 2.8 would be 43 for Black and 38 for White (plus the komi).

Figure 2.8. End of a game

2.2.2 The Phantom Go

In the Phantom go, there are three different boards: one for each player and one for a

third part, the referee. Each player plays on his own board, and the referee plays the strokes

of both players.

Each player ignores the stones of his opponent, except when the referee gives him

information. The referee indicates that the move is illegal (but he does not indicate if it is

because it is an occupied position or a suicide). The judge also indicates the captures. The

game is usually played on 9×9 boards.

We give an example of a game and the notations for the game on Figure 2.9. The

information `it is impossible to play here' is represented as a square, even if we treat it as an

actual stone.

20

Figure 2.9. A Phantom Go game

21

Chapter 3 The Monte Carlo Search and its variants

In mathematics, as in physics, so much depends on chance

Stanislaw ULAM

In this chapter, we present the different Monte Carlo methods which have been used to

create playing programs for Phantom Go, and those we used to create our own method, the

two-level Monte Carlo, which is presented in the next chapter. We will also present classical

improvements for Monte Carlo, and which we have used in our programs.

3.1 Flat Monte Carlo search

As we explained, we can deal with games by solving them (for instance explore the

whole tree of an extensive form game) and getting the Nash equilibrium (see for instance

[23] for that kind of methods), but this is sometimes too long, and we prefer dealing with it

by exploring only parts of the tree. This is the idea of the Monte Carlo Search. The Monte

Carlo method has been discovered in 1949 in the article [28]. It has been applied to games,

particularly Go, because the domain was too wide to use classical minimax methods. In

spite of exploring the whole tree of the game, for each child of the current position, we only

explore certain path to a final position, and from the results obtained, we approximate the

value of this child. The paths are called “playouts”. Monte Carlo method has got many

improvements since its creation, as [6] shows. It has then been used on imperfect

information games (see for instance [15]). The program of Cazenave, [8] and [10], uses this

principle, as shown on Figure 3.1.

22

Figure 3.1. Monte Carlo Search for the first move

The algorithm is quite simple:

Algorithm 3.1.1. Flat Monte Carlo

Function Flat (InfoSet I, Player P):

 int score[]

 For each move m:

 I’ = copy(I)

 play(m, I’)

 sample(I’, P)

 score[m] = Playout(I’,m)

 move = argmax_m(score[m])

 return move

23

Let have a look at how to create a playout. To create a playout, we have to choose a

strategy (we usually choose a simple strategy), and use this strategy for every players until

getting to a final state of the game. We then look at our payoff, and add it to the average

value of the node we are evaluating, as shown on Figure 3.1.

This method (which has been created in 2001 by Ginsberg in [18] for Bridge, under the

name of Perfect Information Monte Carlo search, PIMC) gives good results in Phantom Go.

It is impossible to make a playout on a situation which is not complete. For instance, we can

imagine a trick-based card game, in which it is impossible to know which card belongs to

which player. This is why we need to sample the board before making the playouts. Now, to

create a playout, we sample a coherent state and then create the playout on this state. To

have an example of how this method works, see Figure 3.2 on which we can see a Phantom

Go board after 4 moves.

a. Black board

24

b. Referee’s board

c. White board

Figure 3.2. A Phantom Go game

It is the turn of Black, he firstly chooses a move to evaluate, for instance 𝐵2 and

samples the board (Figure 3.3) and then creates some playout according to a policy (for

instance playing random legal move, without filling the eyes).We then get a final position,

for instance the Figure 3.4. From this position, we get the score of Black, which is, if we use

the Chinese rule to count the points 41, and if we consider the game as a zero-sum game,

the score of Black will be 1 (and the one of White, 0, if we count 0 for loose and 1 for win).

If we repeat this technique several times for each intersection, we get a score. We then

choose the best score and play on this intersection.

25

Figure 3.3. After the sampling

Figure 3.4. Final position

3.2 Variants

3.2.1 Monte Carlo Tree Search

This method is now widely used and has been tried on Phantom Go, and we consider

that it is necessary to evocate it.

The basic idea of MCTS is to create a partial game tree, but using at the same time the

advantages of Monte Carlo Search. We will give the description of the algorithm, which has

firstly been described in [24]. The MCTS algorithm is composed of 4 steps, which will be

repeated until we have no more time (see

26

Figure 3.5, inspired from [11]):

1. Selection (as shown in Figure 3.5 (b)): According to an algorithm, for instance UCB,

we choose, from the root, a leaf to expand in the partial tree

2. Expansion (as shown in Figure 3.5 (c)): From the selected leaf (a non-final state of

the game) we choose one legal move, and add this node as a child of the selected

node

3. Simulation (as shown in Figure 3.5 (d)): From the selected child, we run a playout

till a final state, and get the score of the current player.

4. Backpropagation (as shown in Figure 3.5 (e)): We update information of the partial

tree. For instance, if we use UCB, we increment the number of times each node of

the selected sequence has been played, and also the number of “wins” of these nodes

if the outcome of the playout is “win”.

b. Selection c. Expansion

d. Simulation

27

Figure 3.5. MCTS algorithm, inspired from [11]

In [3] and [4], Borsboom shows that using MCTS is not better than a flat Monte Carlo

approach. This result can be understood because MCTS, as flat Monte Carlo search do not

take in consideration the imperfect information of the game. This is why we use another

variant of the Monte Carlo method, inspired by Nested Monte Carlo and Recursive Perfect

Information Monte Carlo.

3.2.2 Nested Monte Carlo

This method has firstly been published in 2009 by Cazenave, in [9]. A similar method

has been used, as “Recursive Monte Carlo Search” by Furtak and Buro in [7] (cf. next

subsection).

In this section, we will describe the nested Monte Carlo algorithm, and in the next one

the imperfect information Monte Carlo Search, which is the adaptation of the nested Monte

Carlo search to imperfect information games.

In the nested Monte Carlo algorithm, the idea is to use the general flat Monte Carlo

algorithm, but replacing the traditional playout by a Monte Carlo one. This Monte Carlo

policy can be nested itself. We give a more formal definition in Algorithm 3.2.1, from [9].

e. Backpropagation

28

The nested Monte Carlo algorithm has been used to get better results than flat Monte

Carlo in real time. But Nested Monte Carlo can be used in another way. By nesting the

Monte Carlo method once, we can use this method to deal with imperfect information, as

we can see in the next section.

Figure 3.6 shows how this algorithm works. To help comprehension, we only use one

playout per position, but you can notice that more often, we make several playouts for the

same move, to get a better value.

Algorithm 3.2.1. Nested Monte Carlo

function Nested(Position position, int level)

best score  - 1

initialization of best score

while not end of game do

if level = 1 then

the last level, we do not nest anymore.

move = argmaxm(playout(play(position;m)))

else

we nest the algorithm.

move = argmaxm(nested(play(position;m); level

1))

end if

if scoreofmove > bestscore then

best score  scoreofmove

best Move  moveofbestsequence

end if

end while

position = play(position; bestMove)

we effectively play the best move

return score

end function

29

Figure 3.6. Nested Monte Carlo, 3 levels

3.2.3 Imperfect Information Monte Carlo Search

There is a good reason not to deal with imperfect information games as we deal with

games of perfect information with Monte Carlo methods. As we explained before, the flat

Monte Carlo method proceeds as follows: After sampling the board, we play as the game

were a game of perfect information, and do not take in consideration the fact that the game

is an imperfect information one (see for instance [14]).

In [7], Michael Buro and Timothy Furtak show how to use the concept of a recursive

Monte Carlo Search to deal with imperfect information. To do so, the main idea is to nest

the sampling as we nested the Monte Carlo algorithm. Here is the algorithm:

𝑝1 ← 𝑝𝑙𝑎 (𝑝𝑜𝑠 𝑜𝑛,𝑚1)

𝑝 ← 𝑝𝑙𝑎 (𝑝𝑜𝑠 𝑜𝑛,𝑚2)

30

What is to notice is that each time we call imperfect we nest the Monte Carlo algorithm,

we sample the board. We transmit an information set, nothing more. Which means that each

player has to complete this information set, to sample the board, for each new call of

FinishedGameValue. Nonetheless, once we get to the last level, we do not sample anymore

and make a playout, which means that from this point, we make the same mistake as before.

The Figure 3.7 illustrates the algorithm

Algorithm 3.2.2. Imperfect Information Monte Carlo Search

function Imperfect(Info Set IS, Player P, Time t)

for m ∈ Moves(IS) do

val[m]  0

end for

while t 6 = 0 do

X  Sample(IS)

for m ∈ Moves(X) do

v  FinishedGameV alue(X;m; P)

val[m]  val[m] + v

end for

t  Remaining time

end while

return argmax_m(val[m])

end function

function FinishedGameValue(State X, Move m, Player P)

Y  Play(P;X;m)

while Y is not a terminal Position do

P  Next Player(P)

Y  Play(P; Y; ChooseMove(P; GetIS(Y; P)))

GetIS (Y; P) gets the Information Set of player Pin the

State Y

end while

return Score(P; Y)

end function

31

Figure 3.7. Imperfect Information Monte Carlo Search

3.3 Improvements

3.3.1 AMAF

All Moves As First is an improvement for Monte Carlo Search, and has been

developed by Silver and Gelly (cf. [16]) and used in Go and MCTS [17] with success. The

main idea is to consider during the playouts the moves as if they were children of the

current node. In our case, we use this improvement for flat Monte Carlo Search, which

means that in spite of updating only the score of the chosen move after a playout. While

AMAF gives the same pound to each score (whether it is the child of the current node or not)

we update the scores of all the moves which have been played, we give a different pound to

the real child of the current position and to the other ones. This method is called α-AMAF,

and is explained by Helmbold, and Parker in [22]. The formula to determine the score of a

legal move i is:

𝛼𝑉𝑖 + (1 − 𝛼)𝑣𝑖

32

where 𝑉𝑖 is the score of i as the child of the current move, and 𝑣𝑖 is the score of the move

not as the child of the current move.

Figure 3.8. Illustration of AMAF

To illustrate AMAF, we can have a look at the tree on Figure 3.8. If we use AMAF,

with α = 0.7 the score of the move 𝑚 is:

0.7 × (12 + 25 − 20 + 11 + 13 − 16 − 10 + 13) + 0.3 × (0.5 ×
12 + 4

2
+ 0.5 ×

5 − 8

2
)

= 3.425

3.3.2 RAVE

Rapid Action Value Estimation is an improvement of AMAF, from [16] and [22]. We

notice that AMAF is quite efficient at the beginning of the game of Go, but far less at the

end, when the situation highly depends on the order of the moves. Thus, for each move i we

replace 𝛼 by a varying value:

αi = max (0,
𝑉 − 𝑛𝑖

𝑉
)

33

where 𝑉 is a determined value and 𝑛𝑖is the number of times the move i has been played.

3.3.3 UCB

Upper Confidence Bound has been developed by Auer, Fisher and Cesa-Bianchi in [2].

It allows to choose the most interesting moves. Indeed, it is not necessary to search moves

which are notably bad. To do so, we choose the child to sample according this formula:

𝑚𝑜𝑣𝑒 = 𝑎𝑟𝑔𝑚𝑎𝑥(𝑉𝑖̅ + √
2 ln 𝑛

𝑛𝑖
)

where 𝑉𝑖̅ is the average score (number of “wins”) of the move i, 𝑛𝑖 the number of times

we played move i, and n the total number of simulations. UCB takes two elements in

consideration. The average number of wins of a move represents the exploitation, which

means we try to focus more on the best moves. On the other hand, it is possible that a move

is actually good even if we do not have a good score for it for the moment. We have to

explore at least a little each move, and this is the role of the second term. UCB plays with

these two aspects. Let give an example of UCB on Figure 3.9 (we assume that the chosen

move leads to a lost playout). This policy allows to get a lower regret. UCB has mainly been

used in Monte Carlo Tree Search. Nonetheless, as shown in [12], it is also possible to use it

in Flat Monte Carlo programs.

Figure 3.9 Illustration of UCB

34

Chapter 4 Two-level Monte Carlo Search

To iterate is human, to recurse divine.

L. Peter Deutsch

In this chapter, we describe more precisely a new method, Two-level Monte Carlo

Search, and how we use the Monte Carlo algorithms to deal with Phantom Go. We will

firstly describe the basic idea, and then the improvements we did on it.

4.1 Basic idea

The basic idea of the two-level algorithm is to use the Imperfect Information Monte

Carlo Search, but adapted to our problem. To do so, we look at the article of Furtak and

Buro. In this article, [7], Furtak and Buro explain that for games, nesting Monte Carlo once

is sufficient. Moreover, as we are going to see, nesting the algorithm more than once would

be far too huge.

Before showing the effect of the two-level algorithm, let have a look on the algorithm

itself, on Algorithm 4.1.1. This algorithm is identical to the Algorithm 3.2.2, but written in

another way.

35

In this algorithm, there is a subroutine: getIS. This subroutine takes a player and a

position as parameters and returns the supposed Information set of the next player. Now, let

have a look on the effect on the board. Let take the example of the Figure 3.2. Let suppose it

is Black’s turn. To begin with, Black samples the Referee’s board (for instance as shown on

Figure 4.1).

Algorithm 4.1.1. Two-level MCS for Phantom Go

function LMC(InfoSet IS, int level, Player player)

best score  -1

initialization of best score

while not end of the game do

Position position  Sample(IS)

if level = 1 then

the last level, we do not nest anymore

position play(position;m; player)

score  playout(position)

else

we nest the algorithm

position  play(position;m)

infoSet  getIS (position; next(player))

score  LMC (InfoSet; level - 1; next(player))

end if

if score > max then

max  score

move  m

end if

end while

position  play(position;m)

return max

end function

36

Figure 4.1. Sample of the Referee’s board by Black

For each legal move, we do the following : play the move (we show on Figure 4.2 the

Referee’s board after playing on C3).

Figure 4.2. Black plays on C3

Then, we sample the White’s Board, i.e., the Information Set of White (effect of getIS).

We suppose that Black does not know that White knows that on C6 is a black stone. The

result is shown on Figure 4.3.

37

Figure 4.3. Sample of the White’s board by Black

The black board still remains as before. Notice that to get the information set of White,

we need to remember what White knows about Black, or at least as many information as

possible. Now we nest the algorithm.

So, White samples the board. We give an example of what this sampling could be on

Figure 4.4.

Figure 4.4. Sample of the Referee’s board by White

We now make one playout (or more) for each move, for instance for B8 (Figure 4.5).

38

Figure 4.5. White plays on B8 before making a playout

Then, we get a score by making a playout. For instance, after making the playout (the

final referee’s board is shown on Figure 4.6), we get the score (here, 5.5 for Black).

Figure 4.6. The playout

According to these playouts, White chooses a move, then, it is turn of Black (which

also chooses a move according to flat Monte Carlo Search), then of White, till the end of the

game. We then get a score, which will be the score of the move of black.

4.2 Complexity

The method leads to some problems. The main problem is the complexity. Let express

the complexity in terms of playouts.

39

To get the score of a legal move, we have to make White and Black choose alternately

till the end of the game. For each move, each player has to make a certain number of

playouts for each legal move. So the total number of playout for one move is approximately

100 (number of moves until the end of the game) times 80 (number of legal moves). So to

choose a game, we have to do that for each move, so to choose a move, we have to multiply

the number of playouts by 80. So to choose a move, we have approximately to make

6 ∙ 105 playouts. For the moment, the number of playouts is too important, and we need at

least 20 minutes to choose one move (with 3 playouts and 3 nested playouts only on

Pentium i5).

4.3 Improvements

Despite the different drawbacks, we tried to make some improvements so that this

method is better, and can, if we give time enough, be at least as good as the flat Monte

Carlo algorithm. To do so, we used two usual improvements for Monte Carlo: UCB (cf.

subsection 3.3.3) and RAVE (cf. subsection 3.3.2). We decided to improve only the “high

level” (level 2) of the two-level Monte Carlo algorithm.

We also considered two different versions of the playouts. The first one is the classical

“random” playout. The moves played during the playout are randomly chosen among the

legal moves. The second one is identical to the playout used by MoGo
1
. This playouts takes

far more in consideration. Firstly, it tries to save a string in Atari if such a move is available.

Then it takes patterns in consideration. A pattern is a configuration for which we can

1
 For more precision on MoGo, please refer to [25]

40

immediately now what to do to win. The configurations are put in a table, with the

corresponding action to make. After that, it tries to capture a string in Atari if such a move is

available. If none of these moves are available, it chooses a legal move randomly, without

filling the eyes.

The paper of Drake and Uurtamo, [13] gives some indication about the expected

results of what would be the better between random (“heavy”) playouts and move ordering,

but as this paper deals with go (not with phantom go), we decided to implement both.

41

Chapter 5 Results

I didn’t fail the test, I just found 100 ways to do it wrong

Benjamin Franklin

As we have seen, it is impossible to get results with a 9 × 9 go board. Processing a

single move is too long to get results this way. This is why we decided to work on 7 × 7

Phantom Go. We mainly used two programs. The first one is a flat Monte Carlo one, as

described in the section 3.1. In the following, we call it FlatMC. We also tried the two-level

Monte Carlo one, which we call LvlMC. As the results of Monte Carlo Tree search were

worse than Flat Monte Carlo, we have decided not to take them in consideration in our

study. More about the results of MCTS for Phantom Go are described in more detail in

[3][4].

The version of the two-level Monte Carlo program is a UBC and RAVE one, but only

for the second level of Monte Carlo. The first level has not got any of these improvements.

It is a classical Flat Monte Carlo algorithm, with 10 playouts per move. The opponent

version (the Flat Monte Carlo one) is without UCB nor RAVE. We decided to use a random

version of the playouts, more than a rule-based one, as the rules would apply on

suppositions (because of the sampling). About the structure of the game (code of the board,

the strings etc.) we adapted the initial code of Golois (cf. [10]).

To process our programs, we used an Intel Xeon, 2.40 GHz. We decided to impose a

time limit to our programs, but we quickly understood that there would be the same

numbers of playouts for each player, as the playouts are the longest elements in the

two-level algorithm. For instance, for 4 minutes, we approximately process 1'300'000

playouts per move.

42

secs 60 120 240

wins 1 0 3

wins

(handicap)

1 1 2

Table 1. LvlMC (Black) playing against FlatMC (White). The number is the number of

“wins” of Black, above 20 games

The results are given in the Table 1 and the Table 2. As we can see, the results are quite

bad for LvlMC. For equivalent time of processing, the Flat Monte Carlo program is much

better than the two-level one. We played 20 games for each duration (1 minute, 2 minutes

and 4 minutes).

secs 60 120 240

wins 20 19 19

wins

(handicap)

19 19 18

Table 2. FlatMC (Black) playing against LvlMC (White). The number is the number of

“wins” of Black, above 20 games

We then decided to give a handicap to the two-level program, one stone placed in the

center of the board.

Table 3 represents the games between LvlMC and LvlMC. We notice that the results

are slightly the same as Flat Monte Carlo ones. Notice that the performance is

proportionally less important between 60 and 120 than between 60 and 240, which

correspond to the observations of Furtak and Buro in [7] (cf. Figure 5.1)..

secs 60 120 240

60 9 9 6

120 12 11 12

240 12 11 11

number of wins of RecMC

time of processing for one move (sec)

number of wins of FlatMC

time of processing for one move (sec)

Time of processing for Black

Time of processing for White

43

Table 3. LvlMC playing against LvlMC. The number is the number of “wins” of Black,

above 20 games

5.1 Explanation to the results

Now, we let explain the results and why the two-level method is less efficient than the

Flat Monte Carlo one. Firstly, we cannot make as many “top level” playouts as Flat Monte

Carlo (for which every playout is a top level playout). Thus, the two-level method will be

better than the Flat Monte Carlo one if and only if each level 2 playout is much more

efficient than a classical one, and if there are sufficient playouts so that the numeral

difference is not so important that the approximation will be accurate enough. In [7], we can

see that the effectiveness of Monte Carlo methods do not increase linearly with the number

of playouts. The Figure 5.1, deduced from this paper shows the performance of a Skat

program, Kermit (sampling 160 worlds), playing against itself, sampling the indicated

number of consistent worlds. The number given is the percentage of wins of Kermit

baseline. The authors indicate that, above 160 worlds, the different players have

significantly identical level.

Figure 5.1. Kermit (baseline) VS Kermit160

Another element to take in consideration is the relevance of the idea of a multi-level

Number of sampled words

Percentage of wins of the baseline Kermit

44

Monte Carlo search. Even if each level 1 playout is considered not to have knowledge of the

total situation, when we make our opponent choose a move, we take in consideration our

sampling of his situation. This means we assume he will play according to this sampling,

while it can be quite far from the real situation. Moreover, as the article of JR Long [27]

shows, the classical Monte Carlo algorithm is already quite efficient. The paper of Buro and

Furtak indicates that this method can be surpassed by a recursive one, but maybe not in our

domain of study.

Furthermore, they address another kind of games, the card games. While the

uncertainty is maximal at the beginning of the game and goes decreasing in such games,

phantom Go has mainly two phases. In the early game, the uncertainty grows, then we start

getting information from the referee, and the uncertainty decreases. That can explain quite

important mistakes of the program we could observe at the beginning of the game. Indeed,

[7] shows that for the games with “low disambiguation” this method performs worse than

the flat one. But especially at the beginning Phantom go has a negative disambiguation (we

add uncertainty). Figure 5.2 shows some steps of a real game between FlatMC (Black) and

LvlMC (white). It performs very wrongly at the beginning, while it improves in the last

moves, creating a living group and a territory. We only represent the referee’s board, to get a

general point of view.

a. The 10 first moves b. After 13 more moves

45

Figure 5.2. Summary of a game between FlatMC (Black) and LvlMC (White)

5.2 Discussion

The first thing is the way to deal with improvements. We decided to use UCB and

AMAF only on the second level playouts, but we should be able to get better results

working on the two levels, at least for UCB , which would avoid playing bad moves in the

second level playouts would lead to more trustable ones. For AMAF, an adaptation could be

taken from [1], which uses AMAF on each level, and seems to indicate that in spite of using

46

the AMAF value, the number of times a move has been played is more efficient.

Nonetheless, we have to remember that our work is about two players Imperfect

Information Game, while this paper deals with Morpion Solitaire.

47

Chapter 6 Conclusion and future work

In this thesis, we compared several methods to build a playing program for Phantom

Go. We also adapted a new algorithm, the Two-level Monte Carlo Search to an Imperfect

Information game, Phantom Go. We improved this program using classical methods as

AMAF and UCB. We tested the two-level program against the classical Flat Monte Carlo

one and observed that it performed worse. We gave an explanation of this result, and

explained how to improve programs.

As we could see in the previous chapter, it is hard to use the two-level algorithm to

make an actual playing program. Nonetheless, it seems that the flat Monte Carlo method,

which is much simpler, which performs well, can still stay the best option for this game.

Maybe the research to better address Phantom Go and beat the current version is to use

domain-specific knowledge. For instance, in spite of searching the whole board, searching

only a part of the board could better (the border is not a good place to play in). Another way

of doing it would be to partially or totally script the first moves, which are closely always

the same.

In fact, a hybrid version of two-level search and the Flat Monte Carlo one could also

be good: the two-level method is useful when the uncertainty about the opponent is high,

while for low uncertainty Flat Monte Carlo, which is quicker, will be better.

48

Bibliography

[1] Haruhiko Akiyama, Kanako Komiya, and Yoshiyuki Kotani. Nested monte-carlo

search with amaf heuristic. In Proc. Int. Conf. Tech. Applicat. Artif. Intell., Hsinchu,

Taiwan, pages 172–176, 2010.

[2] Peter Auer, Nicolò Cesa-Bianchi, and Paul Fischer. Finite-time analysis of the

multiarmed bandit problem. Machine learning, 47(2-3):235–256, 2002.

[3] Joris Borsboom. Phantom Go. Master’s thesis, Universiteit Maasstricht, The

Netherlands, 2007.

[4] Joris Borsboom, Jahn-Takeshi Saito, Guillaume Chaslot, and JWMH Uiterwijk. A

comparison of monte carlo methods for phantom go. In Proc. BeNeLux Conf. Artif.

Intell., Utrecht, Netherlands, pages 57–64, 2007.

[5] Mark Braverman, Omid Etesami, and Elchanan Mossel. Mafia: A theoretical study

of players and coalitions in a partial information environment. The Annals of Applied

Probability, pages 825–846, 2008.

[6] Cameron B Browne, Edward Powley, Daniel Whitehouse, Simon M Lucas, Peter I

Cowling, Philipp Rohlfshagen, Stephen Tavener, Diego Perez, Spyridon

Samothrakis, and Simon Colton. A survey of monte carlo tree search methods.

Computational Intelligence and AI in Games, IEEE Transactions on, 4(1):1–43,

2012.

[7] Michael Buro and Timothy Furtak. Recursive monte carlo search for imperfect

information games. In Proceedings of the 8th international conference on computer

and games, 2013.

[8] Tristan Cazenave. A phantom go program. Advances in Computer Games, pages

49

120–125, 2006.

[9] Tristan Cazenave. Nested monte-carlo search. In Craig Boutilier, editor, IJCAI 2009,

Proceedings of the 21st International Joint Conference on Artificial Intelligence,

Pasadena, California, USA, July 11-17, 2009, pages 456–461, 2009.

[10] Tristan Cazenave and Joris Borsboom. Golois wins phantom go tournament. ICGA

journal, 30(3):165–166, 2007.

[11] Guillaume Chaslot, Sander Bakkes, Istvan Szita, and Pieter Spronck. Monte carlo

tree search: A new framework for game ai. In Proceedings of the Fourth Artificial

Intelligence and Interactive Digital Entertainment Conference, pages 216–217,

2008.

[12] Pierre-Arnaud Coquelin and Rémi Munos. Bandit algorithms for tree search. arXiv

preprint cs/0703062, 2007.

[13] Peter Drake and Steve Uurtamo. Move ordering vs heavy playouts: Where should

heuristics be applied in monte carlo go. In Proceedings of the 3rd North American

Game-On Conference. Citeseer, 2007.

[14] Ian Frank and David Basin. Search in games with incomplete information: A case

study using bridge card play. Artificial Intelligence, 100(1):87–123, 1998.

[15] Ian Frank and David Basin. A theoretical and empirical investigation of search in

imperfect information games. Theoretical Computer Science, 252(1):217–256, 2001.

[16] Sylvain Gelly and David Silver. Combining online and offline knowledge in uct. In

Proceedings of the 24th international conference on Machine learning, pages

273–280. ACM, 2007.

[17] Sylvain Gelly and David Silver. Monte carlo tree search and rapid action value

estimation in computer go. Artificial Intelligence, 175(11):1856–1875, 2011.

50

[18] Matthew L Ginsberg. Gib: Imperfect information in a computationally challenging

game. J. Artif. Intell. Res.(JAIR), 14:303–358, 2001.

[19] John Charles Harsanyi. Games with incomplete information played by "bayesian"

players, i–iii: part ii. bayesian equilibrium points. Management Science,

14(5):320–334, 1968.

[20] John Charles Harsanyi. Games with incomplete information played by "bayesian"

players, i–iii: part iii. the basic probability distribution of the game. Management

Science, 14(7):486–502, 1968.

[21] John Charles Harsanyi. Games with incomplete information played by "bayesian"

players, i–iii: part i. the basic model. Management science, 50(12

supplement):1804–1817, 2004.

[22] David P Helmbold and Aleatha Parker-Wood. All-moves-as-first heuristics in

monte-carlo go. In Proc. Int. Conf. Artif. Intell., Las Vegas, Nevada, pages 605–610,

2009.

[23] Michael Johanson, Nolan Bard, Marc Lanctot, Richard Gibson, and Michael

Bowling. Efficient nash equilibrium approximation through monte carlo

counterfactual regret minimization. In Proceedings of the 11th International

Conference on Autonomous Agents and Multiagent Systems-Volume 2, pages

837–846. International Foundation for Autonomous Agents and Multiagent Systems,

2012.

[24] Levente Kocsis and Csaba Szepesvári. Bandit based monte-carlo planning. Machine

Learning: ECML 2006, pages 282–293, 2006.

[25] Chang-Shing Lee, Mei-Hui Wang, Guillaume Chaslot, J-B Hoock, Arpad Rimmel,

Olivier Teytaud, Shang-Rong Tsai, Shun-Chin Hsu, and Tzung-Pei Hong. The

51

computational intelligence of mogo revealed in taiwan’s computer go tournaments.

Computational Intelligence and AI in Games, IEEE Transactions on, 1(1):73–89,

2009.

[26] David H Li. Kriegspiel: Chess Under Uncertainty. Premier Publishing Company,

1994.

[27] Jeffrey Richard Long, Nathan R Sturtevant, Michael Buro, and Timothy Furtak.

Understanding the success of perfect information monte carlo sampling in game tree

search. Proc. Assoc. Adv. Artif. Intell., Atlanta, Georgia, pages 134–140, 2010.

[28] Nicholas Metropolis and Stanislaw Ulam. The monte carlo method. Journal of the

American statistical association, 44(247):335–341, 1949.

[29] John Forbes Nash. Non-cooperative games. The Annals of Mathematics,

54(2):286–295, 1951.

[30] Martin J Osborne. An introduction to game theory, volume 3. Oxford University

Press New York, 2004.

[31] Erik Cornelis Diederik van der Werf. AI techniques for the game of Go. UPM,

Universitaire Pers Maastricht, 2005.

[32] John Von Neumann and Oskar Morgenstern. Theory of games and economic

behavior (commemorative edition). Princeton university press, 2007.

