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利用多重解析邊緣梯度的資訊來增強靜態影像畫質 
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國立交通大學資訊工程學系 

摘要 

本論文的目的在於結合 tone mapping 的技術和以梯度為基礎的陰影去除技術來增強

靜態影像畫質，期望結果如同在均勻光源下所獲得的影像一致。因此可以讓辨認系統或

是監控系統在不受光影的影響下而能獲得更佳的結果，或是將原本拍攝環境不佳的影像

還原成在均勻光源下拍攝的影像。 

本論文的方法延伸Fattal等人[8]的工作，Fattal等人的方法可以讓太亮或太暗區域的

細節部分顯現出來。再搭配我們提出去除模糊陰影邊界的方法，也就是利用模糊邊界辨

認器的演算法來偵測陰影的邊界，再調整該區域的梯度，就可以達成去除陰影的目的。

在我們的實驗結果中發現這個方法是可行的。不過仍有少數的問題尚待解決，像在陰影

處的顏色會有色偏的問題，在模糊邊緣的區域會有一點模糊以及光暈的現象，這些問題

如果可以解決，相信辨認系統或是監控系統在未來會有更大突破。 
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student：Yu-wu Chu                           Advisor：Dr. Zen Chen 

Department of Computer Science and Information Engineering 

National Chiao Tung University 

Abstract 

The main purpose of this thesis is to combine the technique of tone mapping and 

gradient based shadow removal technique to enhance the image. We expect to gain the result 

which is similar to the same scene but with uniform lighting. Therefore, we could let the 

surveillance or the recognition system gain better result, or restore the image captured under 

poor condition to a better image as if it was captured under uniform lighting environment. 

The method of this thesis extends the work of Fattal et al. [8]. Their method could reveal 

the detail in the bright and dark areas. We simply employ the fuzzy edge classifier to detect the 

fuzzy edge area, and then adjust the gradient in the fuzzy edge area. In our experimental 

results, this method is proved feasible. But, there still are some problems remaining to be 

solved, such as “color shifting” in the shadow area, and blurring the fuzzy edge area and some 

remaining halo artifact. If these defects can be removed, the surveillance and recognition 

applications can become much practical. 
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Chapter 1. Introduction 

1.1. Motivation 

In the nature, a real scene has a high dynamic range of intensity, while the current 

monitor can only display the low dynamic range image. Human eyes can percept high 

dynamic range image (HDRI). Recently, HDR image can be reconstructed from a set of 

photographs of the scene captured under different exposure times [2][3][4]. Several 

researchers develop novel hardwares to capture the HDR image [5][6]. Thus we can preserve 

all detail in the scene without loss of information in the areas that are over- or under-exposured. 

Since the technique of the display device is low dynamic display system. Therefore, we need an 

additional technique, called tone mapping, to compress HDR image into LDR image without 

losing the fine detail. 

In this thesis, our method applies HDR image and tone mapping techniques to preserve the 

fine detail of the image. The objective is to make the contrast in the dark area and the bright 

area as same as possible. We extent Fattal et al. [8] work to achieve our goal. Take Figure 1.1 

for an example. First, we capture an image containing shadow, and compute the gradient of the 

image. Then, we mask the area of the shadow edge and set the shadow gradient to zero. After 

reconstructing the image from the new gradient map, we find that the shadow part in the image 

is gone. 

Based on these ideas, we want to design an algorithm to remove the shadow effect in the 

image. 

 1 



  

(a) The original image (b) The gradient magnitude of the left image 

  

(c) The new gradient magnitude with set the area of the 

shadow edges to zero 

(d) The reconstructed from the new gradient 

magnitude 

Figure 1.1 The gradient based shadow removal method. 

1.2. Related work 

Tone mapping methods can be classified into two main groups [21]: tone reproduction 

curves (TRCs) and tone reproduction operators (TROs). The main pros of TRCs are simplicity, 

computational efficiency, and preserved relative contrasts. However, the main cons of them are 

loss of local contrasts in images. The typical TRC approaches are gamma correction, histogram 

equalization, and so on. 

On the contrast, TROs are easy in preserving local contrasts in images, but more complex 

on computation. The TRO methods can be classified into three groups: human vision system 

(HVS) base, filter based, and gradient base. HVS based researchers use the computational 
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model proposed by the work of the psychologists such as [20]. Filter based researchers want to 

separate original images into reflectance (also called detail or intrinsic image) and illuminance 

(also called base) images. The basic idea is that the image f(x,y) is regarded as a product, 

 ( ) ( )f x, y I(x, y)R x, y=  (1.1) 

where R(x, y) is the reflectance and I(x, y) is the illuminance at each point (x, y). If the 

reflectance and illuminance image can be separated perfectly from the original image, then the 

HDR image can be compressed by scaling down the illuminance image to get a new 

illuminance image  and re-multiplying the reflectance image. While taking logarithm 

on the both sides in equation

(I x, y% )

(1.1), we have 

 ( ) ( ) ( )ln f x, y ln I x, y ln R x, y= +  (1.2) 

Filter based researchers assume that the local variance of the illuminance image is smaller 

than the local variance of the reflectance image. This means that the illuminance image is 

smoother than the reflectance image. In other words, the illuminance image has a lower spatial 

frequency. Therefore, filter based researchers develop the smoothing filter to estimate 

illuminance image, such as unilateral [16], bilateral [17], trilateral [18], homomorphic filter 

[19], PDE based algorithm (e.g. anisotropic diffusion equation [13], shock filter [14], low 

curvature image simplifier (LCIS) [15], and so on) or other noise reduction algorithm (e.g. 

Wiener filter [26]). But these approaches might cause halo artifacts. Gradient based approaches 

[8], which we would use in this thesis, compute the new gradient magnitude map from the 

original one at first, and then reconstruct image from this new map (see section 2.2 and 3.3 for 

more detail). 

The shadow removal algorithm proposed by [10] uses the classifier to classify whether 

the edge is the shadow edge or not. Although this algorithm is well performed, it needs a lot of 

training patterns, and it is computationally inefficient. This is not useful to the surveillance or 

recognition systems. For the surveillance or the traffic system, several researchers [11] propose 
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some probability model estimated from the image sequence in order to determine whether there 

is shadow or not. Another group of researchers [22][23][24][25] use the chromatic property. 

They could succeed to eliminate shadow, but there are two problems that would occur. The first 

problem is that for the gray level colors the rule they suggest would fail. In other words, for the 

white paper with black words, they determine the black words as “shadow” (see Figure 1.2 for 

an example). Another problem is that for the lossy compression image [26] (e.g. JPEG image) 

the chromatic property would be destroyed acutely (see Figure 1.3 for an example). This might 

cause the decision rule fail. This is because the lossy compression technique assumes that the 

human eyes are more sensitive to the luminance channel than the chromatic channel. Therefore, 

it compresses the chromatic channel more heavily than the luminance channel. In other words, 

we would destroy more information on the chromatic channel. Thus if we want to remove 

shadow in the lossy compression image, we need to overcome this problem first. 

 

  

(a) The original image (b) Results obtained by Finlayson et al.[24] method 

Figure 1.2 Results obtained by Finlayson et al.[24] method. The gray texture on the football is lost. 
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(a) The original image (b) The Hw property of (a) without 

compression 

(c) The Hw property of (a) with 

compression 

Figure 1.3 Compare the Hw property [28]. The compression technique would affect the result. 

1.3. Contribution 

The contributions of this thesis can be summarized as follows: 

1. We extent the Fattal et al. [8] work to reduce the shadows in the static image. 

2. We succeed in reducing the shadows by removing fuzzy edge. 

1.4. Outline 

Our proposed method is divided into four steps. The flow chart is given in Figure 1.4. The 

remainder of this thesis is organized as follows: Chapter 2 describes how to adjust camera curve 

and how to reconstruct the image from the gradient field. Chapter 3 gives the fundamental 

concept on the edges, and shows how to design a desired gradient attenuation function step by 

step. Chapter 4 gives some experimental results o our implementation of the proposed method. 

Finally, some conclusions and future work are presented in Chapter 5. 

 

 

Figure 1.4 The flow chart of our system 
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Chapter 2. Fundamentals 

This chapter describes two main techniques that we use in this thesis. The first technique 

helps us correct the nonlinearity property of the digital device. The second technique is a useful 

algorithm to reconstruct the image from the gradient field. 

2.1. Estimating the gamma curve of the camera 

When we obtain a digital image Z with a digital device, it is a nonlinear function of the 

original exposure. So we need to fix this nonlinear property before processing the image. We 

use the method proposed by Debevec [2] to estimate camera curve by a series of images of the 

same scene captured under different exposure times. We would take a brief review of 

Debevec’s work as follows. The exposure X is defined as the product of the irradiance E at the 

image and exposure time . So we have the following equation: tΔ

 ( )ij i jZ f E t= Δ  (2.1) 

where i is a spatial index over pixels, j denotes the different exposure time index, and we 

assume f is a monotonic function, so it is invertible. We can rewrite equation (2.1) as: 

 ( )1
ij i jf Z E t− = Δ  (2.2) 

Taking the natural logarithm on the both sides, we obtain: 

 ( )1
ij i jln f Z ln E ln t− = + Δ  (2.3) 

Let . We then have: ( ) ( )1g x ln f x−=

 ( )ij i jg Z ln E ln t= + Δ  (2.4) 

In order to solve function g and  we minimize the following objective function, iE
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 ( ) ( ) ( ) ( ){ } ( )
max

min

Z 1N P 2 2
ij j ij i j

i 1 j 1 z Z 1
O Z , t g Z ln E ln t g z

−

= = = +

′′⎡ ⎤Δ = − − Δ +λ ⎣ ⎦∑∑ ∑  (2.5) 

The first term ensures that the solution satisfies equation(2.4). The second term is a 

smoothness term on the sum of squared values of the second derivative of g to ensure that the 

function g is smooth. Since g will typically have a steep or flat slope near  and , we 

should expect that g will be less smooth and will fit data more poorly near these extremes. To 

recognize this, we can introduce a weighting function w to emphasize the middle section of the 

curve. A reasonable choice of w is a simple hat function: 

maxZ minZ

 ( )
( )

( )

min min max

max min max

1z Z   for z Z Z
2w z
1Z z  for z Z Z
2

⎧ − ≤ +⎪⎪= ⎨
⎪ − > +
⎪⎩

 (2.6) 

Equation (2.5) now becomes: 

 
( )( ) ( ) ( ) ( ) ( ){ }

( ) ( )
max

min

N P 2

ij j ij ij i j
i 1 j 1

Z 1 2

ij
z Z 1

O Z , t , w z w Z g Z ln E ln t

w Z g z

= =

−

= +

⎡ ⎤Δ = − − Δ⎣ ⎦

⎡ ⎤′′+λ ⎣ ⎦

∑∑

∑
 (2.7) 

Thus, this estimation would attenuate the error associated with  near  or . ijZ maxZ minZ

For robustness and to recover high dynamic range radiance values, we should use all the 

available exposures for any particular pixel to compute its radiance. For this, we reuse the 

weighting function in equation (2.6) to give higher weight to exposures in which the pixel’s 

value is closer to the middle section of the response function: 

 ( )
( ) ( ) ( )( )

( )

P

ij ij j
j 1

i P

ij
j 1

w Z g Z ln t
ln E

w Z

=

=

− Δ
=
∑

∑
 (2.8) 

We assume the gamma curve (function f) of the camera is invariant in all situations. Thus, 

we could correct the image intensity by equation(2.4): 
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 ( )i ijln E g Z ln t j= − Δ  (2.9) 

2.2. Reconstructing an image from the gradient field 

This section introduces how to reconstruct the image from its gradient field. We employ 

the method proposed by Fattal et al. [8] to solve this problem. At the beginning, we compute the 

gradient field G by the following equation: 

 ( ) ( ) ( )in
ˆG x, y I x, y x, y= ∇ Φ  (2.10) 

where  is the logarithm of the input image intensity, inÎ Φ is the attenuation function (see the 

next chapter for detail). But we can not simply get reflectance image  by integrating G. 

Because the gradient  is not necessarily intergrable. In other words, there might not exist 

an image  such that . In fact, the gradient of a potential function must be a 

conservative field. This means that the gradient  must satisfy: 

outÎ

outÎ

outÎ outÎ∇ = G

outÎ

 
2 2

out out
ˆ ˆI I

x y y x
∂ ∂

=
∂ ∂ ∂ ∂

 (2.11) 

This condition is rarely the case for our G. 

We search the space of all 2D potential functions for a function I whose gradient is the 

closest to G in the least squares sense. In other words, I should minimize the integral: 

 ( )out
ˆF I ,G dxdy∇∫∫  (2.12) 

where ( )
2 2

2
out out

out out x y

ˆ ˆI Iˆ ˆF I ,G I G G G
x y

⎛ ⎞ ⎛∂ ∂
∇ = ∇ − = − + −⎜ ⎟ ⎜⎜ ⎟ ⎜∂ ∂⎝ ⎠ ⎝

⎞
⎟⎟
⎠

 

According to the Variational Principle, a function I that minimizes the integral in (2.12) 

must satisfy the Euler-Lagrange equation: 

 
out outx outy

F d F d F 0ˆ ˆ ˆdx dyI I I
∂ ∂ ∂

− −
∂ ∂ ∂

=  (2.13) 
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which is a partial differential equation in . Substituting F we obtain the following equation: outÎ

 
2 2

yout outx
2 2

ˆ ˆ GI IG2 2
x x y y

⎛ ⎞ ⎛ ∂∂ ∂∂
− + − =⎜ ⎟ ⎜⎜ ⎟ ⎜∂ ∂ ∂ ∂⎝ ⎠ ⎝

0
⎞
⎟⎟
⎠

G

 (2.14) 

Divided by 2 and rearranging terms, we obtain the well-known Poisson equation: 

  (2.15) 2
outÎ div ∇ =

where  is the Laplacian operator 2∇
2 2

2 out out
out 2

ˆ ˆI IÎ
x y

∂ ∂
∇ = +

∂ ∂ 2  and div G is the divergence of the 

gradient field G define as
y

G
x

GGdiv yx

∂
∂

+
∂
∂

= . 

In order to solve this problem, we could use the Full Multi-grid Algorithm [7], or the fast 

Fourier Transform to invert the Laplacian operator. Because this method is applied to the gray 

level image, we need to assign colors to the pixels of the image. Here, we transform RGB color 

space to HSI color space first, and then apply our algorithm on the I channel. Finally, transform 

back to the RGB color space use the original H, S, and new I channel. 
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Chapter 3. Gradient attenuation 
function 

In this chapter, we first introduce types of edges, and how to distinguish illumination from 

reflectance edges. Finally, we propose our gradient attenuation function to reduce shadow and 

shading step by step. 

3.1. Types of edges 

In this section, edges are divided into two main groups: reflectance and Illuminance edges 

[1]) illuminance edges also can be separated into three groups: orientation, depth, and shadow 

edges. The following definitions are quoted from [1]. 

 

 

Figure 3.1 Types of Edges: orientation edges (O), depth edges (D), reflectance edges (R), and shadow edges (S). 

Reflectance edges are changes in image luminance caused by changes in the reflectance 

of two retinally adjacent surfaces. Reflectance edges can occur when the surfaces are made of 

different materials or painted different colors. Examples of reflectance edges in Figure 3.1 are 
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labeled with R’s. 

Illumination edges are changes in image luminance caused by different amounts of light 

falling in a single surface of homogeneous reflectance. Illumination edges can be caused by cast 

shadows, reflected highlights on glossy, restricted spotlights (as in theater lighting), or changes 

in surface orientation. There are three kinds of illumination edges: 

Orientation edges refer to places in the environment in which there are 

discontinuities in surface orientation. These occur when two surfaces at different 

orientations meet along an edge in the 3D world. They usually arise at internal edges 

within a single object (e.g., a cube) or where one object abuts another, such as a block 

sitting in a table. Examples of orientation edges in Figure 3.1 are labeled with O’s. 

Depth edges refer to places where there is a spatial discontinuity in depth between 

surfaces, that is, places in the image where one surface occludes another that extends 

behind it, with space between the two surfaces. If they actually touch along the edge, 

then it is classified as a depth edge. Examples of orientation edges in Figure 3.1 are 

labeled with D’s. 

Shadow edges are formed where there is difference in the amount of light falling on 

a homogeneous surface, such as the edge of shadow, highlight, or spotlight. Examples of 

illumination edges in Figure 3.1 are labeled with S’s. 

From Figure 3.1, we find that the lighting on the same surface is smoothing except causing 

shadow edges. In order to eliminate illuminance also means to attenuate orientation (O), depth 

(D), and shadow (S) edges, and to preserve reflectance (R) edges. The filter based tone mapping 

algorithm wants to separate illuminance and reflectance image under the logarithm domain. As 

explained in section 1.2, they assume that the illuminance image usually occupied the lower 

frequency. There fore, they stand the smoothing image as the illuminance image, and derive the 

reflectance image from dividing original image by illuminance image. 

But this smoothing image actually is different from the real illuminance image, although 
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the bilateral [17] and the trilateral filter [18] use additional property to preserve illuminance 

sharp edge. These ideas still cause the following trouble. If the sigma of the range filter is too 

small, than this formula also preserve unwanted reflectance edge. On the other hands, if the 

sigma of the range filter is too large, than this formula will eliminate the illuminance edge that 

we want to preserve. This is a trade-off between preserving the smaller illuminance edge and 

eliminating the larger reflectance edge. 

3.2. Distinguishing illuminance from reflectance 

edges 

In Stephen E. Palmer [1], there are several simple criteria to separate these edges which are 

quoted as follows:  
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Figure 3.2 The chromatic property proposed by Rubin and Richard [12]. 

The planarity. If depth in formation indicates that two regions are not coplanar, the edge 

between them tends to be perceived as an illumination edge rather than a reflectance edge, even 
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if it is sharp rather than fuzzy. The reason is that surfaces at different depths and/or orientations 

usually receive different amounts of illumination because of the physical behavioral of light. 

The illuminance ratios. Illumination edges can produce much greater changes in 

luminance than reflectance edges. A good white surface typically reflects no more than about 

90% of the incident photons, and a good black surface reflects no less than about 10%. 

Reflectance ratios are therefore unlikely to be greater than about 10:1. But illumination ratio 

can be 1000:1 or more. Therefore, if a luminance ratio is 10:1 or more, a good heuristic is to 

assume that is due to a difference in illumination.  

Fuzzy or sharp edge. Illumination edges due to shadows or spotlights tend to be fuzzy 

and some what graded, whereas reflectance edges tend to be sharp. In the absence of 

information to the contrary, the visual system tends to assume that a sharp edge between 

coplanar regions is a reflectance edge. 

The chromatic property. Color provides additional information for distinguishing 

between illumination and reflectance edges. Intuitively, the crucial fact is that differences in 

illumination will almost always produce similar hue and saturation values on opposite sides of 

an edge, whereas differences in reflectance almost never will. Generally speaking, if hue or 

saturation varies across an edge, it is probably a reflectance edge. If only brightness varies, it 

probably an illumination edge. 

Besides, Rubin and Richard [12] provide another chromatic heuristics for discriminating 

between reflectance and illumination edges. They proposed two conditions that signify changes 

in spectral reflectance of surfaces: spectral cross-point and opposite slop signs. These 

conditions are defined by relations between the light reflected from the two regions of interest 

as sampled at two different wavelengths. The spectral cross-point condition is illustrated in 

Figure 3.2 A and C. It holds when the measurements in any two regions produce opposite 

differences in the amount of light at the two wavelengths, resulting in the “crossed” spectral 

graphs of Figure 3.2 A and C. The opposite slope sign condition is illustrated in Figure 3.2 A 
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and B. It holds when the slopes of the graphs of the two regions have different signs: one goes 

up and the other down. The fact that these two conditions are independent is demonstrated by 

the four graphs in Figure 3.2, each of which shows a different pairing of presence versus 

absence of the two conditions. Only the last condition (Figure 3.2 D), showing the absence of 

both, indicates a case in which the spectral difference between the two regions is likely to be 

due to an illumination edge. 

Here, we can not use the planarity information, because of the poor depth information 

from a single image. In order to preserve reflectance edges and attenuate illuminance edges, we 

construct a gradient attenuation function utilizing the other criterion step by step in the rest of 

the chapter. 

3.3. The illuminance ratios 

By the illuminance ratios information, Fattal et al. [8] designed a good gradient attenuation 

function to fit this criterion. Their idea is based on that any drastic change in the luminance 

across an image must give rise to large magnitude luminance gradients at some scale. Fine 

details, such as texture, correspond to gradients of much smaller magnitude at a fine scale. So 

they want to identify large gradients at various scales, and attenuate their magnitudes while 

keeping their direction unaltered. Thus the attenuation must be progressive, penalizing larger 

gradients more heavily than smaller ones, and compressing drastic luminance changes, while 

preserving fine details. 

Real-world images contain edges at multiple scales. Therefore, in order to detect all of the 

significant intensity transition, they use a multi-resolution edge detection scheme. Then they 

propose propagating the desired attenuation from the level it was detected at to the full 

resolution image to prevent the halo artifact. We outline the algorithm as follows: 

At first they construct a Gaussian pyramid , where is the logarithm of the 0Î , , IK d
ˆ Î
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luminance of the image, is the full resolution HDR image and is the coarsest level in the 

pyramid. d is chosen such that the width and the height of  are at least 32. At each level j we 

compute the gradients using central differences: 

0Î dÎ

dÎ

 ( ) ( ) ( ) ( ) ( )j j j j
j j 1 j 1

ˆ ˆ ˆ ˆI x 1, y I x 1, y I x, y 1 I x, y 1
Î x, y ,

2 2+ +

⎛ ⎞+ − − + − −
∇ = ⎜ ⎟⎜ ⎟

⎝ ⎠
 (3.1) 

At each level j a scaling factor ( )
jÎ x, yϕ  is determined for each pixel based on the magnitude 

of the gradient there: 

 ( )
( )

j

1

j

Î

Î x, y
x, y

β−
⎛ ⎞∇
⎜ϕ =
⎜ α
⎝ ⎠

⎟
⎟

 (3.2) 

where α determines the gradient magnitude at which the edge is modified differently. The 

gradient whose value is larger than α is attenuated (0< β< 1). The gradient whose value is 

smaller than α is magnified. They suggest setting α to 0.1 times the average gradient magnitude, 

and β between 0.8 and 0.9. 

The full resolution gradient attenuation function ( )y,xÎΦ is computed in a coarse-to-fine 

fashion by propagating the scaling factors ( )
jÎ x, yϕ from each level to the next using linear 

interpolation and accumulating them using point-wise multiplication. The process is given by 

the following algorithm: 

  (3.3) 

( ) ( )

( ) ( )( ) (

( ) ( )

d d

j j 1 j

0

ˆ ˆI I

ˆ ˆ ˆI I I

ˆ ˆI I

Init j=d :
    x, y x, y

end
for j from d-1 to 0

    x, y L x, y x, y

end
x, y x, y

+

Φ = ϕ

Φ = Φ ϕ

Φ = Φ

)

where d is the coarsest level, denotes the accumulated attenuation function at level j, and L 
jÎΦ
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is an up-sampling operator with linear interpolation. The gradient attenuation at each pixel of 

the finest level is determined by the strengths of all the edges (from different scales) passing 

through that location in the image. 

Using this multi-resolution scheme would attenuate the edges which are sharper, stronger, 

and coarser, and preserve the edges which are fuzzier, weaker, and thinner. Thus it could 

enhance the smaller texture. For the fuzzy edges (usually are shadow edges), it is not sufficient 

attenuated (see section 3.4 for detail). Because of the property of the fuzzy edge it has a stronger 

edge on the higher level (coarser level), and a weaker edge on a lower level (finer level). So the 

scaling factor on the higher level wants to attenuate more for the stronger edge, the scaling 

factor on the lower level wants to preserve for the weaker edge. Therefore, it could not reduce 

shadow edge. See Figure 3.3 for an example. In the next section, we modify this method to 

achieve our goal—reducing shadows by adding more criteria. 

 

  
(a) The original image (b) The result of the gradient domain method [8]

Figure 3.3 Result by Fattal et al [8]. The shadow is still T there.

3.4. Fuzzy or sharp edge 

We know that the shadow edge is usually fuzzy, so we need to adjust the gradient of such 

edge. In our observation, the fuzzy edge usually can be found from the information available at 

two levels. There are four situations between the two levels: 
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1. There is an edge at the coarser level, and it is also an edge at the finer level. 

2. There is an edge at the coarser level, but it is no edge at the finer level. 

3. There is no edge at the coarser level, but it is an edge at the finer level. 

4. There is no edge at the coarser level, and there is also no edge at the finer level. 

 

(a) From top to down represents: intensity profile of 

the sharp edge and their multi-resolution edge 

detection from coarse to fine 

(b) From top to down represents: intensity profile of 

the fuzzy edge and their multi-resolution edge 

detection from coarse to fine 

Figure 3.4 The multi-resolution edge detection on the fuzzy and the sharp edge. 

 
Figure 3.5 The multi-resolution edge detection of the image in Figure 3.3 (a).
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(a) The gradient magnitude of the image in Figure 3.3 

(a) at level 0 

(b) The local standard deviation divided by the local 

mean (within a 5*5 window) of the left image 

Figure 3.6 The local standard deviation divided by the local meanT . 

In Figure 3.5 and Figure 3.4, we find that the sharp edge appears in each level, but the 

fuzzy edge only appears in the coarser level (situation 2). But only using this condition might 

create some problems, resulting in identifying the neighborhood of a sharper edge at the finer 

level as a fuzzy edge. In our experiment, the fuzzy edge also has the smaller local standard 

deviation than the sharper edge. If the local mean is larger, the local standard deviation needs to 

be larger to classify as the non-fuzzy edge. In Figure 3.6, we could see that the fuzzy edges have 

the smaller value. Under these observations, the fuzzy edge can be determined by Algorithm 

3.1. 
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Algorithm 3.1 Fuzzy edge classifier algorithm 

( ) ( )
( )

( )
( )

( )
( )

j 1 d

d

j+1

j

j+1

j 1

Init j=d:
ˆ    if I x,y , then edge x,y EDGE

    else edge x,y NEDGE
    end
end
for j from d-1 to 0
    if edge x, y FUZZY

        edge x, y FUZZY

    end
    if edge x, y NEDGE

ˆ        if I x,y , then

∇ > τ =

=

=

=

=

∇ > τ ( )
( )

( )( )
( )( )

( ) ( )
( )

j

j

j

2

j

j 1 j

j

 edge x,y EDGE

        else edge x,y NEDGE

        end
    else

ˆstd I x,y
        if 

ˆmean I x,y

ˆ            if I x,y , then edge x,y EDGE

            else edge x,y NEDGE

            end
        else e

=

=

∇
> τ

∇

∇ > τ =

=

( )j+1dge x,y FUZZY

        end
    end
end

=

 

where d is the coarsest level, ( )jÎ x, y∇  is defined in (3.1), ( )jedge x, y  is the edge label at 

level j,  is the local standard deviation, and ( )std x ( )mean x  is the local mean. Figure 3.9 is 

the flow chart of this algorithm. The fuzzy edges that we detect by Algorithm 3.1 are shown in 

Figure 3.7. 
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(a) The fuzzy edge detected by our algorithm at level 0 (b) The fuzzy edge detected by our algorithm at level 1

  
(c) The fuzzy edge detected by our algorithm at level 2 (d) The fuzzy edge detected by our algorithm at level 3

Note: white pixels are the fuzzy edge pixels, gray pixels are the edge pixels, and dark gray pixels are the 

non-edge pixels. 

Figure 3.7 Results of the multi-resolution fuzzy edge classifier. 

However, we could find that the texture information exists in the whole image. The most 

gradient value in the area of the fuzzy edges is either positive or negative. But, the gradient 

value in the area of the non-fuzzy edges alternate with positive and negative value uniformly. In 

Figure 3.8, we can find this phenomenon. The pixels between 300 and 350 are the shadow area, 

the pixels between 350 and 400 are the fuzzy edge, and the pixels between 400 and 450 are the 

bright area. We find that the gradient value between 350 and 400 almost are positive value, and 

the gradient value of the other area alternate with positive and negative value. Thus, if using the 

attenuation function proposed by Fattal et al. [8] cannot reduce shadow effect unless set the 

gradient value between 350 and 400 to 0 in order to let the shadow area reveal. The region of the 

fuzzy edge would be more and more blur, and it becomes the tradeoff between the shadow 
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reduction and the texture information in the region of the fuzzy edges. Thus, in the region of the 

fuzzy edge, we propose subtracting the local mean of the gradient value from the gradient of 

that pixel. This method would let the distribution of the positive and the negative value in the 

area of the fuzzy edge more uniform. The algorithm to fix the gradient value in the area of the 

fuzzy edges is shown in Algorithm 3.2. 

Algorithm 3.2 Gradient adjustment algorithm 

( ) ( )

( )
( ) ( )( ) ( )( )

( ) ( ) ( )

j

j

j j 1

0

Init j from d to 0:
    offset x, y 0,0

end
for j from d-1 to 0
    if edge x, y FUZZY

ˆ        offset x, y L offset x, y mean I x, y

    end
end
offset x, y offset x, y / counter x, y

+

=

=

⎡ ⎤= +⎣ ⎦

=

j∇

 

where d is the coarsest level, ( )jÎ x, y∇  is defined in (3.1), ( )jedge x, y  is the edge label at 

level j, ( )joffset x, y  is the gradient offset at the location ( )x, y , 

( )( )
( )

( )
w w

j j2
a w b w

1ˆ ˆmean I x,y I x+a,y+b
2w 1 =− =−

∇ = ∇
+

∑ ∑ , ( )
d

j j j
j 0

x ycounter x, y E ,
2 2=

⎛ ⎞⎢ ⎥ ⎢ ⎥= ⎜ ⎟⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎝ ⎠
∑ , and 

. ( ) ( )j
j

1  ,if edge x, y FUZZY
E x, y

0  ,otherwise                      
⎧ =

= ⎨
⎩
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(a) The original image (b) The part (white line) of the 

cross-sectional view of (a) 

(c) The gradient of (b) 

Figure 3.8 Fuzzy edge profile and its gradient. 

We simply add this decision into equation(3.2) , and rewrite it as follows: 

 ( )
( ) ( )

j

1

j j

Î

Î x, y OFFSET x, y
x, y

β−
⎛ ⎞∇ −
⎜ϕ =
⎜ α
⎝ ⎠

⎟
⎟

)

)

 (3.4) 

where  is the scale factor at each level j, α determines which gradient magnitudes 

remain unchanged. The gradient whose value is larger than α is attenuated (0< β< 1), and 

 is the Gaussian pyramid of the

(
jÎ x, yϕ

(jOFFSET x, y ( )offset x, y . The attenuation function is the 

same as equation(3.3). Finally, we could calculate the gradient field by the following equation: 

  (3.5) ( ) ( ) ( )( (Î
ˆG x, y I x, y offset x, y x, y= ∇ − Φ) )

Using equation(2.15) we could reconstruct the image from the gradient field G. 
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j 1edge EDGE+ =

( )j 1Î x,y∇ > τ( )jedge x,y NEDGE= ( )jedge x,y EDGE=

( )jedge x,y NEDGE= ( )jedge x,y EDGE=

For j from d-1 to 0

( )( )
( )( )

j

2

j

ˆstd I x,y

ˆmean I x,y

∇
> τ

∇

( )dedge x,y NEDGE= ( )dedge x,y EDGE=

( )j 1Î x,y∇ > τ

( )jÎ x,y∇

( )d 1Î x,y∇ > τInit j=d
TF

TF

TF

TF

TF

( )j 1Î x,y∇ > τ

( )j+1edge x,y NEDGE & FUZZY= ( )j+1edge x,y EDGE & FUZZY=

TF

TF

jedge FUZZY=

j 1edge FUZZY+ =

 

Figure 3.9 The flow chart of the Algorithm 3.1
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Chapter 4. Experimental results 

In this chapter, we would discuss the parameters in our algorithm, and then we compare 

our algorithm with the other method. All the images are captured by the Olympus C4040Z at 

the resolution of the 640x480 pixels. 

4.1. Different parameter setting 

In this section, we would discuss the parameters in our method. These parameters can 

divide into two groups.  and determine which edge would classify as the fuzzy edge. 1τ 2τ α  

and determine which gradient should be enhanced and which gradient should be attenuated 

as described in section 

β

3.3. 

4.1.1. The parameters of the edge classification 

algorithm 

These parameters would affect the classification of the fuzzy edges. If we fix 2τ , and 

adjust . In 1τ Table 4.1, the smaller 1τ , the more pixels we would classify as the edge in the 

coarse level (j+1). This would let the more fine level (j) pixels whose local standard deviation 

divide by local mean less than  have more chance to become the fuzzy edges. If we fix 2τ 1τ , 

and adjust . In 2τ Table 4.2, the larger 2τ  would let the more pixels whose coarser level is 

classified as the edge, become the fuzzy edges. In our experiment, we suggest setting 1τ  about 

0.5~1.0 times the average gradient magnitude, and 2τ  between 0.4 and 0.5 (see Figure 4.1). 
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Table 4.1 The results for different values of 1τ . 

1τ  ( )( )j
ˆ0.5 mean I x, y∇  ( )( )j

ˆ1.0 mean I x, y∇  ( )( )j
ˆ1.5 mean I x, y∇  

2τ  
0.5 

Le
ve

l 0
 

Le
ve

l 1
 

Le
ve

l 2
 

Le
ve

l 3
 

Note: white pixels are the fuzzy edge pixels, gray pixels are the edge pixels, and dark gray pixels are the non-edge 

pixels. 
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Table 4.2 The results for different values of 2τ . 

1τ  ( )( )j
ˆ1.0 mean I x, y∇  

2τ  
0.3 0.45 0.6 

Le
ve

l 0
 

Le
ve

l 1
 

Le
ve

l 2
 

Le
ve

l 3
 

Note: white pixels are the fuzzy edge pixels, gray pixels are the edge pixels, and dark gray pixels are the non-edge 

pixels. 
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(a) The fuzzy edge detected by our algorithm at the 

level 0 

(b) The fuzzy edge detected by our algorithm at the 

level 1 

  
(c) The fuzzy edge detected by our algorithm at the 

level 2 

(d) The fuzzy edge detected by our algorithm at the 

level 3 

Note: white pixels are the fuzzy edge pixels, gray pixels are the edge pixels, and dark gray pixels are the 

non-edge pixels. 

Figure 4.1 The results obtained with the suggested parameters ( ( )( )1 j
ˆ1.0 mean I x, yτ = ∇ , )2 0.45τ = . 

4.1.2. Adjustment of the gradient in the fuzzy area 

In this section, we verify our method that uses local mean to adjust the gradient in the 

fuzzy area would remove fuzzy edge in the image. We use our fuzzy edge classifier to detect 

fuzzy edge after adjustment the gradient in the fuzzy area. In Table 4.3, before adjustment, we 

can find lots of fuzzy edges (white pixels); after adjustment, the fuzzy edges are almost gone. 

Thus, our algorithm could remove the fuzzy edges that we detect. 
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Table 4.3 The effect of adjustment of the gradient in the fuzzy area. 

 Before After 
Le

ve
l 0

 

  

Le
ve

l 1
 

  

Le
ve

l 2
 

  

Le
ve

l 3
 

  
Note: white pixels are the fuzzy edge pixels, gray pixels are the edge pixels, and dark gray pixels are the 

non-edge pixels. 
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4.1.3. The parameters of the attenuation function 

These parameters would affect the attenuation function. If we fix , and adjust β α . In 

Table 4.4, the larger  would preserve the more fine detail. In other words, the attenuation 

function would be larger, and let both of the local and the global contrast larger. If we fix 

α

α , 

and adjust . In β Table 4.5, the smaller β  would enhance small gradient more, and attenuate 

large gradient more. This would let the “contrast” of the attenuation function become larger, but 

this would make the contrast of the large gradient area smaller (more blur) and make the 

contrast of the small gradient area larger (sharper). In our experiment, we suggest setting α  as 

0.1~0.2 times the average gradient magnitude, and β  between 0.8 and 0.9. 

 

Table 4.4 The results for different values of α . 

α  
( )( )j

ˆ0.1 mean I x, y∇  ( )( )j
ˆ0.5 mean I x, y∇  ( )( )j

ˆ1.0 mean I x, y∇  

β  0.9 

A
tte

nu
at

io
n 

fu
nc

tio
n 

R
es

ul
t 

Note: for the attenuation function, the darker pixel, the smaller attenuation value. 
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Table 4.5 The results for different values of β . 

α  
( )( )j

ˆ0.1 mean I x, y∇  

β  0.7 0.8 0.9 

A
tte

nu
at

io
n 

fu
nc

tio
n 

R
es

ul
t 

Note: for the attenuation function, the darker pixel, the smaller attenuation value. 

 

The shadow removal method proposed in this thesis suffers from some problems. First, as 

describe in section 3.4, the gradient which subtracts its local mean could remove the shadow, 

and preserve the detail in the fuzzy edge area, but this method still make a little blur in the fuzzy 

edge area. If we classify the fuzzy edge again after adjustment the fuzzy edge area, the fuzzy 

edges still reveal. 

Second, the shadow removal method is only dealing with the intensity, and we don’t take 

the color information for further processing. Because the color information inside the shadow 

region is severely destroyed, the color in this region is not the same as that in the normal 

lighting environment. We also notice that if the intensity inside the shadow region is too small, 

the “color shift” will be much worse. For this reason, the shadow removal method performs 

better under the condition when the contrast between the light and shadow region is small, i.e. 

the color information in the shadow region is still preserved. This is the main problem of our 

method, and can be improved by considering the color information. 
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Finally, because the shadow removal method performs the subtraction of local mean 

before attenuation, the “halo affect” will arise. However, it is not quite appearant under the 

normal condition, except for the sharper edge area. Thus, we can simply ignore the affect. 

Table 4.6 shows more results obtained by our method for a variety of images. In general, 

our method is capable of removing the shadow. However, as mention above, our method suffers 

from two effects: blurring and some color shift. 

Table 4.6 Results by our method. Although there are some problems discussed in section 4.1, the shadow is almost 

gone. 

Original image Results by our method 
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Table 4.6 (continued) 
Original image Results by our method 
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Table 4.6 (continued) 
Original image Results by our method 

  

  

4.2. Comparison with the other methods 

We compare our method with the other methods, such as histogram equalization, Fattal et 

al. method [8], unilateral [16], and bilateral filter [17]. We use the pictures in Figure 4.2 as the 

input images. We use the pictures to test whether the texture under the shadow is preserved or 

not. In Figure 4.3 (a), the histogram equalization enhances the contrast in the bottom left area, 

but it also reduces the contrast in the other area. In Figure 4.3 (b), it enhances the contrast in 

the upper half, but it also reduces the contrast in the dark shadow area. In Figure 4.4 (a), the 

unilateral filter reduces the shadow slightly, but still reveals, and enhances the detail in the dark 

area such as the trees on the both sides. In Figure 4.4 (b), it also reduces shadow slightly, and 

enhances the detail in the shadow area. In Figure 4.5 (a), the bilateral filter reduces the shadow 

effect stronger than the unilateral filter, but it removes some texture information such as the 
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lawn and the leaves in the whole image. In Figure 4.5 (b), it removes shadow better than 

unilateral filter, but it also removes some texture information in the whole image. In Figure 

4.6, the Fattal et al. method reveals the detail information in the dark area, as well as the 

shadow area, but the shadow still exists. It is because the fuzzy edge property described in 

section 3.4. In Figure 4.7, our method extends Fattal et al. work, thus we have the advantage of 

the Fattal et al. method, and removes the “fuzzy” shadow, too. However, the whole image 

becomes blurring slightly (see Table 4.6 for more examples). 
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(a) 

 
(b) 

Figure 4.2 Original images.
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(a) 

 
(b) 

Figure 4.3 Results by Histogram Equalization.
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(a) 

 
(b) 

Figure 4.4 Results by Unilateral Filter. 
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(a) 

 
(b) 

Figure 4.5 Results by Bilateral Filter.
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(a) 

 
(b) 

Figure 4.6 Results by Fattal’s method.
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(a) 

 
(b) 

Figure 4.7 Results by Our method.
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Chapter 5. Conclusion and future 
work 

5.1. Conclusion 

In this thesis, we modify Fattal et al. algorithm which is originally used in the 

tone-reproduction for the high dynamic-range image, and if can also be applied to the shadow 

removal. The original method doesn’t produce the satisfying results because of the blurring 

affect, so we first detect the fuzzy edges by the multi-resolution approach, and then subtract the 

local means of the gradients within those regions. This modification reduces the blurring affect 

very well, but there still have many improvements for us to work out. How do we adjust the 

gradients within the fuzzy edge? Is it suitable to simply subtract the local-mean without the 

consideration of the noise? The fuzzy edge detection is also the important step which can 

influence the performance severely. In our knowledge of the “fuzzy edge” detection, the way is 

using the multi-resolution to detect the possible fuzzy edges. Besides, we use the “binary” edge 

detection approach to decide whether the specific position in the image is fuzzy edge or not, the 

approach may be extends to the “fuzzy” edge detection by applying the fuzzy set. However, we 

can not ensure affirmly whether the detection method can be used in the generalized case, and 

whether the percentage of the correct fuzzy edge detection fulfills our requirements? So, we 

still have more experiments to do to confirm the correctness of the detection method. The 

“color shift” is another challenge in the shadow removal. It’s not enough to deal with the 

shadowing images by only considering the intensity information. Instead, the color information 

should be included in the consideration in order to correct the problem of “color shift“. 
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5.2. Future work 

We adopt the concept of gradient domain to deal with the shadow removal problem. The 

concept of the attenuation in gradient domain can also be migrated to the wavelet domain 

because the HH, LH, HL sub-bands after the high-pass filter also represent the higher frequency 

of the original image, which is the same as the gradient indicates. Maybe we can apply our 

shadow removal method to the wavelet domain. In addition, our shadow removal method still 

leaks the chromatic information, which causes the problem of “color shift“. We have found that 

the illumination-invariant approach may be overcome this problem, however, due to the limit of 

time, we expect to correct the color shift in the future. If the chromatic information is included, 

not only fuzzy edges but the sharp edges can also be detected correctly, this enhancement will 

then fulfill the requirement of the shadow removal. 
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