BT A AN T 2 B2 Z A Bk

A Trichotomy Reaction Attack.on.McEliece Public-Key
Cryptosystem

Yol Ha4e. RN UL

PAREA Atm F A A

i

S RTINS 3 P R L S VY e

A Trichotomy Reaction Attack on McEliece Public-Key
Cryptosystem

A RiEE Student: Han-Chang Liang
WBEHAR: R FK Advisor: Prof. Rong-Jaye Chen

=
e
™k

m
“
R
. v s
wodE

A Thesis
Submitted to Institute of Computer Science and
Information Engineering
College of Electrical'Engineering and Computer Science
National Chiao Tung University
in
Partial Fulfillment of the Requirements

for the Degree of Master

in

Computer Science and Information Engineering

June 2005
Hsin-Chu, Taiwan, Republic of China

TRHEE Jutwm F o5 A

11

e
-\

g B LR SMTATR, B b A RH KA 18 L IR B 67, & T RIR 7 UK R,
R ER LA BERISEH LGS T E 2R, AR RGAHIFARL Bm, BEERHERY
RARMEA LR, 12 BIPARB AL BT RALEE, RAEZBRNTRE OB 895 &
B.OHUB, EEL. XES R, B AW, F1E FRHEEUR TRALATARETRENEL, PR
—Fleteh, & B H S8, 2 —BRBGER, HIRHIRRTRTCELGER: RGBT, £

R 7y @ T RARK S

v

B =T A m B AR AR = ik R e %
i BWE BPHGE RER 20

B 7 33l K

FaMITAEZA

SRS

B T RN NR B AR A BT — R4S T REGR AR R R AR MR B 7 e Hall ¥ =43
BH7A 1999 SF4- B T H—EEA BT A NG B R G KSR, B ERELSETT, R
JESCHETTATHE G, 2% B 5 694 R R B B BARE T, RIMRE—E =575 B, %%
AR R B A ATk 09 B L, #5 FIBTZ G (5718 5 Bl o 9 SR ak, ks T R ARR TR Rl Y
J&, SBEAEGIR B, & THERE G, RITE S G2 —BIE Fik AR R L3 AME R 1] RS,
AT = 5tk RUBAE T 6 By 3T AN AR R LT AR AR B SRR Bk T e, RiE—F

i’JL &{F%f{}f‘ ﬂﬂﬁ»’(%f’f)/@ %ﬁ%/kbb—%x ']{Pyﬂi*mkfﬁ%o &4 Hl]lié{lé'aum &{FEJ'H‘@ B =5% K
Jes 8% Bk, ied F 6 PR B, ARAFAE R SR RAL

BT BT AMNMEEHAL, RBSE, =0k ROBSCE, AR R, P AR AT) A

A Trichotomy Reaction Attack on McEliece
Public-Key Cryptosystem

Student: Han-Chang Liang Advisor: Dr. Rong-Jaye Chen

Institute of Computer Science and Information Engineering

National Chiao Tung University

Abstract

McEliece public-key cryptosystem is the first system combining cryptography and algebraic
coding theory. In 1999, Hall et al. introduced the reaction attack on McEliece’s and two other
cryptosystems. Compared with chosen-ciphertext attacks, the reaction attack has higher feasi-
bility. However, it requires more quéries. In this thesis, we.propose a trichotomy reaction oracle
model. In this model, the key-owner 1§ assumed-that when a illegal ciphertext is received, he de-
termines if the ciphtext is still decryptable ‘and the plaintext is correct, then replies two different
warning responses according to the judgement. And he replies an acknowledgement response
when a legal ciphertext is received. We prove that if there is an algorithm which solves the
comparative counterfeit coins problem, then there is an attack algorithm on the improper im-
plementation which matches the trichotomy reaction oracle model. Furthermore, we design
an efficient algorithm to solve the comparative counterfeit coins problem. Combined with the
previous conclusion, a trichotomy reaction attack algorithm with fewer queries requirement is

induced.

Key Words: McEliece public-key cryptosystem, reaction attack, trichotomy reaction attack,

counterfeit coins problem, comparative counterfeit coins problem.

vi

Contents

Chinese Abstract
English Abstract
Contents

List of Figures
List of Tables

1 Introduction

2 McEliece PKC
2.1 Native McEliece PKC
2.2 Variants for Reducing Data Redundancy
2.3 Variants for Enhancing Security Lo L o oo
23.1 Sun’sVariants Lo e e
2.3.2 Loidreau’s Variant

2.3.3 Kobara and Imai’s Variant

3 Attacks to McEliece PKC
3.1 Generalized Information-Set-Decoding Attack

3.1.1 Information-set-decoding

vii

iv

vi

ix

xi

10
10
12

16

viii

3.1.2 McEliece’s Decoding Algorithm
3.1.3 Tilburg’s Decoding Algorithm
3.1.4 Improvements of Decoding Attack
3.2 Finding Low-Weight-Codeword Attack
32.1 Leon’sAlgorithm
32.2 Stern’s Algorithm 0oL
3.2.3 Canteautetal’s Algorithm
3.3 Message-Resend and Related-Message Attack
3.4 Known-Partial-Plaintext Attack
3.5 Chosen-Ciphertext Attack and Malleability Attack
3.6 Reaction Attack
3.6.1 The Reaction OracleModel«
3.6.2 The Attack Algorithm._'. . o ... o=, . .00
3.6.3 AnlImproved Attack Algorithm - . ./

4 'Trichotomy Reaction Attack

4.1 Trichotomy Reaction Oracle Model
4.2 Counterfeit Coins Problem

4.2.1 Additive Counterfeit Coins Problem

4.2.2 Comparative Counterfeit Coins Problem (CCCP)

43 A Greedy approachof CCCP
4.3.1 Optimal nonadaptive algorithm for 4 coins
4.3.2 A greedy algorithm for (n,d)-CCCP
4.4 Attack under Trichotomy Reaction Oracle Model

4.5 Trichotomy Reaction Attack Algorithm

5 Conclusion

CONTENTS

List of Figures

3.1
3.2
3.3

4.1

4.2
43
4.4

Modified McEliece’s Decoding Algorithm with parameter (j,€) 26
The matrix after arrangement. e 30
Stern’s Algorithm with parameters pand/ 33

The decryption algorithm behavior that consists with trichotomy reaction oracle

model. e e e 44
A nonadaptive algorithm selving (3,3)-:CCCP " - 48
OPT,, An optimal nonadaptive algorithm for4¢coins 50
Decision tree diagram of OPT5. “. o,o 51

X

LIST OF FIGURES

List of Tables

5.1 An arrangement of queries requirement

xi

xii

LIST OF TABLES

Chapter 1

Introduction

In 1978, McEliece proposed a public-key cryptosystem which is based on a hard problem in the
coding theory, that is the Nearest Codeword Problem (NCP) [4]. The NCP is defined as follows:
given a generator matrix G, a received vector ¥, one'is.asked to output the vector m that minimize
weight(mG & r) = t. The decision version of NCP is proven to be an NP-complete problem by
reducing the three-dimensional matching problem [16] to.it, thus NCP belongs to the class of
NP-hard problems. The McEliece PKC is attractive since it combines the cryptography and

algebraic coding theory.

In recent thirty years, several variants of the McEliece PKC have been proposed [27] [28]
[22] [18]. We can separate them into three classes by their purpose. The first type of variants
aim to reduce the encryption data redundancy, the second type of variants aim to enhance the
security, and the last type of variants aim to cover the above two purposes.

In the opposite direction, several attacks of the McEliece PKC have also been proposed [25]
[19][30] [20] [6] [17] [5] [29] [13]. Some attacks [25] [19] [30] [20] [6] aim to solve the under-
lying nearest codeword problem. Although all of these attacks requires an exponential expected
time consumption, they are constructive since they inspire the research about the decoding of
general linear-codes.

Under a large amount of examination, the native McEliece PKC is considered to satisfy a

security notion: one-wayness against chosen-plaintext attacks (OW-CPA). OW-CPA is said to

1

2 CHAPTER 1. INTRODUCTION

be satisfied if all the known chosen plaintext attacks cannot recover the whole plaintext of an
arbitrarily given ciphertext within a practical time. Moreover, Kobara et al proved in the random
oracle model that after applying a proper conversion on the McEliece PKC, the modified sys-
tem satisfies the strongest security notion, that is, the indistinguishability of encryption against

adaptively chosen-ciphertext attacks (IND-CCA2).

However, there still exist some effective attacks which break an improper implementation or
a vulnerable protocol. In 1999, Hall, Goldberg, and Schneier [13] proposed the reaction attack
against several public key cryptosystems based on decoding problems and lattice problems,
including the McEliece [25], Hwang-Rao [14], Ajtai-Dwork [2], and Goldreich-Goldwasser-
Halevi [11] cryptosystems. In their attack against the McEliece PKC, an adversary sends the
key-owner a ciphertext which may contain_one.or. more additional error bits. In common im-
plementations, the garbled ciphertext.will cause failure in decryption or an illegal plaintext
checksum. The adversary then watches the reaction of the key-owner in order to determine
whether or not the ciphertext is decrypted Correctly; By repeatedly apply the send-and-watch

action, the adversary can obtain the plaintext.

This attack is interesting since it proved that even a strongest conversion is applied [18], an

improper implementation cause the whole PKC to be vulnerable.

In Chapter 4 of this thesis, we extend their work to propose a trichotomy reaction attack to
break an improper implementation of the system which matches with the reichotomy reaction
oracle model. Furthermore, we establish the connection between comparative counterfeit coins
puzzle and the reaction attack to recover the plaintext from ciphertext in fewer send-and-watch

actions.

In the rest of this thesis, we first give a review of all variation versions of the McEliece
PKC. Next, we introduce all the known attacks on the native McEliece PKC, and we proposed
a improved weight-checking skill, which can be applied on the general information decoding

attacks. Finally, we propose a new attack which breaks an improper implementation of the de-

cryption procedure when the behavior of the decryption procedure matches with the trichotomy

reaction oracle.

CHAPTER 1. INTRODUCTION

Chapter 2
McEliece PKC

McEliece Public-Key Cryptosystem (MEPKC) was first introduced by R.J. McEliece in 1978
[25]. Inrecent thirty years, several variants of the MEPKC have been proposed. We can separate
them into three classes by their purpose. The first type of variants aim to reduce the encryption
data redundancy, the second type of variants,aim to enhance the security, and the last type of
variants aim to cover the above two purposes. In this chapter, we introduce all of these variants.
We begin with an introduction to thé-underlying hard problem of the MEPKC.

Nearest Codeword Problem (NCP) is-an NP-hard problem; it is defined as follows.

Nearest Codeword Problem:
Input: A generator matrix G, a received vector r.
Output: The m that minimize weight(mG @ r).

If the NCP can be solved efficiently, it implies that the McEliece PKC is broken. But breaking
McEliece PKC is not as hard as solving NCP since the McEliece PKC is a special case of NCP
where error weight is guaranteed to be a certain value. The hard problem that an adversary

really faces is a constrained version of NCP, which can be described as follows.

Constrained Nearest Codeword Problem:

Input: A generator matrix G, a nonnegative integer ?,
and a received vector r consists with that there
exist one and only one vector m such that
weightimG & r) = t.

Output: The m such that weight(imG ©r) = t.

5

6 CHAPTER 2. MCELIECE PKC

The decision version of NCP [4] is proven to be an NP-complete problem by reducing
the three-dimensional matching problem [16] to it, thus NCP belongs to the class of NP-hard

problems. However, the Constrained NCP have not been proved as hard as NCP.

2.1 Native McEliece PKC

The native MEPKC consists of the following three algorithms:

Key Generation algorithm:
Generate four matrices G,S,P and G’

G k X n generator matrix of a binary Goppa code with correcting ability ¢.
S k X k random binary invertible matrix.

P n X n random permutation matrix.

G’ G' =SGP

Secretkey: S,G,P
Public key: G',t

Encryption algorithm:

To encrypt a 1 X k message m, one has to randomly select a 1 X n error vector e with
Hamming weight #. Then output the corresponding ciphertext c:

Ciphertext: c=m-G ®e

Decryption algorithm:

The key-owner first multiplies ¢ by P~',i.e. cP~! = mSG @ eP~". Then he applies the
efficient decoding algorithm for Goppa code to eliminate the error vector eP~' and
obtains the vector mS , which is multiplied by S~ to obtain the message m.

Plaintext: m =mS -S~!

We can see that an instance of the MEPKC can be uniquely determined by four parameters
(S,G,Pr).

In the next paragraph, we give an introduction to the Goppa code [12] [3] [24], which is
suggested to used in the MEPKC by the original author.

The Goppa code is first proposed by Goppa [12] in 1970. Based on the original definition,

there are many equivalent definitions of it. Here we describe the definition from [23].

2.1. NATIVE MCELIECE PKC 7

Definition 2.1.1. [23] Let ¢ be a prime power, m be an integer, g(x) be a polynomial with
coeflicients in GF(q™), L denotes a set of all elements of GF(g™) that are not roots of g(x).
Then there is a Goppa code with length |Z| and symbol field GF(g). The code is defined as the

set of all vectors C that consist with the condition:

CV
—— =0 mod g(2).
yeL Y
For the convenience of implementation, we usually use binary Goppa codes in the MEPKC, so
we describe another definition of the Goppa code from [24]. It defines the binary Goppa codes

by parity check matrix.

Definition 2.1.2. [24] Let g(x) € GF(2™)[x] be a polynomial of degree ¢ over the field GF(2™),
L = {a,a,,...,a,} be a subset of elements of GF(2") such that g(a;) # 0. We label the

coordinates of the vector a € (GF(2™)")with the elemients of L in the following way:

a = (aapaaz, il oG 7aa,,)

Then, the Goppa code I'(L, g) is the set of bifiafyivectors @ = (a,,, da,, - - - » da,) such that

a-H'=0
where
G(ap)™ Glap)™ -+ Glay™
CL’]G(CL’])_I Q'ZG(Q'Z)_l e anG(a’n)_l
H=| &GN oGy’ - aGla,)”
| &7'G(a)™ oS 'G(an)™ - a7 'Glay) T

A binary Goppa code I'(L, g) is a [n, k, d]-linear code with the following three properties.

I. k>n-mt

2. d=>2deg(g’) + 1, where g’ is the square-free polynomial of highest
degree which divides g.

3. There exist a polynomial-time decoding algorithm which corrects
up to deg(g’) errors.

8 CHAPTER 2. MCELIECE PKC

We give a construction example of the binary Goppa code withn =7,k =4,d = 3.

Example 2.1.1. Select a polynomial f(x) = x* + x+ 1 which is irreducible over GF(2), then we
have a corresponding field GF(23). Select a polynomial g(x) = x which has only one root over
GF(2%), thus we have L = {a!,a?, a?,a*, &’,a® a’}. By definition 2.1.2, the corresponding

parity-check matrix over field GF(2?) is:

H

[G(al)‘l G(a,Z)—l G(CL’3)_1 G(CZ4)_] G(a,S)—l G(ozé)‘l G(CZ7)_]]
= [® @ ot @ @ o]
We can rewrite the 1 X 7 parity-check matrix over GF(2%) into a 3 x 7 parity-check matrix over

GF(2) without effect of its parity-check function:

—_ O —
e
QO ==
T e
O
O =IO
o o
[—

Then we have the corresponding generator matrix:

S O O -
Rl -
S = O O
— O O O
O = =
— = = O
e

Example 2.1.2. Select a polynomial f(x) = x* + x + 1 which is irreducible over GF(2), then
we have a corresponding field GF(2%). Select a polynomial g(x) = x> + x which has two roots
over GF(2*) (0 and 1), thus we have:

3 4 05 06 8 9 10 11 12 1

L={a',a%a’ a* a’ aba’,ab, a® a0 a'l,a'?, a®, a'?). By definition 2.1.2, the correspond-

ing parity-check matrix over field GF(2%) is:

H = |H | H |

2.2. VARIANTS FOR REDUCING DATA REDUNDANCY 9

where
by 20 o o a0 o ol o'
1 d' o7 o 405 2 ab
and
. @ o ® o o o o3
2 = ad? o a® F o all o2

Then we have the corresponding parity-check matrix over GF(2).

(0 01 00Q,L, L O1 01 11 1]
111 01 01000O0O0T11
1101, 0,1 0,176 01110
0 = 1o4d4 110 L0 1-11 101
11017001 1001011
1000111 110011
11 1-+061T00060O01O0111
|01 0 '"O.0.01T 11010 1]

2.2 Variants for Reducing Data Redundancy

A representative work of variants for reducing the data redundancy was proposed by Sun [27]
[28]. The main idea of these variants is to construct the error vector by partial plaintext or its
variations instead of selecting the error vector randomly. Because the error vector is a part of
plaintext or can be converted into partial plaintext, we can proportion a part of plaintext to the
error vector. In this way, more information(longer plaintext) can be carried by a fixed length

ciphertext. The author proposed five variants; we describe his variant 11l in this section.

Variant 2.2.1:

10 CHAPTER 2. MCELIECE PKC

Key Generation algorithm:
Generate four matrices G,S,P,G’ and a function g.

g An invertible function: {0, 1}1022(D) & {yly € {0, 1}, weight(v) = 1}.

G k X n generator matrix of a binary Goppa code with correcting ability: ¢.
S k X k random binary invertible matrix.

P n X n random permutation matrix.

G’ G' =SGP

Secretkey: S,G,P
Public key: G’,g,t

Encryption algorithm:

To encrypt a message m = my|lmy, where |m,| = k, |mp| = Llogz(’Z)J, one has to compute
an error vector e = g(my). Then output the corresponding ciphertext c:

Ciphertext: c=m-G ®e

Decryption algorithm:

The key-owner recover the partial plaintext m, by applying the original decryption
algorithm of MEPKC. Then, the error vector can be obtained by e = m,G’ @ ¢. The key
owner can easily extract my by my = g_1 (e).

Plaintext: m = m,||my

This variant provides additional Llogz(’;)J—bits mformation capacity.

2.3 Variants for Enhancing Security

More variants can be found for enhancing security. For example, the variants proposed by Sun
[28] [27] which resist the message-resend and related-message attack [5], the variant proposed
by Loidreau [22] which resists the chosen-plaintext attacks and the Kobara et al’s variant [18]

which resists the chosen-ciphertext attacks. We will introduce these variants in this section.

2.3.1 Sun’s Variants

In the previous section, we have introduced the Sun’s variant for reducing the encryption data-
redundancy. Actually, the author provided four other variants in his paper [27]. His variant I and
II successfully resist the message-resend attack. Moreover, his variant IV and V meet the dual

purposes of reducing the encryption data-redundancy and enhancing security. The main idea of

2.3. VARIANTS FOR ENHANCING SECURITY 11

these variants is to shield the plaintext by a hash-value of the error vector. In this way, resend-
messages will not cause the leak of error position information (for detail of the message-resend

attack see Section 3.3). We give an introduction to variant I and IV here.

Variant 2.3.1:

Key Generation algorithm:
Generate four matrices G,S,P,G’ and a function g.

h A hash function: {v|v € {0, 1}, weight(v) = t} — {0, 1}k,

G k X n generator matrix of a binary Goppa code with correcting ability ¢.
S k X k random binary invertible matrix.

P n X n random permutation matrix.

G’ G' =SGP

Secretkey: S,G,P
Public key: G’,h,t

Encryption algorithm:

To encrypt a 1 X k message mi; one has.to fandomly select a 1 X n error vector e with
Hamming weight #. Then output the corresponding ciphertext c:
Ciphertext: ¢ = (m® h(e))G' ®e

Decryption algorithm:

The key-owner recover the corrupt plaintext m’ = m @ h(e) by applying the original
decryption algorithm of MEPKC. Then, the error vector can be obtained by

e = m'G’ @ c. The key-owner can easily extract correct m by m = m’ @ h(e).
Plaintext: m = m’ ® h(e)

This variant successful resist the message-resent attack. When a message first encrypted as
ciphertext ¢ and re-encrypted as a different ciphertext c,, the adversary compute ¢; @ ¢,, then
he will obtain (h(e;) ® h(ey))G’ ® e; @ e, which leaks no information about ¢; and e, since the

covering of (h(e;) ® h(ey))G'.

Variant 2.3.2:

12

CHAPTER 2. MCELIECE PKC

Key Generation algorithm:

Generate four matrices G,S,P,G’ and a function g.

q A system parameter which denotes the length of random vector.
g consists with 0 < g < Llogz(';)J.
An invertible function: {0, 1}1082()) & {v|v € {0, 1}, weight(v) = 1}.
A hash function: {v|v € {0, 1}, weight(v) = t} — {0, 1}"".
k X n generator matrix of a binary Goppa code with correcting ability: ¢.
k X k random binary invertible matrix.
n X n random permutation matrix.

! G' =SGP

Secretkey: S,G,P

Public key: G’,q,g,h,t

QT Q> x

Encryption algorithm:

To encrypt a message m = m,||my, where |m,| = k and |my| = Llogz(’t’)J -q.

One has to randomly select a 1 X g vector r, then compute an error vector ¢ = g(r||mp).
Output the corresponding ciphertext c:

Ciphertext: ¢ = (m, ® h(e))G' @ e

Decryption algorithm:

The key-owner recover the corrupt plaintext m/, =, @ h(e) by applying the original
decryption algorithm of MEPKC:! Then, the efror vector can be obtained by

e = m,G’ ® c. The key-owner can easily.extract correct m, by m, = m,, ® h(e).

Final, m;, can be obtained by applying the inverse function of g, that is (r|lm;) = g~ ' (e).
Plaintext: m = mallmy,

This variant not only resists the message-resend attack, but also reduces the encryption data-

redundancy. Because of the additional message m,, this variant provides additional Llogz(?)J -q

bits information capacity.

2.3.2 Loidreau’s Variant

In 2000, Loidreau proposed a modified version of the MEPKC using the modification bases

on the Frobenius automorphism. The main idea of his modification is that it can enlarge the

weight of the error vector to resist the chosen-plaintext attack. In the original MEPKC, the

randomly-selected error vector e must consist with weight(e) < t to make sure that the key-

owner can decrypt correctly, but in the Loidreau’s modification, we can select an error vector

which satisfies weight(e) > t if the vector e is a t-Tower Decodable Vector.

2.3. VARIANTS FOR ENHANCING SECURITY 13

Consider a Goppa code I'(L, g) over Fo» where L = (y,...,a,) and g denotes the Goppa
polynomial. If all the coeflicients of g are in a subfield Fs of F,n, then the Frobenius automor-
phism function p : {0, 1}*" — {0, 1}?" is defined as follows.

Ve = (Cays- - Cay) €10, 11, 0(€) = (Cpriayys - - - » Cortayy) € 10, 11"

where p’(x) = x%'.

This variant is based on the fact that the Goppa code y(L, g) is invariant under the Frobenius
automorphism, that if ¢ is a codeword of the Goppa code Gamma(L, g), then p(c) is also a
codeword of Gamma(L, g).

Example 2.3.1. Consider a Goppa code I'(L,) over GF(2*), where g = x>+ x+ 1 and L =
0,a°% a',a? a* ab,a'?, a3, a2 e, 0, a'?, o', a3, @', a’). We can see that all the coefficients
of g are over the subfield GF(2!) of GF(2%), thus.we have s = landp(x) = x*' = x*.

The generator matrix of I'(L, g) is:

1 00 0000000111111

G = 010000 11117001111

0010<120001T1101O010

0001011 100010O0101

All the codewords of the I'(L, g) are:

cc= [00O0O0O0OO0OO0OO0OO0OO0OO0OO0OO0OO0OO0OTQO0]]
= [10001011100O01O01O0T1]]
cz= [001 01O0O0O0O111O01O010]
= [0011 111111111111 /]
cs= [01 00O0OOT1T1T1T1O0O0OT1T1T1F:1/]
= [01 0101001 1O011O01O0]
cc= [0110101 10O01O0O0T1O0T1]]
g= [01 111 100O0O011O00O0O0O0]
= [1 00 0O0O0O0OO0OO0OO0OT1T1TT1T1T1T1/]
C1o [T OO0O1O01110O01O0T1O0T1O0]]
cn=[101010001 T1TO0T1O01O01]
cp,=[101 1111111000000]]
ck=[1 1000071 T1T1T1T1T1O0O0O0O0]
cu= 11101010011 1O0O01O01]]
cs= [1 110101 100O0T1T1O0T1°O0]
ce=[11111 100O0O0O0O0T1T1T1T1]

14 CHAPTER 2. MCELIECE PKC

All the transformed codewords are:

pe)= 1 00000000000O0O0O0O0O0]
oc)= T 00101 000111010710]
oc)= T 000101 11000107101]
pe)= 1001 1111111111111]
pcs)= 1010000111 100T1T111]
pc)= 10110101 100100T1O0T1]
oe)= 10101 0100110110710]
oc)= 101 1 1 1 10000110000]
ocd)= [1 00000000O0T1 11 T1T1T1]
pc)= [10101 00011010101]
o= 100101 11001010710]
oep)= [101 1111111000000]
ocz)= [1 100001 111110000]
oc)= [1 110 1.0:dsd. 00011010]
pleis)= [1 101401 0021100101]
pe)= [1 1 14 1+ +H00.000071 111]

Under the action of the Frobenius automorphism, several orbits in the field GF(2") are
created. That is, there are several group of bits which only change their positions with oth-
ers inside the group after applying the Frobenius automorphism one or more times. The total
number of orbits can be evaluated. For an extension field F @y of Fys of prime degree s, the
p 10, 1}*" — {0, 1}*" operation creates Ny, = ((2%)*t —2%)/s, orbits of size s; and N; = 2° orbits

of size 1.

Example 2.3.2. Using parameters in the previous example, the Frobenius automorphism p cre-

ates the following six orbits.

2.3. VARIANTS FOR ENHANCING SECURITY 15

Size 1

(61117 C(Iz’ CQ’37 C(Y49 c(l57 ca67 Ca7’ C(Ig’ C(}’g’ C(Yl()’ C(IH’ c(1/12$ CQ’13’ Ca14, c(l]s’ Ca]g)

(C(Yl ’ C(lz’ C(1/3$ C(l4’ Ca5’ C[Zﬁa C(l7a C(lg’ C(l/g’ C(l]oa C(I]] B C[l]g’ Ca’]35 C(I]4’ Ca’15’ C(l/lﬁ)
Size 2

(C(x] ’ C(Iz’ C(Y3$ CQ’47 C(l’5’ C(lﬁa C(l7a C(Ig’ C(Yg’ Ca’]oa C(I]] ’ C(llza C(Y]3a C(l]47 Ca’155 C(Ilﬁ)
Size 4

(Ca/] ’ C(lz’ C(X37 C(Y4’ c(l’s’ cl}ﬁ’ Ca/7a Caga CQQ’ C(Y]o’ C(L/]] ’ C(Ilza C(X]3’ Ca/149 Ca/]5a Cd]s)

(C(x] ’ C(Iz’ C(Y35 Ca’47 C(l’j’ C(lﬁa C(l7a C(Igs C(Yg’ ca’]()’ C(k]] ” C(Ilza C(Y]3a C(l]47 C(1’155 C(Ilﬁ)

(C(Z] ’ C(lz’ C(1’3$ Ca/4, C(l59 C(l’ﬁ’ C(Z75 C(Ig’ C(Yg’ CQ’]Q’ C(I]] B C(l]2’ C(}’]3a C(ZM’ C(1155 Calﬁ)

Example 2.3.3. Using parameters in the previous example, we apply the Frobenius automor-
phism on a vector (cq,, Cays " * *» Caye) =0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0) for four times. Let
o' denote the p function acts for i times, that is, p'(x) = p(p" ! (x)). In the example, we focus on
the first orbit of size 4 (Cq,, Cay» Cas» Cag)-
(C[l35C(Z49ca’57ca’6) 3 (17 19090)
pl(ca3aca4’C05’cc16) = (15090’ 1)
pz(c(l3’ C(Z4’ C(15a c(l()) = (0’ 07 l’ 1)

p3(c(l37 Ca4’ Ca/57 Ca/(,) = (0’ 19]’0)
p4(ca37caf4aca'55 CQ6) = (17 19 0’ O)

By the definition of the Frobenius automorphism, there exist several vectors consist with fol-
lowing three properties. The set collecting these vectors is named z-tower decodeable vector in

[22].

Definition 2.3.1. [22] ¢-tower decodeable vector z is a word of length n having the following

properties.

Larger weight: wit(z) > t.

Reducibility: There exist a linear combination by, by, . .. € {0, 1} such that
wi(z') < t, where 7 = Y, b; - p'(2).

Recoverability: zis recoverable from the reduced z’.

16 CHAPTER 2. MCELIECE PKC

Based on the definition of 7-tower decodeable vector and its reducible property, the author pro-

vided the following modified version of the MEPKC.

Variant 2.3.3:

Key Generation algorithm:
Generate four matrices G,S,P,G’ and orbits set O

G k X n generator matrix of a binary Goppa code I'(L, g) with correcting
ability ¢.

S k X k random binary invertible matrix.

P n X n random permutation matrix.

G’ G' =SGP

(0] The orbits created by Frobenius automorphism rho

Secretkey: S,G,P L
Public key: G',t,0

Encryption algorithm:

To encrypt a 1 X k message m, one has to randomly select | ¢/2] orbits in O.

For each selected orbit, select three bits’and mark them as error bits. Collect all the
error bits to form an #-tower decodeable vector F.

Ciphertext: c¢=m-G'®E

Decryption algorithm:

The key-owner first calculate two vectors

fi(c) =c+p(c) + p*(c) and frlc)=c+ p%(c) + p3(c), one of them will be decrypt
correctly. Suppose a temporary message m’ is obtained by decryption, Calculate
e=(m ---G")® c, and obtain its corresponding enlarged vector £ (It’s possible since
the #-tower decodeable vector E is recoverable by definition). Eliminate the error bits
by ¢’ = ¢ @ E, then one can apply the information-set decoding to obtain the corres-
ponding message 1.

Plaintext: m = ¢} - G;;l

2.3.3 Kobara and Imai’s Variant

KOBARA and IMAI proposed a variant of the MEPKC in 2002 [18]. Under the random ora-
cle assumption, their variant is proved indistinguishable against the adaptive chosen-ciphertext
attacks (CCA?2) and the adaptive chosen-plaintext attacks.

Before describing their variant, we give an introduction to the necessary notations.

2.3. VARIANTS FOR ENHANCING SECURITY 17

Hw(x) The hamming weight of a binary string x.

C(n,1) The number of combinations taking ¢ out of n elements.

Prep(m) An invertable preprocessing procedure of m.

Hash(x) One way hash function maps arbitrary length binary string to a fixed
length binary string.

Conv(Z") Bijective function maps from
integer 7' € Z¢u to {ele € {0, 1}, weight(e) = t}.

Gen(x) A pseudo random sequence generated by a cryptographically secure
pseudo random sequence generator with input seed x.

Msbi(x) The left i bits of x.

Const A public constant.

gMcEliece(yy o) The function that encrypts plaintext m with error vector e by native
MEPKC.
The function that decrypts ciphertext ¢ to obtain the plaintext m

and the error vector e hidden in c.

DMcEliece(C)

Their modified version of the MEPKC is shown below.

Variant 2.3.4:
Encryption algorithm:
r€gr ZLength(Hash(x))
m' = Prep(m)
vi = Gen(r)® (' |[Conist)
o= r@®Hash(y))

(rsllyallys) = »n '
7 = y4+ (Hw(yz) mod 2)21082") mod C(n, t)

z= Conw(Z)
— y2||y5||8McEllece(y3,Z)

Decryption algorithm:

(2llys) = MSbLen(r:)—n(C)
z',y3 — DMcEliece(stn(C))
z= Conv '(2)
ya= z—(Hw(y; mod 2)2es2n mod C(n, 1)
Ifys < 2llogan] reject c.
Otherwise
yi = (sllyallys)
r=y2® Hash(y)
(m'||Const’y =y, & Gen(r)

Otherwise

If Const’ = Const
return m = Prep™' (m’)
reject ¢

The detailed proof of IND-CPA and IND-CCA?2 security refer to [18].

18

CHAPTER 2. MCELIECE PKC

Chapter 3

Attacks to McEliece PKC

After the MEPKC was proposed, several attacks are also proposed to break the cryptosystem.
However, as we mentioned in the previous chapter, the variant proposed by Kobara et al. is a
provable public-key cryptosystem under random: oracle model. When this variant is applied,
all the chosen-plaintext attacks and chesen-ciphertext attacks will not work anymore. Although
some of these attacks may not work-onithe latest variant of the MEPKC, they are still construc-
tive since they inspire the research about'the-decoding of general linear-codes. In this chapter,

we will review many known attacks to MEPKC.

3.1 Generalized Information-Set-Decoding Attack

This type of attacks (we call it the GISD for simplicity) try to correct the error bits in the
ciphertext; once they are successful, the codeword without error bits mask m -G’ is obtained and
m can be simply recovered by information-set-decoding. The GISD problem can be formally
described as input a generator matrix G of a general linear-code with error correcting ability
t, and a received vector ¢ with error-bits fewer than ¢, one must output the vector m such that
weight(mG’ @ c) < t (since G’ has error correcting ability ¢ by definition, m must be unique).
This type of attacks were first introduced by McEliece [25] and several improvements of it were
proposed [19] [30]. In this section, we will make a review of three representative attacks of this

type. We begin with an introduction to the information-set-decoding.

19

20 CHAPTER 3. ATTACKS TO MCELIECE PKC

3.1.1 Information-set-decoding

Consider a general [n, k]-linear code with generator matrix G, given a received vector ¢ without
any error bits, then we can recover the corresponding message m (that is, m - G = c¢) by the

following procedure.

Information-Set-Decoding Algorithm

Input: A k X n generator matrix G and a received vector ¢ with length 7.
Output: The vector m such thatm - G = c.

Select k columns of G, such that the selected columns are linearly-independent.
Collect the selected columns to form a new k X k matrix G.

Collect the corresponding k bits of ¢ to form a new vector ¢.

m=cg- G,;l.

Eal e

Example 3.1.1. Given a [10, 5]-linear code with generator matrix:

FF00"0-0-1.0 1 0 1
01000011120
G = 001"0°01 110060
000100O0O0O0O]1
00001O01O0O0T1

and a received vector ¢ = [1011 10O0O0O0°1] We select 1 - 5 columns, the

selected columns are linear-independent clearly. Thus we have:

10000
01000
G'=G;, = 00100
000120
00O0O0°1

Thecorrespondingck:[l 011]],bym:ck~G;‘,wehavem:[] 011]].

3.1. GENERALIZED INFORMATION-SET-DECODING ATTACK 21

3.1.2 McEliece’s Decoding Algorithm

This attack was evoked by McEliece himself in his original paper [25]. The basic idea of this
attack is to randomly select £ columns in the public generator matrix G’ and hope that the
corresponding positions of ciphertext are error-free. Once the k error-free positions are selected
luckily, the adversary can apply the information-set-decoding to recover the plaintext m. The
following algorithm combines the idea of McEliece, Lee and Brickell. Lee et al proposed a
systematic method to check whether the guess is correct or not (whether the selected k positions
are error-free). They also proposed a generalized method which can recover the plaintext when

there are small amount of errors in the selected k positions.

McEliece’s Decoding Algorithm with parameter j

Input: A k X n generator matrix«G/ and.a received vector ¢ with length n.
Output: The vector m suchithat weight(m -G’ ® ¢) <t.

1. Randomly select k columns of G, such'that the selected columns are
linearly-independent.
Collect the selected.columns.to forma new k X k matrix G;.
Collect the corresponding k'bits of ¢ to.form a new vector cy.
Calculate G,’;' -G’ and'¢c ® ck(Gl’;1 ~G").
Choose an unused k-bit error pattern e; with less or equal to j ones.
If(c® ckG;(_1 GHe ek(G},/C_1 G’) has weight ¢ or less, then
stop and return (m = ¢y ® ey) - G,;l.
6. If still exist unused k-bit error pattern, goto step 5.

Otherwise goto step 1.

A

We describe the expected running time of this algorithm by the following theorem.

Theorem 3.1.1. [19] Let W; denote the expected value of bitwise operations required by McEliece’s

decoding algorithm with parameter j, then W; = T (M (k,n) + N; X V, &, ;), where

UL OGN0

ve2()

Vikej = J12 % (n=k)

22 CHAPTER 3. ATTACKS TO MCELIECE PKC

and M(k, n) represent the running time for applying the Gaussian elimination on a k X n matrix.

Proof. The T} is the expected iterations of step 1 - 6, and the N; is an upper bound of the
iterations of the inner-loop step 5 - 6. M(k,n) is an approximation of the running time of
step 4 and V., ; is the number of bit-wise operations required by step 5. To check whether
(c® ckG,’c_lG’) @ ek(G,’C‘lG’) has weight ¢ or less, we can calculate the last n — & bits of ek(G,’c‘lG’)
and compare it with the last n — k bits of ¢ ® ck(G;(“ G’) to see if the hamming-distance of them
is less than ¢ — weight(e;). The average number of bit-wise operation required by calculating
last n — k bits of ek(G,'c‘lG’) is j/2 X (n — k) since e have average weight j/2, this gives V, ., ; =
J/2 X (n—k) (the cost of the hamming-distance checking is relatively low when comparing with

the cost of vector addition, so it is ignored). O

3.1.3 Tilburg’s Decoding Algorithm

Tilburg [30] proposed an improvement of decoding attack which reduces the running time of the
algorithm substantially. The improvéd algorithm reduced the cost of the validation step (step 5
in previous algorithm) and the cost of the'matrix operations (step 4 in previous algorithm). The
main idea of its first improvement is to permute the selected columns to the front of the matrix,
so that the validation should only make on the last n — k bits. Their work is famous due to their
second improvement. The main idea of the second improvement is to select k columns with
only one different column between the previous selection. This selecting strategy speeds-up the
Gaussian elimination when calculating G;' in step 4. We believe that the idea comes from the
simplex algorithm for linear programming problem.

The key idea of their improvement can be described by the following theorem.

Theorem 3.1.2. [30] Given a generator matrix G’ and a received vector ¢ = mG’ ® e where
weight(e) < t. Consider a randomly selected n X n permutation matrix P’ such that G’ can
be written as G' = S’[I|A]P’~! and cP’ can be written as cP’ = mS’[I|A] ® eP’. Then

weignt e = 01f and only 1if weight C &c < t, where ap,doy...,Ay) =
ight(FKB(eP")) = 0if and only if weight(F KB(cP’) [I|A]®cP’) here FK B()

3.1. GENERALIZED INFORMATION-SET-DECODING ATTACK 23

(ar,az,...,a).

Proof.

We first prove that the left-hand-side of the statement implies the right-hand-side:

Since weight(FKB(eP’)) = 0, we have FKB(cP')S’™! = m --- (1). By definition of ¢, we

also know that weight(mG’ P’ @ cP") = weight(eP’) < t. Substitute m by equation (1), we have:

weight(FKB(cP)S'™'S’ [I1A1® cP) < t

= weight(FKB(eP) [L|A] ® cP’) < t.

Then we show that the right-hand-side of the statement implies the left-hand-side to com-
plete the proof:
Since weight(FKB(cP’) [I|A] ® cP’)'<it;we have weight(FKB(cP')S'~ 'S’ [I|A1 ® cP’) < t.

Thus:

weight(FKB(cP)S'"'\G'P' @ cP') <t

= FKB(cP)S' ' =m

= FKB(cP’) is error-free, weight(FKB(eP")) = 0.

The improved algorithm is represented as follows.

24 CHAPTER 3. ATTACKS TO MCELIECE PKC

Tilburg’s Decoding Algorithm

Input: A k X n generator matrix G” and a received vector ¢ with length 7.
Output: The vector m such that weight(m - G’ @ ¢) < t.

1. [Initial z=1.

2. Randomly decompose G’ such that G’ = S, [1|A,] PZ_], and calculate the corresponding
c; =cP..

3. Check if it holds that weight(KF B(c;) [I|A;] ® c;) < t.
This can be done by only checking the last n — k bits. If it holds, goto step 7 for final
recovering stage.

4. Produce a random permutation P_.| that swaps one column, say i, from the selected ones
(the I part of the matrix [Z|A;]) and for one column, say j, from the unselected ones
(the A, part of the matrix [/|A_]).

5. If column j has not an 1 on the i-th row, goto step 4. Otherwise goto step 6.

6. Let P, denote the permutation selected in previous step, decompose the matrix [I|A.]
into S .41 [1|A.+1] P.+1, and calculate the corresponding ¢,4+1 = ¢, P+1.
Increase z by 1, goto step 3.

7. Now, the ¢, is error-free in the first £ bits, and ¢, = ¢cP{P; ... P,. Thus we can know the
corresponding error-free bits in the .original ¢; then the plaintext m can be obtained by a
information-set-decoding.

3.1.4 Improvements of Decoding Attack

We propose two improvements in this section. 'We begin with an introduction to the first im-
provement, which aims to decrease the time comsumption of the guess-verification stage.

The structure of the McEliece’s decoding algorithm can be described by two nested loops:
an outer-loop and an inner-loop. The outer-loop which repeats selecting different set of &
columns till the selection luckily has few error bits in the ciphertext. And the inner-loop re-
peats guessing then verifying the error vector hidden in the k columns selected by outer-loop,
till a guess is verified to be correct or all possible k-vectors that have weight less than a threshold
are examined to be wrong guesses. In the analysis of McEliece’s decoding algorithm with para-
meter j (see Theorem 3.1.1), we use T'; to denote the expected iterations of the outer-loop and
use NV; to denote the expected iterations of the inner-loop. Note that the verification should be
applied in each iteration of the inner-loop and its cost is non-negligible, thus we use V., ; to de-

note the bit-wise operations of it and take it into consideration in further discussion. According

3.1. GENERALIZED INFORMATION-SET-DECODING ATTACK 25

to the analysis from Theorem 3.1.1, the bit-wise operations required by McEliece’s decoding
algorithm can be approximated by 7'; X N; X V,;, ;. In the following sections, we propose an
improvement to significantly reduce V, . ; and slightly increase T, thus the total number of
bit-wise operations requirement is reduced. In this chapter, we only show how to apply the
improvement in the McEliece’s decoding algorithm, but actually the idea of improvement can
be applied to all other decoding algorithms with the same nested loops structure.

Recall the McEliece’s decoding algorithm:

McEliece’s Decoding Algorithm with parameter j

Input: A k X n generator matrix G” and a received vector ¢ with length n.
Output: The vector m such that weight(m - G’ ® ¢) < t.

1. Randomly select k columns of G, such that the selected columns are
linearly-independent.
Collect the selected columns to form afiew k X k matrix G;.
Collect the corresponding & bits of ¢ to fofm a new vector c.
Calculate G - G’ and.c @ (G} G"):
Choose an unused k-bit error pattérn ey with less or equal to j ones.
If (c® ckG,’C‘lG’) ® ek(G,’c‘lG’) has-weight r or less, then
stop and return (m ="¢x @ ex) - G,:l.
6. If still exist unused k-bit error pattern,.goto step 5.

Otherwise goto step 1.

AP

The step 1-6 is the so-called outer-loop and the step 5-6 is the inner-loop. According to the
analysis given by Theorem 3.1.1, the bit-wise operations required by verification in each itera-
tion of the inner-loop is approximated to V,,; = j/2 X (n — k). Our improvement introduces
a probability method for verification which makes the expected number of bit-wise operations
requirement be p(j/2 X (n — k)) + (1 — p)(j/2 X €), where p is a small probability and € is a
parameter of the algorithm.

Observe that when we make a bad selection in step 1 (that is, there exists more than j errors
in the selected columns), we still have to spend so much time in the inner-loop and finally realize
that the selection in step 1 is bad. If we can realize it earlier that a bad selection has made in step

1, then a large amount of redundancy check can be skipped. The main idea of our improvement

26 CHAPTER 3. ATTACKS TO MCELIECE PKC

Modified McEliece’s Decoding Algorithm with parameter (J, €)

Input: A k X n generator matrix G” and a received vector ¢ with length n.
Output: The vector m such that weight(m - G’ ®c¢) < t.

1. Randomly select k columns of G’, such that the selected columns are

linearly-independent.

Collect the selected columns to form a new k X k matrix G;.

Collect the corresponding & bits of ¢ to form a new vector c.

Calculate G;™' - G’ and c ® cx(G} ! - G).

Choose an unused k-bit error pattern e; with less or equal to j ones.

Randomly select € columns in the last n — k& columns of G;C‘lG’, let C

denote the indexes of the selected columns.

7. Calculate ¢ ® (xG}~'G’) @ ex(G7'G’) bit-by-bit and ignore the
unselected columns to form a vector D¢ with length e.

8. If D¢ is a zero vector, then re-calculate ¢ & (ckG,’;1 GHea ek(G]'c_l G’) on
the unselected columns to form a vector D with length n — k — €.
Otherwise if still exist unused &-bit error pattern, goto step 5.
Otherwise goto step 1.

9. Ifweight(Dg) < t — weight(ey) thenStop and returns m = (cx © ek)G;(_l.
Otherwise if still exist unused k-bit error pattern, goto step 5.
Otherwise goto step I«

Sk wN

Figure 3.1: Modified McEliece’s Decoding Algorithm with parameter (j, €)

is instead of checking if the whole vector ¢onsists with weight(c @ ckG,’(‘lG’ ® ekG;(“G’) <t,
we only calculate the vector (¢ @ ckG,’c‘lG’ ® ekG,’C_lG’) on some randomly selected positions to
form a shorter vector D, and apply the original check if and only if D is a zero vector. The key

point of this method is based on a conjecture [30]:

Conjecture 3.1.1. [30] When the selection in step 1 is bad, the weight of c@ckG;j‘ G’EBekG,’(‘l G’

is not only larger than ¢ but also has approximate weight density 0.5.

We apply the idea of the improvement in the McEliece’s decoding algorithm and propose a
modified version of it; see Figure 3.1. An analysis of the algorithm is given by the following

theorem.

Theorem 3.1.3. If the Conjecture 3.1.1 holds, then the expected number of bit-wise operations

required by the modified algorithm is different from the original requirement by a factor:

3.1. GENERALIZED INFORMATION-SET-DECODING ATTACK 27

nek nck e (1\(n—k-t

{[(n —k) X E”gk; +ex(1- E"ik;)] [(n— k)} / {1 _ (z)(e—i)}

Proof. we discuss the effect caused by modification.

speed-up factor: The modification reduces the time consumption on checking the weight of

c® (ckG,’;lG’) ® ek(G,’(‘lG’). The original requirement is j/2 X (n — k), when the modification

is applied, there is a conditional probability (?)/ (”;k) of the event: the selected € columns

results in a zero vector under the condition of bad selection in step 1. In these cases, original

J/2 % (n—k) operations are needed, otherwise we need only j/2 X € operations. Compared with

the original requirement, the left-hand-side of the equation is obtained.

slow-down factor: Actually in the modified algorithm, the expected number of outer-loop iter-

ations will increase slightly. The outet-loop of;the original algorithm halts if and only if the k-

column-set with fewer than j errors in itis selected; it occurs with a probability lezo (Z)(;:) / (Z)

But in the modified algorithm, the outeriloop-halts-if and only if the k-column-set with fewer

than j errors in it is selected, and we did net make anerroneous judgement in the “’partial check-

ing” of step 6-8 when the actual error vector hidden in selected columns is examined. There
QCL

is an conditional probability upper-bound }';_, “2==~ of the event: erroneous judgement- the

(G
selected € positions have one or more errors under the condition of good selection in step 1.

e OO

Thus we have a lower-bound 1 — 7, ~Z-%~ of correct judgement, the expected number of

(6]
0\ (n—k-t
outer-loop iterations increase by a upper-bounded factor 1/ |1 — >.%, QC) O

I
Example 3.1.2. When n = 1024, k = 524, t = 50 and using the parameter € = 2. Let C,
denote the expected number of bit-wise operations required by the original McEliece’s decoding
algorithm. The modified algorithm reduce the bit-wise operations requirement in inner-loop by
a factor of 0.2525, and increase the iterations of outer-loop by a factor of 1.2348. Thus the

overall bit-wise operation requirement is 0.311787 X C,,.

Next, we give an introduction of the second improvement, which aims to eliminates the

28 CHAPTER 3. ATTACKS TO MCELIECE PKC

duplicate guesses of the nearly error-free locations.

Recall that in the Tilburg’s decoding algorithm, a random column-swap operation (in the
step 4) is needed for each iteration of main-loop. Actually, randomly selecting two columns
to swap may cause duplicate situation and imply redundant iterations of loop. One can easily
build a hash-table to solve this problem but the size of the hash-table must be approximate to
(Z) bits. It is not practical in implementation. We recommend to swap the columns according
to a real-time generated Gray code for combinations, instead of selecting randomly. We define

the Gray code for combinations as follows.

Definition 3.1.1. [26] A (n, k)-Gray code for combinations is a sequence of all the ('Z) combi-

nations so that successive combinations differ by only one element.
Example 3.1.3. We show a (5, 3)-Gray code for combinations:

134 — 234 > 124 "> 145 —> 245 —
345 — <35 — 235 —> 125 — 123

Follow Example 3.1.3, to apply the Gray code for combinations in the algorithm, we may
decompose G' = S [1|A] Pl‘1 such that Pi permutes columns 1, 3,4 to columns 1,2,3 in the
first iteration of loop, then decompose G' = S, [1|A;] Pgl such that P, permutes columns 2, 3, 4
to columns 1, 2, 3 in the second iteration of loop and so on.

Clearly, if we follow the sequence of Gray code for combinations, we will traverse all possi-
ble combinations of (Z) without missing one. Moreover, we swap one column each time (since
the successive combinations differ by only one element), thus the Tilburg’s second improvement
idea is still able to apply here to speed up the Gaussian elimination of G'P;.

Several algorithms to construct the Gray code for combinations were proposed; the most
classical one is the revolving door algorithm [26]. However, this algorithm requires O(n) time
complexity to generate the next combination. When applying in the decoding algorithm, an
algorithm with constant-time requirement for generating each combination such as [10] [9] is

more suitable.

3.2. FINDING LOW-WEIGHT-CODEWORD ATTACK 29

3.2 Finding Low-Weight-Codeword Attack

Another approach of the attack (we call it the FLWC for simplicity) is to find a codeword in a
general linear-code with a given (low) weight . The FLWC problem can be formally described
as follows: input a generator matrix G of a general linear-code, and a integer ¢, one must output
a codeword v of G such that weight(v) < t. Actually, the GISD problem with a generator matrix
G and a received vector ¢ with error-bits fewer than the correcting ability ¢ can be reduced to
the FLWC problem. For each input instance of the GISD problem (G, ¢), we can construct an

instance of the FLWC problem (G*, t) as follows.

o[

and 7 1s the correcting ability of G. We claim the selution of this instance of the FLWC problem

is unique and it will be the error vector hidden'in the received vector c.

Theorem 3.2.1. [22] If G is a generator matrix of a linear-code with error correcting ability ¢
and c is a received vector with error.bits.-fewer-than 7, then the solution of instance (G*,r) of

FLWC exists and is unique.

Proof. We prove the existence and uniqueness by the following discussion. First we show the
existence of the solution. Suppose ¢ = mG @ e for some m, then e is a solution of instance (G*, f)
of FLWC since e = [m|1]G*. Then we show the uniqueness of the solution. If ¢’ is a solution

of instance (G*, t) of FLWC such that ¢’ # e, there are three possibilities:

Case 1: ¢ = [m'|0]G*, m' +#+m
weight(m’G) < t, but G has correcting ability #, all of its codewords should have weight be

larger than 2¢, which is a contradiction.

Case2: ¢ =[m'|1]1G*, m" #m

weight(c ® m'G) < t and it implies that weight(mG’ ® m’G") < 2t holds. But G has correcting

30 CHAPTER 3. ATTACKS TO MCELIECE PKC

B | Z |1
D | 0] 0f
Figure 3.2: The matrix after arrangement.

ability ¢, all the distances of its codewords should larger than 2¢, it is a contradiction.

Case 3: ¢’ = [m|0] G*
weight(mG) < t, but G has correcting ability ¢, all of its codewords should have weight be larger

than 2¢, which is a contradiction.

3.2.1 Leon’s Algorithm

The algorithm proposed by Leon [20] is a probabilistic algorithm. It introduces two parameters
o and p. The main idea of this algorithm 1S to randomly select k + o~ columns from G, where
o 1s a comparatively small value such as 2 'or 3, and hope that the ”solution vector” has low
weight on these selected positions. Each time we randomly select the k + o columns, we apply
a permutation P so that the selected columns are gathered together on the right-hand-side of the
matrix (the solution of permuted instance can be transformed to the solution of the original one
by making a multiplication of P~!'). Then we apply the Gaussian elimination (the solution is
not effected by the Gaussian-elimination) so that the resulting matrix G’ looks like the form in
Figure 3.2.

Where [is a e X e identity matrix, Bis an (n —k — o) X e matrix, Zisa (k+ 0 —e) X e
matrix and D is an (n — k — o) X (k — e) matrix. After the rearrangement, an exhaustive search
on linear-combinations of row of Z|/ is applied to find the combinations such that the resulting
sum-vector v consists with weight(v) < p, the p is a threshold value in intuition. We show the

precise operations by the following algorithm.

3.2. FINDING LOW-WEIGHT-CODEWORD ATTACK

Leon’s Algorithm with parameters o and p

Input: A k X n generator matrix G and an integer .
Output: The codeword ¢ of G such that weight(c) < ¢.

1. Randomly select k + o columns, rearrange the matrix G to the form of Figure 3.2.

2. Search for the linear combinations of [Z||/] that lead to a k + o vector v such that
weight(v) < p. This can be achieved by considering the single matrix Z.

If a vector v consists with weight(v) < p is found, goto step 3.

3. Calculate the corresponding linear combinations of B, if the resultingn — k — o
vector b consists with weight(b) + weight(v) < t then stop and returns [b||v] P
Otherwise step 4.

4. Search for all combination of the rows of D, there will be 2¥~¢ combinations.

For each combination, calculate the summation of the corresponding rows to form
an—k — o vector d, and check if d consists with weight(d ® b) + weight(z) < t.
If some d consists with the inequality, then stop and returns [b & d||v] P
Otherwise step2.

We introduce an analysis of the Leon’s algorithm {6] by following theorem.

31

Theorem 3.2.2. [20] The expected-value of bitwise operations required per selection of the

k + o columns by the Leon’s algorithm is:

J(‘T’p)(n’k) = 2 ,O(O',k,e) X Z () (k+0-_e)+ (I’l—k O-) sz ¢ Z (2k+a' e
e=1

i=1

where
2e(e—1)/2 e-1 (2k+0'—i _])(2k—i _])

Qk+0 | o (2i+1 _])

p(o,k,e) =

And the expected value of the required column selections is:

Ngp(n, k) =1 /Z (k+<r ,)(;)
i=0 (k+a’)

Thus the expected value of the overall bitwise operations required is Ny ,(n, k) X J (5.)(1, k).

Proof. The probability of the event that the solution vector” has fewer weight than p in the

selected k + o columns is:

=

p [n—t t)
Z k+0’ i/\i
0 k+0')

32 CHAPTER 3. ATTACKS TO MCELIECE PKC

Thus the expected number of the column selection requirement is its inverse. According to [21],

the number of (k, k + o) binary matrices with rank e is:

26(6—1)/2 e—1 (2k+0'—i _ 1)(2k—i _ 1)
l_[(2i+1 -1

b

i=0

so the probability of the event that the rearranged matrix has a specified value of e is given as
p(o, k,e). The average number of bit-wise additions and weight-checking on (k + o — e)-bit
words is given by (k+ 0 —e) X X7 i(f), and for each checking, the probability of satisfying the

p=i 7
j:() 2k+rrfe .

weight(v) < pis), In those cases, additional 2¥¢ linear combination of D should be
examined and it takes (n — k — 07)2%7¢ bit-wise operations. Summarizing the above discussion,

the formula of J,. (1, k) is given. O

3.2.2 Stern’s Algorithm

Observing the Leon’s algorithm, we can see that the time consumption of step 2 is quiet large,
the main purpose of the Stern’s algorithmis to reduce the time consuming of step 2. Precisely
speaking, they proposed a faster method to search for partial-codewords (the k-prefix of code-
words) which have hamming weights fewer than a given threshold. Two parameters p and [are

introduced in their algorithm.

Their algorithm is first designed to operate on the parity check matrix, actually the algorithm
can be slightly modified to work on a generator matrix. We describe the algorithm of the parity

check matrix version as shown in Figure 3.3.

It is interesting that, in the Stern’s algorithm, the “’solution vector” is expected to have more
weight (precisely, weight = t — 2p) in the n — k columns selected in step 1. In other words, we
hope that the solution vector has less weight in the unselected k& columns. This hope is the same
as Leon’s idea. The observation gives us an intuition that these two algorithms are quiet similar

in large scale.

3.2. FINDING LOW-WEIGHT-CODEWORD ATTACK 33

Stern’s Algorithm with parameters p and /

Input: A k X n — k parity check matrix H and an integer .
Output: The codeword ¢ of H such that weight(c) < t.

1.

Randomly select n — k columns of H, apply a permutation P on H so that the
selected columns are gathered together on the right-hand-side of the matrix
(the solution of permuted instance can be transformed to the solution of the
original one by making a multiplication of P~'). Then we apply the Gaussian
elimination (the solution is not effected by the Gaussian-elimination) so that
the resulting matrix H’ P looks like the following form.

HP = [0 | Ll

Randomly split the columns of matrix Q into two subsets, then apply another
permutation (all the permutation applied can be summarized to a overall
permutation P*, and the solution of permuted instance still can be transformed
to the solution of the original one by making a multiplication of P*~') so that
the matrix HP* looks like the following form.

H'P* o= [X e IH].

Randomly select / rows of the matrix [X|Y] and apply another permutation
on rows (the permutation applied-on'rows does not effect the solution of the
instance) so that the resulting matrix'H”.P* 1ooks like the following form.

7" Xl | Yl |]
H'P* = ot |
[Xet | Yig |

Search for all combinations of p columns of X;, compute the corresponding
summation vector v, for each combination Cy, save cy into a hash table
with key v¢, for further lookup.

Search for all combinations of p columns of Y}, compute the corresponding
summation vector v¢, for each combination Cy, look up the hash table built
in step 4 for the entry of key v¢,.

Each time we have Hash(vc,) # ¢ in previous step, then summarize the
(k = 1) X k matrix [Xy—|Ys—;] on columns Hash(vc,) U Cytoa(k—1)x 1
vector z.

If z consists with weight(z) < t — 2p, then find the columns set C; in J,—; such
that the summation of HP* on columns Hash(v¢,) U Cy U Cy is

a zero vector, transform these columns into a vector m’ such that m: =1ifand
only if i € {Hash(vc,) U Cy U C,}. Then stop and output m’ P*~!.

Otherwise (Hash(vc,) = ¢ for all Cy), goto step 1.

Figure 3.3: Stern’s Algorithm with parameters p and /

34 CHAPTER 3. ATTACKS TO MCELIECE PKC

3.2.3 Canteaut et al.’s Algorithm

A. Canteaut and F. Chabaud [6] proposed an improvement method for both Leon and Stern’s
algorithm. The idea of their improvement is very similar with the Tilburg’s second improvement
(see section 3.1.3). Observe step 1 of both Leon and Stern’s algorithm, we can see that a
Gaussian elimination is needed for each selection (k + o columns in Leon’s algo. and n — k
columns in Stern’s algo.). The Canteaut et al. proposed a strategy: to select k + o (or n — k for
Stern’s algo.) columns with only one different column between the previous selection. The new
column joining the selection is randomly selected from the unselected columns and the column
departs from the selection is randomly selected from previous selected columns. Furthermore,
they made a precise analysis on the expected value of iterations required by their improved
algorithm.

Till now, all the mentioned attacks requisés|an e€xponential expected time consumption. But
actually, the native MEPKC is proven vulnerable when partial information of the plaintext is
leaked even against the chosen-plaintext attack: T Known attacks of this type are [17] [5]. This
kind of attacks substantially reduce the time.consumption of the decoding attack with the help

of partial information. We will give an introduction to these attacks in the next section.

3.3 Message-Resend and Related-Message Attack

The message-resend and related-message attack was first proposed by T.A. Berson. When a
sender encrypts the same message m twice and two different error vectors are used, then several
error-free positions of both ciphertext are leaked with a high probability. The adversary may
recover the plaintext by general information-set decoding (see section 3.1) for few tries.

When an instance of MEPKC with public key G : k X n and ¢ is used, consider a message m
which is encrypted twice as:

c; =mG @ e

¢, = mG’ @ e,.

3.3. MESSAGE-RESEND AND RELATED-MESSAGE ATTACK 35

The vector ¢; @ ¢, is equal to e; ® e;. Let v = ¢ @ ¢, the expected value of zeros in v is given

00
;() iR

since for any specified i, v has weight 2¢ — 2i if and only if e¢; and e, have errors on exact i

by:

positions, the probability of that event is (’)(’:) / (’;), thus we have the equation above. For each

zero position i of v, the probability of e;(i) = 1 and e,(i) = 1 is (t/n)?, thus the expected value
of the “’real error-free positions in both e; and e,” in v is:
t\(n—t
(=)
()

If we randomly select k positions in zero positions of v, then the probability that all the se-

RZ=1(1- (P))" r=200)
i=0

Z-RZ

k)/ (f), thus the expected iterations of

lected positions are error-free in both ejtand e; is (
the k-position selection is (f) / (Z_kRZ). The expected iterations are small in practical instances of
MEPKC, for example, when n = 1024,k = 524 and ¢ = 50, then Z = 930, RZ = 3 and the
expected iterations is (2;2) / (9?;3) = 12

Moreover, the author provided an extension of the attack, that is, if two different messages
are sent and an adversary knows the bitwise XOR of these two messages, then both messages
can be recovered in few tries. Consider two messages m; and m, are encrypted by using two

-1
different random vector (this occurs with a high probability 1 — (’t’)) and m; ® m; is leaked

suddenly. Let the two ciphertext be ¢; and ¢»:
Cc = mlG’ ® e

Cy = I’HQG/ ® e,,

then the vector ¢; @ ¢, is equal to m;G" ® m,G" ® e; ® e,. An adversary can eliminate the
m G’ @ myG’ term by XOR it with the known (m; ® m,)G’, thus he can obtain the vector e; ® e,.
The same technique in the message-resend attack can be applied to find the positions which are

error-free in both e; and e.

36 CHAPTER 3. ATTACKS TO MCELIECE PKC

3.4 Known-Partial-Plaintext Attack

The known-partial-plaintext attack was proposed by Kobara et al. and it is a practical attack
in some interesting cryptosystem applications. For example, consider a command exchange
routine during the war, a message such like “Today’s password is: Seattle”, the password
changes everyday but the prefix string is constant. In this case, they formalize the message
as m = (my||lm,); m, is already known and let / denote its length. In this viewpoint, the cipher-

text can be rewritten as:

Gl

Ixn

+e.

¢ = (myllmy) -

’
G(k—l)xn

Thus we have:

C = m]G;X” (&) szEk—l)Xﬂ@

4

= =comGj,

s ’
== sz(k—l)X}’l @ e.

’

(k-xn 18 Much lower.

The time consumption required for recovesing m, from ¢’ and G

3.5 Chosen-Ciphertext Attack and Malleability Attack

In 2000, Sun [29] proposed an adaptive chosen-ciphertext attack and a malleability attack to
break the MEPKC. In the adaptive chosen-ciphertext attack, the key to success is that when a
ciphertext c is given, we may construct another ciphertext ¢’ corresponding to the same plaintext
with a high probability. The construction of ¢’ is to randomly select two bits in the ciphertext
and flip them. The flipped ciphertext ¢’ has the same error bit amount with ¢ if and only if
one of the flipped bits is an error bit in ¢ and the orther is not, and this event happens with
probability (’_11)(”1_t) / (;) = 2(t = 1)(n — t)/n(n — 1). Thus the expected iterations of selection
is n(n — 1)/2(t — 1)(n — t) = n/2t, a quantity having polynomial relation with n, and it is an

acceptable amount in practical instance of the MEPKC.

3.6. REACTION ATTACK 37

A malleability attack can be roughly described as when a ciphertext ¢ corresponding to
plaintext m is given (note that m is not given), if an adversary is able to construct another
ciphertext ¢’ which corresponds to another plaintext m’ with some relation to m, then we say
that the malleability attack is workable.

The malleability attack proposed by the author is able to construct another ciphertext ¢’
corresponding to m. The attack scheme is to XOR all the rows of G" with ¢ to form ¢’. Actually
this attack also leads us to construct ciphertext corresponding to any m’ = m @ v, where v is an

adversary-controllable vector.

3.6 Reaction Attack

In 1999, Hall, Goldberg, and Schneier [13] proposed.the reaction attack against several public
key cryptosystems based on decoding problems-and-lattice problems, including the McEliece,
Hwang-Rao, Ajtai-Dwork, and Goldreich-Goldwasser-Halevi cryptosystems. In their attack
against the MEPKC, an adversary sends*the key-owner a ciphertext which may contain one
or more additional error bits. In common implementations, the garbled ciphertext will cause
failure in decryption or an illegal plaintext checksum. The adversary then watches the reaction
of the key-owner in order to determine whether or not the ciphertext is decrypted correctly.
This send-and-watch behavior can be modeled as querying the reaction oracle. By repeatedly
querying the reaction oracle, the adversary can obtain the plaintext.

Suppose a (n, k)-linear code with error correcting ability ¢ is used in the MEPKC, their attack

takes at most n + 2t queries under a reasonable reaction oracle model.

3.6.1 The Reaction Oracle Model

Compared with the chosen-ciphertext attack, the reaction attack uses a weaker assumption.
They assume that the key-owner does not return the decrypted plaintext for decryption queries

from the adversary, but he leaks the information about the legality of the ciphertext as a result

38 CHAPTER 3. ATTACKS TO MCELIECE PKC

of his reaction. Since this assumption is comparatively weak, their attack is considered more

feasible than traditional CCA. Their model also depends on the following assumption.

Assumption 3.6.1. [13] If a (n, k) error-correcting code is used which can correct ¢ or fewer
errors, then a received vector with error-weight > ¢ will cause either failure in correcting stage

or an illegal message checksum.

The assumption is reasonable since there are several decoders for Reed-Solomon and Goppa
codes which meet this criterion. In their reaction oracle model, input a vector ¢, there are two
types of oracle outputs.

Type 1: Return an error message due to the failure in decryption or illegal plain-
text checksum.

Type 2: Return nothing or an acknowledgement message to reflect the successful
decryption and legal plaintext.checksum.

‘We can abstract the reaction oracle as<follows:

Reaction Oracle in (S, G, P, 1)-MEPKC:

Input: A vector c.

Output: Compare with the Codewordm=G*; one of the reactions is presented.
Type 1: If ¢ corresponds to ateceived vector with error-weight > ¢.

Type 2: If ¢ corresponds to a receivedvector with error-weight < ¢.

3.6.2 The Attack Algorithm

Under the reaction oracle model, they gave two algorithms to recover the corresponding plain-
text m of a given ciphertext c.

Algorithm A

1. Leti=1

2. Flip bits 1 through i of ¢ to form ¢’.

3. Request the reaction oracle by ¢’.

4. If the output of the oracle is Type 1, halt the procedure and continue onto the
next algorithm. Otherwise, increment i and goto step 2.

Algorithm B

1. Leti=1

2. Flip biti of ¢’ to form ¢”.

3. Request the reaction oracle by ¢”.

4, If the output of the oracle is Type 2, then bit i is in error. Record i, add 1 to i
and goto step 2 if i < n. Otherwise halt.

3.6. REACTION ATTACK 39

The attack requires at most 2¢ + 1 queries in Algorithm A, and at most n — 1 queries in

Algorithm B, so the total number of queries is upper-bounded by n + 2¢.

3.6.3 An Improved Attack Algorithm

We note that an adversary does not have to make the whole 1 X n ciphertext c to be error-free.
He only has to make sure some k-bits {ay,as,...,a;} C {1,2,...,n} are error-free, where the
corresponding columns of G’ are linearly independent. Thus we design the following attack

algorithm.

Algorithm 3.6.1: Improved reaction attack algorithm

Input: Ciphertext c.
QOutput: Plaintext m corresponds to c.

1. Select k columns index by'{ai, as,.fna;} € {1,2,...,n}in G’, such
that the k columns of.G” are linearly. independent.

2. Combine the k columns of G’ to-form:a k X k matrix G.

3. Combine the k bits{cy,, €ays - - - €} OF € torform a vector cy.

4. Run the original Algorithm A‘and B to eliminate the errors in cg.
5. m=c"- G,’(_1

that the algorithm requires at most k + 2¢ queries to recover the plaintext.

40

CHAPTER 3. ATTACKS TO MCELIECE PKC

Chapter 4

Trichotomy Reaction Attack

In the reaction attack presented by Hall ef al, it takes n + 2¢ queries to recover the plaintext in
the worst case. In this chapter, we propose a new trichotomy reaction oracle model. Under the
new model, we establish connection between,the reaction attack of the MEPKC and a special
version of the counterfeit coins problem, which-we name the Comparative Counterfeit Coins
Problem (CCCP). Combine the coniiection and a-greedy approach of the CCCP, we can design
a new algorithm to recover the plaintext from-ciphestext in at most |k/2] + ¢ + 3 queries when

4t < k.

This chapter is organized as follows: In Section 1, we propose the trichotomy reaction oracle
model. In Section 2, we introduce the formal definition of the counterfeit coins problem and
some modified versions of it. In Section 3, we design a greedy algorithm to solve the CCCP. In
Section 4, we show the connection between the attack of MEPKC and the CCCP. In Section 5,

we design a new attack algorithm by applying the greedy algorithm proposed in Section 3.

4.1 Trichotomy Reaction Oracle Model

In the original reaction oracle model, when a ciphertext with less than ¢ error bits is received,
it will be treated as a valid ciphertext to decrypt, and represent the Type 2 reaction. But in the

MEPKC, randomly selecting an error vector with constant weight ¢ is suggested to avoid weak

41

42 CHAPTER 4. TRICHOTOMY REACTION ATTACK

encryptions. So it is reasonable to assume that a common implementation of the MEPKC will
check whether the ciphertext is corresponding to a received vector with error weight ¢. This
check can be simply done by watching if the decrypted plaintext m consists with weight((m -
G') @ c¢) = t. To match its purpose, we call it the error-weight check.

Clearly, the check should be done with a correct plaintext m to make sense. Thus one has
to apply the check after the decryption and the checksum verification procedures. When the
error-weight check fails, it indicates an improper encryption. But since the ciphertext ¢ passed
the decryption and the decrypted plaintext m passed the checksum verification, the failure in the
error-weight check does not hurt the correctness of m. Thus it is reasonable to assume that the
error-weight fault is considered as a non-critical error and a Warning Message is returned in this
case. Under the assumption, we propose the trichotomy reaction oracle model. In this reaction

oracle, when we input a vector c, thererare three types of oracle outputs:

Type 1: Return an error message due to failure’in decryption or illegal plain-
text checksum.

Type 2: Return nothing or an-acknowledgement message to reflect the successful
decryption, legal plaintext checksum and proper error-weight.

Type 3: Return a warning message due toithe failure in the error-weight check.

Our model also requires the assumption proposed in Assumption 3.6.1. We can abstract the

trichotomy reaction oracle as follows.

Trichotomy Reaction Oracle in (S, G, P, 1)-MEPKC:

Input: A vector c.

Output: Compare with the codeword m - G’, one of the reactions is presented.
Type 1: If ¢ corresponds to a receive vector with error-weight > ¢.

Type 2: If ¢ corresponds to a receive vector with error-weight = .

Type 3: If ¢ corresponds to a receive vector with error-weight < .

We present an instance of MEPKC implementation that matches the trichotomy reaction oracle

assumption.

4.1. TRICHOTOMY REACTION ORACLE MODEL 43

Key Generation algorithm:
Generate four matrices G,S ,P,G’, a checksum function Checksum(m) and its
corresponding verifying function Varify(m’, C).

G k X n generator matrix of a binary Goppa code with correcting
ability ¢.

S k X k random binary invertible matrix.

P n X n random permutation matrix.

G’ G' =SGP

Checksum(m) a checksum function, it outputs an fixed-length characteristic binary
string C for each input string with low collision probability.

Verify(m’,C) the corresponding verifying function which gives a acknowledgement
output if and only if C = Checksum(m’).

Secret key: S,G,P

Public key: G’ t,Checksum, Verify

Encryption algorithm:

To encrypt a 1 X (k — |Checksum(m)|) message m, one has to randomly selecta 1 X n
error vector e with Hamming weighti#. Then 6utput the corresponding ciphertext c:
Ciphertext: ¢ = (m||Checksum(m))- G’ & e

Decryption algorithm:
To decrypt a ciphertext ¢, one has to.go through the following steps.
1. Calculate ¢’ = c¢- P!, thus ' = m/SG & eP!
2. Apply the decoding algorithm for Goppa“code to eliminate the error vector.
If the decoding procedure failed (it will happen only when a more-than-¢ error bits
are present), output Error.
Otherwise we have the vector m’S.
Calculate m”" =m’ - S~
4. splitm” into (m||C) = m’, where |C]| is the length of the checksum and
lm| =k —|C|.
5. If Verify(m,C) # acknowledgement, output Error. Otherwise step 6.
If |(m” - G’) @ c| # t, output Warning. Otherwise step 7.
7. Output message m and an Acknowledgement.

»

o

The behavior of the decryption algorithm in this implementation can be described by a codeword-

ball diagram, see Figure 4.1.

Clearly, the behavior of the decryption algorithm consists with the assumption of the trichotomy

reaction oracle model.

44 CHAPTER 4. TRICHOTOMY REACTION ATTACK

mG m"G'
' /‘
mG Ue, |e|>¢ // mG Oe, |e>t
|mG Oedm'G'|>¢t, Om' /O On"'OmG De0m"G'<t
, A .
Reaction type 1: / Reaction type 1:
/
Error / Error
/
/
mG’
s/\\\
. [\ ,

ImG Del=t I\ imG' Oel<t
Reaction type 2: // Reaction type 3:
Acknowledgement / Warning

m'G

Figure 4.1: The decryption algorithm behavior that consists with trichotomy reaction oracle
model.

4.2. COUNTERFEIT COINS PROBLEM 45

4.2 Counterfeit Coins Problem

Counterfeit Coins Problem (CCP) is an old puzzle which has been widely discussed. It is
defined as follows. Given a set of coins, there may exist some counterfeit ones whose weights
are different from the normal ones. We want to identify all the counterfeit coins (if any) with as
few weighings as possible by using an equal arms balance. There are several variations of this
problem. A great part of them are different on the weighting oracle model. In this chapter, we

will introduce two of them: Additive model and Comparative model.

4.2.1 Additive Counterfeit Coins Problem

Very similar to CCP, the Additive Counterfeit Coins Problem (ACCP) with parameters (n, d)
is defined as follows. Suppose there dre n coins with at most d counterfeit coins in them.
We want to identify all the counterfeit coins-(if any) with as few queries as possible by an
Additive Weighting Oracle (AWO) which can tell "How many counterfeit coins in the sample.”

We formally define the AWO in (n, d)-ACCP as follows:

Additive Weighting Oracle in (1, d)-ACCP:
Input: A set of sample coin indexes S, S € {1,...,n}.
Output: Number of counterfeit coins in the sample S .

In [7] and [15], the ACCP was solved by constructing a combinatorial object named k-
selective family. Their approach requires O(d X log*n) queries. We use M ccp(n, d), to denote
the worst-case number of queries required by algorithm A to solve (n, d)-ACCP, and we define

Mcep(n,d) = Ming{Muccp(n,d)s).

Corollary 4.2.1. [8] Maccp(n.d) > "logan T (1)

Proof. Straight from the information theory’s lower bound. O

46 CHAPTER 4. TRICHOTOMY REACTION ATTACK

4.2.2 Comparative Counterfeit Coins Problem (CCCP)

The Comparative Counterfeit Coins Problem (CCCP) with parameters (n, d) is almost equal to
the (n, d)-ACCP, but differ only on the weighting oracle model. In CCCP, the problem is defined
with the Comparative Weighting Oracle (CWO). Let Ny denote the number of normal coins in
the sample and N, denote the number of counterfeit ones. The CWO tells "whether Ny < Ny,

Ny > N, or Ny = N, is true.” We formally define the CWO in the (n, d)-CCCP as follows.

Comparative Weighting Oracle in (n, d)-CCCP:
Input: A set of sample coin indexes S, S C {1,...,n}.
Output: Ny < N;, Ny > N, or Ny = N; in the sample S .

As far as we know, no solution for'this problem is.documented. In Section 7, we will in-
troduce a greedy approach for the case of 4d < n..Before that, we make a serial of inferences
about the CCCP at the end of this section., 'Weuse M cqptn, d), to denote the worst-case num-
ber of weighings required by algorithm A to solve (n,d)-CCCP, and we define M¢ccp(n,d) =

Mins{Mccep(n, d)a}.

Lemma 4.2.1. MCCCP(n’ d) > MACCP(na d)

Proof. Assume we have an algorithm A which solves the (n,d)-CCCP. In order to solve (n, d)-
ACCP, we run the algorithm A and respond to each query of CWO from A by some queries of
the AWO that we have, then algorithm A will indicate the counterfeit coin set by assumption.
That is, A acts like solving a (n,d)-CCCP as it is designed for, but actually it solves (n,d)-
ACCEP for us. The counterfeit coin set given by A is the answer to the (n,d)-ACCP that we
face. Furthermore, suppose A requires at most € queries of CWO and if we can respond to each
query from A with a single query of the AWO, then this strategy for (n, d)-ACCP will also take
at most € queries. By the above discussion, we can obtain a strategy for (n, d)-ACCP from any

algorithm A for (n, d)-CCCP with the same queries requirement. As we may solve (n, d)-ACCP

4.3. A GREEDY APPROACH OF CCCP 47

by other designs which require less queries, this implies the statement of the lemma. We state

the CWO simulation algorithm with single query of AWO as follows to complete the proof.

Algorithm 4.2.1: (n, d)-Comparative Weighting Oracle simulation algorithm

Input: (n,d) and a set of sample coin indexes S. Let |S|=1 S C{l1,...,n}.
Output: Ny < Ny, Ng > N; or Ny = Nj in the sample S.

Query the additive weighting oracle with S, let » denote the output.
If 2r > [, output Ny < N;. Otherwise step 3.

If 2r < [, output Ny > N;. Otherwise step 4.

If 2r = [, output Ny = Nj.

e

Corollary 4.2.2. Mcccp(n,d) <n

Proof. There exists a trivial algorithm’to find.all the counterfeit coins by exact n queries. We
simply query the Comparative Weighting Oracle with each single coin. The oracle returns either

"Ny > N,” or ’Ny < N;”, thus we know whether the input-coin is counterfeit or not.]

In the next section, we will propose a greedy ‘approach of CCCP, which solves all (n, d)-

CCCP with at most |n/2] + d + 3 queries when 4d < n.

4.3 A Greedy approach of CCCP

In this section, we focus on solving (n, d)-CCCP. The main idea of the greedy approach is to split
n coins into small groups each with 4 coins, and solve each group with an optimal nonadaptive

algorithm for 4 coins.

Definition 4.3.1. [8] A coin-weighting algorithm A is nonadaptive if all query samples must be

specified without knowing the outcome of other queries.

Example 4.3.1. We give an example of nonadaptive algorithm to solve (3,3)-CCCP.

48 CHAPTER 4. TRICHOTOMY REACTION ATTACK

Figure 4.2: A nonadaptive algorithm solving (3,3)-CCCP

Algorithm 4.3.1: A nonadaptive algorithm solving (3,3)-CCCP

Input: Permission to query the Comparative Weighting Oracle.
Output: The set of counterfeit coin indexes B C {1, 2, 3}.

Query the Comparative Weighting'Oracle with {2}, let r; denote the output.
Query the ComparativerWeighting=Qracle with+{1, 3}, let », denote the output.
If r1="Ny > N;1” and n="Ny > N,”,return {}.
If r{="Ny > N{” and r»="Ny, < Ny, return {1, 3}.
If ri1="Ny < N1” and rn="Ny:=>-Ny2-return {2}.
If r1="No < Ny” and ry="Ng:< N,”, return {1, 2, 3}.
Query the Comparative Weighting Oracle with {3}, let m3 denote the output.
If ri="No > Ny” and r3="Ngy > N;”, return {1}.
If r1="Nyp > N;1” and r;="Ny < N;”, return {3}.
0. Ifr;="Ny < N;” and r3="Ny > N;”, return {1, 2}.
If r1="Ny < N1” and r3="Ny < N;”, return {2, 3}.

= R Il i

—

It is much simpler to represent the algorithm by a decision tree diagram, see Figure 4.2. In
the diagram, situation of coins are represented by binary strings, where bit 1 indicates a coun-

terfeit coin, bit O indicates a normal coin. We will use this notation in the following discussion.

4.3.1 Optimal nonadaptive algorithm for 4 coins

We find optimal nonadaptive algorithms for 4 coins by an exhaustive search. We first introduce

the measurement we use.

Definition 4.3.2. Suppose A, is a nonadaptive algorithm to identify the situation of n coins. We

4.3. A GREEDY APPROACH OF CCCP 49

use Oy, (x) to denote the number of queries required by A, when the actual situation of coins is

x, where x is a binary string with length n.

Example 4.3.2. Let Az be the algorithm described in Figure 4.2, then Q4,(000) corresponds to
the length of path from root to leaf 000. Thus Q4,(000) = 2, 04,(010) = 2, 04,(100) = 3,

04,(011) = 3,

Definition 4.3.3. Let Ry, be a 1 X (n + 1) vector, Ry, = (RO,,’R/lx,,v'-’fon)’ where R, =

in=i O, (x) for 0 <i < n.

Example 4.3.3. Let A3 be the algorithm described in Figure 4.2, then RgS = 04,(000) = 2,
R}h = 04,(001) + 04,(010) + 04,(100) = 8, th = 04,(011) + 04,(110) + 04,(101) = 8,
th = Q4,(111) = 2. Thus R4, = (2,8,8,2).

Definition 4.3.4. Let A, and B, be two nonadaptive algorithms to identify the situation of n

coins. We say Ry, < Rp, if and only:if Rit,, < Rgn forall 0 < i <n.

Let OPT, denote the algorithm represented by figure 4.3, where the input of OPT} is a coin
indexes set S = {S1,52,953, 54} and the output is the set of counterfeit coin indexes B € §. We

have the following theorem.

Theorem 4.3.1. OPT}, is an optimal nonadaptive algorithm to identify the situation of 4 coins

in sense of Ropr, < R4, for any nonadaptive algorithm A,.

Proof. We establish this theorem by making an exhaustive search of all candidate nonadaptive
algorithms which identify the situation of 4 coins. A candidate nonadaptive algorithm corre-
sponds to a sequence of subsets, where the subsets belong to the power-set of {1,2,3,4}. Note
that any subsets-sequence longer than 4 needs not to be considered since it is even worse than
the trivial method. Thus there are (146) x 4! candidates. We calculate the R,, vector for each can-
didate algorithm A4. The algorithm represented by figure 4.3 is one of the optimal algorithms.

It has Ropr, = (2,12,18,12,2) O

50 CHAPTER 4. TRICHOTOMY REACTION ATTACK

= isisy

{8

{ {s.8.8.8) {=a(s,s5)

{s} {S} {sy} s} {s;s.}

{8,8,}1{S,,S;,S,HSu:S;.S.}{S,, S, S, H S, S, S} <):| {s}

{S;.S:} {S.S:}

Figure 4.3: OPT,, An optimal nonadaptive algorithm for 4 coins

By the same technique, we obtain optimal nonadaptive algorithms for 1, 2 and 3 coins. We

use OPT,, OPT, and OPTj; to denote them. They are?

Algorithm 4.3.2: OPT,

Input: Coin indexes set S, letS =4S}
Output: The set of counterfeit coinsindexes’B'C §.

1. Query the comparative weighting oracle with {S}, let | denote the output.
2. Ifr;="Ny > N;”, return {}.
3. Ifr;="Ny < N;”, return {S1}.

Algorithm 4.3.3: OPT),

Input: Coin indexes set S, let S = {51, S»}.
Output: The set of counterfeit coin indexes B C S.

Query the comparative weighting oracle with {S {, S}, let 7; denote the output.
If r1="Ny > N,”, return {}.

If r1="Nog < Ny, return {S'1, S>}.

Query the comparative weighting oracle with {S 1}, let o denote the output.

If r,="Ny > N;”, return {S»}.

If m="Ny < N,”, return {S {}.

AN

4.3. A GREEDY APPROACH OF CCCP

=R IS

<= (sos)

0 {83 (s} {s,8) {8, (s.S,8) {3 (S}

{S2, S} (s}

Figure 4.4: Decision tree diagram of OPT3.

Algorithm 4.3.4: OPT;

Input: Coin indexes set S, let S = {§1,82,53}
Output: The set of counterfeit coin indexes B.€ S«

1. Query the comparative Weighting oracle with {8, S»}, let | denote the output.
2. Query the comparative weighting oracle with {S4, §3}, let », denote the output.
3. If ri="Ny > N;” and rn="Ny > Ni’yreturn {}.

4. If ri="Ny > N1” and r,=""Ny.="N”, return{S3}.

5. If r1="Ny = N1” and r="Ngy > Ni>szxeturn {S»}.

6. If r1="Nyp = Ny” and rp,="Ngy < N;”, return {S 1, S3}.

7. If r1="Ny < N1” and rn="Ny = N7, return {S 1, S 2}

8. If ri="Ny < N;” and rp,="Ngy < N;”, return {S |, 52, 53}.

9. Query the comparative weighting oracle with {S}, let 3 denote the output.

10. If r3="Ny > N;”, return {S 2, S3}.

11. If 3="Ny < Ny”, return {S}.

We represent OPT3 by a decision tree diagram, see Figure 4.4.

4.3.2 A greedy algorithm for (n, d)-CCCP

Based on the previous discussion, we develop the following algorithm to solve (n, d)-CCCP.

51

52 CHAPTER 4. TRICHOTOMY REACTION ATTACK

Algorithm 4.3.5: Greedy algorithm for (n, 4)-CCCP

Input: (n, d) and the permission to query the comparative weighting oracle.

Output: The set of counterfeit coin indexes B C {1,2,...,n}.

1. Leti=1.

2. Ifi+ 3> nthenstep 5.

3. Call OPT, to identify the situation of the 4-coins group (i,i + 1,i + 2,i + 3).
4. i=1i+4, goto step 2.

5. 1Ifi = n, call OPT to identify the situation of the coin (7).

6. Ifi=n—1,call OPT); to identify the situation of the coins (i,7 + 1).

7. Ifi=n-2,call OPTjs to identify the situation of the coins (i,i + 1,i + 2).

We analyze this algorithm with the following theorem.

Theorem 4.3.2. When 4d < n, the algorithm requires at most |n/2] + d + 3 queries.

Proof. We discuss this bound by four cases!

Case n mod 4 = 0: The worst=cases happen on minimizing the all zero 4-coins
groups. For example,in (12,2)-CCCP, the coins situation
0000 0001 0001 'is a worst-case instance which totally requires
8 queries, and 0000 00110000 isn’t. Since 4d < n, we have at
least (n — 4d) /4 all zero.groups, each of them requires 2 queries.
Each of the rest groups requires at most 3 queries, so the total
queries no more than 3d + 2(n — 4d)/4 = n/2 + d.

Casenmod 4 = 1: By case 1, total queries no more than (n — 1)/2 +d + 1.

Case n mod 4 =2: By case 1, total queries no more than (n —2)/2 +d + 2.

Case n mod 4 = 3: By case 1, total queries no more than (n — 3)/2 +d + 3.

Combining the four cases, we have an upper-bound [n/2] + d + 3 on query numbers.

Corollary 4.3.1. Mcccp(n,d) < |n/2]+d+ 3 when 4d < n.

4.4 Attack under Trichotomy Reaction Oracle Model

Under the trichotomy reaction oracle model combining with the idea proposed in section 3.6.3,
an adversary who wants to recover the plaintext m from ciphertext c, is equivalent to facing

a combinatorial problem; we call it the Reaction Attack Problem (RAP). The problem with

4.4. ATTACK UNDER TRICHOTOMY REACTION ORACLE MODEL 53

parameters (c, C,t) can be stated as follows. Given a ciphertext ¢ and a coordinate set C =
{C1,Cy, ...} € {1,...,]|c]}. Inthe coordinates C of the ciphertext c, there are at most ¢ coordinates
effected by errors. We want to identify all the effected coordinates (if any) in C with as few

queries as possible by using the trichotomy reaction oracle (TRO) proposed in section 4.1.

We use Mgpap(c, C, 1), to denote the worst-case number of queries required by algorithm A
to solve (¢, C, t)-RAP. Define Mpap(c, C,t) = Mins{Mg4sp(c,C,)4}, two main theorems in this

chapter are present.

Theorem 4.4.1. Mg,p(c,C,t) < Mcccp(IC), 1)

Proof. We use a similar proving technique as m LLemma4.2.1. View the coordinates in C as |C]|
coins. The coordinates effected by etrors correspond to the counterfeit coins, and the unaffected
coordinates correspond to the normal coins. Assume.we have an algorithm A which solves
(IC|,1)-CCCP. In order to solve (c, C,)-RAP; we run algorithm A and respond to each query
of CWO from A by some queries of the TRO that we have, then algorithm A will indicate the
counterfeit coin set by assumption. The counterfeit coin set given by A is the answer to the
(¢, C,1)-RAP after translating it to the corresponding coordinate set. Furthermore, suppose A
requires at most € queries of CWO and if we can respond each query from A with a single query
of the TRO, then this strategy for (c, C, 1)-RAP will also take at most € queries. The success
of CWO simulation by TRO largely depends on a trick: Let 7" be a coordinate set. If we flip
¢ on all coordinates in 7', and send it to the TRO, the Typel Reaction indicates there are fewer
effected coordinates than unaffected ones in 7 before the flip, the Type2 Reaction indicates
equal effected coordinates and unaffected ones, and the Type3 Reaction indicates more effected
coordinates than unaffected ones. We state the CWO simulation algorithm with single query of

TRO as follows to complete the proof.

54 CHAPTER 4. TRICHOTOMY REACTION ATTACK

Algorithm 4.4.1: (|C|, 1)-Comparative Weighting Oracle simulation algorithm

Input: (¢, C,) and a set of sample coin indexes S = {S,S52,...} € {1,...,|C]}.
Output: Ny < Ny, Ng > Ny or Ng = N in the sample S.

Flip all bits on coordinates {Cs,, Cs,,. .., Cs,} of ciphertext ¢ to form ¢’.
Query the trichotomy reaction oracle with ¢’, let r denote the output reaction.
If r = Type 1 reaction, output Ny > N;. Otherwise step 4.

If r = Type 2 reaction, output Ny = N;. Otherwise step 5.

If r = Type 3 reaction, output Ny < N;.

MY

By the proof of Theorem 4.4.1, we obtain the most important theorem in this chapter.
Theorem 4.4.2. If we have an algorithm solve (|C|, 1)-CCCP with at most € queries, then we

can design an algorithm to solve (c, C, t)-RAP with at most € queries.

Proof. We state the design of the algorithmfor (¢, C;1)-RAP to complete the proof. Let A
denote the algorithm solving (|C|, 1)=CCCP.

Algorithm 4.4.2: An algorithm for (¢, C;7)-RAP

Input: Ciphertext ¢, coordinate set C and-effected coordinates upper-bound z.
Output: The error-effected coordinate set B C C.

1. Run Algorithm A.
When the algorithm queries the CWO with sample set S, simulate the response
by Algorithm 4.4.1 with parameters (c, C, ¢, §).

2. Let B’ ={Bj,B),...} denote the output.
Translate index set B’ to coordinate set B = {C B> C B)»-- J.

Corollary 4.4.1. Mgsp(c,S,1) <|S|

Proof. Combine Theorem 4.4.1 and Corollary 4.2.2, the corollary is obtained. O

Corollary 4.4.2. Mzsp(c,C,t) < [|C|/2] + ¢t + 3 when 41 < |C].

Proof. By Theorem 4.4.1 and Theorem 4.3.2, the corollary is obtained. O

4.5. TRICHOTOMY REACTION ATTACK ALGORITHM 55

4.5 Trichotomy Reaction Attack Algorithm

By Algorithm 4.6.1 and Algorithm 4.7.5 and the idea of Algorithm 4.3.1, we have designed a

new reaction attack algorithm.

Algorithm 4.5.1: New Reaction Attack Algorithm

Input: Ciphertext ¢, public-key (G’, t) in the MEPKC.
Output: Plaintext m corresponds to c.

1. Select k linearly independent columns in G’, denote the indexes of these columns
by aset C.

2. Combine the k columns of G’ to form a k X k matrix Gy.

3. Run Algorithm 4.3.5 with parameters (k,).
When the algorithm queries the CWO with sample set S, simulate the response
by Algorithm 4.4.1 with parameters (c, C, t, S).

4. Let B denote the output, flip c on coordinates {Cp,, Cp,,. .., Cpy}-.

Combine the k coordinates of ¢ whichiselected in step] to form a 1 X k vector ¢’.

6. m=c- G,’(_1

e

In practical MEPKC instances, 4t <k 1s hold. For example, the original parameters sug-
gested by McEliece [25] where n =.1024;¢ =50 and'k > 524 consist with this inequality.
Moreover, to maximize the expected work factoriof the attack proposed by McEliece himself,
Adams and Meijer [1] suggested parameters n = 1024,¢ = 37 and k = 654. This suggestion
also consists with 4t < k. When 4¢ < k holds, by Corollary 4.4.2, Algorithm 4.5.1 requires at
most | k/2]| + t + 3 queries.

By connecting the reaction attack and the counterfeit coins puzzle, this chapter gives a new
direction to improve the attack. That is, if someone is good at playing the puzzle, his playing

strategy will induce a better reaction attack algorithm against the MEPKC.

56

CHAPTER 4. TRICHOTOMY REACTION ATTACK

Chapter 5

Conclusion

In this thesis, two improvements of the general-information-decoding algorithm are proposed
(see Section 3.1.4). One improvement decreasessthe time consumption of the guess-verification
stage, and the other improvement eliminates, theiduplicate guesses of the nearly error-free loca-

tions.

We also introduce a new connection between-the trichotomy reaction attack and the com-
parative counterfeit coins problem (see Chapter 4).” With this connection, a high-performance
playing strategy of the CCCP induce a high-performance attack algorithm to break the improper
implementation of MEPKC. This work extend the directions to increase the feasibility of attacks

under the trichotomy reaction oracle model.

After the connection is established, we propose a greedy approach to solve the (n, d)-CCCP.
The worst-case queries requirement of it is proven to be |n/2] + d + 3 when 4d < n. With this
algorithm, a trichotomy reaction attack algorithm with worst-case queries requirement |k/2] +
t + 3 is induced. We show an arrangement of the queries requirement of three attacks: [29],

[13], and the trichotomy reaction attack in this thesis in the following table.

57

58

Chosen-Cipher Attack

CHAPTER 5. CONCLUSION

Reaction Attack Trichotomy Reaction Attack

Oracle Model decryption oracle

n(n=1) (1)

of Queries 2-D(n—1)

(1) : average case.
(2) : worstcase.
(3) : worstcase, when 4t < k.

reaction oracle

trichotomy reaction oracle

51+1+3@

Table 5.1: An arrangement of queries requirement

Bibliography

[1] C. M. Adams and H. Meijer. Security-related comments regarding McEliece’s public-key

cryptosystem. IEEE Transactions on Information Theory, 35(2):454-455, 1989.

[2] M. Ajtai and C. Dwork. A public-key cryptosystem with worst-case/average-case equiva-
lence. In STOC ’97: Proceedings of the twenty-ninth annual ACM symposium on Theory

of computing, pages 284-293, 1997:

[3] E. R. Berlekamp. Goppa codes. IEEE Transactions on Information Theory, 19:590-592,

1973.

[4] E.R. Berlekamp, R.J. McEliece, and H.C.A. van Tilborg. On the inherent intractability of

certain coding problems. /IEEE Transactions on Information Theory, 24:384-386, 1978.

[5] T. A. Berson. Failure of the McEliece public-key cryptosystem under message-resend and

related-message attack. In CRYPTO, pages 213-220, 1997.

[6] A. Canteaut and N. Sendrier. Cryptoanalysis of the original McEliece cryptosystem. In

ASIACRYPT, pages 187-199, 1998.

[71 A.E.F Clementi, A. Monti, and R. Silvestri. Selective families, superimposed codes, and

broadcasting on unknown radio networks. In SODA, pages 709-718, 2001.

[8] D.Z.DuandF K. Hwang. Combinatorial Group Testing And Its Applications 2nd Edition.
2000.

59

60

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

BIBLIOGRAPHY

G. Ehrlich. Algoruithm 466. four combinatorial algorithms. Commum. ACM, pages 691—
691, 1973.

G. Ehrlich. Loopless algorithms for generating permutations, combinations, and other

combinatorial configurations. J. ACM, 20(3):500-513, 1973.

O. Goldreich, S. Goldwasser, and S. Halevi. Eliminating decryption errors in the ajtai-
dwork cryptosystem. In CRYPTO ’97: Proceedings of the 17th Annual International

Cryptology Conference on Advances in Cryptology, pages 105-111, 1997.

V. D. Goppa. A new class of linear correcting codes. Probl. Pered. Info., 6(3):24-30,
1970.

C. Hall, I. Goldberg, and B. Schneier. Reaction attacks against several public-key cryp-
tosystems. In the 2nd International Conference.on Information and Communications Se-

curity (ICICS’99), LNCS 17265 pages 2—12, 1999.

T. Hwang and T. R. N. Rao. Sécret error-correcting codes (secc). In CRYPTO, pages
540-563, 1988.

P. Indyk. Explicit constructions of selectors and related combinatorial structures, with

applications. In SODA, pages 697-704, 2002.

R. M. Karp. On the computational complexity of combinatorial problems. Networks.,

pages 4568, 1975.

K. Kobara and H. Imai. Countermesures against all the known attacks to the McEliece

PKC. In International Symposium on Information Theory and Its Applications., pages

661-664, 2000.

K. Kobara and H. Imai. Semantically secure McEliece public-key cryptosystems-

conversions for McEliece PKC. In Public Key Cryptography, pages 19-35, 2001.

BIBLIOGRAPHY 61

[19] P. J. Lee and E. F. Brickell. An observation on the security of McEliece’s public-key

cryptosystem. In EUROCRYPT, pages 275-280, 1988.

[20] J. S. Leon. A probabilistic algorithm for computing minimum weights of large error-

correcting codes. IEEE Transactions on Information Theory, 34(5):1354—, 1988.

[21] Rudolf Lidl and Harald Niederreiter. Finite fields, volume 20 of Encyclopedia of Mathe-

matics and its Applications. Cambridge University Press, second edition, 1997.
[22] P.Loidreau. Strengthening McEliece cryptosystem. In ASIACRYPT, pages 585-598, 2000.

[23] P. Loidreau. Codes derived from binary Goppa codes. Probl. Inf. Transm., 37(2):91-99,

2001.

[24] F. J. MacWilliams and N. J. A. Sloane. The theory of error-correcting codes. I and II.
North-Holland Publishing Co.;1977.

[25] R.J. McEliece. A public-key- eryptosystem based on algebraic coding theory. DSN

Progress Report, pages 114-116, 1978,

[26] C. Savage. A survey of combinatorial gray codes. SIAM Rev., 39(4):605-629, 1997.

[27] H. M. Sun. Improving the security of the McEliece public-key cryptosystem. In ASI-
ACRYPT, pages 200-213, 1998.

[28] H. M. Sun. Enhancing the security of the McEliece public-key cryptosystem. J. Inf. Sci.
Eng., 16(6):799-812, 2000.

[29] H. M. Sun. Further cryptanalysis of the McEliece public-key cryptosystem. IEEE Com-

munications Letters., 4(1):18-19, 2000.

[30] J. van Tilburg. On the McEliece public-key cryptosystem. In CRYPTO, pages 119-131,
1988.

