
國 立 交 通 大 學

資 訊 工 程 學 系

碩 士 論 文

馬可利斯公鑰密碼系統之三分法反應攻擊

A Trichotomy Reaction Attack on McEliece Public-Key
Cryptosystem

研究生: 梁漢璋

指導教授: 陳榮傑 教授

中國民國 九十四 年 六 月

ii

馬可利斯公鑰密碼系統之三分法反應攻擊

A Trichotomy Reaction Attack on McEliece Public-Key
Cryptosystem

研究生: 梁漢璋 Student: Han-Chang Liang
指導教授: 陳榮傑 教授 Advisor: Prof. Rong-Jaye Chen

國 立 交 通 大 學

資 訊 工 程 學 系

碩 士 論 文

A Thesis
Submitted to Institute of Computer Science and

Information Engineering
College of Electrical Engineering and Computer Science

National Chiao Tung University
in

Partial Ful�llment of the Requirements
for the Degree of Master

in
Computer Science and Information Engineering

June 2005
Hsin-Chu, Taiwan, Republic of China

中國民國 九十四 年 六 月

iii

誌謝

這篇論文能夠得以完成, 首先必須感謝我的指導教授陳榮傑老師, 給予我研究的方向以及資源。

也感謝師母李惠慈女士為我指出論文寫作當中的不當之處, 使我的論文得以改頭換面。 更要感謝我的

家人無條件地支持我, 使我得以無後顧之憂地完成碩士學業。 最後要感謝實驗室的夥伴們: 鈞祥、 志

賢、 凱群、 緯凱、 文鼐學長, 政愷、 志彬、 韋廷, 學弟葉薰以及 資科系資訊安全實驗室的冠廷。 和你們

一同討論, 逐步釐清思緒, 是一個很棒的經驗。 另外要特別感謝實驗室已畢業的學長: 張仁俊博士, 在

研究方面給了我很大的啟發。

iv

馬可利斯公鑰密碼系統之三分法反應攻擊

研究生: 梁漢璋 指導教授: 陳榮傑教授

國立交通大學

資訊工程學系

摘要

馬可利斯公鑰密碼系統是第一個結合了代數編碼領域及密碼領域的公鑰密碼系統。 Hall 等三位

學者於 1999 年提出了第一個對於馬可利斯公鑰密碼系統的反應攻擊。 相較於選擇密文攻擊而言, 反

應攻擊可行性較高, 但需要較多的詢問次數。 在這篇論文當中, 我們提出一個三分法反應模型。 該模

型假設解密者對於一個不合法的密文, 將判斷是否仍可解密同時明文正確, 據此給予兩種程度不同的

警告回應, 並對於合法的密文, 給予確認回應。 我們證明若存在一個演算法解決比較型偽硬幣問題,

則對於符合三分法反應模型的馬可利斯公鑰密碼系統實作, 其相對應的攻擊演算法亦存在。 更進一步

地, 我們提出一個有效率的演算法解決比較型偽硬幣問題。 結合前述的結論, 我們得到一個三分法反

應攻擊演算法, 能花費較少的詢問次數, 便得以從密文還原明文。

關鍵字: 馬可利斯公鑰密碼系統, 反應攻擊, 三分法反應攻擊, 偽硬幣問題, 比較型偽硬幣問題.

v

A Trichotomy Reaction Attack on McEliece
Public-Key Cryptosystem

Student: Han-Chang Liang Advisor: Dr. Rong-Jaye Chen

Institute of Computer Science and Information Engineering

National Chiao Tung University

Abstract

McEliece public-key cryptosystem is the �rst system combining cryptography and algebraic

coding theory. In 1999, Hall et al. introduced the reaction attack on McEliece's and two other

cryptosystems. Compared with chosen-ciphertext attacks, the reaction attack has higher feasi-

bility. However, it requires more queries. In this thesis, we propose a trichotomy reaction oracle

model. In this model, the key-owner is assumed that when a illegal ciphertext is received, he de-

termines if the ciphtext is still decryptable and the plaintext is correct, then replies two different

warning responses according to the judgement. And he replies an acknowledgement response

when a legal ciphertext is received. We prove that if there is an algorithm which solves the

comparative counterfeit coins problem, then there is an attack algorithm on the improper im-

plementation which matches the trichotomy reaction oracle model. Furthermore, we design

an efficient algorithm to solve the comparative counterfeit coins problem. Combined with the

previous conclusion, a trichotomy reaction attack algorithm with fewer queries requirement is

induced.

Key Words: McEliece public-key cryptosystem, reaction attack, trichotomy reaction attack,

counterfeit coins problem, comparative counterfeit coins problem.

vi

Contents

Chinese Abstract iv

English Abstract v

Contents vi

List of Figures ix

List of Tables xi

1 Introduction 1

2 McEliece PKC 5

2.1 Native McEliece PKC . 6

2.2 Variants for Reducing Data Redundancy . 9

2.3 Variants for Enhancing Security . 10

2.3.1 Sun's Variants . 10

2.3.2 Loidreau's Variant . 12

2.3.3 Kobara and Imai's Variant . 16

3 Attacks to McEliece PKC 19

3.1 Generalized Information-Set-Decoding Attack 19

3.1.1 Information-set-decoding . 20

vii

viii CONTENTS

3.1.2 McEliece's Decoding Algorithm . 21

3.1.3 Tilburg's Decoding Algorithm . 22

3.1.4 Improvements of Decoding Attack . 24

3.2 Finding Low-Weight-Codeword Attack . 29

3.2.1 Leon's Algorithm . 30

3.2.2 Stern's Algorithm . 32

3.2.3 Canteaut et al.'s Algorithm . 34

3.3 Message-Resend and Related-Message Attack 34

3.4 Known-Partial-Plaintext Attack . 36

3.5 Chosen-Ciphertext Attack and Malleability Attack 36

3.6 Reaction Attack . 37

3.6.1 The Reaction Oracle Model . 37

3.6.2 The Attack Algorithm . 38

3.6.3 An Improved Attack Algorithm . 39

4 Trichotomy Reaction Attack 41

4.1 Trichotomy Reaction Oracle Model . 41

4.2 Counterfeit Coins Problem . 45

4.2.1 Additive Counterfeit Coins Problem 45

4.2.2 Comparative Counterfeit Coins Problem (CCCP) 46

4.3 A Greedy approach of CCCP . 47

4.3.1 Optimal nonadaptive algorithm for 4 coins 48

4.3.2 A greedy algorithm for (n, d)-CCCP 51

4.4 Attack under Trichotomy Reaction Oracle Model 52

4.5 Trichotomy Reaction Attack Algorithm . 55

5 Conclusion 57

List of Figures

3.1 Modi�ed McEliece's Decoding Algorithm with parameter (j, ε) 26

3.2 The matrix after arrangement. 30

3.3 Stern's Algorithm with parameters p and l . 33

4.1 The decryption algorithm behavior that consists with trichotomy reaction oracle

model. 44

4.2 A nonadaptive algorithm solving (3,3)-CCCP 48

4.3 OPT4, An optimal nonadaptive algorithm for 4 coins 50

4.4 Decision tree diagram of OPT3. 51

ix

x LIST OF FIGURES

List of Tables

5.1 An arrangement of queries requirement . 58

xi

xii LIST OF TABLES

Chapter 1

Introduction

In 1978, McEliece proposed a public-key cryptosystem which is based on a hard problem in the

coding theory, that is the Nearest Codeword Problem (NCP) [4]. The NCP is de�ned as follows:

given a generator matrix G, a received vector r, one is asked to output the vector m that minimize

weight(mG ⊕ r) = t. The decision version of NCP is proven to be an NP-complete problem by

reducing the three-dimensional matching problem [16] to it, thus NCP belongs to the class of

NP-hard problems. The McEliece PKC is attractive since it combines the cryptography and

algebraic coding theory.

In recent thirty years, several variants of the McEliece PKC have been proposed [27] [28]

[22] [18]. We can separate them into three classes by their purpose. The �rst type of variants

aim to reduce the encryption data redundancy, the second type of variants aim to enhance the

security, and the last type of variants aim to cover the above two purposes.

In the opposite direction, several attacks of the McEliece PKC have also been proposed [25]

[19] [30] [20] [6] [17] [5] [29] [13]. Some attacks [25] [19] [30] [20] [6] aim to solve the under-

lying nearest codeword problem. Although all of these attacks requires an exponential expected

time consumption, they are constructive since they inspire the research about the decoding of

general linear-codes.

Under a large amount of examination, the native McEliece PKC is considered to satisfy a

security notion: one-wayness against chosen-plaintext attacks (OW-CPA). OW-CPA is said to

1

2 CHAPTER 1. INTRODUCTION

be satis�ed if all the known chosen plaintext attacks cannot recover the whole plaintext of an

arbitrarily given ciphertext within a practical time. Moreover, Kobara et al proved in the random

oracle model that after applying a proper conversion on the McEliece PKC, the modi�ed sys-

tem satis�es the strongest security notion, that is, the indistinguishability of encryption against

adaptively chosen-ciphertext attacks (IND-CCA2).

However, there still exist some effective attacks which break an improper implementation or

a vulnerable protocol. In 1999, Hall, Goldberg, and Schneier [13] proposed the reaction attack

against several public key cryptosystems based on decoding problems and lattice problems,

including the McEliece [25], Hwang-Rao [14], Ajtai-Dwork [2], and Goldreich-Goldwasser-

Halevi [11] cryptosystems. In their attack against the McEliece PKC, an adversary sends the

key-owner a ciphertext which may contain one or more additional error bits. In common im-

plementations, the garbled ciphertext will cause failure in decryption or an illegal plaintext

checksum. The adversary then watches the reaction of the key-owner in order to determine

whether or not the ciphertext is decrypted correctly. By repeatedly apply the send-and-watch

action, the adversary can obtain the plaintext.

This attack is interesting since it proved that even a strongest conversion is applied [18], an

improper implementation cause the whole PKC to be vulnerable.

In Chapter 4 of this thesis, we extend their work to propose a trichotomy reaction attack to

break an improper implementation of the system which matches with the reichotomy reaction

oracle model. Furthermore, we establish the connection between comparative counterfeit coins

puzzle and the reaction attack to recover the plaintext from ciphertext in fewer send-and-watch

actions.

In the rest of this thesis, we �rst give a review of all variation versions of the McEliece

PKC. Next, we introduce all the known attacks on the native McEliece PKC, and we proposed

a improved weight-checking skill, which can be applied on the general information decoding

attacks. Finally, we propose a new attack which breaks an improper implementation of the de-

3

cryption procedure when the behavior of the decryption procedure matches with the trichotomy

reaction oracle.

4 CHAPTER 1. INTRODUCTION

Chapter 2

McEliece PKC

McEliece Public-Key Cryptosystem (MEPKC) was �rst introduced by R.J. McEliece in 1978

[25]. In recent thirty years, several variants of the MEPKC have been proposed. We can separate

them into three classes by their purpose. The �rst type of variants aim to reduce the encryption

data redundancy, the second type of variants aim to enhance the security, and the last type of

variants aim to cover the above two purposes. In this chapter, we introduce all of these variants.

We begin with an introduction to the underlying hard problem of the MEPKC.

Nearest Codeword Problem (NCP) is an NP-hard problem; it is de�ned as follows.

Nearest Codeword Problem:
Input: A generator matrix G, a received vector r.
Output: The m that minimize weight(mG ⊕ r).

If the NCP can be solved efficiently, it implies that the McEliece PKC is broken. But breaking

McEliece PKC is not as hard as solving NCP since the McEliece PKC is a special case of NCP

where error weight is guaranteed to be a certain value. The hard problem that an adversary

really faces is a constrained version of NCP, which can be described as follows.

Constrained Nearest Codeword Problem:
Input: A generator matrix G, a nonnegative integer t,

and a received vector r consists with that there
exist one and only one vector m such that
weight(mG ⊕ r) = t.

Output: The m such that weight(mG ⊕ r) = t.

5

6 CHAPTER 2. MCELIECE PKC

The decision version of NCP [4] is proven to be an NP-complete problem by reducing

the three-dimensional matching problem [16] to it, thus NCP belongs to the class of NP-hard

problems. However, the Constrained NCP have not been proved as hard as NCP.

2.1 Native McEliece PKC

The native MEPKC consists of the following three algorithms:

Key Generation algorithm:
Generate four matrices G,S ,P and G′
G k × n generator matrix of a binary Goppa code with correcting ability t.
S k × k random binary invertible matrix.
P n × n random permutation matrix.
G′ G′ = S GP
Secret key: S ,G, P
Public key: G′, t

Encryption algorithm:
To encrypt a 1 × k message m, one has to randomly select a 1 × n error vector e with
Hamming weight t. Then output the corresponding ciphertext c:
Ciphertext: c = m ·G′ ⊕ e

Decryption algorithm:
The key-owner �rst multiplies c by P−1,i.e. cP−1 = mS G ⊕ eP−1. Then he applies the
efficient decoding algorithm for Goppa code to eliminate the error vector eP−1 and
obtains the vector mS , which is multiplied by S −1 to obtain the message m.
Plaintext: m = mS · S −1

We can see that an instance of the MEPKC can be uniquely determined by four parameters

(S ,G, P, t).

In the next paragraph, we give an introduction to the Goppa code [12] [3] [24], which is

suggested to used in the MEPKC by the original author.

The Goppa code is �rst proposed by Goppa [12] in 1970. Based on the original de�nition,

there are many equivalent de�nitions of it. Here we describe the de�nition from [23].

2.1. NATIVE MCELIECE PKC 7

De�nition 2.1.1. [23] Let q be a prime power, m be an integer, g(x) be a polynomial with

coefficients in GF(qm), L denotes a set of all elements of GF(qm) that are not roots of g(x).

Then there is a Goppa code with length |L| and symbol �eld GF(q). The code is de�ned as the

set of all vectors C that consist with the condition:
∑

γ∈L

Cγ

z − γ ≡ 0 mod g(z).

For the convenience of implementation, we usually use binary Goppa codes in the MEPKC, so

we describe another de�nition of the Goppa code from [24]. It de�nes the binary Goppa codes

by parity check matrix.

De�nition 2.1.2. [24] Let g(x) ∈ GF(2m)[x] be a polynomial of degree t over the �eld GF(2m),

L = {α1, α2, ..., αn} be a subset of elements of GF(2m) such that g(αi) , 0. We label the

coordinates of the vector a ∈ (GF(2m)n) with the elements of L in the following way:

a = (aα1 , aα2 , . . . , aαn)

Then, the Goppa code Γ(L, g) is the set of binary vectors a = (aα1 , aα2 , . . . , aαn) such that

a · HT = 0

where

H =



G(α1)−1 G(α2)−1 · · · G(αn)−1

α1G(α1)−1 α2G(α2)−1 · · · αnG(αn)−1

α2
1G(α1)−1 α2

2G(α2)−1 · · · α2
nG(αn)−1

...
...

. . .
...

αt−1
1 G(α1)−1 αt−1

2 G(α2)−1 · · · αt−1
n G(αn)−1



A binary Goppa code Γ(L, g) is a [n, k, d]-linear code with the following three properties.

1. k ≥ n − mt.
2. d ≥ 2deg(g′) + 1, where g′ is the square-free polynomial of highest

degree which divides g.
3. There exist a polynomial-time decoding algorithm which corrects

up to deg(g′) errors.

8 CHAPTER 2. MCELIECE PKC

We give a construction example of the binary Goppa code with n = 7, k = 4, d = 3.

Example 2.1.1. Select a polynomial f (x) = x3 + x + 1 which is irreducible over GF(2), then we

have a corresponding �eld GF(23). Select a polynomial g(x) = x which has only one root over

GF(23), thus we have L = {α1, α2, α3, α4, α5, α6, α7}. By de�nition 2.1.2, the corresponding

parity-check matrix over �eld GF(23) is:

H =
[

G(α1)−1 G(α2)−1 G(α3)−1 G(α4)−1 G(α5)−1 G(α6)−1 G(α7)−1
]

=
[
α6 α5 α4 α3 α2 α1 α0

]

We can rewrite the 1 × 7 parity-check matrix over GF(23) into a 3 × 7 parity-check matrix over

GF(2) without effect of its parity-check function:

H =


1 1 1 0 1 0 0
0 1 1 1 0 1 0
1 1 0 1 0 0 1



Then we have the corresponding generator matrix:

G =



1 0 0 0 1 0 1
0 1 0 0 1 1 1
0 0 1 0 1 1 0
0 0 0 1 0 1 1



Example 2.1.2. Select a polynomial f (x) = x4 + x + 1 which is irreducible over GF(2), then

we have a corresponding �eld GF(24). Select a polynomial g(x) = x2 + x which has two roots

over GF(24) (0 and 1), thus we have:

L = {α1, α2, α3, α4, α5, α6, α7, α8, α9, α10, α11, α12, α13, α14}. By de�nition 2.1.2, the correspond-

ing parity-check matrix over �eld GF(24) is:

H =
[

H1 | H2
]

2.2. VARIANTS FOR REDUCING DATA REDUNDANCY 9

where

H1 =

[
α10 α5 α13 α10 α0 α11 α14

α11 α7 α1 α14 α5 α2 α6

]

and

H2 =

[
α5 α14 α0 α7 α7 α11 α13

α13 α8 α10 α3 α4 α11 α12

]
.

Then we have the corresponding parity-check matrix over GF(2).

H =



0 0 1 0 0 1 1 0 1 0 1 1 1 1
1 1 1 1 0 1 0 1 0 0 0 0 1 1
1 1 0 1 0 1 0 1 0 0 1 1 1 0
1 0 1 1 1 0 1 0 1 1 1 1 0 1
1 1 0 1 0 0 1 1 0 0 1 0 1 1
1 0 0 0 1 1 1 1 1 1 0 0 1 1
1 1 1 0 1 0 0 0 0 1 0 1 1 1
0 1 0 1 0 0 0 1 1 1 0 1 0 1



2.2 Variants for Reducing Data Redundancy

A representative work of variants for reducing the data redundancy was proposed by Sun [27]

[28]. The main idea of these variants is to construct the error vector by partial plaintext or its

variations instead of selecting the error vector randomly. Because the error vector is a part of

plaintext or can be converted into partial plaintext, we can proportion a part of plaintext to the

error vector. In this way, more information(longer plaintext) can be carried by a �xed length

ciphertext. The author proposed �ve variants; we describe his variant III in this section.

Variant 2.2.1:

10 CHAPTER 2. MCELIECE PKC

Key Generation algorithm:
Generate four matrices G,S ,P,G′ and a function g.
g An invertible function: {0, 1}blog2(n

t)c ↔ {v|v ∈ {0, 1}n,weight(v) = t}.
G k × n generator matrix of a binary Goppa code with correcting ability: t.
S k × k random binary invertible matrix.
P n × n random permutation matrix.
G′ G′ = S GP
Secret key: S ,G, P
Public key: G′, g, t

Encryption algorithm:
To encrypt a message m = ma||mb, where |ma| = k, |mb| = blog2

(n
t
)
c, one has to compute

an error vector e = g(mb). Then output the corresponding ciphertext c:
Ciphertext: c = m ·G′ ⊕ e

Decryption algorithm:
The key-owner recover the partial plaintext ma by applying the original decryption
algorithm of MEPKC. Then, the error vector can be obtained by e = maG′ ⊕ c. The key
owner can easily extract mb by mb = g−1(e).
Plaintext: m = ma||mb

This variant provides additional blog2
(

n
t

)
c-bits information capacity.

2.3 Variants for Enhancing Security

More variants can be found for enhancing security. For example, the variants proposed by Sun

[28] [27] which resist the message-resend and related-message attack [5], the variant proposed

by Loidreau [22] which resists the chosen-plaintext attacks and the Kobara et al's variant [18]

which resists the chosen-ciphertext attacks. We will introduce these variants in this section.

2.3.1 Sun's Variants

In the previous section, we have introduced the Sun's variant for reducing the encryption data-

redundancy. Actually, the author provided four other variants in his paper [27]. His variant I and

II successfully resist the message-resend attack. Moreover, his variant IV and V meet the dual

purposes of reducing the encryption data-redundancy and enhancing security. The main idea of

2.3. VARIANTS FOR ENHANCING SECURITY 11

these variants is to shield the plaintext by a hash-value of the error vector. In this way, resend-

messages will not cause the leak of error position information (for detail of the message-resend

attack see Section 3.3). We give an introduction to variant I and IV here.

Variant 2.3.1:

Key Generation algorithm:
Generate four matrices G,S ,P,G′ and a function g.
h A hash function: {v|v ∈ {0, 1}n,weight(v) = t} → {0, 1}k.
G k × n generator matrix of a binary Goppa code with correcting ability t.
S k × k random binary invertible matrix.
P n × n random permutation matrix.
G′ G′ = S GP
Secret key: S ,G, P
Public key: G′, h, t

Encryption algorithm:
To encrypt a 1 × k message m, one has to randomly select a 1 × n error vector e with
Hamming weight t. Then output the corresponding ciphertext c:
Ciphertext: c = (m ⊕ h(e))G′ ⊕ e

Decryption algorithm:
The key-owner recover the corrupt plaintext m′ = m ⊕ h(e) by applying the original
decryption algorithm of MEPKC. Then, the error vector can be obtained by
e = m′G′ ⊕ c. The key-owner can easily extract correct m by m = m′ ⊕ h(e).
Plaintext: m = m′ ⊕ h(e)

This variant successful resist the message-resent attack. When a message �rst encrypted as

ciphertext c1 and re-encrypted as a different ciphertext c2, the adversary compute c1 ⊕ c2, then

he will obtain (h(e1) ⊕ h(e2))G′ ⊕ e1 ⊕ e2 which leaks no information about e1 and e2 since the

covering of (h(e1) ⊕ h(e2))G′.

Variant 2.3.2:

12 CHAPTER 2. MCELIECE PKC

Key Generation algorithm:
Generate four matrices G,S ,P,G′ and a function g.
q A system parameter which denotes the length of random vector.

q consists with 0 ≤ q ≤ blog2
(n

t
)
c.

g An invertible function: {0, 1}blog2(n
t)c ↔ {v|v ∈ {0, 1}n,weight(v) = t}.

h A hash function: {v|v ∈ {0, 1}n,weight(v) = t} → {0, 1}n.
G k × n generator matrix of a binary Goppa code with correcting ability: t.
S k × k random binary invertible matrix.
P n × n random permutation matrix.
G′ G′ = S GP
Secret key: S ,G, P
Public key: G′, q, g, h, t

Encryption algorithm:
To encrypt a message m = ma||mb, where |ma| = k and |mb| = blog2

(n
t
)
c − q.

One has to randomly select a 1 × q vector r, then compute an error vector e = g(r||mb).
Output the corresponding ciphertext c:
Ciphertext: c = (ma ⊕ h(e))G′ ⊕ e

Decryption algorithm:
The key-owner recover the corrupt plaintext m′a = ma ⊕ h(e) by applying the original
decryption algorithm of MEPKC. Then, the error vector can be obtained by
e = m′aG′ ⊕ c. The key-owner can easily extract correct ma by ma = m′a ⊕ h(e).
Final, mb can be obtained by applying the inverse function of g, that is (r||mb) = g−1(e).
Plaintext: m = ma||mb

This variant not only resists the message-resend attack, but also reduces the encryption data-

redundancy. Because of the additional message mb, this variant provides additional blog2
(

n
t

)
c−q

bits information capacity.

2.3.2 Loidreau's Variant

In 2000, Loidreau proposed a modi�ed version of the MEPKC using the modi�cation bases

on the Frobenius automorphism. The main idea of his modi�cation is that it can enlarge the

weight of the error vector to resist the chosen-plaintext attack. In the original MEPKC, the

randomly-selected error vector e must consist with weight(e) ≤ t to make sure that the key-

owner can decrypt correctly, but in the Loidreau's modi�cation, we can select an error vector

which satis�es weight(e) > t if the vector e is a t-Tower Decodable Vector.

2.3. VARIANTS FOR ENHANCING SECURITY 13

Consider a Goppa code Γ(L, g) over F2m where L = (α1, . . . , αn) and g denotes the Goppa

polynomial. If all the coefficients of g are in a sub�eld F2s of F2m , then the Frobenius automor-

phism function ρ : {0, 1}2m → {0, 1}2m is de�ned as follows.

∀c = (cα1 , . . . , cαn) ∈ {0, 1}2
m , ρ(c) = (cρ′(α1), . . . , cρ′(αn)) ∈ {0, 1}2m

where ρ′(x) = x2s .

This variant is based on the fact that the Goppa code γ(L, g) is invariant under the Frobenius

automorphism, that if c is a codeword of the Goppa code Gamma(L, g), then ρ(c) is also a

codeword of Gamma(L, g).

Example 2.3.1. Consider a Goppa code Γ(L, g) over GF(24), where g = x3 + x + 1 and L =

(0, α0, α1, α2, α4, α8, α12, α3, α6, α9, α5, α10, α11, α13, α14, α7). We can see that all the coefficients

of g are over the sub�eld GF(21) of GF(24), thus we have s = 1andρ(x) = x21
= x2.

The generator matrix of Γ(L, g) is:

G =



1 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1
0 1 0 0 0 0 1 1 1 1 0 0 1 1 1 1
0 0 1 0 1 0 0 0 1 1 1 0 1 0 1 0
0 0 0 1 0 1 1 1 0 0 0 1 0 1 0 1



All the codewords of the Γ(L, g) are:

c1 = [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]
c2 = [0 0 0 1 0 1 1 1 0 0 0 1 0 1 0 1]
c3 = [0 0 1 0 1 0 0 0 1 1 1 0 1 0 1 0]
c4 = [0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1]
c5 = [0 1 0 0 0 0 1 1 1 1 0 0 1 1 1 1]
c6 = [0 1 0 1 0 1 0 0 1 1 0 1 1 0 1 0]
c7 = [0 1 1 0 1 0 1 1 0 0 1 0 0 1 0 1]
c8 = [0 1 1 1 1 1 0 0 0 0 1 1 0 0 0 0]
c9 = [1 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1]
c10 = [1 0 0 1 0 1 1 1 0 0 1 0 1 0 1 0]
c11 = [1 0 1 0 1 0 0 0 1 1 0 1 0 1 0 1]
c12 = [1 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0]
c13 = [1 1 0 0 0 0 1 1 1 1 1 1 0 0 0 0]
c14 = [1 1 0 1 0 1 0 0 1 1 1 0 0 1 0 1]
c15 = [1 1 1 0 1 0 1 1 0 0 0 1 1 0 1 0]
c16 = [1 1 1 1 1 1 0 0 0 0 0 0 1 1 1 1]

14 CHAPTER 2. MCELIECE PKC

All the transformed codewords are:

ρ(c1) = [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]
ρ(c2) = [0 0 1 0 1 0 0 0 1 1 1 0 1 0 1 0]
ρ(c3) = [0 0 0 1 0 1 1 1 0 0 0 1 0 1 0 1]
ρ(c4) = [0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1]
ρ(c5) = [0 1 0 0 0 0 1 1 1 1 0 0 1 1 1 1]
ρ(c6) = [0 1 1 0 1 0 1 1 0 0 1 0 0 1 0 1]
ρ(c7) = [0 1 0 1 0 1 0 0 1 1 0 1 1 0 1 0]
ρ(c8) = [0 1 1 1 1 1 0 0 0 0 1 1 0 0 0 0]
ρ(c9) = [1 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1]
ρ(c10) = [1 0 1 0 1 0 0 0 1 1 0 1 0 1 0 1]
ρ(c11) = [1 0 0 1 0 1 1 1 0 0 1 0 1 0 1 0]
ρ(c12) = [1 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0]
ρ(c13) = [1 1 0 0 0 0 1 1 1 1 1 1 0 0 0 0]
ρ(c14) = [1 1 1 0 1 0 1 1 0 0 0 1 1 0 1 0]
ρ(c15) = [1 1 0 1 0 1 0 0 1 1 1 0 0 1 0 1]
ρ(c16) = [1 1 1 1 1 1 0 0 0 0 0 0 1 1 1 1]

Under the action of the Frobenius automorphism, several orbits in the �eld GF(2m) are

created. That is, there are several group of bits which only change their positions with oth-

ers inside the group after applying the Frobenius automorphism one or more times. The total

number of orbits can be evaluated. For an extension �eld F(2s)s
1

of F2s of prime degree s1, the

ρ : {0, 1}2m → {0, 1}2m operation creates Ns1 = ((2s)s1 −2s)/s1 orbits of size s1 and N1 = 2s orbits

of size 1.

Example 2.3.2. Using parameters in the previous example, the Frobenius automorphism ρ cre-

ates the following six orbits.

2.3. VARIANTS FOR ENHANCING SECURITY 15

Size 1
(cα1 , cα2 , cα3 , cα4 , cα5 , cα6 , cα7 , cα8 , cα9 , cα10 , cα11 , cα12 , cα13 , cα14 , cα15 , cα16)
(cα1 , cα2 , cα3 , cα4 , cα5 , cα6 , cα7 , cα8 , cα9 , cα10 , cα11 , cα12 , cα13 , cα14 , cα15 , cα16)

Size 2
(cα1 , cα2 , cα3 , cα4 , cα5 , cα6 , cα7 , cα8 , cα9 , cα10 , cα11 , cα12 , cα13 , cα14 , cα15 , cα16)

Size 4
(cα1 , cα2 , cα3 , cα4 , cα5 , cα6 , cα7 , cα8 , cα9 , cα10 , cα11 , cα12 , cα13 , cα14 , cα15 , cα16)
(cα1 , cα2 , cα3 , cα4 , cα5 , cα6 , cα7 , cα8 , cα9 , cα10 , cα11 , cα12 , cα13 , cα14 , cα15 , cα16)
(cα1 , cα2 , cα3 , cα4 , cα5 , cα6 , cα7 , cα8 , cα9 , cα10 , cα11 , cα12 , cα13 , cα14 , cα15 , cα16)

Example 2.3.3. Using parameters in the previous example, we apply the Frobenius automor-

phism on a vector (cα1 , cα2 , · · · , cα16) = (0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) for four times. Let

ρi denote the ρ function acts for i times, that is, ρi(x) = ρ(ρi−1(x)). In the example, we focus on

the �rst orbit of size 4 (cα3 , cα4 , cα5 , cα6).

(cα3 , cα4 , cα5 , cα6) = (1, 1, 0, 0)
ρ1(cα3 , cα4 , cα5 , cα6) = (1, 0, 0, 1)
ρ2(cα3 , cα4 , cα5 , cα6) = (0, 0, 1, 1)
ρ3(cα3 , cα4 , cα5 , cα6) = (0, 1, 1, 0)
ρ4(cα3 , cα4 , cα5 , cα6) = (1, 1, 0, 0)

By the de�nition of the Frobenius automorphism, there exist several vectors consist with fol-

lowing three properties. The set collecting these vectors is named t-tower decodeable vector in

[22].

De�nition 2.3.1. [22] t-tower decodeable vector z is a word of length n having the following

properties.

Larger weight: wt(z) > t.
Reducibility: There exist a linear combination b0, b1, . . . ∈ {0, 1} such that

wt(z′) ≤ t, where z′ =
∑

i bi · ρi(z).
Recoverability: z is recoverable from the reduced z′.

16 CHAPTER 2. MCELIECE PKC

Based on the de�nition of t-tower decodeable vector and its reducible property, the author pro-

vided the following modi�ed version of the MEPKC.

Variant 2.3.3:

Key Generation algorithm:
Generate four matrices G,S ,P,G′ and orbits set O
G k × n generator matrix of a binary Goppa code Γ(L, g) with correcting

ability t.
S k × k random binary invertible matrix.
P n × n random permutation matrix.
G′ G′ = S GP
O The orbits created by Frobenius automorphism rho
Secret key: S ,G, P, L
Public key: G′, t,O

Encryption algorithm:
To encrypt a 1 × k message m, one has to randomly select bt/2c orbits in O.
For each selected orbit, select three bits and mark them as error bits. Collect all the
error bits to form an t-tower decodeable vector E.
Ciphertext: c = m ·G′ ⊕ E

Decryption algorithm:
The key-owner �rst calculate two vectors
f1(c) = c + ρ(c) + ρ2(c) and f2(c) = c + ρ2(c) + ρ3(c), one of them will be decrypt
correctly. Suppose a temporary message m′ is obtained by decryption, Calculate
e = (m′ · · ·G′) ⊕ c, and obtain its corresponding enlarged vector E (It's possible since
the t-tower decodeable vector E is recoverable by de�nition). Eliminate the error bits
by c′ = c ⊕ E, then one can apply the information-set decoding to obtain the corres-
ponding message m.
Plaintext: m = c′k ·G′−1

k

2.3.3 Kobara and Imai's Variant

KOBARA and IMAI proposed a variant of the MEPKC in 2002 [18]. Under the random ora-

cle assumption, their variant is proved indistinguishable against the adaptive chosen-ciphertext

attacks (CCA2) and the adaptive chosen-plaintext attacks.

Before describing their variant, we give an introduction to the necessary notations.

2.3. VARIANTS FOR ENHANCING SECURITY 17

Hw(x) The hamming weight of a binary string x.
C(n, t) The number of combinations taking t out of n elements.
Prep(m) An invertable preprocessing procedure of m.
Hash(x) One way hash function maps arbitrary length binary string to a �xed

length binary string.
Conv(z′) Bijective function maps from

integer z′ ∈ ZC(n,t) to {e|e ∈ {0, 1}n,weight(e) = t}.
Gen(x) A pseudo random sequence generated by a cryptographically secure

pseudo random sequence generator with input seed x.
Msbi(x) The left i bits of x.
Const A public constant.
εMcEliece(m, e) The function that encrypts plaintext m with error vector e by native

MEPKC.
DMcEliece(c) The function that decrypts ciphertext c to obtain the plaintext m

and the error vector e hidden in c.

Their modi�ed version of the MEPKC is shown below.

Variant 2.3.4:
Encryption algorithm:

r ∈R ZLength(Hash(x))
m′ = Prep(m)
y1 = Gen(r) ⊕ (m′||Const)
y2 = r ⊕ Hash(y1)

(y5||y4||y3) = y1
z′ = y4 + (Hw(y3) mod 2)�2blog2nc mod C(n, t)
z = Conv(z′)
c = y2||y5||εMcEliece(y3, z)

Decryption algorithm:
(y2||y5) = MsbLen(c)−n(c)

z′, y3 = DMcEliece(Lsbn(c))
z = Conv−1(z′)

y4 = z − (Hw(y3 mod 2)�2blog2nc mod C(n, t)
If y4 ≤ 2blog2nc, reject c.

Otherwise
y1 = (y5||y4||y3)
r = y2 ⊕ Hash(y1)

(m′||Const′) = y1 ⊕Gen(r)
If Const′ = Const
return m = Prep−1(m′)

Otherwise reject c

The detailed proof of IND-CPA and IND-CCA2 security refer to [18].

18 CHAPTER 2. MCELIECE PKC

Chapter 3

Attacks to McEliece PKC

After the MEPKC was proposed, several attacks are also proposed to break the cryptosystem.

However, as we mentioned in the previous chapter, the variant proposed by Kobara et al. is a

provable public-key cryptosystem under random oracle model. When this variant is applied,

all the chosen-plaintext attacks and chosen-ciphertext attacks will not work anymore. Although

some of these attacks may not work on the latest variant of the MEPKC, they are still construc-

tive since they inspire the research about the decoding of general linear-codes. In this chapter,

we will review many known attacks to MEPKC.

3.1 Generalized Information-Set-Decoding Attack

This type of attacks (we call it the GISD for simplicity) try to correct the error bits in the

ciphertext; once they are successful, the codeword without error bits mask m ·G′ is obtained and

m can be simply recovered by information-set-decoding. The GISD problem can be formally

described as input a generator matrix G of a general linear-code with error correcting ability

t, and a received vector c with error-bits fewer than t, one must output the vector m such that

weight(mG′ ⊕ c) ≤ t (since G′ has error correcting ability t by de�nition, m must be unique).

This type of attacks were �rst introduced by McEliece [25] and several improvements of it were

proposed [19] [30]. In this section, we will make a review of three representative attacks of this

type. We begin with an introduction to the information-set-decoding.

19

20 CHAPTER 3. ATTACKS TO MCELIECE PKC

3.1.1 Information-set-decoding

Consider a general [n, k]-linear code with generator matrix G, given a received vector c without

any error bits, then we can recover the corresponding message m (that is, m · G = c) by the

following procedure.

Information-Set-Decoding Algorithm
Input: A k × n generator matrix G and a received vector c with length n.
Output: The vector m such that m ·G = c.

1. Select k columns of G, such that the selected columns are linearly-independent.
2. Collect the selected columns to form a new k × k matrix Gk.
3. Collect the corresponding k bits of c to form a new vector ck.
4. m = ck ·G−1

k .

Example 3.1.1. Given a [10, 5]-linear code with generator matrix:

G =



1 0 0 0 0 1 0 1 0 1
0 1 0 0 0 0 1 1 1 0
0 0 1 0 0 1 1 1 0 0
0 0 0 1 0 0 0 0 0 1
0 0 0 0 1 0 1 0 0 1



and a received vector c =
[

1 0 1 1 1 0 0 0 0 1
]
. We select 1 - 5 columns, the

selected columns are linear-independent clearly. Thus we have:

G−1
k = Gk =



1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1



The corresponding ck =
[

1 0 1 1 1
]
, by m = ck ·G−1

k , we have m =
[

1 0 1 1 1
]
.

3.1. GENERALIZED INFORMATION-SET-DECODING ATTACK 21

3.1.2 McEliece's Decoding Algorithm

This attack was evoked by McEliece himself in his original paper [25]. The basic idea of this

attack is to randomly select k columns in the public generator matrix G′ and hope that the

corresponding positions of ciphertext are error-free. Once the k error-free positions are selected

luckily, the adversary can apply the information-set-decoding to recover the plaintext m. The

following algorithm combines the idea of McEliece, Lee and Brickell. Lee et al proposed a

systematic method to check whether the guess is correct or not (whether the selected k positions

are error-free). They also proposed a generalized method which can recover the plaintext when

there are small amount of errors in the selected k positions.

McEliece's Decoding Algorithm with parameter j

Input: A k × n generator matrix G′ and a received vector c with length n.
Output: The vector m such that weight(m ·G′ ⊕ c) ≤ t.

1. Randomly select k columns of G′, such that the selected columns are
linearly-independent.

2. Collect the selected columns to form a new k × k matrix G′k.
3. Collect the corresponding k bits of c to form a new vector ck.
4. Calculate G′−1

k ·G′ and c ⊕ ck(G′−1
k ·G′).

5. Choose an unused k-bit error pattern ek with less or equal to j ones.
If (c ⊕ ckG′−1

k G′) ⊕ ek(G′−1
k G′) has weight t or less, then

stop and return (m = ck ⊕ ek) ·G−1
k .

6. If still exist unused k-bit error pattern, goto step 5.
Otherwise goto step 1.

We describe the expected running time of this algorithm by the following theorem.

Theorem 3.1.1. [19] Let W j denote the expected value of bitwise operations required by McEliece's

decoding algorithm with parameter j, then W j = T j(M(k, n) + N j × Vn,k,t, j), where

T j =
1

∑ j
i=0

(
t
i

)(
n−t
k−i

)
/
(

n
k

) ,

N j =

j∑

i=0

(
k
i

)
,

Vn,k,t, j = j/2 × (n − k)

22 CHAPTER 3. ATTACKS TO MCELIECE PKC

and M(k, n) represent the running time for applying the Gaussian elimination on a k × n matrix.

Proof. The T j is the expected iterations of step 1 - 6, and the N j is an upper bound of the

iterations of the inner-loop step 5 - 6. M(k, n) is an approximation of the running time of

step 4 and Vn,k,t, j is the number of bit-wise operations required by step 5. To check whether

(c⊕ ckG′−1
k G′)⊕ ek(G′−1

k G′) has weight t or less, we can calculate the last n− k bits of ek(G′−1
k G′)

and compare it with the last n − k bits of c ⊕ ck(G′−1
k G′) to see if the hamming-distance of them

is less than t − weight(ek). The average number of bit-wise operation required by calculating

last n− k bits of ek(G′−1
k G′) is j/2× (n− k) since ek have average weight j/2, this gives Vn,k,t, j =

j/2× (n− k) (the cost of the hamming-distance checking is relatively low when comparing with

the cost of vector addition, so it is ignored). �

3.1.3 Tilburg's Decoding Algorithm

Tilburg [30] proposed an improvement of decoding attack which reduces the running time of the

algorithm substantially. The improved algorithm reduced the cost of the validation step (step 5

in previous algorithm) and the cost of the matrix operations (step 4 in previous algorithm). The

main idea of its �rst improvement is to permute the selected columns to the front of the matrix,

so that the validation should only make on the last n − k bits. Their work is famous due to their

second improvement. The main idea of the second improvement is to select k columns with

only one different column between the previous selection. This selecting strategy speeds-up the

Gaussian elimination when calculating G−1
k in step 4. We believe that the idea comes from the

simplex algorithm for linear programming problem.

The key idea of their improvement can be described by the following theorem.

Theorem 3.1.2. [30] Given a generator matrix G′ and a received vector c = mG′ ⊕ e where

weight(e) ≤ t. Consider a randomly selected n × n permutation matrix P′ such that G′ can

be written as G′ = S ′ [I|A] P′−1 and cP′ can be written as cP′ = mS ′ [I|A] ⊕ eP′. Then

weight(FKB(eP′)) = 0 if and only if weight(FKB(cP′) [I|A]⊕cP′) ≤ t, where FKB(a1, a2, . . . , an) =

3.1. GENERALIZED INFORMATION-SET-DECODING ATTACK 23

(a1, a2, . . . , ak).

Proof.

We �rst prove that the left-hand-side of the statement implies the right-hand-side:

Since weight(FKB(eP′)) = 0, we have FKB(cP′)S ′−1 = m · · · (1). By de�nition of c, we

also know that weight(mG′P′ ⊕ cP′) = weight(eP′) ≤ t. Substitute m by equation (1), we have:

weight(FKB(cP′)S ′−1S ′ [I|A] ⊕ cP′) ≤ t

⇒ weight(FKB(cP′) [I|A] ⊕ cP′) ≤ t.

Then we show that the right-hand-side of the statement implies the left-hand-side to com-

plete the proof:

Since weight(FKB(cP′) [I|A] ⊕ cP′) ≤ t, we have weight(FKB(cP′)S ′−1S ′ [I|A] ⊕ cP′) ≤ t.

Thus:

weight(FKB(cP′)S ′−1G′P′ ⊕ cP′) ≤ t

⇒ FKB(cP′)S ′−1 = m

⇒ FKB(cP′) is error-free, weight(FKB(eP′)) = 0.

�

The improved algorithm is represented as follows.

24 CHAPTER 3. ATTACKS TO MCELIECE PKC

Tilburg's Decoding Algorithm
Input: A k × n generator matrix G′ and a received vector c with length n.
Output: The vector m such that weight(m ·G′ ⊕ c) ≤ t.

1. Initial z=1.
2. Randomly decompose G′ such that G′ = S z

[I|Az
] P−1

z , and calculate the corresponding
cz = cPz.

3. Check if it holds that weight(KFB(cz)
[I|Az

] ⊕ cz) ≤ t.
This can be done by only checking the last n − k bits. If it holds, goto step 7 for �nal
recovering stage.

4. Produce a random permutation Pz+1 that swaps one column, say i, from the selected ones
(the I part of the matrix [I|Az

]) and for one column, say j, from the unselected ones
(the Az part of the matrix [I|Az

]).
5. If column j has not an 1 on the i-th row, goto step 4. Otherwise goto step 6.
6. Let Pz+1 denote the permutation selected in previous step, decompose the matrix [I|Az

]
into S z+1

[I|Az+1
] Pz+1, and calculate the corresponding cz+1 = czPz+1.

Increase z by 1, goto step 3.
7. Now, the cz is error-free in the �rst k bits, and cz = cP1P2 . . . Pz. Thus we can know the

corresponding error-free bits in the original c, then the plaintext m can be obtained by a
information-set-decoding.

3.1.4 Improvements of Decoding Attack

We propose two improvements in this section. We begin with an introduction to the �rst im-

provement, which aims to decrease the time comsumption of the guess-veri�cation stage.

The structure of the McEliece's decoding algorithm can be described by two nested loops:

an outer-loop and an inner-loop. The outer-loop which repeats selecting different set of k

columns till the selection luckily has few error bits in the ciphertext. And the inner-loop re-

peats guessing then verifying the error vector hidden in the k columns selected by outer-loop,

till a guess is veri�ed to be correct or all possible k-vectors that have weight less than a threshold

are examined to be wrong guesses. In the analysis of McEliece's decoding algorithm with para-

meter j (see Theorem 3.1.1), we use T j to denote the expected iterations of the outer-loop and

use N j to denote the expected iterations of the inner-loop. Note that the veri�cation should be

applied in each iteration of the inner-loop and its cost is non-negligible, thus we use Vn,k,t, j to de-

note the bit-wise operations of it and take it into consideration in further discussion. According

3.1. GENERALIZED INFORMATION-SET-DECODING ATTACK 25

to the analysis from Theorem 3.1.1, the bit-wise operations required by McEliece's decoding

algorithm can be approximated by T j × N j × Vn,k,t, j. In the following sections, we propose an

improvement to signi�cantly reduce Vn,k,t, j and slightly increase T j, thus the total number of

bit-wise operations requirement is reduced. In this chapter, we only show how to apply the

improvement in the McEliece's decoding algorithm, but actually the idea of improvement can

be applied to all other decoding algorithms with the same nested loops structure.

Recall the McEliece's decoding algorithm:

McEliece's Decoding Algorithm with parameter j

Input: A k × n generator matrix G′ and a received vector c with length n.
Output: The vector m such that weight(m ·G′ ⊕ c) ≤ t.

1. Randomly select k columns of G′, such that the selected columns are
linearly-independent.

2. Collect the selected columns to form a new k × k matrix G′k.
3. Collect the corresponding k bits of c to form a new vector ck.
4. Calculate G′−1

k ·G′ and c ⊕ ck(G′−1
k ·G′).

5. Choose an unused k-bit error pattern ek with less or equal to j ones.
If (c ⊕ ckG′−1

k G′) ⊕ ek(G′−1
k G′) has weight t or less, then

stop and return (m = ck ⊕ ek) ·G−1
k .

6. If still exist unused k-bit error pattern, goto step 5.
Otherwise goto step 1.

The step 1-6 is the so-called outer-loop and the step 5-6 is the inner-loop. According to the

analysis given by Theorem 3.1.1, the bit-wise operations required by veri�cation in each itera-

tion of the inner-loop is approximated to Vn,k,t, j = j/2 × (n − k). Our improvement introduces

a probability method for veri�cation which makes the expected number of bit-wise operations

requirement be p(j/2 × (n − k)) + (1 − p)(j/2 × ε), where p is a small probability and ε is a

parameter of the algorithm.

Observe that when we make a bad selection in step 1 (that is, there exists more than j errors

in the selected columns), we still have to spend so much time in the inner-loop and �nally realize

that the selection in step 1 is bad. If we can realize it earlier that a bad selection has made in step

1, then a large amount of redundancy check can be skipped. The main idea of our improvement

26 CHAPTER 3. ATTACKS TO MCELIECE PKC

Modi�ed McEliece's Decoding Algorithm with parameter (j, ε)
Input: A k × n generator matrix G′ and a received vector c with length n.
Output: The vector m such that weight(m ·G′ ⊕ c) ≤ t.

1. Randomly select k columns of G′, such that the selected columns are
linearly-independent.

2. Collect the selected columns to form a new k × k matrix G′k.
3. Collect the corresponding k bits of c to form a new vector ck.
4. Calculate G′−1

k ·G′ and c ⊕ ck(G′−1
k ·G′).

5. Choose an unused k-bit error pattern ek with less or equal to j ones.
6. Randomly select ε columns in the last n − k columns of G′−1

k G′, let C
denote the indexes of the selected columns.

7. Calculate c ⊕ (ckG′−1
k G′) ⊕ ek(G′−1

k G′) bit-by-bit and ignore the
unselected columns to form a vector DC with length ε.

8. If DC is a zero vector, then re-calculate c ⊕ (ckG′−1
k G′) ⊕ ek(G′−1

k G′) on
the unselected columns to form a vector DC̄ with length n − k − ε.
Otherwise if still exist unused k-bit error pattern, goto step 5.
Otherwise goto step 1.

9. If weight(DC̄) ≤ t − weight(ek) then stop and returns m = (ck ⊕ ek)G′−1
k .

Otherwise if still exist unused k-bit error pattern, goto step 5.
Otherwise goto step 1.

Figure 3.1: Modi�ed McEliece's Decoding Algorithm with parameter (j, ε)

is instead of checking if the whole vector consists with weight(c ⊕ ckG′−1
k G′ ⊕ ekG′−1

k G′) ≤ t,

we only calculate the vector (c ⊕ ckG′−1
k G′ ⊕ ekG′−1

k G′) on some randomly selected positions to

form a shorter vector D, and apply the original check if and only if D is a zero vector. The key

point of this method is based on a conjecture [30]:

Conjecture 3.1.1. [30] When the selection in step 1 is bad, the weight of c⊕ckG′−1
k G′⊕ekG′−1

k G′

is not only larger than t but also has approximate weight density 0.5.

We apply the idea of the improvement in the McEliece's decoding algorithm and propose a

modi�ed version of it; see Figure 3.1. An analysis of the algorithm is given by the following

theorem.

Theorem 3.1.3. If the Conjecture 3.1.1 holds, then the expected number of bit-wise operations

required by the modi�ed algorithm is different from the original requirement by a factor:

3.1. GENERALIZED INFORMATION-SET-DECODING ATTACK 27



(n − k) ×
(n−k

2
ε

)
(

n−k
ε

) + ε × (1 −
(n−k

2
ε

)
(

n−k
ε

))

 /(n − k)

 /
1 −

ε∑

i=1

(
t
i

)(
n−k−t
ε−i

)
(

n−k
ε

)
 .

Proof. we discuss the effect caused by modi�cation.

speed-up factor: The modi�cation reduces the time consumption on checking the weight of

c ⊕ (ckG′−1
k G′) ⊕ ek(G′−1

k G′). The original requirement is j/2 × (n − k), when the modi�cation

is applied, there is a conditional probability
(n−k

2
ε

)
/
(

n−k
ε

)
of the event: the selected ε columns

results in a zero vector under the condition of bad selection in step 1. In these cases, original

j/2× (n− k) operations are needed, otherwise we need only j/2× ε operations. Compared with

the original requirement, the left-hand-side of the equation is obtained.

slow-down factor: Actually in the modi�ed algorithm, the expected number of outer-loop iter-

ations will increase slightly. The outer-loop of the original algorithm halts if and only if the k-

column-set with fewer than j errors in it is selected, it occurs with a probability ∑ j
i=0

(
t
i

)(
n−t
k−i

)
/
(

n
k

)
.

But in the modi�ed algorithm, the outer-loop halts if and only if the k-column-set with fewer

than j errors in it is selected, and we did not make an erroneous judgement in the �partial check-

ing� of step 6-8 when the actual error vector hidden in selected columns is examined. There

is an conditional probability upper-bound ∑ε
i=1

(t
i)(n−k−t

ε−i)
(n−k

ε) of the event: erroneous judgement- the

selected ε positions have one or more errors under the condition of good selection in step 1.

Thus we have a lower-bound 1 − ∑ε
i=1

(t
i)(n−k−t

ε−i)
(n−k

ε) of correct judgement, the expected number of

outer-loop iterations increase by a upper-bounded factor 1/
[
1 −∑ε

i=1
(t

i)(n−k−t
ε−i)

(n−k
ε)

]
. �

Example 3.1.2. When n = 1024, k = 524, t = 50 and using the parameter ε = 2. Let Corig

denote the expected number of bit-wise operations required by the original McEliece's decoding

algorithm. The modi�ed algorithm reduce the bit-wise operations requirement in inner-loop by

a factor of 0.2525, and increase the iterations of outer-loop by a factor of 1.2348. Thus the

overall bit-wise operation requirement is 0.311787 ×Corig.

Next, we give an introduction of the second improvement, which aims to eliminates the

28 CHAPTER 3. ATTACKS TO MCELIECE PKC

duplicate guesses of the nearly error-free locations.

Recall that in the Tilburg's decoding algorithm, a random column-swap operation (in the

step 4) is needed for each iteration of main-loop. Actually, randomly selecting two columns

to swap may cause duplicate situation and imply redundant iterations of loop. One can easily

build a hash-table to solve this problem but the size of the hash-table must be approximate to
(

n
k

)
bits. It is not practical in implementation. We recommend to swap the columns according

to a real-time generated Gray code for combinations, instead of selecting randomly. We de�ne

the Gray code for combinations as follows.

De�nition 3.1.1. [26] A (n, k)-Gray code for combinations is a sequence of all the
(

n
k

)
combi-

nations so that successive combinations differ by only one element.

Example 3.1.3. We show a (5, 3)-Gray code for combinations:

134 → 234 → 124 → 145 → 245 →
345 → 135 → 235 → 125 → 123

Follow Example 3.1.3, to apply the Gray code for combinations in the algorithm, we may

decompose G′ = S 1 [I|A1] P−1
1 such that P1 permutes columns 1, 3, 4 to columns 1, 2, 3 in the

�rst iteration of loop, then decompose G′ = S 2 [I|A2] P−1
2 such that P2 permutes columns 2, 3, 4

to columns 1, 2, 3 in the second iteration of loop and so on.

Clearly, if we follow the sequence of Gray code for combinations, we will traverse all possi-

ble combinations of
(

n
k

)
without missing one. Moreover, we swap one column each time (since

the successive combinations differ by only one element), thus the Tilburg's second improvement

idea is still able to apply here to speed up the Gaussian elimination of G′Pi.

Several algorithms to construct the Gray code for combinations were proposed; the most

classical one is the revolving door algorithm [26]. However, this algorithm requires O(n) time

complexity to generate the next combination. When applying in the decoding algorithm, an

algorithm with constant-time requirement for generating each combination such as [10] [9] is

more suitable.

3.2. FINDING LOW-WEIGHT-CODEWORD ATTACK 29

3.2 Finding Low-Weight-Codeword Attack

Another approach of the attack (we call it the FLWC for simplicity) is to �nd a codeword in a

general linear-code with a given (low) weight t. The FLWC problem can be formally described

as follows: input a generator matrix G of a general linear-code, and a integer t, one must output

a codeword v of G such that weight(v) ≤ t. Actually, the GISD problem with a generator matrix

G and a received vector c with error-bits fewer than the correcting ability t can be reduced to

the FLWC problem. For each input instance of the GISD problem (G, c), we can construct an

instance of the FLWC problem (G∗, t) as follows.

G∗ =

[
G
c

]

and t is the correcting ability of G. We claim the solution of this instance of the FLWC problem

is unique and it will be the error vector hidden in the received vector c.

Theorem 3.2.1. [22] If G is a generator matrix of a linear-code with error correcting ability t

and c is a received vector with error bits fewer than t, then the solution of instance (G∗, t) of

FLWC exists and is unique.

Proof. We prove the existence and uniqueness by the following discussion. First we show the

existence of the solution. Suppose c = mG⊕e for some m, then e is a solution of instance (G∗, t)

of FLWC since e = [m|1] G∗. Then we show the uniqueness of the solution. If e′ is a solution

of instance (G∗, t) of FLWC such that e′ , e, there are three possibilities:

Case 1: e′ = [m′|0] G∗, m′ , m

weight(m′G) ≤ t, but G has correcting ability t, all of its codewords should have weight be

larger than 2t, which is a contradiction.

Case 2: e′ = [m′|1] G∗, m′ , m

weight(c ⊕ m′G) ≤ t and it implies that weight(mG′ ⊕ m′G′) ≤ 2t holds. But G has correcting

30 CHAPTER 3. ATTACKS TO MCELIECE PKC

G′ =

[
B | Z | I
D | 0 | 0

]
.

Figure 3.2: The matrix after arrangement.

ability t, all the distances of its codewords should larger than 2t, it is a contradiction.

Case 3: e′ = [m|0] G∗

weight(mG) ≤ t, but G has correcting ability t, all of its codewords should have weight be larger

than 2t, which is a contradiction.

�

3.2.1 Leon's Algorithm

The algorithm proposed by Leon [20] is a probabilistic algorithm. It introduces two parameters

σ and p. The main idea of this algorithm is to randomly select k + σ columns from G, where

σ is a comparatively small value such as 2 or 3, and hope that the �solution vector� has low

weight on these selected positions. Each time we randomly select the k + σ columns, we apply

a permutation P so that the selected columns are gathered together on the right-hand-side of the

matrix (the solution of permuted instance can be transformed to the solution of the original one

by making a multiplication of P−1). Then we apply the Gaussian elimination (the solution is

not effected by the Gaussian-elimination) so that the resulting matrix G′ looks like the form in

Figure 3.2.

Where I is a e × e identity matrix, B is an (n − k − σ) × e matrix, Z is a (k + σ − e) × e

matrix and D is an (n − k − σ) × (k − e) matrix. After the rearrangement, an exhaustive search

on linear-combinations of row of Z|I is applied to �nd the combinations such that the resulting

sum-vector v consists with weight(v) ≤ p, the p is a threshold value in intuition. We show the

precise operations by the following algorithm.

3.2. FINDING LOW-WEIGHT-CODEWORD ATTACK 31

Leon's Algorithm with parameters σ and p

Input: A k × n generator matrix G and an integer t.
Output: The codeword c of G such that weight(c) ≤ t.

1. Randomly select k + σ columns, rearrange the matrix G to the form of Figure 3.2.
2. Search for the linear combinations of [Z||I] that lead to a k + σ vector v such that

weight(v) ≤ p. This can be achieved by considering the single matrix Z.
If a vector v consists with weight(v) ≤ p is found, goto step 3.

3. Calculate the corresponding linear combinations of B, if the resulting n − k − σ
vector b consists with weight(b) + weight(v) ≤ t then stop and returns [b||v] P−1.
Otherwise step 4.

4. Search for all combination of the rows of D, there will be 2k−e combinations.
For each combination, calculate the summation of the corresponding rows to form
a n − k − σ vector d, and check if d consists with weight(d ⊕ b) + weight(z) ≤ t.
If some d consists with the inequality, then stop and returns [b ⊕ d||v] P−1.
Otherwise step2.

We introduce an analysis of the Leon's algorithm [6] by following theorem.

Theorem 3.2.2. [20] The expected value of bitwise operations required per selection of the

k + σ columns by the Leon's algorithm is:

J(σ,p)(n, k) =

k∑

e=1
ρ(σ, k, e) ×


p∑

i=1
i
(
p
i

) (k + σ − e) + (n − k − σ) × 2k−e ×
p−i∑

j=0

(
k+σ−e

j

)

2k+σ−e





where

ρ(σ, k, e) =
2e(e−1)/2

2k+σk

e−1∏

i=0

(2k+σ−i − 1)(2k−i − 1)
(2i+1 − 1) .

And the expected value of the required column selections is:

Nσ,p(n, k) = 1/
p∑

i=0

(
n−t

k+σ−i

)(
t
i

)
(

n
k+σ

) ,

Thus the expected value of the overall bitwise operations required is Nσ,p(n, k) × J(σ,p)(n, k).

Proof. The probability of the event that the �solution vector� has fewer weight than p in the

selected k + σ columns is:
p∑

i=0

(
n−t

k+σ−i

)(
t
i

)
(

n
k+σ

)

32 CHAPTER 3. ATTACKS TO MCELIECE PKC

Thus the expected number of the column selection requirement is its inverse. According to [21],

the number of (k, k + σ) binary matrices with rank e is:

2e(e−1)/2
e−1∏

i=0

(2k+σ−i − 1)(2k−i − 1)
(2i+1 − 1) ,

so the probability of the event that the rearranged matrix has a speci�ed value of e is given as

ρ(σ, k, e). The average number of bit-wise additions and weight-checking on (k + σ − e)-bit

words is given by (k +σ− e)×∑p
i=1 i

(
e
i

)
, and for each checking, the probability of satisfying the

weight(v) ≤ p is ∑p−i
j=0

(k+σ−e
j)

2k+σ−e . In those cases, additional 2k−e linear combination of D should be

examined and it takes (n − k − σ)2k−e bit-wise operations. Summarizing the above discussion,

the formula of J(σ,p)(n, k) is given. �

3.2.2 Stern's Algorithm

Observing the Leon's algorithm, we can see that the time consumption of step 2 is quiet large,

the main purpose of the Stern's algorithm is to reduce the time consuming of step 2. Precisely

speaking, they proposed a faster method to search for partial-codewords (the k-pre�x of code-

words) which have hamming weights fewer than a given threshold. Two parameters p and l are

introduced in their algorithm.

Their algorithm is �rst designed to operate on the parity check matrix, actually the algorithm

can be slightly modi�ed to work on a generator matrix. We describe the algorithm of the parity

check matrix version as shown in Figure 3.3.

It is interesting that, in the Stern's algorithm, the �solution vector� is expected to have more

weight (precisely, weight = t − 2p) in the n − k columns selected in step 1. In other words, we

hope that the solution vector has less weight in the unselected k columns. This hope is the same

as Leon's idea. The observation gives us an intuition that these two algorithms are quiet similar

in large scale.

3.2. FINDING LOW-WEIGHT-CODEWORD ATTACK 33

Stern's Algorithm with parameters p and l

Input: A k × n − k parity check matrix H and an integer t.
Output: The codeword c of H such that weight(c) ≤ t.

1. Randomly select n − k columns of H, apply a permutation P on H so that the
selected columns are gathered together on the right-hand-side of the matrix
(the solution of permuted instance can be transformed to the solution of the
original one by making a multiplication of P−1). Then we apply the Gaussian
elimination (the solution is not effected by the Gaussian-elimination) so that
the resulting matrix H′P looks like the following form.

H′P =
[

Q | In−k
]
.

2. Randomly split the columns of matrix Q into two subsets, then apply another
permutation (all the permutation applied can be summarized to a overall
permutation P∗, and the solution of permuted instance still can be transformed
to the solution of the original one by making a multiplication of P∗−1) so that
the matrix HP∗ looks like the following form.

H′P∗ =
[

X | Y | In−k
]
.

3. Randomly select l rows of the matrix [X|Y] and apply another permutation
on rows (the permutation applied on rows does not effect the solution of the
instance) so that the resulting matrix H′′P∗ looks like the following form.

H′′P∗ =

[
Xl | Yl | Jn−kXk−l | Yk−l |

]
.

4. Search for all combinations of p columns of Xl, compute the corresponding
summation vector vCX for each combination CX , save cX into a hash table
with key vCX for further lookup.

5. Search for all combinations of p columns of Yl, compute the corresponding
summation vector vCY for each combination CY , look up the hash table built
in step 4 for the entry of key vCY .

6. Each time we have Hash(vCY) , φ in previous step, then summarize the
(k − l) × k matrix [Xk−l|Yk−l] on columns Hash(vCY) ∪CY to a (k − l) × 1
vector z.

7. If z consists with weight(z) ≤ t − 2p, then �nd the columns set CJ in Jn−k such
that the summation of HP∗ on columns Hash(vCY) ∪CY ∪CJ is
a zero vector, transform these columns into a vector m′ such that m′i = 1 if and
only if i ∈ {Hash(vCY) ∪CY ∪CJ}. Then stop and output m′P∗−1.

8. Otherwise (Hash(vCY) = φ for all CY), goto step 1.

Figure 3.3: Stern's Algorithm with parameters p and l

34 CHAPTER 3. ATTACKS TO MCELIECE PKC

3.2.3 Canteaut et al.'s Algorithm

A. Canteaut and F. Chabaud [6] proposed an improvement method for both Leon and Stern's

algorithm. The idea of their improvement is very similar with the Tilburg's second improvement

(see section 3.1.3). Observe step 1 of both Leon and Stern's algorithm, we can see that a

Gaussian elimination is needed for each selection (k + σ columns in Leon's algo. and n − k

columns in Stern's algo.). The Canteaut et al. proposed a strategy: to select k + σ (or n − k for

Stern's algo.) columns with only one different column between the previous selection. The new

column joining the selection is randomly selected from the unselected columns and the column

departs from the selection is randomly selected from previous selected columns. Furthermore,

they made a precise analysis on the expected value of iterations required by their improved

algorithm.

Till now, all the mentioned attacks requires an exponential expected time consumption. But

actually, the native MEPKC is proven vulnerable when partial information of the plaintext is

leaked even against the chosen-plaintext attack. Known attacks of this type are [17] [5]. This

kind of attacks substantially reduce the time consumption of the decoding attack with the help

of partial information. We will give an introduction to these attacks in the next section.

3.3 Message-Resend and Related-Message Attack

The message-resend and related-message attack was �rst proposed by T.A. Berson. When a

sender encrypts the same message m twice and two different error vectors are used, then several

error-free positions of both ciphertext are leaked with a high probability. The adversary may

recover the plaintext by general information-set decoding (see section 3.1) for few tries.

When an instance of MEPKC with public key G : k × n and t is used, consider a message m

which is encrypted twice as:

c1 = mG′ ⊕ e1

c2 = mG′ ⊕ e2.

3.3. MESSAGE-RESEND AND RELATED-MESSAGE ATTACK 35

The vector c1 ⊕ c2 is equal to e1 ⊕ e2. Let v = c1 ⊕ c2, the expected value of zeros in v is given

by:

Z =

t∑

i=0
(2t − 2i)

(
t
i

)(
n−t
t−i

)
(

n
t

) ,

since for any speci�ed i, v has weight 2t − 2i if and only if e1 and e2 have errors on exact i

positions, the probability of that event is
(

t
i

)(
n−t
t−i

)
/
(

n
t

)
, thus we have the equation above. For each

zero position i of v, the probability of e1(i) = 1 and e2(i) = 1 is (t/n)2, thus the expected value

of the �real error-free positions in both e1 and e2� in v is:

RZ = b(1 − (t
n)2)

t∑

i=0
(2t − 2i)

(
t
i

)(
n−t
t−i

)
(

n
t

) c.

If we randomly select k positions in zero positions of v, then the probability that all the se-

lected positions are error-free in both e1 and e2 is
(

Z−RZ
k

)
/
(

Z
k

)
, thus the expected iterations of

the k-position selection is
(

Z
k

)
/
(

Z−RZ
k

)
. The expected iterations are small in practical instances of

MEPKC, for example, when n = 1024, k = 524 and t = 50, then Z ≈ 930, RZ ≈ 3 and the

expected iterations is
(

930
524

)
/
(

930−3
524

)
≈ 12.

Moreover, the author provided an extension of the attack, that is, if two different messages

are sent and an adversary knows the bitwise XOR of these two messages, then both messages

can be recovered in few tries. Consider two messages m1 and m2 are encrypted by using two

different random vector (this occurs with a high probability 1 −
(

n
t

)−1
) and m1 ⊕ m2 is leaked

suddenly. Let the two ciphertext be c1 and c2:

c1 = m1G′ ⊕ e1

c2 = m2G′ ⊕ e2,

then the vector c1 ⊕ c2 is equal to m1G′ ⊕ m2G′ ⊕ e1 ⊕ e2. An adversary can eliminate the

m1G′ ⊕m2G′ term by XOR it with the known (m1 ⊕m2)G′, thus he can obtain the vector e1 ⊕ e2.

The same technique in the message-resend attack can be applied to �nd the positions which are

error-free in both e1 and e2.

36 CHAPTER 3. ATTACKS TO MCELIECE PKC

3.4 Known-Partial-Plaintext Attack

The known-partial-plaintext attack was proposed by Kobara et al. and it is a practical attack

in some interesting cryptosystem applications. For example, consider a command exchange

routine during the war, a message such like �Today's password is: Seattle�, the password

changes everyday but the pre�x string is constant. In this case, they formalize the message

as m = (m1||m2); m1 is already known and let l denote its length. In this viewpoint, the cipher-

text can be rewritten as:

c = (m1||m2) ·


G′l×n

G′(k−l)×n

 + e.

Thus we have:

c = m1G′l×n ⊕ m2G′(k−l)×n⊕

⇒ c′ = c ⊕ m1G′l×n = m2G′(k−l)×n ⊕ e.

The time consumption required for recovering m2 from c′ and G′(k−l)×n is much lower.

3.5 Chosen-Ciphertext Attack and Malleability Attack

In 2000, Sun [29] proposed an adaptive chosen-ciphertext attack and a malleability attack to

break the MEPKC. In the adaptive chosen-ciphertext attack, the key to success is that when a

ciphertext c is given, we may construct another ciphertext c′ corresponding to the same plaintext

with a high probability. The construction of c′ is to randomly select two bits in the ciphertext

and �ip them. The �ipped ciphertext c′ has the same error bit amount with c if and only if

one of the �ipped bits is an error bit in c and the orther is not, and this event happens with

probability
(

t−1
1

)(
n−t
1

)
/
(

n
2

)
= 2(t − 1)(n − t)/n(n − 1). Thus the expected iterations of selection

is n(n − 1)/2(t − 1)(n − t) ≈ n/2t, a quantity having polynomial relation with n, and it is an

acceptable amount in practical instance of the MEPKC.

3.6. REACTION ATTACK 37

A malleability attack can be roughly described as when a ciphertext c corresponding to

plaintext m is given (note that m is not given), if an adversary is able to construct another

ciphertext c′ which corresponds to another plaintext m′ with some relation to m, then we say

that the malleability attack is workable.

The malleability attack proposed by the author is able to construct another ciphertext c′

corresponding to m̄. The attack scheme is to XOR all the rows of G′ with c to form c′. Actually

this attack also leads us to construct ciphertext corresponding to any m′ = m ⊕ v, where v is an

adversary-controllable vector.

3.6 Reaction Attack

In 1999, Hall, Goldberg, and Schneier [13] proposed the reaction attack against several public

key cryptosystems based on decoding problems and lattice problems, including the McEliece,

Hwang-Rao, Ajtai-Dwork, and Goldreich-Goldwasser-Halevi cryptosystems. In their attack

against the MEPKC, an adversary sends the key-owner a ciphertext which may contain one

or more additional error bits. In common implementations, the garbled ciphertext will cause

failure in decryption or an illegal plaintext checksum. The adversary then watches the reaction

of the key-owner in order to determine whether or not the ciphertext is decrypted correctly.

This send-and-watch behavior can be modeled as querying the reaction oracle. By repeatedly

querying the reaction oracle, the adversary can obtain the plaintext.

Suppose a (n, k)-linear code with error correcting ability t is used in the MEPKC, their attack

takes at most n + 2t queries under a reasonable reaction oracle model.

3.6.1 The Reaction Oracle Model

Compared with the chosen-ciphertext attack, the reaction attack uses a weaker assumption.

They assume that the key-owner does not return the decrypted plaintext for decryption queries

from the adversary, but he leaks the information about the legality of the ciphertext as a result

38 CHAPTER 3. ATTACKS TO MCELIECE PKC

of his reaction. Since this assumption is comparatively weak, their attack is considered more

feasible than traditional CCA. Their model also depends on the following assumption.

Assumption 3.6.1. [13] If a (n, k) error-correcting code is used which can correct t or fewer

errors, then a received vector with error-weight > t will cause either failure in correcting stage

or an illegal message checksum.

The assumption is reasonable since there are several decoders for Reed-Solomon and Goppa

codes which meet this criterion. In their reaction oracle model, input a vector c, there are two

types of oracle outputs.

Type 1: Return an error message due to the failure in decryption or illegal plain-
text checksum.

Type 2: Return nothing or an acknowledgement message to re�ect the successful
decryption and legal plaintext checksum.

We can abstract the reaction oracle as follows.

Reaction Oracle in (S ,G, P, t)-MEPKC:
Input: A vector c.
Output: Compare with the codeword m ·G′, one of the reactions is presented.
Type 1: If c corresponds to a received vector with error-weight > t.
Type 2: If c corresponds to a received vector with error-weight ≤ t.

3.6.2 The Attack Algorithm

Under the reaction oracle model, they gave two algorithms to recover the corresponding plain-

text m of a given ciphertext c.

Algorithm A
1. Let i = 1
2. Flip bits 1 through i of c to form c′.
3. Request the reaction oracle by c′.
4. If the output of the oracle is Type 1, halt the procedure and continue onto the

next algorithm. Otherwise, increment i and goto step 2.

Algorithm B
1. Let i = 1
2. Flip bit i of c′ to form c′′.
3. Request the reaction oracle by c′′.
4. If the output of the oracle is Type 2, then bit i is in error. Record i, add 1 to i

and goto step 2 if i ≤ n. Otherwise halt.

3.6. REACTION ATTACK 39

The attack requires at most 2t + 1 queries in Algorithm A, and at most n − 1 queries in

Algorithm B, so the total number of queries is upper-bounded by n + 2t.

3.6.3 An Improved Attack Algorithm

We note that an adversary does not have to make the whole 1 × n ciphertext c to be error-free.

He only has to make sure some k-bits {a1, a2, . . . , ak} ⊂ {1, 2, . . . , n} are error-free, where the

corresponding columns of G′ are linearly independent. Thus we design the following attack

algorithm.

Algorithm 3.6.1: Improved reaction attack algorithm
Input: Ciphertext c.
Output: Plaintext m corresponds to c.

1. Select k columns index by {a1, a2, . . . , ak} ⊂ {1, 2, . . . , n} in G′, such
that the k columns of G′ are linearly independent.

2. Combine the k columns of G′ to form a k × k matrix Gk.
3. Combine the k bits {ca1 , ca2 , . . . , cak } of c to form a vector ck.
4. Run the original Algorithm A and B to eliminate the errors in ck.
5. m = c′′ ·G′−1

k

that the algorithm requires at most k + 2t queries to recover the plaintext.

40 CHAPTER 3. ATTACKS TO MCELIECE PKC

Chapter 4

Trichotomy Reaction Attack

In the reaction attack presented by Hall et al, it takes n + 2t queries to recover the plaintext in

the worst case. In this chapter, we propose a new trichotomy reaction oracle model. Under the

new model, we establish connection between the reaction attack of the MEPKC and a special

version of the counterfeit coins problem, which we name the Comparative Counterfeit Coins

Problem (CCCP). Combine the connection and a greedy approach of the CCCP, we can design

a new algorithm to recover the plaintext from ciphertext in at most bk/2c + t + 3 queries when

4t ≤ k.

This chapter is organized as follows: In Section 1, we propose the trichotomy reaction oracle

model. In Section 2, we introduce the formal de�nition of the counterfeit coins problem and

some modi�ed versions of it. In Section 3, we design a greedy algorithm to solve the CCCP. In

Section 4, we show the connection between the attack of MEPKC and the CCCP. In Section 5,

we design a new attack algorithm by applying the greedy algorithm proposed in Section 3.

4.1 Trichotomy Reaction Oracle Model

In the original reaction oracle model, when a ciphertext with less than t error bits is received,

it will be treated as a valid ciphertext to decrypt, and represent the Type 2 reaction. But in the

MEPKC, randomly selecting an error vector with constant weight t is suggested to avoid weak

41

42 CHAPTER 4. TRICHOTOMY REACTION ATTACK

encryptions. So it is reasonable to assume that a common implementation of the MEPKC will

check whether the ciphertext is corresponding to a received vector with error weight t. This

check can be simply done by watching if the decrypted plaintext m consists with weight((m ·
G′) ⊕ c) = t. To match its purpose, we call it the error-weight check.

Clearly, the check should be done with a correct plaintext m to make sense. Thus one has

to apply the check after the decryption and the checksum veri�cation procedures. When the

error-weight check fails, it indicates an improper encryption. But since the ciphertext c passed

the decryption and the decrypted plaintext m passed the checksum veri�cation, the failure in the

error-weight check does not hurt the correctness of m. Thus it is reasonable to assume that the

error-weight fault is considered as a non-critical error and a Warning Message is returned in this

case. Under the assumption, we propose the trichotomy reaction oracle model. In this reaction

oracle, when we input a vector c, there are three types of oracle outputs:

Type 1: Return an error message due to failure in decryption or illegal plain-
text checksum.

Type 2: Return nothing or an acknowledgement message to re�ect the successful
decryption, legal plaintext checksum and proper error-weight.

Type 3: Return a warning message due to the failure in the error-weight check.

Our model also requires the assumption proposed in Assumption 3.6.1. We can abstract the

trichotomy reaction oracle as follows.

Trichotomy Reaction Oracle in (S ,G, P, t)-MEPKC:
Input: A vector c.
Output: Compare with the codeword m ·G′, one of the reactions is presented.
Type 1: If c corresponds to a receive vector with error-weight > t.
Type 2: If c corresponds to a receive vector with error-weight = t.
Type 3: If c corresponds to a receive vector with error-weight < t.

We present an instance of MEPKC implementation that matches the trichotomy reaction oracle

assumption.

4.1. TRICHOTOMY REACTION ORACLE MODEL 43

Key Generation algorithm:
Generate four matrices G,S ,P,G′, a checksum function Checksum(m) and its
corresponding verifying function Vari f y(m′,C).
G k × n generator matrix of a binary Goppa code with correcting

ability t.
S k × k random binary invertible matrix.
P n × n random permutation matrix.
G′ G′ = S GP
Checksum(m) a checksum function, it outputs an �xed-length characteristic binary

string C for each input string with low collision probability.
Veri f y(m′,C) the corresponding verifying function which gives a acknowledgement

output if and only if C = Checksum(m′).
Secret key: S ,G, P
Public key: G′, t,Checksum,Veri f y

Encryption algorithm:
To encrypt a 1 × (k − |Checksum(m)|) message m, one has to randomly select a 1 × n
error vector e with Hamming weight t. Then output the corresponding ciphertext c:
Ciphertext: c = (m||Checksum(m)) ·G′ ⊕ e

Decryption algorithm:
To decrypt a ciphertext c, one has to go through the following steps.
1. Calculate c′ = c · P−1, thus c′ = m′S G ⊕ eP−1

2. Apply the decoding algorithm for Goppa code to eliminate the error vector.
If the decoding procedure failed (it will happen only when a more-than-t error bits
are present), output Error.
Otherwise we have the vector m′S .

3. Calculate m′′ = m′ · S −1.
4. split m′′ into (m||C) = m′, where |C| is the length of the checksum and
|m| = k − |C|.

5. If Veri f y(m,C) , acknowledgement, output Error. Otherwise step 6.
6. If |(m′′ ·G′) ⊕ c| , t, output Warning. Otherwise step 7.
7. Output message m and an Acknowledgement.

The behavior of the decryption algorithm in this implementation can be described by a codeword-

ball diagram, see Figure 4.1.

Clearly, the behavior of the decryption algorithm consists with the assumption of the trichotomy

reaction oracle model.

44 CHAPTER 4. TRICHOTOMY REACTION ATTACK

''' Gm
''
Gm

'
mG

''''
Gm

temG <⊕ || '
temG =⊕ || '

tGemGm

teemG

≤⊕⊕∋∃

>⊕

|''m' |''

|| ,

'

'

' , |'m' |

|| ,

'

'

mtGemG

teemG

∀>⊕⊕
>⊕

Figure 4.1: The decryption algorithm behavior that consists with trichotomy reaction oracle
model.

4.2. COUNTERFEIT COINS PROBLEM 45

4.2 Counterfeit Coins Problem

Counterfeit Coins Problem (CCP) is an old puzzle which has been widely discussed. It is

de�ned as follows. Given a set of coins, there may exist some counterfeit ones whose weights

are different from the normal ones. We want to identify all the counterfeit coins (if any) with as

few weighings as possible by using an equal arms balance. There are several variations of this

problem. A great part of them are different on the weighting oracle model. In this chapter, we

will introduce two of them: Additive model and Comparative model.

4.2.1 Additive Counterfeit Coins Problem

Very similar to CCP, the Additive Counterfeit Coins Problem (ACCP) with parameters (n, d)

is de�ned as follows. Suppose there are n coins with at most d counterfeit coins in them.

We want to identify all the counterfeit coins (if any) with as few queries as possible by an

Additive Weighting Oracle (AWO) which can tell �How many counterfeit coins in the sample.�

We formally de�ne the AWO in (n, d)-ACCP as follows.

Additive Weighting Oracle in (n, d)-ACCP:
Input: A set of sample coin indexes S , S ⊆ {1, . . . , n}.
Output: Number of counterfeit coins in the sample S .

In [7] and [15], the ACCP was solved by constructing a combinatorial object named k-

selective family. Their approach requires O(d × log2n) queries. We use MACCP(n, d)A to denote

the worst-case number of queries required by algorithm A to solve (n, d)-ACCP, and we de�ne

MACCP(n, d) = MinA{MACCP(n, d)A}.

Corollary 4.2.1. [8] MACCP(n, d) ≥ plogd+1
∑k

i=0
(

n
i

)
q

Proof. Straight from the information theory's lower bound. �

46 CHAPTER 4. TRICHOTOMY REACTION ATTACK

4.2.2 Comparative Counterfeit Coins Problem (CCCP)

The Comparative Counterfeit Coins Problem (CCCP) with parameters (n, d) is almost equal to

the (n, d)-ACCP, but differ only on the weighting oracle model. In CCCP, the problem is de�ned

with the Comparative Weighting Oracle (CWO). Let N0 denote the number of normal coins in

the sample and N1 denote the number of counterfeit ones. The CWO tells �whether N0 < N1,

N0 > N1 or N0 = N1 is true.� We formally de�ne the CWO in the (n, d)-CCCP as follows.

Comparative Weighting Oracle in (n, d)-CCCP:
Input: A set of sample coin indexes S , S ⊆ {1, . . . , n}.
Output: N0 < N1, N0 > N1 or N0 = N1 in the sample S .

As far as we know, no solution for this problem is documented. In Section 7, we will in-

troduce a greedy approach for the case of 4d ≤ n. Before that, we make a serial of inferences

about the CCCP at the end of this section. We use MCCCP(n, d)A to denote the worst-case num-

ber of weighings required by algorithm A to solve (n, d)-CCCP, and we de�ne MCCCP(n, d) =

MinA{MCCCP(n, d)A}.

Lemma 4.2.1. MCCCP(n, d) ≥ MACCP(n, d)

Proof. Assume we have an algorithm A which solves the (n, d)-CCCP. In order to solve (n, d)-

ACCP, we run the algorithm A and respond to each query of CWO from A by some queries of

the AWO that we have, then algorithm A will indicate the counterfeit coin set by assumption.

That is, A acts like solving a (n, d)-CCCP as it is designed for, but actually it solves (n, d)-

ACCP for us. The counterfeit coin set given by A is the answer to the (n, d)-ACCP that we

face. Furthermore, suppose A requires at most ε queries of CWO and if we can respond to each

query from A with a single query of the AWO, then this strategy for (n, d)-ACCP will also take

at most ε queries. By the above discussion, we can obtain a strategy for (n, d)-ACCP from any

algorithm A for (n, d)-CCCP with the same queries requirement. As we may solve (n, d)-ACCP

4.3. A GREEDY APPROACH OF CCCP 47

by other designs which require less queries, this implies the statement of the lemma. We state

the CWO simulation algorithm with single query of AWO as follows to complete the proof.

Algorithm 4.2.1: (n, d)-Comparative Weighting Oracle simulation algorithm
Input: (n, d) and a set of sample coin indexes S . Let |S | = l, S ⊆ {1, . . . , n}.
Output: N0 < N1, N0 > N1 or N0 = N1 in the sample S .

1. Query the additive weighting oracle with S , let r denote the output.
2. If 2r > l, output N0 < N1. Otherwise step 3.
3. If 2r < l, output N0 > N1. Otherwise step 4.
4. If 2r = l, output N0 = N1.

�

Corollary 4.2.2. MCCCP(n, d) ≤ n

Proof. There exists a trivial algorithm to �nd all the counterfeit coins by exact n queries. We

simply query the Comparative Weighting Oracle with each single coin. The oracle returns either

�N0 > N1� or �N0 < N1�, thus we know whether the input coin is counterfeit or not. �

In the next section, we will propose a greedy approach of CCCP, which solves all (n, d)-

CCCP with at most bn/2c + d + 3 queries when 4d ≤ n.

4.3 A Greedy approach of CCCP

In this section, we focus on solving (n, d)-CCCP. The main idea of the greedy approach is to split

n coins into small groups each with 4 coins, and solve each group with an optimal nonadaptive

algorithm for 4 coins.

De�nition 4.3.1. [8] A coin-weighting algorithm A is nonadaptive if all query samples must be

speci�ed without knowing the outcome of other queries.

Example 4.3.1. We give an example of nonadaptive algorithm to solve (3,3)-CCCP.

48 CHAPTER 4. TRICHOTOMY REACTION ATTACK

0
N

000

1
N
>
 0
N
 1
N
<

0

N

1
N
=

111

{2}

{1,3}

{3}
101

100
 001

010

110
 011

Figure 4.2: A nonadaptive algorithm solving (3,3)-CCCP

Algorithm 4.3.1: A nonadaptive algorithm solving (3,3)-CCCP
Input: Permission to query the Comparative Weighting Oracle.
Output: The set of counterfeit coin indexes B ⊆ {1, 2, 3}.

1. Query the Comparative Weighting Oracle with {2}, let r1 denote the output.
2. Query the Comparative Weighting Oracle with {1, 3}, let r2 denote the output.
3. If r1=�N0 > N1� and r2=�N0 > N1�, return {}.
4. If r1=�N0 > N1� and r2=�N0 < N1�, return {1, 3}.
5. If r1=�N0 < N1� and r2=�N0 > N1�, return {2}.
6. If r1=�N0 < N1� and r2=�N0 < N1�, return {1, 2, 3}.
7. Query the Comparative Weighting Oracle with {3}, let m3 denote the output.
8. If r1=�N0 > N1� and r3=�N0 > N1�, return {1}.
9. If r1=�N0 > N1� and r3=�N0 < N1�, return {3}.
10. If r1=�N0 < N1� and r3=�N0 > N1�, return {1, 2}.
11. If r1=�N0 < N1� and r3=�N0 < N1�, return {2, 3}.

It is much simpler to represent the algorithm by a decision tree diagram, see Figure 4.2. In

the diagram, situation of coins are represented by binary strings, where bit 1 indicates a coun-

terfeit coin, bit 0 indicates a normal coin. We will use this notation in the following discussion.

4.3.1 Optimal nonadaptive algorithm for 4 coins

We �nd optimal nonadaptive algorithms for 4 coins by an exhaustive search. We �rst introduce

the measurement we use.

De�nition 4.3.2. Suppose An is a nonadaptive algorithm to identify the situation of n coins. We

4.3. A GREEDY APPROACH OF CCCP 49

use QAn(x) to denote the number of queries required by An when the actual situation of coins is

x, where x is a binary string with length n.

Example 4.3.2. Let A3 be the algorithm described in Figure 4.2, then QA3(000) corresponds to

the length of path from root to leaf 000. Thus QA3(000) = 2, QA3(010) = 2, QA3(100) = 3,

QA3(011) = 3.

De�nition 4.3.3. Let RAn be a 1 × (n + 1) vector, RAn = (R0
An
,R1

An
, . . . ,Rn

An
), where Ri

An
=

∑
|x|=i QAn(x) for 0 ≤ i ≤ n.

Example 4.3.3. Let A3 be the algorithm described in Figure 4.2, then R0
A3

= QA3(000) = 2,

R1
A3

= QA3(001) + QA3(010) + QA3(100) = 8, R2
A3

= QA3(011) + QA3(110) + QA3(101) = 8,

R3
A3

= QA3(111) = 2. Thus RA3 = (2, 8, 8, 2).

De�nition 4.3.4. Let An and Bn be two nonadaptive algorithms to identify the situation of n

coins. We say RAn ≤ RBn if and only if Ri
An
≤ Ri

Bn
for all 0 ≤ i ≤ n.

Let OPT4 denote the algorithm represented by �gure 4.3, where the input of OPT4 is a coin

indexes set S = {S 1, S 2, S 3, S 4} and the output is the set of counterfeit coin indexes B ⊆ S . We

have the following theorem.

Theorem 4.3.1. OPT4 is an optimal nonadaptive algorithm to identify the situation of 4 coins

in sense of ROPT4 ≤ RA4 for any nonadaptive algorithm A4.

Proof. We establish this theorem by making an exhaustive search of all candidate nonadaptive

algorithms which identify the situation of 4 coins. A candidate nonadaptive algorithm corre-

sponds to a sequence of subsets, where the subsets belong to the power-set of {1,2,3,4}. Note

that any subsets-sequence longer than 4 needs not to be considered since it is even worse than

the trivial method. Thus there are
(

16
4

)
× 4! candidates. We calculate the RA4 vector for each can-

didate algorithm A4. The algorithm represented by �gure 4.3 is one of the optimal algorithms.

It has ROPT4 = (2, 12, 18, 12, 2) �

50 CHAPTER 4. TRICHOTOMY REACTION ATTACK

0
N

1
N
>
 0
N

1
N
<

0
N
 1
N
=

{}

}
{
 1
S
 }
,
{
 2
1
 S
S

}
,
,
,
{
 4
3
2
1
 S
S
S
S

}
{
 2
S

}
,
{
 3
2
 S
S

}
,
,
{
 4
3
2
 S
S
S
}
{
 3
S
 }
,
{
 4
3
 S
S
}
{
 4
S

}
,
{
 4
1
 S
S

}
,
{
 4
2
 S
S
 }
,
{
 3
1
 S
S

}
,
,
{
 4
2
1
 S
S
S
 }
,
,
{
 4
3
1
 S
S
S
 }
,
,
{
 3
2
1
 S
S
S

}
,
{
 3
1
 S
S

}
,
{
 4
2
 S
S

}
,
{
 2
1
 S
S

}
{
 1
S

Figure 4.3: OPT4, An optimal nonadaptive algorithm for 4 coins

By the same technique, we obtain optimal nonadaptive algorithms for 1, 2 and 3 coins. We

use OPT1, OPT2 and OPT3 to denote them. They are:

Algorithm 4.3.2: OPT1

Input: Coin indexes set S , let S = {S 1}.
Output: The set of counterfeit coin indexes B ⊆ S .

1. Query the comparative weighting oracle with {S 1}, let r1 denote the output.
2. If r1=�N0 > N1�, return {}.
3. If r1=�N0 < N1�, return {S 1}.

Algorithm 4.3.3: OPT2

Input: Coin indexes set S , let S = {S 1, S 2}.
Output: The set of counterfeit coin indexes B ⊆ S .

1. Query the comparative weighting oracle with {S 1, S 2}, let r1 denote the output.
2. If r1=�N0 > N1�, return {}.
3. If r1=�N0 < N1�, return {S 1, S 2}.
4. Query the comparative weighting oracle with {S 1}, let r2 denote the output.
5. If r2=�N0 > N1�, return {S 2}.
6. If r2=�N0 < N1�, return {S 1}.

4.3. A GREEDY APPROACH OF CCCP 51

0
N
 1
N
>
 0
N
 1
N
<

0
N
 1
N
=

}
,
{
 2
1
 S
S

}
{
 1
S

}
,
{
 3
1
 S
S

{}

}
{
 1
S

}
{
 2
S
}
{
 3
S
 }
,
{
 2
1
 S
S

}
,
{
 3
2
 S
S

}
,
{
 3
1
 S
S
 }
,
,
{
 3
2
1
 S
S
S

Figure 4.4: Decision tree diagram of OPT3.

Algorithm 4.3.4: OPT3

Input: Coin indexes set S , let S = {S 1, S 2, S 3}.
Output: The set of counterfeit coin indexes B ⊆ S .

1. Query the comparative weighting oracle with {S 1, S 2}, let r1 denote the output.
2. Query the comparative weighting oracle with {S 1, S 3}, let r2 denote the output.
3. If r1=�N0 > N1� and r2=�N0 > N1�, return {}.
4. If r1=�N0 > N1� and r2=�N0 = N1�, return {S 3}.
5. If r1=�N0 = N1� and r2=�N0 > N1�, return {S 2}.
6. If r1=�N0 = N1� and r2=�N0 < N1�, return {S 1, S 3}.
7. If r1=�N0 < N1� and r2=�N0 = N1�, return {S 1, S 2}.
8. If r1=�N0 < N1� and r2=�N0 < N1�, return {S 1, S 2, S 3}.
9. Query the comparative weighting oracle with {S 1}, let r3 denote the output.
10. If r3=�N0 > N1�, return {S 2, S 3}.
11. If r3=�N0 < N1�, return {S 1}.

We represent OPT3 by a decision tree diagram, see Figure 4.4.

4.3.2 A greedy algorithm for (n, d)-CCCP

Based on the previous discussion, we develop the following algorithm to solve (n, d)-CCCP.

52 CHAPTER 4. TRICHOTOMY REACTION ATTACK

Algorithm 4.3.5: Greedy algorithm for (n, d)-CCCP
Input: (n, d) and the permission to query the comparative weighting oracle.
Output: The set of counterfeit coin indexes B ⊆ {1, 2, . . . , n}.

1. Let i = 1.
2. If i + 3 > n then step 5.
3. Call OPT4 to identify the situation of the 4-coins group (i, i + 1, i + 2, i + 3).
4. i = i + 4, goto step 2.
5. If i = n, call OPT1 to identify the situation of the coin (i).
6. If i = n − 1, call OPT2 to identify the situation of the coins (i, i + 1).
7. If i = n − 2, call OPT3 to identify the situation of the coins (i, i + 1, i + 2).

We analyze this algorithm with the following theorem.

Theorem 4.3.2. When 4d ≤ n, the algorithm requires at most bn/2c + d + 3 queries.

Proof. We discuss this bound by four cases.

Case n mod 4 = 0: The worst-cases happen on minimizing the all zero 4-coins
groups. For example, in (12,2)-CCCP, the coins situation
0000 0001 0001 is a worst-case instance which totally requires
8 queries, and 0000 0011 0000 isn't. Since 4d ≤ n, we have at
least (n − 4d)/4 all zero groups, each of them requires 2 queries.
Each of the rest groups requires at most 3 queries, so the total
queries no more than 3d + 2(n − 4d)/4 = n/2 + d.

Case n mod 4 = 1: By case 1, total queries no more than (n − 1)/2 + d + 1.
Case n mod 4 = 2: By case 1, total queries no more than (n − 2)/2 + d + 2.
Case n mod 4 = 3: By case 1, total queries no more than (n − 3)/2 + d + 3.
Combining the four cases, we have an upper-bound bn/2c + d + 3 on query numbers.

�

Corollary 4.3.1. MCCCP(n, d) ≤ bn/2c + d + 3 when 4d ≤ n.

4.4 Attack under Trichotomy Reaction Oracle Model

Under the trichotomy reaction oracle model combining with the idea proposed in section 3.6.3,

an adversary who wants to recover the plaintext m from ciphertext c, is equivalent to facing

a combinatorial problem; we call it the Reaction Attack Problem (RAP). The problem with

4.4. ATTACK UNDER TRICHOTOMY REACTION ORACLE MODEL 53

parameters (c,C, t) can be stated as follows. Given a ciphertext c and a coordinate set C =

{C1,C2, . . .} ⊆ {1, . . . , |c|}. In the coordinates C of the ciphertext c, there are at most t coordinates

effected by errors. We want to identify all the effected coordinates (if any) in C with as few

queries as possible by using the trichotomy reaction oracle (TRO) proposed in section 4.1.

We use MRAP(c,C, t)A to denote the worst-case number of queries required by algorithm A

to solve (c,C, t)-RAP. De�ne MRAP(c,C, t) = MinA{MRAP(c,C, t)A}, two main theorems in this

chapter are present.

Theorem 4.4.1. MRAP(c,C, t) ≤ MCCCP(|C|, t)

Proof. We use a similar proving technique as in Lemma 4.2.1. View the coordinates in C as |C|
coins. The coordinates effected by errors correspond to the counterfeit coins, and the unaffected

coordinates correspond to the normal coins. Assume we have an algorithm A which solves

(|C|, t)-CCCP. In order to solve (c,C, t)-RAP, we run algorithm A and respond to each query

of CWO from A by some queries of the TRO that we have, then algorithm A will indicate the

counterfeit coin set by assumption. The counterfeit coin set given by A is the answer to the

(c,C, t)-RAP after translating it to the corresponding coordinate set. Furthermore, suppose A

requires at most ε queries of CWO and if we can respond each query from A with a single query

of the TRO, then this strategy for (c,C, t)-RAP will also take at most ε queries. The success

of CWO simulation by TRO largely depends on a trick: Let T be a coordinate set. If we �ip

c on all coordinates in T , and send it to the TRO, the Type1 Reaction indicates there are fewer

effected coordinates than unaffected ones in T before the �ip, the Type2 Reaction indicates

equal effected coordinates and unaffected ones, and the Type3 Reaction indicates more effected

coordinates than unaffected ones. We state the CWO simulation algorithm with single query of

TRO as follows to complete the proof.

54 CHAPTER 4. TRICHOTOMY REACTION ATTACK

Algorithm 4.4.1: (|C|, t)-Comparative Weighting Oracle simulation algorithm
Input: (c,C, t) and a set of sample coin indexes S = {S 1, S 2, . . .} ⊆ {1, . . . , |C|}.
Output: N0 < N1, N0 > N1 or N0 = N1 in the sample S .

1. Flip all bits on coordinates {CS 1 ,CS 2 , . . . ,CS |S |} of ciphertext c to form c′.
2. Query the trichotomy reaction oracle with c′, let r denote the output reaction.
3. If r = Type 1 reaction, output N0 > N1. Otherwise step 4.
4. If r = Type 2 reaction, output N0 = N1. Otherwise step 5.
5. If r = Type 3 reaction, output N0 < N1.

�

By the proof of Theorem 4.4.1, we obtain the most important theorem in this chapter.

Theorem 4.4.2. If we have an algorithm solve (|C|, t)-CCCP with at most ε queries, then we

can design an algorithm to solve (c,C, t)-RAP with at most ε queries.

Proof. We state the design of the algorithm for (c,C, t)-RAP to complete the proof. Let A

denote the algorithm solving (|C|, t)-CCCP.

Algorithm 4.4.2: An algorithm for (c,C, t)-RAP
Input: Ciphertext c, coordinate set C and effected coordinates upper-bound t.
Output: The error-effected coordinate set B ⊆ C.

1. Run Algorithm A.
When the algorithm queries the CWO with sample set S , simulate the response
by Algorithm 4.4.1 with parameters (c,C, t, S).

2. Let B′ = {B′1, B′2, . . .} denote the output.
Translate index set B′ to coordinate set B = {CB′1 ,CB′2 , . . .}.

�

Corollary 4.4.1. MRAP(c, S , t) ≤ |S |

Proof. Combine Theorem 4.4.1 and Corollary 4.2.2, the corollary is obtained. �

Corollary 4.4.2. MRAP(c,C, t) ≤ b|C|/2c + t + 3 when 4t ≤ |C|.

Proof. By Theorem 4.4.1 and Theorem 4.3.2, the corollary is obtained. �

4.5. TRICHOTOMY REACTION ATTACK ALGORITHM 55

4.5 Trichotomy Reaction Attack Algorithm

By Algorithm 4.6.1 and Algorithm 4.7.5 and the idea of Algorithm 4.3.1, we have designed a

new reaction attack algorithm.

Algorithm 4.5.1: New Reaction Attack Algorithm
Input: Ciphertext c, public-key (G′, t) in the MEPKC.
Output: Plaintext m corresponds to c.

1. Select k linearly independent columns in G′, denote the indexes of these columns
by a set C.

2. Combine the k columns of G′ to form a k × k matrix Gk.
3. Run Algorithm 4.3.5 with parameters (k, t).

When the algorithm queries the CWO with sample set S , simulate the response
by Algorithm 4.4.1 with parameters (c,C, t, S).

4. Let B denote the output, �ip c on coordinates {CB1 ,CB2 , . . . ,CB|B|}.
5. Combine the k coordinates of c which selected in step1 to form a 1 × k vector c′.
6. m = c′ ·G′−1

k

In practical MEPKC instances, 4t ≤ k is hold. For example, the original parameters sug-

gested by McEliece [25] where n = 1024, t = 50 and k ≥ 524 consist with this inequality.

Moreover, to maximize the expected work factor of the attack proposed by McEliece himself,

Adams and Meijer [1] suggested parameters n = 1024, t = 37 and k = 654. This suggestion

also consists with 4t ≤ k. When 4t ≤ k holds, by Corollary 4.4.2, Algorithm 4.5.1 requires at

most bk/2c + t + 3 queries.

By connecting the reaction attack and the counterfeit coins puzzle, this chapter gives a new

direction to improve the attack. That is, if someone is good at playing the puzzle, his playing

strategy will induce a better reaction attack algorithm against the MEPKC.

56 CHAPTER 4. TRICHOTOMY REACTION ATTACK

Chapter 5

Conclusion

In this thesis, two improvements of the general-information-decoding algorithm are proposed

(see Section 3.1.4). One improvement decreases the time consumption of the guess-veri�cation

stage, and the other improvement eliminates the duplicate guesses of the nearly error-free loca-

tions.

We also introduce a new connection between the trichotomy reaction attack and the com-

parative counterfeit coins problem (see Chapter 4). With this connection, a high-performance

playing strategy of the CCCP induce a high-performance attack algorithm to break the improper

implementation of MEPKC. This work extend the directions to increase the feasibility of attacks

under the trichotomy reaction oracle model.

After the connection is established, we propose a greedy approach to solve the (n, d)-CCCP.

The worst-case queries requirement of it is proven to be bn/2c + d + 3 when 4d ≤ n. With this

algorithm, a trichotomy reaction attack algorithm with worst-case queries requirement bk/2c +

t + 3 is induced. We show an arrangement of the queries requirement of three attacks: [29],

[13], and the trichotomy reaction attack in this thesis in the following table.

57

58 CHAPTER 5. CONCLUSION

Chosen-Cipher Attack Reaction Attack Trichotomy Reaction Attack

Oracle Model decryption oracle reaction oracle trichotomy reaction oracle

of Queries n(n−1)
2(t−1)(n−t)

(1) n + 2t (2) b k
2c + t + 3 (3)

(1) : average case.
(2) : worst case.
(3) : worst case, when 4t ≤ k.

Table 5.1: An arrangement of queries requirement

Bibliography

[1] C. M. Adams and H. Meijer. Security-related comments regarding McEliece's public-key

cryptosystem. IEEE Transactions on Information Theory, 35(2):454�455, 1989.

[2] M. Ajtai and C. Dwork. A public-key cryptosystem with worst-case/average-case equiva-

lence. In STOC '97: Proceedings of the twenty-ninth annual ACM symposium on Theory

of computing, pages 284�293, 1997.

[3] E. R. Berlekamp. Goppa codes. IEEE Transactions on Information Theory, 19:590�592,

1973.

[4] E.R. Berlekamp, R.J. McEliece, and H.C.A. van Tilborg. On the inherent intractability of

certain coding problems. IEEE Transactions on Information Theory, 24:384�386, 1978.

[5] T. A. Berson. Failure of the McEliece public-key cryptosystem under message-resend and

related-message attack. In CRYPTO, pages 213�220, 1997.

[6] A. Canteaut and N. Sendrier. Cryptoanalysis of the original McEliece cryptosystem. In

ASIACRYPT, pages 187�199, 1998.

[7] A. E. F. Clementi, A. Monti, and R. Silvestri. Selective families, superimposed codes, and

broadcasting on unknown radio networks. In SODA, pages 709�718, 2001.

[8] D. Z. Du and F. K. Hwang. Combinatorial Group Testing And Its Applications 2nd Edition.

2000.

59

60 BIBLIOGRAPHY

[9] G. Ehrlich. Algoruithm 466. four combinatorial algorithms. Commum. ACM, pages 691�

691, 1973.

[10] G. Ehrlich. Loopless algorithms for generating permutations, combinations, and other

combinatorial con�gurations. J. ACM, 20(3):500�513, 1973.

[11] O. Goldreich, S. Goldwasser, and S. Halevi. Eliminating decryption errors in the ajtai-

dwork cryptosystem. In CRYPTO '97: Proceedings of the 17th Annual International

Cryptology Conference on Advances in Cryptology, pages 105�111, 1997.

[12] V. D. Goppa. A new class of linear correcting codes. Probl. Pered. Info., 6(3):24�30,

1970.

[13] C. Hall, I. Goldberg, and B. Schneier. Reaction attacks against several public-key cryp-

tosystems. In the 2nd International Conference on Information and Communications Se-

curity (ICICS'99), LNCS 1726, pages 2�12, 1999.

[14] T. Hwang and T. R. N. Rao. Secret error-correcting codes (secc). In CRYPTO, pages

540�563, 1988.

[15] P. Indyk. Explicit constructions of selectors and related combinatorial structures, with

applications. In SODA, pages 697�704, 2002.

[16] R. M. Karp. On the computational complexity of combinatorial problems. Networks.,

pages 45�68, 1975.

[17] K. Kobara and H. Imai. Countermesures against all the known attacks to the McEliece

PKC. In International Symposium on Information Theory and Its Applications., pages

661�664, 2000.

[18] K. Kobara and H. Imai. Semantically secure McEliece public-key cryptosystems-

conversions for McEliece PKC. In Public Key Cryptography, pages 19�35, 2001.

BIBLIOGRAPHY 61

[19] P. J. Lee and E. F. Brickell. An observation on the security of McEliece's public-key

cryptosystem. In EUROCRYPT, pages 275�280, 1988.

[20] J. S. Leon. A probabilistic algorithm for computing minimum weights of large error-

correcting codes. IEEE Transactions on Information Theory, 34(5):1354�, 1988.

[21] Rudolf Lidl and Harald Niederreiter. Finite �elds, volume 20 of Encyclopedia of Mathe-

matics and its Applications. Cambridge University Press, second edition, 1997.

[22] P. Loidreau. Strengthening McEliece cryptosystem. In ASIACRYPT, pages 585�598, 2000.

[23] P. Loidreau. Codes derived from binary Goppa codes. Probl. Inf. Transm., 37(2):91�99,

2001.

[24] F. J. MacWilliams and N. J. A. Sloane. The theory of error-correcting codes. I and II.

North-Holland Publishing Co., 1977.

[25] R.J. McEliece. A public-key cryptosystem based on algebraic coding theory. DSN

Progress Report, pages 114�116, 1978.

[26] C. Savage. A survey of combinatorial gray codes. SIAM Rev., 39(4):605�629, 1997.

[27] H. M. Sun. Improving the security of the McEliece public-key cryptosystem. In ASI-

ACRYPT, pages 200�213, 1998.

[28] H. M. Sun. Enhancing the security of the McEliece public-key cryptosystem. J. Inf. Sci.

Eng., 16(6):799�812, 2000.

[29] H. M. Sun. Further cryptanalysis of the McEliece public-key cryptosystem. IEEE Com-

munications Letters., 4(1):18�19, 2000.

[30] J. van Tilburg. On the McEliece public-key cryptosystem. In CRYPTO, pages 119�131,

1988.

