
國 立 交 通 大 學

資訊學院

資訊科學與工程研究所

博 士 論 文

「富含訊息多媒體」 – 一種普及溝通

之新工具

Message-rich Multimedia – A New Tool for

Pervasive Communication

研 究 生: 李雅琳

指 導 教 授: 蔡 文 祥 博士

中華民國 一百零二 年 十一 月

「富含訊息多媒體」 – 一種普及溝通

之新工具

Message-rich Multimedia – A New Tool for

Pervasive Communication

研 究 生：李 雅 琳 Student: Ya-Lin Lee

指 導 教 授：蔡 文 祥 博士 Advisor: Dr. Wen-Hsiang Tsai

國 立 交 通 大 學 資 訊 學 院

資 訊 科 學 與 工 程 研 究 所

博 士 論 文

A Dissertation Submitted to

Institute of Computer Science and Engineering

College of Computer Science

National Chiao Tung University

in Partial Fulfillment of the Requirements

for the Degree of Doctor of Philosophy

in Computer Science and Engineering

November 2013

Hsinchu, Taiwan, 300

Republic of China

中華民國 一百零二 年 十一 月

i

「富含訊息多媒體」 – 一種普及溝通之新工具

研究生：李雅琳 指導教授： 蔡文祥博士

國立交通大學資訊學院

資訊科學與工程研究所

摘 要

隨著資訊科技的進步，越來越多的裝置被設計出來跟周遭的環境互動，以

做各種普及溝通之應用。普及溝通是指人們可以和生活周遭的物體於任何地點與

時間做資訊交換；而存在於生活周遭的許多物體可用來容納資訊，達到普及溝通

的目的。本論文定義「富含訊息多媒體」，並探討以這種多媒體做普及溝通的方

法。

此外，資訊隱藏可將訊息嵌入多媒體中，因此資訊隱藏為達到普及溝通的

其一重要技術。然而，目前大部分的數位裝置，如智慧型手機與平板，並不能感

知周遭環境的內容，意即他們不能瞭解周遭環境所含有的資訊，因此需要嶄新之

資訊隱藏技術，以應用這些裝置和多種不同的富含訊息多媒體做溝通，達到普及

溝通之目的。本論文提出了五種富含訊息的多媒體，包含：大張影像、加密影像、

文字形式之協作文件，以及特別設計之兩種影像的硬刻版本，並提出對應於此五

種富含訊息多媒體的新資訊隱藏方法。

首先，本論文提出一種可將一秘密影像隱藏於任一同樣大小之目標影像之

中的資訊隱藏方法。本方法利用色彩轉換技術，建立一「可視秘密碎片馬賽克影

像」，該影像看起來類似使用者挑選的目標影像，可將秘密影像隱藏起來成為一

馬賽克影像，此種馬賽克影像不僅可有傳輸秘密影像之功能，更解決了傳統資訊

隱藏方法無法於影像中嵌入大量資訊的問題。接著，針對加密影像，本論文利用

兩次影像加密及空間相關性之比對技術來隱藏資訊，對每一區塊畫素的幾個

LSBs 做加密達到嵌入一位元資訊的作用。此方法解決了先前已發表兩個技術會

遭遇到的平滑影像問題。

除了影像以外，本論文亦提出一可於協作平台隱藏資訊的新方法。此方法

能根據秘密訊息產生擬造的修訂歷史，並將秘密訊息隱藏於模擬過程之中。能達

ii

此作用，主要是利用多人協作的幾個特性來隱藏資訊，包含：每個修訂版本的作

者、被更改文字序列的數量、被更改文字序列的內涵、取代被更改文字序列的文

字序列。此外，還利用一下載的 XML格式之英文版維基百科來建置模擬多人協

作之資料庫。此一所提方法提供了一種利用協作平台進行秘密通訊與安全保存秘

密訊息之應用。

最後，本研究另外提出了可從事「自動識別與資料抓取」之兩種資訊隱藏

方法，讓普及溝通實現於特別設計之兩種影像的硬刻版本上。此兩種影像之第一

種為富含訊息之字元影像，第二種為富含訊息之編碼影像，這些影像可列印於紙

上或顯示於螢幕或電視上。詳言之，富含訊息之字元影像其建立方式是先將字元

訊息切碎，再產生跟目標影像一樣大的字元影像，接著利用一區塊亮度調變方法

來改變字元影像每塊碎片的亮度值，最後將調變之位元影像注入於目標影像之

中。而富含訊息之編碼影像其建立方式是先將一訊息轉換為一由二元圖樣區塊所

組成的圖樣影像，並同樣透過區塊亮度調變方法，改變每塊圖樣區塊的亮度值，

最後將調變之圖樣影像注入於目標影像之中。這兩種影像擁有類似條碼及 QR碼

的功能，且其外觀看起來類似一任一選擇的目標影像，故可達到普及溝通的效果。

以上所提出的方法皆為創新之作，深入的理論分析及實驗結果顯示這些方

法皆具有可行性及實用性。

iii

Message-rich Multimedia – A New Tool for

Pervasive Communication

Student: Ya-Lin Lee Advisor: Dr. Wen-Hsiang Tsai

Institute of Computer Science and Engineering

College of Computer Science

National Chiao Tung University

Abstract

With the advance of information technologies, more and more devices are

designed to interact with environments for various pervasive communication

applications; thereby people can exchange information with the identities existing in

the environment everywhere and anytime. Many kinds of identities exist in the

environment can be utilized to accommodate information for the purpose of pervasive

communication. In this study, identities called message-rich multimedia are defined

and investigated for pervasive computing.

Data hiding can be employed to embed message information into multimedia

existing in various application environments, creating message-rich multimedia as the

result; therefore, data hiding is regarded as one of the key techniques to achieve

pervasive communication. In addition, most existing digital devices like smart phones

and tablets are “unaware” of the environment context, i.e., they cannot “understand”

the environmental surrounds even if they can “see” them by image taking with the

built-in cameras. Therefore, numerous possibilities for achieving pervasive computing

through uses of these devices by data hiding techniques via various message-rich

multimedia are worth investigation.

In this dissertation study, five types of message-rich multimedia are proposed,

including: 1) image with large data volumes; 2) encrypted image; 3) text-typed

collaborative writing work; and 4) hard copies of two types of specially-designed

images; and five new data hiding techniques creating respectively these types of

message-rich multimedia are designed.

iv

Firstly, a new large-volume data hiding method for hiding a secret image into

any target image of the same size is proposed. The method creates automatically from

an arbitrarily-selected target image a so-called secret-fragment-visible mosaic image

as a disguise of the given secret image. Based on color transformation, the method not

only creates mosaic images useful for secure image communication, but also provides

a new way to solve the difficulty of hiding secret images with huge data volumes into

target images. Next, via encrypted images, a new data hiding method based on the

techniques of double image encryption and spatial correlation comparison is proposed

as well, solving a problem encountered by two previously-proposed methods when

dealing with flat cover images. Specifically, the proposed method encrypts the LSBs

of each block pixel in a given encrypted image to embed a message bit.

In addition to dealing with images, a new data hiding method via

collaboratively-written articles with camouflaged revision history records for use on

collaborative writing platforms is proposed. Characteristics of article revisions are

identified subtlely and used to embed secret messages, including the author of each

revision, the number of corrected word sequences, the content of the corrected word

sequences, and the word sequences replacing the corrected ones. An English

Wikipedia XML dump is utilized to construct a database for forging the revisions by

data hiding techniques. The proposed method is useful for covert communication or

secure keeping of secret messages via collaborative writing platforms.

Finally, two other data hiding techniques for automatic identification and data

capture applications are proposed to enable pervasive communication via hard copies

of two types of specially-created images, where the first type is message-rich

character image and the second message-rich code image. These image copies may be

printed versions on papers or displayed versions on monitors or TVs. Specifically, a

digital message-rich character image is created from an arbitrarily-selected target

image for use as a carrier of a given message by fragmenting the shapes of the

composing characters of the message and injecting the resulting character fragments

randomly into the target image by a block luminance modulation scheme. And a

message-rich code image is created by converting a given message into a pattern

image composed of binary pattern blocks and injecting the resulting pattern image

into the target image by a block luminance modulation scheme. With functions similar

to those of barcodes or QR codes, the created two types of message-rich images look

similar to the target image, achieving the effect of pervasive communication.

v

The feasibility and effectiveness of all the proposed methods are demonstrated

by theoretical analyses and good experimental results.

vi

Acknowledgements

The author is in hearty appreciation of the continuous guidance, discussions, and

support from her advisor, Dr. Wen-Hsiang Tsai, not only in the development of this

dissertation study, but also in every aspect of her personal growth. The author would

also like to acknowledge the very helpful comments and suggestions from the

members of the oral defense committee as well as those from the reviewers for parts

of this dissertation that were submitted for journal publication.

Appreciation is also given to the colleagues of the Computer Vision Laboratory

in the Institute of Computer Science and Engineering at National Chiao Tung

University for their suggestions and helps during her dissertation study. The author

would like to acknowledge as well the financial support received from the National

Science Council during the course of this dissertation study.

Finally, the author also extends her profound thanks to her dear family and boy

friend for their lasting love, care, and encouragement. This dissertation is dedicated to

them.

vii

Table of Contents

摘 要 ... i

Abstract ... iii

Acknowledgements ... vi

Table of Contents ... vii

List of Figures ... x

List of Tables .. xvii

Chapter 1 Introduction .. 1

1.1 Background and Motivation ... 1

1.2 Issues in Study of Message-rich Multimedia ... 2

1.3 Survey of Related Works ... 3

1.3.1 Review of techniques for data hiding via images ... 3

1.3.2 Review of techniques for data hiding via image barcodes 4

1.3.3 Review of techniques for data hiding via text documents 5

1.3.4 Review of techniques for barcode reading ... 6

1.4 Overview of Proposed Techniques and Ideas .. 6

1.4.1 Data hiding by nearly-reversible color transformation 6

1.4.2 Data hiding by techniques of image encryption and spatial correlation

comparison ... 7

1.4.3 Data hiding via revision history records on collaborative writing platforms 8

1.4.4 Data hiding via message-rich character images.. 8

1.4.5 Data hiding via message-rich code images ... 9

1.5 Dissertation Organization ... 11

Chapter 2 A New Data Hiding Technique via Secret-fragment-visible Mosaic

Images by Nearly-reversible Color Transformation 12

2.1 Introduction .. 12

2.2 Idea of Proposed Method ... 14

2.3 Problems and Proposed Solutions for Mosaic Image Creation 15

2.4 Algorithms of Proposed Method .. 21

2.5 Experimental Results ... 25

2.6 Security Considerations ... 30

viii

2.7 Summary .. 33

Chapter 3 A New Data Hiding Technique via Encrypted Images by Image

Encryptions and Spatial Correlation Comparisons .. 34

3.1 Introduction .. 34

3.2 Review of Existing Methods .. 35

3.3 Proposed Method ... 39

3.3.1 Message embedding ... 39

3.3.2 Message extraction and image recovery ... 39

3.4 Experimental Results ... 42

3.5 Summary .. 46

Chapter 4 A New Data Hiding Technique via Revision History Records on

Collaborative Writing Platforms ... 47

4.1 Introduction .. 47

4.2 Basic Idea of Proposed Method ... 49

4.3 Data Hiding via Revision History .. 52

4.3.1 Collaborative writing database construction .. 52

4.3.2 Secret message embedding ... 54

4.3.3 Secret message extraction ... 67

4.4 Experimental Results ... 69

4.5 Security Consideration ... 79

4.5.1 Camouflage .. 79

4.5.2 Randomness .. 80

4.5.3 Possible extensions for the proposed method using natural language processing

methods .. 82

4.6 Summary .. 82

Chapter 5 A New Data Hiding Technique via Message-rich Character Image for

Automatic Identification and Data Capture Applications 84

5.1 Introduction .. 84

5.2 Idea of Proposed Method ... 86

5.3 Generation of Message-rich Character Image .. 87

5.3.1 Message image creation ... 87

5.3.2 Block luminance modulation .. 87

5.3.3 Algorithm for message-rich character image creation 92

5.4 Message Extraction .. 93

ix

5.4.1 Message-rich character image localization and inverse perspective transform 93

5.4.2 Block number identification and block segmentation 94

5.4.3 Binarization and optical character recognition ... 95

5.4.4 Message extraction algorithm ... 96

5.5 Experimental Results ... 97

5.6 Summary .. 100

Chapter 6 A New Data Hiding Technique via Message-rich code Image for

Automatic Identification and Data Capture Applications 102

6.1 Introduction .. 102

6.2 Idea of Proposed Method ... 103

6.3 Generation of Message-rich Code Image ... 104

6.3.1 Pattern image creation .. 104

6.3.2 Block luminance modulation .. 107

6.3.3 Algorithm for message-rich code image creation ... 108

6.4 Message Extraction .. 110

6.4.1 Localization of message-rich code image and inverse perspective transform 110

6.4.2 Block number identification and block segmentation 110

6.4.3 Binarization and recognition of pattern blocks ... 111

6.4.4 Message extraction algorithm ... 114

6.5 Experimental Results ... 116

6.6 Summary .. 124

Chapter 7 Conclusions and Suggestions for Future Studies 126

7.1 Conclusions .. 126

7.2 Suggestions for Future Studies... 129

References ... 131

Vitae .. 138

List of Publications of Ya-Lin Lee .. 139

x

List of Figures

Figure 1.1. A result yielded by proposed method. (a) Secret image. (b) Target image.

(c) Secret-fragment-visible mosaic image created from (a) and (b). 7

Figure 1.2. Example of created message-rich character image. (a) Target image. (b)

Created message-rich character image. .. 9

Figure 1.3. Example of created message-rich code image. (a) Target image. (b)

Created message-rich code image. ... 10

Figure 2.1. Illustration of creation of secret-fragment-visible mosaic image proposed

in [39]. .. 13

Figure 2.2. Flow diagram of the proposed method. ... 15

Figure 2.3. Illustration of fitting tile images into target blocks. 17

Figure 2.4. Illustration of effect of rotating tile images before fitting them into target

blocks. (a) Secret image. (b) Target image. (c) Mosaic image created from (a)

and (b) without block rotations (with RMSE = 23.261). (d) Mosaic image

created from (a) and (b) with block rotations (with RMSE = 20.870). 18

Figure 2.5. An experimental result of mosaic image creation. (a) Secret image. (b)

Target image. (c) Mosaic image created with tile image size 88. (d)

Recovered secret image using a correct key with RMSE = 0.948 with respect

to secret image (a). (e) Recovered secret image using a wrong key. (f)-(i)

Mosaic images created with different tile image sizes 1616, 2424, 3232,

and 4040. .. 26

Figure 2.6. Comparison of results of Lai and Tsai [39] and proposed method. (a)

Secret image. (b) Target image. (c) Mosaic image created from (a) and (b) by

[39] with RMSE = 47.651. (d) Mosaic image created from (a) and (b) by

proposed method with RMSE = 33.935. .. 27

Figure 2.7. Two other experimental results of mosaic image creation. (a) and (d)

Secret images. (b) and (e) Target images. (c) and (f) Mosaic images created

from (a) and (b), and (d) and (e), respectively, with tile size 88. (g) and (h)

Zoom-out images of red square regions of (c) and (f), respectively. 28

Figure 2.8. Created mosaic images with the same secret image. (a) Secret image. (b)

Mosaic image created from (a) and Figure 2.7(b) with RMSE = 26.067. (c)

Mosaic image created from (a) and Figure 2.7(e) with RMSE = 33.102. 29

xi

Figure 2.9. Created mosaic images with the same secret image shown in Fig. 5(a) and

small-sized target images. (a) Created image for target image shown in Fig.

5(b) with size 768×1024. (b) Created image for target image shown in Fig. 5(b)

but with size reduced to (1/5)×(1/5). (c) Created image for target image shown

in Fig. 5(b) but with size reduced to (1/10)×(1/10). .. 30

Figure 2.10. Plots of trends of various parameters versus different tile image sizes

(88, 1616, 3232) with input secret images shown previously and coming

from a large dataset. (a) RMSE values of created mosaic images with respect

to target images. (b) Numbers of required bits embedded for recovering secret

images. (c) RMSE values of recovered secret images with respect to original

ones. (d) MSSIM values of created mosaic images with respect to target

images. ... 31

Figure 2.11. Correct permutations of tile images in the mosaic image without

recovering the original color characteristics. (a) The correct permutation of tile

images of Figure 1.1(c). (b) The correct permutation of tile images of Figure

2.7(c). ... 33

Figure 3.1. Recovery results showing problems of [55] and [56] with block size 88,

incorrectly-recovered blocks marked as white, and error rate denoted by err. (a)

Input flat X-ray image. (b) Result with err = 50.81% yielded by [55]. (c)

Result with err = 44.53% yielded by [56]. (d) Result with err = 0% yielded by

proposed method. (e) Input original image of (a). (f) Result with err = 16.53%

yielded by [55]. (g) Result with err = 14.99% yielded by [56]. (h) Result with

err = 0% yielded by proposed method. .. 38

Figure 3.2. Illustration of block contents for computing |Hm,n,0'  Hx,y,1'| for 44 blocks,

where currently-processed adjacent block of Bm,n′ is Bm+1,n′. 40

Figure 3.3. Recovery results showing effects of using both recovered and unrecovered

blocks for measuring smoothness of 88 blocks, with incorrectly-recovered

blocks marked as white, and error rate denoted by err. (a) Result with err =

2.66% yielded by [56]. (b) Result with err = 0.46% yielded by proposed

method without using side-match. (c) Result with err = 0.27% yielded by

proposed method using only recovered blocks in side-match scheme. (d)

Result with err = 0.22% yielded by proposed method using both recovered

and unrecovered blocks in side-match scheme. ... 41

xii

Figure 3.4. Four test images of size 512512. ... 42

Figure 3.5. Comparisons of bit-extraction error rates yielded by proposed method with

those yielded by [55] and [56] versus different block sizes. (a) Error rates with

cover image Figure 3.4(a). (b) Error rates with cover image Fig. Figure 3.4(b).

(c) Error rates with cover image Figure 3.4(c). (d) Error rates with cover image

Figure 3.4(d). ... 43

Figure 3.6. Comparisons of execution time in message embedding required by

proposed method with that required by [55] and [56] versus different block

sizes. ... 44

Figure 3.7. Recovery results showing effects of using different numbers NL of LSBs

for 88 blocks with incorrectly-recovered blocks marked as white and error

rate denoted by r. (a) Cover image. (b) Decrypted image with message

embedded. (c) Result with r = 0.90% yielded by proposed method for NL = 3.

(d) Result with r = 0.07% yielded by proposed method for NL = 4. (e) Result

with r = 12.87% yielded by [55] for NL = 3. (f) Result with r = 29.27% yielded

by [55] for NL = 4. (g) Result with r = 10.21% yielded by [56] for NL = 3. (h)

Result with r = 27.76% yielded by [56] for NL = 4. ... 45

Figure 4.1. Basic idea of proposed method that generates a revision history of a

stego-document as a camouflage for data hiding. .. 48

Figure 4.2. A screenshot of the revision history of an article about computer vision on

Wikipedia. .. 49

Figure 4.3. A screenshot of two consecutive revisions of an article about computer

vision on Wikipedia. .. 51

Figure 4.4. Flow diagram of the proposed method. ... 51

Figure 4.5. Illustration of used terms and notations. .. 52

Figure 4.6. An example of found correction pairs between Di and Di–1 53

Figure 4.7. Illustration of encoding authors of revisions for data hiding. 55

Figure 4.8. Illustration of the dependency problem. (a) Revision Di1 and candidate set

Qr where the dependent word sequences are surrounded by red squares. (b) Set

I that corresponds to the set Qr for solving the dependency problem. 57

Figure 4.9. Illustration of the selection problem. (a) Huffman codes for the word

sequences and the message bits that are encountered in the selection problem.

xiii

(b) Dividing of the word sequences into groups to solve the selection problem.

 .. 59

Figure 4.10. Illustration of the consecutiveness problem. (a) An example for

illustration of the consecutiveness problem. (b) Choosing splitting points

randomly to solve the consecutiveness problem. ... 61

Figure 4.11. The number of entries of chosen sets with the size from 2 to 40. 71

Figure 4.12. An example of generated stego-documents on constructed Wiki site with

input secret message “Art is long, life is short.” (a) Cover document. (b)

Revision history (c) Stego-document. (d) Previous revision of revision of (e)

with words in red being those corrected to be new words in revision of (e) in

red. (e) Newest revision of created stego-document. (f) Correct secret message

extracted with the right key “1234.” (g) Wrong extracted secret message with

a wrong key “123.” .. 73

Figure 4.13. The embedding capacities. (a) Embedding capacities of documents with

chosen sets of different sizes. (b) Embedding capacities of documents with

different number of revisions. .. 75

Figure 4.14. Comparison of embedding capacities yielded by Liu and Tsai [64] and

proposed method using different numbers of revisions. 76

Figure 4.15. An example to show the interoperability of the proposed method which

can be applied on Chinese articles. .. 77

Figure 5.1. Examples of commonly-used barcodes. (a) Code 39. (b) PDF 417. (c) QR

code. (d) Data matrix code. .. 85

Figure 5.2. Illustration of proposed method. .. 86

Figure 5.3. Message-rich character image generation. (a) Image of character “T.” (b)

Ending pattern. (c) Target image. (d) Message image. (e) Y-channel of (c). (f)

Modulated message image. (g) Zoom-out of red square region in (f). (h)

Resulting printed message-rich character image. .. 89

Figure 5.4. Modulated character-fragments resulting from uses of different contrast

threshold values of  for the difference between the two representative values

r1 and r2. (a) = 0. (b)  = 10. (c)  = 20. (d)  = 30. (e)  = 40. (f)  = 50. ... 90

Figure 5.5. Localization and correction of perspective distortion in captured

message-rich character image. (a) Localized message-rich character image

xiv

portion (enclosed by red rectangle). (b) Result of perspective distortion

correction applied to red portion region in (a). .. 93

Figure 5.6. Message extraction. (a) Captured modulated message image IM′′. (b)

Gradient values of (a). (c) Average gradient values of pixels on candidate

spitting lines for different NS. (d) Image division result according to

determined number of blocks NS = 16. (e) Fragment reordering result of (d). (f)

Binarization result of (e). (g) OCR result of (f). (h) Extracted message. 95

Figure 5.7. Created message-rich character images. (a)-(c) Test target images. (d)-(f)

Resulting message-rich character images with NS = 32 and = 40. 98

Figure 5.8. Plots of trends of results using various parameters. (a) Accuracy rates of

extracted messages with different contrast threshold values , with #blocks NS

= 16. (b) RMSE values of created message-rich character images with respect

to target images for different contrast threshold values of , with #blocks NS =

16. (c) Accuracies of extracted messages with different #blocks NS, where

contrast threshold value  = 40. ... 99

Figure 5.9. Robustness of proposed method. (a) A captured message-rich character

image under defacement attack. (b) A captured message-rich character image

under another defacement attack. (c) A message-rich character image captured

from a monitor screen. ... 100

Figure 6.1. Examples of message-rich images yielded by the method in Chapter 5 and

proposed method. (a) Target image. (b) Message-rich character image created

by the method in Chapter 5. (c) Message-rich code image created by proposed

method. ... 103

Figure 6.2. Illustration of major steps of two phases of proposed method. 104

Figure 6.3. An example of undistinguishable binary code patterns. 105

Figure 6.4. Performing proposed bit expansion scheme on every three message bits to

yield eight binary code patterns represented by pattern blocks. 106

Figure 6.5 Message-rich code image generation. (a) Target image. (b) Pattern image IP.

(c) Y-channel of (a). (d) Modulated pattern image. (e) Zoom-out of red square

region in (d). (f) Resulting message-rich code image. 107

Figure 6.6. Modulated pattern block resulting from uses of different contrast threshold

values of  for the absolute difference between the two adjusted representative

xv

values r1′ and r2′. (a)  = 0. (b)  = 5. (c)  = 10. (d) = 20. (e) = 30. (f) =

40. ... 109

Figure 6.7. Localization and correction of perspective distortion in captured

message-rich code image. (a) Localized message-rich code image portion

(enclosed by red rectangle). (b) Result of perspective distortion correction

applied to red portion region in (a). ... 110

Figure 6.8. Block number identification. (a) Captured modulated pattern image IP′′. (b)

Gradient values of (a). (c) Average gradient values of pixels on candidate

spitting lines for different NS. (d) Image division result according to

determined number of unit blocks, NS = 64. .. 112

Figure 6.9. Binarization and code-pattern recognition. (a) Captured modulated pattern

image. (b) Binarization result of (a). (c) Result of code-pattern recognition of

(b). (d) Extracted message. .. 115

Figure 6.10. Created message-rich code images. (a), (c), and (e) Target images. (b), (d)

and (f) Resulting message-rich code images with NS = 128 and  = 40. 117

Figure 6.11. Created message-rich code images with different contrast threshold

values of , where NS = 64. (a) Resulting message-rich code image with

RMSE = 66.35 and accuracy rate = 85.60%, where  = 0. (b) Resulting code

image with RMSE = 66.57 and accuracy rate = 98.97%, where  = 20. (c)

Resulting code images with RMSE = 68.47 and accuracy rate = 100%, where

 = 40. (b) Resulting images with RMSE = 72.27 and accuracy rate = 100%,

where  = 60. .. 118

Figure 6.12. Plots of trends of results using various parameters. (a) Accuracy rates of

extracted messages with different contrast threshold values , with #unit

blocks NS = 32. (b) RMSE values of created message-rich code images with

respect to target images for different contrast threshold values of , with #unit

blocks NS = 32. (c) Accuracy rates of extracted messages with different #unit

blocks NS with contrast threshold  = 40. (d) RMSE values of created

message-rich code images with respect to target images with different #unit

blocks NS and contrast threshold  = 40. .. 119

Figure 6.13. Created message-rich code images with different #unit blocks NS, where

contrast threshold value  = 40. (a) Resulting message-rich code image with

RMSE = 47.66 and accuracy rate = 100%, where NS = 16. (b) Resulting

xvi

message-rich code image with RMSE = 44.63 and accuracy rate = 100%,

where NS = 32. (c) Resulting message-rich code image with RMSE = 42.05

and accuracy rate = 100.00%, where NS = 64. (d) Resulting message-rich code

image with RMSE = 39.43 and accuracy rate = 99.11%, where NS = 128. ... 120

Figure 6.14. Binarized captured message-rich images created by method in Chapter 5

and proposed method in this chapter and respective message extraction

accuracy rates, where the target image of these resulting images is Figure

6.10(c). (a) Binarized image by method in Chapter 5 with NS = 32 and

accuracy rate = 98.61%. (b) Binarized image by proposed method in this

chapter with NS = 32 and accuracy rate = 99.80%. (c) Binarized image by

method in Chapter 5 with NS = 64 and accuracy rate = 41.25%. (d) Binarized

image by proposed method in this chapter with NS = 64 and accuracy rate =

99.76%. .. 122

Figure 6.15. Performing another bit expansion scheme on every three message bits to

yield 14 binary code patterns represented by pattern blocks. 123

Figure 6.16. Results yielded by using two different bit expansion schemes with NS =

64 and  = 20. (a) Pattern image yielded by the original bit expansion scheme.

(b) Pattern image yielded by the new bit expansion scheme. (d) Message-rich

code image yielded by the original bit expansion scheme with RMSE = 55.97.

(d) Message-rich code image yielded by the new bit expansion scheme with

RMSE = 55.44. .. 124

xvii

List of Tables

Table 4.1. Top twenty frequently used correction pairs. .. 70

Table 4.2. Some correction pairs each with more than one word either in the original

word sequence or in the new word sequence. .. 71

Table 4.3. An example of a chosen set with the new word sequence “such as”. 72

Table 4.4. The information of experimental documents. ... 74

Table 4.5. Comparison of methods for data hiding via texts. 78

Table 6.1. An example of code pattern recognition. .. 114

Table 6.2. Comparison of results of proposed method in this chapter and method in

Chapter 5 with = 40. .. 121

1

Chapter 1

Introduction

1.1 Background and Motivation

With the advance of information technologies, more and more devices are

designed to interact with environments for various pervasive communication

applications; thereby people can exchange information with the identities existing in

the environment everywhere and anytime [1]–[2]. For example, one can use the

camera on a smart phone to scan a QR code on a merchandise item and obtain the

detailed related information. Recently, Davis [3] proposed a new concept, called

signal rich art: the art that communicates its identity to context-aware devices,

through data hiding techniques mainly, to realize pervasive communication.

In our daily life, many kinds of identities existing in the environment can be

utilized to accommodate information for the purpose of pervasive communication.

However, identities discussed in [3] are mainly those with artistic flavors, such as

illustrations, posters, sculptures. It is desirable in this study to explore various types of

multimedia, such as images, texts, hard copies, advertisements, displays on monitors

or TVs, etc., for pervasive computing. Messages are expected to be injected into such

identities, like the information encoded into the QR codes, and can be extracted by

people using a “message reader.” We call such multimedia message-rich multimedia

in this study.

Moreover, data hiding is a type of technique which can embed messages into

multimedia existing in our daily life for various applications, creating message-rich

multimedia which achieve the effect of pervasive communication. A lot of data hiding

techniques have been developed in the past decade [4]-[5]. They may be regarded to

play key roles in our study of pervasive communication via message-rich multimedia.

However, current progresses towards our new vision of technology advancement

 pervasive communication by message-rich multimedia  are impeded by

computers, networks, and digital devices that are largely unaware of the

environmental context [3]; that is, they cannot “understand” the environmental

surrounds even if they can “see” them by image taking with the built-in cameras.

Therefore, numerous possibilities for achieving pervasive computing by data hiding

2

techniques via message-rich multimedia are still open research topics worth studying.

It is desired in this study to solve possible issues which might be encountered in the

study of message-rich multimedia.

1.2 Issues in Study of Message-rich Multimedia

About issues which might be encountered in the study of message-rich multimedia,

firstly it is well known that conventional data hiding methods often face the difficulty

to embed a large amount of message data into a single image [4]-[16]. Up to now,

most existing methods can hide only text messages or images with small data volumes

into cover images. Specifically, if one wants to hide a secret image into a cover image

of the same size, the secret image must be compressed greatly in advance, resulting in

the undesired effect of unrecoverability of the orginal higher-quality secret image.

This study tries to solve this issue of transmitting images with large data volumes

secretly without degrading the original quality of the secret image.

Next, an image may contain private or confidential information that is usually

encrypted before being transmited on the Internet to ensure its security. However,

designs of most conventional data hiding methods are based on the properties of

natural images so that they are not suitable for use in embedding messages into

encrypted images which usually appear to be noise or random data. Hence, this

dissertation study is devoted, as the second goal, to this issue of embedding messages

in encrypted images.

Thirdly, attacking the weaknesses of human auditory and visual systems, most

researches on data hiding focused on non-text multimedia as cover media. Less data

hiding techniques using text-type cover media have been proposed. Recently, more

and more collaborative writing platforms are becoming popular, and some of them

have been exploited for data hiding applications. However, most of the data hiding

methods can only be applied to documents with single authors and single revision

versions [29]-[38], meaning that they are not suitable for hiding data on collaborative

writing platforms. Therefore, a third goal of this study is to design new data hiding

methods which can hide data into documents created on collaborative writing

platforms.

Moreover, conventional data hiding methods can be employed to transfer data

though “digital files” only, such as images and text documents; they are “incompetent”

for enabling pervasive communication when one wants to interact with the

3

environmental surround. A type of data hiding, called hardcopy data hiding, have

been proposed, which embeds information into image barcodes using halftone

techniques [17]-[19], and the encoded information can survive “print-and-scan

attacks.” However, if one uses a mobile device to capture images of hardcopy image

barcodes, the information might not be decoded successfully since the captured image

will suffer from additional types of distortions other than those acquired by scanning.

Therefore, also as a goal of this study it is desirable to devise new automatic

identification and data capture techniques via the use of hard copies of message-rich

images that have functions similar to barcode or QR-code reading, with the generated

hard copies of the images looking visually similar to pre-selected target images,

achieving the effect of pervasive commutation once again in different ways.

In summary, the goals of this dissertation study are to propose data hiding

techniques to create various types of message-rich multimedia for pervasive

communication, including: 1) image with large data volumes; 2) encrypted image; 3)

text-typed collaborative writing work; and 4) hard copies of images. Fulfillments of

aforementioned goals of this dissertation study together will be expected to enhance

the state-of-art studies on data hiding techniques, yielding a new vision of pervasive

communication and a further step of extending its applications.

1.3 Survey of Related Works

Works related to this study are categorized into several directions and reviewed

as follows.

1.3.1 Review of techniques for data hiding via images

Data hiding is useful for applications like covert communication, copyright

protection, document authentication, secret keeping, etc., and is a key component to

achieve the function of pervasive communication as mentioned previously. Recently,

many methods for data hiding via images have been proposed. Petitcolas [4] and

Bender et al. [5] made good surveys of data hiding techniques via images, which may

be classified into two major types: spatial-domain based and transform-domain

based.

Spatial-domain based methods hide messages directly into the spatial-domain

data of given images, such as LSB substitution, histogram modification, difference

expansion, etc. [6]-[10]. For example, Chan and Cheng [6] proposed a simple LSB

4

substitution method that applies an optimal pixel adjustment process to the input

image. Ni et al. [7] and Lee and Tsai [8] proposed histogram modification methods,

each of which shifts some values in the histogram around the peak to embed secret

messages. Tian [9] proposed a difference expansion method that explores data

redundancy in an image to achieve a high embedding capacity. Hu et al. [10]

proposed another difference expansion method that utilizes horizontal as well as

vertical difference images for data embedding.

Transform-domain based methods hide messages into the transform-domain data

of given images, using transformations like discrete cosine, integer wavelet, etc.

[11]-[14]. For example, Fridrich et al. [11] proposed two discrete cosine transform

(DCT) based methods that compress JPEG coefficients or modify quantization

matrices to embed messages. Chang et al. [12] proposed another DCT based method

that uses two successive zero coefficients of the medium frequency components in

each block to hide messages. Lee et al. [13] proposed an integer wavelet transform

based method that embeds a watermark into the high-frequency wavelet coefficients

of each block. Lin et al. [14] proposed a data hiding method for copyright protection

based on the use of the so-called significant differences of the blocks of the wavelet

coefficients during the wavelet coefficient quantization process.

1.3.2 Review of techniques for data hiding via image barcodes

Another type of data hiding, which is called “hardcopy” data hiding, can embed

information into so-called image barcodes using halftone techniques [17]-[19]. These

image barcodes have the visual appearances of other images and the encoded

information can be decoded from their hardcopy versions acquired by scanners. That

is, the encoded information can survive “print-and-scan attacks.” For example, Bulan

et al. [17] proposed a framework for data hiding in images printed with clustered dot

halftones via a pattern orientation modulation technique. Bulan and Sharma [18]

proposed another pattern orientation modulation technique that utilizes three printing

channels and modulates the orientations of elliptical-shaped dots for data encoding.

Damera-Venkata et al. [19] proposed a block-error diffusion method that embeds

information into hardcopy images by using dot-shape modulation.

5

1.3.3 Review of techniques for data hiding via text documents

Attacking the weaknesses of human auditory and visual systems, many

researches on data hiding focused on non-text cover media. Less data hiding

techniques using text-type cover media have been proposed. Bennett [28] made a

good survey about hiding data in text and classified related techniques into three

categories: format-based methods, random and statistical generation, and linguistic

methods.

Format-based methods use the physical formats of documents to hide messages.

Some of them utilize spaces in documents to encode message data. For example,

Alattar and Alattar [29] proposed a method that adjusts the distances between words

or text lines using spread-spectrum and BCH error-correction techniques, and Kim et

al. [30] proposed a word-shift algorithm that adjusts the spaces between words based

on concepts of word classification and statistics of inter-word spaces. Some other

methods utilize non-displayed characters to hide messages, such as Lee and Tsai [31]

which encodes message bits using special ASCII codes and hides the result between

the words or characters in PDF files.

Random and statistical methods generate directly camouflage texts with hidden

messages to prevent the attack of comparing the camouflage text with a known

plaintext. For example, Wayner [32]-[33] proposed a method for text generation based

on the use of context-free grammars and tree structures. Another method available on

a website [34] extends this idea to generate fake spam emails with hidden messages,

which are usually ignored by people.

Linguistic methods use written natural languages to conceal secret messages.

For example, Chapman et al. [35] proposed a synonym replacement method that

generates a cover text according to a secret message using certain sentence models

and a synonym dictionary. Bolshakov [36] extended the synonym replacement

method by using a specific synonymy dictionary and a very large database of

collocations to create a cover text, which is more believable to a human reader.

Shirali-Shahreza and Shirali-Shahreza [37] proposed a third synonym replacement

method that hides data in a text by substituting words which have different terms in

the UK and the US. Stutsman et al. [38] proposed a method to hide messages in the

noise that is inherent in natural language translation results without the necessity of

transmitting the source text for decoding.

6

1.3.4 Review of techniques for barcode reading

In addition to data hiding, the use of the barcode is another technique for

pervasive communication, where a barcode is usually attached to objects for various

identification purposes, and represents machine-readable data by patterns of lines,

rectangles, dots, etc. To extract the data encoded into barcodes, such as Code 39 [20],

PDF417 [21], QR code [22], data matrix code [23], etc., several barcode reading

techniques have been proposed in the past. Ouaviani et al. [24] proposed an image

processing framework for 2D barcode reading, including four main phases: region of

interest detection, code localization, code segmentation, and decoding. Zhang et al.

[25] proposed a real-time barcode localization method by using a two-stage

processing, where the barcode is found first through a region-based analysis of

low-resolution images and then read and analyzed in their original resolutions. Yang

et al. [26] proposed another accurate barcode localization method by using the prior

knowledge of the barcode to obtain the initially localized corners, and then using a

post-localization process to find the accurate corner locations. Yang et al. [27]

proposed an adaptive thresholding technique for the binarization of the barcode image

by constructing a dynamic search window centered at the nearest edge pixel of the

pixel to be binarized.

1.4 Overview of Proposed Techniques and Ideas

In this section, we describe the main ideas and techniques of the proposed data

hiding techniques via various message-rich multimedia.

1.4.1 Data hiding by nearly-reversible color transformation

A new large-volume data hiding method is proposed, which creates

automatically from an arbitrarily selected target image a so-called

secret-fragment-visible mosaic image as a disguise of a given secret image, achieving

the effect of hiding a secret image into any target image of the same size. Specifically,

after a target image is selected arbitrarily, the given secret image is first divided into

rectangular fragments called tile images, which then are fit into similar blocks in the

target image, called target blocks, according to a similarity criterion based on color

variations. Next, the color characteristic of each tile image is transformed to be that of

the corresponding target block in the target image, resulting in a mosaic image which

looks like the target image. Figure 1.1 shows a result yielded by the proposed method.

7

(a) (b) (c)

Figure 1.1. A result yielded by proposed method. (a) Secret image. (b) Target image.

(c) Secret-fragment-visible mosaic image created from (a) and (b).

The proposed method removes the weakness found in [39] that requires a large

image database for the user to select a color-similar target image for each input secret

image while keeping its merit of high-volume data embedding capability. That is, the

proposed method can hide a secret image into any pre-selected target image of the

same size to create a secret-fragment-visible mosaic image without the need of a

database. The method not only creates mosaic images useful for secure keeping of

secret images, but also provides a new way to solve the difficulty of hiding secret

images with huge data volumes into target images.

1.4.2 Data hiding by techniques of image encryption and spatial

correlation comparison

A new data hiding method on encrypted images based on the techniques of

double image encryption and spatial correlation comparison is proposed. The

proposed method solves a problem encountered in the two previously-proposed

methods [55]-[56] when dealing with flat cover images. In this study, the LSBs of

each block pixel in an encrypted image are encrypted further to embed one message

bit, so the aforementioned problem encountered in [55] and [56] caused by flat cover

images is solved.

Furthermore, four LSBs of each pixel of a block in the encrypted image are

utilized for message embedding. Also, a side-match scheme that utilizes the spatial

correlations of both recovered and unrecovered blocks is proposed to decrease the

bit-extraction error rate, in contrast with [56] which utilizes the spatial correlations of

8

recovered blocks only. Experimental results showing the proposed method greatly

improves the performance of the two previously-proposed methods in dealing with

flat cover images.

1.4.3 Data hiding via revision history records on collaborative

writing platforms

A new data hiding method via collaboratively-written articles with forged

revision history records on collaborative writing platforms is proposed. The hidden

message is camouflaged as a stego-document consisting of a stego-article and a

revision history created through a simulated process of collaborative writing. The

revisions are forged using a database constructed by mining the word sequences used

in real cases from an English Wikipedia XML dump. Four characteristics of article

revisions are identified and utilized to embed secret messages, including the author of

each revision, the number of corrected word sequences, the content of the corrected

word sequences, and the word sequences replacing the corrected ones. Related

problems arising in utilizing these characteristics for data hiding are identified and

solved skillfully, resulting in an effective multi-way method for hiding secret

messages into the revision history.

To create more realistic revisions, Huffman coding based on the word sequence

frequencies collected from Wikipedia is applied to encode the word sequences.

Therefore, the resulting stego-document is more realistic than other text data hiding

methods. The proposed method is useful for covert communication or secure keeping

of secret messages on collaborative writing platforms. Moreover, to the best of our

knowledge, this is the first work that can simulate the collaborative writing process

with multiple authors and revisions and utlize the characteristics in the collaborative

writing process effectively for message embedding.

1.4.4 Data hiding via message-rich character images

A new data hiding method via message-rich character images is proposed, where

the character image is a new kind of message-rich multimedia and may be printed as a

hardcopy for use in applications of pervasive communication. Figure 1.2 shows an

example of the created message-rich character image yielded by the proposed method.

The created image is then “re-imaged” by a mobile-phone camera and “understood”

9

by some automatic identification and data capture (AIDC) techniques [40] proposed

in this study.

Specifically, a message-rich character image is created from a target image used

as a carrier of a given message by fragmenting the shapes of the composing

characters of the message and “injecting” the resulting character fragments randomly

into the target image by a block luminance modulation scheme. Each message-rich

character image so created has the visual appearance of the corresponding

pre-selected target image.

Message-rich character images may be of the forms of documents, labels,

posters, etc. Also, such images may have the visual appearances of artistic-flavored

photos, pictures, paintings, which are more attractive to humans than those produced

by conventional AIDC techniques, like barcodes, QR-codes, etc. Moreover, the image

not only can be printed on papers but also can be displayed on various types of

screens for various uses. In addition, the message-rich character image can endure

more types of distortions like perspective transformation, noise, screen blurring, etc.

than the existing hardcopy image barcode methods.

(a) (b)

Figure 1.2. Example of created message-rich character image. (a) Target image. (b)

Created message-rich character image.

1.4.5 Data hiding via message-rich code images

Another new data hiding method via message-rich code images is proposed,

where the message-rich code image is a new kind of message-rich multimedia. It may

also be printed as a hardcopy for use in applications of pervasive communication just

10

like the use of the message-rich character image. The proposed method improves the

previous method presented in Section 1.4.4 above, as described in the following.

As shown in Figure 1.2(b), each message-rich character image contains many

small character fragments with undesired visual effects. Also, it requires an optical

character recognition (OCR) scheme to extract the embedded message. Moreover, to

keep the resolution in the captured image sufficiently good for correct message

extraction, the size of each block cannot be too small. In order to solve these problems,

instead of transforming the given message to be embedded into a message image, the

proposed method converts a given message into a bit stream of codes first, which is

then represented by binary pattern blocks, each being composed of 2×2 unit blocks. A

block luminance modulation scheme is then applied to each pattern block to yield a

message-rich code image with the visual appearance of a pre-selected target image.

Figure 1.3 shows an example of the created message-rich code image yielded by the

proposed method.

The proposed method has the following additional merits: (1) the yielded

message-rich code image has a much better visual appearance of the target image; (2)

the accuracy rate of message extraction from the generated code image is higher; and

(3) the message extraction speed is higher.

(a) (b)

Figure 1.3. Example of created message-rich code image. (a) Target image. (b)

Created message-rich code image.

11

1.5 Dissertation Organization

The remainder of this dissertation is organized as follows. In Chapter 2, the

proposed large-volume data hiding technique for secure image transmission is

described. In Chapter 3, the proposed new data hiding technique on encrypted images

based on the techniques of double image encryption and spatial correlation

comparison is described. The proposed new data hiding technique via creations of

fake collaboratively-written documents on collaborative writing platforms is

presented in Chapter 4. In Chapter 5, the proposed new data hiding technique via

message-rich character images is described, while the proposed new data hiding

technique via message-rich code images is described in Chapter 6. Finally,

conclusions of this study and some suggestions for future researches are included in

the last chapter.

12

Chapter 2

A New Data Hiding Technique via

Secret-fragment-visible Mosaic Images by

Nearly-reversible Color Transformation

2.1 Introduction

Data hiding is useful for applications like covert communication, copyright

protection, document authentication, secret keeping, etc. Many methods for data

hiding via images have been proposed [6]-[16]. In order to reduce the distortion of the

resulting image, an upper bound for the distortion value is usually set on the payload

of the cover image. A discussion on this rate-distortion issue can be found in [41].

Thus, a main issue of the methods for hiding data in images is the difficulty to embed

a large amount of message data into a single image.

Specifically, if one wants to hide a secret image into a cover image with the

same size, the secret image must be highly compressed in advance. For example, for a

data hiding method with an embedding rate of 0.5 bits per pixel, a secret image with 8

bits per pixel must be compressed at a rate of at least 93.75% beforehand in order to

be hidden into a cover image. But, for many applications, such as keeping or

transmitting medical pictures, military images, legal documents, etc., that are valuable

with no allowance of serious distortions, such data compression operations are usually

impractical. Moreover, most image compression methods, such as JPEG compression,

are not suitable for line drawings and textual graphics, where sharp contrasts between

adjacent pixels are often destructed to become noticeable artifacts after being

compressed [42].

Therefore, most existing methods can hide only text messages or images with

small data volumes into cover images. However, in a recently published paper by Lai

and Tsai [39], a new type of computer art image was presented, called

secret-fragment-visible mosaic image, which is the result of rearrangement of the

fragments of a secret image in disguise of another image called target image

pre-selected from a database. The above-mentioned difficulty of hiding a huge

volume of image data behind a cover image is solved automatically by the use of this

13

type of mosaic image, where a secret image of the same size is hidden in the mosaic

image without any compression.

In more detail, as illustrated by Figure 2.1, a given secret image is first

“chopped” into tiny rectangular fragments, and a target image with a similar color

distribution is selected from a database. Then, the fragments are arranged by using a

fast greedy algorithm to fit into the blocks of the target image, yielding an image with

a mosaic appearance looking like the target image. The mosaic image preserves all the

secret image fragments in appearance, but no one can figure out what the original

secret image looks like due to the tiny sizes and the randomness of the re-arranged

fragments. The method may be adopted as a new way for secure keeping of secret

images.

Figure 2.1. Illustration of creation of secret-fragment-visible mosaic image proposed

in [39].

However, using their method, the user is not allowed to select freely his/her

favorite image for use as the target image. It is therefore desired in this study to

remove this weakness of the method while keeping its merit, that is, it is aimed to

design a new method to transform a secret image into a secret-fragment-visible

mosaic image of the same size that has the visual appearance of any freely-selected

target image without the need of a database.

Specifically, after a target image is selected arbitrarily, the given secret image is

first divided into rectangular fragments called tile images, which then are fit into

14

similar blocks in the target image, called target blocks, according to a similarity

criterion based on color variations. Next, the color characteristic of each tile image is

transformed to become that of the corresponding target block in the target image,

resulting in a mosaic image which looks like the target image. Relevant schemes are

also proposed to conduct nearly lossless recovery of the original secret image from

the resulting mosaic image. The proposed method is new in the fact that it can

transform a secret image into a disguising mosaic image without compression, while

other data hiding methods must hide a highly compressed version of the secret image

into a cover image when the secret image and the cover image have the same data

volume.

2.2 Idea of Proposed Method

The proposed method includes two main phases as shown by the flow diagram

of Figure 2.2: 1) mosaic image creation; and 2) secret image recovery.

In the first phase, a mosaic image is yielded, which consists of the fragments of

an input secret image with color corrections according to a similarity criterion based

on color variations. The phase includes four stages as described in the following.

Stage 1-1 – fit the tile images of the secret image into the target blocks of a

pre-selected target image.

Stage 1-2 – transform the color characteristic of each tile image in the secret image to

become that of the corresponding target block in the target image.

Stage 1-3 – rotate each tile image into a direction with the minimum RMSE value

with respect to its corresponding target block.

Stage 1-4 – embed relevant information into the created mosaic image for future

recovery of the secret image.

And in the second phase, the embedded information is extracted to recover

nearly losslessly the secret image from the generated mosaic image. The phase

includes two stages as described in the following.

Stage 2-1 – extract the embedded information for secret image recovery from the

mosaic image.

Stage 2-2 – recover the secret image using the extracted information.

15

Figure 2.2. Flow diagram of the proposed method.

2.3 Problems and Proposed Solutions for Mosaic Image

Creation

Problems encountered in generating mosaic images are discussed in this section

with solutions to them proposed.

A. Color Transformations between Blocks

In the first phase of the proposed method, each tile image T in the given secret

image is fit into a target block B in a pre-selected target image. Since the color

characteristics of T and B are different from each other, how to change their color

distributions to make them look alike is the main issue here. Reinhard et al. [43]

proposed a color transfer scheme in this aspect, which converts the color characteristic

of an image to be that of another in the l color space. This idea is an answer to the

issue and is adopted in this study, except that the RGB color space instead of the l

one is used to reduce the volume of the required information for recovery of the

original secret image.

More specifically, let T and B be described as two pixel sets {p1, p2, …, pn} and

{p1′, p2′, …, pn′}, respectively. Let the color of each pi be denoted by (ri, gi, bi) and

that of each pi′ by (ri′, gi′, bi′). At first, we compute the means and standard deviations

of T and B, respectively, in each of the three color channels R, G, and B by the

following formulas:

16

 1 1

1 1
,

n n

c i c i

i i

c ' c'
n n

 
 

  
; (1)

2 2

1 1

1 1
() , ()

n n

c i c c i c

i i

c ' c' '
n n

   
 

    
 (2)

where ci and ci′ denote the C-channel values of pixels pi and pi′, respectively, with c =

r, g, or b and C = R, G, or B. Next, we compute new color values (ri′′, gi′′, bi′′) for

each pi in T by:

()i c i c cc'' q c '   

, (3)

where qc = c′/c is the standard deviation quotient and c = r, g, or b. It can be

verified easily that the new color mean and variance of the resulting tile image T′ are

equal to those of B, respectively. To compute the original color values (ri, gi, bi) of pi

from the new ones (ri′′, gi′′, bi′′), we use the following formula which is the inverse

of :

(1/)()i c i c cc q c'' '   

. (4)

Furthermore, we have to embed into the created mosaic image sufficient

information about the new tile image T ′ for use in the later stage of recovering the

original secret image. For this, theoretically we can use (4) to compute the original

pixel value of pi. However, the involved mean and standard deviation values in the

formula are all real numbers, and it is impractical to embed real numbers, each with

many digits, in the generated mosaic image. Therefore, we limit the numbers of bits

used to represent relevant parameter values in (3) and (4). Specifically, for each color

channel we allow each of the means of T and B to have 8 bits with its value in the

range of 0 to 255, and the standard deviation quotient qc in (3) to have 7 bits with its

value in the range of 0.1 to 12.8. That is, each mean is changed to the closest value in

the range of 0 to 255, and each qc is changed to the closest value in the range of 0.1 to

12.8. We do not allow qc to be 0 because otherwise the original pixel value cannot be

recovered back by (4) for the reason that 1/qc in (4) is not defined when qc = 0.

17

B. Choosing Appropriate Target Blocks and Rotating Blocks to Fit Better with

Smaller RMSE Value

In transforming the color characteristic of a tile image T to be that of a

corresponding target block B as described above, how to choose an appropriate B for

each T is an issue. For this, as shown in Figure 2.3, we use the standard deviation of

the colors in the block as a measure to select the most similar B for each T. Specially,

we sort all the tile images to form a sequence, Stile, and all the target blocks to form

another, Starget, according to the average values of the standard deviations of the three

color channels. Then, we fit the first in Stile into the first in Starget, fit the second in Stile

into the second in Starget, and so on.

Figure 2.3. Illustration of fitting tile images into target blocks.

Additionally, after a target block B is chosen to fit a tile image T and after the

color characteristic of T is transformed, we conduct a further improvement on the

color similarity between the resulting tile image T ′ and the target block B by rotating

T′ into one of the four directions, 0o, 90o, 180o, and 270o, which yields a rotated

18

version of T′ with the minimum root mean square error (RMSE) value with respect to

B among the four directions for final use to fit T into B. Furthermore, the color

similariy between the resulting tile image T ′ and the target block B is measured in the

luminance channel only, instead of in the RGB three color channels, to reduce the

execution time of the proposed method. Figure 2.4 shows a result of applying this

block rotation scheme to the secret image and the target image shown in Figures 2.4(a)

and 2.4(b), respectively, where Figure 2.4(c) is the mosaic image created without

applying this scheme and Figure 2.4(d) is the one created instead. It can be seen that

Figure 2.4(d) has a better fitting result with a smaller RMSE value than Figure 2.4(c).

(a) (b)

(c) (d)

Figure 2.4. Illustration of effect of rotating tile images before fitting them into target

blocks. (a) Secret image. (b) Target image. (c) Mosaic image created from

(a) and (b) without block rotations (with RMSE = 23.261). (d) Mosaic

image created from (a) and (b) with block rotations (with RMSE =

20.870).

19

C. Handling Overflows/Underflows in Color Transformation

After the color transformation process is conducted as described previously,

some pixel values in the new tile image T ′ might have overflows or underflows. To

deal with this problem, we convert such values to be non-overflow or non-underflow

ones and record the value differences as residuals for use in later recovery.

Specifically, we convert all the transformed pixel values in T ′ not smaller than 255 to

be 255, and all those not larger than 0 to be 0. Next, we compute the differences

between the original pixel values and the converted ones as the residuals and record

them as part of the information associated with T′. Accordingly, the pixel values

which are just on the bound of 255 or 0, however, cannot be distinguished from those

with overflow/underflow values during later recovery since all the pixel values with

overflows/underflows are converted to be 255 or 0 now. To remedy this, we define

the residuals of those pixel values which are on the bound to be “0” and record them

as well.

But as can be seen from (3), the ranges of possible residual values are unknown,

and this causes a problem of deciding how many bits should be used to record a

residual. To solve this problem, we record the residual values in the un-transformed

color space rather than in the transformed one. That is, by using the following two

formulas we compute first the smallest possible color value cS (with c = r, g, or b) in T

that becomes larger than 255 as well as the largest possible value cL in T that becomes

smaller than 0, respectively, after the color transformation process has been

conducted:

 cS = (1/qc)(255  c′) + c;

 cL = (1/qc)(0  c′) + c. (5)

Next, for an un-transformed value ci which yields an overflow after the color

transformation, we compute its residual as |ci  cS|; and for ci which yields an

underflow, we compute its residual as |cL  ci|. Then, the possible values of the

residuals of ci will all lie in the range of 0 to 255 as can be verified. Consequently, we

can simply record each of them with 8 bits. And finally, because the residual values

are centralized around zero, we use further in this study the Huffman encoding

scheme to encode the residuals in order to reduce the numbers of required bits to

represent them.

20

D. Embedding Information for Secret Image Recovery

In order to recover the secret image from the mosaic image, we have to embed

relevant recovery information into the mosaic image. For this, we adopt a technique

proposed by Coltuc and Chassery [44] and apply it to the least significant bits of the

pixels in the created mosaic image to conduct data embedding. Unlike the classical

LSB replacement methods [6], [45], [46], which substitute LSBs with message bits

directly, the reversible contrast mapping method [44] applies simple integer

transformations to pairs of pixel values. Specifically, the method conducts forward

and backward integer transformations as follows, respectively, where (x, y) are a pair

of pixel values and (x', y') are the transformed ones:

 2 , 2x' x y y' y x    ; (6)

2 1 1 2
,

3 3 3 3
x x' + y' y x' + y'

   
        . (7)

The method yields high data embedding capacities close to the highest bit rates and

has the lowest complexity reported so far.

The information required to recover a tile image T which is mapped to a target

block B includes: 1) the index of B; 2) the optimal rotation angle of T ; 3) the truncated

means of T and B and the standard deviation quotients, of all color channels; and 4)

the overflow/underflow residuals. These data items for recovering a tile image T are

integrated as a five-component bit stream of the form

M = t1t2…tmr1r2m1m2…m48q1q2…q21d1d2…dk,

where the bit segments t1t2…tm, r1r2, m1m2…m48, q1q2…q21, and d1d2…dk represent

the values of the index of B, the rotation angle of T, the means of T and B, the

standard deviation quotients, and the residuals, respectively.

In more detail, the numbers of required bits for the five data items in M are

discussed below: 1) the index of B needs m bits to represent, with m computed by:

log[() /]S S Tm W H N    , where WS and HS are respectively the width and height of the

secret image S, and NT is the size of the target image T; 2) it needs two bits to

represent the rotation angle of T because there are four possible rotation directions; 3)

48 bits are required to represent the means of T and B because we use eight bits to

represent a mean value in each color channel; 4) it needs 21 bits to represent the

quotients of T over B in the three color channels with each channel requiring 7 bits;

21

and 5) the total number k of required bits for representing all the residuals depends on

the number of overflows or underflows in T.

Then, the above-defined bit streams of all the tile images are concatenated in

order further into a total bit stream Mt for the entire secret image. Moreover, in order

to protect Mt from being attacked, we encrypt it with a secret key to obtain an

encrypted bit stream Mt′, which is finally embedded into the pixel pairs in the mosaic

image using the method of Coltuc and Chassery [44] described above. It may require

more than one iteration in the encoding process since the length of Mt′ may be larger

than the number of pixel pairs available in an iteration. A plot of the statistics of the

numbers of required bits for secret image recovery is shown in Figure 2.10(b).

Moreover, we have to embed as well some related information about the mosaic

image generation process into the mosaic image for use in the secret image recovery

process. Such information, described as a bit stream I like M mentioned previously,

includes the following data items: 1) the number of iterations conducted in the process

for embedding the bit stream Mt′; 2) the total number of used pixel pairs in the last

iteration for embedding Mt′; and 3) the Huffman table for encoding the residuals.

With the bit stream Mt′ embedded into the mosaic image, we can recover the

secret image back as will be described later. It is noted that some loss will be incurred

in the recovered secret image, or more specifically, in the color transformation

process using (3) where each pixel’s color value ci is multiplied by the standard

deviation quotient qc and the resulting real value ci′′ is truncated to be an integer in the

range of 0 through 255. However, because each truncated part is smaller than the

value of 1, the recovered value of ci using (4) is still precise enough to yield a color

nearly identical to its original one. Even when overflows/underflows occur at some

pixels in the color transformation process, we record their residual values as described

previously and after using (4) to recover the pixel value ci, we add the residual values

back to the computed pixel values ci to get the original pixel data, yielding a nearly

losslessly-recovered secret image. According to the results of the experiments

conducted in this study, each recovered secret image has a very small RMSE value

with respect to the original secret image, as will be shown later in Section 2.5.

2.4 Algorithms of Proposed Method

Based on the above discussions, the detailed algorithms for mosaic image

creation and secret image recovery may now be described as follows.

22

Algorithm 2.1. Mosaic image creation.

Input: a secret image S, a pre-selected target image T, and a secret key K.

Output: a secret-fragment-visible mosaic image F.

Steps:

Stage 1 － fitting the tile images into the target blocks.

Step 1. If the size of the target image T is different from that of the secret image S,

change the size of T to be identical to that of S; and divide the secret image S

into n tile images {T1, T2, …, Tn} as well as the target image T into n target

blocks {B1, B2, …, Bn} with each Ti or Bi being of size NT.

Step 2. Compute the means and the standard deviations of each tile image Ti and

each target block Bj for the three color channels according to (1) and (2); and

compute accordingly the average standard deviations for Ti and Bj,

respectively, where i = 1 through n and j = 1 through n.

Step 3. Sort the tile images in the set Stile = {T1, T2, …, Tn} and the target blocks in

the set Starget = {B1, B2, …, Bn} according to the computed average standard

deviation values of the blocks; map in order the blocks in the sorted Stile to

those in the sorted Starget in a 1-to-1 manner; and reorder the mappings

according to the indices of the tile images, resulting in a mapping sequence

L of the form: T1 → Bj1, T2 → Bj2, …, Tn  Bjn.

Step 4. Create a mosaic image F by fitting the tile images into the corresponding

target blocks according to L.

Stage 2 － performing color conversions between the tile images and the target

blocks.

Step 5. Create a counting table TB with 256 entries, each with an index

corresponding to a residual value, and assign an initial value of zero to each

entry (note that each residual value will be in the range of 0 to 255).

Step 6. For each mapping Ti → Bji in sequence L, represent the means c and c′ of

Ti and Bji, respectively, by eight bits; and represent the standard deviation

quotient qc appearing in (3) by seven bits, according to the scheme described

in Section 2.3(A) where c = r, g, or b.

Step 7. For each pixel pi in each tile image Ti of mosaic image F with color value ci

where c = r, g, or b, transform ci into a new value ci′′ by (3); if ci′′ is not

23

smaller than 255 or if it is not larger than 0, then change ci′′ to be 255 or 0,

respectively; compute a residual value Ri for pixel pi by the way described in

Section 2.3(C); and increment by 1 the count in the entry in the counting

table TB whose index is identical to Ri.

Stage 3 － rotating the tile images.

Step 8. Compute the RMSE values of each color-transformed tile image Ti in F with

respect to its corresponding target block Bji after rotating Ti into each of the

directions  = 0o, 90o, 180o and 270o in the luminance channel; and rotate Ti

into the optimal direction o with the smallest RMSE value.

Stage 4 － embedding the secret image recovery information.

Step 9. Construct a Huffman table HT using the content of the counting table TB to

encode all the residual values computed previously.

Step 10. For each tile image Ti in mosaic image F, construct a bit stream Mi for

recovering Ti in the way as described in Section 2.3(D), including the

bit-segments which encode the data items of: 1) the index of the

corresponding target block Bj
i
; 2) the optimal rotation angle  of T i ; 3) the

means of Ti and Bj
i
 and the related standard deviation quotients of all three

color channels; and 4) the bit sequence for overflows/underflows with

residuals in Ti encoded by the Huffman table HT constructed in Step 9.

Step 11. Concatenate the bit streams Mi of all Ti in F in a raster-scan order to form a

total bit stream Mt; use the secret key K to encrypt Mt into another bit stream

Mt′; and embed Mt′ into F by the reversible contrast mapping scheme

proposed in [44].

Step 12. Construct a bit stream  including: 1) the number of conducted iterations Ni

for embedding Mt′; 2) the number of pixel pairs Npair used in the last

iteration; and 3) the Huffman table HT constructed for the residuals; and

embed the bit stream I into mosaic image F by the same scheme used in Step

11.

Algorithm 2.2. Secret image recovery.

Input: a mosaic image F with n tile images {T1, T2, …, Tn} and the secret key K.

Output: the secret image S.

Steps:

24

Stage 1 － extracting the secret image recovery information.

Step 1. Extract from F the bit stream I by a reverse version of the scheme proposed

in [44] and decode them to obtain the following data items: 1) the number of

iterations Ni for embedding Mt′; 2) the total number of used pixel pairs Npair

in the last iteration; and 3) the Huffman table HT for encoding the values of

the residuals of the overflows or underflows.

Step 2. Extract the bit stream Mt′ using the values of Ni and Npair by the same

scheme used in the last step.

Step 3. Decrypt the bit stream Mt′ into Mt by K.

Step 4. Decompose Mt into n bit streams M1 through Mn for the n to-be-constructed

tile images T1 through Tn in S, respectively.

Step 5. Decode Mi for each tile image Ti to obtain the following data items: 1) the

index ji of the block Bji in F corresponding to Ti; 2) the optimal rotation

angle  of Ti; 3) the means of Ti and Bji and the related standard deviation

quotients of all color channels; and 4) the overflow/underflow residual

values in Ti decoded by the Huffman table HT.

Stage 2 － recovering the secret image.

Step 6. Recover one by one in a raster-scan order the tile images Ti, i = 1 through n,

of the desired secret image S by the following steps: 1) rotate in the reverse

direction the block indexed by ji, namely Bji, in F through the optimal angle

 and fit the resulting block content into Ti to form an initial tile image Ti; 2)

use the extracted means and related standard deviation quotients to recover

the original pixel values in Ti according to (4); 3) use the extracted means,

standard deviation quotients, and (5) to compute the two parameters cS and

cL; 4) scan Ti to find out pixels with values 255 or 0 which indicate that

overflows or underflows, respectively, have occurred there; 5) add

respectively the values cS or cL to the corresponding residual values of the

found pixels; and 6) take the results as the final pixel values, resulting in a

final tile image Ti.

Step 7. Compose all the final tile images to form the desired secret image S as

output.

25

2.5 Experimental Results

A series of experiments have been conducted to test the proposed method using

many secret and target images with sizes 1024768 or 7681024. To show that the

created mosaic image looks like the pre-selected target image, the quality metric of

root mean square error (RMSE) is utilized, which is defined as the square root of the

mean square difference between the pixel values of the two images.

An example of the experimental results is shown in Figure 2.5, where Figure

2.5(c) shows the created mosaic image using Figure 2.5(a) as the secret image and

Figure 2.5(b) as the target image. The tile image size is 88. The recovered secret

image using a correct key is shown in Figure 2.5(d) which looks nearly identical to

the original secret image shown in Figure 2.5(a) with RMSE = 0.948 with respect to

the secret image. It is noted by the way that all the other experimental results shown in

this paper have small RMSE values as well, as seen in Figure 2.10(c).

Moreover, Figure 2.5(e) shows the recovered secret image using a wrong key,

which is a noise image. Figures 2.5(f) through 2.5(i) show more results using different

tile image sizes. It can be seen from the figures that the created mosaic image retains

more details of the target image when the tile image is smaller. It can also be seen that

the blockiness effect is observable when the image is magnified to be large; but if the

image is observed as a whole, it still looks like a mosaic image with its appearance

similar to the target image. Figure 2.10(a) also shows this fact in another way  a

mosaic image created with smaller tile images has a smaller RMSE value with respect

to the target image. On the other hand, the number of required bits embedded for

recovering the secret image will be increased when the tile image becomes smaller, as

can be seen from Figure 2.10(b).

Figure 2.6 shows a comparison of the results yielded by the proposed method

with those by Lai and Tsai [39], where Figure 2.6(a) is the input secret image, Figure

2.6(b) is the selected target image, Figure 2.6(c) is the mosaic image created by Lai

and Tsai [39], and Figure 2.6(d) is that created by the proposed method. It can be seen

from these results that the mosaic image yielded by the proposed method has a

smaller RMSE value with respect to the target image, implying that it is more similar

to the target image in appearance. The other results of our experiments also show the

same conclusion. And more importantly, the proposed method allows users to select

their favorite images for uses as target images.

26

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 2.5. An experimental result of mosaic image creation. (a) Secret image. (b)

Target image. (c) Mosaic image created with tile image size 88. (d)

Recovered secret image using a correct key with RMSE = 0.948 with

respect to secret image (a). (e) Recovered secret image using a wrong key.

(f)-(i) Mosaic images created with different tile image sizes 1616, 2424,

3232, and 4040.

Figure 2.7 shows two other experimental results of mosaic image creation,

where the utilized secret images both contain many structures (Figure 2.7(a) is a

stained-glass window painting and Figure 2.7(d) is a document image) and Figures

2.7(b) and 2.7(e) are the target images; Figures 2.7(c) and 2.7(f) are the created

mosaic images with image sizes 88; and Figures 2.7(g) and 2.7(h) are the zoom-out

images of the red square regions of Figures 2.7(c) and 2.7(f), respectively. It can be

seen from Figures 2.7(c) and 2.7(f) that each created mosaic image still has the visual

27

appearance of the pre-selected target image even when the secret image contains

many structural elements. Especially, the secret image of Figure 2.7(d) is a nearly

black-and-white document image, which means that the proposed method can be

utilized for secure transmissions of confidential document images as well. Moreover,

it can be seen from Figures 2.7(g) and 2.7(h) that each generated mosaic image has a

blocky appearance which comes from the mosaic effect because the mosaic image is

composed by changing the color characteristics of the fragments of the secret image

and rearranging the resulting fragments. To show the flexibility of the proposed

method for a user to choose any target image as the reference of a secret image, we

selected one secret image as shown in Figure 2.8 and two target images as shown in

Figures 2.7(b) and 2.7(e), and transformed the former to have the visual appearance of

each of the latter ones. The results are shown in Figures 2.8(b) and 2.8(c) from which

we can see that the created mosaic images look similar to the respective target images

even though the secret image is quite different from the target images in appearance.

(a) (b)

(c) (d)

Figure 2.6. Comparison of results of Lai and Tsai [39] and proposed method. (a)

Secret image. (b) Target image. (c) Mosaic image created from (a) and (b)

by [39] with RMSE = 47.651. (d) Mosaic image created from (a) and (b)

by proposed method with RMSE = 33.935.

28

(a) (b) (c)

(d) (e) (f)

(g) (h)

Figure 2.7. Two other experimental results of mosaic image creation. (a) and (d)

Secret images. (b) and (e) Target images. (c) and (f) Mosaic images

created from (a) and (b), and (d) and (e), respectively, with tile size 88.

(g) and (h) Zoom-out images of red square regions of (c) and (f),

respectively.

However, since the mosaic image is yielded by dividing the secret image into

tile images and transforming their color characteristics to be those of the

corresponding target blocks, the global color characteristics of a transformed tile

image and its corresponding target block are the same but the color distributions of

them may be quite different. Hence, although the mosaic image has the visual

appearance of the target image, the details of each fragment in the mosaic image may

have low similarity to those of its corresponding target block. To measure this mosaic

effect, we adopt the metric of mean structural similarity (MSSIM) to compare the

29

similarity of the created mosaic image and the target image [47]. Figure 2.10(d) shows

the MSSIM values of the created mosaic images with respect to the target images

versus different tile image sizes, where the window size for computing the MSSIM is

set to be the same as the size of the tile image. We can see from Figure 2.10(d) that

the MSSIM value of the created mosaic image with respect to the target image varies

from 0.2 to 0.8, which shows that the similarity of the details of the created mosaic

image to those of the target image is not good enough. But, this is not the main

concern of the proposed method because our goal is to create a globally

visually-similar mosaic image, which contains a secret image of the same size, for the

purpose of secure image transmission.

(a) (b) (c)

Figure 2.8. Created mosaic images with the same secret image. (a) Secret image. (b)

Mosaic image created from (a) and Figure 2.7(b) with RMSE = 26.067. (c)

Mosaic image created from (a) and Figure 2.7(e) with RMSE = 33.102.

A limitation of the proposed method is that the sizes of available target images

should match those of possible input secret images. Specifically, if we have a very

large secret image but only small target images for selections, then any selected target

image should be enlarged before mosaic image creation in order to match the size of

the secret image, and the created mosaic image will become blurred. An experimental

result showing this blurring effect is presented in Figure 2.9.

30

(a) (b) (c)

Figure 2.9. Created mosaic images with the same secret image shown in Fig. 5(a) and

small-sized target images. (a) Created image for target image shown in

Fig. 5(b) with size 768×1024. (b) Created image for target image shown in

Fig. 5(b) but with size reduced to (1/5)×(1/5). (c) Created image for target

image shown in Fig. 5(b) but with size reduced to (1/10)×(1/10).

Furthermore, as shown in Figure 2.10, we have drawn plots of the trends of

various parameters versus different tile image sizes, including those for the

parameters of 1) the RMSE values of the created mosaic images with respect to the

target images; 2) the numbers of required bits embedded for recovering the secret

images; 3) the RMSE values of the recovered secret images with respect to the

original ones; and 4) the MSSIM values of created mosaic images with respect to

target images.

In addition, we have conducted experiments on a set of 12 images from which a

total of 1211 = 132 secret-target image pairs are selected without repetitions, and the

averages of the parameters of the 132 mosaic image creation results were also plotted

in Figure 2.10 as the orange curves for comparisons.

2.6 Security Considerations

In order to increase the security of the proposed method, the embedded

information for later recovery is encrypted with a secret key as seen in Algorithm 2.1.

Only the receiver who has the key can decode the secret image. However, an

eavesdropper who does not have the key may still try all possible permutations of the

tile images in the mosaic image to get the secret image back. Fortunately, the number

of all possible permutations here is n!, and so the probability for him/her to correctly

guess the permutation is p = 1/n! which is very small in value. For example, for the

typical case where we divide a secret image of size 1024768 into tile images with

31

block size 88, the value n is (1024768)/(88) = 12,288. So the probability to guess

the permutation correctly without the key is 1/n! = 1/(12,288!). So breaking the

system by this way of guessing is computationally infeasible.

(a)

(b)

(c)

(d)

Figure 2.10. Plots of trends of various parameters versus different tile image sizes

(88, 1616, 3232) with input secret images shown previously and

coming from a large dataset. (a) RMSE values of created mosaic images

with respect to target images. (b) Numbers of required bits embedded for

recovering secret images. (c) RMSE values of recovered secret images

with respect to original ones. (d) MSSIM values of created mosaic images

with respect to target images.

32

In fact, we can view the addressed problem here as a square jigsaw puzzle

problem, which is to reconstruct a complete image from a set of unordered square

puzzle parts. Recently, many methods have been proposed to try to solve this problem

automatically by utilizing measures of feature-based similarity [48],

dissimilarity-based compatibility [49], prediction-based compatibility [50], etc. But

these state-of-art methods can only solve partially problems with limited numbers of

puzzle parts automatically. Also, the jigsaw puzzle problem has been proved to be

NP-complete [51], which means that we cannot solve the problem in polynomial time.

In fact, the time complexity is n!  2 (/)nn n e as mentioned in [51], which is too

big a number as well for our case here with n = 12,288.

However, when n is much smaller, say smaller than 1000, some compatibility

metrics may be utilized to solve the square jigsaw problem [50]. So, a large value of n

should be used to increase the security of the proposed method. In addition, the

addressed puzzle problem of the proposed method is more complicated than the

conventional square jigsaw puzzle problem because the color characteristics of the

puzzle parts have been changed, i.e., adjacent puzzle parts have different color

appearances, meaning that a greedy search using color similarities between originally

adjacent fragments for image reconstruction as done in conventional manual

reconstruction techniques is infeasible, either.

Furthermore, even if one happens to guess the permutation correctly, such as the

correctly guessed permutations shown in Figure 2.11, he/she still does not know the

correct parameters for recovering the original color appearance of the secret image

because such parameter information for color recovery is encrypted as a bit stream

using a secret key. Even so, it still should be assumed, in the extreme case, that he/she

will observe the content of the mosaic image with a correct permutation, and try to

figure useful information out of it. For example, an attacker might analyze the spatial

continuity of the mosaic image in order to estimate a rough version of the secret

image. To increase the security of the proposed method against this type of attack, one

possible way to is to use the key to randomize the important part of a secret image,

such as the positions of the pixels in the secret image, before transforming the secret

image into a mosaic image by the proposed method. Consequently, only authorized

users with the key can know the correct secret image while an attacker cannot.

33

(a) (b)

Figure 2.11. Correct permutations of tile images in the mosaic image without

recovering the original color characteristics. (a) The correct permutation of

tile images of Figure 1.1(c). (b) The correct permutation of tile images of

Figure 2.7(c).

2.7 Summary

A new image data hiding method has been proposed, which not only can be used

for secure keeping of secret images but also can be adopted as a new option to solve

the difficulty of hiding images with huge data volumes into cover images. By the use

of proper pixel color transformations as well as a skillful scheme for handling

overflows and underflows in the converted values of the pixels’ colors,

secret-fragment-visible mosaic images with very high visual similarities to

arbitrarily-selected target images can be created with no need of a target image

database; and the original secret images can be recovered nearly losslessly from the

created mosaic images. Good experimental results have shown the feasibility of the

proposed method. Future studies may be directed to applying the proposed method to

images of color models other than the RGB.

34

Chapter 3

A New Data Hiding Technique via Encrypted

Images by Image Encryptions and Spatial

Correlation Comparisons

3.1 Introduction

Nowadays, images from various sources are frequently utilized and transmitted

through the Internet for various applications, such as online personal photograph

albums, confidential enterprise archives, document storage systems, medical imaging

systems, military image databases, etc. These images usually contain private or

confidential information so that they should be protected from leakages during

transmissions. Therefore, some methods jointing data hiding and encryption

techniques have been proposed [52]-[54], in which a part of the cover media is

encrypted and the other part is used for data embedding. Such methods, however,

reveal undesirably the content of the second part of the cover media. To provide

higher security, Zhang [55] proposed a method that can prevent people, including the

data hider, from realizing the cover media content before or after the data embedding

process is performed. Specifically, the cover image is encrypted entirely, instead of

partially, by the content owner using a key, and the result is then delivered to the data

hider for data embedding. Also, the original cover image can be recovered after the

embedded data are extracted. Hong et al. [56] improved Zhang’s method [55] by

using a side-match scheme based on uses of spatial correlations of adjacent blocks.

Either [55] or [56] embeds a message into an encrypted image by flipping the

three least significant bits (LSBs) of a portion of the pixels of each image block to

embed a message bit. Data extraction and image recovery are achieved by using

spatial correlations. However, such a message embedding scheme suffers from a

problem which occurs when the cover image is a flat image, i.e., when the cover

image has lots of smooth regions with the characteristic that the most significant bits

(MSBs) of the pixels in each of such regions are all the same.

In this study, the LSBs of each block pixel in an encrypted image are encrypted

further, rather than flipped, to embed a message bit, thereby solving the

35

aforementioned problem encountered in [55] and [56] which is caused by flat cover

images. Also, the spatial similarity of the original LSBs of the pixels in each block is

broken by the encryption function. Moreover, for each pixel of a block in the

encrypted image, four LSBs, instead of three, are utilized for message embedding, and

a side-match scheme that utilizes the spatial correlations of both recovered and

unrecovered blocks are proposed to decrease the bit-extraction error rate, in contrast

with [56] which utilizes the spatial correlations of recovered blocks only.

3.2 Review of Existing Methods

The reversible data hiding scheme proposed in Zhang [55] for grayscale images

includes three phases: 1) image encryption, 2) message embedding, and 3) message

extraction and image recovery. In the first phase, a cover image I is encrypted by

performing the exclusive-OR (XOR) operation  on all bits and their corresponding

random bits generated by the use of an encryption key Ke and a random number

generator PRe. Specifically, by denoting the value of each pixel Pi,j in I by pi,j, each bit

of Pi,j by bi,j,k, and the generated random bit corresponding to bi,j,k by ri,j,k, the

encryption of I is conducted by replacing bi,j,k by bi,j,k' = bi,j,kri,j,k for all i, j, and k,

resulting in an encrypted image I' with pixels pi,j' and bits bi,j,k'.

In the message embedding phase, I′ is divided into blocks Bm,n of size ss, with

each block used to carry a bit. Specifically, firstly each pixel Pi,j′ in Bm,n is assigned

into two random sets S0 and S1 using a data-hiding key Kh and another random number

generator PRh. Then, if the bit to be embedded into Bm,n is 0, the three LSBs bi,j,k′ of

each pixel Pi,j′ in S0 are flipped to be their complements , ,i j kb  , resulting in a new

pixel Pi,j′′ with value pi,j''; else, the three LSBs of each pixel Pi,j′ in the other random

set S1 are flipped. The resulting image is denoted by I′′.

In the last phase  message extraction and image recovery, firstly I′′ is

decrypted to obtain a decrypted image I′′′ by performing an XOR operation  on

every bit bi,j,k′′ in I'' and the corresponding random bit ri,j,k re-generated by the

encryption key Ke. By denoting the resulting decrypted pixels and decrypted bits as

Pi,j′′′ and bi,j,k′′′, respectively, it can be seen that the five MSBs of Pi,j′′′ in I′′′ are

identical to the corresponding ones of the original pixel Pi, j in I but the three LSBs are

not. Next, by using the data-hiding key Kh, the random sets S0 and S1 may be

re-generated for each decrypted block Bm,n′ of I′′′. Then, the three LSBs of the pixels

36

in S0 and those in S1 are both flipped to form blocks Hm,n,0 and Hm,n,1, respectively. It

can be figured out that one of Hm,n,0 and Hm,n,1 is identical to the original block Bm,n in

I, and the other is an interfered version of Bm,n since all the three LSBs of the latter

have been flipped. Because of the spatial correlations of pixels in natural images, the

original block is usually smoother than the interfered version. So the embedded bit

can be extracted, as done in [55], by using a block smoothness measure f as follows:

1 1

, 1, , 1 1, , 1

2 2

() / 4
s s

u v u v u v u v u v

u v

f p p p p p
 

   

 

     , (8)

where pu,v denotes the value of a pixel Pu,v in the block. Specifically, by denoting the

smoothness values calculated of Hm,n,0 and Hm,n,1 as fm,n,0 and fm,n,1, respectively, bit

extraction is conducted by the rule: if fm,n,0 < fm,n,1, a bit 0 is extracted and Hm,n,0 is

taken as the original block; else, a bit 1 is extracted and Hm,n,1 is taken as the original

block.

The reversible data hiding scheme proposed in Hong et al. [56] is the same as

described above except that a different smoothness measure as follows with a better

effect is used:

1 1

, , 1 , 1,

1 1 1 1

 +
s s s s

u v u v u v u v

u v u v

f p p p p
 

 

   

     . (9)

Moreover, a side-match scheme is adopted, using additionally the spatial correlations

of adjacent recovered blocks to reduce the error rate of bit extraction.

A problem with [55] occurs when the five MSBs of the pixels in a block are all

identical  a case encountered when the cover image is flat. The problem is: the

smoothness measures fm,n,0 and fm,n,1 computed of Hm,n,0 and Hm,n,1, respectively,

become the same in such a case, as proved below, and the resulting bit extraction will

so be no better than random guesses, i.e., the probability to extract a correct bit is

about 1/2.

Let the five MSBs of each pixel Pi,j in the original block Bm,n be denoted

identically as b8~b4 under the assumption of image flatness. Also, let the pixels in

Hm,n,0 and Hm,n,1 be denoted as Pu,v,0 and Pu,v,1 with values pu,v,0 and pu,v,1, respectively.

Without loss of the generality, let Hm,n,0 be the one identical to the original block Bm,n

and Hm,n,1 the interfered one. Thus, pu,v,0 in Hm,n,0 are all identical to the corresponding

pixel values pu,v of Bm,n, and the three LSBs of pu,v,1 in Hm,n,1 are the flipped versions

37

of pu,v in Bm,n. That is, the five MSBs of each pixel in Hm,n,0 and Hm,n,1 are identically

b8~b4, respectively; and if the three LSBs of each pixel Pu,v,0 in Hm,n,0 are bu,v,3, bu,v,2,

and bu,v,1, then the three LSBs of the corresponding pixel Pu,v,1 in Hm,n,1 are just , ,3u vb ,

, ,2u vb , and , ,1u vb . Note that bu,v,k + , ,u v kb = 1. Now, the block smoothness values fm,n,0

and fm,n,1 can be computed respectively according to (8), leading the following

derivation:

fm,n,1 =
1 1

, ,1 1, ,1 , 1,1 1, ,1 , 1,1

2 2

() / 4
s s

u v u v u v u v u v

u v

p p p p p
 

   

 

   

=  
1 1 3

(1)

, , 1, , , 1, 1, , , 1,

2 2 1

/ 4 2
s s

k

u v k u v k u v k u v k u v k

u v k

b b b b b
 



   

  

     
 

=
1

2

s

u






1

2

s

v




 |

3

1k
 [(1  bu,v,k)  ((1  bu1,v,k) + (1  bu,v1,k) + (1  bu+1,v,k) + (1 

bu,v+1,k))/4]
(1)2 k |

=  
1 1 3

(1)

, , 1, , , 1, 1, , , 1,

2 2 1

/ 4 2
s s

k

u v k u v k u v k u v k u v k

u v k

b b b b b
 



   

  

      

=
1 1

, ,0 1, ,0 , 1,0 1, ,0 , 1,0

2 2

() / 4
s s

u v u v u v u v u v

u v

p p p p p
 

   

 

    = fm,n,0. (10)

The above-mentioned problem is also found in [56], i.e., the block smoothness

values fm,n,0′ and fm,n,1′ computed according to (9) are equal when the five MSBs of the

pixels in the original block Bm,n are all identical. The proof, also based on the equality

bu,v,k + , ,u v kb = 1, is similar to (10) and so omitted.

Figure 3.1(a) shows a flat image with 88 blocks where the pixel values of each

block are reassigned artificially to be all the same. Figure 3.1(b) shows the

incorrectly-recovered blocks (marked in white) yielded by [55] with an error rate of

50.81%, and Figure 3.1(c) shows those yielded by [56] with an error rate of 44.53%.

In contrast, the proposed method (described in the next section) yields a result as

shown in Figure 3.1(d) with an error rate of 0%, showing the effectiveness of the

proposed method. Instead of using artificially-created images, Figures 3.1(e) through

3.1(h) shows the recovery results using an original X-ray image, Figure 3.1(e), as

input, where Figure 3.1(f) shows the result yielded by [55] with an error rate of

16.53%, Figure 3.1(g) shows that yielded by [56] with an error rate of 14.99%, and

38

Figure 3.1(h) shows that yielded by the proposed method with an error rate of 0%

again.

(a) (b) (c)

(d) (e) (f)

(g) (h)

Figure 3.1. Recovery results showing problems of [55] and [56] with block size 88,

incorrectly-recovered blocks marked as white, and error rate denoted by

err. (a) Input flat X-ray image. (b) Result with err = 50.81% yielded by

[55]. (c) Result with err = 44.53% yielded by [56]. (d) Result with err =

0% yielded by proposed method. (e) Input original image of (a). (f) Result

with err = 16.53% yielded by [55]. (g) Result with err = 14.99% yielded

by [56]. (h) Result with err = 0% yielded by proposed method.

39

3.3 Proposed Method

3.3.1 Message embedding

In the proposed method, the cover image I is encrypted using an encryption key

Ke as done in [55], and each block Bm,n of the resulting encrypted image I′ is used to

carry a message bit as well. However, unlike [55] and [56] which flip the three LSBs

of each involved pixel in Bm,n, four LSBs are randomized to increase the probability

for distinguishing original blocks from altered (interfered) ones using spatial

correlations while the visual appearance of the decrypted image is still kept good

enough. Next, four random bits ri,j,k′ corresponding to the four LSBs bi,j,k' of each

pixel Pi,j′ in Bm,n are generated using the data-hiding key Kh; and if a bit to be

embedded in Bm,n is 0, then the four LSBs bi,j,k' of each pixel Pi,j' in Bm,n are replaced

by bi,j,k'' = bi,j,k'ri,j,k', resulting in the new pixel value pi,j′′; else, pi,j'' is taken to be the

old value pi,j′ of Pi,j. Let the resulting encrypted image be denoted as I′′. The overall

effect is: if the embedded bit in a block is 0, then the four LSBs of each block pixel

are encrypted twice by the keys Ke and Kh; else, once by the key Ke only. So, the

embedded bit in each block may be extracted by decrypting the block content with

keys Ke and Kh and measuring the spatial correlations of the block to decide if the

block has been encrypted once or twice as described next.

3.3.2 Message extraction and image recovery

To extract the message embedded in the encrypted image I′′, firstly the key Ke is

used to decrypt image I′′ to obtain another, denoted by I′′′, whose pixels’ four MSBs

are all the same as those of the pixels of the original cover image I. Next, the four

corresponding random bits ri,j,k′ are re-generated using the key Kh for the four LSBs

bi,j,k''' of each pixel Pi,j′′′ in each block Bm,n' of size ss in I''', and XOR operations are

applied to bi,j,k''' and ri,j,k′ to form another block Hm,n,0. Also, Bm,n′ itself is regarded as

a contrastive block Hm,n,1. It can be figured out that one of Hm,n,0 and Hm,n,1 is the

original cover block Bm,n; and the other is a scrambled version of Bm,n because the

four LSBs of this block’s pixels have been encrypted for the second time using the

key Kh. To decide which one is Bm,n, the smoothness measures of Hm,n,0 and Hm,n,1 can

be utilized because: if the embedded bit is 0, then since the original cover block is

encrypted twice by the keys Ke and Kh, the decrypted block Hm,n,0 using the same keys

Ke and Kh will become the original block, which usually is smoother than the

40

scrambled version Hm,n,1; and if the embedded bit is 1, then since the original cover

block is encrypted only once by the key Ke, the decrypted block Hm,n,1 using the same

key Ke will become the original block, which is usually smoother than the scramble

version Hm,n,0 as well. Moreover, to compute the block smoothness, we adopt the

measure used in [56] described by (9), but, unlike the side-match scheme used in [56]

which utilizes only the recovered block to compute the smoothness, a new side-match

scheme using both unrecovered and recovered blocks is proposed.

In more detail, for each block Bx,y′ of the four blocks adjacent to each block Bm,n'

in I''', if Bx,y′ is unrecovered yet, then the values of fm,n,0′ and fm,n,1′ computed

according to (9) are augmented in the following way:

 set , ,0 , ,0 , ,0 , ,0 , ,0 , ,1min(,)m n m n m n x y m n x yf f H H H H          ;

 set , ,1 , ,1 , ,1 , ,0 , ,1 , ,1min(,)m n m n m n x y m n x yf f H H H H         ,

where Hx,y,q' with q = 0 or 1 is generated from Bx,y' by the same way as Hm,n,p' with p =

0 or 1 is generated from Bm,n' using the key Kh; and as illustrated in Figure 3.2, |Hm,n,p'

 Hx,y,q'| with p, q = 0, 1 is defined by

 , , , , , ,
1

s

m n p x y q c p c q
c

H H b b


      ,

with bc,p denoting the value of a border pixel of block Hm,n,p′ adjacent to block Hx,y,q′;

and bc,q′ denoting the value of a border pixel of block Hx,y,q′ adjacent to block Hm,n,p′.

Contrarily, if the adjacent block Bx,y′ of Bm,n′ are recovered as Hx,y,r′ already, then fm,n,0′

and fm,n,1′ are augmented in the following way:

 set , ,0 , ,0 , ,0 , ,m n m n m n x y rf f H H       ;

 set , ,1 , ,1 , ,1 , ,m n m n m n x y rf f H H       .

Hm,n,0′
Hx,y,1′

(Hm+1,n,1′)

b1,0

b2,0

b3,0

b4,0

b1,1′

b2,1′

b3,1′

b4,1′

Figure 3.2. Illustration of block contents for computing |Hm,n,0'  Hx,y,1'| for 44

blocks, where currently-processed adjacent block of Bm,n′ is Bm+1,n′.

41

Since blocks adjacent to Bm,n′ are all used to compute the smoothness no matter

whether they are recovered or not, the resulting bit-extraction error rate will be

smaller than other schemes not doing so. Figure 3.3 includes some results showing

this effect for 88 blocks with a comparison with that yielded by [56].

(a) (b)

(c) (d)

Figure 3.3. Recovery results showing effects of using both recovered and unrecovered

blocks for measuring smoothness of 88 blocks, with

incorrectly-recovered blocks marked as white, and error rate denoted by

err. (a) Result with err = 2.66% yielded by [56]. (b) Result with err =

0.46% yielded by proposed method without using side-match. (c) Result

with err = 0.27% yielded by proposed method using only recovered blocks

in side-match scheme. (d) Result with err = 0.22% yielded by proposed

method using both recovered and unrecovered blocks in side-match

scheme.

42

3.4 Experimental Results

Four 512512 test images, Figures 3.4(a) through 3.4(d), were used in the

experiments, and the results of the proposed method are compared with those yielded

by [55] and [56], as illustrated in Figure 3.5 which includes plots of the trends of

bit-extraction error rates vesus different block sizes ss. It is seen from Figures 3.5(a)

through 3.5(d) that the error rates yielded by the proposed method are much smaller

than those yielded by [55] and [56]. For example, for the cover image Figure 3.4(a)

with block size 88, Figure 3.5(a) shows that the bit-extraction error rates using [55]

and [56] are 12.87% and 10.21%, respectively; and that yielded by the proposed

method is 0.07%. Moreover, Figure 3.5(a) shows that the error rate yielded by the

proposed method is zero when s is larger than 12, but those yielded by both [55] and

[56] are still larger than zero when s = 32.

(a) (b)

(c) (d)

Figure 3.4. Four test images of size 512512.

Additionally, we compare the execution time of the proposed method with that

of [55] and [56] in message embedding. As mentioned previously in Sections 3.2 and

3.3.1, to embed a message bit, three LSBs of a portion of the pixels of each image

43

block are flipped in [55] and [56] and four LSBs of each block pixel are encrypted

further, respectively. Therefore, the execution time of the proposed method and those

of [55] and [56] for message embedding are all very short since the operations involve

only encryptions and flippings, respectively. For example, for the cover image of

Figure 3.4(a), Figure 3.6 shows a comparison of the execution time for message

embedding required by the proposed method with those required by [55] and [56]

versus different block sizes, where the execution times of them are all very fast (about

0.1 ~ 0.15s).

(a)

(b)

(c)

Figure 3.5. Comparisons of bit-extraction error rates yielded by proposed method

with those yielded by [55] and [56] versus different block sizes. (a) Error

rates with cover image Figure 3.4(a). (b) Error rates with cover image

Fig. Figure 3.4(b). (c) Error rates with cover image Figure 3.4(c). (d)

Error rates with cover image Figure 3.4(d).

44

(d)

Figure 3.5. Comparisons of bit-extraction error rates yielded by proposed method with

those yielded by [55] and [56] versus different block sizes. (a) Error rates

with cover image Figure 3.4(a). (b) Error rates with cover image Fig.

Figure 3.4(b). (c) Error rates with cover image Figure 3.4(c). (d) Error

rates with cover image Figure 3.4(d) (continued).

Figure 3.6. Comparison of execution time for message embedding required by

proposed method with those required by [55] and [56] versus different

block sizes.

Also, experiments for comparisons of the effects of using three or four LSBs for

data embedding have also been conducted. Results for 88 blocks are shown in Figure

3.7, where the number of used LSBs is denoted by NL. Specifically, the methods [55]

and [56] do not perform better when NL = 4 for image Figure 3.4(a) as can be seen

from Figures 3.6(e) through 3.6(h). The same conclusions can be drawn for other

images. Contrarily, Figures 3.6(c) and 3.6(d) show that the proposed method performs

better as NL is enlarged from 3 to be 4.

45

(a) (b) (c)

(d) (e) (f)

(g) (h)

Figure 3.7. Recovery results showing effects of using different numbers NL of LSBs

for 88 blocks with incorrectly-recovered blocks marked as white and

error rate denoted by r. (a) Cover image. (b) Decrypted image with

message embedded. (c) Result with r = 0.90% yielded by proposed method

for NL = 3. (d) Result with r = 0.07% yielded by proposed method for NL =

4. (e) Result with r = 12.87% yielded by [55] for NL = 3. (f) Result with r

= 29.27% yielded by [55] for NL = 4. (g) Result with r = 10.21% yielded

by [56] for NL = 3. (h) Result with r = 27.76% yielded by [56] for NL = 4.

Furthermore, the average distortion of the decrypted image with respect to the

original image by using the proposed method can be computed, which is described as

follows. Firstly, a decrypted pixel in the decrypted image has two possibilities: (1)

46

correct decryption  the same as the original pixel; or (2) incorrect decryption  a

scrambled version of the original pixel, where the possibility for each case is 1/2. If

the decrypted pixel is of the first case, then the average squared difference between

the decrypted gray value and the original one is zero; else, the average squared

difference between the decrypted gray value and the original one is
15

2

0

1
77.5

16 i

i


 ,

where i respresents the difference between the decrypted gray value and the original

one. The value of the PSNR of the decrypted image with respect to the original image

is approximately

 PSNR =
2

10

255
10log 32.25

(1 / 2) 0 (1 / 2) 77.5


  
 dB.

Hence, the average PSNR value of the decrypted image with respect to the original

image by using the proposed method is about 32.25 dB, which is not so good as those

of [55] and [56] with the average PSNR value of 37.9 dB. However, the proposed

method significantly reduces the bit-extraction error rate and solves the flat image

problem without keeping the spatial similarity of the LSBs of the pixels in each block

as mentioned previously.

3.5 Summary

A new data hiding method via encrypted images based on double image

encryptions and refined spatial correlation comparison has been proposed, which does

not have the weakness of two existing methods [55] and [56] in handling flat cover

images. The weakness comes from the way of flipping the three LSBs of each pixel in

part of each block in an encrypted image to embed a message bit. The proposed

method improves this by encrypting the four LSBs of each pixel of every block

instead of flipping three of them to embed a bit. Also, a refined side-match scheme

utilizing the spatial correlations of both recovered and unrecovered blocks has been

proposed to decrease the bit-extraction error rate, in contrast with Hong et al. [56]

which utilizes only those of recovered blocks. Experimental results show the

feasibility of the proposed method. Future studies may be directed to applying the

proposed method for various information hiding purposes.

47

Chapter 4

A New Data Hiding Technique via Revision

History Records on Collaborative Writing

Platforms

4.1 Introduction

Recently, more and more collaborative writing platforms are available, such as

Google Drive, Office Web Apps, Wikipedia, etc. On these platforms, a huge number

of revisions generated during the collaborative writing process are recorded.

Furthermore, many people work collaboratively on these platforms. Thus, these

platforms are very suitable for data hiding applications, such as covert communication,

secret data keeping, etc. It is desired to propose a new method which is useful for

covert communication or secure keeping of secret messages on collaborative writing

platforms However, the above-mentioned data hiding methods via text [29]-[38] in

Section 1.3.3 can only be applied to documents with single authors and single revision

versions, meaning that they are not suitable for hiding data on collaborative writing

platforms. Therefore, the goal of this study is to propose a new data hiding method

which can hide data into documents created on collaborative writing platforms. In

more detail, a new data hiding method is proposed, which simulates a collaborative

writing process to generate a fake document, consisting of an article and its revision

history, as a camouflage for message bit embedding. As shown in Figure 4.1, with the

input of an article and a secret message, the proposed method utilizes multiple virtual

authors to collaboratively revise the article, generating artificially a history of earlier

revisions of the article according to the secret message. An ordinary reader will

consider the resulting stego-document as a normal collaborative writing output, and

cannot realize the existence of the secret message hidden in the document.

48

Cover document Simulate the real collaborative

writing process

Secret message
Virtual authors

Stego-document

Figure 4.1. Basic idea of proposed method that generates a revision history of a

stego-document as a camouflage for data hiding.

Moreover, the previously-mentioned linguistic methods [35]-[38] in Section

1.3.3 use written natural languages to generate stego-documents and can produce

more innocuous stego-texts than other data hiding methods, but an issue common to

them is how to find a nature way for simulating the writing process and how to obtain

large-volume written data automatically. Hence, another goal of this study is to find a

nature way to generate the revision history and to obtain large-volume collaborative

writing data automatically. In recent years, some researches have been conducted to

analyze the revision history data of Wikipedia articles for various natural language

processing applications [57]-[63], such as spelling corrections, reformulations, text

summarization, user edits classification, multilingual content synchronization, etc. In

addition to being useful for these applications, the collaboratively written data in

Wikipedia are also very suitable, as found in this study, for simulating the

collaborative writing process for the purpose of data hiding since it is the largest

collaborative writing platform nowadays.

In [64], Liu and Tsai proposed a data hiding method via Microsoft Word

documents by the use of the change tracking function, which embeds a secret message

by mimicking a pre-draft document written by an author with an inferior writing skill

and encoding the secret message by choices of degenerations in the writing. Although

they used three databases for degenerations, the sizes of them are quite small when

compared to that of the database constructed from Wikipedia which we make use for

data embedding in this study. It is noted by the way that a data hiding method can, as

well known, embed more bits by making use of a larger database. Furthermore, in [64]

a stego-document is generated by only two virtual persons and the change tracking

data are made by the one with a better writing skill. This scenario is insufficient for

simulating a normal collaborative writing process. Therefore, in this study we propose

49

a new framework that uses the revision-history data from Wikipedia and simulates

real collaborative writing processes to hide secret messages. Four characteristics of

collaborative writing processes are analyzed and utilized for message hiding,

including the author of each revision, the number of corrected word sequences, the

content of the corrected word sequences, and the word sequences replacing the

corrected ones. The proposed method is useful for covert communication or secure

keeping of secret messages on collaborative writing platforms.

4.2 Basic Idea of Proposed Method

Collaborative writing means an activity involving more than one author to

create an article cooperatively on a common platform. The purposes of establishing a

collaborative writing platform includes knowledge sharing, project management, data

keeping, etc. Many collaborative writing platforms are available, such as Google

Drive, Office Web Apps, Wikipedia, etc., which record revisions generated during the

collaborative writing process. In general, the recorded information of a revision

includes: 1) the author of the revision, 2) the time the revision was made, and 3) the

content of the revision. For example, Figure 4.2 shows a screenshot of the revision

history of an article about computer vision on Wikipedia.

Figure 4.2. A screenshot of the revision history of an article about computer vision on

Wikipedia.

To achieve the goal of creating camouflage revisions in collaborative writing for

message hiding in this study, we analyze the existing revision-history data of articles

on Wikipedia, which is the largest collaborative writing platform on the Internet

currently in the world. The aim is to get real and large collaborative writing data

contributed by people all over the world and use them to create more realistic revision

50

histories to enhance the resulting effect of data embedding. However, since the

collaborative writing process is very complicated, it is hard to find a unified model to

simulate it. Many different types of modifications may be made during the

collaborative writing process [57], [59], such as error corrections, paraphrasing,

factual edits, etc. Moreover, different languages usually require different models to

represent due to their distinctive grammatical structures. Therefore, in order to get

useful collaborative writing data automatically from the revision history data on

Wikipedia without building models manually and to generalize a method that can be

applied to multiple languages, we assume that only word sequence corrections occur

during a revision. Some characteristics in collaborative writing based on this

assumption for data embedding are identified, which will be discussed in the

following. It is noted that various text articles, not only in English but also in other

languages, can be utilized as cover media in this study.

The revision history of each article in Wikipedia is stored in a database, and one

can recover any previous revision version of the article by an interface provided on

the site. As an illustration, Figure 4.3 shows a screenshot of two consecutive revisions

of an article about computer vision on Wikipedia. For this study, we have collected a

large set of revision-history data from Wikipedia, and in the proposed method we

mine this set to get useful information about word usages in the revisions. Then, we

use the acquired information to simulate a collaborative writing process, starting from

a cover article; and generate a stego-article with a sequence of revisions according to

the secret message and a secret key. The resulting stego-document, including the

stego-article and the revision history, looks like a work created by a group of real

authors, achieving an effect of camouflage. In contrast, we call the original article

with an initially-empty history a cover document in the sequel.

More specifically, the proposed method includes three main phases as shown in

Figure 4.4: 1) construction of a collaborative-writing database; 2) secret message

embedding; and 3) secret message extraction. In the first phase, a large number of

articles acquired from Wikipedia are analyzed and useful collaboratively written data

about word usages are mined using a natural language processing technique. The

mined data then are used to construct a database, called the collaborative writing

database, denoted as DBcw subsequently. In the second phase, with the input of a

cover document, a secret message, and a secret key, a stego-document with a fake

revision history is generated by simulating a real collaborative writing process using

51

DBcw. The revisions in the history are supposed to be made by multiple virtual authors;

and the following characteristics of each revision are decided by the secret message:

1) the author of the revision; 2) the number of changed word sequences of the revision;

3) the changed word sequences in the revision; and 4) the word sequences selected

from the collaborative writing database DBcw, which replace those of 3), called the

replacing word sequences in the sequel. And in the third phase, an authorized person

who has the secret key can extract the secret message from the stego-document, while

those who do not have the key cannot do so. They even could not realize the existence

of the secret message because the secret message is disguised as the revision history

in the stego-document. Note that the second and third phases can be applied on any

collaborative writing platforms, not just on Wikipedia; Wikipedia is merely utilized in

the first phase to construct the collaborative writing database DBcw in this study.

Figure 4.3. A screenshot of two consecutive revisions of an article about computer

vision on Wikipedia.

Articles in

Wikipedia

1. Collaborative writing database construction:

mining collaborative writing data in Wikipedia

Collaborative

writing database

Cover document 2. Secret message embedding: simulating a real

collaborative writing process

Secret message

Stego-document with

revision history

3. Secret message extraction: extracting secret

message from revision history information

Figure 4.4. Flow diagram of the proposed method.

52

4.3 Data Hiding via Revision History

In this section, the details of the proposed method for using the analyzed

characteristics of collaborative writing to hide secret messages are described in the

following, where the first part is collaborative writing database construction, the

second part is secret message embedding, and the final part is secret message

extraction.

4.3.1 Collaborative writing database construction

To construct the aforementioned collaborative writing database DBcw, we try to

mine the revision data collected from Wikipedia. There were about 4.2 million articles

in the English Wikipedia in May 2013, which is a very large knowledge repository;

therefore, it is suitable to use it as a source for constructing the database DBcw desired

in the study. Specifically, at first we downloaded part of the English Wikipedia XML

dump with the complete revision histories of all the articles on August 3, 2011. Then,

we mine the useful collaborative writing data from the downloaded data set under the

assumption that only word sequence corrections will occur during a revision.

As illustrated in Figure 4.5, each downloaded article P has a set of revisions {D0,

D1, …, Dn} in its revision history, where a newer revision Di has a smaller index i

with D0 being the latest version of the article. For every two consecutive revisions Di

and Di–1, we find all the correction pairs between Di and Di–1, each denoted as <sj, sj′>,

where sj is a word sequence in revision Di and was corrected to become another,

namely, sj′, by the author of revision Di–1. Then, we collect all correction pairs so

found to construct the database DBcw. For example, assume Di = “National Chia Tang

University” and Di–1 = “National Chiao Tung University” as shown in Figure 4.6.

Then, the correction pair <s1, s1′> = <“Chia Tang”, “Chiao Tung”> is generated and

included into DBcw.

DiDi–1D0 Dn

sj' sj

...

...

...

...

new word sequence original word sequence

changed word sequence replacing word sequence

Construction order of collaborative writing database (←)

Revision generation order (→)

(<sj, sj' > is a correction pair)

Figure 4.5. Illustration of used terms and notations.

53

Figure 4.6. An example of found correction pairs between Di and Di–1

Moreover, about the properties of correction pairs, it was observed that if the

context of a word sequence sj in revision Di is the same as that of a word sequence sj′

in revision Di–1 (that is, if the preceding word of sj is the same as that of sj′ and the

succeeding word of sj is the same as that of sj′ as well), then <sj, sj′> is a correction

pair. Accordingly, a novel algorithm is proposed in this study for finding

automatically all of the correction pairs between every two consecutive revisions for

inclusion in DBcw. The algorithm is an extension of the longest common subsequence

(LCS) algorithm [65]. The details are described in Algorithm 4.1.

Algorithm 4.1. Finding correction pairs.

Input: two consecutive revisions Di and Di–1 in the revision history of an

article P.

Output: the correction pairs between Di and Di–1.

Steps:

Stage 1  finding the longest common subsequence.

Step 1. (Splitting revisions into word sets) Split Di and Di–1 into two sets of words, W

= {w1, w2, …, wn} and W′ = {w1′, w2′, …, wm′}, respectively.

Step 2. (Constructing a counting table by dynamic programming) Construct an nm

counting table T to record the lengths of the common subsequences of W and

W' as follows.

(a) Initialize all elements in table T to be zero.

(b) Compute the values of table T from the upper left and denote the

currently-processed entry in T by T(x, y) with x = 1 and y = 1 initially.

(c) If the content of wx is identical to that of wy′, then let T(x, y) = T(x – 1, y – 1)

+ 1; else, let T(x, y) = max (T(x – 1, y), T(x, y – 1)).

54

(d) If x is not larger than n, then let x = x + 1 and go to Step 2c); else, if y is not

larger than m, then let x = 1 and y = y + 1 and go to Step 2c); else, regard

table T as being filled up and continue.

Step 3. (Finding the longest common subsequence) Apply a backtracking procedure

to table T, starting from T(m, n), to find the longest common subsequence L =

{l1, l2, …, lt}, where each element li in L is a word common to W and W'.

Stage 2  finding the correction pairs.

Step 4. (Finding the correction pairs) Starting from the first element l1 of L with the

currently-processed element in L being denoted by lp, find the correction

pairs as follows.

(a) If the word sequence sj in Di with its preceding and succeeding words being

lp and lp+1, respectively, is not empty and if the word sequence sj′ in Di–1

with the same context condition is not empty, either, then take <sj, sj′> as a

correction pair.

(b) Increment p by 1 and go to Step 4) until p > t.

We run Algorithm 4.1 for every two consecutive revisions of all the articles

downloaded from Wikipedia to obtain a large set of correction pairs and write them

into the database DBcw. Furthermore, we count the total number Ncp of times that each

correction pair CP is so obtained, and call the number Ncp the correction count of CP.

The correction counts are also kept in the database DBcw for use in the proposed data

hiding process.

As a summary, we use a record in the database DBcw to keep the following

information about a correction pair <sj, sj′>: 1) an original word sequence sj; 2) a new

word sequence sj′; and 3) the correction count Ncp of the pair. Moreover, we define a

chosen set of a word sequence s' in DBcw to be the one which include all the

correction pairs <s, s'> with s' as their identical new word sequences. For example,

Table 4.3 (shown in Section 4.4) shows a chosen set of the word sequence “such as.”

4.3.2 Secret message embedding

In the phase of message embedding with a cover document D0 as the input, the

proposed system is designed to generate a stego-document D′ with consecutive

revisions {D0, D1, D2, …, Dn} by producing a previous revision Di from the current

revision Di–1 repeatedly until the entire message is embedded, as shown in Figure 4.5

55

where the direction of revision generation is indicated by the green arrows. The

stego-document D′ including the revision history {D0, D1, D2, …, Dn} then is kept on

a collaborative writing platform, which may be Wikipedia or others. To simulate a

collaborative writing process more realistically, we utilize the four aforementioned

characteristics of revisions to “hide” the message bits into the revisions sequentially: 1)

the author of the previous revision Di, 2) the number of changed word sequences in

the current revision Di–1, 3) the changed word sequences in the current revision Di–1,

and 4) the replacing word sequences in the previous revision Di, as described in the

following.

(1) Encoding the authors of revisions for data hiding.

We encode the authors of revisions to hide message bits in the proposed method.

For this, at first we select a group of simulated authors, with each author being

assigned a unique code a, called author a. Then, if the message bits to be embedded

form a code aj, then we assign author aj to the previous revision Di as its author to

achieve embedding of message bits aj into Di. For example, assume that four authors

are selected and each is assigned a unique code a as shown in Figure 4.7, respectively.

If the message bits aj to be embedded is “01,” then Jessy with author code “01” is

selected to be the author of the revision Di. Moreover, every revision of D0 through Dn

will be assigned an author according to the corresponding message bits, and so an

author can be assigned to conduct more than one revision or reversely no revision in

the generated revisions.

Peter
Author “00”

Jessy
Author “01”

Joyce
Author “10”

Kevin
Author “11”

Message bits = “01011011...”

Di

Figure 4.7. Illustration of encoding authors of revisions for data hiding.

(2) Using the number of changed word sequences for data hiding.

In the process of generating the previous revision Di from the current one Di–1,

we select some word sequences in Di–1 and changed them into other ones in Di. It is

56

desired to use as well the number Ng of word sequences changed in this process as a

message-bit carrier.

To implement this aim, at first we set on the magnitude of Ng a limit Nc taken to

be the maximum allowed number of word sequences in Di–1 that can be changed to

yield Di. This limitation makes the simulated step of revising Di–1 to become Di look

more realistic because usually not very many words are corrected in a single revision.

Next, we scan the word sequences in the text of the current revision Di–1 sequentially

and search DBcw to find all the correction pairs <sj, sj'> with sj' in Di–1. Then, we

collect all sj' in these pairs as a set Qr, which we call the candidate set of word

sequences for changes in Di–1. Finally, we select Ng word sequences in Qr to form a

set Qc such that the binary version of the number Ng is just the current message bits to

be embedded.

But for this process of using Ng as a message-bit carrier to be feasible, several

problems must be solved beforehand, including: 1) the dependency problem, 2) the

selection problem, 3) the consecutiveness problem, and 4) the encoding problem, as

described in the following.

(2.1) The dependency problem.

We say that two word sequences in Di–1 are dependent if some identical words

appear in both of them, and changing word sequences with this property in Di–1 will

cause conflicts, leading to a dependency problem which we explain by an example as

follows.

As shown in Figure 4.8(a), Di–1 = “you are not wrong, who deem that my days

have been a dream” and Qr includes 11 word sequences denoted as q1 through q11,

respectively. From Figure 4.8(a) we can see that the word sequences q2, q3, and q5 in

Qr are dependent on the word sequence q4 because the intersection of each of the

former three with the latter one is non-empty. If we correct q4 = “are not wrong” in

Di–1 to be another, say “is right,” then the dependent word sequences q2, q3, and q5 in

Di–1 cannot be selected and changed anymore because they include word sequences in

q4 which have already been changed and disappeared. That is, any part of a changed

word sequence cannot be changed again; otherwise, a dependency problem will occur.

To avoid this problem in creating Di from Di–1, we propose a two-step scheme: 1)

decompose Qr into a set of lists, I = {I1, I2, …, Iu}, with each list Ii including a group

of mutually dependent word sequences (i.e., with every word sequence in each Ii

57

being dependent on another in the same list) and every two word sequences in two

different lists, respectively, in I being independent of each other; and 2) select only

word sequences from different lists in set I and change them to construct a new

revision. The details to implement the first step is described in Algorithm 4.2. After

applying the first step on the set Qr as shown in Figure 4.8(b), it will be transformed

into I = {(q1), (q2, q3, q4, q5), (q6), (q7), (q8), (q9, q10), (q11)} where each pair of

parentheses encloses a list of mutually dependent word sequences. With I ready, we

can now select word sequences from distinct lists Ii in it, such as q1, q2, q6, and q9, to

simulate changes of word sequences in revision Di–1 without causing the dependency

problem.

y ou are not wrong,

who deem that my

days have been a

dream

Di-1

q1 = “you,”

q2 = “are,”

q3 = “are not,”

q4 = “are not wrong,”

q5 = “wrong,”

q6 = “deem,”

q7 = “my,”

q8 = “days,”

q9 = “have,”

q10 = “have been,”

q11 = “dream”

Qr

is right

corrected

(a)

q1 = “you,”

q2 = “are,”

q3 = “are not,”

q4 = “are not wrong,”

q5 = “wrong,”

q6 = “deem,”

q7 = “my,”

q8 = “days,”

q9 = “have,”

q10 = “have been,”

q11 = “dream”
Qr

I1 = (q1)

I2 = (q2, q3, q4, q5)

I3 = (q6)

I4 = (q7)

I5 = (q8)

I6 = (q9, q10)

I7 = (q11)

I

(b)

Figure 4.8. Illustration of the dependency problem. (a) Revision Di1 and candidate set

Qr where the dependent word sequences are surrounded by red squares. (b)

Set I that corresponds to the set Qr for solving the dependency problem.

58

(2.2) The selection problem.

It is desired to select word sequences for use in the simulated revisions

according to their usage frequencies in DBcw, so that a more frequently-corrected

word sequence has a larger probability to be selected, forging a more realistic revision.

For this aim, following [32], [64], we adopt the Huffman coding technique to create

Huffman codes uniquely for the word sequences in Qr according to their usage

frequencies, and select word sequences with their codes identical to the message bits

to be embedded. Specifically, according to a property of Huffman coding, the lengths

of the resulting Huffman codes of word sequences are in reverse proportion to the

usage frequencies of the word sequences. So a word sequence with a shorter Huffman

code will have a larger probability to be selected, which can be computed as (1/2)L

where L denotes the number of bits of the code. That is, the use of Huffman coding

indeed can achieve the aim of selecting word sequences in favor of those which are

more frequently corrected in real cases.

But a problem arises here  after we select one word sequence qy in this way,

qy cannot be used in the revision again for encoding an identical succeeding code in

the message because qy has already been changed into another word sequence,

causing a problem which we call the selection problem. This problem comes partially

from the unique decidability property of Huffman coding. To illustrate this problem,

for the previous example as shown in Figure 4.8 again, the Huffman codes for word

sequences q1 through q11 are shown in Figure 4.9(a), and the message bit sequence to

be embedded currently is “100100…” with the first six bits being just two repetitions

of the code “100.” For this, at first we select word sequence q4 and change it into

another in the revision because the first three message bits to be embedded, “100,” are

just the code for q4 (indicated by red color). After this, the next three message bits to

be embedded are again the code “100” (the blue color of message bits in Figure

4.9(a)); however, the corresponding word sequence q4 cannot be selected any further

because it has already been changed in the current revision version, and other word

sequences cannot be selected, either, because their codes are not the same as the

current message bits “100” to be embedded.

59

q1

q2

q3

q4

q5

q6

q7

q8

q9

q10

q11

1110

0001

1010

100

001

110

011

1111

0000

1011

010

Word sequence Huffman code

Message bits =

100100...

?

(a)

q1

q2

q3

q4

q5

q6

q7

q8

q9

q10

q11

00

100

101

11

01

0

11

10

10

11

0

Word sequence Huffman code

Message bits =

100100...

Group

G1

G2

G3

(b)

Figure 4.9. Illustration of the selection problem. (a) Huffman codes for the word

sequences and the message bits that are encountered in the selection

problem. (b) Dividing of the word sequences into groups to solve the

selection problem.

To solve this selection problem, suppose that based on the use of a key, we

assign randomly the word sequences in Qr consecutively into Ng groups G1 through

GNg, each group including multiple, but distinct, word sequences, where Ng is the

number of word sequences changed in Di–1. Then, starting from group G1, we apply

Huffman coding to assign codes to all word sequences in the currently-processed

group Gk according to their usage frequencies, and select a word sequence in Gk with

its assigned code identical to the leading message bits for use in the revision. We

apply this step repetitively until all groups are processed. In this process, Huffman

coding is applied to each Gk with word sequences distinct from those in the other

groups, so that the selection problem of choosing a word twice to change due to code

repetition in the message will not happen anymore. For example, as shown in Figure

60

4.9(b), Qr is divided into three groups: G1, G2, and G3, represented by red, blue, and

green colors, respectively. Starting from G1, we assign Huffman codes to the elements

in each group as shown in Figure 4.9(b). Then, q2 will be selected because the code of

q2 is the same as the first three bits “100…” of the message to be embedded. Then,

next in G2, q8 will be selected because the message bits to be embedded are currently

“100…” Finally, q11 in G3 will be selected because the current message bits to be

embedded are “0…” In this way, the previous problem of being unable to embed the

repetitive code “100” is solved automatically. In short, by decomposing randomly the

candidate set Qr of word sequences for changes into groups and representing each

group by a Huffman code, we can embed message bits sequentially by changing only

one word sequence in each group without causing the selection problem.

However, the above process is insufficient; it must be modified in such a way

that word sequences which have mutual dependency relations are divided into an

identical group in order to avoid the dependency problem as discussed previously. For

this aim, instead of decomposing the word sequences in Qr directly into random

groups as mentioned previously, we divide randomly the mutually-independent list

elements of I into Ng groups, where each group is denoted by GIk. Then, we take out

all the word sequences in the lists in each GIk to form a new group of word sequences,

denoted as Gk, resulting again in Ng groups of word sequences. For instance, for the

previous example as shown in Figure 4.8, let Ng = 2 and suppose that the list elements

of I are decomposed randomly into two groups: GI1 = {I1, I2, I3, I4} and GI2 = {I5, I6,

I7}. Then, this procedure will yield the two groups of G1 = {q1, …, q7} and G2 = {q8,

q9, q10, q11}.

(2.3) The consecutiveness problem.

As shown in Figure 4.10(a), for example, the word sequence “increase in” in

revision Di–1 is seen to become “improve themselves” in revision Di. This effect

comes from two changes made during message embedding: the word sequence

“increase” in Di–1 was changed to be “improve” in Di; and the word sequence “in” in

Di–1 was changed to be “themselves” in Di. However, because of the consecutiveness

of the two words “improve” and “themselves” in Di, the two changes might be

considered as a single one during secret message extraction, i.e., the word sequence

“increase in” in Di–1 might be regarded to have been changed to be “improve

themselves” in Di. This ambiguity causes a problem, namely, we cannot know

whether a change from a word sequence in Di–1 to be another in Di is from one group

61

or two, or equivalently, we cannot know the true number Ng of changed word

sequences in Di–1, so that we cannot extract later the embedded messages bits

correctly. We call this difficulty in message extraction a consecutiveness problem.

(a)

Set I Group

I1

I2

I3

I4

I5

I6

I7

GI1

GI2

Splitting point

q1

q2

q3

q4

q5

q6

q7

q8

q9

q10

q11

Word sequenceGroup

G1

G2

(b)

Figure 4.10. Illustration of the consecutiveness problem. (a) An example for

illustration of the consecutiveness problem. (b) Choosing splitting points

randomly to solve the consecutiveness problem.

Obviously, word sequences in different groups must be made non-consecutive in

order to solve the problem. For this aim, the previously-mentioned solution to the

selection problem is modified further. Specifically, by the use of a key again we

choose randomly Ng – 1 lists, say Ii1, Ii2 , …, IiN
 (with N = Ng  1), of the set I for use as

splitting points to divide I into Ng groups with Ii1 through IiN
 not included in any of the

Ng groups. For instance, let Ng = 2 for the previous example as shown in Figure 4.8

and the number of splitting points may be computed accordingly to be Ng – 1 = 1.

Consequently, as shown in Figure 4.10(b), we choose a splitting point, say I5, to

divide the set I into two groups: GI1 and GI2, both not including I5. The final groups of

62

word sequences then become: G1 = {q1, q2, q3, q4, q5, q6, q7} and G2 = {q9, q10, q11}.

Because of the existence of the splitting point I5 = (q8), groups G1 and G2 are

non-consecutive, and accordingly uses of them for creating word sequence changes in

revisions will now cause no consecutiveness problem.

(2.4) The encoding problem.

The issue up to now is how to determine the aforementioned number Ng of word

sequences to be changed in Di–1. Although a limit Nc is set for Ng, the maximum

number Nm of word sequences that can be selected in Di–1 may even be smaller than

Nc. Therefore, we must compute Nm first before we can embed message bits according

to the number Ng. After Nm is decided, Ng may then be taken to be a number not larger

than Nm. The actual value of Ng is decided by the leading secret message bits, say nm

ones. Consequently, we may assume that Nm satisfies the two constraints of 1) Nm =

2 mn and 2) 1 ≤ Nm ≤ Nc, where nm is a positive integer. In addition, in order to embed

message bits by selecting a word sequence from a group Gk, the number of elements

in Gk should not be smaller than two so as to embed at least one message bit by

Huffman coding; hence, each group GIk mentioned previously should be created to

include at least two elements of I. Accordingly, the maximum number Nm of word

sequences to be changed in Di–1 can be figured out to satisfy the following formula:

 [NI  (Nm  1)]/Nm  2, (11)

where NI is the number of elements in set I and Nm – 1 represents the aforementioned

number of chosen splitting points. The inequality (11) can be reduced to

 Nm  (NI + 1)/3. (12)

Accordingly, we can compute Nm by the following rule:

 if (NI + 1)/3 > Nc, set Nm = Nc;

 if 1  (NI + 1)/3  Nc, set 2log (1)/3
2 IN

mN
   . (13)

Furthermore, the content of Di–1 might be too little for Nm to be decided by Eq. (13).

In that case, we abandon the original cover document D0 from which Di–1 is generated,

and use another longer cover document as the input. After the value of Nm is

computed, we can then use the leading nm bits of the message to decide the number Ng

of changed word sequences in Di–1 by two steps: 1) express the first nm message bits

as a decimal number; and 2) increment the decimal number by one. The second step is

63

required to handle the case that the first nm message bits are all zeros, which leads to

the undesired result of no word sequence being changed in the current revision. In this

way, Ng becomes really a carrier of nm message bits. For example, the number of

elements of the set I for the previously-mentioned example as shown in Figure 4.8 is

NI = 7. Let Nc = 4. Because (NI + 1)/3 = (7 + 1)/3 ≈ 2.67 ≤ 4 = Nc, Nm is computed to

be

log (7 1)/32
2

  

 = 21 according to Eq. (13). So, nm = log2Nm = 1. And if the secret

message is “101001…,” then the number Ng of changed word sequences should be

taken, according to the above two steps, to be Ng = (1)2 + (1)10 = 2 because the first bit

of the secret message is “1.”

(3) Encoding the changed word sequences in the current revision for data hiding.

According to the previous discussions, we may assume that we have computed

the number Ng of word sequences which should be changed in the current revision

Di–1 according to the first nm bits of the secret message, and that we have classified the

available word sequences in Qr into Ng groups, where each group Gk includes at least

two word sequences and all word sequences in Gk are encoded by Huffman coding

according to their usage frequencies. Specifically, the usage frequency of a word

sequence sj' is taken to be the summation of the correction counts of all the correction

pairs in the chosen set of sj', which have sj' as their common new word sequence.

Then, starting from G1, we may select from each group Gk one word sequence with a

Huffman code identical to the leading bits of the message to be embedded, achieving

the goal of data hiding via changing word sequences in Di–1.

For example, assume that the usage frequencies of the word sequences in group

G2 as shown in Figure 4.10(b) are: q9 = 100, q10 = 50, and q11 = 150; and the message

is “10100….” Then, the Huffman codes assigned to q9, q10, and q11 are “01,” “00,”

and “1,” respectively; and so we select q11 to hide the first bit “1” of the message

because the code of q11 is “1.”

(4) Encoding the replacing word sequences in the previous revision for data hiding.

Symmetrically, we may use as well the replacing word sequences in Di to embed

message data, where each replacing word sequence sj in Di corresponds to a changed

word sequence sj' in Di–1, forming a correction pair <sj, sj′>. Specifically, recall that

for each sj', we can find a chosen set of correction pairs from DBcw. From this set, we

64

can collect all the original word sequences of the correction pairs as another set Qc',

with each word sequence in Qc' being appropriate for use as the replacing word

sequence sj. Let Qc' = {s1, s2, …, sw}. Then, to carry out message data hiding, we

encode all sj in Qc' by Huffman coding according to their usage frequencies as well,

and choose the one with its code identical to the leading message bits for use as the

word sequence sj replacing sj'. Here the usage frequency of each sj is the correction

count of the correction pair <sj, sj'>. For example, Table 4.3 shows the chosen set of

the word sequence “such as” with all included original word sequences already

assigned Huffman codes according to their usage frequencies. Based on the table, if

the message to be embedded currently is “01001001…,” then we change the word

sequence “such as” in the current revision Di–1 to be the word sequence “for example”

in the previous revision Di because the Huffman code for “for example,” namely,

0100, is the same as the first four bits of the secret message.

(5) Secret message embedding algorithm.

As a summary, we have demonstrated the usability of the aforementioned four

characteristics of revisions for data hiding. Therefore, we can generate a

stego-document with a forged revision history which looks like a realistic work

written by people collaboratively. The details of the proposed message embedding

process are described in Algorithm 4.2 below.

Algorithm 4.2. Secret message embedding.

Input: a cover document D0, a binary message M of length t, a secret key K, and the

collaborative writing database DBcw constructed by Algorithm 4.1.

Output: a stego-document D′ with a revision history {D0, D1, D2, …, Dn}.

Steps:

Stage 1  message preparation and parameter determination.

Step 1. (Message composition) Affix an s-bit binary version of the message length t

to the beginning of M to compose a new binary message M′, where the

number s of bits for representing t is agreed by the sender and the receiver

beforehand.

Step 2. (Message encryption) Randomize M' to yield a new binary message M′′ using

the key K.

65

Step 3. (Parameter determination) Use K again to decide randomly both an integer

Na for use as the number of authors and another integer Nc for use as the limit

on the number Ng of word sequences to be changed in every revision.

Step 4. (Author encoding) Create Na authors to form an author list Ia, and assign a

unique na-bit code to each author in Ia.

Stage 2  message embedding and revision generation.

Step 5. (Message embedding and revision generation) Generate the previous revision

Di from the current revision Di–1 repeatedly by the following procedure until

all bits in M'' are embedded, where i = 1 initially.

Stage 2.1  embedding data via author encoding.

(a) (Embedding bits by an author code) Choose for Di the author aj from the

author list Ia with the na-bit code assigned to author aj being identical to the

leading na bits of M′′; and remove these na bits from M''.

Stage 2.2  embedding data using the number of changed word sequences

in the current revision.

(b) (Finding the candidate word sequences for changes in Di1) Create the

candidate set Qr of word sequences for changes in Di1 by the following

steps.

(i) Take in order an unprocessed word w in revision Di1, and set the

currently processed word sequence q as w initially.

(ii) Check if q matches some leading words or all of the words in the new

word sequence of any correction pair in DBcw 

if so, do the following two steps:

(A) if q is identical to the entire new word sequence, then add q to

Qr and continue;

(B) create a new word sequence, still denoted as q, by

concatenating the old q with the word qr which is to the right

of q in Di1, and go to Step 5.b.ii;

else, continue.

(iii) If there still exists any unprocessed word in Di1, go to Step 5.b.i;

otherwise, continue.

(c) (Finding independent word sequence lists in Qr) Decompose Qr to form a

set I = {I1, I2, …, Iu} of word-sequence lists by the following steps, where

66

each Ii is a list of mutually dependent word sequences and every two lists

are independent.

(i) Take each word sequence in Qr as a list initially.

(ii) Check the ordered word sequences in Qr one by one sequentially:

if the currently-checked word sequence qs and its previous one qt

include some common consecutive words, then regard qs as

dependent on qt, add qs into the list of qt in I, and eliminate the list of

qs itself in I; else, keep the list of qs in I.

(d) (Deciding the number of word sequences to be changed as a message-bit

carrier) Decide the number Ng of groups into which the set Qr is to be

divided by the following steps.

(i) Compute the maximum number Nm of word sequences to be changed in

revision Di–1 by inequalities Eq. (13) described previously, and

compute nm as log2Nm.

(ii) Decide the number Ng as the decimal value of the first nm bits of

message M'' plus one, and remove these nm bits from M''.

Stage 2.3  embedding data via the word sequences changed in the current

revision.

(e) (Choosing splitting points) Choose randomly Ng – 1 elements of I as

splitting points using the key K.

(f) (Classifying the word sequences into independent sets) Divide the elements

of I into Ng groups, GI1 through GINg, by the splitting points, and take out

all the word sequences in the lists in each GIk to form a new group of word

sequences, denoted as Gk, resulting in Ng groups of word sequences, G1

through GNg.

(g) (Choosing word sequences to change for message-bit embedding) For each

group Gk with k = 1 initially, encode its word sequences by Huffman

coding according to their usage frequencies, choose and mark the word

sequence sj' in Gk with its code matching the leading message bits of M'' as

the word sequence to be changed to create the previous revision Di, and

remove the matched leading bits from M''.

Stage 2.4  embedding message data via replacing the word sequences in

the previous revision.

67

(h) (Finding the chosen set) Find the chosen set of the previously marked word

sequence sj' from the correction pairs kept in DBcw, and collect all the

original word sequences in the chosen set as a set Qc'.

(i) (Choosing the original word sequence for use in replacement) Encode the

word sequences in Qc' by Huffman coding according to their usage

frequencies, choose the word sequence sj in Qc' with its code matching the

leading message bits of M'', and remove the matched leading bits from M''.

(j) (Conducting word sequence correction) Replace the word sequence sj' in

Di1 with sj.

(k) (End of looping) Increase k by one and go to Step 5.g until k > Ng.

(l) (Revision generation) Take the final revised content of Di–1 as the desired

previous revision Di.

Step 6. If message M'' is not exhausted, then repeat the above process to generate

more revisions until so; collect the final article and the history of all the

revisions D0 through Dn as a stego-document D'; and take D' as the output for

use on a pre-selected collaborative writing platform.

4.3.3 Secret message extraction

We can extract the secret message in the stego-document by a reverse version of

the message embedding process described by Algorithm 4.2. The details are described

as an algorithm in the following.

Algorithm 4.3. Secret message extraction.

Input: a stego-document D′ including revision history {D0, D1, D2, …, Dn} kept on a

pre-selected collaborative writing platform, the secret key K used in Algorithm

4.2, and the database DBcw constructed by Algorithm 4.1.

Output: a binary message M of length t.

Stage 1  parameter determination.

Step 1. Use key K to decide two parameters Na and Nc, and construct a list Ia of Na

uniquely encoded authors, in the same ways as described in Step 4 of

Algorithm 4.2.

Stage 2  message data extraction.

68

Step 2. (Message extraction) For each revision Di–1 with i = 1 initially, extract the

embedded message bitstream M′′ by the following steps until i > n where

M'' is set empty initially.

Stage 2.1  extracting message data from the author.

(a) (Extracting message bits from the author code) Find the author aj of the

previous revision Di, and append the na-bit code, which is assigned to aj, to

the bitstream M′′.

Stage 2.2  extracting message bits carried by numbers of changed word

sequences in current revisions.

(b) (Finding candidate word sequences for changes) Perform Step 5.b of

Algorithm 4.2 to get the candidate set Qr of word sequences for changes in

Di1.

(c) (Finding the independent word sequence lists in Qr) Perform Step 5.c of

Algorithm 4.2 to get the set I of lists of independent word sequences from

Qr.

(d) (Finding the correction pairs between Di and Di–1) Perform Algorithm 4.1

with the previous revision Di and the current revision Di–1 as the input to

get the correction pairs between Di and Di–1.

(e) (Collecting the information of correction pairs) Collect all the correction

pairs yielded in the last step as a set CP, where each element cpo = <wo,

wo′> in CP includes an original word sequence wo in Di and a new word

sequence wo′ in Di–1.

(f) (Extracting the code for the number of changed word sequences) Conduct

the following steps to extract the code for the number of changed word

sequences in Di1:

(i) compute Nm in Di–1 by Eq. (13) and nm as log2Nm;

(ii) express the number of elements in set CP, which is also the total number

Ng of the changed word sequences in Di1, as an nm-bit binary number

Ng';

(iii) decrement Ng' by one;

(iv) append the nm bits of Ng' to M′′.

Stage 2.3  extracting data via changed word sequences in current

revisions.

69

(g) (Choosing splitting points) Choose randomly Ng – 1 elements of I as

splitting points using the key K in the same ways as described in Step 5.e of

Algorithm 4.2.

(h) (Classifying word sequences into independent sets) Perform Step 5.f of

Algorithm 4.2 to classify the elements of I into Ng groups.

(i) (Choosing changed word sequences for message extraction) For each group

Gk created in the last step with k = 1 initially, encode its word sequences by

Huffman coding according to their usage frequencies, and for each word

sequence element sj' in Gk, check whether sj' is identical to a new word

sequence wo′ in CP; if so, append the code of sj' to M′′; else, check the next

word sequence in Gk repeatedly.

Stage 2.4  extracting message data via replacing word sequences in

previous revisions.

(j) (Finding the chosen set) Find the chosen set of word sequence sj' from

database DBcw, and collect all the original word sequences in the correction

pairs of the chosen set as a set Qc'.

(k) (Extracting the code of replacing word sequences) Encode the word

sequences in Qc' by Huffman coding according to their usage frequencies,

and for each word sequence sj in Qc', check whether sj is identical to an

original word sequence wo in CP  if so, then append the Huffman code

of sj to M′′ and go to Step 2.i with k increased by one until k > Ng; else,

check the next word sequence in Qc' repeatedly.

Stage 3  message decryption and extraction.

Step 3. (Message decryption) Decrypt the bitstream M′′ to get M' using the key K.

Step 4. (Message extracting) Express the first s bits of M' in decimal form as t and

output the (s + 1)th through (s + t)th message bits of M' as the secret

message M.

4.4 Experimental Results

A collaborative writing database DBcw was constructed by mining the huge

collaborative writing data in Wikipedia using Algorithm 4.1 described previously.

Note that this is a totally automatic work and need be performed only once for

building the database DBcw using Algorithm 4.1, where 3,446,959 different correction

70

pairs were mined from 2,214,481 pages with 33,377,776 revisions in English

Wikipedia XML dump. The total size of the downloaded Wikipedia data is about

210.3 GB and the size of the mined data is just 888 MB. Moreover, some revisions

might suffer from vandalism [57], [59], and by the method proposed by Bronner and

Monz [57], such revisions were ignored if they have been reverted due to vandalism.

Also, keywords in Wiki markup1 were ignored as well. Table 4.1 shows the top 20

most frequently used correction pairs, where the one in the first place is the pair

<“BCE”, “BC”> with a correction count of 19,430. Table 4.2 shows some correction

pairs, each having more than one word either in its original word sequence or in its

new word sequence. One of the correction pairs in this table is <“like”, “such as”>

with a correction count of 773.

Table 4.1. Top twenty frequently used correction pairs.

Original

word

sequence

New word

sequence

Usage

frequency

Original

word

sequence

New word

sequence

Usage

frequency

BCE BC 19,430 the a 7,009

BC BCE 17,878 is are 6,908

color colour 15,356 a the 6,278

colour color 14,852 are is 5,430

The the 14,232 colors colours 5,301

a an 9,792 colours colors 5,078

it's its 9,658 CE AD 4,833

is was 9,607 AD CE 4,262

an a 8,954 image Image 4,259

was is 7,407 was were 3,924

The constructed database DBcw contains 1,688,732 chosen sets of correction

pairs where all the correction pairs in a chosen set have identical new word sequences,

meaning that there are 1,688,732 word sequences which can be chosen and changed to

other word sequences in the message embedding phase. Figure 4.11 shows an

1 http://en.wikipedia.org/wiki/Help:Wiki_markup

71

illustration of the numbers of entries in the chosen sets with sizes from 2 to 40. Table

4.3 shows the content of a chosen set with the new word sequence “such as,” as well

as the usage frequency and Huffman code for each original word sequence which may

be replaced by “such as” during message embedding. From the table, we can see that

the most frequently used original word sequence is “like,” so it has the shortest code

“1” and the largest probability to be chosen.

Table 4.2. Some correction pairs each with more than one word either in the original

word sequence or in the new word sequence.

Original word

sequence

New word

sequence

Usage

frequency

Original word

sequence

New word

sequence

Usage

frequency

Irish evil Evil 2,367 due to because of 933

Evil Irish evil 2,253 like such as 773

US
United

States
1,094 didn't did not 665

It's It is 1,052 passed away died 374

due to the fact

that

because 359
doesn't does not 489

have been were 348 WWII
World War

II
395

will be was 903 UK
United

Kingdom
599

After the message embedding phase, the proposed system will generate a

stego-document to be kept in a collaborative writing platform and a user can later

Figure 4.11. The number of entries of chosen sets with the size from 2 to 40.

72

extract the embedded message from it using a key. Each generated stego-document

including its revision history was kept on a Wiki site which was constructed in this

study using the free software: MediaWiki2. Note that though here the pre-selected

collaborative writing platform is the constructed Wiki site, yet the proposed method

can be used on other collaborative writing platforms as well. As an example, with a

cover article as shown in Figure 4.12(a), the message “Art is long, life is short,” and

the key “1234” as inputs into Algorithm 4.2, a stego-article as shown in Figure 4.12(c)

together with a revision history as shown in Figure 4.12(b) was generated by the

proposed method. We can see from Figure Figure 4.12 (b) that five revisions have

been created in order to embed the secret message. And Figures 4.12(d) and 4.12 (e)

show the extracts of the differences between the two newest revisions, where the

words in red in Figure 4.12(d) were corrected to be those in red in Figure 4.12(e) by

the author “Natalie.” Figures 4.12(f) and 4.12(g) shows respectively the messages

extracted by Algorithm 4.3 using a right key and a wrong one. These results show that

when a user uses a wrong key, the system will return a random string as the message

extraction result.

Table 4.3. An example of a chosen set with the new word sequence “such as”.

Original word

sequence

Usage

frequency

Huffman

code

Original word

sequence

Usage

frequency

Huffman

code

like 773 1 specifically 12 011001

including 143 00 namely 10 011000

for example 39 0100 particularly 10 0111111

of 29 01110 like the 10 010100

notably 23 01101 most notably 10 010101

especially 20 01011 include 9 0111110

and 16 011110

A series of experiments with different parameters have also been conducted to

quantitatively measure the data embedding capacity of the proposed method using a

lot of cover documents as inputs. Since the data embedding capacity is dependent on

the secret message content which influences the selections of authors and changed

2 http://www.mediawiki.org/wiki/MediaWiki.

73

word sequences for each revision, we have run experiments for each document ten

times using different messages as inputs, and recorded the average of the resulting

data embedding capacities. The parameters of six different cover documents are

shown in Table 4.4. For example, document 1 has 2,419 characters, 641 words, and

80 sentences; document 3 has 10,128 characters, 2,211 words, and so on.

(a)

(b)

(c)

(d)

Figure 4.12. An example of generated stego-documents on constructed Wiki site with

input secret message “Art is long, life is short.” (a) Cover document. (b)

Revision history (c) Stego-document. (d) Previous revision of revision of

(e) with words in red being those corrected to be new words in revision of

(e) in red. (e) Newest revision of created stego-document. (f) Correct

secret message extracted with the right key “1234.” (g) Wrong extracted

secret message with a wrong key “123.”

74

(e)

(f) (g)

Figure 4.12. An example of generated stego-documents on constructed Wiki site with

input secret message “Art is long, life is short.” (a) Cover document. (b)

Revision history (c) Stego-document. (d) Previous revision of revision of

(e) with words in red being those corrected to be new words in revision of

(e) in red. (e) Newest revision of created stego-document. (f) Correct

secret message extracted with the right key “1234.” (g) Wrong extracted

secret message with a wrong key “123” (continued).

Table 4.4. The information of experimental documents.

Document Character Word Sentence Document Character Word Sentence

Document 1 2,419 641 80 Document 4 11,215 2,617 86

Document 2 4,762 956 45 Document 5 26,591 6,180 631

Document 3 10,128 2,211 121 Document 6 60,349 14,306 1,603

In these experiments, firstly we selected the replacing word sequences for a

revision to be the top n most frequently used ones in the database DBcw, where n = 2,

4, 8, 16, 32. Figure 4.13(a) shows the resulting data embedding capacities from which

we can see that the more the selected replacing word sequences, the more the

embedded message bits. This result comes from the fact that when more replacing

word sequences are available, the constructed Huffman codes will become longer.

We have also conducted experiments on using different numbers of revisions (1,

2, 4, 8) in the generated stego-documents to see the resulting data embedding

capacities. Figure 4.13(b) shows the results which indicate that when the number of

revisions in the stego-document is larger, more message bits can be embedded, as

expected. This means that if we want to embed a larger secret message, more

75

revisions should be generated. Yet, on a Wiki site, each revision will be stored as its

original text without any compression. Thus, a larger storage space is required to store

more generated revisions when the secret message is longer. However, one can solve

this issue by simply comparing the difference between two adjacent revisions and

only storing the difference between them where this comparison function may be

provided by other collaborative writing platforms if desired. Furthermore, we can see

also from Figures 4.13(a) and 4.13(b) that when a cover document has a larger size,

the resulting data embedding capacity will be larger as well. Thus, if we want to

embed more data, we have to choose a larger cover document.

(a)

(b)

Figure 4.13. The embedding capacities. (a) Embedding capacities of documents with

chosen sets of different sizes. (b) Embedding capacities of documents with

different number of revisions.

Figure 4.14 shows a comparison of the resulting embedding capacities yielded

by the proposed method with those yielded by Liu and Tsai’s method [64]. We can

see from Figure 4.14 that when the number of revisions of the proposed method is

76

equal to one, the embedding capacity of the proposed method is very close to that

yielded by Liu and Tsai [64]. Note that not every word sequence in the current

revision Di–1 can be utilized for data embedding in the proposed method, because we

limit the maximum number of corrected word sequences in a revision. Thus, when the

number of revisions is just one, the embedding capacity of the proposed method may

not be better than that of Liu and Tsai [64] which allows the use of every word for

message embedding. However, when the number of revisions is equal to or greater

than two, the embedding capacities of the proposed method are instead much larger.

Figure 4.14. Comparison of embedding capacities yielded by Liu and Tsai [64] and

proposed method using different numbers of revisions.

Like the methods proposed by [57], [58] which can be utilized for multiple

languages, we have tried to apply Algorithm 4.1 to two adjacent revisions of a

Chinese document and obtain the correction pairs for them successfully, where the

two revisions are shown in Figure 4.15. Note that since Chinese has no explicit word

segmentation mark, we cannot use spaces to split an article in Chinese into words.

Therefore, each character in Chinese was treated as a word directly to solve the issue.

Figure 4.15 shows the found correction pairs between the two revisions, in which, e.g.,

one of the found correction pairs is <做到, 達成>, where both word sequences in the

pair mean the same as “achieve” in English.

77

Figure 4.15. An example to show the interoperability of the proposed method which

can be applied on Chinese articles.

Moreover, for the purpose of presenting the contributions made by the proposed

method, we have compared it with several other methods for data hiding via texts

[35]-[37], [64] as shown in Table 4.5. Firstly, the synonym replacement methods

[35]-[37] utilize synonym dictionaries to embed messages, where the synonym

dictionaries were usually manually built by language experts. And the embedding

capacities of these methods are limited, since only those word sequences in the cover

document which exist in the synonym dictionary can be utilized for data embedding.

Also, since they replace the word sequences in a cover document into their synonyms,

the resulting stego-document is usually a worse version of the original cover

document due to the possible losses of the original meanings in the replacements.

Furthermore, the usage frequencies of the corresponding synonyms of a word

sequence are not analyzed in these methods. Secondly, the change tracking method

proposed by Liu and Tsai [64] utilizes synonym dictionaries and a small collaborative

writing database with only 7,581 chosen sets to embed messages, where the synonym

dictionaries were built manually as well. Also, the embedding capacities of this

method is limited, since only two revisions are generated by two authors and only the

78

word sequences in the cover document are degenerated for data embedding. Moreover,

the usage frequencies of word sequences of this method are just a simulated one

created by using the Google SOAP Search API.

Table 4.5. Comparison of methods for data hiding via texts.

Method
Utilized

database

Database

construction

Embedding

capacity

of

revisions

of

authors

Usage

frequencies

of word

sequences

Chapman et al.

[35]

Synonym

dictionary
Manually Limited 1 1 −

Bolshakov [36]
Synonym

dictionary
Manually Limited 1 1 −

Shirali-Shahreza

and

Shirali-Shahreza

[37]

Synonym

dictionary
Manually Limited 1 1 −

Liu and Tsai

[64]

Synonym

dictionary +

Small

collaborative

writing

database

Mainly

manually
Limited 2 2 Simulated

Proposed

method

Large

collaborative

writing

database

Automatically Unlimited Unlimited Many Real data

As a summary, several merits of the proposed method can now be pointed out,

which include: (1) the database of the proposed method is constructed automatically

from Wikipedia, which is the largest collaborative writing platform on the Internet;

therefore, the resulting stego-document generated by the proposed method is more

realistic than that generated by the other four methods [35]-[37], [64]; (2) the

dababase constructed by the proposed method is much larger than that by Liu and

Tsai [64], with 1,688,732 chosen sets in the former and only 7,581 in the latter; (3) the

usage frequency of each correction pair used in the proposed method is a real

parameter obtained by mining the collaborative writing data found on Wikipedia, but

that of Liu and Tsai [64] is just a simulated one created by using the Google SOAP

Search API; and (4) the proposed method can simulate the collaborative writing

process conducted by multiple authors and revisions, but Liu and Tsai [64] can only

79

generate one pre-draft version of a cover text, simulating the work of two authors.

Thus, to the best of our knowledge, this is the first work that can simulate the real

collaborative writing process with multiple authors and revisions by mining the

revision histories on Wikipedia or similar platforms and using the characteristics in

the collaborative writing process effectively for message embedding.

Furthermore, to illustrate the usability of the proposed method in the real world,

it is pointed out that one can build a collaborative writing platform, such as a Wiki site,

for uses by a school, company, or government and then implement the proposed

method on this platform. For example, for a school, especially with a large size, the

teachers may establish a big wiki site with many documents for general teaching,

administration, and communication uses, which are accessible by teachers, staff

members, students, parents, etc. Sometimes, a teacher might want to communicate

with a student’s parents in a secret way. Then, the wiki site may be used as a platform

for such covert communication of messages. In addition, the teacher may keep secret

records of the students on the wiki site using the data embedding schemes provided by

the proposed method. That is, a collaborative writing platform can not only let people

work collaboratively but also can let people hide message into the documents existing

on this platform for applications of covert communication and secret data keeping.

4.5 Security Consideration

4.5.1 Camouflage

In the proposed method, we collected collaborative writing data in Wikipedia

written by real people to construct the database DBcw for use in message embedding.

Therefore, the stego-document created using DBcw is more robust to attacks by

malicious users since the stego-document looks like a realistic work completed by

multiple virtual authors on a collaborative writing platform. These authors do not

actually edit these revisions and so are regarded as virtual authors. These virtual

authors are created to simulate the real-world authors and used to embed messages to

avoid the problem of involving real authors who might leak the secret. Also, to

increase the realisticness of the created stego-document, the content of the corrected

word sequences in a revision and the word sequences replacing the corrected ones are

selected according to the real usage frequencies mined from the collaborative writing

80

data in Wikipedia. Thus, the statistical property of simulated corrections in the

generated stego-document is close to that of a real one.

Moreover, in order to increase the camouflage effect of the stego-document

created by the proposed method, two additional ways can be adopted. The first is to

change the time of editing for each generated revision in a stego-document to make it

fit the model of revision time in reality, such as the analyzed patterns of revision

history mentioned in [63]. This can be achieved by using a key to select randomly a

time for each revision in a possible time duration between the related pair of adjacent

revisions. The second way is about the selection of authors for data embedding. If an

author makes more realistic corrections in his/her revision history of creating a

stego-document, then inclusion of him/her as one of the collaborative authors will

cause less conspicuousness to adversaries. This idea can be implemented simply by

pre-generating some revision data of virtual authors who looks like owning the real

collaborative writing work from the collaborative writing platform, as conducted in

the study.

In addition, since we assume that only word sequence corrections will occur in

the collaborative writing process, the stego-document created by the proposed method

contain only such a type of correction. We can remedy this by manipulating

additionally the unused portions of the stego-document to include more types of

corrections, such as paraphrases and factual edits, to mislead the adversary, where

these extra corrections will be ignored during message extraction.

4.5.2 Randomness

According to Kerckhoffs’ principle [66], it may be assumed that an adversary,

who understands the system but does not have the secret key, can obtain no

information about the embedded message. By using the key to enhance the security of

the proposed technique, some randomness measures in the phases of secret message

embedding and secret message extraction are adopted in the proposed method: (1)

randomization of the bits of the secret message to be embedded by encryption; (2)

randomization of the parameters and author encoding, including the number of

authors, the maximum allowed number of word sequences changed in the revision,

the author list, and the author codes; and (3) randomization of the selections of the

splitting points for each revision.

81

More specifically, in the first measure, the secret message is randomized though

encryption by using the key, where the encryption method we adopted is AES-256.

The Advanced Encryption Standard (AES) is one of the most popular ciphers and

provides very high security  the public known attacks up to now have all been

shown to be computational infeasible [67]-[68]. In the second measure, the parameters

(the number of authors and the maximum allowed number of word sequences changed

in the revision) and the author encoding (the author list and the author code for each

author) are decided by the key and some pseudo-random number generators. In the

third measure, for each revision, Ng – 1 lists of the set I for use as the splitting points

are selected randomly by the key and a pseudo-random number generator. Let the

resulting stego-document D′ include revision history {D0, D1, D2, …, Dn} with Na

authors, the size of the set I of word sequences for selection in each revision Dk be Ik,

and the number of word sequences changed in each revision Dk be Ngk. Then, for an

adversary who does not have the key, he/she needs to execute Algorithm 3 for all

possible combinations of word splitting points of the revisions and the author codes,

and observe the result to check the correctness of the encrypted secret message. The

time complexity for this work is of the order of (Na!)×
1
0 (, 1)

k

n
k k gC I N
   which is

a very big number, where C(a, b) means the combination of a things taken b at a time

without repetition. Moreover, it is very hard for an adversary to decide which result

yielded by the algorithm is correct because the secret message is encrypted by

AES-256 and looks like random noise. Therefore, the proposed method is expected to

be secure for secret message hiding.

Additionally, the collaborative writing database may be available to adversaries

since they can re-construct the collaborative writing database by using the same

Wikipedia data and the same algorithms as those proposed in this study. To increase

the security against this type of attack, one additional way to increase the robustness

of the proposed method is to use the key to decide the subset of a chosen set and

select a word sequence from the subset. Therefore, only authorized users with the key

can know the correct subset of the chosen set, and an adversary cannot.

82

4.5.3 Possible extensions for the proposed method using natural

language processing methods

For the ability of constructing the collaborative writing database automatically

and generalizing the proposed method for multi-language uses, four characteristics of

collaborative writing as mentioned previously have been analyzed based on the

assumption that only word sequence corrections will be made in a revision. However,

the real collaborative writing process is much more complicated and

language-dependent, so data hiding via collaborative writing is still worth intensive

researches.

Many possible methods in natural language processing [57]-[59], [69] may be

applied to extend the proposed method. For example, some original word sequences

in an input cover document may be polysemous. Therefore, selecting appropriate word

sequences from DBcw by the proposed method to replace such polysemous word

sequences might constitute a meaningless context. One possible way out is to analyze

the distributional similarity of word sequences [69] to find appropriate replacing word

sequences that do not cause this problem, where distributional similarity means the

similarity in the meanings of those words that have the same contexts in documents.

Moreover, we can also build language models [57]-[59], such as dependency trees

used in grammatical analysis, to embed messages during revision generations based

on the model.

4.6 Summary

A new data hiding method via creations of fake collaboratively-written

documents on collaborative writing platforms has been proposed. An input secret

message is embedded in the revision history of the resulting stego-document through

a simulated collaborative writing process with multiple virtual authors. With this

camouflage, people will take the stego-document as a normal collaborative writing

work and will not be expected to realize the existence of the hidden message. To

generate simulated revisions more realistically, a collaborative writing database was

mined from Wikipedia, and the Huffman coding technique was used to encode the

mined word sequences in the database according to the statistics of the words. Four

characteristics of article revisions were identified, including the author of each

revision, the number of corrected word sequences, the content of the corrected word

83

sequences, and the word sequences replacing the corrected ones. Related problems

arising in utilizing these characteristics for data hiding have been solved skillfully,

resulting in an effective multi-way method for hiding secret messages into the

revision history. Moreover, because the word sequences used in the revisions were

collected from a great many of real people’s writings on Wikipedia, and because

Huffman coding based on usage frequencies is applied to encode the word sequences,

the resulting stego-document is more realistic than other text steganography methods,

such as word-shift methods [30], non-displayed characters based methods [31],

synonym replacement methods [35]-[37], etc. The experimental results have shown

the feasibility of the proposed method. Future works may be directed to analyzing

more characteristics of collaborative writing works or establishing appropriate

language models [57]-[59] for more effective data hiding or other applications.

84

Chapter 5

A New Data Hiding Technique via Message-rich

Character Image for Automatic Identification

and Data Capture Applications

5.1 Introduction

With the advance of technology, machines have long been used to read

automatically information in the reality for various applications, like optical character

recognition (OCR), license plate recognition, supermarket checkout systems, etc.

Recently, many more methods have been developed for this purpose, and they are

collectively known as AIDC techniques [40]. The processed information is presented

in various forms, some being visible (like barcodes) and others invisible (like

watermarks hidden behind images). Such forms of multimedia, enabling the vision of

pervasive communication, are termed integrally as message-rich multimedia in this

study as mentioned previously.

One technique that realizes the use of message-rich multimedia for the AIDC

purpose is barcode reading. Being attached to objects, barcodes represent

machine-readable data by patterns of lines, rectangles, dots, etc. The data encoded

into such barcodes can be extracted using barcode reading techniques [24]-[27]. But

most types of barcodes, such as Code 39 [20], PDF417 [21], QR code [22], and Data

Matrix code [23] shown in Figure 5.1, just encode information to yield unsightly

images with no aesthetics. If a barcode contains not only the encoded information but

also has a visual appearance of an art image, the artistic effect of the barcode will be

more attractive than those of conventional ones.

Data hiding is an alternative pervasive communication technique for the AIDC

purpose that embeds data into cover media for applications like covert communication,

copyright protection, authentication, etc. With the advance of computer technology,

many data hiding methods have been applied on digital cover media, such as images,

videos, audios, text documents, etc. However, these data hiding methods transfer data

via digital files only. Furthermore, they are mostly insufficient to enable the vision of

85

pervasive communication when one wants to interact with the surrounding

environment. Such methods may be called “digital” data hiding.

(a) (b)

(c) (d)

Figure 5.1. Examples of commonly-used barcodes. (a) Code 39. (b) PDF 417. (c) QR

code. (d) Data matrix code.

Another type of data hiding, which may be called “hardcopy” data hiding, can

embed information into the so-called image barcodes using halftone techniques

[17]-[19]. These barcodes have the visual appearances of other images and the

encoded information can be decoded from their hardcopy versions acquired by

scanners. That is, the encoded information can survive print-and-scan “attacks.”

However, if one uses a mobile device to capture images of hardcopy image barcodes,

the information might not be decoded successfully since the captured image will

suffer from more types of distortions than those acquired by scanning, such as

geometric deformation, noise addition, blurring, etc. Also, message carriers other

rather than printed papers, such as screens on display devices, cannot be used to

encode information since the halftone methods are based on the printing technique.

Instead, the method proposed in this study can decode the message which is carried in

an image captured from a printed paper or a display screen using a mobile-device

camera, achieving the effect of pervasive communication.

Specifically, a new data hiding technique via message-rich character image,

which is created from an artistic target image for use as a carrier of a given message,

is proposed. The image may be printed as a hardcopy for use of any purpose, which is

then “re-imaged” by a mobile-phone camera and “understood” by some automatic

86

identification and data capture (AIDC) techniques [40] proposed in this study.

Message-rich character images may be of the forms of documents, labels, posters, etc.

Also, such images may have the visual appearances of artistic-flavored photos,

pictures, paintings, which are more attractive to humans than those produced by

conventional AIDC techniques, like barcodes, QR-codes, etc.

5.2 Idea of Proposed Method

The proposed message-rich character images not only includes the content of a

given message, but also has an artistic effect of being visually similar to the

pre-selected target image. The proposed method using the message-rich character

images for AIDC purposes is illustrated in Figure 5.2, which includes two phases:

image generation and message extraction.

Target image

“ABCDEFGH….”

YCC

components

Message
Message

image

Block luminance

modulation

Y component

Modulated

message

image

Message-rich

character image

Message

Capturing

LocalizationGeometrical

correction

Block

identification

Binarization

and OCR

“ABCDEFGH….”

Figure 5.2. Illustration of proposed method.

In the first phase, given a target image It and a message M, a message-rich

character image Is is created by three steps: (1) transform M into a message image Im

consisting of the characters of the message content; (2) modulate the gray values of

each character-fragment Fi of Im into two values calculated from the Y-channel

values of the corresponding target block Bi of It, resulting in a modulated message

image Im'; (3) replace the Y-channel of It with Im' to get the desired Is.

87

In the second phase, the message M is extracted from a captured version Is' of a

paper of the printed message-rich character image Is by three steps: (1) localize and

segment out the region Is'' of the original part of Is in Is'; (2) perform an inverse

perspective transform to correct the geometric distortion in Is''; (3) identify the blocks

in Is'', binarize them, and perform OCR to extract the message M from them.

5.3 Generation of Message-rich Character Image

5.3.1 Message image creation

Unlike most barcode systems that encode message contents by patterns (dots,

lines, etc.), the proposed method converts a message M into a set of binary character

shapes drawn from a database, as illustrated in Figure 5.3(a). Next, a message image

IM of the size of the target image IT is created by aligning the character shapes plus an

ending pattern as shown in Figure 5.3(b) in a raster-scan order. For example, with the

target image IT as shown in Figure 5.3(c) and the message M = “ABCDEFGH…,” the

resulting message image Im is as that shown in Figure 5.3(d). If the result cannot fill

up IM, then repetitions of the character shapes are conducted.

5.3.2 Block luminance modulation

After the message image IM is created, it is “injected” into the target image IT

under the constraint that the resulting image retains the visual appearance of IT. For

this, we utilize a characteristic of the YCbCr color model  the luminance

component Y is independent of the others [70]  to embed IM into the Y-channel of

IT. This will solve a problem of illumination variation encountered in the later stage of

message extraction. A block luminance modulation technique is proposed here to

divide the message image IM into character-fragments Fi and modulate the mean of

each Fi to be the same as that of the corresponding target block Bi of IT. The resulting

modulated message image IM′ looks like the Y-component of the target image IT. For

example, Figure 5.3(f) shows the created modulated message image IM′ which looks

like the Y-component of the target image shown in Figure 5.3(e), and Figure 5.3(g)

shows a zoom-out of part of Figure 5.3(f) (the red portion).

More specifically, firstly the message image IM and the Y-component of IT are

divided into character-fragments and target blocks, respectively, where the size of

each block is 1/4 times of a character image. The character-fragments Fi then are

88

fitted into the target blocks Bi in a random way controlled by a key K. Secondly, let

NB and NW denote the numbers of black and white pixels of the character and

non-character parts in Fi, respectively. The pixels of each Bi are sorted according to

their Y values in an ascending order to obtain an ordered Y-value set {q1′, q2′, …, qm′}.

Then, two representative Y values r1 and r2 are computed for Bi as follows:

1 2

1 1

1 1
,

B WB

B

N NN

t t

t t NB W

r q' r q'
N N



  

   . (14)

Note here that r2  r1. Finally, the value pt of each pixel Pt in Fi is modulated to obtain

a new pixel value pt′ by the following rule:

 set pt' = r1 if Pt is black; or r2 if Pt is white. (15)

The mean
iF' of the character fragment Fi' so modulated will be equal to the mean

iB of the target block Bi because we have:

1 1

1 1 B W

i

N Nm

B t t

t tB W

q' q'
m N N




 

 


  , (16)

and

1 1

1 1 B W

i

N Nm

F' t t

t tB W

p' = p'
m N N




 




 

1 1

1 1 B WB

B

N NN

t t

t t NB W B W

p' + p'
N N N N



  


 

 

1 2

1 1

1 1 B WB

B

N NN

t t NB W B W

r + r
N N N N



  


 

 

1 2

1 1
B W

B W B W

N r + N r
N N N N


 

1 1

1 1 1 1
() ()

B WB

B

N NN

B t W t

t t NB W B B W W

N q' + N q'
N N N N N N



  


 

 

1

1
 =

B W

i

N N

t B

tB W

q'
N N









 . (17)

This means that the overall gray appearances of the modulated message image

IM' and the Y-component of IT are roughly the same, as already mentioned.

Accordingly, we replace the Y-component of IT with IM′ to generate finally the

89

desired message-rich character image IC which has the visual color appearance of IT,

as shown by the example seen in Figure 5.3(h).

(a) (b)

(c) (d) (e)

(f) (g) (h)

Figure 5.3. Message-rich character image generation. (a) Image of character “T.” (b)

Ending pattern. (c) Target image. (d) Message image. (e) Y-channel of (c).

(f) Modulated message image. (g) Zoom-out of red square region in (f). (h)

Resulting printed message-rich character image.

Accordingly, later while conducting message extraction, the message characters

can be extracted from the Y-component of a captured version of IC by classifying the

pixels of each block into two groups according to their Y values, with the two pixel

groups representing the character and non-character parts, respectively. Also, an OCR

technique is applied to extract these characters. However, if the two representative

values r1 and r2 are too close, it is hard to separate them in the message extraction

phase. Therefore, an adjustment of the representative values r1 and r2 is conducted,

resulting in r1' and r2', so that the absolute difference between r1' and r2' becomes not

90

smaller than a pre-defined contrast threshold   0. For example, Figure 5.4 shows

four character-fragments resulting from modulations with different values of , from

which one can see that the two colors in modulated character-fragments will be more

easily distinguished when  is larger.

(a) (b) (c) (d) (e) (f)

Figure 5.4. Modulated character-fragments resulting from uses of different contrast

threshold values of  for the difference between the two representative

values r1 and r2. (a) = 0. (b)  = 10. (c)  = 20. (d)  = 30. (e)  = 40. (f) 

= 50.

The detail of the proposed representative-value adjustment scheme is described

in the following. Note that, after the adjustment, the absolute difference between r1′

and r2′ must be not smaller than the contrast threshold , and that the mean of the

modulated character fragment Fi'' based on r1′ and r2′ must be identical to that of the

target block Bi. Thus, the values of r1′ and r2′ must satisfy the following two

constraints:

 |r2′  r1′|  ; (18)

 Fi'' = Bi. (19)

Two possible cases can be identified in the adjustment process: 1) the original

absolute difference o of r1 and r2 is already not smaller than , i.e., o  ; and 2) the

reverse, i.e., o < . In the first case, the values of r1 and r2 satisfy (18) and (19)

automatically, so that they may be used as r1' and r2', respectively, directly, i.e., we

have the rule:

 if o  , then set r1′ = r1 and r2′ = r2. (20)

For the second case with o < , the absolute difference between the two

representative values must be increased, after the adjustment, at least for the amount

of   o for the resulting values of r1′ and r2′ to satisfy constraint (18). Specifically,

let the adjustment value of r1 be t so that r1′ = r1  t. Then, the adjustment value of r2

91

should be at least (  o)  t so that r2′  r2 + [(  o)  t]. Such value adjustments

indeed can satisfy constraint (18) because with the fact that r2  r1 = o, we have

|r2′  r1′|  |r2  r1 + (  o)|  .

Also, for r1′ and r2′ to satisfy constraint (19), suppose that r2' is adjusted for exactly

the amount of (  o)  t. The reason to make this assumption is to reduce the color

distortion in the created message-rich character image, as will be discussed later in

Section 5.5. Then, the yet-unknown value t may be computed by:

1

1 m

F'' t

t

p''
m




 
1 1

1 1 B WB

B

N NN

t t

t t NB W B W

p'' + p''
N N N N



  


 

 

1 2

1 1

1 1 B WB

B

N NN

t t NB W B W

r' + r'
N N N N



  


 

 

1 2

1 1
B W

B W B W

N r' + N r'
N N N N


 

1 2 o

1 1
= () (+[()])B W

B W B W

N r t + N r t
N N N N

   
 

1 2

1 1
B W

B W B W

N r + N r
N N N N

 
 

o

1 1 1
()B W W

B W B W B W

N t N N t
N N N N N N

   
  

o

1 1 1
()

iB B W W

B W B W B W

N t N N t
N N N N N N

      
  

 iB (21)

where the fact that the new value of pt′′ in Fi′′ is set to be r1′ if the color of Pt in Fi is

black; or to be r2′ if the color of Pt in Fi is white has been used in the derivations, and

the last step is based on the use of (19). Accordingly, we can get:

 o

1 1 1
() 0B W W

B W B W B W

N t N N t
N N N N N N

     
  

, (22)

from which the desired value t can be derived to be

 t =
o[/ ()]()W B WN N N    .

Therefore, the values of r1′ and r2′ can be computed by the rule:

 if o < , then set r1′ = r1 t and r2′ = r2 + [(  o)  t]. (23)

92

5.3.3 Algorithm for message-rich character image creation

Based on the above discussions, a detailed algorithm for message-rich character

image creation is described as follows.

Algorithm 5.1. Message-rich character image creation.

Input: a target image IT, a message M, and a contrast threshold value .

Output: a message-rich character image IC.

Steps:

Stage 1 － transforming the message into a message image.

Step 1. Convert M into a set of binary character shapes drawn from a database.

Step 2. Create the message image IM of the size of the target image IT by aligning the

character shapes plus an ending pattern in a raster-scan order.

Step 3. If the aligning result in Step 2 cannot fill up IM, then repetitions of the

character shapes are conducted.

Stage 2 － modulating the message image.

Step 4. Divide the Y-component of target image IT into target blocks {B1, B2, B3, …,

BN} where N = NT×NT.

Step 5. For each fragment block Fi in message image IM, generate a modulated

fragment block Fi′′ as follows.

(a) Compute two representative values r1 and r2 of the corresponding target

block Bi according to (14).

(b) Compute o = |r2  r1|, and use it and the input contrast threshold  to obtain

two adjusted representative values r1′ and r2′ from r1 and r2 according to

(20) and (23).

(c) For each pixel Pt in Fi, if Pt is black, set the value pt'' of the corresponding

pixel Pt'' in Fi'' as pt′′ = r1′; else, set pt′′ = r2′.

Step 6. Compose all the resulting Fi'' to get a modulated message image, denoted by

IM′.

Stage 3 － injecting the message image into the target image.

Step 7. Replace the Y-component of IT with IM′ to generate the desired message-rich

character image IC as the output.

93

5.4 Message Extraction

The various techniques proposed for extracting the message embedded in the

message-rich character image are described first, with a combination of them

described as an algorithm at last.

5.4.1 Message-rich character image localization and inverse

perspective transform

Assume that the message-rich character image IC is printed and posted or

displayed against a white background, and that the captured image Id contains only the

original image of IC and the background. The first assumption here may be removed

simply by adding a white surrounding zone to IC. To extract the message from Id, we

must localize the region of IC in Id. For this, we apply the Hough transform and

polygonal approximation to find the largest non-white quadrangle Q in Id as shown by

the example seen in Figure 5.5(a). Also, image Id will suffer from perspective

distortion if the axis of the camera is not directed perpendicularly toward the plane of

the message-rich code image IC [27] during image acquisition, as seen in Figure 5.5 (a)

as well. As a remedy, an inverse perspective transform is performed on Q to correct

the distortion. The result of conducting this on Figure 5.5(a) is shown in Figure 5.5(b).

Finally, the Y-component of the resulting Q is taken as an intermediate result, which

we call the captured modulated message image and denote it by IM′′.

(a) (b)

Figure 5.5. Localization and correction of perspective distortion in captured

message-rich character image. (a) Localized message-rich character image

portion (enclosed by red rectangle). (b) Result of perspective distortion

correction applied to red portion region in (a).

94

5.4.2 Block number identification and block segmentation

To identify the blocks in IM′′ in order to binarize them and perform OCR to the

contents of them, an idea similar to the Hough transform [71] is adopted: uses the

statistics of the pixels’ gradient values to guess the number NS of blocks in the

horizontal or vertical direction in IM'' because those pixels on the splitting lines

between the blocks usually have larger gradient values.

In more detail, at first the gradient value gxy of each pixel Rxy with value rxy at

coordinates (x, y) in IM′′ is computed by a Sobel operator [72]:

 gxy = +1, 1 1, 1, 1 1, -1 1, 1, 1(2) (2)x y x y x y x y x y x yr r r r r r            

 1, +1 , +1 1, +1 1, 1 , 1 1, 1(2) (2)x y x y x y x y x y x yr r r r r r           . (24)

Next, for each possible value nj of NS, the distance dj between the splitting lines

of every two possible adjacent blocks is computed as dj = L/nj where L is the side

length of the square-shaped IM′′. Then, the horizontal or vertical lines separated by the

distance of dj are taken as candidate splitting lines, where the positions of these

candidate splitting lines described by image coordinates are computed by:

 x = u×dj and y = v×dj, (25)

where u = 1 ~ L/dj and v = 1 ~ L/dj, respectively. Also, the average gradient value

AGnj of the pixels on each candidate spitting line is computed as:

/ /

() ()

1 1 1 1

.
1 1

/ /

j j

j j j

L d L dL L

n u d y x v d

u y v xj j

AG g g
L d L L d L

   
   

 

   

 
       

    (26)

Finally, the value nj of NS with the largest average gradient value is taken as the

desired number of blocks of IM′′ in the horizontal or vertical direction, and division of

Im'' into blocks is conducted accordingly. For example, Figure 5.6(a) shows a captured

modulated message image IM′′, Figure 5.6 (b) is the image of the computed gradient

values, and Figure 5.6(c) illustrates the average gradient values for different NS, where

the nj with the largest average gradient value is seen to be 16 (indicated by the orange

arrow). Therefore, the found value for NSF is 16. The corresponding image division

result is shown in Figure 5.6(d).

95

(a) (b) (c)

(d) (e) (f)

ABCDEFGHIJKLMNOPQRSTUVW

XYZABCDEFGHIJKLMNOPQRST

UVWXYZABCDEFGHIJK

(g) (h)

Figure 5.6. Message extraction. (a) Captured modulated message image IM′′. (b)

Gradient values of (a). (c) Average gradient values of pixels on candidate

spitting lines for different NS. (d) Image division result according to

determined number of blocks NS = 16. (e) Fragment reordering result of

(d). (f) Binarization result of (e). (g) OCR result of (f). (h) Extracted

message.

5.4.3 Binarization and optical character recognition

After the blocks of IM′′ are segmented out, the character-fragments of the

message image IM may be recovered from the blocks by using the key K mentioned

previously. Denote the resulting image by IM'''. Then, moment-preserving

thresholding [73] is applied to Fi' to binarize it, and every four mutually-connected

binarized blocks are grouped up to form a character image Ici′ since a character image

is divided into four blocks in the message image generation phase.

96

Next, a similar degree sdij between each Ici′ and each reference character image

Icj in the database is computed:

 1

1 () /
m

ij ix jx

x

sd p p m


  
, (27)

where the pixels of Ici′ and Icj are assumed to be {pi1′, pi2′, …, pim′} and {pi1, pi2, …,

pim}, respectively. Finally, each Icj' is recognized using an OCR scheme according to

the computed similarity degree values: the character with the largest similarity is

taken as the message delivered by Icj'. For example, the recovered original message

image Im with its character-fragments reordered using a key is shown in Figure 5.6(e),

which, after being binarized, results in Figure 5.6(f). The OCR result of Figure 5.6(f)

is shown in Figure 5.6(g), and the final extracted message characters are shown in

Figure 5.6(h).

5.4.4 Message extraction algorithm

A detailed message extraction algorithm is as follows.

Algorithm 5.2. Message extraction.

Input: a captured version Id of a message-rich character image.

Output: the message M embedded originally in Id.

Steps:

Stage 1 － localizing the message-rich character image.

Step 1. Find the largest non-white quadrangle Q in Id by the Hough transform and

polygonal approximation.

Stage 2 － correcting geometric distortion.

Step 2. Perform an inverse perspective transform on Q to correct the perspective

distortion and take the Y-component of Q as the captured modulated message

image IM′′.

Stage 3 － identifying blocks in the message image.

Step 3. Compute the gradient value gxy of each pixel Rxy in IP′′ according to (24).

Step 4. For each possible value nj of NS, compute the average gradient values AGn
j of

the pixels on each candidate spitting line according to (26).

97

Step 5. Select the value nj yielding the largest AGn
j for use as the desired number NS

of blocks of IM′′ in the horizontal or vertical direction; and divide IM''

accordingly into blocks.

Stage 4 － binarizing the blocks to extract the message.

Step 6. Binarize each block Fi' by moment-preserving thresholding [73].

Step 7. Group every four mutually-connected binarized blocks to form character

images Ici′.

Step 8. Extract the corresponding character from each character image Ici′ by the

following steps.

(a) Compute the the similar degree sdij between each Ici′ and each reference

character image Icj according to (27).

(b) Select the character with the largest similarity sdij as the message delivered

by Icj'.

Step 9. Concatenate the extracted characters to get the embedded message M.

5.5 Experimental Results

The proposed system was developed using Microsoft C#.NET and the generated

message-rich character images were captured with an iPhone 4S. The character image

database includes the printable characters of the ASCII codes. A series of experiments

using different parameters have been conducted and corresponding statistics plotted

(in Figure 5.8) to show the accuracy rates of extracted message characters, including:

(1) the contrast threshold  of the minimum difference between r1 and r2; and (2) the

number of blocks NS in the horizontal or vertical direction of the message image.

Figures 5.7(a) through 5.7(c) show three test target images used in the

experiments. The corresponding message-rich character images generated with

parameters NS = 32 and  = 40 are shown in Figures 5.7(d) through 5.7(f). These

images were all printed to be of the same size of 127127 mm.

One of the parameters that influence the accuracy of the extracted message is the

contrast threshold  for the minimum difference between r1 and r2. If  is too small,

the two representative values r1 and r2 will be too close so that the message extracted

might be wrong. For example, Figure 5.8(a) shows the accuracy rate of the extracted

messages with  = 0, 20, 40, and 60, from which it can be seen that the larger the

98

value of , the higher the accuracy rate of the extracted message; when  is larger than

40, an accuracy rate of 100% is yielded.

(a) (b) (c)

(d) (e) (f)

Figure 5.7. Created message-rich character images. (a)-(c) Test target images. (d)-(f)

Resulting message-rich character images with NS = 32 and = 40.

It can also be seen from Figure 5.8(b) that the larger the value of , the larger the

RMSE of the resulting message-rich character image with respect to the target image.

So there is a tradeoff between achieving higher message extraction accuracy and

obtaining a better visual quality in the resulting message-rich character image.

Another parameter that influences the accuracy of the extracted message is the

number NS of blocks in the horizontal or vertical direction in the message image. The

larger the value of NS, the larger the character capacity of the message image;

however, the larger the value of NS, the smaller the size of the block, and so the lower

the accuracy of the extracted message, as can be seen from Figure 5.8(c).

Finally, to show the robustness of the proposed method, we have conducted

some attacks on the created message-rich character images. For example, Figures

5.9(a) and 5.9(b) show two attacked versions of the message-rich character image

shown in Figure 5.7(f) with message “ComputerVisionLab” injected. The

experimental results show that the carried message can still be extracted from either of

99

these two attacked images. In addition, by regarding image taking from a display

screen as a type of attack, a third attacked version so acquired is shown in Figure

5.9(c). The resulting message extraction rate is 96.88%, which, though not 100%,

means that the proposed method can handle message carriers other than paper copies.

(a)

(b)

(c)

Figure 5.8. Plots of trends of results using various parameters. (a) Accuracy rates of

extracted messages with different contrast threshold values , with #blocks

NS = 16. (b) RMSE values of created message-rich character images with

respect to target images for different contrast threshold values of , with

#blocks NS = 16. (c) Accuracies of extracted messages with different

#blocks NS, where contrast threshold value  = 40.

100

(a) (b)

(c)

Figure 5.9. Robustness of proposed method. (a) A captured message-rich character

image under defacement attack. (b) A captured message-rich character

image under another defacement attack. (c) A message-rich character

image captured from a monitor screen.

5.6 Summary

A new data hiding technique for AIDC applications via message-rich character

image has been proposed, which is created from a target image for use as a carrier of a

given message. The artistic favor of the target image is kept in the created image,

achieving pervasive communication. Comparing with other AIDC tools like QR codes

and hardcopy image barcodes, the proposed message-rich character image has several

merits: (1) the image can not only be printed on papers but also be displayed on

screens for various uses; (2) the image can endure more distortions like perspective

transformation, noise, screen blurring, etc.; (3) the message can be extracted from an

image captured by a mobile phone (this is not the case for the hardcopy image

barcode [17]-[19]); (4) by utilizing the power of OCR, the image can endure more

101

serious attacks, such as partial defacement, image taking from screens, etc. (again, this

is not the case for the hardcopy image barcode); (5) if message extraction from the

message image by machine is not necessary to carry out, humans can still read the

information appearing in the extracted message image because it is composed of

characters, and so meaningful and readable. Experimental results show the feasibility

of the proposed method.

102

Chapter 6

A New Data Hiding Technique via Message-rich

code Image for Automatic Identification and

Data Capture Applications

6.1 Introduction

In Chapter 5, we proposed a new data hiding technique via message-rich

character image for automatic identification and data capture to realize pervasive

communication on hard copies of images. It is created from a target image used as a

carrier of a given message by fragmenting the shapes of the composing characters of

the message and “injecting” the resulting character fragments randomly into the target

image by a block luminance modulation scheme. Each message-rich character image

so created has the visual appearance of the corresponding pre-selected target image

while conventional barcodes [20]-[23] do not. Also, the data embedded by the method

presented in Chapter 5 can be extracted from a “camera-captured” version of the

created message-rich character image while those embedded by the use of the

aforementioned hardcopy data hiding methods using image barcodes cannot. The

function may be implemented on a mobile device.

However, as shown in Figure 6.1(b), each message-rich character image

generated by the method in Chapter 5 contains many small character fragments with

undesired visual effects. Also, it requires an optical character recognition scheme to

extract the embedded message, which is usually time-consuming. Also, the size of

each block cannot be too small in order to keep the resolution in the captured image

sufficiently good for correct extraction of the character shapes in the image. To solve

these problems, another new type of message-rich multimedia, called message-rich

code image, is proposed in this study. Specifically, instead of transforming the given

message to be embedded into a character message image, the message is converted, in

the sense of data coding, into a bit stream of codes first, which is then represented by

binary pattern blocks, each being composed of 2×2 unit blocks. A block luminance

modulation scheme is then applied to each pattern block to yield a message-rich code

image with the visual appearance of a pre-selected target image. An example of the

103

resulting message-rich code image is shown in Figure 6.1(c), which is more pleasing

than the message-rich character image shown in Figure 6.1(b) generated by the

method in Chapter 5 . A more detailed comparison with the method in Chapter 5 by

experiments reveals the following additional merits of the proposed method in this

chapter: (1) the yielded message-rich code image has a much better visual appearance

of the target image; (2) the accuracy rate of message extraction from the generated

code image is higher; (3) the message extraction speed is higher.

(a) (b) (c)

Figure 6.1. Examples of message-rich images yielded by the method in Chapter 5 and

proposed method. (a) Target image. (b) Message-rich character image

created by the method in Chapter 5. (c) Message-rich code image created

by proposed method.

6.2 Idea of Proposed Method

The proposed method includes two main phases of works as illustrated in Figure

6.2: 1) message-rich code image generation; and 2) message extraction. In the first

phase, given a target image IT and a message M, a message-rich code image IC is

created by four major steps.

Stage 1-1 － transform message M into a bit stream B of codes;

Stage 1-2 － transform every three bits of B into four bits and represent them by a

binary pattern block, resulting in a pattern image IP;

Stage 1-3 － modulate each pattern block Ti of IP by two representative values

calculated from the Y-channel values of the corresponding block Bi of

target image IT, yielding a modulated pattern image IP';

Stage 1-4 － replace the Y-channel of target image IT with IP' to get a message-rich

code image IC as the output.

104

In the second phase, given a camera-captured version IC' of a paper or display

copy of the message-rich code image IC, the message M is extracted from IC' by four

major steps.

Stage 2-1 － localize the region IC'' of the original part of the message-rich code

image IC in IC';

Stage 2-2 －correct the geometric distortion in IC'' incurred in the image acquisition

process;

Stage 2-3 － identify the unit blocks in IC'' automatically and divide IC'' accordingly

into pattern blocks, each with 22 unit blocks;

Stage 2-4 － binarize each pattern block of IC'', recognize the result to extract the

bits embedded in it, compose all the extracted bits to form a bit stream

B, and transform B reversely to get the message M.

Figure 6.2. Illustration of major steps of two phases of proposed method.

6.3 Generation of Message-rich Code Image

6.3.1 Pattern image creation

Unlike the method in Chapter 5 that transforms a message M into a character

message image, the proposed method in this chapter transforms M into a bit stream B

of codes, uses binary code patterns to encode the bits of B, and composes the code

105

patterns, each in the form a pattern block, to form a pattern image similar in

appearance to a pre-selected target image. Specifically, each pattern block T consists

of several unit blocks Fi, with each Fi representing a bit of the code pattern C which T

represents. A main issue here is how to design the code patterns so that the

corresponding pattern blocks are suitable for use not only in message embedding but

in block luminance modulation (see Stage 1-3 in this chapter above). To solve this

issue, two characteristics must be provided in the designed code patterns: 1) the

number of bits in each code pattern C must be small enough, so that the pattern block

T representative of C can keep the local color characteristic of the corresponding

target image area; and 2) the colors of the unit blocks Fi of the pattern block T

representative of each code pattern C should not be all the same, since this will cause

the original bits represented by the unit blocks of the code patterns undistinguishable

during message extraction.

The first characteristic mentioned above is necessary for the resulting

message-rich code image to become more similar to the pre-selected target image.

And as an illustration of the necessity of the second characteristic, Figure 6.3 shows

an example of undistinguishable binary code patterns, where the unit blocks Fi of the

pattern block T representative of a code pattern C with bits “0000” are all of an

identical color originally and are modulated to be all of another color, but then in the

message extraction stage, the bits represented by the modulated pattern block cannot

be extracted since only one color exists in this modulated pattern block and the bits

corresponding to this color cannot be uniquely determined (more details discussed

later).

bits“0000”

or

bits“0000” bits“1111”

Message

extraction
Modulation ?

Figure 6.3. An example of undistinguishable binary code patterns.

Therefore, in this study each pattern block representative of a code pattern is set

to be of the smallest size of 2×2 unit blocks. Also, a novel bit expansion scheme is

proposed to expand every three bits of the bit stream B into four ones which are not all

106

the same in order to satisfy the second required characteristic of the code pattern. In

detail, let the bit stream B be denoted as

 B = b11b12b13b21b22b23b31b32b33 …bn1bn2bn3;

and for every three consecutive bits bi1bi2bi3 in B, we perform at first a bit expansion

operation to get four bits bi1′bi2′bi3′bi4′ by the following rule:

 set bi4′ =
1 2 3i i ib b b  and bij′ = bij for j = 1, 2, 3, (28)

where  and  denote bitwise “OR” and “complement” operations, respectively.

The resulting four bits bi1′bi2′bi3′bi4′ will not be all identical, as can be verified by

ORing the four bits bi1′ through bi4′, leading to the following result:

 bi1′bi2′bi3′bi4′ = (bi1bi2bi3)bi4′

 = (bi1bi2bi3) 1 2 3i i ib b b  = 1, (29)

which means that at least one “1” must exist in bi1′bi2′bi3′bi4′, and if all the four bits bi1′

through bi4′ are “1s,” then according to (28), all the three bits bi1, bi2, and bi3 must be

“1s” as well, leading to the result bi4′ = 1 2 3i i ib b b  = 0, which is a contradiction.

Moreover, the total possible number of distinct expanded four bits bi1′bi2′bi3′bi4′ for

different combinations of bi1bi2bi3 is eight, as shown in Figure 6.4. These eight

combinations are taken as the code patterns which we mentioned previously.

Message bits

bi1bi2bi3

Code pattern

bi1′bi2′bi3′bi4′
Pattern block Ti

000

001

010

011

100

101

110

111

0001

0010

0100

0111

1000

1011

1101

1110

Figure 6.4. Performing proposed bit expansion scheme on every three message bits to

yield eight binary code patterns represented by pattern blocks.

107

Next, we create a 2×2 pattern block Ti = Fi1Fi2Fi3Fi4 with four unit blocks Fi1

through Fi4 to represent the non-all-identical bits bi1′ through bi4′ of each code pattern

Ci, where the color of unit block Fij is set to be black if bij′ = 0 or white if bij′ = 1.

Accordingly, as can be seen from Figure 6.4, the colors of the pattern blocks

representative of the eight code patterns are all non-identical as well.

Finally, we create a pattern image IP of the size of the target image IT by

arranging all the pattern blocks Ti, say n ones, in a raster-scan order. If the n pattern

blocks do not fill up IP, then we repeat to fill them into IP again and again until they do.

For example, with the target image IT as shown in Figure 6.5(a) and the bit stream B =

“110110110100011111010111001...,” the pattern image IP resulting from such filling

operations is shown in Figure 6.5(b).

(a) (b) (c)

(d) (e) (f)

Figure 6.5 Message-rich code image generation. (a) Target image. (b) Pattern image

IP. (c) Y-channel of (a). (d) Modulated pattern image. (e) Zoom-out of red

square region in (d). (f) Resulting message-rich code image.

6.3.2 Block luminance modulation

After the pattern image IP is created, it is “injected” into the target image IT

under the constraint that the resulting image retains the visual appearance of IT. For

108

this, we utilize a characteristic of the YCbCr color model to embed IP into the

Y-channel of IT. A block luminance modulation technique is used as the same way in

Section 5.3.2, which modulates the mean of each pattern block Ti to be the same as

that of the corresponding target block Bi of IT. The resulting modulated pattern image

IP′ so has roughly the visual appearance of the Y-component of the target image IT.

For example, Figure 6.5(d) shows a modulated pattern image IP′ so created, which

looks like the Y-component of the target image IT shown in Figure 6.5(c); and Figure

6.5(e) shows a zoom-out version of part of Figure 6.5(d) enclosed by the red

rectangle.

The details for block luminance modulation is omitted here, where the detailed

steps for block luminance modulation is the same as those in Section 5.3.2. After the

pattern image IP is modulated, the overall gray appearance of the modulated pattern

image IP' and that of the Y-component of IT is roughly the same. Accordingly, we

replace the Y-component of IT with IP′ to generate finally the desired message-rich

code image IC which has the visual color appearance of IT, as shown by the example

seen in Figure 6.5(f).

Later, when conducting message extraction, the message bit stream can be

extracted from the Y-component of a captured version of IC by classifying the pixels

of each pattern block into two classes according to their Y values: black and white.

However, an issue may occur here as the same one descried in Section 5.3.2: if the

two representative values r1 and r2 are too close, it will be difficult to “separate” them

in the classification process. Therefore, an adjustment of the representative values r1

and r2 is conducted, resulting in r1' and r2', so that the absolute difference between r1'

and r2' becomes not smaller than a pre-defined contrast threshold   0. For example,

Figure 6.6 shows a pattern block resulting from modulations with different values of ,

from which one can see that the two colors in a modulated pattern block will be more

easily distinguished when  is larger. The detail of the proposed representative-value

adjustment scheme can be found in Section 5.3.2 so it is omitted here.

6.3.3 Algorithm for message-rich code image creation

Based on the above discussions, a detailed algorithm for message-rich code

image creation is described as follows.

Algorithm 6.1. Message-rich code image creation.

Input: a target image IT, a message M, and a contrast threshold value .

109

(a) (b) (c) (d) (e) (f)

Figure 6.6. Modulated pattern block resulting from uses of different contrast threshold

values of  for the absolute difference between the two adjusted

representative values r1′ and r2′. (a)  = 0. (b)  = 5. (c)  = 10. (d) = 20.

(e) = 30. (f) = 40.

Output: a message-rich code image IC.

Steps:

Stage 1 － transforming the message into a bit stream.

Step 1. Transform message M into a bit stream B.

Stage 2 － generating the pattern image.

Step 2. Split B into n three-bit segments as b11b12b13b21b22b23 … bn1bn2bn3.

Step 3. Expand every three bits bi1bi2bi3 in B into four bits bi1′bi2′bi3′bi4′ according to

(28) and generate the corresponding pattern block Ti according to the rules

shown in Figure 6.4.

Step 4. Align all the generated pattern blocks Ti in a raster-scan order to form a

pattern image IP of the size of target image IT, with each side having NT

patterns; and if the result does not fill up IP, repeat the filling until it becomes

so.

Stage 3 － modulating the pattern image.

Step 5. Divide the Y-component of target image IT into target blocks {B1, B2, B3, …,

BN} where N = NT×NT.

Step 6. For each pattern block Ti in pattern image IP, generate a modulated pattern

block Ti′′ as follows.

(a) Compute two representative values r1 and r2 of the corresponding target

block Bi according to (14).

(b) Compute o = |r2  r1|, and use it and the input contrast threshold  to obtain

two adjusted representative values r1′ and r2′ from r1 and r2 according to

(20) and (23).

(c) For each pixel Pt in Ti, if Pt is black, set the value pt'' of the corresponding

pixel Pt'' in Ti'' as pt′′ = r1′; else, set pt′′ = r2′.

110

Step 7. Compose all the resulting Ti'' to get a modulated pattern image, denoted by

IP′.

Stage 4 － injecting the pattern image into the target image.

Step 8. Replace the Y-component of IT with IP′ to generate the desired message-rich

code image IC as the output.

6.4 Message Extraction

6.4.1 Localization of message-rich code image and inverse

perspective transform

The localization scheme is the same as the one utilized in the previous method,

where the description of the localization scheme can be found in Section 5.4.1. In

short, we apply the Hough transform and polygonal approximation to find the largest

non-white quadrangle Q in Id as shown by the example seen in Figure 6.7(a). Next, an

inverse perspective transform is performed on Q to correct the distortion. The result

of conducting this on Figure 6.7(a) is shown in Figure 6.7(b). Finally, the

Y-component of the resulting Q is taken as an intermediate result, which we call the

captured modulated pattern image and denote it by IP′′.

Q

(a) (b)

Figure 6.7. Localization and correction of perspective distortion in captured

message-rich code image. (a) Localized message-rich code image portion

(enclosed by red rectangle). (b) Result of perspective distortion correction

applied to red portion region in (a).

6.4.2 Block number identification and block segmentation

To identify the unit blocks in IP′′ in order to apply binarization and pattern

recognition to them, an idea similar to the Hough transform is adopted, which uses the

111

statistics of the pixels’ gradient values to guess the number NS of unit blocks in the

horizontal or vertical direction in IP'' because those pixels on the splitting lines

between the unit blocks usually have larger gradient values. In more detail, at first the

gradient value gxy of each pixel Rxy with value rxy at coordinates (x, y) in IP′′ is

computed by (24) in Section 5.4.2: Next, for each possible value nj of NS, the distance

dj between the splitting lines of every two possible adjacent unit blocks is computed

as dj = L/nj where L is the side length of the square-shaped IP′′. Then, the horizontal or

vertical lines separated by the distance of dj are taken as candidate splitting lines,

where the positions of these candidate splitting lines described by image coordinates

are computed by (25) in Section 5.4.2. Also, the average gradient value AGnj of the

pixels on each candidate spitting line is computed by (26) in Section 5.4.2:

Note that in addition to the actual value NS which will yield a large average

gradient value, the values nj which are divisors of NS will yield large average gradient

values as well. For this, the value nj yielding the largest average gradient value AGn
j,

denoted as AGo, is selected first and those nj yielding average gradient values AGn
j

close to AGo are selected as well. Then, the largest nj from these selected values of nj

is taken as the desired number NS of blocks of IP′′ in the horizontal or vertical

direction, and division of IP'' into unit blocks is conducted accordingly.

For example, Figure 6.8(a) shows a captured modulated pattern image IP′′, Fig.

Figure 6.8(b) is the image of the computed gradient values, and Figure 6.8(c)

illustrates the average gradient values for different values of NS, where the nj yielding

the largest average gradient value is seen to be 16 (indicated by the black arrow). Also,

the nj’s, which yield the average gradient values close to the largest average gradient

value 16, are seen to be 32 and 64 (indicated by the green and red arrows,

respectively), and the nj yielding the largest gradient value among the three selected

ones is 64. Therefore, the desired NS is taken to be 64, and the corresponding image

division result is shown in Figure 6.8(d).

6.4.3 Binarization and recognition of pattern blocks

After the captured modulated pattern image IP′′ are segmented into unit blocks,

we try to recover the pattern blocks in pattern image IP by grouping every four

mutually-connected unit blocks as a pattern block since the size of a pattern block is

2×2. The number of pattern blocks in the horizontal or vertical direction in IP'' is so

just NT = NS/2. Subsequently, the moment-preserving thresholding technique [73] is

112

applied to each pattern block Ti''' to binarize it automatically. And the four unit blocks

in each resulting pattern block Ti''' are denoted as Fi1', Fi2', Fi3', and Fi4', respectively.

(a) (b)

(c)

(d)

Figure 6.8. Block number identification. (a) Captured modulated pattern image IP′′.

(b) Gradient values of (a). (c) Average gradient values of pixels on

candidate spitting lines for different NS. (d) Image division result according

to determined number of unit blocks, NS = 64.

113

Next, how to classify each Ti''' as one of the eight possible code patterns, which

we denote as BPk with k = 1 ~ 8, as shown in Figure 6.4 is the issue now. This is an

eight-class pattern classification problem. To solve it, we use a minimum absolute

distance classifier. Specifically, each possible code pattern BPk has four unit blocks,

say denoted as Fk1'' through Fk4'', and the color of each Fkj'' is either black or white.

Hence, we may utilize the feature of blackness to describe Fkj''; that is, if the color of

the unit block Fkj'' is black, then we take the blackness feature bfkj of Fkj'' to be “1”;

else, to be “0.” Next, we compute the real blackness feature bfij of each unit block Fij'

in Ti''' by:

 bfij = NBij/(NBij + NWij), (30)

where NBij and NWij are the numbers of black and white pixels in unit block Fij',

respectively. Then, the absolute distance ADik of the blackness feature between Ti'''

and BPk can be computed as:

4

1

1

4

ik ij kj

j

AD bf bf


  . (31)

Subsequently, the code pattern BPm with the minimum absolute distance ADim is

selected as the result of classifying the pattern block Ti'''. For example, let the

blackness features of unit blocks Fi1' through Fi4' of a pattern block Ti''' be bfi1 = 0.9,

bfi2 = 0.13, bfi3 = 0.22, bfi4 = 0.12, respectively. The absolute distances ADik of Ti''' to

all the eight possible code patterns BPk with k = 1 ~ 8 are shown in Table 6.1. And the

code pattern with the minimum absolute distance is BP4 with ADi4 = 0.1425. So, the

corresponding four bits bi1' through bi4' of the pattern block Ti''' are “0111.” Finally,

we extract the original three message bits bi1, bi2, and bi3 as “011” based on bi1'

through bi4' by the rule bij = bij' for j =1, 2, and 3 according to (28).

An example of results yielded by the above message extraction process is shown

in Figure 6.9, where a captured modulated pattern image IP'' is shown in Figure 6.9(a),

which, after being binarized, results in Figure 6.9(b); the result of code-pattern

classification is shown in Figure 6.9(c); and the final extracted bit stream are shown in

Figure 6.9(d). These results show that the proposed code-pattern classification scheme

corresponding to the minimum absolute distance criterion works correctly for the

purpose of embedded message extraction. More experimental results will be presented

later to prove this statement.

114

Table 6.1. An example of code pattern recognition.

binary

code

pattern

Corresponding

4 bits
Absolute distance ADik

0001

ADi1 = (0.1+0.87+0.78+0.12)/4 = 0.4675

0010

ADi2 = (0.1+0.87+0.22+0.88)/4 = 0.5175

0100

ADi3 = (0.1+0.13+0.78+0.88)/4 = 0.4725

0111

ADi4 = (0.1+0.13+0.22+0.12)/4 = 0.1425

1000

ADi5 = (0.9+0.87+0.78+0.88)/4 = 0.8575

1011

ADi6 = (0.9+0.87+0.22+0.12)/4 = 0.5275

1101

ADi7 = (0.9+0.13+0.78+0.12)/4 = 0.4825

1110

ADi8 = (0.9+0.13+0.22+0.88)/4 = 0.5325

6.4.4 Message extraction algorithm

Algorithm 6.2. Message extraction.

Input: a captured version Id of a message-rich code image.

Output: the message M embedded originally in Id.

Steps:

Stage 1 － localizing the message-rich code image.

Step 1. Find the largest non-white quadrangle Q in Id by the Hough transform and

polygonal approximation.

Stage 2 － correcting geometric distortion.

Step 2. Perform an inverse perspective transform on Q to correct the perspective

distortion and take the Y-component of Q as the captured modulated pattern

image IP′′.

Stage 3 － identifying pattern blocks in the code image.

Step 3. Compute the gradient value gxy of each pixel Rxy in IP′′ according to (24).

115

(a) (b)

110101010……

(c) (d)

Figure 6.9. Binarization and code-pattern recognition. (a) Captured modulated pattern

image. (b) Binarization result of (a). (c) Result of code-pattern recognition

of (b). (d) Extracted message.

Step 4. For each possible value nj of NS, compute the average gradient values AGn
j of

the pixels on each candidate spitting line according to (26).

Step 5. Select the value nj yielding the largest AGn
j, denoted as AGo, and those nj’s

yielding AGn
j close to AGo; pick the largest nj from all the selected nj’s for

use as the desired number NS of blocks of IP′′ in the horizontal or vertical

direction; and divide IP'' accordingly into unit blocks.

Stage 4 － binarizing the pattern blocks to extract the message.

Step 6. Group every four mutually-connected unit blocks and denote them as Fi1'

through Fi4' to form a pattern block Ti′′' in IP′′.

Step 7. Extract three bits from each pattern block Ti''' by the following steps.

(a) For each unit block Fij' in Ti''', compute its blackness feature bfij according

to (30).

116

(b) Computing the absolute distance ADik of Ti''' to each of the eight possible

code patterns BPk shown in Figure 6.4 according to (31).

(c) Select the code pattern BPm with the minimum absolute distance and take

the corresponding four bits of BPm as the recognized four bits bi1 through

bi4' of Ti'''.

(d) Extract the original three message bits bi1, bi2, bi3 as bi1', bi2', bi3',

respectively, according to (28).

Step 8. Concatenate the extracted bits into a bit stream B and transform reversely B

to get the embedded message M.

6.5 Experimental Results

The proposed method was implemented on a 3.0GHz PC with a Core i7 CPU

and 8G RAM using the language Microsoft C#.NET, and generated message-rich

code images were captured with an iPhone 4S and analyzed to extract the embedded

messages in a series of experiments. Corresponding statistics were plotted as well to

show the accuracy of the extracted messages using different parameters including: (1)

the contrast threshold  for the minimum difference between the representative values

r1′ and r2′; and (2) the number of unit blocks NS used in the horizontal or vertical

direction of the created pattern image. Figures 6.10(a), 6.10(c), and 6.10(e) show three

test target images used in the experiments. The corresponding message-rich code

images generated with parameters NS = 128 and  = 40 are shown in Figures 6.10(b),

6.10(d), and 6.10(f), respectively. These images were all printed to be of the same size

of 127127 mm.

One of the parameters that influence the accuracy of the extracted message is the

contrast threshold value  for the minimum difference between the two representative

values r1′ and r2′. If  is too small, r1′ and r2′ will be too close so that the extracted

message might be wrong. Figure 6.12(a) illustrates the accuracy rates of message

extraction with  = 0, 20, 40, and 60, which shows that the larger the value of , the

higher the accuracy rate of the extracted message; when  > 40, an accuracy of 99.8%

is reached; and when  > 60, an accuracy of 100% is reached. Figure 6.12(b) shows

that the larger the value of , the larger the RMSE of the resulting message-rich code

image with respect to the target image. So there is a tradeoff between achieving higher

message extraction accuracy and obtaining better visual quality in the generated code

117

image. Figure 6.11 shows some code images created with different contrast threshold

values of , where the target image is Figure 6.10(e) and NS = 64. As can be seen,

Figure 6.11(a) has the best visual appearance when compared with the others, but has

the lowest message extraction accuracy for only 85.60%, because the two

representative values are too close (so that the colors of most regions in Figure 6.11(a)

look like the same).

(a) (b)

(c) (d)

(e) (f)

Figure 6.10. Created message-rich code images. (a), (c), and (e) Target images. (b),

(d) and (f) Resulting message-rich code images with NS = 128 and  = 40.

118

(a) (b)

(c) (d)

Figure 6.11. Created message-rich code images with different contrast threshold

values of , where NS = 64. (a) Resulting message-rich code image with

RMSE = 66.35 and accuracy rate = 85.60%, where  = 0. (b) Resulting

code image with RMSE = 66.57 and accuracy rate = 98.97%, where  =

20. (c) Resulting code images with RMSE = 68.47 and accuracy rate =

100%, where  = 40. (b) Resulting images with RMSE = 72.27 and

accuracy rate = 100%, where  = 60.

Another parameter that influences the message extraction accuracy is the

number NS of unit blocks in the horizontal or vertical direction in the created pattern

or code image. The larger the value of NS, the larger the message embedding capacity

of the created code image, yet the smaller the size of the unit block and so the lower

the message extraction accuracy. This can be seen from Figure 6.12(c), where when

NS = 16, the accuracy of 100% is reached; when NS = 64, the accuracy of 99.76% is

reached; and when NS = 128, the lower accuracy of 96.31% is yielded. Figure 6.13

shows some message-rich code images generated with different values of NS with

Figure 6.10(a) as the target image and the contrast threshold  = 40. As can be seen,

when NS is larger, the visual appearance of the created image is better with a smaller

RMSE, but the message extraction accuracy is lower. Specifically, the accuracy of

Figure 6.13 (d) is 99.11%, instead of 100% which is reached by the other three cases.

119

(a) (b)

(c) (d)

Figure 6.12. Plots of trends of results using various parameters. (a) Accuracy rates of

extracted messages with different contrast threshold values , with #unit

blocks NS = 32. (b) RMSE values of created message-rich code images with

respect to target images for different contrast threshold values of , with #unit

blocks NS = 32. (c) Accuracy rates of extracted messages with different #unit

blocks NS with contrast threshold  = 40. (d) RMSE values of created

message-rich code images with respect to target images with different #unit

blocks NS and contrast threshold  = 40.

Table 6.2 shows a comparison of the results of the proposed method via

message-rich code images in this chapter and those of the method via message-rich

character image in Chapter 5 with the target images as shown in Figure 6.10 against

different numbers NS of unit blocks in the horizontal or vertical direction in the

created pattern or message images. As can be seen from the table, the proposed

method yields higher message extraction accuracy than the method via message-rich

character image in Chapter 5, e.g., when NS = 32, the message extraction accuracy

yielded by the proposed method reaches 99.80% while that yielded by the method via

message-rich character image in Chapter 5 is only 88.28%. Moreover, when NS = 64,

the message extraction accuracy of 99.76% yielded by the proposed method is much

higher than that yielded by the method via message-rich character image in Chapter 5,

which is only 34.70%.

120

(a) (b)

(c) (d)

Figure 6.13. Created message-rich code images with different #unit blocks NS, where

contrast threshold value  = 40. (a) Resulting message-rich code image

with RMSE = 47.66 and accuracy rate = 100%, where NS = 16. (b)

Resulting message-rich code image with RMSE = 44.63 and accuracy rate

= 100%, where NS = 32. (c) Resulting message-rich code image with

RMSE = 42.05 and accuracy rate = 100.00%, where NS = 64. (d) Resulting

message-rich code image with RMSE = 39.43 and accuracy rate = 99.11%,

where NS = 128.

Also, Figure 6.14 shows the resulting binarized captured message-rich images of

the proposed method via message-rich code image and the method via message-rich

character image in Chapter 5, where the value of NS is 32 in Figures 6.14(a) and

6.14(b) and 64 in Figures 6.14(c) and 6.14(d). As can be seen from Figure 6.14(a),

with NS = 32 the characters in the binarized captured message-rich character image

created by the method in Chapter 5 are still clear enough so that the message

extraction accuracy yielded with Figure 6.14(a) as the input is still high, reaching

98.61%. However, with NS = 64, as seen from Figure 6.14(c), the characters in the

binarized captured message-rich character image created by the method in Chapter 5

121

become undistinguishable so that the message extraction accuracy yielded with Figure

6.14(c) as the input becomes worse, only 41.25%. Furthermore, as seen from Figures

6.14(b) and 6.14(d), the pattern blocks in the binarized captured message-rich code

images created by the proposed method are both clear enough so that the message

extraction accuracy rates yielded by them are both still high, reaching 99.80% and

99.76%, respectively.

In addition, we compare the times consumed by the code-pattern recognition

steps in the proposed method and the method in Chapter 5. As can be seen from Table

6.2, the recognition time used by the proposed method in this chapter is much less

than that used by the method in Chapter 5. This is owing to the time-consuming OCR

operation conducted by the method in Chapter 5 on every character image, which

computes the similarity of the character image with each possible character image in

the database and selects the most similar one as the recognition result. In contrast, the

proposed method only needs to recognize each pattern block as coming from one of

eight possible code-pattern classes by computing the absolute distances of the pattern

block to the eight classes and selecting the one with the minimum absolute difference.

Table 6.2. Comparison of results of proposed method in this chapter and method in

Chapter 5 with  = 40.

Target

image
NS Method

Accuracy

rate (%)

Recognition

time (ms)

Fig. 6.10(a)

16
Message-rich code images 100 60

Message-rich character images 100 1186

32
Message-rich code images 100 62

Message-rich character images 96.53 1812

64
Message-rich code images 100 93

Message-rich character images 40.86 3045

Fig. 6.10(c)

16
Message-rich code images 100 68

Message-rich character images 100 1590

32
Message-rich code images 99.80 63

Message-rich character images 98.61 1696

64
Message-rich code images 99.76 83

Message-rich character images 41.25 2263

Fig. 6.10(e)

16
Message-rich code images 100 54

Message-rich character images 100 1230

32
Message-rich code images 99.80 55

Message-rich character images 88.28 1697

64
Message-rich code images 100 82

Message-rich character images 34.70 2315

122

As a summary, the proposed method has the following merits with respect to the

method in Chapter 5: (1) the yielded message-rich code image has a better visual

appearance since a larger number NS of unit blocks can be utilized in the proposed

method; (2) the message extraction accuracy is higher since much less details are

contained in a unit block of the proposed method; (3) the message extraction speed is

higher since classification of only eight classes need be conducted to extract the

corresponding four bits of each binarized pattern block.

(a) (b)

(c) (d)

Figure 6.14. Binarized captured message-rich images created by method in Chapter 5

and proposed method in this chapter and respective message extraction

accuracy rates, where the target image of these resulting images is Figure

6.10(c). (a) Binarized image by method in Chapter 5 with NS = 32 and

accuracy rate = 98.61%. (b) Binarized image by proposed method in this

chapter with NS = 32 and accuracy rate = 99.80%. (c) Binarized image by

method in Chapter 5 with NS = 64 and accuracy rate = 41.25%. (d)

Binarized image by proposed method in this chapter with NS = 64 and

accuracy rate = 99.76%.

123

Furthermore, as shown in Figure 6.4, only eight binary code patterns are utilized

by the proposed bit expansion scheme. However, the possible number of all code

patterns is 16 since the possible number of combinations of the four expanded bits is

24 = 16. Also, only two of the possible 16 code patterns will cause the

undistinguishable problem as illustrated in Figure 6.3. Hence, 14 code patterns can be

utilized in the bit expansion scheme. For this, as shown in Figure 6.15, we conducted

an experiment to test another bit expansion scheme, in which the first three bits

bi1′bi2′bi3′ are taken to be the same as the original bits bi1bi2bi3 and the fourth bit bi4′ is

decided by the brightness of the lower right sub-block Bi4 in its corresponded target

block Bi when bi1′bi2′bi3′ are not all the same. Specifically, if the mean value of the

pixels in Bi4 is larger than that of the pixels in Bi, then we assign bi4′ to be “1”; else,

we assign bi4′ to be “0.” Figure 6.16 shows the results generated by using the two

different bit expansion schemes with Figure 6.10(c) as the target image. Figures

6.16(a) and 6.16(b) show the created pattern images by using the original bit

expansion scheme and the new bit expansion scheme just described, respectively. And

Figures 6.16(c) and 6.16(d) show the created message-rich code images

corresponding to Figures 6.16(a) and 6.16(b), respectively, where Figure 6.16(d)

shows that the created message-rich code image by using the new bit expansion

scheme has a smaller RMSE value.

Message bits

bi1bi2bi3

Code pattern

bi1′bi2′bi3′bi4′
Pattern block Ti

000

001

010

011

100

101

110

111

0001

0010

0100

0110

1000

1010

1100

1110

0011

0101

0111

1001

1011

1101

Figure 6.15. Performing another bit expansion scheme on every three message bits to

yield 14 binary code patterns represented by pattern blocks.

124

(a) (b)

(c) (d)

Figure 6.16. Results yielded by using two different bit expansion schemes with NS =

64 and  = 20. (a) Pattern image yielded by the original bit expansion

scheme. (b) Pattern image yielded by the new bit expansion scheme. (d)

Message-rich code image yielded by the original bit expansion scheme

with RMSE = 55.97. (d) Message-rich code image yielded by the new bit

expansion scheme with RMSE = 55.44.

6.6 Summary

A new data hiding technique via message-rich code image for applications of

automatic identification and data capture has been proposed, which is created from a

target image for use as a carrier of a given message. The artistic favor of the target

image is kept in the created image, achieving pervasive communication. Skillful

techniques of code pattern design, unit block segmentation, pattern block

classification, etc. have been proposed for message data embedding and extraction.

Comparing with other automatic identification and data capture techniques like the

use of barcodes and data hiding, automatic identification and data capture using the

125

proposed message-rich code image has several merits: (1) the image has the visual

appearance of any pre-selected target image (this is not the case for the case of using

barcodes [17]-[19]); (2) the proposed method can endure more distortions in acquired

versions of the code image like perspective transformation, noise, screen blurring, etc.

(this is not the case for data hiding [4]-[19]); (3) the message can be extracted from an

image captured by a mobile device (this is not the case for data hiding [4]-[19]). Also,

the proposed method in this chapter has following additional merits when compared

with the method in Chapter 5: (1) the yielded message-rich code image has a better

visual appearance; (2) the message data extraction accuracy is higher; (3) the data

extraction speed is higher. Experimental results show the feasibility of the proposed

method. Further studies may be directed to applying error-correction techniques to the

result of code-pattern classification in order to increase the resulting message

extraction rate, such as using Reed-Solomon codes [74], and designing more types of

message-rich images or extending the idea to videos for different applications.

126

Chapter 7

Conclusions and Suggestions for Future Studies

In this dissertation study, the new concept of message-rich multimedia is

proposed, which enriches human-environment interaction and advances pervasive

communication. Various data hiding methods have been designed for creating

message-rich multimedia for different pervasive communication applications as

described specifically in the following.

(1) For images with large data volumes, a large-volume data hiding technique to hide

these secret images with large data volumes into any target images of the same

size has been proposed.

(2) For encrypted images, also proposed is a data hiding technique based on the

techniques of double image encryption and spatial correlation comparison to

improve the performance of two previous methods when dealing with flat cover

images.

(3) A text data hiding technique via creations of fake collaboratively-written

documents on collaborative writing platforms has been proposed. With this

camouflage, an attacker will take the stego-document as a normal collaborative

writing work and will not be expected to realize the existence of the hidden

message.

(4) Two data hiding techniques via message-rich character images and message-rich

code images for automatic identification and data capture applications have been

proposed to realize the innovative idea of pervasive communication on hard

copies of images on papers or displays of monitors or TVs. The created image is

visually similar to the target image with the function similar to those of barcodes

or QR codes, achieving the effect of pervasive communication.

In the following, conclusions of each method and suggestions for future

researches are given.

7.1 Conclusions

(1) A new data hiding method has been proposed, which not only can create

meaningful mosaic images but also can transform a secret image into a mosaic

127

one with the same data size for use as a camouflage of the secret image. By the

use of proper pixel color transformations as well as a skillful scheme for

handling overflows and underflows in the converted values of the pixels’ colors,

secret-fragment-visible mosaic images with very high visual similarities to

arbitrarily-selected target images can be created with no need of a target image

database. Also, the original secret images can be recovered nearly losslessly from

the created mosaic images. Future works may be directed to applying the

proposed method to images of color models other than the RGB one.

(2) A new data hiding method based on double image encryptions and refined spatial

correlation comparison on encrypted images has been proposed, which solves a

problem encountered in the two existing methods [55]-[56] when dealing with

flat cover images. This problem comes from the way of flipping the three LSBs

of each pixel in part of each block in an encrypted image to embed a message bit.

The proposed method improves this by encrypting the four LSBs of each pixel of

every block instead of flipping three of them to embed a bit. Also, a refined

side-match scheme utilizing the spatial correlations of both recovered and

unrecovered blocks has been proposed to decrease the bit-extraction error rate, in

contrast with Hong et al. [56] which utilizes only those of recovered blocks.

Future works may be directed to applying the proposed method for various

information hiding purposes.

(3) A new data hiding method via collaboratively-written articles with simulated

revision history records on collaborative writing platforms has been proposed.

An input secret message is embedded in the revision history of the resulting

stego-document through a simulated collaborative writing process with multiple

virtual authors. With this camouflage, people will take the stego-document as a

normal collaborative writing work and will not be expected to realize the

existence of the hidden message. To generate simulated revisions more

realistically, a collaborative writing database was mined from Wikipedia, and the

Huffman coding technique was used to encode the mined word sequences in the

database according to the statistics of the words. Four characteristics of article

revisions were identified, including the author of each revision, the number of

corrected word sequences, the content of the corrected word sequences, and the

word sequences replacing the corrected ones. Related problems arising in

utilizing these characteristics for data hiding have been solved skillfully,

128

resulting in an effective multi-way method for hiding secret messages into the

revision history. Moreover, because the word sequences used in the revisions

were collected from a great many of real people’s writings on Wikipedia, and

because Huffman coding based on usage frequencies is applied to encode the

word sequences, the resulting stego-document is more realistic than other text

steganography methods, such as word-shift methods [30], non-displayed

characters based methods [31], synonym replacement methods [35]-[37], etc.

(4) A new data hiding technique for automatic identification and data capture

applications via message-rich character images has been proposed, which is

created from a target image for use as a carrier of a given message. The artistic

favor of the target image is kept in the created image, achieving the goal of

pervasive communication. Comparing with other AIDC tools like QR codes and

hardcopy image barcodes, the proposed message-rich character image has

several merits: (1) the image can not only be printed on papers but also be

displayed on screens for various uses; (2) the image can endure more distortions

like perspective transformation, noise, screen blurring, etc.; (3) the message can

be extracted from an image captured by a mobile phone (this is not the case for

the hardcopy image barcode [17]-[19]); (4) by utilizing the power of OCR, the

image can endure more serious attacks, such as partial defacement, image taking

from screens, etc. (again, this is not the case for the hardcopy image barcode); (5)

if message extraction from the message image by machine is not necessary to

carry out, humans can still read the information appearing in the extracted

message image because it is composed of characters, and so meaningful and

readable.

(5) A new data hiding technique via message-rich code image for applications of

automatic identification and data capture has been proposed, which is created

from a target image for use as a carrier of a given message. The artistic favor of

the target image is kept in the created image, achieving pervasive communication.

Skillful techniques of code pattern design, unit block segmentation, pattern block

classification, etc. have been proposed for message data embedding and

extraction. Comparing with other automatic identification and data capture

techniques like the use of barcodes and data hiding, automatic identification and

data capture using the proposed message-rich code image has several merits: (1)

the image has the visual appearance of any pre-selected target image (this is not

129

the case for the case of using barcodes [17]-[19]); (2) the proposed method can

endure more distortions in acquired versions of the code image like perspective

transformation, noise, screen blurring, etc. (this is not the case for data hiding

[4]-[19]); (3) the message can be extracted from an image captured by a mobile

device (this is not the case for data hiding [4]-[19]). Also, the proposed method

via message-rich code images has following additional merits when compared

with the method via message-rich character images in Chapter 5: (1) the yielded

message-rich code image has a better visual appearance; (2) the message data

extraction accuracy is higher; (3) the data extraction speed is higher.

Experimental results show the feasibility of the proposed method. Further works

may be directed to applying error-correction techniques to the result of

code-pattern classification in order to increase the resulting message extraction

rate, such as using Reed-Solomon codes [74].

7.2 Suggestions for Future Studies

In the future, the following topics may be considered for further studies.

(1) Creating more types of message-rich multimedia —

It is desired to create more types of message-rich multimedia like video and

speech to broaden the applications of pervasive communication. For example, we

can extend the ideas of message-rich chatacter images and message-rich code

images in Chapters 5 and 6, respectively, to videos for different applications. In

this way, people can interact with a video, such as to obtain some related

information about the video, while they watch it.

(2) Enabling more types of smart devices —

In addition to computers and smart phones, more type of smart devices, such as

Google Glasses and smart watches, may be designed to “understand”

message-rich multimedia for pervasive communication. For example, people can

wear Google Glasses and use the cameras extisting on Google Glasses to capture

images, create message-rich images, and extract the embedded information in the

created images by the techniques proposed in Chapters 5 and 6.

(3) Designing more efficient data hiding methods —

It is desired to design more efficient data hiding methods for uses in the above

two topics. For example, for the proposed method in Chapter 3, future works

may be directed to analyzing more characteristics of collaborative writing works

130

or establishing appropriate language models [57]-[59] for more effective data

hiding or other applications.

(4) Creating more types of hard copies of message-rich multimedia —

Other than papers or monitor or TV displays, like LED panels, advertisement

paintings, etc., may be considered for use in pervasive communication. For

example, a company can embed advertisements into its advertisement paintings,

and customers can later use mobile devices to obtain the embedded information

from the catupred versions of the advertisement paintings.

131

References

[1] M. Wieser, “The computer for the 21st century,” Scientific American Special

Issue on Communications, Computers, and Networks, pp. 78–89, 1991.

[2] S. Poslad, “Ubiquitous Computing: Smart Devices, Environments and

Interactions,” Wiley, 2009.

[3] B. Davis, “Signal rich art: enabling the vision of ubiquitous computing,” Proc.

SPIE 7880: Media Watermarking, Security, and Forensics III, N. D. Memon, J.

Dittmann, A. M. Alattar, and E. J. Delp III, Eds., vol. 788002, Feb. 2011.

[4] F.A.P. Petitcolas, R. J. Anderson, and M. G. Kuhn, “Information hiding－a

survey,” Proc. IEEE, vol. 87, no. 7, pp. 1062–1078, July 1999.

[5] W. Bender, D. Gruhl, N. Morimoto, and A. Lu, “Techniques for data hiding,”

IBM Syst. J., vol. 35, no. 3, 4, pp. 313–336, 1996.

[6] C. K. Chan and L. M. Cheng, “Hiding data in images by simple LSB

substitution,” Pattern Recog., vol. 37, pp. 469–474, March 2004.

[7] Z. Ni, Y. Q. Shi, N. Ansari and W. Su, “Reversible Data Hiding,” IEEE Trans.

Circuits Syst. & Video Technol., vol. 16, no. 3, pp. 354–362, March 2006.

[8] C. W. Lee and W. H. Tsai, “A lossless large-volume data hiding method based on

histogram shifting using an optimal hierarchical block division scheme,” J. of

Inform. Sci. & Eng., vol. 27, no. 4, pp. 1265–1282, 2011.

[9] J. Tian, “Reversible data embedding using a difference expansion,” IEEE Trans.

Circuits Syst. & Video Technol., vol. 13, no. 8, pp. 890–896, Aug. 2003.

[10] Y. Hu, H. K. Lee, K. Chen, and J. Li, “Difference expansion based reversible

data hiding using two embedding directions,” IEEE Trans. Multimedia, vol. 10,

no. 8, pp. 1500–1512, 2008.

[11] J. Fridrich, M. Goljan, and R. Du, “Invertible authentication,” Proc. SPIE, vol.

3971, pp. 197–208, 2001.

[12] C. C. Chang, C. C. Lin, C. S. Tseng, and W. L. Tai, “Reversible hiding in

DCT-based compressed images,” Information Sciences, vol. 177, pp. 2768–2786,

2007.

[13] S. Lee, C. D. Yoo, and T. Kalker, “Reversible image watermarking based on

integer-to-integer wavelet transform,” IEEE Trans. Information Forensics and

Security, vol. 2, no. 3, pp. 321–330, 2007.

132

[14] W. H. Lin , S. J. Horng , T. W. Kao , P. Fan , C. L. Lee and Y. Pan, “An efficient

watermarking method based on significant difference of wavelet coefficient

quantization,” IEEE Trans. Multimedia, vol. 10, no. 5, pp.746–757, 2008.

[15] D. C. Wu and W. H. Tsai, “A steganographic method for images by pixel-value

differencing,” Pattern Recognition Letters, vol. 24, no. 9-10, pp. 1623–1636,

2003.

[16] C. H. Tzeng, Z. F. Yang, and W. H. Tsai, “Adaptive data hiding in palette images

by color ordering and mapping with security protection,” IEEE Transactions on

Communications, vol. 52, no. 4, pp. 791–800, 2004.

[17] O. Bulan, G. Sharma, and V. Monga, “Orientation modulation for data hiding in

clustered-dot halftone prints,” IEEE Trans. Image Processing, vol. 19, no. 8, pp.

2070–2084, 2010.

[18] O. Bulan, and G. Sharma, “High capacity color barcodes: per channel data

encoding via orientation modulation in elliptical dot arrays,” IEEE Trans. Image

Processing, vol. 20, no. 5, pp. 1337–1350, 2011.

[19] N. Damera-Venkata, J. Yen, V. Monga, and B. L. Evans, “Hardcopy image

barcodes via block-error diffusion,” IEEE Trans. Image Processing, vol. 14, no.

12, pp. 1977–1989, 2005.

[20] BS ISO/IEC 16388: Information Technology-Automatic Identification and Data

Capture Techniques-Code39 Bar Code Symbology Specification, BS ISO/IEC

16388, 2007.

[21] BS ISO/IEC 15438: Information Technology-Automatic Identification and Data

Capture Techniques-PDF417 Barcode Symbology Specification, BS ISO/IEC

15438, 2006.

[22] BS ISO/IEC 18004: Information Technology-Automatic Identification and Data

Capture Techniques-QR Code 2005 Bar Code Symbology Specification, BS

ISO/IEC 18004, 2006.

[23] BS ISO/IEC 16022: Information Technology-Automatic Identification and Data

Capture Techniques-Data Matrix Bar Code Symbology Specification, BS

ISO/IEC 16022, 2006.

[24] E. Ouaviani, A. Pavan, M. Bottazzi, E. Brunclli, F. Caselli, and M. Guerrero, “A

common image processing framework for 2D barcode reading,” in 7th Int. Conf.

on Image Process. and Its Appl., vol. 2, no. 465, pp. 652–655, Jul. 1999.

133

[25] C. Zhang, J. Wang, S. Han, M. Yi and Z. Zhang, “Automatic real-time barcode

localization in complex scenes,” in IEEE Int. Conf. on Image Processing, pp.

497–500, 2006.

[26] H. Yang, X. Jiang, and A. C. Kot, “Localization of four extreme corners for

barcode images reading using mobile phones,” in IEEE Int. Conf. on Image

Processing, pp. 3897–3900, 2010.

[27] H. Yang, A. C. Kot, and X. Jiang, “Binarization of low-quality barcode images

captured by mobile phones using local window of adaptive location and size,”

IEEE Trans. Image Processing, vol. 21, no. 1, pp. 418–425, 2012.

[28] K. Bennett, “Linguistic steganography: Survey, analysis, and robustness concerns

for hiding information in text,” Purdue Univ., West Lafayette, IN, CERIAS Tech.

Rep. 2004–13, May 2004.

[29] A. M. Alattar and O. M. Alattar, “Watermarking electronic text documents

containing justified paragraphs and irregular line spacing,” Proc. SPIE, vol. 5306,

Jun. 2004.

[30] Y. Kim, K. Moon, and I. Oh, “A text watermarking algorithm based on word

classification and inter-word space statistics”, Proc. 7th Int. Conf. Document

Analysis & Recognition, Edinburgh, Scotland, UK, pp. 775–779, 2003.

[31] I. S. Lee and W. H. Tsai, “A new approach to covert communication via PDF

files,” Signal Processing, vol. 90, no. 2, pp. 557–565, 2010.

[32] P. Wayner, “Mimic functions,” Crypt., vol. XVI, no. 3, pp. 193–214, 1992.

[33] P. Wayner, Disappearing Cryptography: Information Hiding: Steganography and

Watermarking, 2nd ed. San Mateo, CA: Morgan-Kaufmann, pp. 81–128, 2002.

[34] Spam Mimic, [Online]. Available: http://www.spammimic.com.

[35] M. Chapman, I. D. George, and R. Marc, “A practical and effective approach to

large-scale automated linguistic steganography,” Proc. Information Security

Conf., Malaga, Spain, pp. 156–165, Oct. 2001.

[36] I. A. Bolshakov, “A method of linguistic steganography based on

collocationally-verified synonymy,” Proc. 6th Information Hiding Workshop,

Toronto, ON, Canada, pp. 180–191, May 2004.

[37] M. H. Shirali-Shahreza and M. Shirali-Shahreza, “A new synonym text

steganography,” Proc. Int. Conf. Intelligent Information Hiding and Multimedia

Signal Processing, Harbin, China, pp. 1524–1526, Aug. 2008.

134

[38] R. Stutsman, C. Grothoff, M. Attallah, and K. Grothoff, “Lost in just the

translation,” Proc. ACM Symp. Applied Computing, Dijon, France, pp. 338–345,

2006.

[39] I. J. Lai and W. H. Tsai, “Secret-fragment-visible mosaic image － a new

computer art and its application to information hiding,” IEEE Trans. Information

Forensics and Security, vol. 6, no. 3, pp. 936–945, 2011.

[40] A. Furness, “Machine-readable data carriers - a brief introduction to automatic

identification and data capture,” Assembly Automation, vol. 20, pp. 28–34, 2000.

[41] X. Hu, W. Zhang, X. Hu, N. Yu, X. Zhao, and F. Li, “Fast estimation of optimal

marked-signal distribution for reversible data hiding,” IEEE Trans. Information

Forensics and Security, vol. 8, no. 5, pp. 187–193, May 2013.

[42] W. B. Pennebaker and J. L. Mitchell, JPEG: Still Image Data Compression

Standard. New York: Van Nostrand Reinhold, pp. 34–38, 1993.

[43] E. Reinhard, M. Ashikhmin, B. Gooch, and P. Shirley, “Color transfer between

images,” IEEE Computer Graphics and Applications, vol. 21, no. 5, 2001.

[44] D. Coltuc and J.-M. Chassery, “Very fast watermarking by reversible contrast

mapping,” IEEE Signal Processing Letters, vol. 14, no. 4, pp. 255–258, 2007.

[45] R. Z. Wang, C. F. Lin, and J. C. Lin, “Image hiding by optimal LSB substitution

and genetic algorithm,” Pattern Recog., vol. 34, no. 3, pp. 671–683, 2001.

[46] C. H. Yang, “Inverted pattern approach to improve image quality of information

hiding by LSB substitution,” Pattern Recog., vol. 41, no. 8, pp. 2674–2683,

2008.

[47] Z. Wang, A. C. Bovik, H. R. Sheikh and E. P. Simoncelli, “Image quality

assessment: from error visibility to structural similarity,” IEEE Trans. Image

Processing, vol. 13, no. 4, pp. 600–612, 2004.

[48] T. R. Nielsen, P. Drewsen, and K. Hansen, “Solving jigsaw puzzles using image

features,” Pattern Recog. Letters, vol. 29, no. 14, pp. 1924–1933, 2008.

[49] T. S. Cho, S. Avidan, and W. T. Freeman, “A probabilistic image jigsaw puzzle

solver,” Proc. IEEE CVPR, San Francisco, CA, USA, pp. 183–190, 2010.

[50] D. Pomeranz, M. Shemesh, and O. Ben-Shahar, “A fully automated greedy

square jigsaw puzzle solver,” Proc. IEEE CVPR, Providence, RI, USA, pp. 9–16,

2011.

135

[51] E. Demaine and M. Demaine, “Jigsaw puzzles, edge matching, and polyomino

packing: Connections and complexity,” Graphs and Combinatorics, vol. 23, pp.

195–208, 2007.

[52] D. Kundur and K. Karthik, “Video fingerprinting and encryption principles for

digital rights management,” Proc. IEEE, vol. 92, no. 6, pp. 918–932, 2004.

[53] S. Lian, Z. Liu, Z. Ren, and H. Wang, “Commutative encryption and

watermarking in video compression,” IEEE Trans. Circuits Syst. Video Technol.,

vol. 17, no. 6, pp. 774–778, 2007.

[54] M. Cancellaro, F. Battisti, M. Carli, G. Boato, F. G. B. Natale, and A. Neri, “A

commutative digital image watermarking and encryption method in the tree

structured Haar transform domain,” Signal Process.: Image Commun., vol. 26,

no. 1, pp. 1–12, 2011.

[55] X. Zhang, “Reversible data hiding in encrypted images,” IEEE Signal Process.

Lett., vol. 18, no. 4, pp. 255–258, 2011.

[56] W. Hong, T. S. Chen, and H. Y. Wu, “An improved reversible data hiding in

encrypted images using side match,” IEEE Signal Process. Lett., vol. 19, no. 4,

pp. 199–202, 2012.

[57] A. Bronner and C. Monz, “User edits classification using document revision

histories,” Proc. 13th Conf. of the European Chapter of the Association for

Computational Linguistics, Avignon, France, pp. 356–366, 2012.

[58] A. Bronner, M. Negri, Y. Mehdad, A. Fahrni, and C. Monz, “CoSyne:

synchronizing multilingual wiki content,” Proc. 8th Annual Int. Symp. on Wikis

and Open Collaboration (WikiSym), Linz, Austria, Article 33, pp. 1–4, 2012.

[59] C. Dutrey, D. Bernhard, H. Bouamor, and A. Max, “Local modifications and

paraphrases in Wikipedia's revision history,” Procesamiento de Lenguaje

Natural, vol. 46, pp. 51–58, 2010.

[60] M. Erdmann, K. Nakayama, T. Hara, and S. Nishio, “Improving the extraction of

bilingual terminology from Wikipedia,” ACM Trans. Multimedia Comput.

Commun. Appl., vol. 5, no. 4, Article 31, 17 pages, 2009.

[61] A. Max and G. Wisniewski, “Mining naturally-occurring corrections and

paraphrases from Wikipedia’s revision history,” Proc. LREC 2010, Valletta,

Malta, pp. 3143–3148, 2010.

136

[62] R. Nelken and E. Yamangil, “Mining Wikipedia’s article revision history for

training computational linguistics algorithms,” Proc. AAAI Workshop on

Wikipedia & Artificial Intell.: An Evolving Synergy, Chicago, Illinois, USA, pp.

31–36, 2008.

[63] F. B. Viégas, M. Wattenberg, and K. Dave, “Studying cooperation and conflict

between authors with history flow visualizations,” Proc. SIGCHI Conf. on

Human Factors in Computing Systems, Vienna, Austria, pp. 575–582, 2004.

[64] T. Y. Liu and W. H. Tsai, “A new steganographic method for data hiding in

Microsoft word documents by a change tracking technique,” IEEE Trans. on

Information Forensics and Security, vol. 2, no. 1, pp. 24–30, 2007.

[65] L. Bergroth, H. Hakonen, and T. Raita, “A survey of longest common

subsequence algorithms,” Proc. 7th Int. Symp. on String Process. Inf. Retrieval

(SPIRE), A Curuna, Spain, pp. 39–48, 2000.

[66] A. Kerckhoffs, “La cryptographie militaire,” J. Sciences Militaires, vol. 9, pp.

5–38, 1883.

[67] A. Biryukov and D. Khovratovich, “Related-key cryptanalysis of the full

AES-192 and AES-256,” Proc. 15th Int. Conf. on The Theory and Application of

Cryptology and Information Security (ASIACRYPT), Tokyo, Japan, pp. 1–18,

2009.

[68] A. Bogdanov, D. Khovratovich, and C. Rechberger, “Biclique cryptanalysis of

the full AES,” Proc. 17th Int. Conf. on The Theory and Application of

Cryptology and Information Security (ASIACRYPT), Seoul, Korea, pp. 344–371,

2011.

[69] N. Madnani B. J. and Dorr, “Generating phrasal and sentential paraphrases: a

survey of data-driven methods,” Computational Linguistics, vol. 3, no. 3, pp.

341–387, 2010.

[70] C. Lin, “Face detection in complicated backgrounds and different illumination

conditions by using YCbCr color space and neural network,” Pattern

Recognition Letters, vol. 28, pp.2190–2200, 2007.

[71] J. Illingworth and J. Kittler, “A survey of the Hough transform,” Computer Vision,

Graphics, and Image Processing, vol. 44, no. 1, pp. 87–116, 1998.

[72] R. C. Gonzales and R. E. Woods, Digital Image Processing, 2nd ed. Englewood

Cliffs, NJ: Prentice-Hall, pp. 572–580, 2002.

137

[73] W. H. Tsai, “Moment-preserving thresholding: a new approach,” Computer

Vision, Graphics, and Image Processing, vol. 29, no. 3, pp. 377–393, 1985.

[74] V. Guruswami and M. Sudan, “Improved decoding of Reed-Solomon and

algebraic-geometric codes,” IEEE Trans. Inform. Theory, vol. 45, pp.1757–1767,

1999.

138

Vitae

Ya-Lin Lee was born in Changhua, Taiwan, R.O.C. on February 2, 1987. She

received the B.S. degree in computer science from National Chiao Tung University,

Taiwan, in 2009, and works toward her Ph.D. degree at the College of Computer

Science, National Chiao Tung University. She has been a research assistant at the

Computer Vision Laboratory in the Department of Computer Science at National

Chiao Tung University from August 2009. Her current research interests include

information hiding, image processing, pattern recognition, machine learning, and data

mining.

139

List of Publications of Ya-Lin Lee

Journal Papers and Book Chapters

(1) Y. L. Lee and W. H. Tsai, “A new secure image transmission technique via

secret-fragment-visible mosaic images by nearly-reversible color

transformations,” IEEE Transactions on Circuits and Systems for Video

Technology, accepted and to appear.

(2) Y. L. Lee and W. H. Tsai, “A new data hiding method via revision history

records on collaborative writing platforms,” ACM Transactions on Multimedia

Computing, Communications and Applications, accepted and to appear.

(3) Y. L. Lee and W. H. Tsai, “Reversible data hiding by image encryptions and

spatial correlation comparisons,” Journal of Information Science and

Engineering, accepted and to appear.

(4) Y. L. Lee and W. H. Tsai, “New image steganography via

secret-fragment-visible mosaic images by nearly-reversible color

transformation,” Advances in Computing - Lecture Notes in Computer Science

(LNCS), Vol. 6939, G. Bebis, et al. (eds.), Springer, Berlin/Heidelberg, Germany,

pp. 64–74, Sep. 2011.

(5) Y. L. Lee and W. H. Tsai, “A new data transfer method via signal-rich-art code

images captured by mobile devices,” IEEE Transactions on Circuits and Systems

for Video Technology, submitted.

Conference Papers

(1) Y. L. Lee and W. H. Tsai, “New image steganography via

secret-fragment-visible mosaic images by nearly-reversible color

transformation,” Proceedings of 2011 International Symposium on Visual

Computing, Las Vegas, Nevada, USA, pp. 64–74, Sep. 2011.

(2) Y. L. Lee and W. H. Tsai, “Signal rich art image — a new tool for automatic

identification and data capture applications using mobile phones,” Proceedings

of 38th IEEE International Conference on Acoustics, Speech, and Signal

Processing (ICASSP 2013), Vancouver, Canada, pp. 1942–1946, May 2013.

140

Patents

(1) Y. L. Lee and W. H. Tsai, “LM code — a tool for data transfer applications using

mobile devices,” Republic of China Patent (pending).

(2) Y. L. Lee and W. H. Tsai, “LM code — a tool for data transfer applications using

mobile devices,” USA Patent (pending).

(3) Y. L. Lee and W. H. Tsai, “A data hiding method via revision history records on

collaborative writing platforms,” Republic of China Patent (pending).

(4) Y. L. Lee and W. H. Tsai, “A data hiding method via revision history records on

collaborative writing platforms,” USA Patent (pending).

