
國 立 交 通 大 學 
 

資訊工程系 

碩士論文 

 

 

 

 在 NCTUns 網路模擬器上支援 

Tactical Mobile Ad Hoc Networks 

 

Supporting Tactical Mobile Ad Hoc Networks on 

NCTUns Network Simulator  

 

 

 

研 究 生: 黃鎮遠 

指導教授: 王協源 教授 

 

中華民國九十四年六月



 

在 NCTUns 網路模擬器上支援 Tactical Mobile Ad Hoc 

Networks 

Supporting Tactical Mobile Ad Hoc Networks on NCTUns 

Network Simulator 
 
 
 

研 究 生：黃鎮遠        Student：Chen-Yuan Hwang 

指導教授：王協源        Advisor：Shie-Yuan Wang 

 
 
 

國 立 交 通 大 學 
資 訊 工 程 系 
碩 士 論 文 

 
 

A Thesis 
Submitted to Department of Computer Science and Information Engineering 

College of Electrical Engineering and Computer Science 
National Chiao Tung University 

in partial Fulfillment of the Requirements 
for the Degree of  

Master 
in 
 

Computer and Information Science 
 

June 2005 
 

Hsinchu, Taiwan, Republic of China 
 
 

中華民國九十四年六月 



 I

中文摘要 

 
對於軍事戰術網路的研究者而言,網路模擬器是一個能幫助他們研究與發展

下一世代的無線移動傳輸戰略通訊技術以支援未來戰場上的需要的有用的工具.

藉由網路模擬器的幫助,研究者可以節省相當多的時間與金錢來建制一個發展的

網路環境. 此外,使用者可以藉由模擬器在其上研究複雜的或是真實世界上難以

架構的網路拓樸.在網路模擬環境上,所有網路上的條件跟參數設定都可以重製,

所以使用者可以輕而易舉的重製他們的實驗結果. 就因為這樣,所以網路模擬器

可以幫助使用者解決或設計網路的問題.NCTUns 網路模擬器已經開發數年了,由

於他新穎的設計,它可以提供許多在傳統模擬器上無法做到的獨特優點.  

 

軍事網路的開發者與技術人員試著尋找用於戰場上通訊的技術與方式.為了

能支援這種新型態的軍事無線網路,目前模擬器的設計顯然不符合需求.因此想

要在其上作相關的研究,原本的設計勢必要更改.另外,我們提供了一些原本沒有

的功能,像是動態控制,動態的呈現,還有障礙物的感測等. 由於支援了這些新的

功能,大大的提高原有 NCTUns 網路模擬器的能力. 

這些新增的功能將能幫助使用者去模擬更類似於真實的軍事戰場項的網路

拓樸與型態. 

 

 

 

 

 

 

 



 II

Abstract 

 
For military network researchers, a network simulator is a very useful tool to 

help them study or develop new technologies to support next-generation mobile 

wireless high-capacity tactical communications and to meet future army 

communication requirements. Researchers can save much time and money required to 

build a real network environment with a network simulator. In addition, users can 

study a complicated network or a network that does not exist in the world. In a 

simulated network environment, all network conditions and configurations are 

repeatable, therefore researchers can easily repeat theirs experimental result. As such, 

they can help researchers design a good network system or solve network problems. 

The NCTUns network simulator has been developed for many years. Due to its 

several novel simulation methodologies, it provides many unique advantages that can 

not be achieved by traditional network simulators.  

 

Warfare planners and tacticians are seeking ways to communicate information on 

the battlefield. In order to support tactical Ad Hoc network, present simulation engine 

has to be modified. Besides, we have to add another feature such as dynamical control, 

dynamical animation, and obstacle sensing. After adding these functions, it highly 

increases the ability of NCTUns network simulator. These functionalities can greatly 

help users to simulate a case which is more similar and realistic to the real battlefield. 



 II

Table of Contents 
Supporting Tactical Mobile Ad Hoc Networks on NCTUns Network Simulator  

1 Introduction ...……………………………………………………………………1 
1.1 Motivation…………………………………………………………………..1 
1.2 Organization………………………………………………………………...2 

2 Development History ...………………………………………………………….3 
3 Design Goals……………………………………………………………………..5 

3.1 Dynamic Control…………………………………………………………...5 
3.1.1 Run-Time Get/Set Variable Registration………………………………6 
3.1.2 Dynamic Movement…………………………………………………...6  
3.1.3 Dynamic Packet Animation Player…………………………………….7 

3.2 Tactical/Strategy……………………………………………………………7 
3.3 Feature……………………………………………………………………...9 

3.3.1 External Control………………………………………………………10 
3.3.2 Real Time Control…………………………………………………….10 
3.3.3 Real Time Animation…………………………………………………10 
3.3.4 Obstacle Sensing……………………………………………………...11 
3.3.5 Using All Features and Capabilities of NCTUns Network Simulator..12 

3.3.5.1 Support for Various Networks………………………………….12 
3.3.5.2 Support for Various Networking Devices……………………...13 
3.3.5.3 Support for Various Network Protocols………………………..13 
3.3.5.4 Application Compatibility and Extensibility…………………..13 
3.3.5.5 User Friendliness……………………………………………….14 
3.3.5.6 Open System Architecture……………………………………...14 

4 Background …………………………………………………………………….15 
4.1 Related Work……………………………………………………………...15 
4.2 Required techniques……………………………………………………….16 

4.2.1 Ad Hoc network………………………………………………………16 
4.2.1.1 AODV………………………………………………………….16 

4.2.2 Artificial Intelligence…………………………………………………17 
4.2.2.1 Map representation……………………………………………..17 
4.2.2.2 Path finding…………………………………………………….18 

5 Design and Implementation…………………………………………………….20 
5.1 Kernel Modification……………………………………………………….20 
5.2 Simulation Engine Modification and Design……………………………...25 

5.2.1 Event Prediction………………………………………………………28 
5.2.2 Dynamic Communication…………………………………………….31 



 III

5.2.2.1 Communication with GUI……………………………………...31 
5.2.2.2 Communication with Node Control Program………………….33 

5.2.3 Obstacle Construction………………………………………………..38 
5.3 Intelligence Engine………………………………………………………..38 

5.3.1 Map sensing ………………………………………………………….38 
5.3.2 Obstacle Detection and Collision Avoidance…………………………39 
5.3.3 Path Finding…………………………………………………………..42 
5.3.4 Event-Triggering System……………………………………………..42 

5.4 Node Control program………………………………….………………….43 
5.4.1 Layered Design…………………………………….…………...…….44 

6 A Simulation Example………………………………………………………….47 
6.1 Simulation Setup…………………………………………………….……..47 
6.2 Result…………………………………………………..…………………...49 

7 Future Work……………………………………………………………………..52 
8 Conclusion………………………………………………………………………53 
9 Reference………………………………………………………………………..54 

 

 



 IV

List of Figures 
Figure 3.2.1: Main state machine of our tactical behavior……………………………9 
Figure 4.2.2.1: Map representation of Grid, Floor, and Points of Visibility…………18 
Figure 5.1.1: The kernel re-entering simulation methodology……………………….20 
Figure 5.1.2: Two types communication of Node Control Program…………………23 
Figure 5.2.1: The architecture of the NCTUns network simulator…………………..25 
Figure 5.2.2: The architecture of extension for simulation engine…………………..28 
Figure5.2.1.1: A snapshot of time t1…………………………………………………30 
Figure5.2.1.2: At time t1, engine will insert predict events………………………….30 
Figure5.2.1.3: A snapshot of time t1+5………………………………………………30 
Figure5.2.1.4 At time t1+5, simulation engine will insert predict events……………30 
Figure 5.2.2.2.1: Communication between Engine and Node Control Program…….34 
Figure 5.2.2.2.2: Communication between Engine and Node Control Program…….36 
Figure 5.2.2.2.3: Communication between Engine and Node Control Program…….37 
Figure 5.2.2.2.4: Communication between Engine and Node Control Program…….37 
Figure 5.3.1.1: Standard coordinate system………………………………………….39 
Figure 5.3.1.2: Our coordinate system……………………………………………….39 
Figure 5.3.2.1: Obstacle detection of simulation engine……………………………..40 
Figure 5.3.2.4 Translate an obstacle into grid of map………………………………..41 
Figure5.4.1.1 Layer of Node Control Program………………………………………45 
Figure5.4.1.2 command queue of Node Control Program…………………………...46 
Figure6.1.1: The scenario of simulation case………………………………………..48 
Figure6.1.2: The scenario of simulation case with obstacle…………………………48 

Figure6.2.1 The CPU utilization of simulation case without obstacle……………….49 
Figure6.2.2 The required memory space of simulation case without obstacle………50 
Figure6.2.3 The required time of simulation case without obstacle…………………50 
Figure6.2.4The CPU utilization of simulation case with obstacle…………………..50 
Figure6.2.5 The required memory space of simulation case with obstacle………….51 
Figure6.2.6 The required time of simulation case with obstacle…………………….51 

 



 V

致謝 

 

感謝恩師王協源教授二年來對我的悉心指導，研究所二年，由於

老師給我們的札實訓練，讓我在專業領域上獲益良多，相信以這二年

札實的，不論是在工作或研究上都會是重要的基石。 

 

感謝林華君教授以及廖婉君教授撥冗來到交通大學進行口試。 

 

感謝父母親多年來的支持，讓我在求學過程中順暢無後顧之優，

能專心於學業之中。 

 

最後感謝網路與系統實驗室的所有成員，因為有你們的陪伴以及

彼此間的鼓勵，讓我在研究所二年不僅學到很多，生活也很充實快樂。 



 1

1. Introduction 

1.1 Motivation 
 

Warfare planners and tacticians are seeking ways to communicate information 

on the battlefield. With the advent of Internet technologies complex systems are 

becoming more networked and access to information is more critical than ever. The 

increasing utilization of special operations forces in Ad Hoc dynamic operations 

poses a need for adaptable communications to support the unit. Effective 

communication within the unit and how to exchange the critical information with the 

command center affect the overall outcome of the mission.  

Wireless Ad Hoc networks are autonomous, self-organized, self-managed and 

adaptive. This technology has become increasingly important in communication and 

networking. Thus, Ad Hoc networks are excellent candidates for military tactical 

networks. Ad Hoc networks are the key to the army’s future combat support capability. 

For example, several fast moving mobile nodes communicating in a military grade 

network using partially Ad Hoc -formed wireless access networks 

Because military applications exploit the ability of Ad Hoc networks to work in 

situations where there is no pre-installed infrastructure available, as in combat areas, 

related research have increased. However, it is impossible for researchers to 

experiment in the real world. The cost is too high. Therefore, a network simulator is a 

useful tool that can help researchers to study a complicated network or a network that 

does not exist in the world. 

Due to the limitation of the original NCTUns network simulator, it can’t support 

above military Ad Hoc network study. In order to support this kind of research, we 

need to modify the NCTUns network simulator. 



 2

1.2 Organization 
  

The organization of this thesis is as follows. In Chapter 3, we attempt to 

illustrate the goal and the feature of our new design. In Chapter 4, we will survey 

some techniques which are related to our topic such as AI, AODV, and graphics 

theory, etc. In Chapter 5, we would like to focus attention on the architecture of our 

design. In this chapter, we discuss the core of our Simulation Engine. In addition, we 

will introduce the implementation of Node Control Program. In Chapter 6, we will 

illustrate a simulation case to analyze its performance. In Chapter 7, we conclude our 

work. In Chapter 8, we point out the issues to be addressed in the future. 



 3

2. Development History 
  

The NCTUns network simulator is a high-fidelity and extensible network 

simulator capable of simulating various devices and protocols used in both wired and 

wireless IP networks. It is a useful tool that can help network researchers to design a 

complicated network system or solve their problems. Its core technology is based on 

the simulation methodology invented by S.Y. Wang at Harvard University in 1999 [1, 

2]. Due to this novel methodology, the NCTUns network simulator provides many 

unique advantages that cannot be achieved by traditional network simulator such as 

OPNET [3] and ns-2 [4]. 

 

The predecessor of the NCTUns network simulator is the Harvard network 

simulator [5], which was authored by S.Y. Wang in 1999. Due to the limited 

functionalities of the Harvard network simulator, we need to overcome and solve 

drawbacks and add some features and functions to it. For these reasons, after joining 

National Chiao Tung University (NCTU), Taiwan in February 2000, Wang designed a 

new simulation methodology for the NCTUns 1.0 network simulator. Recently, we 

also release NCTUns 2.0. 

 

The NCTUns network simulator uses a distributed architecture to support remote 

simulations and concurrent simulations. It also uses an open-system architecture to 

enable protocol modules to be easily added to the simulator. In addition, it has a 

fully-integrated GUI environment for editing a network topology and specifying 

network traffic, plotting performance curves, configuring the protocol stack used 

inside a network node, and playing back animations of logged packet transfers. 

 



 4

Furthermore, Wang proposes an approach to apply discrete event simulation to 

the NCTUns 1.0 network simulator to speed up its simulation speed [6]. The Harvard 

network simulator used a time-stepped method to implement its simulation engine. As 

such, its simulation speed is very slow. To overcome this problem, the NCTUns 1.0 

applied the event-driven [2] approach to its simulation engine. As such, its simulation 

speed is much faster than the Harvard network simulator. 

 Now, we want to modify present simulation engine to support tactical Ad Hoc 

network. Besides, we have to add another feature such as dynamical control, 

dynamical animation, and obstacle sensing. After adding these functions, it highly 

increases the ability of NCTUns network simulator. These functions can greatly help 

users to simulate a case which has extremely realistic visualizations of 

communication networks. 

Because the Harvard network simulator can only run on the FreeBSD platform, 

promoting their uses has some difficulties. Now, NCTUns network simulator can run 

on Linux 2.6.x. Of course, all advantages and features of the FreeBSD version of 

NCTUns 1.0 network simulator will be reserved and even improved during the 

porting to the Linux platform. In addition, several new network types are 

implemented into the Linux version including traditional optical network, optical 

burst network, GSM/GPRS cellular network, etc.  

Due to our continuous improvement, we had released NCTUns 2.0 on 

11/01/2004 .We plan to release the Linux version of NCTUns 3.0 network simulator 

soon. At that time, we expect that more and more people or organizations will use our 

network simulator. 



 5

3. Design Goals 
    

In this chapter, we attempt to illustrate functions and goals which we want to 

support for original NCTUns network simulator. Then we will discuss what the 

NCTUns network simulator lacks if we want to achieve our goals. 

 First, we want to use a simple way to support the dynamic control in NCTUns 

network simulator. We will discuss further what the dynamic control means in the 

later section. Dynamic control can simply be defined as dynamical input. Second, we 

hope our simulation results can be immediately outputted during the simulation time, 

or it may be nearer the truth to say that we can immediately get the location of each 

node and the animation of execution result. To sum up, we can easily define our 

requirements as two mainly parts, dynamic input and dynamic output.  

 In the original design of NCTUns network simulator, simulation results do not 

present until NCTUns network simulator finishes simulating the whole simulation 

case. Besides, all movements of nodes in the simulation have to be decided before 

executing this simulation case. This means that it is impossible to dynamically change 

any node’s moving path during the simulation time. According to our previous 

description about our requirement, we have to modify the original design and 

architecture of NCTUns network simulator. 

 

3.1 Dynamic Control 
  

Dynamic control is a kind of ability that can allow a network simulator to control 

nodes and get status of nodes dynamically. This includes dynamically changes and 

retrieves node’s movement and status. Some of functions already exist and some need 

to be added or improved.  



 6

3.1.1 Run-Time Get/Set Variable Registration 
 

 Sometimes it is very useful to observe the status of a variable, a node, or a 

protocol while a simulation case is running. For example, a user may be interested in 

seeing how the current queue length of a FIFO queue varies during a simulation. To 

support this functionality, a module developer should register these variables with the 

simulation engine so that they can be accessed during a simulation. The simulation 

engine provides the macro EXPORT() to support this functionality. By using this 

method, user can dynamically set or get some node’s status. This function has existed 

on the NCTUns network simulator and works well during simulation. 

 

3.1.2 Dynamic Movement 
  

In a real-world network environment, a mobile node or a GPRS phone may move. 

To specify a mobile node or a GPRS phone’s moving path, a user can construct the 

whole moving path. A moving path is composed of a sequence of turning points and 

segments. After a moving path is constructed, any of its turning points can be easily 

moved to any place to adjust the shape of the path. Each turning point is represented 

by a grey dashed square box and contains the (X-loc, Y-loc, arrival time, pause time, 

moving speed to the next point) information. [8] 

By using this mechanism, we can make mobile node move in a simulation. 

However, moving path need to be decided in advance, and it can not be changed 

during the simulation time. Because of this limitation, we have to modify original 

mechanism to meet our requirement. We hope that the node’s movement can be 

dynamically changed during the run-time. 



 7

3.1.3 Dynamic Packet Animation Player 
 

After a user’s simulation job is finished, the generated simulation results will be 

automatically transferred back to the GUI program and then saved in the user’s local 

hard disk. Suppose that the simulation case’s topology file is named “test.tpl.” Then 

the name of the resulting packet animation trace file will be “test.ptr.” Later on, when 

the user wants to do post analyses about the simulation results, he or she can use the 

“Packet Animation player” to play back the animation.[8] Though this is a very useful 

feature for both education and research purposes, its drawbacks is that it can only 

playback after simulation job is finished. According to our new requirement for 

tactical Ad Hoc network, we often need to adopt various strategies or tactics 

according to all nodes’ current status. If node’s location can be run-time generated as 

well as be played back after simulation finish, it can play as feedback for dynamic 

control mechanism to dynamically revise its new tactic.  

In addition, the dynamic control can not only be a Node Control Program but 

also be a human’s extern control. (Node Control Program is a child process forked by 

engine and embedded in the node.) 

 

3.2 Tactic/Strategy 
 

 For the behavior of computer-controlled characters to become more sophisticated, 

efficient algorithms are required for generating intelligent tactical decisions. [7] 

 As we mentioned before, dynamic control can be a Node Control Program which 

is embedded in a node to control node’s behavior according to node’s status. 

Therefore, we have to provide a simple tactic to make Control Node Program follow. 

In the later chapter we shall try to give a more precise account of how to design a 



 8

tactic of Control Node Program. In addition, we will illustrate the difficulty which we 

encounter and corresponding solutions. For the present, we shall confine our attention 

to the behavior of tactic.  

 This tactic focuses on a problem common to many strategic war situations: 

determining how one might engage the enemy. While this might seem straightforward 

enough to the human controller, the computer AI have a little bit harder time 

accomplishing this. 

 When the AI operates in squads, it can do a lot for a tactical combat. The squad’s 

behavior and communications construct a complicated tactic. It is easy to answer why 

squad AI should be part of a combat system. However, it is not easy to answer how to 

add squad AI to the system. 

  Squad tactical AI can be so elaborate that can be studied and written separately 

as a topic. Here, we shall focus on an easy and simple tactic, because we only want to 

prove that our expansion of simulation engine can work well. The complexion of the 

tactic is not the criterion and factor to judge whether simulation engine can work 

correctly, because the mechanism of communication between engine and node control 

program is independent of Node Control Program’s tactic. The mechanism of 

communication between them is only a middle layer which simply provides an 

abstract interface for upper layer, therefore, whether upper layer is a Node Control 

Program or an extern AI control system or even a human’s control, there is no 

difference. To put it in the other way round, the tactic of Node Control Program is 

merely a way to exanimate whether our modification of simulation engine can work. 

 Let us return to our main subject of what our tactic is. A squad can consist of 

several members each has its goals. These members accomplish its goals through 

coordinated actions. Squads typically have a leader and some of its member, they 

select and execute certain maneuvers to accomplish its goals to chase an enemy. A 



 9

success maneuver involves a lot of factors; one of them is correct and available 

communication between members.  

 Figure 3.2.1 sketches the behavior of our tactical strategy. It mainly consists of 

three state, scout, report and chase. In our demo case, there are three different roles of 

nodes separately; however, their behaviors are similar. Despite of enemy, member of 

squad and leader of squad, they all have scout state in common. Then, each of nodes 

will transit to different state based on their role and situation. All three kinds of node 

are initial in the Scout State, the enemy always runs away, if it sees any one who want 

to chase him, he will run away from the nearest chased one. The leader and members 

of squad are initially in the SCOUT STATE, then if they encounter enemy, members 

will report to leader and wait leader’s command, but leader will directly notify other 

members directly while he encounters enemy. 

 Below is the main stage of a maneuver while they execute a tactic, however, 

there are still other details which we shall have more to say about in later chapter.  

 
  Figure 3.2.1 Main state machine of our tactical behavior 
 

3.3 Feature 
  

In this section, we will introduce and describe our new features of simulation 
engine. 

 

Fail to Chase Enemy SCOUT_STATE 

REPORT_STATE 

CHASE_STATE 

Watch Enemy 
Receive Leader’s command

Watch Enemy 



 10

3.3.1 External Control 
  

Besides internal control such as Node Control Program which forks by engine 

and executes with simulation engine, our new design make simulation engine accept 

external command to control the node’s movement of simulation. Because of middle 

abstract layer of our design, it makes external control easier to carry out. Besides, it 

can accept any types of command to control node. For example, human can take 

advantage of GUI or design their Control Node Program to control node. Even, they 

can design their tactical engine to replace original role of GUI to communicate with 

simulation engine.  

  

3.3.2 Real Time Control 
  

In previous design of simulation engine, you can change node’s movement; 

however, you have to decide in advance. After our modification, now, it can real time 

accept extern or internal command to control node’s movement dynamically. This 

means that you can decide node’s situation at any time to decide what you want node 

to do. In the military scenario, real time control is very important, because it is so 

complicated that we can’t decide every thing previously. If we can real time accept 

commands to control node’s behavior, this feature highly increases the ability of 

simulation engine. 

 

3.3.3 Real Time Animation 
  

As mentioned above, after a user’s simulation job is finished, the generated 

simulation results will be automatically transferred back to the GUI program and then 



 11

saved in the user’s local hard disk. Now, our new design make simulation engine 

dynamically output its result during it is executing. 

 

3.3.4 Obstacle Sensing 
 

In the real world, not all fields are open space for wireless signal. Some may 

have high mountains or tall buildings blocking wireless signal’s propagation. In some 

researches, we may want to purposely add wireless signal obstacles to the open field 

to block wireless signal at some places in the field. In original design of NCTUns 

network simulator, a wall is a sequence of segments that completely block wireless 

signal and can be specified using the same way for specifying a mobile node’s 

moving path. With walls, a user can simulate a more complicated and interesting field 

setting. This can facilitate testing wireless network and protocol performances (e.g., 

handoff) under a more realistic field setting.  

Original design of wall provides the functions of wireless signal obstacles, but it 

still calls for further improvement. Let us now look at original design of wall in detail; 

because the moving path of node is described before simulation execution, no one will 

let the moving path go through wall. However, if someone really does this, what will 

happen? The answer is that it will directly go through wall without sensing the 

existence of wall. The reason is that we only take wireless signal obstacles into 

consideration without detecting collision of obstacles. If we want to support tactical 

Ad Hoc network on simulation, obstacle sensing is an important and indispensable 

ability. 

In addition, we also need other kinds of wall to reach our requirement. First, we 

need the wall that can block node’s movement without block node’s signal, because if 

node’s signal is blocked by wall, it will highly decrease the function of 



 12

communication of Ad Hoc network. Second, we also need the wall which can obstruct 

node’s field of vision. Furthermore, we can optionally choose composition of above 

features. For example, we may need the wall which can block node’s movement and 

obstruct node’s vision.      

We may note, in passing, that the single-hop connectivity and multi-hop 

connectivity calculations provided in a mobile node’s dialog box take the existence of 

walls into account. In addition, the God routing daemon for WLAN Ad Hoc mode 

mobile nodes takes into account the existence of walls as well. Therefore, if we use 

the wall which doesn’t block node’s signal, we have to modify original consideration 

of limitation of single-hop connectivity and multi-hop connectivity calculations 

provided in a mobile node’s dialog box.  

 

3.3.5 Using All Features and Capabilities of NCTUns 

Network Simulator 
 

The NCTUns network simulator is a high fidelity and extensible network 

simulator. It has many unique advantages that cannot be achieved by traditional 

network simulators. If we support simulation with tactical Ad Hoc network, all of the 

capabilities that NCTUns has can still be used. By these advantages, the NCTUns 

network simulator will become more powerful and can provide many capabilities that 

simulation can not support. For the present, we shall look closely at some capabilities 

and features of the NCTUns network simulator. 

 

3.3.5.1 Support for Various Networks 

It can simulate wired networks with fixed nodes and point-to-point links. It can 

also simulate wireless networks with mobile nodes and IEEE 802.11 (b) wireless 



 13

network interfaces. For IEEE 802.11 (b), both the Ad Hoc and infrastructure modes 

are supported. 

 

3.3.5.2 Support for Various Networking Devices 
 

It can simulate various networking devices such as Ethernet hubs, switches, 

routers, hosts, IEEE 802.11 wireless access points and interfaces, etc. A more realistic 

802.11 (b) wireless physical module that considers the used modulation scheme, the 

received power level, the noise power level, and the derived BER is provided 

 

3.3.5.3 Support for Various Network Protocols 
 

Because of the module-based platform, users can easily develop and add new 

protocols on the NCTUns simulator. Now, it can simulate numerous protocols such as 

IEEE 802.3 CSMA/CD MAC, IEEE 802.11 (b) CSMA/CA MAC, the learning bridge 

protocol used by switches, the spanning tree protocol used by switches, IP, Mobile-IP, 

RTP/RTCP, RIP, OSPF, UDP, TCP, HTTP, FTP, Telnet, etc. More protocols and 

devices are for other types of networks such as GSM/GPRS cellular networks and 

optical networks have been developed. 

 

3.3.5.4 Application Compatibility and Extensibility 
 

All real-life existing or to-be-developed UNIX application programs can be run 

on a simulation network to generate realistic network traffic. Users do not need to 

modify these programs. These programs can be easily run on a simulated network as 

long as these UNIX programs can be correctly run on the real-world network. In 

addition, all real-life existing UNIX network configuration tools (e.g. route, ifconfig, 



 14

netstat, tcpdump) can be run on a simulated network to configure or monitor a 

simulated network. Users can easily use these tools provided by a UNIX system. 

 

3.3.5.5 User Friendliness 
 

NCTUns provides an integrated and professional GUI environment in which 

users can easily conduct network simulations. All settings and configurations can be 

easily set up through GUI. This includes drawing network topologies, configuring the 

protocol modules used inside a node, specifying the initial locations and moving 

paths of mobile nodes, plotting network performance graphs, playing back the 

animation of a logged packet transfer trace, etc. 

 

3.3.5.6 Open System Architecture 
 

By using a set of module APIs that are provided by the simulation engine, a 

protocol module developer can easily implement his or her own protocol and integrate 

it into the simulation engine. For example, user can easily develop and test his or her 

routing protocol used by Ad Hoc mode mobile node in our simulator. 

 



 15

4. Background 
 

 In order to support simulation with tactical Ad Hoc network, it involves a lot of 

techniques. Not only network but some artificial intelligence is required; furthermore, 

it consists of a great deal of graphic technique as well as mathematics. In this chapter, 

we will illustrate the related work and briefly introduce the techniques which we had 

adopted. 

 

4.1 Related Work 
 

In this section, we will discuss some related work.  

 The QualNet [9] network simulation software is a commercial network simulator. 

It uses architecture of layer model. This is similar to one used in physical networks 

with well-defined APIs between neighboring layers. Besides, it provides capability 

for network emulation. It also supports military network. Furthermore, it has rich 3D 

visualization and simulates networks of 250+ nodes in real-time. 

 High Capacity Tactical Network (HCTCN) [10] is a project whose main 

objectives are to develop and demonstrate new technologies to support 

next-generation mobile wireless high-capacity tactical communications and to meet 

future army communications requirements. 

  In addition, Routing is a primary technical challenge in designing a tactical Ad 

Hoc network. “Next-Generation Tactical Ad Hoc Mobile Wireless Networks” [11] 

illustrate a combat network system based on associativity-based routing (ABR), a 

best-effort routing protocol licensed to Northrop Grumman. 

 

 



 16

4.2 Required Techniques 
  
 In this section, we will devote more space to briefly discuss all of techniques 
which we will use.    
 

4.2.1 Ad Hoc network 
  

Ad Hoc wireless network is a collection of two or more devices equipped with 

wireless communications and networking capability. Such devices can communicate 

with another node that is immediately within their radio range or one that is outside 

their radio range. [12] For the latter case, an intermediate node is used to relay or 

forward the packet from the source toward the destination. 

 

4.2.1.1 AODV 
  

The requirement for mobile tactical network is the capability to seamlessly 

connect to a local network anywhere in the deployed tactical network. Mobility 

requirement for tactical forces is the need for rapid setup and teardown of 

communications networks.  Tactical network applications differ from fixed plant 

applications in that tactical networks are mobile. Tactical units rarely stay in the same 

location for the duration of an operation. Therefore, networks that require vast 

amounts of cabling are often impractical for use in a tactical operation. [13] [14] 

 MANET is an autonomous system of mobile routers and associated hosts 

connected by wireless links.  The routers are free to move randomly and organize 

themselves arbitrarily, thus allowing the network’s wireless topology to change 

rapidly and unpredictably. There are numerous routing protocols. Routing is a 

primary technical challenge in designing a tactical Ad Hoc network. Here, we only 



 17

pay attention to AODV. The reason is that AODV has existed in NCTUns network 

simulator. Besides, AODV maintains routes for as long as the route is active, it can be 

more suitable in mobile environment than others existed routing in NCTUns network 

simulator.  

The Ad Hoc On Demand Distance Vector (AODV) routing algorithm is a routing 

protocol designed for Ad Hoc mobile networks. AODV is capable of both unicast and 

multicast routing. It is an on demand algorithm, meaning that it builds routes between 

nodes only as desired by source nodes. It maintains these routes as long as they are 

needed by the sources. Additionally, AODV forms trees which connect multicast 

group members. The trees are composed of the group members and the nodes needed 

to connect the members. AODV uses sequence numbers to ensure the freshness of 

routes. It is loop-free, self-starting, and scales to large numbers of mobile nodes 

  

4.2.2 Artificial Intelligence 
  

In this section, we attempt to illustrate some techniques related to artificial 

intelligence 

 

4.2.2.1 Map representation 
 

Practically, there are several patterns to transfer a world in the terrain into a map. 

According to [15], [16] there are several kinds of representation, Rectangular or 

Hexagonal Grid, Floor Representation and Points of Visibility. Each has its pros and 

cons. 

 Grid: 

  A grid map uses a uniform subdivision of the world into small regular 

shapes called "tiles". Common grids in use are square, triangular, and hexagonal. 



 18

Grids are simple and easy to understand 

 Floor: 

  An artist or level designer creates a polygonal floor representation that is 

used to exclusively for pathfinding. 

 Points of Visibility: 

  Points are placed at convex corers on the world. Each point is then 

connected to all other points that it can “see”. 

 A simple diagram of each kind of above map is provided in Figure 4.2.2.1.1. 

 

 
  Figure 4.2.2.1 Map representation of Grid, Floor, and Points of Visibility 
 

4.2.2.2 Path finding 
  

A* path finding  

The A* algorithm is used to find a path between two positions on a map. A* is a 

famous algorithm which widely applies in most of game, therefore there are many 

introductions and discussion even modification about how and what A* is. 

[16][17][18][19]    

A* is a power algorithm for path finding, however, it is not a trivial algorithm, and it 

is extremely difficult to debug if many of the optimization have been incorporated. 

Therefore, there is a tradeoff between optimization and coding. [15] 

  

     

     

     

     

     



 19

A* path finding optimization  

There is no doubt about that A* path finding algorithm is a time-consuming 

methods. Since there is a lot list of optimization to improve this algorithm, we also 

adopt some advices and steps to avoid the drawback of A* algorithm and increase 

performance. Our modification of design will be taken up in the latter chapter. For the 

present, it may be useful to look more closely at why A* is slow and some way to 

speed up it. 

 Steve Rabin, in “A* speed Optimization” [15], lists a lot of methods related to 

decrease time cost of A* algorithm. They mainly fall into two categories, search space 

optimization and algorithmic optimization. The former can adopt map representation 

which we mention before, and the latter will be reached by following strategies.     

 There is no disagreeing on the point of that heuristic cost plays an import and 

magical role in A* search. Many researches also reveal that by overestimating the 

heuristic can result in better and faster effect [15]. Since A* consumes a large of 

memory in the progress of search, each node of map contains data structure which 

requires in the execution of search. But not all the time the search will involves all of 

the nodes in the map, most of nodes there unused most of time. There is no reason to 

couple the path finding node data with the search space. This solution reduces 

unnecessary memory overhead and speeds up search speed. Besides, we can 

pre-allocate a sufficiently large block of memory that can be recycled for each search. 

In the progress of A* search, Open list tends to get large, and it retrieves nodes from 
Open list frequently, the node to extract is the node with the lowest total cost. 
Therefore, the best way to store the Open list is to keep it stored as a priority queue. 
Because binary heap has a property that root always has lowest value, it meets the 
requirement of Open list‘s operation. Besides, with this property, insertions and 
extractions takes only O(logn).



 20

5. Design and Implementation 
 

In this chapter, we will explain and discuss how to let the NCTUns network 

simulator is equipped with previously described abilities and features. In addition, we 

also introduce what kinds of design are proposed and how the original simulation is 

modified. After reading this chapter, readers will clearly understand our designed 

architecture. 

 

5.1 Kernel Modification  
 

The NCTUns network simulator is based on a new simulation methodology -- 

the kernel re-entering simulation methodology. It uses an existing real-world 

FreeBSD/Linux protocol stack to provide high-fidelity TCP/IP network simulation 

results. The Figute5.1.1 helps to illustrate this concept.[21] 

 
Figure 5.1.1 The kernel re-entering simulation methodology 

Simulation Engine 

TCP 
sender 

TCP 
receiver link 

   TCP/IP protocol stack 

Tunnel 
Interface 2 

 

Tunnel 
Interface 1 

 

user level 

kernel level 



 21

 

According to the description of [21], when a process was forked by the 

simulation engine, the simulation engine uses system call to store the simulated node 

id into the process handler. This information allows the kernel to know whether a 

process is used by a simulation or not. The structure task_struct is modified as below: 

 

struct task_struct {
…
pid_t pid;
…
struct signal_struct *signal;
…

//NCTUNS
/* record the process belongs to which node */
unsigned int p_node;

//NCTUNS
}

struct task_struct {
…
pid_t pid;
…
struct signal_struct *signal;
…

//NCTUNS
/* record the process belongs to which node */
unsigned int p_node;

//NCTUNS
}

 

 

If a process creates an INET socket such as TCP, UDP, RAW socket, we should 

also register the node id into the corresponding INET socket structure, which is 

structure sock. 

struct sock {
__u32                  daddr;
__u32                  rcv_addr;
…

//NCTUNS
u_int32_t             nodeID;   /* record the process belongs to which node */
unsigned short    sk_vport; /* virtual port number */
struct pmap *pmap;    /* point to port mapping information */

//NCTUNS
}

struct sock {
__u32                  daddr;
__u32                  rcv_addr;
…

//NCTUNS
u_int32_t             nodeID;   /* record the process belongs to which node */
unsigned short    sk_vport; /* virtual port number */
struct pmap *pmap;    /* point to port mapping information */

//NCTUNS
}

 

For the datagram INET socket such as UDP and RAW socket, we store the node 

id into the INET socket structure (sock) when a process calls the socket() system call: 



 22

Asmlinkage long sys_socket (int family, int type, int protocol)
{

int retval;
struct socket *sock ;

retval = sock_create(family, type, protocol, &sock);
…

//NCTUNS
/* If current process belongs to a simulation, 

we should store node id into sk. */
if (current->p_node > 0) {

sock->sk->nodeID = current->p_node;
} else {

sock->sk->nodeID = 0;
sock->sk->sk_vport = 0;

}
//NCTUNS

…
}

Asmlinkage long sys_socket (int family, int type, int protocol)
{

int retval;
struct socket *sock ;

retval = sock_create(family, type, protocol, &sock);
…

//NCTUNS
/* If current process belongs to a simulation, 

we should store node id into sk. */
if (current->p_node > 0) {

sock->sk->nodeID = current->p_node;
} else {

sock->sk->nodeID = 0;
sock->sk->sk_vport = 0;

}
//NCTUNS

…
}  

With the node id information, we can correctly translate the IP address in the 

kernel. For more details of the S.S.D.D address format, readers can refer [21] and 

[20]. 

Besides, according to this information, kernel can determine whether the port 

number translation has to be done or not. The port number translation is a mechanism 

to translate a real port number to a virtual port number. [20][21] Additionally, nodeID 

and p_node are also used to identify whether the timer of this execution is based on a 

virtual-time timer or not. After realizing above short descriptions about how the 

kernel is modified, this will lead us further into the consideration of new design for 

our requirements. 

Like other traffic generators, Node Control Program is also a process forked by 

the simulation, and one of its jobs is to deliver god information between the Node and 

the simulator engine. Another objective is to control the node’s behavior. During 

simulation, all information, such as node’s location, speed, angle and so on, is keep in 

the simulation engine; hence, Node Control Program has to use IPC to obtain these 

information. Here, we adopt the UNIX socket as our choice, because it is easy to 

expand and debug. 

Besides, Node Control Program is also responsible for communicating with 



 23

other node’s Node Control Program. As original traffic generator in simulation, this 

kind of communication is based on virtual clock, because it is used to simulate 

tactical Ad Hoc network communication instead of acquiring god information 

between them.  

 
Figure 5.1.2 Two types communication of Node Control Program 
 

Figure 5.1.2 clearly shows the difference of communication between these two 

types. The shading broken arrow in figure 5.1.2 is used to communicate between 

Node Control Programs, and black arrow is used to communicate god information 

between Node Control Program and simulation engine. 

The question now arise: Node Control Program is a child process which was 

forked by the simulation engine, as we mentioned ahead, results in that all socket 

executes on Node Control Program will based on virtual time and IP address and port 

number will be translated as previously described. Therefore, the communication 

Simulation Engine 

link 

   TCP/IP protocol stack 

Tunnel 
Interface 2 

 

Tunnel 
Interface 1 

 

user level 

kernel level 

 
Node Control 
Program 

 
Node Control 
Program 

command 
handler 

loopback 
Interface  

 



 24

between Node Control Program and simulation engine can’t work correctly. The 

reason is that the communication between them is based on general IPC socket and its 

IP address is local loopback address instead of our IP address format, but all packets’ 

address will be translated into S.S.D.D format. Due to the modified address and port 

number, packets cannot correctly reach its destination. 

 

The solution of this problem is to clean nodeID we mark in kernel by calling 

system call sys_NCTUNS_misc. In order to achieve this, we add another system call 

sys_NCTUNS_cancel_socknodeID to erase it if we want to create the socket whose 

IP address is not S.S.D.D format and based on real time clock. 

 

The sys_NCTUNS_misc system call with parameter NSC_REGPID is used to 

enable the process that is forked by the simulation engine to know that it belongs to 

which simulated node. In opposition to sys_NCTUNS_misc system call, 

sys_NCTUNS_cancel_socknodeID is used to cancel the nodeID which was set by 

asmlinkage int sys_NCTUNS_cancel_socknodeID(int fd) 
{ 
        struct socket *sock; 
        struct sock *sk; 
        struct tcp_opt *tp; 
        int err,i;  
                
        sock = sockfd_lookup(fd,&err); 
        if(!sock) 
                return 0; 
        sk = sock->sk; 
        sk->nodeID = 0         
        if (sk->sk_protocol == IPPROTO_TCP){ 
                struct tcp_opt *tp = tcp_sk(sk); 
                tp->nodeID = 0; 
                printk("In sys_NCTUNS_cancel_socknodeID\n"); 
        } 
        return(1); 
} 



 25

sys_NCTUNS_misc. 

 

Besides, we extend the functionality of system call sys_NCTUNS_misc with 

parameter NSC_PIDTONID to let Node Control Program acquire its node id 

according to the process id. 

 

5.2 Simulation Engine Modification and Design 

The NCTUns network simulator uses a distributed architecture to support remote 

simulations and concurrent simulations. Users can easily add protocol modules to the 

simulator. The simulation engine is the core of the NCTUns network simulator. In 

figure 5.2.1, the architecture of the Simulation Engine is described. We need not 

elaborate on the detail of simulation engine; it is treated much more adequately in [20] 

and [21]. Here, we only need to mention the extension and improvement of the 

Simulation Engine.  

 

 
Figure 5.2.1 The architecture of the NCTUns network simulator 
 

N
C

TU
ns A

PI 

 

Event MBinder

Scheduler 

Script Interpreter 

C
om

m
and D

ispatcher 

System calls 

Interfa

ARP 

FIFO 

802.3 

PHY 

Link 

FIFO 

802.3 

PHY 

Link 

FIFO 

802.3 

PHY 

Link 

FIFO 

802.3 

PHY 

Link 

Interfa

ARP Switch 

Module-Based Platform 

Simulation Engine 

 

Module 

Manager 

Event Timer Event 

Event Queue 

Host 1 

Switch 

Host 2 



 26

Since the new addition of the Simulation Engine is fully discussed in the 

following section of this chapter, we only briefly explain what we had added and 

modified for the Simulation Engine here. 

We can simply divide our modification of the simulation engine into several 

components: 

(I) Map Construction System: 

The Map Construction System reads the *.obs file which is generated by GUI 

while users draw walls on the simulation case. Map construction will represent the 

whole terrain as rectangular grid and identify if grid belongs to obstacle grid or not. 

 

(II) Obstacle Detect APIs: 

 

The Obstacle Detect APIs is composed of various mathematic functions. All of 

engines can ask for the simulation engine’s services via these APIs such as calculating 

the distance between obstacle and node, predicating collision time of node into 

obstacle, etc. 

 

(III) Ptr &Moving path packer 

 

It is necessary for simulation engine to dynamically generate the real time result 

to GUI. Users can choose whether to dynamically generate real time ptr and 

movement results or not.     

 

(IV) Command handler 

     

The command handler can mainly be divided into two parts: the command input 

parser and notification for Node Control Program. The former can receive commands 

from inner command requesters like Node Control Program or external ones such as 



 27

GUI or an independent tactical strategy system. The latter is responsible for notifying 

Node Control Program if simulation wants to send messages to it.  

 

(V) Trigger System 

 

The main job of the trigger system is to check register event which was 

registered by control node program in the event queue. The register event is different 

form original event in the Simulation Engine. The original event is used to 

encapsulate messages that are exchanged between protocol modules.   

The trigger system always iterates through unexpired register events to check 

whether the current situation matches register event’s condition or not. If interesting 

event registered by Control Node Program happens, the trigger system will execute 

corresponding reactiona or notify Control Node Program their interesting event 

happening. 

 

(VI) Node Control Program 

 

Node Control Program acts as an agent for node to communicate with the 

Simulation Engine. When a Node wants to send a command to the simulation engine 

such as change speed, turn its direction, stop movement or register interesting event 

etc, the Node Control program should send these requirement to the command 

handler. Then the command handler parses the command to the simulation engine or 

trigger system according to type of requirement. After the interesting event happens, 

command handler will send notification back to the Node Control Program and the 

Node control Program will respond via their tactic or strategy. 

 

  Figure 5.2.2 we can see the whole architecture of components we mentioned 



 28

above and relations between them. The part of core engine & scheduler represents the 

original simulation engine in Figure 5.2.1  

 
      Figure 5.2.2The architecture of extension for simulation engine 
 

5.2.1 Event Prediction 
 

First of all, let us consider one scenario, for example, in a simulation case; there 

are some obstacles around nodes. If a node collides into obstacle, we have to let it 

stop instead of going through it. 

 Before we come to a closer discussion of this scenario, a few remarks should be 

made concerning how scheduler of Simulation Engine works. The scheduler in the 

Simulation Engine maintains a system virtual time; all events will be triggered based 

on this virtual time. The scheduler always selects the event or timer which has the 

smallest timestamp to execute. In the meantime, the scheduler will advance the 

simulation time to the timestamp of the event. Viewed in this sight, the Simulation 

Engine only stays on the timestamp that event will execute. To put it the other way, if 

G
U

I 

 
Node 

Control  
Program 

command handler 
Ptr&moving 
path packer 

 

 
Trigger  
System 

 Obstacle Detect API 

 
Core engine & 

Scheduler 

Map  



 29

there is no event exists during this period of time, nothing will be done.    

 Having observed the simulation engine’s character of event trigger, we may now 

turn to the real subject of why we need event prediction. Due to simulation only stays 

on the timestamp when event will be executed. In view of this, considering the 

scenario quoted above, if we want to let engine check whether something happens or 

not in the future, we shall have to predict when this will happen and insert a check 

event with the timestamp equaling checking time.    

 We will take a complex example to illustrate this concept. Consider a scenario in 

Figure 5.2.1.1, there are four nodes (A~D) and nine obstacles (a~f). It is a snapshot at 

timestamp t1. Assuming that Node A, B, C, D will collide into obstacle f,h,d,b after 

16 ,7,25,5 sec separately if nothing influences them and they don’t change speed or 

direction. Then, we have to insert four prediction events with timestamp t1+5, t1+7, 

t1+16, t1+25 respectively. (See Figure5.2.1.2) After 5 sec, current timestamp is t2 and 

its scenario becomes Figure5.2.1.3. The similar thing is done repeatedly like at 

timestamp t1. It will insert three events with timestamp t2+2, t2+11, t2+20, if noting 

cause them to modify their process of movement. 

 In fact, this method has some shortcuts, and how to improve will be presented in 

the next chapter. 



 30

 

        Figure 5.2.1.1 A snapshot of time t1  

Figure 5.2.1.2 At time t1, simulation engine will insert predict events. 

  
Figure5.2.1.3 A snapshot of time t1+5 
 
 

 
 

Figure5.2.1.4 At time t1+5, simulation engine will insert predict events. 

A 

B 
C

D 

a

b

c 

d

e 

f

g

h

i 

  t1   t1+5  t1+7  t1+16  t1+25 

A 

B 
C

D 

a

b

c 

d

e 

f

g

h

i 

  t2   t2+2  t2+11  t2+20   t2=t1+5 



 31

5.2.2 Dynamic Communication 
  

In the preceding chapter we pointed out that dynamic control is one of our 

design’s features. This is composed of the dynamic communication with GUI and 

with Node Control Program. For the present, let us look closely at how to implement 

it and problems which we encounter and their corresponding solutions. 

 

5.2.2.1 Communication with GUI 
 

Owing to receiving real-time commands from GUI and sending real-time 

information to GUI; we have to establish a communication between the Simulation 

Engine and GUI. In the previous design of NCTUns 2.0, Coordinator plays a role of 

translator which used to exchange message between the Simulation Engine and GUI. 

When the simulation engine process is running, the Coordinator will communicate 

with the job dispatcher and the GUI program. For example, the simulation engine 

process will periodically send the current virtual time of the simulation network to the 

coordinator. Then the coordinator will relay the information to the GUI program. 

Besides, the user can also set or get a protocol module’s value on line during 

simulation. (e.g. to query or set a switch’s switch table). Message exchanges 

happening between the simulation engine process and the GUI program are all done 

via the coordinator. [8][20][21]  

In addition, we need to add more functions. It falls into two parts: periodically 

sending simulation result to GUI (e.g. ptr and node’s location) and polling GUI’s 

commands, for example, change node’s location and speed etc. 

The Log Pack component is responsible for packing all information of 

simulation results into packets. When the simulation starts, these packets will be 



 32

periodically sent to GUI.  

 
 Due to performance consideration, we can’t let one packet encapsulate only one 

data. Therefore, we make one packet that was sent to GUI contains several data. 

There are two principles to encapsulate data into packet and send. One is depend on 

time; engine will periodically send packet. This period can be decided by user. 

Another is depending on number of data; PackNum_SendPtr and PackNum_SendLoc 

respectively act as watermark to decide whether to send packet or not. 

 

 

 In addition, to reduce the overhead of memory copy, we directly put Ptr and 

Location separately into PtrPAcket and LocPacket. Struct of PtrPack and 

LocPacket .We previously allocate a large array which collects all data that want to 

send. MaxPackSizePtr and MaxPackSizeLoc are separately the max limit of capacity 

that one packet can contain ptr or location information. 

 In NCTUns 2.0 and the previous version, user can depict node’s movement 

#define PackSizePtr             20 
#define PackNum_SendPtr    20        
#define PackSizeLoc            200 
#define PackNum_SendLoc   10 

struct PtrPacket{ 
        char type; 
        int num; 
        LogObject LogObjectArray[PackSizePtr]; 
}; 
struct LocPacket{ 
        char type; 
        int num; 
        struct NODE_POSITION LocArray[PackSizeLoc]; 
}; 



 33

before simulation, and all node’s moving path will be described in the file of *.sce. 

Yet new design of Simulation Engine allow node dynamically change its movement. 

Therefore, it shall be useless for the Simulation Engine if we want to modify node’s 

moving path in real time. At the same time, we need another file of *.nll to record all 

node’s change. The file of *.nll, the abbreviation of node location list, periodically 

keeps the track of all node’s location. It is useful for user to trace node’s movement 

and debug after simulation.   

 Additionally, in order to receive commands from GUI, we have to establish a 

connection between GUI and Simulation Engine. We shall have to perform periodical 

polling if GUI sends any communication, because we can not predict when GUI does. 

 

5.2.2.2 Communication with Node Control Program 
  

There are some issues to be discussed about how to communicate with Node 

Control Program. As we mentioned previously, the Simulation Engine is based on 

event-trigger. If no event exists, the Simulation Engine will advance its clock quickly.  

 Because node’s information is store in the Simulation Engine, if Node Control 

Program wants to know current node’s location, speed or direction of movement, it 

has to query Simulation Engine. When all Node Control Program has finished 

querying or sending information to Simulation Engine, Simulation Engine can 

advance its virtual clock. To take a simple example, Node Control Program will query 

node’s location at virtual time t1 in Figure5.2.2.2.1. If Simulation Engine can respond 

it immediately at virtual time t1 instead of advancing virtual clock, Node Control 

Program will get the information of location at time t1, which is what it really wants.  

    At virtual time t1, if Simulation Engine thinks all nodes have no longer 

communicated with it and advance its virtual clock to t2, but in fact one of Node 



 34

Control Program want to query its node’s location at t1. While Simulation Engine 

receives this query at virtual time t2, Simulation Engine will respond node’s location 

at t2 instead of location at t1. This results in inaccuracy and incorrect result. The 

question now arises is how Simulation Engine knows all of Node Control Programs 

has finished communicating with it. 

 
  Figure 5.2.2.2.1 Communication between Engine and Node Control Program 

 

 To answer this question, let us discuss the process scheduling first. Since we 

can understand this concept more fully in [21] we shall outline here only briefly.  

In Linux, a user-level process also has two priorities: static priority and 

dynamic priority [22]. The static priority is assigned by the users for real-time 

processes and never changed by the process scheduler in the kernel. The dynamic 

priority is used for normal processes and is essentially the sum of the base time 

quantum (which is therefore also called the base priority of the process) and of the 

number of ticks of CPU time left to the process before its quantum expires in the 

current epoch. The static priority of a real-time process is always higher than the 

dynamic priority of a normal one. The scheduler will run normal processes only when 

there is no real-time process in the executable state. 

 
 
 
 
 
  
Engine  

Node Control 
Program 

 Time t1 

 Time t2 



 35

The simulation engine sets a traffic generator as a real-time process when 

forking it. At the same time, the simulation engine is still a normal process. In other 

words, the traffic generator’s priority is always higher than the simulation engine. 

Therefore, only when all of traffic generators both get blocked in the kernel mode, the 

simulation engine will be able to get CPU control.   

 In view of this, while simulation engine get the CPU control, all Node Control 

Program get blocked in select for socket between simulation engine and itself. As 

soon as Simulation Engine sends any information to Node Control Program, Node 

Control Program will get control immediately. 

 This was equivalent to saying that Simulation Engine’s notification packet which 

sends from simulation engine to Node Control Program let Node Control Program get 

control of CPU. Therefore, we can let notification packet to query how many 

commands which Node Control Program will send to Simulation Engine. The query 

result will respond to Simulation Engine in the form of ACK packet. As soon as 

Simulation Engine receives ACK packet which contains nonzero ACK number, it will 

wait Node Control Program instead of advancing simulation clock. Figure 5.2.2.2.2 

shows this scenario.     

 However, there is a problem as Figure 5.2.2.2.3 shows. In the Figure 5.2.2.2.4, it 

describes a solution for above situation. When simulation engine receives an ACK 

packet with zero number, it will send a query packet to query Node Control Program 

how many commands it will send. At this time, if simulation engine receives 

corresponding ACK with zero number, we can make sure that Node Control Program 

will not send any more commands to simulation engine at this time. There is a further 

point which needs to be clarified. Readers may doubt that if Node Control Program 

generates another command which will send to simulation engine after it responds 

ACK packet which corresponding to query packet just like Figure5.2.2.3.3. 



 36

 In fact, query packet is different from notification packet. The latter is used for 

simulation engine to notify Node Control Program, it may influence Node Control 

Program. For example, the Simulation Engine sends a notification packet which tells 

node that has collided into obstacle, while Node Control Program receives this packet; 

it may change its direction, speed etc. Therefore, it causes Node Control Program to 

generate another packet. However, query packet is just like a god packet which 

doesn’t carry any information except query if Node Control Program will send any 

command in the future. In view of this, query packet will not influence Node Control 

Program’s behavior and decision, so Node Control Program will not generate other 

commands after receiving this kind of packet.   

 

 
Figure 5.2.2.2.2 Communication between Engine and Node Control Program 

 
 
 
 
 
  
Engine  

Node Control 
Program  Time t1 

Notify packet

ACK Num=2

At this time, the simulation engine knows 
N.C.P. will send two more packets, so it will 
wait instead of advancing its simulation clock 

The number of the packets to be 
sent in the future is 2 



 37

 
Figure 5.2.2.2.3 Communication between Engine and Node Control Program 
 
 

 
Figure 5.2.2.2.4 Communication between Engine and Node Control Program 
 

 
 
 
 
 
  
Engine  

Node Control 
Program  Time t1 

Notify packet

ACK Num=0

The number of the packets to be 
sent in the future is 0 

Query packet 

ACK Num=2

 
 

 
 
  
Engine  

Node Control 
Program  Time t1 

Notify packet

ACK Num=0

At this time, the simulation engine 
knows N.C.P.  
will not send packets so it will 
advance simulation clock. 
But after N.C.P sends ACK packet, it 
generates two packets to send at 
virtual time t1, this situation results 
in this two packets will send at 
incorrect virtual time. 

The number of the packets to be 
sent in the future is 0 



 38

5.2.3 Obstacle Construction 
  

Obstacle plays an import role in our new features. We modify original design of 

wall. Now we can support three kinds of obstacles. First, it provides the function to 

block wireless signal. Secondly, it can block node’s movement. Thirdly, it can 

obstruct node’s field of vision. 

 

 The above data structure is used to store information of obstacles. In this 

structure, ‘type’ is used to discriminate the type of obstacle. All obstacles are linked 

in a linked-list which headed by pointer Obs_head. We can iterate all of obstacles by 

this pointer. Besides, Num_obstacle is a number used to count how many obstacles 

exists.  

 

5.3 Intelligence Engine 

 In this section, we will shift the emphasis away from basic Simulation Engine to 

Intelligence Simulation Engine. We will use the term “Intelligence Engine” to refer to 

the part of simulation engine which involved with some techniques of artificial 

intelligence. 

  

5.3.1 Map Sensing 

 The first point to notice is our coordinate system is different from standard. Our 

struct obstacle { 
        double                  x1,y1; 
        double                  x2,y2; 
        double                  x3,y3; 
        double                  x4,y4; 
        char                    type; 
        struct obstacle           *next; 
}; 



 39

origin is on the left-top. The abscissa will increase toward right; however, its ordinate 

will decrease toward north. Figure 5.3.1.1 and Figure 5.3.1.2 show the difference 

between them. The reason why we adopt this coordinate system is that GUI’s location 

also makes use of this kind of coordinate system. However, some problems increase 

when we turn from standard coordinate system to this one. We shall have more to say 

about these problems later on.  

  
  Figure 5.3.1.1 Standard coordinate system 

 

 
    Figure 5.3.1.2 Our coordinate system 

5.3.2 Obstacle Detection and Collision Avoidance 
  

The Simulation Engine provides many APIs for obstacle detection and collision 

avoidance. Any prediction of obstacle collision can query through these APIs. Here, 

we only introduce briefly how Simulation Engine works by making use of these API 

 
 (0,0) 

 

(0,0)



 40

to reach our purpose. Let us consider following case. 

 At time t1, the node “A” moves toward east. We first call the API 

FindShorestCollisionObstacle. This API finds out all candidates which node A will 

collide in the future. In this case, node “A” will collide into obstacle “a” at “ A’ ” and 

collide into obstacle “b” at “ B’ ”. However, it selects the shortest one. Then we will 

calculate the distance between “A” and “ A’ ”. We assume the distance is d”. 

Therefore, we can predict when node “A” will collide into “a” via dividing “d” by 

node’s speed. If the calculate result is “T”, we insert an event with timestamp “t1+T”. 

It means Node “A” may collide into “a” at time “t1+T”. Figure 5.3.2.1 shows above 

scenario. 

 

  
  Figure 5.3.2.1 Obstacle detection of simulation engine  

 

For the present, we shall confine our attention to another problem. We also use 

above example in the Figure 5.3.2.1 to illustrate this problem in the following. 

 In API FindShorestCollisionObstacle, it first calculates the linear equation “E1” 

of node A’s moving path and linear equation “E2” of obstacle “a”. Then, point “ A’ ” 

is gotten by calculating the solution of linear equation “E1” and “E2”. However, there 

 A  A’ 

 a 

 B’ 

 b 

E1 

E2 



 41

are some inaccuracies in mathematical calculating. These inaccuracies cause some 

problems. For example, we assume that the location of point “A” is (100, 10) and 

point “A’ ” is (100,50) . In addition, node’s speed is 3m/sec. Therefore, the distance 

between “A” and “ A’ ” is 40m. The Simulation Engine will insert predict event with 

timestamp “13.3333+ t1”. However, after 13.333 sec, the location of node “A” is 

(100,49.9999) instead of (100,50). This inaccuracy will cause node ”A” not collide 

into obstacle after 13.333 sec. Similar examples are numerous.  

 With these points in mind we can look at how to overcome this problem. In order 

to take inaccuracy into consideration, we translate the whole map into rectangular 

grid. Figure5.3.2.2 helps account for this concept. 

 If two points in the same grid, we treat them as the same one. For example, we 

assume that each grid’s width is 1, then point (100, 50) and point (100, 49.9) will 

belong to the same grid. This can ignore some inaccuracy while calculating. 

 Figure 5.3.2.4 shows how to translate obstacle into grid. The grids with dots and 

with oblique lines belong to the grid of obstacle. 

 

Figure 5.3.2.4 Translate an obstacle into grid of map 

 



 42

5.3.3 Path Finding 

 The Simulation Engine adopts A* algorithm for our path finding algorithm. 

Readers can refer to references to get more detail illustration. The important point to 

note is that the implementation of A* can be a nightmare to realize. In [19], it makes 

an error assumption of path’s cost. 

 

5.3.4 Event-Triggering System 

 A trigger system serves two main purposes in a game: it keeps track of events in 

the game world that agents can respond to, and it minimizes the amount of processing 

agents need to response events. [23] 

 The TriggerRecordStruct defines an instance of a trigger. The EnumTriggerType 

are enumerated as bit-flags. It was defines what a node interests. Each node has its 

responding agent to respond central trigger event. The agent can specify what trigger 

types it pays attention to.  

 The trigger system itself is used to stores records for existing triggers, and is 

void CPathFinder::UpdateParents(_asNode *node) { 

 int g = node->g, c = node->numchildren; 

 

    _asNode *kid = NULL; 

   for (int i=0;i<c;i++) { 

 kid = node->children[i]; 

      if (g+1 < kid->g) { 

         kid->g = g+1; 

         kid->f = kid->g + kid->h; 

         kid->parent = node; 

    

         Push(kid); 

      } 

   } 

} 

 

It will cause error while going through priority grid, because 
it only adds 1 instead of priority cost 



 43

responsible for registering, removing, and updating triggers. Node can add what it 

interest by calling RegisterTrigger() API. 

 

 

 

5.4 Node Control Program 
  

Let’s consider following scenario. When Simulation Engine notifies a node that 

it encounters enemy, the node will want to know where enemy is and where its 

struct TriggerRecordStruct 
{ 

EnumTriggerType       eTriggerType;         
unsigned long           nTriggerID;                   
unsigned long           idsource;                      

    unsigned long           idgoal;    
    Vector                 vPos;  
    double                 fRadius;    
    u_int64_t               nExecuteInterval;   
    u_int64_t               nTimeStamp;   
    u_int64_t               nExpirationTime; 
    double                 nExecuteCount;   

bool                   bDynamicSourcePos;          
EnumGroupType         nGroupType;                      

    static unsigned long       s_nNextTriggerID;      
}; 

enum EnumTriggerType 
{ 
        kTrig_None                      = 0, 
        kTrig_CollisonObstacle             = (1 << 0), 
        kTrig_CollisionPred               = (1 << 1), 
        kTrig_ReachLoc                  = (1 << 2), 
        kTrig_VisualEnemy               = (1 << 3), 
        kTrig_EncounterEnemy            = (1 << 4), 
        kTrig_EnemyVisualOther          = (1 << 5), 
}; 



 44

location (because all node’s information is stored in Simulation Engine) first before it 

sends alarm message to its members. This drives us to the question about how we 

implement it. After receiving the notification packet from Simulation Engine, it has to 

send a command packet to query the location of the enemy. Then Node Control 

Program has to wait Simulation Engine’s reply packet before doing something others. 

The core of the question is that it is hard to implement for Node Control Program. It 

is desire to discuss some techniques in the following topic before solving this 

problem. 

 

5.4.1 Layered Design 
  

Our goal is to make the AI components move, react, and think like human. But 

computers are not yet smart, we must write code to answer everything from 

high-level issues such as “How do I flank a group of soldiers behind cover?” to very 

low-level issues such as “Where do I put my foot in order to walk?”. Implementing 

the solutions to these issues as a monolithic state machine that is hard to extend and 

maintain. [24] 

 A subsumption architecture [25] cleanly decomposes the implementation into 

concurrently executing layers of finite state machines (FSMs). [26][27] Lower layers 

take care of immediate goals, and upper levels take care of long-term goals. The 

architecture solves some major problems with AI: interrupting causing a character to 

forget what it was doing, characters getting stuck on obstacle goals.  

 We adopt this concept and apply this into our Node Control Program. We divide 

the whole AI of Control Node Program into three layers. The Layers are shows in 

Figure5.4.1.1.



 45

 
   Figure5.4.1.1 Layer of Node Control Program 
  

Action Layer: The lowest layer handles the communication with Simulation 

Engine. It is responsible for all atomic action. Each atomic action is a communication 

command with simulation such as querying node’s location, changing node’s speed 

and registering an interest event etc. 

Behavior Layer: This layer is constructed out of actions. Examples of behaviors 

are “Scout”, “Chase Enemy”, and “Report message to Leader “etc. The behavior is 

just a sequence of actions. 

In case of the “Chase Enemy” behavior, the behavior constructs a series of 

actions in order to fight the intended target. This might include getting node’s location, 

getting target’s location, notifying its members and moving toward targets. 

Tactic Layer: Node may have some high-level tactics and some simple planning. 

A tactic may contain a lot of states. In this layer, Node Control Program decides how 

to do next and transform its state. 

Now, let us discuss how to make it easy to implement a behavior which contains 

a sequence of actions. The answer to this question is that we have to use a command 

queue of function pointer to reach our goal. As Figure5.4.1.2 shows the command 

queue, this queue mainly has two parts separately, first is the function point of action 

which wants to be executed, and second is the flag “have_to_wait”. The latter is used 

   Tactic 

   Behavior 

   Action 

Layer 3 

Layer 2 

Layer 1 



 46

to identify this command has to wait all of queue previous itself to finish. If 

corresponding respond packet from Simulation Engine has received by Node Control 

Program, it will be removed from the queue. 

For example, a behavior contains five actions A, B, C, D, and E. Each action will 

cause Simulation Engine to reply. If Action C has to wait until Action A and B 

finishing and replying from Simulation Engine .In addition, Action E also has to wait 

until Action C finishing. Action A, B, D can execute independently. Then it will 

separately set the flag “have_to_wait” of command queue to be false, false, true, false, 

and true.  

In the beginning, Action A, and B will execute. But Action C has to wait until the 

respond packet of Action A and B received by Node Control Program. After Node 

Control Program receives respond packet of A and B from Simulation Engine. This 

means Node Control Program has acquired related information which required by 

Action C. Therefore, Action C and D can execute. In the same reason, Action E will 

execute until Action C’s respond packet is received. Above concepts offer the key to 

solve our problem which we had mentioned in the section 5.4.  

 
Figure5.4.1.2 command queue of Node Control Program 

Action A Action B Action C Action D Action E 

command queue 



 47

6. A Simulation Example 
 In this section, we will mainly measure how much time the modified simulation 

engine takes to run a tactical ad-hoc network case. 

6.1 Simulation Setup 
  

Figure 6.1.1 depicts the scenario of a simulation case. As the figure shows, there 

are 100 nodes; there is only one case of our simulation scenario. In fact, we will run 

10 kinds of case, from 10 nodes to 100 nodes. The only difference between them is 

the number of nodes. Each node will execute Node Control Program to communicate 

with the Simulation Engine. Based on AODV routing protocol, Each node adopts 

IEEE 802.11 module.  

In above simulation cases, there is always an enemy node and all other nodes 

will chase it. All other nodes will organize a squad. This group will periodically 

broadcast to each other to make sure which one it can communicate with. This squad 

will select a node as a leader. If other member encounters an enemy node (the distance 

is smaller than 10m), it will notify the leader to organize a chase action. 

 To make sure all of simulation cases will be run the same simulation time (100 

sec simulation time). We will let an enemy never be arrested by other nodes. (Make 

this condition fail to achieve)   

Figure 6.1.2 is another kind of simulation case. All settings are the same as above 

except they are surrounded by some obstacles. Because obstacle make simulation 

engine to do extra calculation, it may result in more time consumptions. 



 48

 
  Figure6.1.1 The scenario of simulation case 
   

 
Figure6.1.2 The scenario of simulation case with obstacles 

 



 49

6.2 Result 
 Figure 6.1.1 ~ Figure 6.1.3 are the simulation results of cases which have no 

obstacle. Figure 6.1.4 ~ Figure 6.1.6 are the simulation results of cases with obstacle. 

We evaluate the simulation performance form three aspects: CPU utilization, required 

memory space, and required time of simulation. 

 The reason of low CPU utilization is that most of time of simulation is spent on 

transmitting packets and recording dynamic log. As we expect, simulation cases with 

obstacle require more memory, CPU utilization, and time. Time is the obvious 

difference between them, because obstacles will make simulation engine to avoid 

obstacle collision. Besides, it will generate more predict event packets as we 

described in previous chapter. In addition, we can observe that the cure of required 

time rises rapidly when the numbers of nodes increases .The reason is that more nodes 

will result in more interaction between each other. Therefore, it causes the Simulation 

Engine to generate more events. 

 

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

0 20 40 60 80 100

nodes

%
C

PU

%CPU +std dev -std dev

    

Figure 6.2.1 The CPU utilization of simulation case without obstacle 

 



 50

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

0 10 20 30 40 50 60 70 80 90 100

nodes

M
em

(k
b

)
Mem +std dev -std dev

     
Figure 6.2.2 The required memory space of simulation case without obstacle 

-1000

2000

5000

8000

11000

14000

17000

20000

0 20 40 60 80 100

nodes

ti
m

e(
se

c)

time +std dev -std dev

    
Figure 6.2.3 The required time of simulation case without obstacle 

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

0 20 40 60 80 100

nodes

%
C

PU

%CPU +std dev -std dev

 

Figure 6.2.4 The CPU utilization of simulation case with obstacle 



 51

0
2000
4000
6000
8000

10000
12000
14000
16000
18000
20000

0 10 20 30 40 50 60 70 80 90 100

nodes

M
em

(k
b)

Mem +std dev -std dev

 

Figure 6.2.5 The required memory space of simulation case with obstacle 

-1000

2000

5000

8000

11000

14000

17000

20000

0 20 40 60 80 100

nodes

tim
e(

se
c)

time +std dev -std dev

 
Figure 6.2.6The required time of simulation case with obstacle



 52

7. Future Work 
  

In the current version, Simulation Engine only supports 2D terrain, though 

node’s location is 3-dimension. However, if we want to support 3-dimension graphical 

user interface for visualizations of communication networks, it needs to be modified 

further. Besides, our tactic for Node Control Program only supports a group of 

soldiers to chase one enemy. In the future, its tactic should be improved to support 

two hostile groups to fight. Due to the consideration of performance, the simulation 

time for a large simulation case is long. This aspect may be solved by parallel 

simulation. Future work can address the challenges of scale (from a small network to 

a large one) in a heterogeneous battle space involving joint and coalition forces. 



 53

8. Conclusion 
  

During the past several years, more and more organization and researcher focus 

on military network. Therefore, if NCTUns network simulator can be equipped with 

the function to support tactical Ad Hoc network, it is useful for researchers to develop 

and design new technologies to support next-generation mobile wireless 

high-capacity tactical communications and to meet future army communications 

requirements. In addition, it can highly extend the ability of NCTUns network 

simulator.  

In this paper, we present the internal design, modification and implementation of 

the simulation engine to support tactical Ad Hoc network on NCTUns network 

simulator. In order to reach this goal, a number of features, for instance, obstacle 

prediction and collision avoidance, path finding, event-triggering, and dynamical 

control and real-time animation, have to be added. Therefore, it involves a lot of 

techniques, such as graphics theory, mathematics, and artificial intelligence, etc. 

There is no need to go into details about every subject of these techniques. We only 

briefly illustrate some of their important concepts. Readers can refer to references for 

more detail discussion. 



 54

Reference 
 
[1] S.Y. Wang and H.T. Kung, “A Simple Methodology for Constructing Extensible 

and High-Fidelity TCP/IP Network Simulators”, IEEE INFOCOM’99, March 
21-25, 1999, New York, USA. 

 
[2] S.Y. Wang and H.T. Kung, “A New Methodology for Easily Constructing 

Extensible and High-Fidelity TCP/IP Network Simulators”, accepted and to 
appear in “Computer Networks” Journal 

 
[3] OPNET Inc., http://www.opnet.com 
 
[4] S. McCanne, S. Floyd, ns-LBNL Network Simulator, 

http://www.isi.edu/nsnam/ns/ 
 
[5] Harvard TCP/IP network simulator 1.0, available at 

http://www.eecs.harvard.edu/networking/simulator.htm 
 
[6] S.Y. Wang, C.L. Chou, C.C. Hwang, A.J. Su, C.C. Lin, K.C. Liao, H.Y. Chen, and 

M.C. Yu, “Applying Discrete Event Simulation to the NCTUns 1.0 Network 
Simulator”. 

 
[7] William van der Sterren, “Squad Tactics: Team AI and Emergent Maneuvers” , AI 
Game Programming Wisdom, Charles River Media, 2002. 
 
h[8] S.Y. Wang, “The GUI User Manual for the NCTUns 2.0 Network Simulator and 

Emulator”, available at http://nsl10.csie.nctu.edu.tw/, January 10, 2005. 
 
[9] QualNet Inc., http://www.qualnet.com/ 
 
[10] High Capacity Tactical Network (HCTCN) , available at 

http://www.crc.ca/en/html/manetsensor/home/projects/hctcn 
 
[11] C.K.Toh, E.C.Lee, N.Ramos, “Next-Generation Tactical Ad Hoc Mobile Wireless 

Networks”, in Northop Grumman Technology Review Journal, Volume 12-1, 
Spring/Summer 2004. 

 



 55

[12] Foo Yee Loo, “Ad Hoc Network: Prospects and Challenges,” Graduate School 
Research Paper (Rinkou), Department of Information and Communication 
Engineering, University of Tokyo, January 2004 

 
[13] Elizabeth M. Royer and Charles E. Perkins. "An Implementation Study of the 

AODV Routing Protocol." Proceedings of the IEEE Wireless Communications 
and Networking Conference, Chicago, IL, September 2000. 

 
[14] Charles E. Perkins, Elizabeth M. Belding-Royer, and Ian Chakeres. "Ad Hoc On 

Demand Distance Vector (AODV) Routing." IETF Internet draft, 
draft-perkins-manet-aodvbis-00.txt, Oct 2003 (Work in Progress). 

 
[15] Rabin, Steve, “A* Speed Optimizations”, Game Programming Gems, Charles 

River Media, 2000 
 
[16] Patel, Amit J., “Amit’s Game Programming Information”, available online at 

http://www-cs-students.standford.edu/~amitp/gameprog.html, 2001. 
 
[17] Matthews, James, “Basic A* Pathfinding Made Simple”, AI Game Programming 
Wisdom, Charles Rivers Media, 2002  
 
[18] Patel, Amit J., “Amit’s Thoughts on Pathfinding”, available online at 

http://theory.standford.edu/~amitp/GameProgramming/, November 27, 1999. 
 
[19] Matthews, James, “A* Pathing Finding: CPathFinder”, available online at 
 http://www.generation5.org/content/2000/cpathfinder.asp 
 
[20] S.Y. Wang, C.L. Chou, C.H. Huang, C.C. Hwang, Z.M. Yang, C.C. Chiou, and 

C.C. Lin , “The Design and Implementation of the NCTUns 1.0 Network 
Simulator”, Computer Networks, Vol. 42, Issue 2, June 2003, pp. 175-197. 

 
[21] K.C. Liao, ” Porting the NCTUns Network Simulator to Linux and Supporting 
Emulation,” Master thesis, National Chiao Tung University, Hsinchu, Taiwan, 2004.  
 
[22] Daniel P. Bovet and Macro Cesati, “Understanding the Linux Kernel, 2nd 

Edition”, O’Reilly, 2002. 
 
[23] Orkin Jeff, “A General-Purpose Trigger System”, AI Game Programming 
Wisdom, Charles Rivers Media, 2002  



 56

 
[24] Yiskis Eric, “A Subsumption Architecture for Character-Based Games”, AI Game 
Programming Wisdom 2, Charles Rivers Media, 2004  
 
[25] Arkin, Ronald C., Behavior Based Robotics, MIT Press, 1998, pp. 130-140. 
 
[26] Fu, Dan, and Houlette, Ryan, “The Ultimate Guide to FSMs in Games”, AI 
Game Programming Wisdom 2, Charles Rivers Media, 2004  
 
[27] LaMothe, Andre, “Finite State Machines”, Tricks of the Windows Game 
Programming Gurus Second Edition, Sams Publishing (Macmillian), 2002, 
pp.737-742 
 


