
國 立 交 通 大 學

資訊工程系

碩 士 論 文

嵌入式系統低功率指令匯流排編碼方法

Low-Power Instruction Bus Encoding for Embedded Systems

研 究 生：陳彥銘

指導教授：單智君 博士

中 華 民 國 九十四 年 八 月

嵌入式系統低功率指令匯流排編碼方法

Low-Power Instruction Bus Encoding for Embedded Systems

研 究 生：陳彥銘 Student：Yan-Ming Chen

指導教授：單智君 Advisor：Jean, J.J Shann

國 立 交 通 大 學
資 訊 工 程 系
碩 士 論 文

A Thesis

Submitted to Department of Computer Science and Information Engineering
College of Electrical Engineering and Computer Science

National Chiao Tung University
in partial Fulfillment of the Requirements

for the Degree of
Master

in

Computer Science and Information Engineering

June 2005

Hsinchu, Taiwan, Republic of China

中華民國九十四年八月

-i-

嵌入式系統低功率指令匯流排編碼方法

學生：陳彥銘 指導教授：單智君 博士

國立交通大學資訊工程學系﹙研究所﹚碩士班

摘 要

近年來如何降低嵌入式系統中的耗電量已經是個非常重要的課題了。對

一般的嵌入式系統而言，系統耗電有相當顯著的比例是耗費在 off-chip 的匯

流排上。匯流排上的耗電大約與其所傳送的資料位元變化量成正比，因此減

少匯流排上的位元變化量是降低匯流排耗電的一個有效的方法。目前已經有

許多減少位址匯流排耗電的研究被提出，然而減少指令匯流排耗電的編碼方

法卻不多。在此，我們針對指令匯流排提出了一套編碼的方法，藉由減少指

令匯流排上產生的電位變化而達成減少耗電的效果。利用 application-specific

的相關資訊，於 static time 將 hot-spots 中的指令轉換成做編碼並且利用表格

記錄其編碼的資訊，讓處理器能於 dynamic time 時做解碼。實驗結果顯示，

我們的方法能夠減少指令匯流排上 52%的耗電，比起 Petrov 提出的編碼方法

約多出 16％的省電效果，比起 BIBIT 約多出 6％的省電效果。而且我們的硬

體 overhead 與 BIBITS 約略相同而比 Petrov 的編碼方法小。整體而言，我們

的研究可以帶來更好的省電效果。

-ii-

Low-Power Instruction Bus Encoding for Embedded Systems

Student :Yan-Ming Chen Advisors: Jean,J.J Shann

Department of Computer Science and Information Engineering
National Chiao Tung University

ABSTRACT

Reducing the power consumption of embedded systems has gained a lot of research

attention recently. In a typical embedded system, the power consumption in the off-chip buses

consumes a great portion of the system power. Reducing the number of bit transitions is an

effective way to reduce bus power since the bus power consumption is about proportional to

the number of bit transitions. While many encoding techniques exist for reducing bus power

in address buses, only a few have been proposed for instruction bus. For the low power

requirement on instruction bus of embedded processors, we propose a bus encoding scheme to

reduce power consumption on instruction bus. It exploits application-specific knowledge

regarding program hot-spots, and identifies efficient instruction transformations to encode

each instruction in hot-spots at static time. The few transformations that result in significant

bit transition reductions for each hot-spot are selected by utilizing short indices stored into a

table nearby the processor. The processor uses this information to efficiently restore the

original bit sequence at dynamic time. The simulation results showed that our bus encoding

can reduce the average power consumption of the bus by 52%, which is 16% more than

Petrov’s bus encoding and 6% more than BIBITS. Moreover, the extra hardware overhead of

our proposed is lower than Petrov's bus encoding and equal to BIBITS. We can conclude with

certainly that our research may have more power saving opportunities.

-iii-

Table of Contents

ABSTRACT .. ii

Table of Contents ...iii

List of Figures ... v

List of Tables...vii

List of Tables...vii

Chapter 1 Introduction .. 1

1.1 Importance of Low Power for Embedded Systems 1

1.2 Power Consumption on Instruction Bus .. 1

1.3 Research Motivation .. 3

1.4 Research Goal .. 4

1.5 Organization of This Thesis... 4

Chapter 2 Background... 5

2.1 Sources of Power Consumption... 5

2.2 Previous Researches... 7

2.2.1 BIBITS Bus Encoding...7

2.2.2 Peter Petrov’s Instruction Bus Encoding.....................................11

2.2.3 Summary of previous Researches..17

-iv-

Chapter 3 Design of Proposed Encoding .. 19

3.1 Our Bus Encoding Scheme .. 20

3.2 Hardware support... 25

Chapter 4 Simulation and Analysis... 29

4.1 Experimental Benchmarks ... 29

4.2 Experimental Methods ... 30

4.3 Experimental Toolset ... 30

4.3.1 Experimental Flow ..32

4.3.2 Designing Experiments ...35

4.4 Simulation Results and Analyses... 35

4.4.1 Hardware Overhead Analysis..36

4.4.2 Bit Transition Reduction and Energy Saving of Our Encoding ..36

4.4.3 Bit Transition Reduction of Different Techniques38

4.4.4 Bit Transition Reduction of Techniques with Different Transformation

Table Sizes...40

Chapter 5 Conclusion and Future Works .. 43

-v-

List of Figures

Figure 1-1 Architecture model of baseline system...2

Figure 2-1: Design flow of BIBITS bus encoding scheme ..8

Figure 2-2: BIBITS instruction partitioning...9

Figure 2-3: BIBITS encoding example ..10

Figure 2-4: Hardware support of BIBITS encoding...11

Figure 2-5: Design flow of Petrov’s bus encoding scheme..12

Figure 2-6: Basic block partitioning example ..13

Figure 2-7: Basic concept of Petrov’s encoding...13

Figure 2-7: Petrov’s encoding example..15

Figure 2-8: Petrov’s decoding example..15

Figure 2-9: Hardware support of Petrov’s encoding ..16

Figure 3-1: Design flow of our bus encoding...19

Figure 3-2: Instruction partitioning example..21

Figure 3-3: Basic concept of our encodin...22

Figure 3-4: Encoding example of our encoding scheme ..23

Figure 3-5: Decoding example of our encoding scheme..23

Figure 3-6: Function selection example ...25

-vi-

Figure 3-7: Decoder organization...26

Figure 3-8: Organization of each decoding component ...28

Figure 4-1: Experimental flow by using our experimental toolset...34

Figure 4-4: Bit transition reduction of different techniques ...39

Figure 4-5: Energy saving of different techniques ...39

Figure 4-6: mmul - Bit transition reduction with different transformation table sizes.............40

Figure 4-7: sor - bit transition reduction with different transformation table sizes..................40

Figure 4-8: jacobi - bit transition reduction with different transformation table sizes.............41

Figure 4-9: fft - bit transition reduction with different transformation table sizes...................41

Figure 4-10: tri - bit transition reduction with different transformation table sizes41

Figure 4-11: lu - bit transition reduction with different transformation table sizes42

Figure 4-12: Average bit transition reduction for full benchmarks with different transformation

table sizes..42

-vii-

List of Tables

Table 2-1: The 16 function of two Boolean variables ..14

Table 2-2: Comparison with transformation table size ..18

Table 4-1: Benchmarks...29

Table 4-2: Benchmark program size and numbers of each basic block30

Table 4-3: Experimental toolset descriptions ...32

-1-

Chapter 1 Introduction

First, we introduce why low power design is an important issue for embedded systems.

And then we discuss why instruction bus consumes significant portion of system power. The

research motivation and objective are then introduced. The organization of this thesis is

described at last.

1.1 Importance of Low Power for Embedded Systems

The push for low power design has recently gained growing importance for

embedded systems. In portable systems such as cellular phones and personal

digital assistants (PDA), may severely undermine the usability and acceptance of

the product by limiting its spatial and temporal range. Consequently, techniques

for minimizing system power consumption are of significant importance for

achieving high product quality.

1.2 Power Consumption on Instruction Bus

The ever-growing improvements in process technology have made

system-on-chip (SoC) design attractive. A typical SoC design contains several

embedded processor cores which are responsible for various parts of the total

system functionality. Group of these embedded processors usually share on-chip

or off-chip instruction memories containing the application code. The processor

typically accesses these memories every cycle to fetch the next instruction.

However, communicating instructions from memories to the processor front-end

-2-

relies on the utilization of long interconnect buses, which exhibit high capacitance.

Therefore, the communication between a processor and its instruction memory

significantly contributes to total power consumptions on the entire system. Having

the instruction memory off-chip (for example, external flash memory) further

aggravates this effect, because of the significantly higher capacitance of the bus

lines going through the System I/O pins. Therefore, it is imperative to reduce

power consumption on instruction bus. Figure 1-1 shows our baseline architecture

model. At this baseline system, the processor sends address request and receives

instructions from main memory directly. We find that repeatedly executed

instructions will continuously drive the same bus transactions and consume power.

Since memory transactions reduce, power consumption of instruction bus is also

reduced.

Figure 1-1 Architecture model of baseline system

-3-

1.3 Research Motivation

Bus encoding is a general technique to reduce power consumption on bus by

minimizing the switching activities per transition. As we mentioned in Section 1.2,

reducing power consumption on instruction bus is an important research issue.

While many bus encoding techniques exit for reducing bus power in address buses,

only a few have been proposed for instruction bus power reduction.

Program memory data streams could be encoded at static time. Moreover,

contents on bus transactions reflect program execution behaviors. It is a

well-known property that programs typically spend most of their execution time

within a relatively small part of the program code, such as loops. Such heavily

executed program fragments are called as application hot-spots. A hot-spot may

contain one or several basic blocks. During program execution, these basic blocks

transmit on bus repeatedly. Therefore, if these frequently executed basic blocks

can be transmitted with fewer bit transitions, power can be efficiently saved.

Previous low-power instruction bus encoding techniques either use a simple

encoding scheme with limited transformation for encoding and decoding that bit

transitions reduction is limited, or need a large table to store transformation

information that the decoding power overhead is high.

-4-

1.4 Research Goal

In this thesis, we propose a low power encoding framework for embedded

processor instruction buses. The encoder is capable of adjust its encoding not only

to suit applications but furthermore to suit different aspects of particular program

execution. It achieves this by exploiting application-specific knowledge regarding

program hot-spots, and thus identifies efficient instruction transformations so as to

minimize the bit transitions on instruction bus.

1.5 Organization of This Thesis

The remaining chapters of the paper are organized such that Chapter 2

introduces the source of power consumption, and discusses previous related

researches on instruction bus encoding for power reduction. In Chapter 3, we

describe our encoding techniques for instruction bus. The experimental

environment, simulation results and relative analysis are presented in Chapter 4.

Finally, we summarize our conclusions and future works in Chapter 5.

-5-

Chapter 2 Background

The main purpose of this chapter is to provide the necessary background for the concepts

and methods presented in the following chapters. First, the main sources of power

consumption in VLSI circuits based on static CMOS technology are introduced. Then, the

chapter provides a survey of the related approaches for instruction bus power optimization

and estimation appeared in the literature in the last few years.

2.1 Sources of Power Consumption

As CMOS processes scale to submicron dimensions, power associated with

system buses and the I/O accounts for a large portion of the total system power

consumption.

There are three major source of average power consumption in digital CMOS

circuits which are summarized in the following equation: [1]

leakagecircuitshortswitchingavg PPPP ++= −

 ddleakageddscclkddL VIVIfVC ⋅+⋅+⋅⋅= →
2

102
1α . (1)

The first term represents the switching power which is due to the charge and

discharge of the circuit node capacitances at the output of each logic gate, where

CL is the load capacitance, Vdd is the supply voltage, fclk is the clock frequency and

α0→1 is the node switching activity factor (the average number of times the node

makes a power consuming transition in one clock period).The second is due to the

direct-path short circuit current Isc which arises when both the NMOS and PMOS

-6-

transistors are simultaneously active, conducting current directly form supply to

ground. Finally, leakage current Ileakage, which can arise from substrate injection

and sub-threshold effects, is primarily determined by fabrication technology

considerations. However, in “well-designed” CMOS devices, leakage power

consumption can be considered insignificant in most designs [2].

The dominant term is the switching power and low-power design thus

becomes the task of minimizing α0→1 , CL , Vdd ,and fclk.

Factor CL is decided once the manufacture process has been chosen.

Decreasing the Vdd factor has a quadratic effect and can be an effective way.

However, the supply voltage is usually determined by the system and technology

consideration, and decreasing Vdd will accordingly increase the propagation delay.

By reducing the factor fclk, clock frequency, the computing time will be definitely

extended. A multitude of techniques for scaling voltage or frequency have been

proposed [3][4].

Another important factor that distinguishes power is its dependence on the

switching activity. There are two ways to cut-down the switching activity on buses

in execution time:

1. Reducing transaction counts:

Reducing requests of memory access is a direct approach to reduce bit transitions

on buses. Since requests are saved, buses can keep idle and eliminate power

-7-

consumption. To increase the reusability of transmitted values is a common

example of this idea.

2. Reducing number of switch activities per transaction:

Reducing number of switch activities per transaction that make the current

transmitted bits near previous ones can reduce number of capacitances needed

to be driven. Bus encoding is a well-known technique to encode the content of

bus to reduce the switching activities.

2.2 Previous Researches

Two previous researches for low power instruction bus encoding to reduce bit

transitions are introduced in the following sections: BIBITS [5] and Petrov’s

encoding scheme [6].

2.2.1 BIBITS Bus Encoding

BIBITS encoding shown in Figure 2-1 is to reduce the bit transitions on

instruction bus. This encoding concentrates the effort on the application hot-spots

and encodes the instructions at static time. The encoded instructions reside in the

program memory, and the processor core receives information about

transformation residing in additional table nearby the processor, either when

loading the program or when running the software. The processor’s fetch module

uses this information to efficiently restore the original bit sequence at dynamic

time.

-8-

Figure 2-1: Design flow of BIBITS bus encoding scheme

The design issues of BIBITS encoding are instruction partitioning and

encoding function selection. The objective of these design issues is to use the most

suitable encoding functions for different instruction partitions.

An instruction is partitioned into fields according to its format. Using the

MIPS instruction formats as an example, an instruction is partitioned as in Figure

2-2. All register fields become individual partitions; bit 6 and 30 are in one

partition and not to be encoded since they cause bit transitions relatively

infrequently, and all the other partitions are in 5-bit groups.

-9-

op rs rt rd shamt funct

op rs rt 16 bit address

op 26 bit address

R

I

J

MIPS Instruction Formats

Instruction Partitioning

1 0 1010 00001 00100 00101 00101 110001

031

Figure 2-2: BIBITS instruction partitioning

Four elementary Boolean functions are selected as encoding and decoding

function candidates, which are Identity, Invert, XOR, XNOR, and all of them

satisfy the following equation:

((Xi OP Yi-1) OP Yi-1) = Xi

Where Xi represents current pattern, Yi-1 represents previous encoded pattern

and OP represents a Boolean operation.

For every basic block in hot spots, all partitions in the first instruction are not

encoded. Then sequentially encode each partition of the other instructions. Each

partition of current instruction is compared with the corresponding partition of

previous instruction, and then the best encoding function that can reduce the most

bit transitions for each partition is chosen. Figure 2-3 is an example of BIBITS

encoding function choosing method. In this example, Xi is current partition and

-10-

Yi-1 is in the same partition of previous instruction. XNOR is used as encoding

function because the encoded partition Yi of XNOR has the fewest bit transitions.

Figure 2-3: BIBITS encoding example

The hardware support of this implementation is presented in Figure 2-4. The

Basic Block Identification Table (BBIT) stores the program counter value of the

starting instruction of a basic block and an index that points to the first entry in the

transformation table for this basic block. The number of entries in this table

corresponds to the number of encoded basic blocks for the particular application

loop. An entry in the Tranformation Table (TT) contains the decoding information

for the six partitions of an encoded instruction, and an end bit field (E) to indicate

if the TT entry corresponds to the last instruction in a basic block.

-11-

PC3

PC2

PC1

PC3

PC2

PC1

τ1τ2τ3 … τn E
.
.
.

τ1τ2τ3 … τn E

τ1τ2τ3 … τn E

τ1τ2τ3 … τn E
.
.
.

τ1τ2τ3 … τn E

τ1τ2τ3 … τn E

TT

Index to TT
BB1

BB2

BB3
.

.

.

BBIT

Logic
Unit

Figure 2-4: Hardware support of BIBITS encoding

2.2.2 Peter Petrov’s Instruction Bus Encoding

Petrov’s bus encoding scheme [5] shown in Figure 2-5 is an

application-specific dynamic customization methodology for power minimization

in the instruction buses. Fundamentally, it uses application-specific information to

identify optimal power encoding. This encoding concentrates the effort on the

application hot-spots and encodes the instructions at static time. The encoded

instructions reside in the instruction memory, and the processor core receives

information about transformation residing in additional table nearby the processor,

either when loading the program or when running the software. The processor’s

fetch module uses this information to efficiently restore the original bit sequence

on each bus line on dynamic time.

-12-

Figure 2-5: Design flow of Petrov’s bus encoding scheme

First, the basic blocks in hot-spots are vertically partitioned into several block

words. A block word is an encoding unit and is transformed to a codeword with

fewer bit transitions. Consider an arbitrary sequence of bits, a block word X = {…,

xn+3, xn+2,…, xn-3,….}. They want to find an alternative sequence of bits, a

codeword Y = {…, yn+3, yn+2,…, yn-3,….} and decoding function τ such that the

number of bit transitions in Y is minimized and X = τ(...,Y). Given a block word

with length k, there are 2k candidate codewords; and the encoder have to select the

most suitable one that not only the bit transitions is minimized but also decodable

by some decoding function τ.

Figure 2-6 shows an example for a basic block partitioning with block word

length equal to 3-buts, and Figure 2-7 illustrates the basic concept of Petrov’s

encoding scheme.

-13-

Figure 2-6: Basic block partitioning example

Figure 2-7: Basic concept of Petrov’s encoding

Petrov proposes two transformation classes that called Single History Bit

(SHB) transformations and Double History Bits (DHB) transformations separately.

The transformation τ has to satisfy either one of the following transformation

equations:

For the SHB transformations

ki1),x,(y; 1-ii00 ≤≤∀== τixyx

And for the DHB transformations

ki2),x,(x;; 2-i1-i1100 ≤≤∀=== τixyxyx

-14-

Both classed of transformations are very efficient to compute, since they

correspond to simple binary functions with two Boolean variables. The total

number of such logic functions is 1622
2

= for each of the two transformation

types shown in table 2-1. While the decoding architecture will support all 32

distinct functions, only a small subset of transformations identified for a hot-spot

would be utilized. Figure 2-7 and Figure 2-8 are 3-bit block word encoding and

decoding examples with SHB transformation. In Figure 2-7, Codeword 000 is

selected since it can reduce the most bit transitions and also have at least one

decoding function to restore the original pattern.

Table 2-1: The 16 function of two Boolean variables

-15-

Encoding

0
1
0

x0
x1
x2

Original
pattern X

0
1
0

x0
x1
x2

Original
pattern X

Codeword Y

0
0
0

HD = 0

y0
y1
y2

0
1
1

0
1
0

0
0
1

HD = 1

HD = 2

HD = 1

y0
y1
y2

y0
y1
y2

y0
y1
y2

Codeword Y

0
0
0

HD = 0

y0
y1
y2

0
1
1

0
1
0

0
0
1

HD = 1

HD = 2

HD = 1

y0
y1
y2

y0
y1
y2

y0
y1
y2

Codeword Y

0
0
0

HD = 0

y0
y1
y2

0
1
1

0
1
0

0
0
1

HD = 1

HD = 2

HD = 1

y0
y1
y2

y0
y1
y2

y0
y1
y2

x1 =τ (x0 , y1)

x2 =τ (x1 , y2)

x1 =τ (x0 , y1)

x2 =τ (x1 , y2)

x0 = y0
τ(x0,y1) =τ(0,0) = 1

τ(x1,y2) =τ(1,0) = 0

τ= F9
τ= F12
τ= F13
τ= F14

τ(x0,y1) =τ(0,0) = 1

τ(x1,y2) =τ(1,0) = 0

τ(x0,y1) =τ(0,0) = 1

τ(x1,y2) =τ(1,0) = 0

τ= F9
τ= F12
τ= F13
τ= F14

τ(x0,y1) =τ(0,0) = 1

τ(x1,y2) =τ(1,1) = 0

τ= F8
τ= F10
τ= F12
τ= F14

τ(x0,y1) =τ(0,0) = 1

τ(x1,y2) =τ(1,1) = 0

τ(x0,y1) =τ(0,0) = 1

τ(x1,y2) =τ(1,1) = 0

τ= F8
τ= F10
τ= F12
τ= F14

τ(x0,y1) =τ(0,1) = 1

τ(x1,y2) =τ(1,0) = 0

τ= F5
τ= F11
τ= F12
τ= F13

τ(x0,y1) =τ(0,1) = 1

τ(x1,y2) =τ(1,0) = 0

τ(x0,y1) =τ(0,1) = 1

τ(x1,y2) =τ(1,0) = 0

τ= F5
τ= F11
τ= F12
τ= F13

τ(x0,y1) =τ(0,1) = 1

τ(x1,y2) =τ(1,1) = 0

τ= F6
τ= F11
τ= F12

τ(x0,y1) =τ(0,1) = 1

τ(x1,y2) =τ(1,1) = 0

τ(x0,y1) =τ(0,1) = 1

τ(x1,y2) =τ(1,1) = 0

τ= F6
τ= F11
τ= F12

Figure 2-7: Petrov’s encoding example

Decoding

0
1
0

Original
pattern X

x0
x1
x2

0
1
0

Original
pattern X

x0
x1
x2

x0 = y0,
xi =τ(xi-1, yi)

x0 = y0 = 0
x1=τ(x0 , y1) = = 1

x2=τ(x1 , y2) = = 0

'0x

'1x

x0 = y0 = 0
x1=τ(x0 , y1) = = 1

x2=τ(x1 , y2) = = 0

'0x

'1x

0
0
0

y0
y1
y2

Codeword Y

τ= F9

0
0
0

y0
y1
y2

Codeword Y

τ= F9

Figure 2-8: Petrov’s decoding example

The hardware support of this implementation is presented in Figure 2-9. The

Basic Block Identification Table (BBIT), as shown in Figure 2-9(a), contains the

program counter of the starting instruction together with an index into

Transformation Table (TT), as shown in Figure 2-9(b). A TT entry contains the

transformation information needed to handle as a single block word for each bus

line. The last TT entry for a particular basic block must contain information about

how long the last code word is. The End(E) bit field in the TT entry is assert for

the entries that correspond to the block word for a given basic block. The CT field

-16-

is a counter corresponding to the size of the last bit sequence. The transformation

subset identification registers (TSIR), shown in Figure 2-9(c) is proposed as a

means of selecting a predetermined subset of transformations. The TSIR contains a

set of five-bit registers. The values stored in these registers are used as control

signals for selecting any one of the supported 32 Boolean functions, which can be

easily implemented in the form of a universal logic unit. The example architecture

presented in Figure 2-9(c) supports up to four transformations with four TSIR. The

transformation indices selected for a particular program hot-spot are stored into

these registers prior to entering the loop. Subsequently, each of the selected

transformations is encoded as a short index, in the case of Figure 2-9(c), two bits,

which is stored as δi in the TT table to represent the specific transformation. The

index is used to select the TSIR register, which in turn produces the actual five bit

transformation index.

Figure 2-9: Hardware support of Petrov’s encoding

-17-

2.2.3 Summary of previous Researches

This section gives a brief summary of previous researches. Both BIBITS and

Petrov’s encoding scheme are efficient for programs include frequently executed

loops and no encoder hardware overhead requirement.

BIBITS encoding scheme is simlpe that only uses four Boolean functions for

encoding and decoding, which are: Identity, Invert, XOR and XNOR, and all of

them satisfy the property that one partition can be encoded and decoded with the

same Boolean function.

Petrov’s bus encoding scheme is more coplicated than BIBITS that uses

unlimited transformation for encoding and fixed number of deocding functions for

each hotspot. Thus it has more flexibility for encoding and decoding function

selections. However, it need more complicated logic circuit and larger

transformation table for decoding.

We assume that there are N instructions in some basic block. What about

actual transformation table size use by these schemes when all basic blocks are

encoded? Results of these are presented in Table 2-2. We can find that Petrov’s

table size is larger than the others.

-18-

Table 2-2: Comparison with transformation table size

Method Transformation table size (bits)

Petrov’s bus encoding

(6-bit block word,4 function)

BIBITS bus encoding

(5-bit partition,4 functions)

(N-1) × (6×2+1) = 13 (N-1)

Proposed bus encoding

(5-bit partition,4 functions)

(N-1) × (6×2+1) = 13 (N-1)

We compare of the techniques in Table 2-2. We also list our design here to

compare with these methods. The detail description of our design will be discussed

in the next chapter.

Table 2-2: Comparison of the instruction bus encoding techniques

Techniques
BIBITS Petrov’s

Our

design

Decoding Function
Less

flexible
Flexible Flexible

Decoding Circuit

Complexity
Lower Higher Higher

Transformation Table

Size
Smaller Larger Smaller

Decoder Energy

Overhead
Lower Higher Higher

Energy saving Good
Not

well
Better

⎡ ⎤ 1)-(N 13.2)2232(5/)1(=+××−N

-19-

Chapter 3 Design of Proposed Encoding

The design of our proposed bus encoding scheme to reduce the number of bit transitions

on instruction bus is introduced in this chapter. The design flow of applying the proposed

methodology is illustrated in Figure 3-1.

Our encoding concentrates the effort on the application hot-spots and encodes the

instructions at static time. The encoded instructions reside in the program memory, and the

processor core receives information about transformation residing in additional table nearby

the processor, either when loading the program or when running the software. The processor’s

fetch module uses this information to efficiently restore the original bit sequence at dynamic

time. We will describe each added component in the following sections.

Compiler
and Linker

Proposed
Encoding

Instruction
Memory

Decoding
Signal

CPU

Static Time Dynamic Time

Source Code

Program
Binary

Encoded
binary

DecoderInstruction
Bus

Figure 3-1: Design flow of our bus encoding

-20-

3.1 Our Bus Encoding Scheme

Fundamentally, our encoding scheme uses application-specific information to

identify optimal power encoding. The encoding scheme is divided as three phase:

encoding method algorithm, decoding function selection and hardware mechanism.

The part of encoding method algorithm introduces how we encode instructions at

static time. Then we introduce our decoding function selection method which can

efficiently select a subset of decoding functions for each hotspot. At last we

discuss the hardware support and the overhead in terms of power consumption.

First, an instruction is partitioned into several fields with k-bit size (k=1~32),

and each field is as an encoding unit. While the bus width is typically 32-bits, for

some partition size k, such as 3, 5 and 6 etc, it is impossible to partition an

instruction into fields with the same size. We let the remainder bits with fewer

switching activities in one partition and not encode them. In this way, all other

partitions are in k-bit groups. Figure 3-2 shows an example for instruction

partitioning given the partition size equal to 4-bits and 5-bits, respectively. Two bit

in gray are not encoded cause they have relative fewer switching activities.

-21-

Figure 3-2: Instruction partitioning example

All partitions in the first instruction of the basic block are not encoded. Then,

sequentially encode each partition of the other instructions. Each partition of

current instruction is compared with the corresponding partition of previous

instruction, and the most suitable codeword with fewest bit transitions is chosen.

Given a bit pattern X ={X0, X1, …, Xk-1}, we want to finding a codeword Y =

{Y0,Y1, …,Yk-1} and a decoding function τ such that the Hamming distance

between the current pattern and the previous encoded pattern is minimized and X

= τ(...,Y). Given a block word with length k, there are 2k candidate codewords;

and the encoder have to select the most suitable one that not only the bit transitions

is minimized but also decodable by some decoding function τ. The basic concept

of our bus encoding is shown in Figure 3-3.

4-bits partition size

1010 1000 0010 0100 0010 1001 0111 1000

5-bits partition size

1 0 1010 00001 00100 00101 00101 1 11000

-22-

Figure 3-3: Basic concept of our encoding

When identifying an codeword Y, the mappingτis also identified for the

partition to restore the original pattern.

We proposed two transformation classes as follow, and both of them can

easily help us to restore the original pattern.

Type 1: X i = Xi-1 OP Y i

Type 2: X i = Y i-1 OP Y i

Where X i and X i-1 represent original pattern of current cycle and of previous

cycle respectively, Yi and Yi-1 represent encoded pattern of current cycle and of

previous cycle respectively, and OP represents the Boolean operation.

The first class of transformations is satisfied if the original pattern can be

restored through the operation of previous original pattern and current codeword,

while the second one is satisfied if the original pattern can be restored through the

operation of previous codeword and current codeword. Both classes of

transformations are very efficient to compute, since they correspond to simple

-23-

Boolean operations two variables. The total number of such logic operations is

1622
2

= for each of the two transformation types. Table 2-1 shows the 16 logic

operations of two one-bit Boolean variables.

Figure 3-4 and Figure 3-5 are 5-bit partition encoding and decoding examples.

In this example, 01101 is identified as the most suitable codeword because it has

fewest bit transitions and also it satisfies one of the transformation equations. In

figure 3-5, the codeword 01101 is restored by the transformation function.

Figure 3-4: Encoding example of our encoding scheme

Figure 3-5: Decoding example of our encoding scheme

-24-

In order to be able to decode the original bit sequence, we need a special

hardware support on the processor side which needs to know which transformation

is associated to each partition. This information is communicated prior to entering

the hot-spot, thus introducing no performance overhead in practice. We store the

transformation information of each partition into a transformation table nearby the

processor for restoring the original bit sequences. However, the amount of this

information determines the area and power consumption of the specialized

hardware. Therefore, it has to minimize this amount, while achieving significant

reduction of bit transitions. Further more, we also need a decoding function

selection method to select the most effective N decoding functions for a hotspot,

where N =2i, 0 < i <5. Once the decoding functions have been selected for each

hotspot, we can use a short index in the transformation table to identify the

decoding function of each partition.

Our decoding function selection method is as follow:

1. Pseudo encode the hotspot with all possible (32τ)

decoding functions.

2. Statistic the frequency of each decoding function that can

decode a most suitable codeword.

3. Select N decoding functions with the highest frequency for

the hotspot.

-25-

We model the problem as a maximal cover set problem:

At first, we give a definition : setj = { codewords with minimal bit transitions

and decodible by function j, j=0~32}

And we want to select N sets such that is maximal.

Figure 3-6 shows an example with j=0~2 and N = 2. We can easily observe that

 is maximal, i.e. Set1 and Set2 have the maximal cover. Therefore,

function1 and function2 are selected as decoding functions for the hot spot.

Figure 3-6: Function selection example

In next section, we will introduce the hardware support and describe the

functionality of each component for our bus encoding scheme.

3.2 Hardware support

The hardware mechanism consists of three main modules: basic-block

identification table, transformation table and decoding logic. The block diagram of

the proposed method is shown in Figure 3-7. The blocks inside the dotted line are

our designed circuits, the decoding-control logic, that contain four elements:

21 nn SetSet U

110 ... −nnn SetSetSet UUU

-26-

instruction fetcher, basic block identification table, transformation table, and

decoding logic. This hardware mechanism may be combined with processor core

into a single chip.

Figure 3-7: Decoder organization

The decoder is responsible for sending instructions to processor from memory.

It first fetches instructions from memory and then determines if the fetched

instruction is an encoded instruction. If the fetched instruction is an encoded

instruction, the original instructions will be gathered from the decoder. The

decoder consists of four components: instruction fetcher, basic block identification

table, transformation table, and decoding logic. Figure 3-8 shows the organization

of each component.

1. Instruction Fetcher:

-27-

The instruction fetcher receives the program-counter address request from

processor.

2. Basic Block Identification Table (BBIT):

The basic block Identification table stores the program counter value of the

starting instruction and an index that points to the first entry in the transformation

table for this basic block. The number of entries in this table corresponds to the

number of encoded basic blocks for the particular application loop

3. Transformation Table (TT):

The transformation table stores transformation data £nn associated with each

encoded partition from the instruction memory. A TT entry contains the control

bits for selecting the transformation associated with each partition. The hardware

structure asserts the end bit field (E) in the TT entry for entries corresponding to

the last partition word in a given basic block.

4. Decoding logic:

The decoding logic receives the control bits τn from TT and indexing TSIR,

and selects decoder function to restore each partition of encoded instructions.

-28-

Figure 3-8: Organization of each decoding component

-29-

Chapter 4 Simulation and Analysis

In this chapter, we first introduce a set of six benchmarks we have used for our

experimental study. Then we introduce the simulation methods in this thesis, including the

toolsets, simulation flow, simulation parameters and evaluating factors.

4.1 Experimental Benchmarks

To evaluate the efficiency of encoding in bus transition reduction, we perform

experiments for the following six benchmarks. These benchmarks contain various

DSP and numerical-computation kernels that represent code frequently

encountered in many embedded system products. Table 4-1 gives a summary of

the application benchmarks we used. and Table 4-2 shows the size and basic block

number of each benchmark program.

Table 4-1: Benchmarks

Function Name Description

Jacobi Extrapolated Jacobi-iterative method on a 128 × 128 entry grid.

FFT Fast Fourier transform with block size of 256 samples.

LU
Lower/upper triangular matrix decomposition algorithm on a

matrix of size 128 × 128.

Mmul A matrix multiplication on a matrix of size 100 × 100

SOR Successive over-relaxation on a matrix with size 128 × 128.

Tri Tri-diagonal system solver on a matrix of size 128 × 128

-30-

Table 4-2: Benchmark program size and numbers of each basic block

Program Program size (Bytes) Number of Basic Block

Mmul 321 14

Sor 1600 18

Ej 1350 25

FFT 1241 82

Tri 1300 13

LU 3420 38

4.2 Experimental Methods

In this Section, we introduce the experimental toolset we used for the

simulation. The basic tool for this experiment is the release 6.02 of MIPS® SDE

Lite, a free subset of the MIPS Software Toolkit [7] which is used to built MIPS

environment, and therefore we can get the execution trace of each application

benchmark for the simulation of bus encoding. Furthermore, we additionally wrote

a simulation tool to do basic block selection, decoding function selection, and bus

encoding schemes. At last, we list the experimental flow, the experiments we

planned to do, and simulation parameters we referred.

4.3 Experimental Toolset

Our experimental environment is divided into three sub-environments:

Code generation phase

The purpose of this phase is to compile the executable binary codes for the

-31-

benchmark programs. We adopt the release 6.02 of the MIPS SDE tool chain : a

component of the MIPS Software Toolkit to build the MIPS ELF (Executable and

Linkable Format) image format for each benchmark program

Transformation table building phase

This phase includes a transformation table builder and a code-rebuilder. The

transformation table builder scans the program execution trace running under the

GNU MIPS CPU Simulator and builds the transformation table which stored the

transformation information for decoding. The code-rebuilder rebuilds the program

with the transformation table provided from the transformation table builder

Result calculation phase

The final sub-environment includes the modified simulator and the bit

transition calculator and energy consumption estimator to show the experiment

result.

To construct the experimental environment, we have adopted and developed

the complete experimental toolset consisting of individual tools that accomplish

specific tasks respectively. Table 4-3 lists all tools composing the experimental

toolset.

-32-

Table 4-3: Experimental toolset descriptions

Tool Name Description

sde-gcc
SDE’s version of the Free Software Foundation’s

ANSI-compatible GNU C Compiler compiling C source code.

sde-run
The GNU MIPS CPU simulator executes the MIPS ELF image

files. It could generate the trace of the benchmark programs.

BB-select
The Basic Block Selector that builds the recovery codebook with

codebook building rules by scanning the program execution trace.

code-rebuild
The code-rebuilder rebuilds the program with the transformation

table provided from the transformation table builder.

modsde-run

The modified GNU MIPS CPU simulator to execute the encoded

programs and calculate the bit transitions and estimate energy

consumption on instruction bus.

4.3.1 Experimental Flow

The experimental flow, the experimental toolset and intermediate files, such

as object files, MIPS ELF files, etc., are shown in Figure 4-1. By a horizontal

dotted line, this figure is divided into three sub-figures representing the three

experimental sub-environments representing the three experimental

sub-environments.

The complete experimental flow is described as follows:

1. The MIPS C compiler (sde-gcc) compiles the source files (.c) of the

-33-

benchmark programs into its corresponding object files (.o).

2. The MIPS C linker (sde-ld) links the object files necessary for building MIPS

ELF files of the components in the benchmark suite.

3. The GNU MIPS CPU Simulator (sde-run) traces the ELF files with input data

and then output the execution instructions and the corresponding program

counters (PC value).

4. The Basic Block Selector (BB-sel) scans execution trace and produces the

BBIT and TT that contain selected basic block and encoding information.

-34-

Figure 4-1: Experimental flow by using our experimental toolset

5. According to the TT files, the code-rebuilder build the MIPS machine code

files.

6. The modified GNU MIPS CPU Simulator (modsde-run) executes the coded

programs with transformation tables and input data. It also calculates the bit

transitions for executing these programs, and estimate the energy consumption

on instruction bus.

-35-

4.3.2 Designing Experiments

In our simulation, we evaluate the bit transitions and the energy consumption

of these following conditions:

1. Base system architecture without any bus encoding:

This is the simply architecture with only the processor and instruction memory.

2. BIBITS:

 This is the power reduction technique we mentioned in the Chapter 2. We

implement this architecture to compare the results with ours.

3. Petrov’s bus encoding scheme:

This is also the power reduction technique we mentioned in the Chapter 2. We

implement this architecture to compare the results with ours.

Our bus encoding scheme.

This is our design that we execute the coded program with the recovery dictionary.

We will evaluate the bit transitions of all these schemes with different

transformation table sizes.

4.4 Simulation Results and Analyses

In this Chapter, we present the experimental results obtained from evaluating

energy consumed by the benchmark programs. We first evaluate the bit transitions

-36-

reduction and energy saving for our encoding in different number of decoding

functions and partition sizes. Then we evaluate the bit transtions reduction and

energy saving by various techniques. Then we evaluate the bit transitions

reduction of BIBITS, Petrov’s bus encoding scheme and ours in different

transformation table sizes. Notice that the results of bit transition are all

normalized to those of the base system.

4.4.1 Hardware Overhead Analysis

To pevaluate the power overhead of decoder, we have utilized the Cacti tool

[8] to obtain the energy consumption associated with the TT and the BBIT tables.

A 0.18-μm process technology with 1.7V voltage level has been used. we assume

the bus line capacitance is 30 pF. We have found thay an access to the TT (1.5

Kbyte) consumes approximately 39 pJ of energy while an access to the BBIT

(0.2KByte) consumes 82.3 pJ. The decoding logic consumes is negligibly small

and amounts 0.038 pJ [6]. According to the switching power equation introduced

in Section 2.1, a single bit transition consumes 57.8 pJ. We not only evaluate the

bit transition reductions of these bus encoding techniques, but also estimate the

energy saving that also take overhead into consideration.

4.4.2 Bit Transition Reduction and Energy Saving of Our Encoding

We measure our approach’s effectiveness by observing the energy saving. We

-37-

ran simulation using a typical embedded processor as the baseline system

architecture with a set of benchmarks.

Figure 4-2 and Figure 4-3 shows the bit transitions reduction ratio and energy

saving for our encoding with different number of decoding functions and partition

sizes respectively. All basic block in program are encoded, and each basic block

can have its own small set of decoding function candidates. We find that our

encoding can save most energy when the number of decoding function candidates

is four and the partition size is five bits.

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

Our
_2

τ
_2

Our
_4

τ
_2

Our
_8

τ
_2

Our
_3

2τ
_2

Our
_2

τ
_3

Our
_4

τ
_3

Our
_8

τ
_3

Our
_3

2τ
_3

Our
_2

τ
_4

Our
_4

τ
_4

Our
_8

τ
_4

Our
_3

2τ
_4

Our
_2

τ
_5

Our
_4

τ
_5

Our
_8

τ
_5

Our
_3

2τ
_5

Our
_2

τ
_6

Our
_4

τ
_6

Our
_8

τ
_6

Our
_3

2τ
_6

Our encoding

B
it

 t
ra

ns
it

io
n

re
du

ct
io

n

average

Figure 4-2: Bit transition reduction ratio of our encoding with different

number of decoding functions and partition sizes

-38-

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

Our
_2

τ
_2

Our
_4

τ
_2

Our
_8

τ
_2

Our
_3

2τ
_2

Our
_2

τ
_3

Our
_4

τ
_3

Our
_8

τ
_3

Our
_3

2τ
_3

Our
_2

τ
_4

Our
_4

τ
_4

Our
_8

τ
_4

Our
_3

2τ
_4

Our
_2

τ
_5

Our
_4

τ
_5

Our
_8

τ
_5

Our
_3

2τ
_5

Our
_2

τ
_6

Our
_4

τ
_6

Our
_8

τ
_6

Our
_3

2τ
_6

Our encoding

E
ne

rg
y

sa
vi

ng

average

Figure 4-3: Energy saving of our encoding with different number of decoding

functions and partition size

4.4.3 Bit Transition Reduction of Different Techniques

Figure 4-4 and Figure 4-5 display the bit transition reduction and energy

saving by applying different techniques in six different benchmark programs

respectively. There are four techniques applied in the figures: BIBITS, Petrov’s

bus encoding scheme, our proposed bus encoding scheme, and our bus encoding

scheme with optimal decoding function selection. All basic block in program are

encoded and each basic block can have his own small set of decoding function

candidates.

-39-

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

tri jacobi lu sor fft mmul average

B
it

 t
ra

n
si

ti
o

n
 r

ed
u

ct
io

n

Petrov's_4T_6 BIBITS_4τ_5 Our_4τ_5 Our_4τ(opt)_5

Figure 4-4: Bit transition reduction of different techniques

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

tri jacobi lu sor fft mmul average

E
n

er
g

y
 s

a
v

in
g

Petrov's_4T_6 BIBITS_4τ_5 Our_4τ_5 Our_4τ(opt)_5

Figure 4-5: Energy saving of different techniques

Experimental results indicate that our proposed encoding scheme can save

energy range around 49% to 68% except for the fft program. The overall average

energy saving is 52% over original data and 16% more than Petrov's bus encoding

scheme only and 6% more than BIBITS encoding scheme only.

-40-

4.4.4 Bit Transition Reduction of Techniques with Different

Transformation Table Sizes

In this section we will evaluate the bit transition effects for all these encoding

scheme with different transformation table sizes.

Figure 4-6 shows the bit transition reduction of mmul program with different

transformation table sizes. Our scheme has higher bit transition reduction than the

others. These following figures are experiment result of each benchmark program.

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

0 0.5 1 1.5 2

TT size (KB)

B
it

tr
an

si
tio

n
re

du
ct

io
n

BIBITS Our _ 4τ_5 petrov_ 4τ_6

Figure 4-6: mmul - Bit transition reduction with different transformation table sizes

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

0 1 2 3 4

TT size (KB)

B
it
 t
ra

ns
it
io

n
re

du
ct
io

n

BIBITS Our _ 4τ_5 petrov_ 4τ_6

Figure 4-7: sor - bit transition reduction with different transformation table sizes

-41-

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

TT size (KB)

B
it

ttr
an

si
tio

n
re

du
ct

io
n

BIBITS Our _ 4τ_5 petrov_ 4τ_6

Figure 4-8: jacobi - bit transition reduction with different transformation table sizes

0.00%

5.00%

10.00%

15.00%

20.00%

25.00%

30.00%

35.00%

40.00%

45.00%

50.00%

0 0.5 1 1.5 2 2.5

TT size (KB)

B
it

tr
an

si
tio

n
re

du
ct

io
n

BIBITS Our _ 4τ_5 petrov_ 4τ_6

Figure 4-9: fft - bit transition reduction with different transformation table sizes

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

TT size (KB)

B
it

tr
an

si
tio

n
re

du
ct

io
n

BIBITS Our_4τ_5 petrov_ 4τ_6

Figure 4-10: tri - bit transition reduction with different transformation table sizes

-42-

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

TT size (KB)

B
it

tr
an

si
tio

n
re

du
ct

io
n

BIBITS Our _ 4τ_5 petrov_ 4τ_6

Figure 4-11: lu - bit transition reduction with different transformation table sizes

We observe that our method has higher bit transition reduction than the other

schemes. The Figure 4-12 displays the average bit transition reductions for full

benchmarks with different transformation table sizes.

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

TT_size(KB)

B
it

 t
ra

n
si

ti
o
n
 r

ed
u
ct

io
n

petrov_ 4τ_6 BIBITS_4τ_5 Our _ 4τ_5

Figure 4-12: Average bit transition reduction for full benchmarks with different

transformation table sizes

-43-

Chapter 5 Conclusion and Future Works

In this thesis, we proposed a bus encoding scheme to reduce power consumption on

instruction bus. The key idea of our method is to apply a transformation table which stores

frequently execution basic block transformation data to make use of repetitions of basic

blocks at program execution time for reducing bit transitions on instruction bus.

The simulation results show that the overall average energy saving is 52% over original

data and 16% more than Petrov's bus encoding scheme only and 6% more than BIBITS

encoding scheme only. The suitable size of transformation table varies with different

application benchmarks. Our transformation table size is equal to BIBITS and smaller than

Petrov’s encoding. Therefore, the extra hardware overhead of our proposed is lower than

Petrov’s bus encoding scheme.

There are still several researches issues for better energy saving. For example, it the first

instruction in a basic block can also be encoded, the bit transitions can be further reduced. A

possible approach is using off-line profile and analyzing control flow graph to identify the

instruction encountered before the first instruction in a basic block. Furthermore, it is possible

to find some compiler techniques such as instruction reordering to combine with bus encoding

to further reduce the bit transitions.

-44-

Reference

[1] A.P. Chandrakasan, S. Sheng, and R.W. Brodersen, “Low-Power CMOS Digital Design,”

IEEE Journal of Solid-State Circuits, Vol. 27, No. 4, pp. 473-483, Apr.1992.

[2] A. Chandrakasan, R. Brodersen, “Minimizing Power Consumption in Digital CMOS

Circuits,” Proceedings of the IEEE, Vol. 83, No. 4, pp. 498-523, April 1995.

[3] K. Choi, W. Lee, R. Soma, and M. Pedram, “Dynamic Voltage and Frequency Scaling

Under a Precise Energy Model Considering Variable and Fixed Components of the System

Power Dissipation,” Proc. of International Conference on Computer Aided Design (ICCAD),

Nov. 2004.

[4] Kiran Puttaswamy et al. “System Level Power-Performance Trade-offs in Embedded

Systems Using Voltage and Frequency Scaling of Off-chip Buses and Memory,” ISSS’02,

Pages: 225 – 230 Oct.2002.

[5] Chin-Tzung Cheng, Wei-Hau Chiao, Jean Jyh-Jiun Shann, Chung-Ping Chung, and

Wen-Feng Chen, “Low-power BIBITS Encoding with Register Relabeling for Instruction

Bus,” 2005 IEEE VLSI-TSA International Symposium on VLSI Design, Automation, and Test

(VLSI-TSA-DAT’05)

[6] P.petrov and A.Orailoglu, “Low-Power Instruction Bus Encoding for Embedded

Processors,” IEEE Transactions on VLSI,VOL. 12, NO. 8, Aug. 2004.

[7] MIPS Technologies, Inc., “MIPS SDE 6.02 Programmers’ Guide,” Jan 2004

[8] P.Shivakumar and N.Jouppi, “CACTI 3.0 : An integrated cache timing, power and area

model,” Western Research Lab., 2001.

