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A simple proof for persistence of snap-back repellers
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In this article, we show that if f has a snap-back repeller then any small C1 perturbation of
f has a snap-back repeller, and hence has Li–Yorke chaos and positive topological entropy,
by simply using the implicit function theorem. We also give some examples.
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Recently, Marotto [16] redefined snap-back repellers and stated that his early result in [12]: “a snap-back repeller implies
Li–Yorke chaos” is still correct. Both definitions of snap-back repellers in [12,16] depend on the norms of the phase space.
Based on Marotto’s argument, Blanco García [2] showed that a snap-back repeller implies positive topological entropy.

In this article, we give a slightly different definition so that it is independent of norms and the mentioned results of
Marotto and Blanco García still hold obviously. By using the implicit function theorem in Banach spaces (refer to Lang’s
textbook [8, Theorem 6.2.1]), we give a simple proof that any small C1 perturbation of a (possibly noninvertible) system
with a snap-back repeller has a snap-back repeller and exhibits chaos. Some examples are demonstrated as applications.

In [13–15], Marotto has studied perturbations of snap-back repellers and mainly showed that if the scalar problem
xn+1 = f (xn,0) has a snap-back repeller then the problem xn+1 = f (xn, λxn−1) has a transverse homoclinic point, hence has
chaotic dynamics, whenever λ is close to 0. His methodology heavily replies on the Birkhoff–Smale theorem on transverse
homoclinic points in two gradients: one is smooth perturbations of stable and unstable manifolds (see [7, Theorem 5.1])
and the other one is persistence of transverse intersection of stable and unstable manifolds (see [1, Theorem 18.2]). For the
case when the map is noninvertible and has no global stable/unstable manifolds, one needs to further use a generalization
of the Birkhoff–Smale theorem (refer to [6, Theorem 5.2] and [19, Theorem 5.1]).

There are recent developments on multidimensional perturbations of lower dimensional systems; refer to [10] for snap-
back repellers, [5] for chaotic interval maps, and [11] for chaotic difference schemes.

First, we give the definition of a snap-back repeller.

Definition 1. Let f : R
k → R

k be a differentiable function. A fixed point w0 for f is called a snap-back repeller if (i) all
eigenvalues of D f (w0) are greater than one in absolute value and (ii) there exists a sequence {w−n}n∈N such that w−1 �= w0,
limn→∞ w−n = w0, and for all n ∈ N, f (w−n) = w−n+1 and det(D f (w−n)) �= 0.

Roughly speaking, a snap-back repeller of a map is a repelling fixed point associated with which there is a transverse
homoclinic point. Note that if there exists a norm | · |∗ on R

k such that for some constants δ > 0 and λ > 1, one has that
| f (x)− f (y)|∗ > λ|x− y|∗ for all x, y ∈ B(w0, δ), where B(w0, δ) = {x ∈ R

k: |x− w0|∗ < δ}, then f is one-to-one on B(w0, δ)

and f (B(w0, δ)) ⊃ B(w0, δ); hence item (ii) of the above definition can be satisfied if there is a point q ∈ B(w0, δ) such that
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f m(q) = w0 and det(D f m(q)) �= 0 for some positive integer m. In fact, item (i) implies that such a norm must exist (refer
to [18, Theorem V.6.1]). Furthermore, if all eigenvalues of (D f (w0))

T D f (w0) are greater than one, then such a norm can be
chosen to be the Euclidean norm on R

k (see [9, Lemma 5]).
It was proved by Marotto [12] and Blanco García [2] that a snap-back repeller implies Li–Yorke chaos and positive

topological entropy, respectively.

Theorem 2. Let f : R
k → R

k possess a snap-back repeller. Then f exhibits Li–Yorke chaos, that is, there exist

1. a positive integer N such that if m � N is an integer, the map f has a point of period m;
2. an uncountable set S containing no periodic points of f such that

(a) if x, y ∈ S with x �= y, then lim supn→∞ | f n(x) − f n(y)| > 0;
(b) if x ∈ S and y is a periodic point for f , then lim supn→∞ | f n(x) − f n(y)| > 0;
(c) f (S) ⊂ S; and

3. an uncountable subset S0 of S such that if x, y ∈ S0 , then lim infn→∞ | f n(x) − f n(y)| = 0.

Moreover, f has positive topological entropy; here the topological entropy of f is defined to be the supremum of topological entropies
of f restricted to compact invariant sets; refer to [18] for the latter.

We show the persistence of snap-back repellers for small C1 perturbations. Let | · | be the Euclidean norm on R
k and

‖ · ‖ be the operator-norm on the space of linear maps on R
k induced by | · |.

Theorem 3. Let f be a C1 map on R
k with a snap-back repeller. If g is a C1 map on R

k such that | f − g| + ‖D f − Dg‖ is small
enough, then g has a snap-back repeller, exhibits Li–Yorke chaos, and has positive topological entropy.

Proof. Let x0 be a snap-back repeller of f and {x−n}n∈N be its corresponding homoclinic orbit with x−1 �= x0,
limn→∞ x−n = x0, and for all n ∈ N, f (x−n) = x−n+1 and det(D f (x−n)) �= 0. Since x0 is a fixed point of f and all eigen-
values of D f (x0) are greater than one in absolute value, there exists a norm | · |∗ on R

k such that for some constants δ0 > 0
and λ0 > 1, one has that | f (x) − f (y)|∗ > λ0|x − y|∗ for all x, y ∈ B(x0, δ0), where B(x0, δ0) = {x ∈ R

k: |x − x0|∗ < δ0}. Thus
f is one-to-one on B(x0, δ0) and f (B(x0, δ0)) ⊃ B(x0, δ0). Let ‖ · ‖∗ denote the operator-norm in the space of linear maps
on R

k induced by | · |∗ . Let λ1 be a constant with 1 < λ1 < λ0 and let U ( f , λ0 − λ1) denote the set of all C1 maps g on R
k

with | f − g|∗ + ‖D f − Dg‖∗ < λ0 − λ1. Then for any g ∈ U ( f , λ0 − λ1) and x, y ∈ B(x0, δ0), we have that
∣∣g(x) − g(y)

∣∣∗ �
∣∣ f (x) − f (y)

∣∣∗ − ∣∣(g − f )(x) − (g − f )(y)
∣∣∗ >

[
λ0 − (λ0 − λ1)

]|x − y|∗ = λ1|x − y|∗; (1)

hence, g is one-to-one on B(x0, δ0).
Let δ > δ0 be a constant so that {x−n}n∈N ⊂ B(x0, δ). Denote by W the closure of B(x0, δ). Then W is a compact subset

of R
k . Let S be the space of C1 functions from W to R

k endowed with the usual C1 topology dC1 which is induced from
the norm | · |∗ on R

k . Then S is a Banach space and the restriction of any C1 map g on R
k to W , denoted by g|W , is

in S . Since x0 is a snap-back repeller of f and all eigenvalues of D f (x0) are greater than one in absolute value, there exist
positive constants λ2, δ1 and a positive integer M such that λ1 < λ2 < λ0, δ1 < δ0, x−M ∈ B(x0, δ1)\{x0}, det(D f M(x−M)) �= 0,
x0 ∈ int( f M(B(x0, δ1)\{x0})) and for all g ∈ U ( f , λ0 − λ2) and x ∈ B(x0, δ1), all eigenvalues of Dg(x) are greater than one in
absolute value. Let λ3 be a constant such that

max

{
λ2,

λ0 + δ1

1 + δ1

}
< λ3 < λ0. (2)

Then for any g ∈ U W ( f , λ0 − λ3), we have that g is one-to-one on B(x0, δ1). In addition, if x ∈ R
k with |x − x0|∗ = δ1, by

Eq. (1) with λ1 replaced by λ3 and Eq. (2), we get that
∣∣g(x) − x0

∣∣∗ �
∣∣ f (x) − x0

∣∣∗ − ∣∣g(x) − f (x)
∣∣∗ > λ3δ1 − (λ0 − λ3) > δ1.

Moreover, the continuity of g implies that g(B(x0, δ1)) ⊃ B(x0, δ1). Let V = B(x0, δ1)\{x0} and U W ( f , λ0 − λ3) = {g|W : g ∈
U ( f , λ0 − λ3)}.

For the first desired result, we need to show the existence of a snap-back repeller for any g ∈ U W ( f , λ0 − λ3) near f .
Define H : U W ( f , λ0 − λ3) × W × V → R

k ⊕ R
k by H(g, x, y) = (g(x) − x, gM(y) − x). Then H( f , x0, x−M) = 0 and H is

C1 on its domain; refer to [4, Appendix B]. Since all eigenvalues of D f (x0) are greater than one in absolute value, we
have det(D f (x0) − Ik) �= 0, where Ik denotes the identity matrix of size k; refer to [18, Lemma V.5.7.2]. By the chain rule,
det(D f M(x−M)) = ∏M

i=1 det(D f (x−i)) �= 0. Hence, by writing z = (x, y) ∈ W × V , we have

det

(
∂ H

∂z
(g, z)

∣∣∣∣
g= f , z=(x0,x−M )

)
= det

[
D f (x0) − Ik 0

−Ik D f M(x−M)

]
�= 0;

refer to [17, Proposition 0.0]. By the implicit function theorem applied to the function H , there exist positive constants
λ4, δ2, η and a C1 map h : U W ( f , λ0 − λ4) → B(x0, δ2) × B(x−M , η) such that λ3 < λ4 < λ0, δ2 < δ1, B(x−M , η) ⊂ V ,
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B(x0, δ2) ∩ B(x−M , η) = ∅, and for every g ∈ U W ( f , λ0 − λ4), one has that h(g) ≡ (h1(g),h2(g)) is the unique solution
for the system of equations g(x) = x and gM(y) = x in B(x0, δ2) × B(x−M , η), and det(DgM(h2(g))) �= 0. In particular,
h( f ) = (x0, x−M).

To conclude that the point h1(g) is a snap-back repeller of g , it remains to show that h2(g) has a backward orbit
converging to h1(g). Let g ∈ U W ( f , λ0 − λ4) and denote y−M+i = gi(h2(g)) for all 0 � i � M − 1. Then y−M �= h1(g) and
gM(y−M) = h1(g). Since g is one-to-one on B(x0, δ1), g(B(x0, δ1)) ⊃ B(x0, δ1) and h2(g) ∈ B(x0, δ1), we can define y−M−i =
ĝ−i(h2(g)) inductively for i � 1, where ĝ−1 = (g|B(x0, δ1))

−1 denotes the inverse of the restriction of g to B(x0, δ1) and ĝ−i

denotes the ith iterate of ĝ−1. Then the sequence {y−i}i∈N forms a backward orbit of h1(g) such that y−n ∈ B(x0, δ1) for all
n � M . From Eq. (1), we obtain that for any x, y ∈ B(x0, δ1),∣∣ĝ−1(x) − ĝ−1(y)

∣∣∗ < λ−1
1 |x − y|∗. (3)

By considering inequality (3) inductively, we have that for any i � 1,∣∣y−M−i − h1(g)
∣∣∗ = ∣∣ĝ−i(y−M) − ĝ−i(h1(g)

)∣∣∗ < λ−i
1

∣∣y−M − h1(g)
∣∣∗.

This shows that limn→∞ y−n = h1(g).
Since the norms | · | and | · |∗ on R

k are equivalent, the proof of the first desired result is now complete. The second and
third assertions immediately follow from Theorem 2. �

Notice that from the above proof of Theorem 3, it is sufficient to require a smallness of | f − g| + ‖D f − Dg‖ locally in a
neighborhood of the homoclinic orbit associated to the snap-back repeller, instead of globally in R

k .
As an immediate consequence of the above theorem, we have the following result for a parametrized family.

Corollary 4. Let fμ(x) be a one-parameter family of C 1 maps with variable x ∈ R
k and parameter μ ∈ R

� . Assume that fμ(x) is C1 as
a function jointly of x and μ and that fμ0 has a snap-back repeller. Then for all μ sufficiently close to μ0 , the map fμ has a snap-back
repeller, exhibits Li–Yorke chaos, and has positive topological entropy.

Next is another application to perturbations of a decoupled system.

Corollary 5. Let fε : R
k → R

k be a one-parameter family of C 1 maps with components ( fε)i(x) = hi(xi)+ εi gi(x) for each 1 � i � k;
here we denote the variable x = (x1, . . . , xk) and the parameter ε = (ε1, . . . , εk) in R

k. If the number of snap-back repellers for each
map hi is mi � 1, then for all sufficiently small |ε|, the number of snap-back repellers for the map fε is at least

∏k
i=1 mi.

Gardini et al. [3] studied the double logistic map Tλ : R
2 → R

2 given by

Tλ(x, y) = (
(1 − λ)x + 4λy(1 − y), (1 − λ)y + 4λx(1 − x)

)
, λ ∈ [0,1]; (4)

therein the basins of attraction of the absorbing areas are determined together with their bifurcations. Moreover, it was
mentioned that T 2

1 (x, y) = (h2(x),h2(y)), where h(x) = 4x(1 − x), has a snap-back repeller at the origin. Therefore, applying
Corollary 5, we have the following result.

Corollary 6. For all λ near one, the second iterate of system (4) has a snap-back repeller, exhibits Li–Yorke chaos, and has positive
topological entropy.
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