AL #® =
A PR GRS 3 A

Fish-Bone: A Clock-less Power-efficient Stack

aF B PR E A RS da

Fish-Bone: A Clock-less Power-efficient Stack

2l N Y 4t Student : Ming-Fung Shen
R e A Advisor : Chang-Jiu Chen

R
E
=
o
%

A Thesis
Submitted to Department of.Computer Science.and Information Engineering
College of Electrical-Engineering and Computer Science
National Chiao Tung University
in
partial Fulfillment of the Requirements
for the Degree of Master
in
Computer Science and Information Engineering
June 2005

Hsinchu, Taiwan, Republic of China

PEARY L &

(\.3

AT AR R A RREGRG L & S 4 A A BT & Rk D
FRT ST U S B 4 F L i R R PP R L

Lh= @ o N A - B PR B A R a3 dp ik

o

R #2353 228 &
FER R OE o A GasP R A T R o I A AT F A 0 R B 4
iz o F T A0 TN Aty 04T EOE St i ok R A TR el 4R o e[1] e
PR GE v A 42 B- AfEE E Foutd @ %Y o >t HSPICE & & 2 GHz

T UNC 0. 18 BlARHHE S * dp i DA g~ &4 AR TR 2T 0

AREMRI AT AL LS o e AR BT AL TR E A
L A - B e S A SR g ddpond Brafpde (T gl (7 pF R oRd
T;E&‘?#im{}iiﬁ%?ﬁ-;d{&éz? Fbgl/f"—ﬁfﬁ%&{'}"]im’ —Hb/}}?l/}’%i‘

Fish-Bone: A Clock-less Power-efficient Stack

Student : Ming-Fung Shen Advisor : Dr. Chang-Jiu Chen
Department of Computer Science and Information Engineering

National Chiao-Tung University

Abstract

Low-power circuit design is the fashion of the future design guideline, especially
not losing the speed performance. So far some research on stack is performed.
However, their power performances are not good enough. The purpose of this paper is
to present a power-efficient stack with clock-less design technique and its
implementation. Based on GasP asynchronous control family from Sun Microsystems
laboratories, we reduced the data movements in stack with the concept of master-slave
temporal storages and n-place lingar storages to low down the power consumption.
For the ease of comparing with'ether targets in.experiment, we implemented our stack
with the same number of storages”as the target’s one. Results from HSPICE
simulations with UMC 0.18 model file“show that our stack saved averagely 17% in
power consumption with 100 random command sequences that are sized 100
compared to the re-implementation of original design in [1]. More than that, we
gained averagely 91.39% in power consumption compared to linear stack. The cycle
time is independent of the number of data items in the stack and the data width. It has
constant time property. The energy consumption per stack operation depends on the

sequence of stack operations.

Acknowledgment

RATHEMYERMIP L AR R E MG X AES BN Y

m

AR B I E o FUREHT AT L AR AT/ H Y DT - LR rHH
2E5IE Nz mdipk Fanthne 2 Jib o0 BERIREDP LT SR
AHLRES LR 4 A P R E o B B e E B A R A B A L S A 4

XTI

CONTENTS

BB B s [
ADSTFACT. ... i
ACKNOWIBAGMENT.......oiiiiiiie et ae s iii
CON T EN T S ettt e e e et e e e e e eee e et e eeeaeaseees e seeeeeeeennrnnnnns iv
LIST OF FIGURES ...ttt e et e e e e e e e e e eneeeeeeneanns Vi
LIST OF TABLESttt eeeees viii
CHAPTER 1 INTRODUCTION ..ottt e e e e e e e aeee s 1
1.1 BENEFITS WITH ASYNCHRONOUS DESIGN ..ccuuiiiiiiiieeieiei et e e e e s e e een s 1
1.2 THE CORE OF STACK IMACHINES ...t eieeeeeee ettt e e e e e e e eeeatneaseeeeseeesnnnnnnas 2
1.3 OBVIOUS IMPLEMENTATIONS AND PRIOR WORKS ...covvveiee et 3
1.4 MORE POWER-EFFICIENT STACKS . it ititteeteeeteeeeteeeateaessseeesseesasnassseessseesssnnnnns 4
CHAPTER 2 RELATED WO RK S it i ettt e e e e e e e e ee s 6
2.1 STACKWITH RAM IMPLEMEN TATION fe bt s tereteeeereneeseeeeseeeessnasseesssssessnnnaaseeeees 6
2.2 STACKWITH LINEAR ARRAY-OF C B LS st ettt e e e e eeeeeteee s e e e e e e eeenaaaeeees 7

2.3 AHYBRID STACK CONSISTS OF TREE STACKS AND THREE-LEVEL

THREE-PLACE LINEAR STACKS L. bt il 9
2.3.1 A Design Based 0N GasP MOGUIES iiummmiiiinieeeeieiise e e sesieeiie e sie e sre e s e eeseesse e snens 10
2.3.2 TFEE SEACKSueveteteieteie ettt bbbt b et ne bt 12
2.3.3 Three-level Three-place Linear StACKSc.ccvevviiieiiiiiii e 13
2.3.4 The Conversion from FSM to GasP MOAUIEScccoieiiiriiireeeee s 15
2.3.5 A HYDIIA SEACK. ...ttt et 18

2.4 THE FIRST BREATH OF FISH-BONE STACKSciiiiiiiieiieeiee e 20

CHAPTER 3 FISH-BONE STACK ..ottt 23

3.1 MOTIVATIONS AND IDEAS ...ttt 23
3.1.1 Benefits form Reducing Data ItemM MOVESccccceveiiiieiecicieee e 23
3.1.2 A Solution with Reducing Data Item MOVES..........cccceierieieeiiieeie e se e 23

3.2 ARCHITECTURE OF FISH-BONE STACKScciiiiiieiiiiaiiesiee et 27
3.2.1 The Internal Actions in Fish-Bone Stacksccccoveiiiiiinninceecs e 27
3.2.2 An Example of Executing A Small Command SEqUENCE..........cceevverieieieiiieceeeereere s 29

3.3 THE IMPLEMENTATION OF CONTROL PATHcotiiiiiiiiesieeee e 34

3.4 REAL IMPLEMENTATION OF A FISH-BONE STACKuiiiiiiiiciiieeeieeee 41
3.4.1 Top View 0f A FiSh-BONE SEACK........c.cceiiiiiiiiiie ettt 41

3.4.2 Implementation of GasP MOUUIEScccecieiiiiiie e 42

3.4.3 Implementation of State KEEPETciv i 44
3.4.4 Implementation 0f Data StOFAQE........ccceveieiieieeieeie e se e ste et re e e e e sreseeare s 45
3.4.5 Implementation of Condition MaiNtaiNerc.cccoiviiieiiiesie e 46
CHAPTER 4 IMPLEMENTATION IMPROVEMENTS. ..., 47
CHAPTER 5 THE EXTENSION OF STACK PLACE ... 50
5.1 STRAIGHTFORWARD EXTENSIONiiiiiietteee et ettt e e e e ee e eeeeeesaeeeaneesnnnnnnas 50
5.2 EXTENSION IN TREE STRUCTUREcottttetttieieeeeeteeeetieeeeeeeeseseesssassseessseesnsnnnnns 50
5.3 EXTENSION IN RECURSIVE STRUCTUREuuuiiieeeieeeiteeeeeeeeeeeeeeiiaessseeesseeennnnnnns 51
5.4 TREE STRUCTURE USED IN POWER CONSUMPTION COMPARISON.......ccevvvnn.. 51
CHAPTER 6 POWER CONSUMPTION EVALUATION ..., 52
6.1 POWER CONSUMPTION TESTING ON A THREE-LEVEL THREE-PLACE LINEAR
STACK AND A FISH-BONE STACK .evttniii e ettt ettt e e s e e e e aaeeeaeeseeeeaseeennnnnnns 52
6.2 POWER CONSUMPTION TESTING ON BOTH STACKS WITH DIFFERENT LEAF
INODE DESIGNS ..ievvuiiiietiteeeeteeeeeeta et as s mesee s sesessasesessasesessnnsesessnssesessnsesessnsesennns 53
6.3 DATAMOVEMENTS COUNTINGeeeeeeieian e eeeereeeesenasssesesssessssnnassssessseesssnnnnns 57
6.4 USED TRANSISTORS COUNTING L1zl it the s et e et eeeree s e e e eeeeeeesreesseeesseesnnnnnnss 59
6.5 ANALYSIS OF RESULT FROM SIMULATIONS ..o e eeeeeeeee e eeeeeeeeieeaeeeeeeeeeannnnnnns 60
CHAPTER 7 CONCLUSIONS AND FUTURE WORKS ..., 62
REFERENGCE ... 5 i iieest 00 et et e et e e e e et e e eeeeeeeeeeeenranseeeasanennes 63

LIST OF FIGURES

Figure 2-1: Stack with RAM implementation.cccccooeiiiiniieniie e 6
Figure 2-2 : Asimple lINear StACKcccooiiiiiiiie e, 8
Figure 2-3 : GasP with self-resetting NAND ... 11
Figure 2-4 : Atwo-place tree STaCKccoiiiiiiiii s 12
Figure 2-5 : A two-place tree stack: Finite state machine specification. 13
Figure 2-6 : A three-level three-place linear stackcccoocovviniiiinnninneice, 15
Figure 2-7 : A three-place linear stack Cell............ccooooiiiiiiinii 15
Figure 2-8 : the converting from FSM to GasP module.cccocoviiiniininnenne. 17

Figure 2-9 : a hybrid stack with 42 storage places consists of a tree stack and
3-level 3-place linear Stacks. . .. alli i e 19
Figure 2-10 : the structures of two type Of-Stackccooveveiieicee e 20

Figure 2-11 : The difference of internal data moves between 3-level 3-place linear

stack and Fish-Bone Stack i ..o it 22
Figure 3-1 : The data-path of a three-level three-place linear stack 25
Figure 3-2 : the data-path of a Fish-Bone stack...........ccccoveiiiiiiiiiiiccece 26
Figure 3-3 : Continuous put commands on an empty Fish-Bone stack 32
Figure 3-4 : Continuous get commands on an empty Fish-Bone stack................. 33
Figure 3-5 : A Fish-Bone stack: Finite state machine specification...................... 36

Figure 3-6 : the diagram of control path converted from FSM of Fish-Bone stack

Figure 3-7 : a top view of a complete Fish-Bone stack with both control-path and

AtA-PALN ... e 42
Figure 3-8 : the modification from the original designsccccceevvevviicveeciee 43
Figure 3-9 : the circuit 0f @ KEEPEKcoivviiiiiece e 45

Figure 3-10 : the implementation of data Storage...........cccccevveiivvevesiese e 45

Figure 3-11 : the implementation of condition maintainerccccoceecvevereennn. 46
Figure 4-1 : The difference of two kind handling with condition signals 48
Figure 4-2 : the view of the final circuit of a Fish-Bone stackcccccccevenene. 49
Figure 5-1 : Extension in a recursive StrUCTUNEcovvveieeiecie e 51

Figure 6-1 : the trend of the relation between the difference of moves and the

(RIS =T (=) T 61

vii

LIST OF TABLES

Table 3-1 : The events stimulated by relative GasP modules in round-robin
fashion and the data flow controlled by the six states in Fish-Bone stacks ..35
Table 6-1 : The difference of average power consumption between one 3-level
3-place linear stack and one Fish-Bone stack..........c.cccccovvevieiiiiiiccccceen, 53
Table 6-2 : Results of average power consumption between the Hybrid stack with
3-level 3-place linear stacks (HS), the Hybrid stack with Fish-Bone stack (FB),
and the linear Stack (LS)c.ooveiiiiiiiereee e 57
Table 6-3 : The relation between the power consumption and the number of their
0atA MOVEIMENTS. ...oueiiie ettt re et este e 59

Table 6-4 : the counting of both stacks with'different leaf node designs 60

viii

Chapter 1 Introduction

The goal of this thesis is to implement an asynchronous fast and more
power-efficient stack. In this chapter, first, a briefly introduction to asynchronous
design is depicted. After that, we introduce the need of the fast and power efficient
stack hardware design. Third, obvious implementations and some other related
researches done in this field are exhibited. Then, we introduce the idea of our design,

Fish-Bone. Finally, the organization of a Fish-Bone stack is roughly described.

1.1 Benefits with Asynchronous Design

Asynchronous circuits keep the one-of two-major assumptions, signals are binary,
but remove the other assumption that time s discrete. The asynchronous design style
has several possible benefits:

No clock skew - Clock skew‘is the difference in arrival time of the clock signal at
different parts of the circuit. Because of the definition of asynchronous
circuits, no globally distributed clock, we don’t need to worry about the
clock skew. However, system with synchronous design often slows down
their circuits to accommodate the skew.

Average-case instead of worst-case performance - Many asynchronous systems
sense only a computation has completed, allowing them to exhibit
average-case performance. Synchronous circuits must wait until all possible
computations have completed, yielding worst-case performance.

No global timing issues - In synchronous system, the system clock, and thus the
system performance, is decided by the critical path. So, most portions of a

circuit must be optimized to achieve the highest clock rate. Since no globally

timing issues in asynchronous circuits and the speed is dictated by the circuit
path currently in operation, the optimization for speed performance of rarely
used portions of the circuits can be ignored without adversely affecting
whole system performance.

Lower power consumption - Most synchronous circuits need to toggle clock lines,
and pre-charge and discharge signals, in portions of a circuit unused in the
current computation. However, in asynchronous circuits, the transitions only
in used areas involved the current computation consume the power.

Some other potential advantages detailed discussed in Scott Hauck article [2],
like better technology migration, robustness, etc. High-speed asynchronous design is
increasingly becoming an attractive alternative to full-custom synchronous design
because of its freedom from clock distribution and clock skew problems, and some
other advantages. However, we focus on' the low' power property in our design, a
power-efficient stack. We call that Fish-Bone-because of the likeness between the data
movement diagram and the rest of a-fish. stake-we-left on our dinner table.

Because of lots of advantages, a lot of asynchronous designs have been
researched. For examples, basic gates like Muller-C [3],etc., Small components like
asynchronous adders [4] and multipliers [5],etc., architecture designs like counterflow
architecture [6],etc., whole system designs like Philips 8051 [7], Amulet processor

family [8], TITAC [9, 10], etc..

1.2 The Core of Stack Machines

Although virtually every processor today uses a load-store register architecture,
stack architectures attract attention again due to the success of Java. The
intermediate language of Java, the Java bytecodes, is stack based and therefore a , is

also stack based. Faster stack hardware can archive high performance during

2

executing stack operations. More than that, the power consumption efficiency is
needed to be put more attention. The core of a whole stack machine is a hardware
stack. And high percentage of power consumption caused from the core [11]. How

about a fast and power-efficient stack instead of the core?

1.3 Obvious Implementations and Prior Works

An obvious implementation is a RAM with top-of-stack pointer. The trivial
solution causes the long cycle time and high energy consumption because of the large
fan-in loads that must be driven for each put and get action, although the high density
of RAMs consumes little area per data item. Furthermore, the cycle time and energy
consumption grows with the size of the RAM.

The second trivial solution is-implemented with a linear array of cells, where
each cell can store data items= The linear of cells-may offer a shorter cycle time
because cells communicate only with.their-neighbors. More, the first cell of the array
always contains the data item on top of.the stack. The contact windows between this
stack and the environment is only the top cell, so stack commands have only small
loads to drive. However, a potential disadvantage of such an implementation is that
the average power consumption of stack command sequence, put actions and get
actions, can still be quite high, because the involved cells is the whole chain of the
linear array. To complete a put or get command causes all items in the array to move.

Both of the above two implementations can be designed easily with synchronous
design style. The second one can be implemented with synchronous design for
parallel data movements in a linear array, or be implemented with asynchronous
design but more latch cost or more complex control circuits are needed. Using
master-slave latch architecture for cells of the linear array is a solution to remove the

need of the distributed clock signals, but the disadvantage of power consumption is

3

still quite high [12].

Jo Ebergen has proposed another high speed and energy performance stack [1]. It
is an asynchronous stack design based on GasP asynchronous control circuit family.
The low power and high speed properties hold a special attraction to us. The energy
consumption per stack operation only depends on the sequence of stack operations,
and the cycle time is independent of the number of data items in the stack and the data
width. The high performance stack consists of a tree stack and some three-place linear
stacks. A GasP network compatible design was developed, and the protection of
underflow and overflow was also implemented.

Other related works on stacks includes Alain Martin’s lazy stack [13] and stack
design by Mark Josephs et al. [14] However, these designs have a longer cycle time

and the cycle time depends on the size of the stack.

1.4 More Power-efficient Stacks

Let us concern the trend from‘the linear.array type stacks to n-place linear stacks.
The main idea is to reduce the data movements in stacks. The architecture of linear
array of cells stack naturally causes all cells operate, even those cells are not needed
to be involved. That is, if a stack has n storages, it means that a command, put or get,
causes n internal operations. In Jo Ebergen’s article, "a fast and energy-efficient
stack”, the number of internal data moves is improved to 1 to 5 in a 42-place stack
example. The average number of internal data moves is about 3.67.

We would focus the attention on the power consumption. How to save more
power? In this thesis, a more power-efficient stack with underflow and overflow
protections was implemented. Results from HSPICE simulations show that it gained
averagely 17.06% in power consumption compared to Jo Ebergen’s one. Moreover, its

consumed average power is just averagely one over thirteen to asynchronous linear

4

stacks. We will begin with considering how many data movements can be reduced,

how to reduce the data movements, and how to save more power.

Chapter 2 Related Works

In this chapter, we will give some backgrounds and go into the detail about some
related works. In the firs two sections, intuitional implementations mentioned in the
end of the previous chapter are described. Next, a hybrid stack is discussed and finally

we give the life to the Fish-Bone stack.

2.1 Stack with RAM Implementation

Memory stack /\

Stack <

pointer

!

Addr, g

System bus

N4

Figure 2-1: a stack with RAM implementation. The address bus has quite loads in memory stack
to drive, and the data communication between memory stack and system bus needs longer time

because data outside needs to be passed to all memory stack cells.

Figure 2-1 shows a portion of a memory organized as a stack, and the details are
discussed in [15]. The diagram shows the simple RAM implementation of stack. Put
and get commands affect stack pointer, and the result of a decoder fan out to each
place of the memory stack corresponding to make one of the places in memory stack

6

work. Because of the large loads that must be driven for each put and get action, the
cycle time and energy consumption can be high. Data movement between memory
stack and system bus costs also much time and energy because the same reason, large
fan out. Furthermore, the cycle time and energy consumption grows with the size of
the memory stack in RAMs. However, the implementation has an advantage on area
cost because of the high densities of RAMSs, such an implementation consumes very
little area per data item. In next section, a solution to the problem, long cycle time and

high energy consumption caused by large fan-out will be described.

2.2 Stack with Linear Array of Cells

A problem caused by large fan-out and large fan-in can be solved with this
implementation, stack with linear array of cells. There is only one window that
contacts to the environment. This is.a design that Jo Ebergen has proposed [12].
Figure 2-2(a) illustrates all data‘movements-of successful puts and gets of a cell.
Figure 2-2(b) shows a simple stack'which consists of a linear array of cells. In Figure
2-2(a), the master-slave storage architecture was shown. Each cell has one slave
storage location and one master storage location. Each put action p moves the
incoming data item from the predecessor (the predecessor of the first cell is the
environment) into the slave location. Then, the internal action causes action s.p puts
the data item residing in the master location into the next cell, or called sub-stack.
Finally, action x moves the data item form the slave location into the master location.
The cell’s behavior then repeats until the end of the linear array of cells. When get
command acts, the slave location doesn’t need to work. Every get action g moves the
data item residing in the master location to the predecessor, and subsequently action

s.g get a data item from the sub-stack. Like the procedure of put action, the cell’s

behavior then repeats until the end of the linear array of cells.

slave

k

«d | master P

(@) Cell with data movements

System
bus

(b) Asynchronous linear-array of stack

Figure 2-2 : Asimple linear stack: (a) A cell and its related data movements (b) A simple stack

with linear array of cells

Such an implementation may have a short cycle time, because communications
are local and involve only small loads. However, there are several shortcomings. First,
each put cycle contains three internal actions, p, s.p, and x, which takes longer time
and costs more energy then two internal actions, g and s.g, in a get cycle. Second,
each put and get command on the cell propagates to the sub-stack. Consequently,
every put action results in pushing every data item in each cell deeper into the stack,
and every get action results in pulling every data item in each cell further out of the
stack. That is the power consumption per put action or get action is proportional to the
number of items in the stack. Furthermore, each cell contains two storage locations

8

but store only one data item in this implementation. The shortcoming brings in the
increasing area demands. Finally, the simple implementation doesn’t have underflow
and overflow protections of the stack: a put action on a full stack loses the data item at
the bottom of the stack, and a get on an empty stack will yield an unknown value.

The design idea we get here is the constant time response and local
communication for low power, although there are still shortcomings needed to be

solved.

2.3 A Hybrid Stack Consists of Tree Stacks and Three-level
Three-place Linear Stacks

Hybrid stack is an asynchronous stack was proposed by Jo Ebergen [1]. The
implementation consists of some linear arrays af cells, but each one has n storage
locations and each storage location can hold.a data item. More precisely, the stack
consists of two kind of n-place linear stack; one is 2-place linear stack, or called tree
stack and the other is three-level three-place linear'stack. Some ideas are useful to
improve the performance and solve the problems that were resulted in by the simple
implementation of linear array of cells, or call it 1- place linear stack. First, put and
get commands on the stack and sub-stack rotate through the storage locations of the
cell in a round-robin fashion. Furthermore, the cell performs actions on the sub-stack
only when necessary. That is, only when the cell become full, the cell performs a put
action on the sub-stack, and only when the cell becomes empty, the cell performs a
get action on the sub-stack. And through this idea, lots of unnecessary data item
movements are removed. Second, this is a stack with overflow and underflow

protections.

2.3.1 A Design Based on GasP Modules

GasP is an asynchronous control circuit family. Some years ago Molnar [16]
articulated the basic control requirement for an asynchronous pipeline. Molnar’s
“asP*” control system used a flip-flop in each PLACE to record its state and a NAND
gate in each PATH to detect the conditions prerequisite to action. The words
“PLACE” and “PATH” is used to distinguish two kinds of circuits: a PLACE holds
data whereas a PATH controls the flow of data between PLACEs. Molnar’s asP*
circuit was symmetric in form, and so its forward latency and reverse latency were the
same. The last three letters in the name GasP acknowledges its asP* ancestry. Figure
2-3 describes a simple example of GasP network that forms a FIFO queue and their
actions [17]. Each PATH circuits controlling the flow of data between stages must act
only when both its predecessor PLACE is valid and'its successor PLACE is also valid.
In this example, the predecessor-PLACE. is-valid when FULL, and the successor
PLACE is valid when EMPTY.

As Molnar pointed out, a PATH must accomplish things when it fires:

(1) 1t must make data latches momentarily transparent.

(2) It must declare its predecessor stage EMPTY.

(3) It must declare its successor stage FULL.

(4) To reset the output of the series N-type transistors to the inactive.

GasP circuits store each state on a single wire that is called state conductor. In
this GasP pipeline, each PLACE has a state conductor to indicate whether it is FULL
or EMPTY. It is simplest to understand GasP circuits using the state encoding HI =

EMPTY, LO = FULL for all state conductors.

10

State:
Forward latency =abcd

Reverse latency = xy

HI=EMPTY
LO=FULL

eeper

— |
; i: ‘; 5;: State
Leo Lgonductor
[I‘H E E > E
| | | 2Z 1
L T | :
=\/ roPLACETTTT N/ 7 PLACE
PATH ! \ PATIH
- % | - (@?ﬂatmmﬂ
, ' dafa la i E ata latch

Figure 2-3:2 GasP-with self-resetting NAND

In Figure 2-3, a complete action performs like below:

(1) when the keepers of the successor and the predecessor of a PATH is
correspondingly stated EMPTY and FULL.

(2) The latch drive signal from inverter [gc] is a shirt positive pulse suitable for
making ht N-type transistor pass the gates at the bottom of the figure
momentarily transparent to copy data forward.

(3) Inverter [c] and N-type transistor [d] drive the drive the successor state
conductor LO, meaning FULL.

(4) P-type transistor [y] drives the predecessor state conductor HI, meaning
EMPTY.

(5) Delaying inverter at the top of the figure and a P-type transistor reset the
NAND function after a short controllable delay.

We used transistor sizing for the GasP modules for the correct functionality of the

11

design. the theory behind sizing transistors is based on Logical Effort and
explained in [18]. This theory permits us to calculate quickly the transistor sized
of each gate for given gate delays more easily. However, the theory is researched
for synchronous circuits. So the theory is used for giving the initial guess value
more precisely. Then we must use simulator to check the correctness of the

circuits.

2.3.2 Tree Stacks

The hybrid stack in [1] consists of a tree stack and some three-level three-place
stacks. And a tree stack consists of several n-place cells, like the nodes in a linear
stack. The number, n, of places in a cell is at least 2. Every cell has n sub-stack, one
for each place. To keep the tree stack simple and to obtain a short cycle time, the
original design was chosen n =-2.A node performing a tree stack appears in Figure

2-4 along with two sub-stacks.

s0.p0
s0.p0 |, —5b
s0.00 0 s0.00
sub-stack %D Qﬁ
plpli, s0 0 s0.pl
PO_[, 0 0.g1 g<IZ Xlﬁ
004 < so.gl
pLl, 1 sIlp0|, sl.go
0l 51.90| sub-stack 1 <1.a0
51 S SN
cell sl.pli,

sl.gl 1 sl.pl
Ix 0
Sl.gl

(a) (b)

Figure 2-4 : A two-place tree stack: (a) Cell and sub-stack with data movements (b) Data path

12

The behavior of each tree cell with respect to put and get command is similar to
that of the linear stack cell. When using a two-place cell, like the example in Figure
2-4, the puts and gets rotate through the place 0 and 1. After the cell gets a put
command and puts a data item in place i, the cell puts the data item residing in place
i+1, if any, into sub-stack i+1. Similarly, after the cell gets a get command and gets a
data item from place | and place i-1 is empty, the cell gets a data item for place i-1
from the sub-stack i-1, where additions are modulo 2 because of the rotating use of
the cell.

The tree stack is easily implemented with GasP modules converted from FSM.
Figure 2-5 shows the FSM specification and all possible sequences of puts and gets.
In the case, {E, F, NO, N1, PO, P1, GO, G1} are states kept in keepers formed by a
latch, and {p0, p1, go, g1, s0.p0,.s0.p1, s0.90,"s0.91, s1.p0, s1.pl, s1.g0, s1l.g1} are

event controlled by GasP modules.

E = (:p0 = /N1

L gu 2 E)
NO = (. po > Pl

| ol > GO0)
N1= (pt 2> PO

| g0 > Gl)
F = (puU > F

| 01 2> N1)
PO = (s0.p0 > NO

| s0.p1 > NO

| sOpu > F)
P1= (slp0 => N1

| slpl > N1)
GO = (s0.g0 > N1

| s0.gl > N1)
Gl= (slgd > NO

| silgl > NO

| slgu > E)

Figure 2-5 : A two-place tree stack: Finite state machine specification.

2.3.3 Three-level Three-place Linear Stacks

Different type of stacks that compose a hybrid stack is three-level three-place
13

linear stacks. The three-level three-place stacks play the roles of the main storage of a
hybrid stack, so the three-level three-place stacks are placed at the leaf of the tree.
There are two directions to extend the storage, hierarchically extension (place) and
vertically extension (level). However, Jo Ebergen chose three-level and three-place
for his design for ease and because of some analysis. There is some analysis in his
article. Figure 2-6 shows a three-level three-place stack. Three one-level three-place
linear stacks serially compose a three-level one. The behavior is like tree stacks. Puts
and gets on the stack and sub-stack rotate through the storage locations of the cell in a
round-robin fashion. And each cell performs actions only when necessary. Initially,
the state empty, E, is specially set as high for waiting the coming put or get command.
Like the first state description in figure 2-7, two possible commands may come. Put
command comes to put a data item in storage location 0 and set state N1, or get
command comes as the gU action.in FSM specification and keep the state E high.
Then, in state Ni when the environment puts-an. item in location i of the cell, the cell
checks that the neighbor location i+1 is.empty for a potential next put action, where
the additions is modulo 3. On the one hand if storage location i+1 is full, then the cell
puts the item residing in the storage location i+1 into its corresponding storage
location of sub-stack i+1 and enter state N(i+1), and on the other if the storage
location i+1 is empty, them the cell directly enters state N(i+1). The get commands
follow the similar rules. In state F, the stack cell can execute a get action g2 on
storage location 2 or an unsuccessful put action pU. Then, in state Ni, when the
environment gets a data item form storage location i-1, the cell checks that the
neighbor location i-2 is full for a potential next get action form the environment,
where the minus is modulo 3. On the one hand if storage location i-2 is empty, then

the cell gets an item from the sub-stack for storage location i-2 and enters state N(i-1),

14

and on the other if storage location i-2 is full, then the cell enters state N(i-1).

Figure 2-6 : A three-level three-place linear stack: (a) cell and sub-stack with data movements (b)

m
|

N1=

N2 =

Figure 2-7 : A three-place linear stack cell: Finite state machine specification.

(po
| gu
(po
| g2
(pt
| g0
(p2
| ol

(pU
| g2

Level 1
O [sop,
gl 0 s
1 .
= SJfll, sub-stack
G 1 sg
S
2 [spp
G 2 g
cell
@

S 2N N N

Level 1 Level 2 Level 3
PO_1, 0 SP, 0 >
0 - <P <
Pl_iy P, >
gl 1 S 1 <
P2_{p SP, >
Rl 2 ER 2 |
(b)

3-level 3-place stack and data movements

2> N1

2> E

if full(1):then P1
else N1

if full(1) then'N2
else G171)

if full(2)'then P2
else N2

if full(2) then NO
elseG2)

if full(0) then PO
else NO

if full(0) then N1
elseGO)

2> F

2> N2)

s.p0
s.pU
s.pl
s.p2

s.g0
s.gl
.02
s.gu

22 2 20 222 \Z

2.3.4 The Conversion from FSM to GasP Modules

Figure 2-8 gives simple examples of the conversion form FSM to GasP modules.
A GasP module can be identically designed for some unique functions. It bases on a
basic structure, a NAND gate like with resetting output ability. Besides, every

optional addition, like (1)(2)(3)(4) in the figure, can be added to basic GasP modules

15

NO

N1
N2

N1
N2
NO

— — —

when they are needed to commit some functions. Initially, the GasP event is set to
high, the left input is set to low, the right input is set to high for waiting the command
coming from the left input. The controlled components by GasP modules are low
active in normal. Besides, the condition maintainers are not included in the GasP
design. Precisely, there is an extra combinational circuit that maintains the condition
signals according to some related GasP events. There are sometimes not only one
condition needed in a GasP module, we can use basic logic gate, AND gates or OR
gates, to merge those signals.

Figure 2-8(b) shows the added wires and components needed for non-resetting
input port and resetting input port. Figure 2-8(c) shows the added components needed
for non-resetting input port, resetting input port and next state port. Figure 2-8(d)
shows the added components needed for two Side. resetting input ports and two next
state ports with a condition. As-mentioned before, the w/l ratio of transistors in GasP
modules are needed to be concerned:far-the-correctness of functionalities. Too many
added components will lead to slow response-0f the output of the GasP module. The
loads of a transistor MOS is about 4 or less times to it fan-in in suggestion. There are
a lot of different GasP modules according to different added components. Sometimes
we need to reverse the active type, high to low or low to high, to commit our design
requirements, so some components of N-type transistors will be replace with P-type
transistors and some components of P-type transistors will be replace with N-type

transistors.

16

O

get _rr\én\t state, E
E=(gU—>E) , \(1)
(1) non-resetting input, E :' :
(2) resetting input, get "‘ ;'
left input ;!
ight input > _,’,
?asP event ?Gas event, gu
(@))
E=(p0—-> N1) t-12)
_— get-"(2)" >~ 1
(1) non-resetting input, E /7 \ Skl
(2) resetting input, put i1 (3) Y
(3) set next state, N1 4\\O| ,’I
R N_egt_s,tafé, N1
APaamre
.
—GasP event, p0
N1 =(...

| p1 > if full(2) then P2
else N2
|...)
(1) resetting input, N1
(2) resetting input, put

(3) set next state, P2, when /
ext state, P2

full(2) condition is true.

\
\

\

I

xt State, N2

’

(4) or, set next state, N2, when

full(2) condition is false.

GasP eveht, Bl gition, full(2)

(d)

Figure 2-8 : the converting from FSM to GasP module: (a) The basic structure of a Gasp module
17

(b) Use N-type transistor to reset input, and do nothing for non-resetting input (c) More than case

(b), use a P-type transistor to set next state. (d) A GasP module with a condition signal.

2.3.5 A Hybrid Stack

For the benefit from the advantages offered by two types of stack, three-level

three-place linear stacks and tree stacks, a hybrid stack had been constructed as shown

in Figure 2-9.

Some advantages are offered from tree stacks:

(1)

@)

3)

(4)

Less data movements per cycle: Each put or get action cycle of one cell
contains ate most two data moves. Here, the cell means a node of a tree
stack or a level of a 3-level 3-place linear stack.

Annihilation of propagating puts and gets: Each put or get action can
only involve one path of the tree to'be pushed down into or pulled up
from the stack by a-cell. Consequently, the total number of data moves in
the tree stack is logarithmic in the number of items in the stack.

No waste in storage locations: Each cell of tree stacks has two places
and each place can hold a data item.

With underflow and overflow protections

Some advantages are offered form 3-level 3-place stacks:

1)

@)

3)

Less data movements per cycle: it is the same as tree stack node
described as the mention above.

Annihilation of propagating puts and gets: A put action propagates
down sub-stack only when the cell has 2 items. Similarly, a get action
propagates down the sub-stack only when the cell has 1 item.

No waste in storage locations: it is also the same as tree stack node

described as the mention above.

18

4) With underflow and overflow protections

In the example of Figure 2-9, the hybrid stack is formed as a tree, and there are
42 storage places. The range of the number of internal data moves is from 1 to 5. for
example, the number, 1, occurs when executing a put command with empty stack and
when executing a get command with full stack. In the worst case, there are five
internal data moves because of three level structure of the stack and two more data

moves may be needed in the leaf stack.

Tree stack 3-level 3-place linear stack

Figure 2-9 : a hybrid stack with 42 storage places consists of a tree stack and 3-level 3-place

linear stacks.

However, we can not use one of two type stack only to compose a suitable size
stack. If we choose tree stacks as the components, the too deep depth will lead to
more internal data moves in executing a put or a get command than that in hybrid
stack type. On the other, if we choose only 3-level 3-place linear stack as the

components, the extension on storage locations will be a problem.
19

2.4 The First Breath of Fish-Bone Stacks

Almost every thing is complete in hybrid stack design, which is a design with
basic underflow and overflow protections, efficiently using each storage locations,
and reduced data moves of a cell in a command cycle. However, the energy
consumption seem not so perfect. We focus on the power consumption of the 3-level
3-place linear stack, and ignore the tree stack which is designed for enlarging storage
locations. We find that the number of data moves is the key point. Less data item
moves leads to less power consumption. The maximal number of data item moves in
the design of 3-level 3-place linear stack node is three because there are three levels to

propagate. How about less data moves in a new design?

top level upper level
A A A T T T
A \ 4 A
1-st level top level
A A A
A A\ 4 A l l l
2-nd leve lower level
(a) (b)

Figure 2-10 : the structures of two type of stack: (a) Three-level three-place linear stack (b)

Fish-Bone stack

A solution was proposed in this thesis. The key difference between the
three-level three-place linear stack and Fish-Bone stack is the design of the
remainders besides their top level as shown in Figure 2-10. Each storage location of
the top level has more than one storage location to push into or pull from in Fish-Bone

stack, upper level and lower level, but there is only one storage location for

20

three-level three-place linear stack.

An advantage offered from the new design is the less internal data item moves
during executing a stack command. And, Figure 2-11 shows an easy case that a
command needs less data moves in a leaf node of a hybrid stack. For easily explaining
the difference, we only take the leaf node, three-level three-place linear stack, to
compare with our design, Fish-Bone stack. A case with continuous five put commands
applied to an empty stack and the process of applying the fifth put command. Figure
2-11(a) shows a three-level three-place linear stack, and the state after finishing the
forth put command of continuous five put commands. The number in the grids means
the order of data item that was put into, and the empty grids means no occupancy of
those storage locations. Figure 2-11(b) shows the state after the fifth put command.
The item 5 was put at the second storage location of the top level, storage location 1
(the naming of the storage locations.is form 0.10 2), and resulting the top level to full
state. Then, the item 3 was pushed toinext-level-for the next potential put command.
For the same reason, the item 1 in the second.level was pushed to the third level for
the next potential put command on the second level three-place linear stack. There are
totally three data item moves to finish the fifth put command in three-level three-place
linear stack. There are only two data item moves to finish the same commands in our
design, Fish-Bone stack. Figure 2-11(c) shows our Fish-Bone stack, and the state after
finishing the forth put command of continuous five put commands. Figure 2-11(b)
shows the state after the fifth put command. The item 5 was put at the second storage
location of the top level, storage location 1, and resulting the top level to full state.
Then, the item 3 was pushed to the upper level for the next potential put command.
For the same reason, the item 1 in the upper level was pushed to the outside

Fish-Bone stack for the next potential put command on the upper level by nature.

21

However, we use Fish-Bone stack as the leaf node for comparing with three-level

three-place stack, so we set some parameters of Fish-Bone stack to high for disable

the propagation to the outside of the Fish-Bone stack. Consequently, the item 1 in the

upper level of Fish-Bone stack is not pushed outside and does nothing. We save the

data item move of the item 1, so there are totally two data item moves to finish the

fifth put command in Fish-Bone stack.

top level
1-st level

2-nd leve

top level
1-st level

2-nd leve

3
2
(a)l
5
|
v
2 |3

(b)

top level 4 3

lower level m
(c) l

upper level(1 | 2 | 3

top level 4 |5 |

lower Ievelm

(d)

Figure 2-11 : The difference of internal data moves between 3-level 3-place linear stack and

Fish-Bone stack: (a)(b) The process of the fifth put command on 3-level 3-place linear stack (c)(d)

The process of the fifth put command on Fish-Bone stack

22

Chapter 3 Fish-Bone Stack

3.1 Motivations and Ideas

As mentioned in previous sectiono, there is a novel stack that can consume lower
power and can offer almost the same speed performance. We call it Fish-Bone stack
because of the likeness of the architecture of Fish-Bone stack between real

Fish-Bones.

3.1.1 Benefits form Reducing Data Item Moves

A key point of this thesis is to propose a novel architecture that can use less data
item moves to complete every put.and get command and consequently provide more
power-efficient performance. The less data item moves results in less power
consumption because of less charging.and-discharging process in transistors. We had
implemented a one-bit stack and compare. it to-other designs. The effect of the power
saving by reducing the internal data item moves will be enlarged in normal use case,
like an 8-bits data width stack, a 16-bit data width stack, even a 32-bit data width

stack.

3.1.2 A Solution with Reducing Data Item Moves

As mentioned above, we understand that the relation between data item moves
and the power consumption of a stack. In this section, the architecture of Fish-Bone
was shown to explain how to reduce the data item moves against almost perfect
design, three-level three-place linear stacks.

Figure 3-1 and Figure 3-2 shows two architectures for a simple comparison.

23

Figure 3-1 shows the data-path of three-level three-place linear stacks. It is
architecture with three levels of three-place linear stacks. The arrows mean the flow
of data, the circles mean data latches used for really store data items, and the squares
with a cross inside mean gates that control the pass of the data. The naming rules of
transmission gates which are controlled by corresponding GasP modules are trivial,
and are described below:

1) {pO, p1, p2} are transmission gates that control the pass of data form the
environment to the top level storage, and the number, 0, 1,and 2, is an
index for the order of storage location.

(2 {90, g1, g2} are transmission gates that control the pass of data form the
top level storage to the environment, and the number, 0, 1,and 2, is an
index for the order of storage location.

3) The words “s.” and *ss.” are used just to distinguish the different
transmission gates-those.are-in-different-level. Concatenating “s.” to {p0,
pl, p2, g0, g1, g2} means:the transmission gates that control the pass of
data between the top level three-place linear stack and 1-st level
three-place linear stack, and concatenating “ss.” means those that control
the pass of data between the 1-st level three-place linear stack an the
2-nd level three-place linear stack.

When an empty stack gets a put command, the GasP, p0, will be active, then the
corresponding transmission gate also marked pO0 in Figure 3-1 will be open to make
the data outside flow into the stack. And the data item is stored at the first storage
location, 0, in top-level three-place linear stack. The next put command will be put at
the second storage location in accordance with the specification of the FSM of the

three-place linear stack. Other more actions are mentioned in section 2.3.3.

24

éJZ - ss.go
.02 0

8
82 %CP sg ; ss.g

top level storage 1-st level storage 2-nd level storage

Figure 3-1 : The data-path of a three-levelthree-place linear stack

Figure 3-2 shows the data-path-of a Fish-Bone stack. The key difference between
a three-level three-place linear stack shown-in:Figure 3-1 is the depth from the
top-level. As same as the descriptions in-Figure 3-1, the naming rules in Fish-Bone
stacks are almost same. There are some paralleled transmission-gates near the spinal
canal marked with “c” in the end are control the pass of data between the environment
and the top-level of a Fish-Bone stack, like {upOc, dpOc}, {uplc, dplc}, {up2c, dp2c}
for put actions on the top level storage locations, and {ugOc, dgOc}, {uglc, dglc},
{ug2c, dg2c} for get actions on the top level storage locations. The paralleled
transmission gates not work at one time. There is only one transmission gate of them
active and the other is not. And, others are marked “u” or “d” in the end are used for
distinguish the transmission gates that control the pass of data between the top level
and the upper level or the lower level. Besides, the head character, “u” or “d”, of the

paralleled transmission gates on the spinal canal are used to distinguish the

25

transmission gates that are pass the data between the top level and the upper level or
the lower level in two conditions.

The depth is three maximally from the top level in a three-level three-place linear
stack, but the depth is only two maximally from the top level in a Fish-Bone stack.
Although there is just one improvement, this is a large improvement in percentage

view, 33%.

upper level storage ‘ ‘ ‘

X X X
pOulXt’ 40u plulX glu p2ulXl gZu
upOc dpOc uplc_.dpl up2c__dp2

XX

top level storage

pOd[X d pOd[X} §od pOd X} §yod

X X

lower level storage ‘ ‘ ‘

Figure 3-2 : the data-path of a Fish-Bone stack

Here is simple inference. Because of the same behaviors of the top levels in both
designs, we assume the total internal data movement is T for a random command
sequence. The internal data movement is the summary of T and data moves in the
other levels. Consider the three-level three-place linear stack. For a random command
sequence, the size can be infinite but countable. And, the commands passed from the

top level of stack are also infinite and countable. We assume the number of data

26

moves caused by these passed command as {s1, S2, S3, ..., Sn} respectively. And we
can conclude that each in {s1, S, s3, ..., Sp} is less than or equal to 2 by the
specification in previous section. Because of the same behavior of the top level in
both designs, the passed command from the top level is also same. And for the same

reason, we assume the number of data moves caused by those passed command in a

Fish-Bone stack as {f1, fp, f3, ..., fn} respectively. We can also conclude that each in
{f1, f2, f3, ..., fa} is less than 2 by the specification in the previous section. So, by
summarizing the data movements of both designs, we can easily conclude that the

date moves in a Fish-Bone stack is clearly less that in a three-level three-place stack.

3.2 Architecture of Fish-Bone Stacks

The architecture of a Fish-Bone stack is shown in Figure 3-2 previously. The
spinal canal contains three data storage locations at the joints that connect six
fishbone totally, and each fishbone contains-a-data storage location in the end. The
spinal canal is the top level of a Fish-Bene stack; the top half of the fishbone is the
upper level of a Fish-Bone stack; and the bottom half of the fishbone is the lower
level of a Fish-Bone stack. The data communication is only between the different
levels. And communications between different indexes of data storage locations are

not allowed.

3.2.1 The Internal Actions in Fish-Bone Stacks

The principles of the Fish-Bone stack design is to prepare a space for the next
potential put command and to prepare a data item for the next potential get command.
The design rules result in shorter time to complete a request when a Fish-Bone stack

gets one. Simple steps of internal actions are described below:

27

Put commands:

1)

()

(3)

A data item was put at a storage location indexed “i”” according to the
specification of the Fish-Bone stack.

One of two GasP modules, p(i+1)u (between the upper level of the stack
and the top level of the stack) and p(i+1)d (between the lower level of
the stack and the top level of the stack), will be active to empty out the
storage location for the next potential put command on the top level.
And, the data residing in the original storage location will be passed to
the second level if it is valid, where the additions are modulo 3.

One of two GasP modules, s.p(i+2)u and s.p(i+2)d, will be active to
empty out the storage location for the next put command on the second
level, upper level or lower lever. And,.the data residing in the original
storage location of-the.second level will-be passed outside of the stack if

it is valid, where the'additions-are-modulo 3.

Get commands: the actions are-just.opposite to the rules of put commands.

1)

()

(3)

A data item was get from a storage location indexed “i”” according to the
specification of the Fish-Bone stack.

One of two GasP modules, g(i+1)u (between the upper level of the stack
and the top level of the stack) and g(i+1)d (between the lower level of
the stack and the top level of the stack), will be active to pull out a data
item from the storage location of the second level for the next potential
internal get command on the top level if it is valid, where the additions
are modulo 3.

One of two GasP modules, s.p(i+2)u and s.p(i+2)d, will be active to pull

out a data item form the storage location of the second level for the next

28

potential internal get command on the second level, upper level or lower

lever, if it is valid, where the additions are modulo 3.

3.2.2 An Example of Executing A Small Command Sequence

In this section, a small command sequence applied to a Fish-Bone stack was
shown in Figure 3-3 and Figure 3-4. The command sequence consists of ten
continuous put commands with concatenating ten continuous get commands was
applied to a Fish-Bone stack. The process of put commands is shown in Figure 3-3,
and the process of get commands is shown in Figure 3-4.

In Figure 3-3(a), data item indexed 1 was put in the storage location indexed 0 of
the top level. There are no need to propagate the data residing in the storage location
indexed 1 of the top level to one of the second level and no need to propagate the data
residing in the one of the second level to outside of the stack because some
mechanisms are applied to control the need-of the propagation according to some
condition flags. The number of data:moves needed is only one. Data item indexed 2
was directly put in the storage location indexed 1 of the top level like the process of
the put of data item indexed 1 in Figure 3-3(b). The number of this put command is
also one. In Figure 3-3(c), data item indexed 3 was put in the storage location indexed
2 of the top level. Different from Figure3-3(a)(b), the data item residing in storage
location indexed 0 of the top level must be moved to the second level for the next
potential put command. It is not necessary to move the data residing the storage
locations of the second level to outside of the stack because the stack is used as the
leaf node here. Some parameters are set to make the stack consider that the outside
stacks are full and there is no capacity for more data. The behavior of the forth and the

fifth put command in the stack is almost the same as the third put command shown in

29

Figure 3-3(d)(e). The numbers of data movements involved by these two put
commands are both two. Figure 3-3(f)(g)(h) shows the sixth, seventh, and eighth put
commands. The behavior of them is similar to the previous three put commands. The
difference is that the second level means the lower level not the upper level here.
However, the numbers of internal data moves of them are still two. Figure 3-3(i)
shows the ninth put command applied to the stack. The data item is directly put into
the last space and no more internal actions are stimulated because some mechanisms
block these GasPs to active. So, the number of data movements involved by this put
command is one only. One more put command, the tenth put command, on the full
stack causes the overflow signal response shown in Figure 3-3(j).

The processes for get commands are counter to the process of put commands. In
Figure 3-4(a), data item indexed 9.was gotten from.the storage location indexed 2 of
the top level. There are no need-to pull the data residing in the storage location
indexed 1 of the second level to-the toplevel-and no need to pull the data outside into
stack because some mechanisms are applied.to-control the need of the propagation
according to condition flags. More details will be discussed in the next sections. The
number of data movements involved is only one. Data item indexed 8 was directly
gotten from the storage location indexed 1 of the top level like the process of the get
of data item indexed 9 in Figure 3-4(b). The internal data move of this get command
is also once. In Figure 3-4(c), data item indexed 7 was gotten form the storage
location indexed 1 of the top level. Different from Figure3-4(a)(b), the data item
residing in storage location indexed 2 in one of the second levels must be moved to
the top level for the next potential get command. It is not necessary to move the data
outside into the stack because the stack is used as the leaf node here. Some parameters

are set to make the stack consider that the outside stacks are empty and there is no

30

more data item outside. The behavior of the forth and the fifth put commands are
almost the similar to the third get command shown in Figure 3-4(d)(e). The numbers
of the internal data movement by these two get commands are both two. Figure
3-4(f)(g)(h) shows the sixth, seventh, and eighth get commands of the stack. The
behaviors of them are similar to the previous three get commands. The difference is
that the second level means the upper level not the lower level here. However, the
numbers of internal data moves of them are still two. Figure 3-4(i) shows the ninth get
command applied to the stack. The data item is directly gotten out of stack and no
more internal actions are stimulated because some mechanisms block these GasPs to
active. So, the number of data movements by this get command is one only. One more
get command, the tenth put command, on the empty stack causes the underflow signal

active response in Figure 3-4(j).

31

1 5 | 6
000 000
(a) (f)
1 2 7 6
000 000
(b) @)
2 |3 7 |8
(©) (h)
4 3 7 18 |9
(d) (i)
3OE YOO
4 |5 7 18 |9 | overflow
(€) ()

Figure 3-3 : Continuous put commands on an empty Fish-Bone stack

32

5
ccollece
4 underflow

Figure 3-4 : Continuous get commands on an empty Fish-Bone stack

33

3.3 The Implementation of Control Path

A finite state machine specifying all sequences of moves for Fish-Bone stacks
appears in Figure 3-5. All events represent moves between storage locations. A bar ‘|’
in a specification separates the alternative sequences of events, and a comma “,’
separates the paralleled sequences of events. The naming of the storage location is a
number concatenating a character to distinguish nine storage locations. The number
means the index of the level of stack, and the character decides which level, ”c” for
top level, “d” for lower level, and “u” for upper level. For example, condition full(2d)
means the full signal that states the storage location indexed 2 in lower level of a
Fish-Bone stack. Puts and gets on a Fish-Bone stack rotate through the storage
locations of the top level and the storage,locations of the two second levels in a
round-robin fashion, like the stack pointersiina.circular pointer implementation.
Furthermore, each internal action is performed on the‘two level of a Fish-Bone stack
only when necessary. More precisely;-only-when the-top level of a Fish-Bone stack
becomes full, an internal put action is perfoarmed on the second level of the Fish-Bone
stack, and only when the top level becomes empty, an internal get action is performed
on the second level of the Fish-Bone stack. Like the design in three-level three-place
linear stacks, unsuccessful put and get actions, denoted by pU and gU respectively, in
order to protect against overflow and underflow. An unsuccessful put action occurs
when the environment wants to put a data item in to the stack, but the stack is full.
The data item will be lost and the overflow signal will be set. An unsuccessful get
action occurs when the environment wants to get a data item from the stack, but the
stack is empty. The get action doesn’t cause any move and the underflow signal will
be set.

Initially all storage locations are empty, all output of GasP modules are set as

34

high to block their corresponding transmission gates, and all states that control the
flow the control path are set as low excluding the state E. In state E, representing the
empty stack with no data item in a Fish-Bone stack with nine storage locations, the
stack can execute a put action epOc on Oc or an unsuccessful get action gU. In state F,
representing the full stack, the stack can execute a get action fg2c on 2c or an

unsuccessful put action pU.

Put commands Get commands
NO N1 N2 N3 N4 N5 NO N1 N2 N3 N4 N5
Outside of stack Outside of stack
spOu | splu | sp2u sgOu | sglu | sg2u
Upper level Upper level
pOu plu p2u gOu glu g2u
Top level Top level
upOc | uplc | up2c ugOc | uglc | ug2c
Environment Environment
dpOc | dplc | dp2c | dg2c dgOc | dglc
Top level Top level
pld p2d pOd gld g2d g0d
Lower level Lower level
sp2d sp0d | spld | sgOd | sgld | sg2d
Outside of stack Outside of stack

Table 3-1 : The events stimulated by relative GasP modules in round-robin fashion and the data

flow controlled by the six states in Fish-Bone stacks

35

gu =2 E

ep0c 2 N1)

sp2d if full(2d)

pld if full(1c)

up0c 2 N1

sg0d if Ifull(0d)

gld if Ifull(1c)

dg2c 2 N5)

spOu if full(Ou) & full(sOu),

p2d if full(2c),

uplc 2 N2

sgld if !full(1d) & !'empty(sld)

g2d if Ifull(2c) & full(2d)

ugoc = if MHull(2u) & 'full(2d) then E
else NO)

splu if full(lu) & full(slu)

pOu if full(Oc) & 'full(Ou)

up2c »» if full(Ou) & full(0d) then F
else N3

sg2d if Mfull(2d) & lempty(s2d)

gOu if full(Oc)

uglc 2 N1)

sp2u if full(2u)

plu if full(lc)

dpOc 2 N4

sgOu if Ifull(Ou)

glu if !ull(lc)

ug2c 2 N2)

sp0d if full(0d)

p2u if full(2c)

dplc @ N5

sglu if Iull(1u)

g2u if full(2c)

dg0c 2 N3)

spld if full(1d)

pOd if full(Oc)

dp2c 2 NO

sg2u if full(2u)

g0d if Ifull(Oc)

dglc 2 N4)

gu 2> F

fg2c @ N5 }

Figure 3-5 : A Fish-Bone stack: Finite state machine specification

36

The specification stipulates that puts and gets rotate through the storage locations,
and that the top level moves data items to or from the second levels only when
necessary. There are six states used to control six different data passing shown in table
3-1. The data flow is always from the center, the environment, to the two ends. It
begins from the environment up to the top level, then upper level and finally to the
outside of stack, and in other direction, down to the top level, then lower level and
finally to the outside of stack. The repeated “top level” in Table 3-1 means the same
one, but the repeated “outside of stack” is for two different outside storages. There are
two types of GasP modules for put command and other two types of GasP modules
for get command designed for the same storage locations in the top level because
there are two different event group need to be fired at different time.

The specification of the FSM.is in Figure 3-5:and more easily to be understood
in Table 3-1. For example, when.in.state NO a.put command is executed, three internal
actions, upOc, pld and sp2d, will be possibly-active depending on the full condition
signals of relative storage locations.-On.the other hand, when a get command is
executed, three internal actions, dg2c, g1d, and sg0d, will be possibly active
depending on some other condition signals. When in state N1 a put command is
executed, three internal actions, uplc, p2d and spOu, will be possibly active depending
on the full condition signals of relative storage locations. On the other hand, when a
get command is executed, three internal actions, ugOc, g2d, and sg1d, will be possibly
active depending on the some other condition signals. When in state N2 a put
command is executed, three internal actions, up2c, pOu and splu, will be possibly
active depending on some condition signals. On the other, when a get command is
executed, three internal actions, uglc, gOu, sg2d, will be possibly active depending on

some condition signals. When in state N3 a put command is executed on the stack,

37

three internal actions, dpOc, plu and sp2u, will be possibly active depending on some
condition signals. On the other, when a get command is executed, three internal
actions, ug2c, g1u, sgOu, will be possibly active depending on some condition signals.
When in state N4 a put command is executed, three internal actions, dplc, p2u and
sp0d, will be possibly active depending on some condition signals. On the other, when
a get command is executed, three internal actions, dgOc, g2u, sglu, will be possibly
active depending on some condition signals. When in state N5 a put command is
executed, three internal actions, dp2c, p0d and spld, will be possibly active depending
on some condition signals. On the other, when a get command is executed, three
internal actions, dglc, g0d, sg2u, will be possibly active depending on some condition
signals.

For normal case in the specification of the FSM, the rules of the conditions that
restrict the respective GasP modules.are intuitional. The stack fires a GasP module,
pid or piu, after checking whether the.storage-location ic if full. The stack fires GasP
modules, spid or spiu, after checking whether.the storage locations id or iu is full
respectively. If the storage location ic is empty, there is no need to fire GasP module,
pid or piu. Because of the same reason, if the storage location, id or iu, is empty, there
is no need to fire GasP module, spid or spiu, respectively. The stack fires a GasP
module, gid or giu, after checking whether the storage location ic if empty. The stack
fires GasP module, sgid or sgiu, after checking whether the storage location id or iu is
empty respectively. If the storage location ic is full, there is no space for the gotten
data of the firing GasP module, gid or giu. Because of the same reason, if the storage
location, id or iu, is full, there is no space for the gotten data of the firing GasP
module, sgid or sgiu, respectively. There are some special additional conditions in

states N1 and N2.

38

During executing put command in state N1, an additional condition, !full(sOu), of
an internal action spOu is needed to be checked because there is a case that the stack
has the last two space with all full outside stacks but normally it doesn’t. In this case,
spOu can’t be fired because no more space can be put in the outside stack of storage
location Ou. And then, the stack enters state N2. There is also a special case when the
stack has one only space with all full outside stacks. The firing of GasP module, pOu,
is restricted by an additional condition, !full(Ou), because the previous put action
doesn’t move the data outside the stack and the two data residing in Oc and Ou are
valid. And, no more moves in this case. Besides, GasP module, splu, can’t be fired
because of the same reasons. Every space is used for storage in the almost full stack,
and the sp1u can’t be fired or some data item in the outside stack of storage location
1u will be overwritten. Furthermore; GasP module;.up2c, is fired after checking the
fullness of the both side of the storage location, Ou.and Od. If they are both true, the
stack enters state F. If not, the stack immediately enters state N3.

During executing get command in:state N2, also an additional
condition, 'empty(s2d), of an internal get action sg2d is needed to be checked because
the similar reasons in above paragraph. In the case, sg2d is not needed to be fired
because the almost empty stack with last two data items has no data item outside the
stack of storage location 2d but normally it doesn’t. And then, the stack enters state
N1. A special case when the stack has the last one data item with all empty outside
stacks. The firing of GasP module, g2d, is restricted by an additional condition,
full(2d), because there is no data item in storage location 2d in almost empty stack
with the last one data item inside. Furthermore, GasP module, ugOc, is fired after
checking the emptiness of the both side of the storage location, 2u and 2d. If they are

both true, the stack enters state E. If not, the stack immediately enters state NO.

39

s hs G-s ds ds s
Ry —HRHEL R EY ARETSL i RO
(pzsidwaipsig iny (pisipdwaipz(Dnng Cpadiing (pzdiing (piiny Cpanng
(1] 5]] d d d
|:%No.. -o%ro.. uh._uo; ||:%Nn_.. |Qm; dr4 LS dtH
(pEpunga(o Z)Insi NNy foming oziny f1Jns ool
1oH GH oH H 10K = M —FLM
agh- azh aLh agh azd ad apgd .
n_N %I .n_zN mu.. uz—. —M_.. ._wz_”_ —“u.. uzN —“_n_.. ._uz—. _...n_.. z= —“_n_u. m__”_z m....n
ﬁ 1nd
[CEILE: Cral e] (CIRTTTE=T W
N 1M 0N N H LN
3 4
nd azhn aLbn aghn agzdn apdn agdn nb
4 d N o N o jvz o4 + N did j_‘z dr4 N dH 3 IED)
ngh nih ngh ngd nid ngd
N Mool N o1 eH 1 Mo o1 N di
@zNng G Lnngi Goddlingi aznn G ding (napingsta gipns
nzh's nib-s ngh-s nzd-s npd-s ngd-s
= T L o N o N i N di LN e
(nZ)in (nnngi (nonngi (nzing (s ngie(n 1) iny (o inge(n g ing

Figure 3-6 : the diagram of control path converted from FSM of Fish-Bone stack
40

Figure 3-6 shows the converted control path from the finite state machine in

Figure 3-5.

3.4 Real Implementation of A Fish-Bone Stack

In this section, each component that composes a Fish-Bone stack will be
described. First, a top view of a Fish-Bone stack in section 3.4.1. Then, each kind of

components will be shown in following sections 3.4.2 to 3.4.6

3.4.1 Top View of A Fish-Bone Stack

In Figure 3-7, a roughly whole design is shown in top view and all of the
symbols will be implemented as real circuits. The dashed squares represent a
Fish-Bone stack, so there are 7 Fish-Bone stacks in. Figure 3-7. The six small ones are
the outside stacks, but we disable the function-n our later experiments. The symbol
drawn with a square and a cross-inside-represents GasP modules. The symbol drawn
with a circle and a character “L” inside represents storage locations. A triangle
represents a condition signal that affects the activity of the beside GasP module. And
the condition signals are maintained by some condition maintainers. More detailed
design can be associated with Figure 3-6 in associatively thinking. The corresponding
GasP modules are named as the same words. There is a note for those twelve GsaP
modules, {spiu, spid, sgiu, sgid}. Those GasP modules in Figure 3-6 are designed for
the control signals as the put or get command signals on the outside stacks, so they are

not marked in Figure 3-7.

41

AN AN AN
pOuXt g0u plulXl’ glu p2ulXt gZu
/\ /\ /\
pOc dpOc uplc dpl up2c__dp2

p0Od X} §0d pOd Xk wod p0Od X} §0d
A \XA A XA A \XA

Figure 3-7 : a top view of a complete Fish-Bone stack with both control-path and data-path

3.4.2 Implementation of GasP Modules

The idea of designing GasP modules is same as the mention is section 2.3.4.
There are several kinds of GsasP modules used in a Fish-Bone stack. The design
methodologies are similar. However, there are some difference between our designs
and the original ideas for the functionalities. Figure 3-8 shows the modification from

the original design mentioned in Jo Ebergen’s research to our GasP modules.

42

Condition
input

Condition
| | input

input——
resetting

left input——

——ight input
GasP resetting

mOdUIe_—Next state

(true)
—1—Next state
(false)

output (gate | condition
controller)

input

Gasp2:
s.g0u
s.glu
s.g2u
gOu
glu
g2u
s.p2u
p2u
s.pod
s.pld
s.p2d
p0d
pld
p2d
s.g0d
god

(d)

Gaspn
e.pOc
upOc
uplc
dpOc
dplc
dp2c
uglc
ug2c
dg0c
dglc
dg2c
f.g2c

(b)

(€)

L1
i

Gasp3:
s.pOu
s.plu
pOu
s.gld
s.g2d
g2d

Gaspc
ugOc
up2c

(©)

Figure 3-8 : the modification from the original designs

(f)

Because of the requirement of speed performance we extract the current state

input as mentioned in section 2.3.4 outside the GasP modules. There are a special

43

circuits designed for handling them. The reasons are discussed in the next chapter.
The methodology of the extraction is using states to control the passing of the input
command signal into GasP modules. The left input (command signal) resetting are
reverse by using a P-type transistor to set the input high ,and the right input (current
state) resetting are unchanged. Besides these significant modifications, other simple
modifications of each used GasP modules are shown in the figure. Figure 3-8(a)
shows a diagram of a GasP module and it possible in/out ports. In Figure
3-8(b)(c)(d)(e)(f), the left side of each block is the original design and the right side is
the design after modifying. The dashed circles show the position of modifications.

There are some simple modifications:

@ An additional keeper composed of two serial inverters with connecting
the head and the tail is-used at the upper dashed circle in each design for
keeping the voltage for.a long time. The-design in original concept in
GasP module will cause:a function-error in a long time because of the
power dissipation power in.MOS:

(b) Some buffers are added at needed positions. In GasP network design,
there is an important concept- keeping the time delay same for every
gate, or keeping the time delay at the right range. The time delay of a
gate is not long enough with UMC 0.18 process in the original design, so
we add some buffers at needed positions shown at the bottom of each

block.

3.4.3 Implementation of State Keeper

State keepers are designed to keep the voltage of states. It is a one port circuit

with two serial inverters (the tail one is weak inverter) and the head and the tail are

44

connected together. The detailed circuit is shown in Figure 3-9.

inout_feeper

=
%

weak]

Figure 3-9 : the circuit of a keeper

3.4.4 Implementation of Data Storage

The data storages are implemented with two-normal inverters, one weak inverter
and a serial similar transmission-gate device. The.two port design is for the perfect
output for data. And the similartransmission gate device is used to weaken the

feedback electric current provided-by.the weak inverter.

in_kﬁeper
9

q eak
<{

out_k eﬁer

198 ke

Figure 3-10 : the implementation of data storage
45

3.4.5 Implementation of Condition Maintainer

There are many full condition signals used in Fish-Bone stacks. These signals are
maintained by several condition maintainers. There are four kinds of condition
maintainer depending on the number of factors that affects the condition signal. For
example, if there are n GasP modules that are active to make a storage location empty,
the number of the control input in the left side of the condition maintainer will be n.
Besides, if there are m GasP modules that are active to make a storage location full,
the number of the control input the right side of the condition maintainer will be m.

The circuit is implemented with a data storage at the center, some N-type
transistors at the right side and some P-type transistors at the left side. The data
storage is used for keeping the condition status. One of the N-type transistors is active
to set the storage high, and one of the P-type transistors is active to set the storage low.
The init port is used to initialize-the status-of-the.condition maintainer, and Q an Qbar
are output ports for state and bar of the state respectively.

init

b -

@ﬂbar Q

Figure 3-11 : the implementation of condition maintainer

46

Chapter 4 Implementation Improvements

We proposed the details of the real implementation of Fish-Bone stacks in
chapter 3. Figure 3-6 shows the block diagram of the control path. There are twenty
loads of GasP modules needed to be driven by each of put and get signals. The so
large loads to be charged and discharged need quite time to complete. And, the
version of design can not commit the time requirement in communicating with other
stacks at high speed. So there are some improvements needed in real implementation
of Fish-Bone stacks to improve the speed performance without unproportionate power
consumption.

Basically, there are some small components, like inverters for inverting two
possible value {0,1}, N-type tramsistors for providing perfect strong low signal with
high signals, and P-type transistors for providing perfect strong high signal with low
signals. Besides, NOR gates are-used to merge condition signals. There are two kind
of usage on condition signals. If the condition signals are used to affect states, the
condition signal is connected to the bottom of the GasP modules. If the condition
signals are used to affect the passing of data flow, the condition signal is connected to
the upper of the GasP modules. The difference is shown in Figure 4-1. Figure 4-1(a)
shows the first case, and Figure 4-1(b) shows the other. When need, a signal is needed
to be merged from two condition signals, and we use NOR gates to merge them.

To down low the loads of the put and get signal on GasP modules, we use a trick
to solve the problem. Besides solving the problem, less power consumption is another
gift brought by that modification. We use states to control the need of other GasP
modules and use transmission gates to block the electric currents to pass into the stack.
Precisely, we extract the circuits of current state out of GasP modules, and use

47

transmission gates to isolate the passing of current between put signal offered by the

environment and the real need in Fish-Bone stack. So that, we save a lot of power

dissipation on the useless charging and discharging in the modified Fish-Bone stack.

Because of these modifications, some original GasP module designs with low active

property are reversely used. Some components are added for providing better signals.

Figure 4-1 : The difference of two kind handling with condition signals : (a) condition signals

affect the passing of data flow (b) condition signal affect next state

IS o

]

-
-

S~

The final circuit is shown in Figure 4-2. The figure is just for viewing the

dimension. And the details have been talked about in previous sections.

48

+

]

\o
=
=
j‘
i,
=g
H
L

[
]
]
)
2
[}
]

%‘%

Ik 12 + H BEE] i
- b :
P! 1
mi # L it
ar L i M xf
=) . I oy
f fand + and 4 e + N + ._.EI + Ay
e 1 in orp aptn E L]
T 1l T 1

z
zi

+

Figure 4-2 : the view of the final circuit of a Fish-Bone stack
49

Chapter 5 The Extension of Stack Place

There are some methods to extend the storage of stack on Fish-Bone stack design.

In this chapter, we progress step by step to reveal the better solution to extend.

5.1 Straightforward Extension

There is an intuitional solution to extend to the storage of Fish-Bone stacks. The
method is just to enlarge the length of the spinal canal of Fish-Bone. However, the
enlarged Fish-Bone stacks result in larger loads that put and get signals need to drive.
So longer time is needed to complete a put or get command.

The other direction to extend the storage is to deepen the level to a Fish-Bone
stack. The solution is not adoptedbecausethe-effect.of power saving brought from
that idea is similar to that brought from recursive extension talked about later but

more complex controls are need 10 be-handle:

5.2 Extension in Tree Structure

The idea is from Jo Ebergen’s research. A two-place linear stack is applied to
construct the tree stack. As a binary tree structure, a more level brings about two times
the storages of the original one. Fish-Bone stacks are used as the leaf nodes. The
maximal internal data movements are decided by the number of levels, and there are
three levels in a three-level three-place linear stack but two in a Fish-Bone stack. So
in both designs with 42 places, the maximal internal data movements in Jo Ebergen’s
design is 5 but 4 in the stack with Fish-Bone stacks. Besides, there are more than one
kinds of components used in constructing the stack. And, more timing problems
caused by several different components will happen. However, there is a more simple

50

design method to extend storage.

5.3 Extension in Recursive Structure

A simple solution may have the better power performance is in a recursive
structure. A structure is shown in Figure 5-1. Each square with nine grids inside is a
Fish-Bone stack. The structure with 63(9*7) storage locations with maximal four
internal data movements is more power-efficient than the extension in the tree
structure in ratiocination. However, the rapid increasing in storages is not always

suitable for every design.

A A 4 A A A A A 4
viv]w viv]w viv]w
% A A
AlA \4\ Al AA A/ Al A
v VvV Yy vy Vv Yy VYV
X |[v] X
A Al X
A A 4 A A A A A 4
vv / viv[wv ‘*\ v]wv
[4 v)
AlA A Al A4 AlA A
vV Vv oY vV VvV YV vV Vv oY

Figure 5-1 : Extension in a recursive structure

5.4 Tree Structure Used in Power Consumption Comparison

For the ease to compare with the hybrid stack design in Jo Ebergn’s research. We
chose the structure described in section 5.2 for power comparison. A 42-place stack
consisting of a two-level tree stack structure and four Fish-Bone stacks are used in our
experiments for power comparison. And we take the structure for later discussion in

the following section.

51

Chapter 6 Power Consumption Evaluation

We implemented the Fish-Bone stacks in transistor level and simulated them in
the UMC 180nm process (simulation of dynamic dissipation only). Besides, the
simulator is HSPICE 2003-09-sp1. In order to be able to compare with the “Hybrid
stack”, we re-implemented the design with the same requirements as possible. The
goal of our design is for lower power consumption, so we just replaced the three-level
three-place linear stacks with our design, Fish-Bone stacks. In power consumption
experiment, we set the speed at 2Ghz (almost the limit of the ability, but some
tolerances is reserved) to both designs, or 500ps time interval between two commands.
There are some results in the following sub-sections. A comparison of one three-level
three-place linear stack and one Fish-Bone stack will:be shown in section 6.1. In
section 6.2, the counts of data moves in both two designs are compared. Furthermore,
the results of power consumption‘are.shown and.their comparison in section 6.3.

Finally, there is an easy analysis represented in section 6.4.

6.1 Power Consumption Testing on A Three-level Three-place
Linear Stack and A Fish-Bone Stack

For getting the power consumption of the leaf node, we extract out these designs
and test the power consumption only. There are four special data sequence and only
one stack command sequence chosen for both designs. A rough difference of power
consumption is shown in this experiment. The results of HSPICE simulator are shown
in Table 6-1. The stack command sequence is composed of ten continuous put
commands and concatenating ten continuous get commands. The tenth command and
the twentieth command of the command sequence are for the testing of underflow and

52

overflow protections. In the results shown in Table 6-1, the difference of the average
power consumption is quite large. It is about 50% of the average power consumption

of a Fish-Bone stack.

) 3-level 3-place linear| Fish-Bone stack)
input data Difference (mW)
stack (mW) (mW)
16.760 11.412 5.348
1110001110
146.86% 100% 46.86%
15.989 10.453 5.536
1111111111
152.96% 100% 52.96%
15.523 10.146 5.377
0000000000
153.00% 100% 53.00%
16.822 11.567 5.255
1010101010
145.43% 100% 45.43%
16.274 10.895 5.379
average
149.56% 100% 49.56%

Table 6-1 : The difference of averagepower-consumption between one 3-level 3-place linear stack

and one Fish-Bone stack

6.2 Power Consumption Testing on.Both Stacks with Different
Leaf Node Designs

In the section, we concern the power consumption of two stacks with different
leaf node stacks, three-level three-place linear stacks and Fish-Bone stacks. For the
ease to compare with the “Hybrid stack”, we replace the leaf node stacks with our
Fish-Bone stacks. The number of storage locations is still 42. Besides, we set some
initial values, so that the Fish-Bone stacks can be used as leaf node. All the conditions
gotten from the outside of the Fish-Bone stack are set as high,
like 'full(sOu), 'empty(s1d), full(slu), and 'empty(s2d). We randomly generate 100
test data with random combination sized 100 of put and get command sequences as
the input. Table 6-2 shows the results from simulations. The table exhibits that the

average power consumption of a Hybrid stack with three-level three-place linear
53

stacks (HS) is averagely 120.46% to a Hybrid stack with Fish-Bone stacks (FB) and

that of a linear stack (LS) is averagely 1315.47% to FB. The extent of the ratio of

averagely gained power here seems lower than that in the previous section. That’s

because the frequently used components are tree stacks, not the leaf nodes.

Consequently, the ratio of the gained power is lower than that with comparing the leaf

nodes only.
Hybrid stack
with
No. Hybrid stack Fish Bone Linear stack |Difference to Prg/Prg Difference to PLyPrg
(HS) (mW) CS) (mW) | FB (mW) FB (mW)
stack(FB)
(mW)
1 27.320 24.341 325.17 2.979 112.24% 300.829] 1335.89%
2 28.394 24.730 353.17 3.664 114.82% 328440 1428.10%
3 29.740 25.033 322.26 45707 118.80% 297.227) 1287.34%
4 30.850 25.350 342.56 5.500 121.70% 317.2101 1351.32%
5 32.900 26.640 344.06 6.260 123.50% 3174201 1291.52%
6 27.260 23.620 359.35 3.640 115.41% 335.730] 1521.38%
7 27.650 24.110 33978 3.540 114.68% 315.670] 1409.29%
8 30.980 25.680 360:24 5300 120.64% 334.560 1402.80%
9 28.590 24.750 335.77 3.840 115.52% 311.020] 1356.65%
10 26.560 23.510 311.76 3.050 112.97% 288.2501 1326.07%
11 31.520 25.772 321.84 5.748 122.30% 296.068| 1248.80%
12 31.780 25.780 342.65 6.000 123.27% 316.870] 1329.13%
13 27.630 24.441 333.98 3.189 113.05% 309.539] 1366.47%
14 31.160 25.865 342.98 5.295 120.47% 317.115 1326.04%
15 31.170 25.810 324.12 5.360 120.77% 2983101 1255.79%
16 34.250 26.903 350.13 7.347 127.31% 323227 1301.45%
17 33.104 26.649 350.35 6.455 124.22% 323701 1314.68%
18 32.310 26.283 334.45 6.027 122.93% 308.167| 1272.50%
19 33.060 26.660 339.60 6.400 124.01% 312.9401 1273.82%
20 30.910 25.552 328.79 5.358 120.97% 303.238| 1286.75%
21 31.670 26.127 335.87 5.543 121.22% 309.743] 1285.53%
22 27.840 24.428 341.12 3.412 113.97% 316.692 1396.43%
23 32.300 26.318 336.68 5.982 122.73% 310.362| 1279.28%

54

24 27.150 24.132 355.27 3.618 114.99% 331.138| 1472.19%
25 29.360 24.383 316.68 4977 120.41% 292297 1298.77%
26 33.040 26.135 342.53 6.905 126.42% 316.395 1310.62%
27 30.670 25207 364.47 5.463 121.67% 339.263| 144591%
28 29.660 24.887 344.38 4773 119.18% 319.493| 1383.77%
29 33.110 20.857 339.50 6.253 123.28% 312.643| 1264.10%
30 31.320 25474 316.84 5.846 122.95% 201.366| 1243.78%
31 31.980 26.530 333.19 5450 120.54% 306.660] 1255.90%
32 32.570 25.450 346.25 7.120 127.98% 320.800] 1360.51%
33 30.880 26.000 344.20 4.880 118.77% 3182001 1323.85%
34 29.220 25.380 337.85 3.840 115.13% 312.470| 1331.17%
35 31.320 25.820 325.79 5.500 121.30% 299.9701 1261.77%
36 29.490 25430 356.75 4.060 115.97% 331.320| 1402.87%
37 27.910 24.920 336.74 2.990 112.00% 311.820| 1351.28%
38 30.400 25.170 337.53 5230 120.78% 312.358] 1340.99%
39 28.900 25.370 337.68 3.530 113.91% 312313 1331.03%
40 30.510 25.290 35822 3220 120.64% 332.930] 1416.45%
41 31.690 26.490 32221 5:200 119.63% 2957201 1216.35%
42 33.280 26.730 330.75 6.550 124.50% 304.020| 1237.37%
43 32.110 26.240 343,68 5870 122.37% 317.4401 1309.76%
44 31.980 26.170 335.50 5.810 122.20% 309.330| 1282.00%
45 29.130 24.840 358.76 4.290 117.27% 333.920| 1444.28%
46 30.650 25.240 320.92 5410 121.43% 205.680| 1271.47%
47 31.710 25.960 347.52 5.750 122.15% 321560 1338.67%
48 30.980 25.640 325.28 5.340 120.83% 299.640] 1268.64%
49 32.370 25.960 331.46 6.410 124.69% 305.500] 1276.81%
50 31.650 26.330 319.73 5.320 120.21% 293.400| 1214.32%
51 31.000 25.750 329.09 5.250 120.39% 303.340| 1278.02%
52 28.020 24.360 340.81 3.660 115.02% 316.450| 1399.06%
53 33.180 26.190 34597 6.990 126.69% 319.780| 1321.00%
54 31.260 26.160 352.69 5.100 119.50% 326.530] 1348.20%
55 28.540 24.860 338.63 3.680 114.80% 3137701 1362.15%
56 32.340 26.350 357.25 5.990 122.73% 330.900] 1355.79%
57 33.110 26.430 333.90 6.630 125.04% 307.420] 1260.95%
58 31.320 26.220 346.46 5.100 119.45% 320.240] 1321.36%
59 34.400 26.810 356.44 7.590 128.31% 329.630] 1329.50%

55

60 28.550 24.960 351.97 3.590 114.38% 327.010| 1410.14%
61 32.350 26.180 325.41 6.170 123.57% 2992301 1242.97%
62 31.490 26.000 355.51 5.490 121.12% 329.5101 1367.35%
63 32.820 26.630 318.64 6.190 123.24% 292.010] 1196.55%
64 29.400 25.280 321.29 4.120 116.30% 296.010| 1270.93%
65 32.050 25.690 355.14 6.360 124.76% 329.450| 1382.41%
66 32.580 26.510 32141 6.070 122.90% 294.900| 1212.41%
67 33.070 26.560 346.19 6.510 124.51% 319.630] 1303.43%
68 31.830 26.240 360.37 5.590 121.30% 334.130] 1373.36%
69 31.420 26.180 361.52 5.240 120.02% 335.340] 1380.90%
70 28.060 24.930 325.58 3.130 112.56% 300.650] 1305.98%
71 32.730 26.470 334.30 6.260 123.65% 307.830] 1262.94%
T2 33.210 26.280 328.80 6.930 126.37% 302.520| 1251.14%
73 27.210 23.680 363.10 3.530 114.91% 339.420| 1533.36%
74 31.060 25.920 317.78 5.140 119.83% 291.860 1226.00%
75 30.760 25.410 344.06 5.350 121.05% 318.650] 1354.03%
76 29.190 24.940 34731 4250 117.04% 3223701 1392.58%
71 33.590 26.720 326.54 6.870 125.71% 299.8201 1222.08%
78 26.550 23.810 323.65 2.740 111.51% 299.840| 1359.30%
79 30.850 25.670 330:93 54 80 120.18% 305.260] 1289.17%
80 28.890 25.160 346.50 34730 114.83% 321.400| 1377.42%
81 32.510 26.290 318.06 6.220 123.66% 291.770| 1209.81%
&2 31.260 25.970 329.33 5290 120.37% 303.360] 1268.12%
83 32.800 26.210 331.51 6.590 125.14% 305.300] 1264.82%
84 31.050 25.750 341.02 5.300 120.58% 315270 1324.35%
85 28.870 25.110 347.66 3.760 114.97% 322.550] 1384.55%
86 32.300 26.340 32245 5.960 122.63% 296.1101 1224.18%
&7 28.330 25.040 325.87 3.290 113.14% 300.830| 1301.40%
88 31.150 26.030 339.89 5.120 119.67% 313.860| 1305.76%
89 33.580 26.890 331.67 6.690 124.88% 304.780| 1233.43%
90 33.760 26.900 34498 6.860 125.50% 318.080] 1282.45%
91 32.020 26.060 316.73 5.960 122.87% 290.670] 1215.39%
92 32.060 26.150 32397 5910 122.60% 297.8201 1238.89%
93 29.460 24.730 343.55 4.730 119.13% 318.820] 1389.20%
94 31.500 26.070 329.58 5430 120.83% 303.5101 1264.21%
95 32.450 26.460 331.51 5.990 122.64% 305.050] 1252.87%

56

96 33.070 26.250 326.83 6.820 125.98% 300.580] 1245.07%
97 30.820 25.580 325.22 5.240 120.48% 299.6401 1271.38%
98 33.350 26.760 354.30 6.590 124.63% 327.540] 1323.99%
99 31.190 25.780 332.87 5410 120.99% 307.090| 1291.19%
100 33.510 26.710 337.66 6.800 125.46% 310.950| 1264.17%
Aveg. 30.985 25.699 337.683 5.286 120.46% 311.98| 1315.47%

Table 6-2 : Results of average power consumption between the Hybrid stack with 3-level 3-place

linear stacks (HS), the Hybrid stack with Fish-Bone stack (FB), and the linear stack (LS)

6.3 Data Movements Counting

We implemented a utility to simulate the behavior of HS and FB and to count the

internal data moves in HS and FB designs. The generated 100 random data are

simulated for the analysis of the relation between the power consumption and the

number of their data movements. Furthermore, the saved data movements are also

concerned because we consider that is the-main factor to affect the extent of power

consumption. We reorder the index with-the increasing number of data movements for

easily observing the relation. Results are shown.in:Table 6-3.

Power
No. Difference Pus/PER Data moves in | Data moves in | Difference of
between HS HS FB data moves
and FB (mW)
1 2.98 112.24% 332 328 4
70 3.13 112.56% 336 332 4
39 3.53 113.91% 348 343 5
87 3.29 113.14% 340 333 7
78 2.74 111.51% 324 316 8
37 2.99 112.00% 336 327 9
10 3.05 112.97% 315 303 12
22 3.41 113.97% 332 320 12
60 3.59 114.38% 338 326 12
2 3.66 114.82% 337 325 12
80 3.73 114.83% 344 332 12
73 3.53 114.91% 323 311 12
85 3.76 114.97% 341 329 12
24 3.62 114.99% 329 317 12
52 3.66 115.02% 335 323 12
6 3.64 115.41% 320 308 12

57

36 4.06 115.97% 350 338 12
13 3.19 113.05% 334 320 14
55 3.68 114.80% 340 326 14
64 4.12 116.30% 349 335 14
33 4.88 118.77% 364 350 14
58 5.10 119.45% 372 358 14
7 3.54 114.68% 330 315 15
9 3.84 115.52% 340 325 15
34 3.84 115.13% 354 338 16
69 5.24 120.02% 368 352 16
45 4.29 117.27% 350 332 18
3 4.71 118.80% 357 339 18
76 4.25 117.04% 352 332 20
93 4.73 119.13% 353 333 20
54 5.10 119.50% 368 348 20
41 5.20 119.63% 374 354 20
74 5.14 119.83% 366 346 20
50 5.32 120.21% 376 356 20
88 5.12 119.67% 374 353 21
51 5.25 120.39% 372 351 21
31 5.45 120.54% 378 357 21
8 5.30 120.64% 364 342 22
40 5.22 120:64% 360 338 22
14 5.30 120.47% 372 349 23
28 477 119.18% 360 336 24
79 5.18 120.18% 368 344 24
82 5.29 120.37% 372 348 24
25 4.98 120.41% 348 324 24
91 5.24 120.48% 366 342 24
84 5.30 120.58% 369 345 24
15 5.36 120.77% 369 345 24
38 523 120.78% 358 334 24
48 5.34 120.83% 364 340 24
94 543 120.83% 372 348 24
20 5.36 120.97% 363 339 24
62 549 121.12% 376 352 24
21 5.54 121.22% 374 350 24
46 541 121.43% 367 343 24
27 5.46 121.67% 359 335 24
11 5.75 122.30% 374 350 24
92 591 122.60% 376 352 24
86 5.96 122.63% 382 358 24
95 5.99 122.64% 385 361 24
91 5.96 122.87% 376 352 24
66 6.07 122.90% 378 354 24
30 5.85 122.95% 370 346 24
44 5.81 122.20% 374 349 25
99 541 120.99% 376 350 26

58

75 5.35 121.05% 368 342 26
35 5.50 121.30% 373 347 26
68 5.59 121.30% 372 346 26
4 5.50 121.70% 362 336 26
56 5.99 122.73% 379 353 26
29 6.25 123.28% 386 360 26
47 5.75 122.15% 378 351 27
43 5.87 122.37% 384 357 27
61 6.17 123.57% 384 357 27
23 5.98 122.713% 382 354 28
63 6.19 123.24% 386 358 28
32 7.12 127.98% 386 358 28
100 6.80 125.46% 396 367 29
18 6.03 122.93% 384 354 30
12 6.00 123.27% 377 347 30
71 6.26 123.65% 388 358 30
42 0.55 124.50% 392 362 30
98 6.59 124.63% 392 362 30
65 6.36 124.76% 376 346 30
5 6.26 123.50% 386 355 31
19 6.40 124.01% 392 361 31
67 6.51 124.51% 392 361 31
81 6.22 123166% 386 354 32
83 6.59 125.14% 394 362 32
49 6.41 124.69% 382 349 33
71 0.87 125.71% 396 363 33
89 6.69 124,88% 394 359 35
90 6.86 125.50% 396 361 35
17 0.46 124.22% 395 359 36
96 6.82 125.98% 397 361 36
72 6.93 126.37% 394 358 36
26 0.91 126.42% 394 358 36
53 6.99 126.69% 392 356 36
16 7.35 127.31% 404 368 36
59 7.59 128.31% 400 364 36
57 0.63 125.04% 398 361 37
Avg, 5.29 120.46% 367.6 344,82 22.78

Table 6-3 : The relation between the power consumption and the number of their data

movements

6.4 Used Transistors Counting

Although the Fish-Bone stack design is more complex than the design of the

original hybrid stack, it is surprising that the number of used transistors is not more

59

than that used in the original hybrid stack. The numbers of the transistors used by two
stacks are in Table 6-4. Although the more complex controls are needed to be handles
and more GasP modules are needed, the number of transistors used is not increasing.
The hybrid stack with three-level three-place linear stacks (HS) used 5198 transistors
and the hybrid stack with Fish-Bone stacks (FB) used 4902 transistors only.
Furthermore, the stack with Fish-Bone stacks got the better power performance, about
83% of the power consumed by HS.

The tricky situation occurs because there are many GasP modules used in
Fish-Bone stacks are just for generating the control signals, not for the next state, and
few transistors are needed to complete those GasP modules. Besides, lots of
components are extracted out of the GasP modules. However, Table 6-4 doesn’t
provide precise information on area cost because the transistor used in both design are
not uniform. The sizes of transistors.are turned for.committing the delay requirement

in both designs. So, the information in Table.6-4.is just for a reference.

Hybrid stack:with 3-level Hybrid stack with Linear
3-place linear stacks (HS) Fish-Bone stacks (FB) | stack (LS)
5198 4902 N/A
Used transistor count
106.58% 100% N/A
Average power 30.985 25.699 337.683
consumption (mw)
120.46% 100% 1315.47%

Table 6-4 : the counting of both stacks with different leaf node designs

6.5 Analysis of Result from Simulations

Results from simulations are in Table 6-1 to Table 6-4. The idea that to reduce
data movements can low down the power consumption is proved through these

experiments. Figure 6-1 shows the trend of the power consumption with the

60

increasing difference of the data moves between HS and FB. The x axis is the ratio of
P(HS) and P(FB) (P(HS) is the power consumed by HS and P(FB) is the power
consumed by FB).The curve is not always increasing, but it goes in an increasing
fashion. The reason is that some data items are actually not moved in some of the
input commands because the target and the source are same value. And, there is no

charge and discharge on these relative transistors.

40
35

30
25 F
20 |

diff. of moves

15
10 ¢

5

0
110.00% 115.00% 120.00% 125.00% 130.00%

PHS)/PEB) (%)

Figure 6-1 : the trend of the relation between the difference of moves and the P(HS)/P(FB)

61

Chapter 7 Conclusions and Future Works

In this thesis, we proposed a power-efficient stack, named Fish-Bone stack, with
fewer internal data movements during executing stack commands. Fish-Bone stack
can execute stack commands within maximally two internal data movements in a
dimension three Fish-Bone stack. We consider that the fewer internal data movements
result in less power consumption and we have proved that with the results from
simulations by HSPICE.

The implementations of Fish-Bone stacks do not include wire delay information.
The weakness of that without wire delay information caused the imprecise results
gotten from simulations in experiments. - However, we reserved a tolerance on speed
when designing the Fish-Bone stack. The average power consumption of a hybrid
stack with Fish-Bone stacks with generated 100 random combination and sized 100
stack command sequences and randem data input is25.699mW, and the value is about
83% to the average consumed power of a hybrid stack with three-level three-place
linear stacks with no more transistors. Besides, in the experiment of power
consumption with leaf stacks only, the results shows average 49.56% power
consumption gained to a three-level three-place linear stack by a Fish-Bone stack.

Then about the future works, more precise results from simulations can be gotten
with the layout of the designs. Also, we consider that using Fish-Bone stacks only will
lead to less power consumption as mentioned before. An ides of an extension in aster
fashion was shown in section 5.3. And, there is only one kind of component to
recursively compose a stack design. The easy and simple extension may cause some
new problems in timing. The designs are only clock-less new and other properties of

asynchronous circuits need more researches to reveal more.
62

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

Reference

J. Ebergen, D. Finchelstein, R. Kao, J. Lexau, and D. Hopkins, "A fast and
energy-efficient stack,” Asynchronous Circuits and Systems, 2004.
Proceedings. 10th International Symposium on, pp. 7, 2004.

S. Hauck, "Asynchronous design methodologies: an overview," Proceedings
of the IEEE, vol. 83, pp. 69, 1995.

T. H. Y. Meng, R. W. Brodersen, and D. G. Messerschmitt, "Automatic
synthesis of asynchronous circuits from high-level specifications,”
Computer-Aided Design of Integrated Circuits and Systems, IEEE
Transactions on, vol. 8, pp. 1185, 1989.

C. Fu-Chiung, S. H. Unger, and M. Theobald, "Self-timed carry-lookahead
adders," Computers, IEEE Transactions on, vol. 49, pp. 659, 2000.

A. Efthymiou, W. Suntiamorntut, J. Garside, and L. E. M. Brackenbury, "An
asynchronous, iterative implementation.of the original Booth multiplication
algorithm,” Asynchronous.Circuits.and.Systems, 2004. Proceedings. 10th
International Symposium:on, pp. 207, 2004.

T. Werner and V. Akella; " Counterflow pipeline based dynamic instruction
scheduling,” Advanced ResearchiinfAsynchronous Circuits and Systems, 1996.
Proceedings., Second International Sympasium on, pp. 69, 1996.

H. van Gageldonk, K. van Berkel, A. Peeters, D. Baumann, D. Gloor, and G.
Stegmann, "An asynchronous low-power 80C51 microcontroller,” Advanced
Research in Asynchronous Circuits and Systems, 1998. Proceedings. 1998
Fourth International Symposium on, pp. 96, 1998.

N. Parlangeau and A. Marchal, "AMULET: automatic multisensor speech
labelling and event tracking: study of the spatio-temporal correlations in
voiceless plosive production,” 1996. ICSLP 96. Proceedings., Fourth
International Conference on, vol. 3, pp. 1926, 1996.

T. Nanya, Y. Ueno, H. Kagotani, M. Kuwako, and A. Takamura, "TITAC:
design of a quasi-delay-insensitive microprocessor,” Design & Test of
Computers, IEEE, vol. 11, pp. 50, 1994.

A. Takamura, M. Imai, M. Ozawa, I. Fukasaku, T. Fujii, M. Kuwako, Y. Ueno,
and T. Nanya, "TITAC-2: an asynchronous 32-bit microprocessor," presented
at Design Automation Conference 1998. Proceedings of the ASP-DAC '98.
Asia and South Pacific, 1998.

P. Lavoie, D. Haccoun, and Y. Savaria, "A systolic architecture for fast stack

63

sequential decoders,” Communications, IEEE Transactions on, vol. 42, pp.
324, 1994,

[12] J.C. Ebergen and S. Gingras, "An asynchronous stack with constant respone
time.," Technical Report CS-93-11, Computer Science Dept., Univ. of Waterloo,
Canada, 1993.

[13] A.J. Martin, "A synthesis method for self-timed VLSI circuits," In Proc.
International Conf. Computer Design (ICCD), pp. 224-229, 1987.

[14] M. B. Josephs and J. T. Udding, "Implementing a stack as a delay-insensitive
circuit,” in Asynchronous Design Methodologies, vol. A-28 of IFIP
Transactions, S. Furber and M. Edwards, Eds.: Elsevier Science Publishers,
1993, pp. 123-135.

[15] M. M. Mano and C. R. Kime, "Instructure set architecture,” in Logic and
comuter design fundamentals. Upper Saddle River, New Jersey: Prentice-Hall,
Inc., 2000, pp. 482-486.

[16] C.E. Molnar, I. W. Jones, W. S. Coates, J. K. Lexau, S. M. Fairbanks, and I. E.
Sutherland, "Two FIFO ring performance experiments,” Proceedings of the
IEEE, vol. 87, pp. 297, 1999.

[17] I. Sutherland and S. Fairbanks, "GasP:.a minimal FIFO control,"”
Asynchronous Circuits and Systems, 2001: ASYNC 2001. Seventh International
Symposium on, pp. 46, 2001.

[18] J. Ebergen, J. Gainsley, and P. Cunningham; “Transistor sizing: how to control
the speed and energy consumption of a circuit,” Asynchronous Circuits and
Systems, 2004. Proceedings. 10th International Symposium on, pp. 51, 2004.

64

