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魚骨:無時脈高能源效率堆疊 

研究生：沈銘峰          指導教授：陳昌居 

 國立交通大學 資訊工程學系 

摘要 

 低耗電的設計在現在以及未來都是設計的主要方針，尤其在不失速度效能的

前提下，低耗電的設計更獨具其優勢。過去有些追求速度效能的研究設計，但是

其能源消耗都不盡理想。在此論文中，我們提出一個無時脈高能源效率的堆疊設

計以及實作。基於 GasP 的設計模組概念作延伸，利用主從暫存概念，以及增加

暫存，盡可能減少資料在堆疊內部裡的搬運次數來減低能源的消耗。和[1]的設

計方法比較，在 42 個一位元儲存空間的堆疊實驗中，於 HSPICE 在速度 2 GHz

下以 UMC 0.18 製程模擬結果指出，根據不同的輸入命令序列其平均耗電量可以

省電達該設計約百分之十七。然而與線性堆疊比較下，實驗之平均耗電量魚骨堆

疊更只有其設計之百分之八點三左右。魚骨堆疊的每個堆疊動作的執行時間和儲

存空間、資料的長度及命名序列長度沒有關係，其時間是固定的，而其能源消耗

則和堆疊命令序列有絕對的相關性。 
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Fish-Bone: A Clock-less Power-efficient Stack 

 
Student : Ming-Fung Shen Advisor : Dr. Chang-Jiu Chen 

Department of Computer Science and Information Engineering 

National Chiao-Tung University 

Abstract 
Low-power circuit design is the fashion of the future design guideline, especially 

not losing the speed performance. So far some research on stack is performed. 

However, their power performances are not good enough. The purpose of this paper is 

to present a power-efficient stack with clock-less design technique and its 

implementation. Based on GasP asynchronous control family from Sun Microsystems 

laboratories, we reduced the data movements in stack with the concept of master-slave 

temporal storages and n-place linear storages to low down the power consumption. 

For the ease of comparing with other targets in experiment, we implemented our stack 

with the same number of storages as the target’s one. Results from HSPICE 

simulations with UMC 0.18 model file show that our stack saved averagely 17% in 

power consumption with 100 random command sequences that are sized 100 

compared to the re-implementation of original design in [1]. More than that, we 

gained averagely 91.39% in power consumption compared to linear stack. The cycle 

time is independent of the number of data items in the stack and the data width. It has 

constant time property. The energy consumption per stack operation depends on the 

sequence of stack operations. 
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Chapter 1 Introduction 

The goal of this thesis is to implement an asynchronous fast and more 

power-efficient stack. In this chapter, first, a briefly introduction to asynchronous 

design is depicted. After that, we introduce the need of the fast and power efficient 

stack hardware design. Third, obvious implementations and some other related 

researches done in this field are exhibited. Then, we introduce the idea of our design, 

Fish-Bone. Finally, the organization of a Fish-Bone stack is roughly described. 

1.1  Benefits with Asynchronous Design 

Asynchronous circuits keep the one of two major assumptions, signals are binary, 

but remove the other assumption that time is discrete. The asynchronous design style 

has several possible benefits: 

No clock skew - Clock skew is the difference in arrival time of the clock signal at 

different parts of the circuit. Because of the definition of asynchronous 

circuits, no globally distributed clock, we don’t need to worry about the 

clock skew. However, system with synchronous design often slows down 

their circuits to accommodate the skew. 

Average-case instead of worst-case performance - Many asynchronous systems 

sense only a computation has completed, allowing them to exhibit 

average-case performance. Synchronous circuits must wait until all possible 

computations have completed, yielding worst-case performance. 

No global timing issues - In synchronous system, the system clock, and thus the 

system performance, is decided by the critical path. So, most portions of a 

circuit must be optimized to achieve the highest clock rate. Since no globally 
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timing issues in asynchronous circuits and the speed is dictated by the circuit 

path currently in operation, the optimization for speed performance of rarely 

used portions of the circuits can be ignored without adversely affecting 

whole system performance. 

Lower power consumption - Most synchronous circuits need to toggle clock lines, 

and pre-charge and discharge signals, in portions of a circuit unused in the 

current computation. However, in asynchronous circuits, the transitions only 

in used areas involved the current computation consume the power. 

Some other potential advantages detailed discussed in Scott Hauck article [2], 

like better technology migration, robustness, etc. High-speed asynchronous design is 

increasingly becoming an attractive alternative to full-custom synchronous design 

because of its freedom from clock distribution and clock skew problems, and some 

other advantages. However, we focus on the low power property in our design, a 

power-efficient stack. We call that Fish-Bone because of the likeness between the data 

movement diagram and the rest of a fish stake we left on our dinner table. 

Because of lots of advantages, a lot of asynchronous designs have been 

researched. For examples, basic gates like Muller-C [3],etc., Small components like 

asynchronous adders [4] and multipliers [5],etc., architecture designs like counterflow 

architecture [6],etc., whole system designs like Philips 8051 [7], Amulet processor 

family [8], TITAC [9, 10], etc.. 

1.2  The Core of Stack Machines 

Although virtually every processor today uses a load-store register architecture, 

stack architectures attract attention again due to the success of Java. The 

intermediate language of Java, the Java bytecodes, is stack based and therefore a , is 

also stack based. Faster stack hardware can archive high performance during 



 3

executing stack operations. More than that, the power consumption efficiency is 

needed to be put more attention. The core of a whole stack machine is a hardware 

stack. And high percentage of power consumption caused from the core [11]. How 

about a fast and power-efficient stack instead of the core? 

1.3  Obvious Implementations and Prior Works 

An obvious implementation is a RAM with top-of-stack pointer. The trivial 

solution causes the long cycle time and high energy consumption because of the large 

fan-in loads that must be driven for each put and get action, although the high density 

of RAMs consumes little area per data item. Furthermore, the cycle time and energy 

consumption grows with the size of the RAM. 

The second trivial solution is implemented with a linear array of cells, where 

each cell can store data items. The linear of cells may offer a shorter cycle time 

because cells communicate only with their neighbors. More, the first cell of the array 

always contains the data item on top of the stack. The contact windows between this 

stack and the environment is only the top cell, so stack commands have only small 

loads to drive. However, a potential disadvantage of such an implementation is that 

the average power consumption of stack command sequence, put actions and get 

actions, can still be quite high, because the involved cells is the whole chain of the 

linear array. To complete a put or get command causes all items in the array to move. 

Both of the above two implementations can be designed easily with synchronous 

design style. The second one can be implemented with synchronous design for 

parallel data movements in a linear array, or be implemented with asynchronous 

design but more latch cost or more complex control circuits are needed. Using 

master-slave latch architecture for cells of the linear array is a solution to remove the 

need of the distributed clock signals, but the disadvantage of power consumption is 
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still quite high [12]. 

Jo Ebergen has proposed another high speed and energy performance stack [1]. It 

is an asynchronous stack design based on GasP asynchronous control circuit family. 

The low power and high speed properties hold a special attraction to us. The energy 

consumption per stack operation only depends on the sequence of stack operations, 

and the cycle time is independent of the number of data items in the stack and the data 

width. The high performance stack consists of a tree stack and some three-place linear 

stacks. A GasP network compatible design was developed, and the protection of 

underflow and overflow was also implemented. 

Other related works on stacks includes Alain Martin’s lazy stack [13] and stack 

design by Mark Josephs et al. [14] However, these designs have a longer cycle time 

and the cycle time depends on the size of the stack. 

1.4  More Power-efficient Stacks 

Let us concern the trend from the linear array type stacks to n-place linear stacks. 

The main idea is to reduce the data movements in stacks. The architecture of linear 

array of cells stack naturally causes all cells operate, even those cells are not needed 

to be involved. That is, if a stack has n storages, it means that a command, put or get, 

causes n internal operations. In Jo Ebergen’s article, ”a fast and energy-efficient 

stack”, the number of internal data moves is improved to 1 to 5 in a 42-place stack 

example. The average number of internal data moves is about 3.67.  

We would focus the attention on the power consumption. How to save more 

power? In this thesis, a more power-efficient stack with underflow and overflow 

protections was implemented. Results from HSPICE simulations show that it gained 

averagely 17.06% in power consumption compared to Jo Ebergen’s one. Moreover, its 

consumed average power is just averagely one over thirteen to asynchronous linear 
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stacks. We will begin with considering how many data movements can be reduced, 

how to reduce the data movements, and how to save more power.
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Chapter 2 Related Works 

In this chapter, we will give some backgrounds and go into the detail about some 

related works. In the firs two sections, intuitional implementations mentioned in the 

end of the previous chapter are described. Next, a hybrid stack is discussed and finally 

we give the life to the Fish-Bone stack. 

2.1  Stack with RAM Implementation 

 

Figure 2-1: a stack with RAM implementation. The address bus has quite loads in memory stack 

to drive, and the data communication between memory stack and system bus needs longer time 

because data outside needs to be passed to all memory stack cells.  

Figure 2-1 shows a portion of a memory organized as a stack, and the details are 

discussed in [15]. The diagram shows the simple RAM implementation of stack. Put 

and get commands affect stack pointer, and the result of a decoder fan out to each 

place of the memory stack corresponding to make one of the places in memory stack 

Stack 
pointer 

Addr. 

Memory stack 

System bus 
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work. Because of the large loads that must be driven for each put and get action, the 

cycle time and energy consumption can be high. Data movement between memory 

stack and system bus costs also much time and energy because the same reason, large 

fan out. Furthermore, the cycle time and energy consumption grows with the size of 

the memory stack in RAMs. However, the implementation has an advantage on area 

cost because of the high densities of RAMs, such an implementation consumes very 

little area per data item. In next section, a solution to the problem, long cycle time and 

high energy consumption caused by large fan-out will be described. 

2.2  Stack with Linear Array of Cells 

A problem caused by large fan-out and large fan-in can be solved with this 

implementation, stack with linear array of cells. There is only one window that 

contacts to the environment. This is a design that Jo Ebergen has proposed [12]. 

Figure 2-2(a) illustrates all data movements of successful puts and gets of a cell. 

Figure 2-2(b) shows a simple stack which consists of a linear array of cells. In Figure 

2-2(a), the master-slave storage architecture was shown. Each cell has one slave 

storage location and one master storage location. Each put action p moves the 

incoming data item from the predecessor (the predecessor of the first cell is the 

environment) into the slave location. Then, the internal action causes action s.p puts 

the data item residing in the master location into the next cell, or called sub-stack. 

Finally, action x moves the data item form the slave location into the master location. 

The cell’s behavior then repeats until the end of the linear array of cells. When get 

command acts, the slave location doesn’t need to work. Every get action g moves the 

data item residing in the master location to the predecessor, and subsequently action 

s.g get a data item from the sub-stack. Like the procedure of put action, the cell’s 
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behavior then repeats until the end of the linear array of cells.  

 

Figure 2-2 : A simple linear stack: (a) A cell and its related data movements (b) A simple stack 

with linear array of cells 

Such an implementation may have a short cycle time, because communications 

are local and involve only small loads. However, there are several shortcomings. First, 

each put cycle contains three internal actions, p, s.p, and x, which takes longer time 

and costs more energy then two internal actions, g and s.g, in a get cycle. Second, 

each put and get command on the cell propagates to the sub-stack. Consequently, 

every put action results in pushing every data item in each cell deeper into the stack, 

and every get action results in pulling every data item in each cell further out of the 

stack. That is the power consumption per put action or get action is proportional to the 

number of items in the stack. Furthermore, each cell contains two storage locations 

(a) Cell with data movements 

 
 
 
        master 

 
slave 

System 
 bus 

(b) Asynchronous linear array of stack 

p 

g 

x s.p 

s.g 
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but store only one data item in this implementation. The shortcoming brings in the 

increasing area demands. Finally, the simple implementation doesn’t have underflow 

and overflow protections of the stack: a put action on a full stack loses the data item at 

the bottom of the stack, and a get on an empty stack will yield an unknown value. 

The design idea we get here is the constant time response and local 

communication for low power, although there are still shortcomings needed to be 

solved. 

2.3  A Hybrid Stack Consists of Tree Stacks and Three-level 
Three-place Linear Stacks 

Hybrid stack is an asynchronous stack was proposed by Jo Ebergen [1]. The 

implementation consists of some linear arrays of cells, but each one has n storage 

locations and each storage location can hold a data item. More precisely, the stack 

consists of two kind of n-place linear stack, one is 2-place linear stack, or called tree 

stack and the other is three-level three-place linear stack. Some ideas are useful to 

improve the performance and solve the problems that were resulted in by the simple 

implementation of linear array of cells, or call it 1- place linear stack. First, put and 

get commands on the stack and sub-stack rotate through the storage locations of the 

cell in a round-robin fashion. Furthermore, the cell performs actions on the sub-stack 

only when necessary. That is, only when the cell become full, the cell performs a put 

action on the sub-stack, and only when the cell becomes empty, the cell performs a 

get action on the sub-stack. And through this idea, lots of unnecessary data item 

movements are removed. Second, this is a stack with overflow and underflow 

protections. 
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2.3.1 A Design Based on GasP Modules 

GasP is an asynchronous control circuit family. Some years ago Molnar [16] 

articulated the basic control requirement for an asynchronous pipeline. Molnar’s 

“asP*” control system used a flip-flop in each PLACE to record its state and a NAND 

gate in each PATH to detect the conditions prerequisite to action. The words 

“PLACE” and “PATH” is used to distinguish two kinds of circuits: a PLACE holds 

data whereas a PATH controls the flow of data between PLACEs. Molnar’s asP* 

circuit was symmetric in form, and so its forward latency and reverse latency were the 

same. The last three letters in the name GasP acknowledges its asP* ancestry. Figure 

2-3 describes a simple example of GasP network that forms a FIFO queue and their 

actions [17]. Each PATH circuits controlling the flow of data between stages must act 

only when both its predecessor PLACE is valid and its successor PLACE is also valid. 

In this example, the predecessor PLACE is valid when FULL, and the successor 

PLACE is valid when EMPTY.  

As Molnar pointed out, a PATH must accomplish things when it fires: 

(1) It must make data latches momentarily transparent. 

(2) It must declare its predecessor stage EMPTY. 

(3) It must declare its successor stage FULL. 

(4) To reset the output of the series N-type transistors to the inactive. 

GasP circuits store each state on a single wire that is called state conductor. In 

this GasP pipeline, each PLACE has a state conductor to indicate whether it is FULL 

or EMPTY. It is simplest to understand GasP circuits using the state encoding HI = 

EMPTY, LO = FULL for all state conductors. 
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Figure 2-3 : GasP with self-resetting NAND 

In Figure 2-3, a complete action performs like below: 

(1) when the keepers of the successor and the predecessor of a PATH is 

correspondingly stated EMPTY and FULL. 

(2) The latch drive signal from inverter [gc] is a shirt positive pulse suitable for 

making ht N-type transistor pass the gates at the bottom of the figure 

momentarily transparent to copy data forward. 

(3) Inverter [c] and N-type transistor [d] drive the drive the successor state 

conductor LO, meaning FULL. 

(4) P-type transistor [y] drives the predecessor state conductor HI, meaning 

EMPTY. 

(5) Delaying inverter at the top of the figure and a P-type transistor reset the 

NAND function after a short controllable delay. 

We used transistor sizing for the GasP modules for the correct functionality of the 

keeper keeper keeper 

data latch data latch 
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design. the theory behind sizing transistors is based on Logical Effort and 

explained in [18]. This theory permits us to calculate quickly the transistor sized 

of each gate for given gate delays more easily. However, the theory is researched 

for synchronous circuits. So the theory is used for giving the initial guess value 

more precisely. Then we must use simulator to check the correctness of the 

circuits.  

2.3.2 Tree Stacks 

The hybrid stack in [1] consists of a tree stack and some three-level three-place 

stacks. And a tree stack consists of several n-place cells, like the nodes in a linear 

stack. The number, n, of places in a cell is at least 2. Every cell has n sub-stack, one 

for each place. To keep the tree stack simple and to obtain a short cycle time, the 

original design was chosen n = 2. A node performing a tree stack appears in Figure 

2-4 along with two sub-stacks.  

 
Figure 2-4 : A two-place tree stack: (a) Cell and sub-stack with data movements (b) Data path 
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1 
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The behavior of each tree cell with respect to put and get command is similar to 

that of the linear stack cell. When using a two-place cell, like the example in Figure 

2-4, the puts and gets rotate through the place 0 and 1. After the cell gets a put 

command and puts a data item in place i, the cell puts the data item residing in place 

i+1, if any, into sub-stack i+1. Similarly, after the cell gets a get command and gets a 

data item from place I and place i-1 is empty, the cell gets a data item for place i-1 

from the sub-stack i-1, where additions are modulo 2 because of the rotating use of 

the cell. 

The tree stack is easily implemented with GasP modules converted from FSM. 

Figure 2-5 shows the FSM specification and all possible sequences of puts and gets. 

In the case, {E, F, N0, N1, P0, P1, G0, G1} are states kept in keepers formed by a 

latch, and {p0, p1, g0, g1, s0.p0, s0.p1, s0.g0, s0.g1, s1.p0, s1.p1, s1.g0, s1.g1} are 

event controlled by GasP modules.  

 
Figure 2-5 : A two-place tree stack: Finite state machine specification. 

2.3.3 Three-level Three-place Linear Stacks 

Different type of stacks that compose a hybrid stack is three-level three-place 

E  =  (  p0   N1 
  |  gU   E ) 
N0 =  (  p0   P1  
  |  g1   G0 ) 
N1 =  (  p1   P0 
  |  g0   G1 ) 
F  =  (  pU   F  
  |  g1   N1 ) 
P0 =  (  s0.p0  N0 
  |  s0.p1   N0 
  |  s0.pU   F  ) 
P1 =  (  s1.p0  N1 
  |  s1.p1   N1 ) 
G0 =  (  s0.g0  N1 
  |  s0.g1   N1 ) 
G1 =  (  s1.g0  N0 
  |  s1.g1   N0 
  |  s1.gU   E  ) 
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linear stacks. The three-level three-place stacks play the roles of the main storage of a 

hybrid stack, so the three-level three-place stacks are placed at the leaf of the tree. 

There are two directions to extend the storage, hierarchically extension (place) and 

vertically extension (level). However, Jo Ebergen chose three-level and three-place 

for his design for ease and because of some analysis. There is some analysis in his 

article. Figure 2-6 shows a three-level three-place stack. Three one-level three-place 

linear stacks serially compose a three-level one. The behavior is like tree stacks. Puts 

and gets on the stack and sub-stack rotate through the storage locations of the cell in a 

round-robin fashion. And each cell performs actions only when necessary. Initially, 

the state empty, E, is specially set as high for waiting the coming put or get command. 

Like the first state description in figure 2-7, two possible commands may come. Put 

command comes to put a data item in storage location 0 and set state N1, or get 

command comes as the gU action in FSM specification and keep the state E high. 

Then, in state Ni when the environment puts an item in location i of the cell, the cell 

checks that the neighbor location i+1 is empty for a potential next put action, where 

the additions is modulo 3. On the one hand if storage location i+1 is full, then the cell 

puts the item residing in the storage location i+1 into its corresponding storage 

location of sub-stack i+1 and enter state N(i+1), and on the other if the storage 

location i+1 is empty, them the cell directly enters state N(i+1). The get commands 

follow the similar rules. In state F, the stack cell can execute a get action g2 on 

storage location 2 or an unsuccessful put action pU. Then, in state Ni, when the 

environment gets a data item form storage location i-1, the cell checks that the 

neighbor location i-2 is full for a potential next get action form the environment, 

where the minus is modulo 3. On the one hand if storage location i-2 is empty, then 

the cell gets an item from the sub-stack for storage location i-2 and enters state N(i-1), 



 
 

15

and on the other if storage location i-2 is full, then the cell enters state N(i-1). 

 

 
Figure 2-6 : A three-level three-place linear stack: (a) cell and sub-stack with data movements (b) 

3-level 3-place stack and data movements 

 

Figure 2-7 : A three-place linear stack cell: Finite state machine specification. 

2.3.4 The Conversion from FSM to GasP Modules  

Figure 2-8 gives simple examples of the conversion form FSM to GasP modules. 

A GasP module can be identically designed for some unique functions. It bases on a 

basic structure, a NAND gate like with resetting output ability. Besides, every 

optional addition, like (1)(2)(3)(4) in the figure, can be added to basic GasP modules 
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when they are needed to commit some functions. Initially, the GasP event is set to 

high, the left input is set to low, the right input is set to high for waiting the command 

coming from the left input. The controlled components by GasP modules are low 

active in normal. Besides, the condition maintainers are not included in the GasP 

design. Precisely, there is an extra combinational circuit that maintains the condition 

signals according to some related GasP events. There are sometimes not only one 

condition needed in a GasP module, we can use basic logic gate, AND gates or OR 

gates, to merge those signals. 

Figure 2-8(b) shows the added wires and components needed for non-resetting 

input port and resetting input port. Figure 2-8(c) shows the added components needed 

for non-resetting input port, resetting input port and next state port. Figure 2-8(d) 

shows the added components needed for two side resetting input ports and two next 

state ports with a condition. As mentioned before, the w/l ratio of transistors in GasP 

modules are needed to be concerned for the correctness of functionalities. Too many 

added components will lead to slow response of the output of the GasP module. The 

loads of a transistor MOS is about 4 or less times to it fan-in in suggestion. There are 

a lot of different GasP modules according to different added components. Sometimes 

we need to reverse the active type, high to low or low to high, to commit our design 

requirements, so some components of N-type transistors will be replace with P-type 

transistors and some components of P-type transistors will be replace with N-type 

transistors. 
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Figure 2-8 : the converting from FSM to GasP module: (a) The basic structure of a Gasp module 
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(b) Use N-type transistor to reset input, and do nothing for non-resetting input (c) More than case 

(b), use a P-type transistor to set next state. (d) A GasP module with a condition signal. 

2.3.5 A Hybrid Stack 

For the benefit from the advantages offered by two types of stack, three-level 

three-place linear stacks and tree stacks, a hybrid stack had been constructed as shown 

in Figure 2-9.  

Some advantages are offered from tree stacks:  

(1) Less data movements per cycle: Each put or get action cycle of one cell 

contains ate most two data moves. Here, the cell means a node of a tree 

stack or a level of a 3-level 3-place linear stack. 

(2) Annihilation of propagating puts and gets: Each put or get action can 

only involve one path of the tree to be pushed down into or pulled up 

from the stack by a cell. Consequently, the total number of data moves in 

the tree stack is logarithmic in the number of items in the stack. 

(3) No waste in storage locations: Each cell of tree stacks has two places 

and each place can hold a data item. 

(4) With underflow and overflow protections 

Some advantages are offered form 3-level 3-place stacks: 

(1) Less data movements per cycle: it is the same as tree stack node 

described as the mention above. 

(2) Annihilation of propagating puts and gets: A put action propagates 

down sub-stack only when the cell has 2 items. Similarly, a get action 

propagates down the sub-stack only when the cell has 1 item. 

(3) No waste in storage locations: it is also the same as tree stack node 

described as the mention above. 
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(4) With underflow and overflow protections 

In the example of Figure 2-9, the hybrid stack is formed as a tree, and there are 

42 storage places. The range of the number of internal data moves is from 1 to 5. for 

example, the number, 1, occurs when executing a put command with empty stack and 

when executing a get command with full stack. In the worst case, there are five 

internal data moves because of three level structure of the stack and two more data 

moves may be needed in the leaf stack. 

 

Figure 2-9 : a hybrid stack with 42 storage places consists of a tree stack and 3-level 3-place 

linear stacks. 

However, we can not use one of two type stack only to compose a suitable size 

stack. If we choose tree stacks as the components, the too deep depth will lead to 

more internal data moves in executing a put or a get command than that in hybrid 

stack type. On the other, if we choose only 3-level 3-place linear stack as the 

components, the extension on storage locations will be a problem. 

3-level 3-place linear stack Tree stack 
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2.4  The First Breath of Fish-Bone Stacks 

Almost every thing is complete in hybrid stack design, which is a design with 

basic underflow and overflow protections, efficiently using each storage locations, 

and reduced data moves of a cell in a command cycle. However, the energy 

consumption seem not so perfect. We focus on the power consumption of the 3-level 

3-place linear stack, and ignore the tree stack which is designed for enlarging storage 

locations. We find that the number of data moves is the key point. Less data item 

moves leads to less power consumption. The maximal number of data item moves in 

the design of 3-level 3-place linear stack node is three because there are three levels to 

propagate. How about less data moves in a new design? 

 

Figure 2-10 : the structures of two type of stack: (a) Three-level three-place linear stack (b) 

Fish-Bone stack 

A solution was proposed in this thesis. The key difference between the 

three-level three-place linear stack and Fish-Bone stack is the design of the 

remainders besides their top level as shown in Figure 2-10. Each storage location of 

the top level has more than one storage location to push into or pull from in Fish-Bone 

stack, upper level and lower level, but there is only one storage location for 

top level 

1-st level 

2-nd level 

upper level 

top level 

lower level 
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three-level three-place linear stack. 

An advantage offered from the new design is the less internal data item moves 

during executing a stack command. And, Figure 2-11 shows an easy case that a 

command needs less data moves in a leaf node of a hybrid stack. For easily explaining 

the difference, we only take the leaf node, three-level three-place linear stack, to 

compare with our design, Fish-Bone stack. A case with continuous five put commands 

applied to an empty stack and the process of applying the fifth put command. Figure 

2-11(a) shows a three-level three-place linear stack, and the state after finishing the 

forth put command of continuous five put commands. The number in the grids means 

the order of data item that was put into, and the empty grids means no occupancy of 

those storage locations. Figure 2-11(b) shows the state after the fifth put command. 

The item 5 was put at the second storage location of the top level, storage location 1 

(the naming of the storage locations is form 0 to 2), and resulting the top level to full 

state. Then, the item 3 was pushed to next level for the next potential put command. 

For the same reason, the item 1 in the second level was pushed to the third level for 

the next potential put command on the second level three-place linear stack. There are 

totally three data item moves to finish the fifth put command in three-level three-place 

linear stack. There are only two data item moves to finish the same commands in our 

design, Fish-Bone stack. Figure 2-11(c) shows our Fish-Bone stack, and the state after 

finishing the forth put command of continuous five put commands. Figure 2-11(b) 

shows the state after the fifth put command. The item 5 was put at the second storage 

location of the top level, storage location 1, and resulting the top level to full state. 

Then, the item 3 was pushed to the upper level for the next potential put command. 

For the same reason, the item 1 in the upper level was pushed to the outside 

Fish-Bone stack for the next potential put command on the upper level by nature. 
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However, we use Fish-Bone stack as the leaf node for comparing with three-level 

three-place stack, so we set some parameters of Fish-Bone stack to high for disable 

the propagation to the outside of the Fish-Bone stack. Consequently, the item 1 in the 

upper level of Fish-Bone stack is not pushed outside and does nothing. We save the 

data item move of the item 1, so there are totally two data item moves to finish the 

fifth put command in Fish-Bone stack. 

 

Figure 2-11 : The difference of internal data moves between 3-level 3-place linear stack and 

Fish-Bone stack: (a)(b) The process of the fifth put command on 3-level 3-place linear stack (c)(d) 

The process of the fifth put command on Fish-Bone stack 
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Chapter 3 Fish-Bone Stack 

3.1  Motivations and Ideas 

As mentioned in previous sectiono, there is a novel stack that can consume lower 

power and can offer almost the same speed performance. We call it Fish-Bone stack 

because of the likeness of the architecture of Fish-Bone stack between real 

Fish-Bones. 

3.1.1 Benefits form Reducing Data Item Moves 

A key point of this thesis is to propose a novel architecture that can use less data 

item moves to complete every put and get command and consequently provide more 

power-efficient performance. The less data item moves results in less power 

consumption because of less charging and discharging process in transistors. We had 

implemented a one-bit stack and compare it to other designs. The effect of the power 

saving by reducing the internal data item moves will be enlarged in normal use case, 

like an 8-bits data width stack, a 16-bit data width stack, even a 32-bit data width 

stack. 

3.1.2 A Solution with Reducing Data Item Moves 

As mentioned above, we understand that the relation between data item moves 

and the power consumption of a stack. In this section, the architecture of Fish-Bone 

was shown to explain how to reduce the data item moves against almost perfect 

design, three-level three-place linear stacks.  

Figure 3-1 and Figure 3-2 shows two architectures for a simple comparison. 
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Figure 3-1 shows the data-path of three-level three-place linear stacks. It is 

architecture with three levels of three-place linear stacks. The arrows mean the flow 

of data, the circles mean data latches used for really store data items, and the squares 

with a cross inside mean gates that control the pass of the data. The naming rules of 

transmission gates which are controlled by corresponding GasP modules are trivial, 

and are described below: 

(1) {p0, p1, p2} are transmission gates that control the pass of data form the 

environment to the top level storage, and the number, 0, 1,and 2, is an 

index for the order of storage location. 

(2) {g0, g1, g2} are transmission gates that control the pass of data form the 

top level storage to the environment, and the number, 0, 1,and 2, is an 

index for the order of storage location. 

(3) The words “s.” and “ss.” are used just to distinguish the different 

transmission gates those are in different level. Concatenating “s.” to {p0, 

p1, p2, g0, g1, g2} means the transmission gates that control the pass of 

data between the top level three-place linear stack and 1-st level 

three-place linear stack, and concatenating “ss.” means those that control 

the pass of data between the 1-st level three-place linear stack an the 

2-nd level three-place linear stack. 

When an empty stack gets a put command, the GasP, p0, will be active, then the 

corresponding transmission gate also marked p0 in Figure 3-1 will be open to make 

the data outside flow into the stack. And the data item is stored at the first storage 

location, 0, in top-level three-place linear stack. The next put command will be put at 

the second storage location in accordance with the specification of the FSM of the 

three-place linear stack. Other more actions are mentioned in section 2.3.3. 
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Figure 3-1 : The data-path of a three-level three-place linear stack 

Figure 3-2 shows the data-path of a Fish-Bone stack. The key difference between 

a three-level three-place linear stack shown in Figure 3-1 is the depth from the 

top-level. As same as the descriptions in Figure 3-1, the naming rules in Fish-Bone 

stacks are almost same. There are some paralleled transmission-gates near the spinal 

canal marked with “c” in the end are control the pass of data between the environment 

and the top-level of a Fish-Bone stack, like {up0c, dp0c}, {up1c, dp1c}, {up2c, dp2c} 

for put actions on the top level storage locations, and {ug0c, dg0c}, {ug1c, dg1c}, 

{ug2c, dg2c} for get actions on the top level storage locations. The paralleled 
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transmission gates that are pass the data between the top level and the upper level or 

the lower level in two conditions.  

The depth is three maximally from the top level in a three-level three-place linear 

stack, but the depth is only two maximally from the top level in a Fish-Bone stack. 

Although there is just one improvement, this is a large improvement in percentage 

view, 33%. 

 

Figure 3-2 : the data-path of a Fish-Bone stack 
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moves caused by these passed command as {s1, s2, s3, …, sn} respectively. And we 

can conclude that each in {s1, s2, s3, …, sn} is less than or equal to 2 by the 

specification in previous section. Because of the same behavior of the top level in 

both designs, the passed command from the top level is also same. And for the same 

reason, we assume the number of data moves caused by those passed command in a 

Fish-Bone stack as {f1, f2, f3, …, fn} respectively. We can also conclude that each in 

{f1, f2, f3, …, fn} is less than 2 by the specification in the previous section. So, by 

summarizing the data movements of both designs, we can easily conclude that the 

date moves in a Fish-Bone stack is clearly less that in a three-level three-place stack. 

3.2  Architecture of Fish-Bone Stacks 

The architecture of a Fish-Bone stack is shown in Figure 3-2 previously. The 

spinal canal contains three data storage locations at the joints that connect six 

fishbone totally, and each fishbone contains a data storage location in the end. The 

spinal canal is the top level of a Fish-Bone stack; the top half of the fishbone is the 

upper level of a Fish-Bone stack; and the bottom half of the fishbone is the lower 

level of a Fish-Bone stack. The data communication is only between the different 

levels. And communications between different indexes of data storage locations are 

not allowed. 

3.2.1 The Internal Actions in Fish-Bone Stacks 

The principles of the Fish-Bone stack design is to prepare a space for the next 

potential put command and to prepare a data item for the next potential get command. 

The design rules result in shorter time to complete a request when a Fish-Bone stack 

gets one. Simple steps of internal actions are described below: 
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Put commands: 

(1) A data item was put at a storage location indexed “i” according to the 

specification of the Fish-Bone stack. 

(2) One of two GasP modules, p(i+1)u (between the upper level of the stack 

and the top level of the stack) and p(i+1)d (between the lower level of 

the stack and the top level of the stack), will be active to empty out the 

storage location for the next potential put command on the top level. 

And, the data residing in the original storage location will be passed to 

the second level if it is valid, where the additions are modulo 3. 

(3) One of two GasP modules, s.p(i+2)u and s.p(i+2)d, will be active to 

empty out the storage location for the next put command on the second 

level, upper level or lower lever. And, the data residing in the original 

storage location of the second level will be passed outside of the stack if 

it is valid, where the additions are modulo 3. 

Get commands: the actions are just opposite to the rules of put commands. 

(1) A data item was get from a storage location indexed “i” according to the 

specification of the Fish-Bone stack. 

(2) One of two GasP modules, g(i+1)u (between the upper level of the stack 

and the top level of the stack) and g(i+1)d (between the lower level of 

the stack and the top level of the stack), will be active to pull out a data 

item from the storage location of the second level for the next potential 

internal get command on the top level if it is valid, where the additions 

are modulo 3. 

(3) One of two GasP modules, s.p(i+2)u and s.p(i+2)d, will be active to pull 

out a data item form the storage location of the second level for the next 
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potential internal get command on the second level, upper level or lower 

lever, if it is valid, where the additions are modulo 3. 

3.2.2 An Example of Executing A Small Command Sequence 

In this section, a small command sequence applied to a Fish-Bone stack was 

shown in Figure 3-3 and Figure 3-4. The command sequence consists of ten 

continuous put commands with concatenating ten continuous get commands was 

applied to a Fish-Bone stack. The process of put commands is shown in Figure 3-3, 

and the process of get commands is shown in Figure 3-4. 

In Figure 3-3(a), data item indexed 1 was put in the storage location indexed 0 of 

the top level. There are no need to propagate the data residing in the storage location 

indexed 1 of the top level to one of the second level and no need to propagate the data 

residing in the one of the second level to outside of the stack because some 

mechanisms are applied to control the need of the propagation according to some 

condition flags. The number of data moves needed is only one. Data item indexed 2 

was directly put in the storage location indexed 1 of the top level like the process of 

the put of data item indexed 1 in Figure 3-3(b). The number of this put command is 

also one. In Figure 3-3(c), data item indexed 3 was put in the storage location indexed 

2 of the top level. Different from Figure3-3(a)(b), the data item residing in storage 

location indexed 0 of the top level must be moved to the second level for the next 

potential put command. It is not necessary to move the data residing the storage 

locations of the second level to outside of the stack because the stack is used as the 

leaf node here. Some parameters are set to make the stack consider that the outside 

stacks are full and there is no capacity for more data. The behavior of the forth and the 

fifth put command in the stack is almost the same as the third put command shown in 
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Figure 3-3(d)(e). The numbers of data movements involved by these two put 

commands are both two. Figure 3-3(f)(g)(h) shows the sixth, seventh, and eighth put 

commands. The behavior of them is similar to the previous three put commands. The 

difference is that the second level means the lower level not the upper level here. 

However, the numbers of internal data moves of them are still two. Figure 3-3(i) 

shows the ninth put command applied to the stack. The data item is directly put into 

the last space and no more internal actions are stimulated because some mechanisms 

block these GasPs to active. So, the number of data movements involved by this put 

command is one only. One more put command, the tenth put command, on the full 

stack causes the overflow signal response shown in Figure 3-3(j).  

The processes for get commands are counter to the process of put commands. In 

Figure 3-4(a), data item indexed 9 was gotten from the storage location indexed 2 of 

the top level. There are no need to pull the data residing in the storage location 

indexed 1 of the second level to the top level and no need to pull the data outside into 

stack because some mechanisms are applied to control the need of the propagation 

according to condition flags. More details will be discussed in the next sections. The 

number of data movements involved is only one. Data item indexed 8 was directly 

gotten from the storage location indexed 1 of the top level like the process of the get 

of data item indexed 9 in Figure 3-4(b). The internal data move of this get command 

is also once. In Figure 3-4(c), data item indexed 7 was gotten form the storage 

location indexed 1 of the top level. Different from Figure3-4(a)(b), the data item 

residing in storage location indexed 2 in one of the second levels must be moved to 

the top level for the next potential get command. It is not necessary to move the data 

outside into the stack because the stack is used as the leaf node here. Some parameters 

are set to make the stack consider that the outside stacks are empty and there is no 
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more data item outside. The behavior of the forth and the fifth put commands are 

almost the similar to the third get command shown in Figure 3-4(d)(e). The numbers 

of the internal data movement by these two get commands are both two. Figure 

3-4(f)(g)(h) shows the sixth, seventh, and eighth get commands of the stack. The 

behaviors of them are similar to the previous three get commands. The difference is 

that the second level means the upper level not the lower level here. However, the 

numbers of internal data moves of them are still two. Figure 3-4(i) shows the ninth get 

command applied to the stack. The data item is directly gotten out of stack and no 

more internal actions are stimulated because some mechanisms block these GasPs to 

active. So, the number of data movements by this get command is one only. One more 

get command, the tenth put command, on the empty stack causes the underflow signal 

active response in Figure 3-4(j). 
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Figure 3-3 : Continuous put commands on an empty Fish-Bone stack 
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Figure 3-4 : Continuous get commands on an empty Fish-Bone stack 
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3.3  The Implementation of Control Path  

A finite state machine specifying all sequences of moves for Fish-Bone stacks 

appears in Figure 3-5. All events represent moves between storage locations. A bar ‘|’ 

in a specification separates the alternative sequences of events, and a comma ‘,’ 

separates the paralleled sequences of events. The naming of the storage location is a 

number concatenating a character to distinguish nine storage locations. The number 

means the index of the level of stack, and the character decides which level, ”c” for 

top level, “d” for lower level, and “u” for upper level. For example, condition full(2d) 

means the full signal that states the storage location indexed 2 in lower level of a 

Fish-Bone stack. Puts and gets on a Fish-Bone stack rotate through the storage 

locations of the top level and the storage locations of the two second levels in a 

round-robin fashion, like the stack pointers in a circular pointer implementation. 

Furthermore, each internal action is performed on the two level of a Fish-Bone stack 

only when necessary. More precisely, only when the top level of a Fish-Bone stack 

becomes full, an internal put action is performed on the second level of the Fish-Bone 

stack, and only when the top level becomes empty, an internal get action is performed 

on the second level of the Fish-Bone stack. Like the design in three-level three-place 

linear stacks, unsuccessful put and get actions, denoted by pU and gU respectively, in 

order to protect against overflow and underflow. An unsuccessful put action occurs 

when the environment wants to put a data item in to the stack, but the stack is full. 

The data item will be lost and the overflow signal will be set. An unsuccessful get 

action occurs when the environment wants to get a data item from the stack, but the 

stack is empty. The get action doesn’t cause any move and the underflow signal will 

be set. 

Initially all storage locations are empty, all output of GasP modules are set as 
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high to block their corresponding transmission gates, and all states that control the 

flow the control path are set as low excluding the state E. In state E, representing the 

empty stack with no data item in a Fish-Bone stack with nine storage locations, the 

stack can execute a put action ep0c on 0c or an unsuccessful get action gU. In state F, 

representing the full stack, the stack can execute a get action fg2c on 2c or an 

unsuccessful put action pU. 

Put commands Get commands 

N0 N1 N2 N3 N4 N5 N0 N1 N2 N3 N4 N5 

Outside of stack Outside of stack 

 sp0u sp1u sp2u      sg0u sg1u sg2u

Upper level Upper level 

  p0u p1u p2u    g0u g1u g2u  

Top level Top level 

up0c up1c up2c     ug0c ug1c ug2c   

Environment Environment  

   dp0c dp1c dp2c dg2c    dg0c dg1c

Top level Top level 

p1d p2d    p0d g1d g2d    g0d 

Lower level Lower level 

sp2d    sp0d sp1d sg0d sg1d sg2d    

Outside of stack Outside of stack 

Table 3-1 : The events stimulated by relative GasP modules in round-robin fashion and the data 

flow controlled by the six states in Fish-Bone stacks 
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Figure 3-5 : A Fish-Bone stack: Finite state machine specification 

E = ( gU   E 
  | ep0c   N1 ) 
N0 = ( sp2d  if  full(2d) 

, p1d  if  full(1c) 
, up0c  N1 

  | sg0d  if  !full(0d) 
, g1d  if  !full(1c) 
, dg2c  N5 ) 

N1 =  { sp0u  if  full(0u) & !full(s0u), 
, p2d  if  full(2c), 
, up1c  N2 

  | sg1d  if  !full(1d) & !empty(s1d) 
, g2d  if  !full(2c) & full(2d) 
, ug0c   if  !full(2u) & !full(2d) then E 

else  N0 ) 
N2  = ( sp1u  if  full(1u) & !full(s1u) 

, p0u  if  full(0c) & !full(0u) 
, up2c  if  full(0u) & full(0d)   then F 

else  N3 
  | sg2d  if  !full(2d) & !empty(s2d) 

,  g0u  if  !full(0c) 
, ug1c   N1 ) 

N3  = ( sp2u  if  full(2u) 
, p1u  if  full(1c) 
, dp0c  N4 

  | sg0u  if  !full(0u) 
, g1u  if  !full(1c) 
,  ug2c  N2 ) 

N4 = ( sp0d  if  full(0d) 
, p2u  if  full(2c) 
, dp1c  N5 
| sg1u  if  !full(1u) 
, g2u  if  !full(2c) 
, dg0c  N3 ) 

N5 = ( sp1d  if  full(1d) 
, p0d  if  full(0c) 
, dp2c  N0 

  | sg2u  if  !full(2u) 
, g0d  if  !full(0c) 
, dg1c  N4 ) 

F = ( gU  F 
| fg2c  N5 } 
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The specification stipulates that puts and gets rotate through the storage locations, 

and that the top level moves data items to or from the second levels only when 

necessary. There are six states used to control six different data passing shown in table 

3-1. The data flow is always from the center, the environment, to the two ends. It 

begins from the environment up to the top level, then upper level and finally to the 

outside of stack, and in other direction, down to the top level, then lower level and 

finally to the outside of stack. The repeated “top level” in Table 3-1 means the same 

one, but the repeated “outside of stack” is for two different outside storages. There are 

two types of GasP modules for put command and other two types of GasP modules 

for get command designed for the same storage locations in the top level because 

there are two different event group need to be fired at different time.  

The specification of the FSM is in Figure 3-5 and more easily to be understood 

in Table 3-1. For example, when in state N0 a put command is executed, three internal 

actions, up0c, p1d and sp2d, will be possibly active depending on the full condition 

signals of relative storage locations. On the other hand, when a get command is 

executed, three internal actions, dg2c, g1d, and sg0d, will be possibly active 

depending on some other condition signals. When in state N1 a put command is 

executed, three internal actions, up1c, p2d and sp0u, will be possibly active depending 

on the full condition signals of relative storage locations. On the other hand, when a 

get command is executed, three internal actions, ug0c, g2d, and sg1d, will be possibly 

active depending on the some other condition signals. When in state N2 a put 

command is executed, three internal actions, up2c, p0u and sp1u, will be possibly 

active depending on some condition signals. On the other, when a get command is 

executed, three internal actions, ug1c, g0u, sg2d, will be possibly active depending on 

some condition signals. When in state N3 a put command is executed on the stack, 
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three internal actions, dp0c, p1u and sp2u, will be possibly active depending on some 

condition signals. On the other, when a get command is executed, three internal 

actions, ug2c, g1u, sg0u, will be possibly active depending on some condition signals. 

When in state N4 a put command is executed, three internal actions, dp1c, p2u and 

sp0d, will be possibly active depending on some condition signals. On the other, when 

a get command is executed, three internal actions, dg0c, g2u, sg1u, will be possibly 

active depending on some condition signals. When in state N5 a put command is 

executed, three internal actions, dp2c, p0d and sp1d, will be possibly active depending 

on some condition signals. On the other, when a get command is executed, three 

internal actions, dg1c, g0d, sg2u, will be possibly active depending on some condition 

signals. 

For normal case in the specification of the FSM, the rules of the conditions that 

restrict the respective GasP modules are intuitional. The stack fires a GasP module, 

pid or piu, after checking whether the storage location ic if full. The stack fires GasP 

modules, spid or spiu, after checking whether the storage locations id or iu is full 

respectively. If the storage location ic is empty, there is no need to fire GasP module, 

pid or piu. Because of the same reason, if the storage location, id or iu, is empty, there 

is no need to fire GasP module, spid or spiu, respectively. The stack fires a GasP 

module, gid or giu, after checking whether the storage location ic if empty. The stack 

fires GasP module, sgid or sgiu, after checking whether the storage location id or iu is 

empty respectively. If the storage location ic is full, there is no space for the gotten 

data of the firing GasP module, gid or giu. Because of the same reason, if the storage 

location, id or iu, is full, there is no space for the gotten data of the firing GasP 

module, sgid or sgiu, respectively. There are some special additional conditions in 

states N1 and N2.  
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During executing put command in state N1, an additional condition, !full(s0u), of 

an internal action sp0u is needed to be checked because there is a case that the stack 

has the last two space with all full outside stacks but normally it doesn’t. In this case, 

sp0u can’t be fired because no more space can be put in the outside stack of storage 

location 0u. And then, the stack enters state N2. There is also a special case when the 

stack has one only space with all full outside stacks. The firing of GasP module, p0u, 

is restricted by an additional condition, !full(0u), because the previous put action 

doesn’t move the data outside the stack and the two data residing in 0c and 0u are 

valid. And, no more moves in this case. Besides, GasP module, sp1u, can’t be fired 

because of the same reasons. Every space is used for storage in the almost full stack, 

and the sp1u can’t be fired or some data item in the outside stack of storage location 

1u will be overwritten. Furthermore, GasP module, up2c, is fired after checking the 

fullness of the both side of the storage location, 0u and 0d. If they are both true, the 

stack enters state F. If not, the stack immediately enters state N3. 

During executing get command in state N2, also an additional 

condition, !empty(s2d), of an internal get action sg2d is needed to be checked because 

the similar reasons in above paragraph. In the case, sg2d is not needed to be fired 

because the almost empty stack with last two data items has no data item outside the 

stack of storage location 2d but normally it doesn’t. And then, the stack enters state 

N1. A special case when the stack has the last one data item with all empty outside 

stacks. The firing of GasP module, g2d, is restricted by an additional condition, 

full(2d), because there is no data item in storage location 2d in almost empty stack 

with the last one data item inside. Furthermore, GasP module, ug0c, is fired after 

checking the emptiness of the both side of the storage location, 2u and 2d. If they are 

both true, the stack enters state E. If not, the stack immediately enters state N0. 
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Figure 3-6 : the diagram of control path converted from FSM of Fish-Bone stack 
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Figure 3-6 shows the converted control path from the finite state machine in 

Figure 3-5. 

3.4  Real Implementation of A Fish-Bone Stack 

In this section, each component that composes a Fish-Bone stack will be 

described. First, a top view of a Fish-Bone stack in section 3.4.1. Then, each kind of 

components will be shown in following sections 3.4.2 to 3.4.6 

3.4.1 Top View of A Fish-Bone Stack 

In Figure 3-7, a roughly whole design is shown in top view and all of the 

symbols will be implemented as real circuits. The dashed squares represent a 

Fish-Bone stack, so there are 7 Fish-Bone stacks in Figure 3-7. The six small ones are 

the outside stacks, but we disable the function in our later experiments. The symbol 

drawn with a square and a cross inside represents GasP modules. The symbol drawn 

with a circle and a character “L” inside represents storage locations. A triangle 

represents a condition signal that affects the activity of the beside GasP module. And 

the condition signals are maintained by some condition maintainers. More detailed 

design can be associated with Figure 3-6 in associatively thinking. The corresponding 

GasP modules are named as the same words. There is a note for those twelve GsaP 

modules, {spiu, spid, sgiu, sgid}. Those GasP modules in Figure 3-6 are designed for 

the control signals as the put or get command signals on the outside stacks, so they are 

not marked in Figure 3-7. 
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Figure 3-7 : a top view of a complete Fish-Bone stack with both control-path and data-path 

3.4.2 Implementation of GasP Modules 

The idea of designing GasP modules is same as the mention is section 2.3.4. 

There are several kinds of GsasP modules used in a Fish-Bone stack. The design 

methodologies are similar. However, there are some difference between our designs 

and the original ideas for the functionalities. Figure 3-8 shows the modification from 

the original design mentioned in Jo Ebergen’s research to our GasP modules. 
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Figure 3-8 : the modification from the original designs 

Because of the requirement of speed performance we extract the current state 

input as mentioned in section 2.3.4 outside the GasP modules. There are a special 
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circuits designed for handling them. The reasons are discussed in the next chapter. 

The methodology of the extraction is using states to control the passing of the input 

command signal into GasP modules. The left input (command signal) resetting are 

reverse by using a P-type transistor to set the input high ,and the right input (current 

state) resetting are unchanged. Besides these significant modifications, other simple 

modifications of each used GasP modules are shown in the figure. Figure 3-8(a) 

shows a diagram of a GasP module and it possible in/out ports. In Figure 

3-8(b)(c)(d)(e)(f), the left side of each block is the original design and the right side is 

the design after modifying. The dashed circles show the position of modifications.  

There are some simple modifications: 

(a) An additional keeper composed of two serial inverters with connecting 

the head and the tail is used at the upper dashed circle in each design for 

keeping the voltage for a long time. The design in original concept in 

GasP module will cause a function error in a long time because of the 

power dissipation power in MOS. 

(b) Some buffers are added at needed positions. In GasP network design, 

there is an important concept- keeping the time delay same for every 

gate, or keeping the time delay at the right range. The time delay of a 

gate is not long enough with UMC 0.18 process in the original design, so 

we add some buffers at needed positions shown at the bottom of each 

block. 

3.4.3 Implementation of State Keeper 

State keepers are designed to keep the voltage of states. It is a one port circuit 

with two serial inverters (the tail one is weak inverter) and the head and the tail are 
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connected together. The detailed circuit is shown in Figure 3-9. 

 

Figure 3-9 : the circuit of a keeper 

3.4.4 Implementation of Data Storage 

The data storages are implemented with two normal inverters, one weak inverter 

and a serial similar transmission gate device. The two port design is for the perfect 

output for data. And the similar transmission gate device is used to weaken the 

feedback electric current provided by the weak inverter. 

 
Figure 3-10 : the implementation of data storage 

weak 



 
 

46

3.4.5 Implementation of Condition Maintainer 

There are many full condition signals used in Fish-Bone stacks. These signals are 

maintained by several condition maintainers. There are four kinds of condition 

maintainer depending on the number of factors that affects the condition signal. For 

example, if there are n GasP modules that are active to make a storage location empty, 

the number of the control input in the left side of the condition maintainer will be n. 

Besides, if there are m GasP modules that are active to make a storage location full, 

the number of the control input the right side of the condition maintainer will be m. 

The circuit is implemented with a data storage at the center, some N-type 

transistors at the right side and some P-type transistors at the left side. The data 

storage is used for keeping the condition status. One of the N-type transistors is active 

to set the storage high, and one of the P-type transistors is active to set the storage low. 

The init port is used to initialize the status of the condition maintainer, and Q an Qbar 

are output ports for state and bar of the state respectively. 

 

Figure 3-11 : the implementation of condition maintainer 
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Chapter 4 Implementation Improvements 

We proposed the details of the real implementation of Fish-Bone stacks in 

chapter 3. Figure 3-6 shows the block diagram of the control path. There are twenty 

loads of GasP modules needed to be driven by each of put and get signals. The so 

large loads to be charged and discharged need quite time to complete. And, the 

version of design can not commit the time requirement in communicating with other 

stacks at high speed. So there are some improvements needed in real implementation 

of Fish-Bone stacks to improve the speed performance without unproportionate power 

consumption. 

Basically, there are some small components, like inverters for inverting two 

possible value {0,1}, N-type transistors for providing perfect strong low signal with 

high signals, and P-type transistors for providing perfect strong high signal with low 

signals. Besides, NOR gates are used to merge condition signals. There are two kind 

of usage on condition signals. If the condition signals are used to affect states, the 

condition signal is connected to the bottom of the GasP modules. If the condition 

signals are used to affect the passing of data flow, the condition signal is connected to 

the upper of the GasP modules. The difference is shown in Figure 4-1. Figure 4-1(a) 

shows the first case, and Figure 4-1(b) shows the other. When need, a signal is needed 

to be merged from two condition signals, and we use NOR gates to merge them. 

To down low the loads of the put and get signal on GasP modules, we use a trick 

to solve the problem. Besides solving the problem, less power consumption is another 

gift brought by that modification. We use states to control the need of other GasP 

modules and use transmission gates to block the electric currents to pass into the stack. 

Precisely, we extract the circuits of current state out of GasP modules, and use 
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transmission gates to isolate the passing of current between put signal offered by the 

environment and the real need in Fish-Bone stack. So that, we save a lot of power 

dissipation on the useless charging and discharging in the modified Fish-Bone stack. 

Because of these modifications, some original GasP module designs with low active 

property are reversely used. Some components are added for providing better signals. 

 

Figure 4-1 : The difference of two kind handling with condition signals : (a) condition signals 

affect the passing of data flow (b) condition signal affect next state 

The final circuit is shown in Figure 4-2. The figure is just for viewing the 

dimension. And the details have been talked about in previous sections. 

(a) (b) 
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Figure 4-2 : the view of the final circuit of a Fish-Bone stack 
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Chapter 5 The Extension of Stack Place 

There are some methods to extend the storage of stack on Fish-Bone stack design. 

In this chapter, we progress step by step to reveal the better solution to extend.  

5.1  Straightforward Extension 

There is an intuitional solution to extend to the storage of Fish-Bone stacks. The 

method is just to enlarge the length of the spinal canal of Fish-Bone. However, the 

enlarged Fish-Bone stacks result in larger loads that put and get signals need to drive. 

So longer time is needed to complete a put or get command.  

The other direction to extend the storage is to deepen the level to a Fish-Bone 

stack. The solution is not adopted because the effect of power saving brought from 

that idea is similar to that brought from recursive extension talked about later but 

more complex controls are need to be handle.  

5.2  Extension in Tree Structure 

The idea is from Jo Ebergen’s research. A two-place linear stack is applied to 

construct the tree stack. As a binary tree structure, a more level brings about two times 

the storages of the original one. Fish-Bone stacks are used as the leaf nodes. The 

maximal internal data movements are decided by the number of levels, and there are 

three levels in a three-level three-place linear stack but two in a Fish-Bone stack. So 

in both designs with 42 places, the maximal internal data movements in Jo Ebergen’s 

design is 5 but 4 in the stack with Fish-Bone stacks. Besides, there are more than one 

kinds of components used in constructing the stack. And, more timing problems 

caused by several different components will happen. However, there is a more simple 
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design method to extend storage. 

5.3  Extension in Recursive Structure  

A simple solution may have the better power performance is in a recursive 

structure. A structure is shown in Figure 5-1. Each square with nine grids inside is a 

Fish-Bone stack. The structure with 63(9*7) storage locations with maximal four 

internal data movements is more power-efficient than the extension in the tree 

structure in ratiocination. However, the rapid increasing in storages is not always 

suitable for every design. 

 

Figure 5-1 : Extension in a recursive structure 

5.4  Tree Structure Used in Power Consumption Comparison 

For the ease to compare with the hybrid stack design in Jo Ebergn’s research. We 

chose the structure described in section 5.2 for power comparison. A 42-place stack 

consisting of a two-level tree stack structure and four Fish-Bone stacks are used in our 

experiments for power comparison. And we take the structure for later discussion in 

the following section.

Environment 
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Chapter 6 Power Consumption Evaluation 

We implemented the Fish-Bone stacks in transistor level and simulated them in 

the UMC 180nm process (simulation of dynamic dissipation only). Besides, the 

simulator is HSPICE 2003-09-sp1. In order to be able to compare with the “Hybrid 

stack”, we re-implemented the design with the same requirements as possible. The 

goal of our design is for lower power consumption, so we just replaced the three-level 

three-place linear stacks with our design, Fish-Bone stacks. In power consumption 

experiment, we set the speed at 2Ghz (almost the limit of the ability, but some 

tolerances is reserved) to both designs, or 500ps time interval between two commands. 

There are some results in the following sub-sections. A comparison of one three-level 

three-place linear stack and one Fish-Bone stack will be shown in section 6.1. In 

section 6.2, the counts of data moves in both two designs are compared. Furthermore, 

the results of power consumption are shown and their comparison in section 6.3. 

Finally, there is an easy analysis represented in section 6.4. 

6.1  Power Consumption Testing on A Three-level Three-place 
Linear Stack and A Fish-Bone Stack 

For getting the power consumption of the leaf node, we extract out these designs 

and test the power consumption only. There are four special data sequence and only 

one stack command sequence chosen for both designs. A rough difference of power 

consumption is shown in this experiment. The results of HSPICE simulator are shown 

in Table 6-1. The stack command sequence is composed of ten continuous put 

commands and concatenating ten continuous get commands. The tenth command and 

the twentieth command of the command sequence are for the testing of underflow and 
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overflow protections. In the results shown in Table 6-1, the difference of the average 

power consumption is quite large. It is about 50% of the average power consumption 

of a Fish-Bone stack.  

input data 
3-level 3-place linear 

stack (mW) 

Fish-Bone stack 

(mW) 
Difference (mW) 

16.760 11.412 5.348 
1110001110 

146.86% 100% 46.86% 

15.989 10.453 5.536 
1111111111 

152.96% 100% 52.96% 

15.523 10.146 5.377 
0000000000 

153.00% 100% 53.00% 

16.822 11.567 5.255 
1010101010 

145.43% 100% 45.43% 

16.274 10.895 5.379 
average 

149.56% 100% 49.56% 

Table 6-1 : The difference of average power consumption between one 3-level 3-place linear stack 

and one Fish-Bone stack 

6.2  Power Consumption Testing on Both Stacks with Different 
Leaf Node Designs 

In the section, we concern the power consumption of two stacks with different 

leaf node stacks, three-level three-place linear stacks and Fish-Bone stacks. For the 

ease to compare with the “Hybrid stack”, we replace the leaf node stacks with our 

Fish-Bone stacks. The number of storage locations is still 42. Besides, we set some 

initial values, so that the Fish-Bone stacks can be used as leaf node. All the conditions 

gotten from the outside of the Fish-Bone stack are set as high, 

like !full(s0u), !empty(s1d), !full(s1u), and !empty(s2d). We randomly generate 100 

test data with random combination sized 100 of put and get command sequences as 

the input. Table 6-2 shows the results from simulations. The table exhibits that the 

average power consumption of a Hybrid stack with three-level three-place linear 
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stacks (HS) is averagely 120.46% to a Hybrid stack with Fish-Bone stacks (FB) and 

that of a linear stack (LS) is averagely 1315.47% to FB. The extent of the ratio of 

averagely gained power here seems lower than that in the previous section. That’s 

because the frequently used components are tree stacks, not the leaf nodes. 

Consequently, the ratio of the gained power is lower than that with comparing the leaf 

nodes only.  

No. 
Hybrid stack 

(HS) (mW) 

Hybrid stack 

with 

Fish-Bone 

stack(FB) 

(mW) 

Linear stack 

(LS) (mW) 

Difference to 

FB (mW)
 PHS/PFB 

Difference to 

FB (mW) 
PLS/PFB 

1 27.320 24.341 325.17 2.979 112.24% 300.829 1335.89%

2 28.394 24.730 353.17 3.664 114.82% 328.440 1428.10%

3 29.740 25.033 322.26 4.707 118.80% 297.227 1287.34%

4 30.850 25.350 342.56 5.500 121.70% 317.210 1351.32%

5 32.900 26.640 344.06 6.260 123.50% 317.420 1291.52%

6 27.260 23.620 359.35 3.640 115.41% 335.730 1521.38%

7 27.650 24.110 339.78 3.540 114.68% 315.670 1409.29%

8 30.980 25.680 360.24 5.300 120.64% 334.560 1402.80%

9 28.590 24.750 335.77 3.840 115.52% 311.020 1356.65%

10 26.560 23.510 311.76 3.050 112.97% 288.250 1326.07%

11 31.520 25.772 321.84 5.748 122.30% 296.068 1248.80%

12 31.780 25.780 342.65 6.000 123.27% 316.870 1329.13%

13 27.630 24.441 333.98 3.189 113.05% 309.539 1366.47%

14 31.160 25.865 342.98 5.295 120.47% 317.115 1326.04%

15 31.170 25.810 324.12 5.360 120.77% 298.310 1255.79%

16 34.250 26.903 350.13 7.347 127.31% 323.227 1301.45%

17 33.104 26.649 350.35 6.455 124.22% 323.701 1314.68%

18 32.310 26.283 334.45 6.027 122.93% 308.167 1272.50%

19 33.060 26.660 339.60 6.400 124.01% 312.940 1273.82%

20 30.910 25.552 328.79 5.358 120.97% 303.238 1286.75%

21 31.670 26.127 335.87 5.543 121.22% 309.743 1285.53%

22 27.840 24.428 341.12 3.412 113.97% 316.692 1396.43%

23 32.300 26.318 336.68 5.982 122.73% 310.362 1279.28%
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24 27.750 24.132 355.27 3.618 114.99% 331.138 1472.19%

25 29.360 24.383 316.68 4.977 120.41% 292.297 1298.77%

26 33.040 26.135 342.53 6.905 126.42% 316.395 1310.62%

27 30.670 25.207 364.47 5.463 121.67% 339.263 1445.91%

28 29.660 24.887 344.38 4.773 119.18% 319.493 1383.77%

29 33.110 26.857 339.50 6.253 123.28% 312.643 1264.10%

30 31.320 25.474 316.84 5.846 122.95% 291.366 1243.78%

31 31.980 26.530 333.19 5.450 120.54% 306.660 1255.90%

32 32.570 25.450 346.25 7.120 127.98% 320.800 1360.51%

33 30.880 26.000 344.20 4.880 118.77% 318.200 1323.85%

34 29.220 25.380 337.85 3.840 115.13% 312.470 1331.17%

35 31.320 25.820 325.79 5.500 121.30% 299.970 1261.77%

36 29.490 25.430 356.75 4.060 115.97% 331.320 1402.87%

37 27.910 24.920 336.74 2.990 112.00% 311.820 1351.28%

38 30.400 25.170 337.53 5.230 120.78% 312.358 1340.99%

39 28.900 25.370 337.68 3.530 113.91% 312.313 1331.03%

40 30.510 25.290 358.22 5.220 120.64% 332.930 1416.45%

41 31.690 26.490 322.21 5.200 119.63% 295.720 1216.35%

42 33.280 26.730 330.75 6.550 124.50% 304.020 1237.37%

43 32.110 26.240 343.68 5.870 122.37% 317.440 1309.76%

44 31.980 26.170 335.50 5.810 122.20% 309.330 1282.00%

45 29.130 24.840 358.76 4.290 117.27% 333.920 1444.28%

46 30.650 25.240 320.92 5.410 121.43% 295.680 1271.47%

47 31.710 25.960 347.52 5.750 122.15% 321.560 1338.67%

48 30.980 25.640 325.28 5.340 120.83% 299.640 1268.64%

49 32.370 25.960 331.46 6.410 124.69% 305.500 1276.81%

50 31.650 26.330 319.73 5.320 120.21% 293.400 1214.32%

51 31.000 25.750 329.09 5.250 120.39% 303.340 1278.02%

52 28.020 24.360 340.81 3.660 115.02% 316.450 1399.06%

53 33.180 26.190 345.97 6.990 126.69% 319.780 1321.00%

54 31.260 26.160 352.69 5.100 119.50% 326.530 1348.20%

55 28.540 24.860 338.63 3.680 114.80% 313.770 1362.15%

56 32.340 26.350 357.25 5.990 122.73% 330.900 1355.79%

57 33.110 26.480 333.90 6.630 125.04% 307.420 1260.95%

58 31.320 26.220 346.46 5.100 119.45% 320.240 1321.36%

59 34.400 26.810 356.44 7.590 128.31% 329.630 1329.50%
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60 28.550 24.960 351.97 3.590 114.38% 327.010 1410.14%

61 32.350 26.180 325.41 6.170 123.57% 299.230 1242.97%

62 31.490 26.000 355.51 5.490 121.12% 329.510 1367.35%

63 32.820 26.630 318.64 6.190 123.24% 292.010 1196.55%

64 29.400 25.280 321.29 4.120 116.30% 296.010 1270.93%

65 32.050 25.690 355.14 6.360 124.76% 329.450 1382.41%

66 32.580 26.510 321.41 6.070 122.90% 294.900 1212.41%

67 33.070 26.560 346.19 6.510 124.51% 319.630 1303.43%

68 31.830 26.240 360.37 5.590 121.30% 334.130 1373.36%

69 31.420 26.180 361.52 5.240 120.02% 335.340 1380.90%

70 28.060 24.930 325.58 3.130 112.56% 300.650 1305.98%

71 32.730 26.470 334.30 6.260 123.65% 307.830 1262.94%

72 33.210 26.280 328.80 6.930 126.37% 302.520 1251.14%

73 27.210 23.680 363.10 3.530 114.91% 339.420 1533.36%

74 31.060 25.920 317.78 5.140 119.83% 291.860 1226.00%

75 30.760 25.410 344.06 5.350 121.05% 318.650 1354.03%

76 29.190 24.940 347.31 4.250 117.04% 322.370 1392.58%

77 33.590 26.720 326.54 6.870 125.71% 299.820 1222.08%

78 26.550 23.810 323.65 2.740 111.51% 299.840 1359.30%

79 30.850 25.670 330.93 5.180 120.18% 305.260 1289.17%

80 28.890 25.160 346.56 3.730 114.83% 321.400 1377.42%

81 32.510 26.290 318.06 6.220 123.66% 291.770 1209.81%

82 31.260 25.970 329.33 5.290 120.37% 303.360 1268.12%

83 32.800 26.210 331.51 6.590 125.14% 305.300 1264.82%

84 31.050 25.750 341.02 5.300 120.58% 315.270 1324.35%

85 28.870 25.110 347.66 3.760 114.97% 322.550 1384.55%

86 32.300 26.340 322.45 5.960 122.63% 296.110 1224.18%

87 28.330 25.040 325.87 3.290 113.14% 300.830 1301.40%

88 31.150 26.030 339.89 5.120 119.67% 313.860 1305.76%

89 33.580 26.890 331.67 6.690 124.88% 304.780 1233.43%

90 33.760 26.900 344.98 6.860 125.50% 318.080 1282.45%

91 32.020 26.060 316.73 5.960 122.87% 290.670 1215.39%

92 32.060 26.150 323.97 5.910 122.60% 297.820 1238.89%

93 29.460 24.730 343.55 4.730 119.13% 318.820 1389.20%

94 31.500 26.070 329.58 5.430 120.83% 303.510 1264.21%

95 32.450 26.460 331.51 5.990 122.64% 305.050 1252.87%
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96 33.070 26.250 326.83 6.820 125.98% 300.580 1245.07%

97 30.820 25.580 325.22 5.240 120.48% 299.640 1271.38%

98 33.350 26.760 354.30 6.590 124.63% 327.540 1323.99%

99 31.190 25.780 332.87 5.410 120.99% 307.090 1291.19%

100 33.510 26.710 337.66 6.800 125.46% 310.950 1264.17%

Avg. 30.985 25.699 337.683 5.286 120.46% 311.98 1315.47%

Table 6-2 : Results of average power consumption between the Hybrid stack with 3-level 3-place 

linear stacks (HS), the Hybrid stack with Fish-Bone stack (FB), and the linear stack (LS) 

6.3  Data Movements Counting 

We implemented a utility to simulate the behavior of HS and FB and to count the 

internal data moves in HS and FB designs. The generated 100 random data are 

simulated for the analysis of the relation between the power consumption and the 

number of their data movements. Furthermore, the saved data movements are also 

concerned because we consider that is the main factor to affect the extent of power 

consumption. We reorder the index with the increasing number of data movements for 

easily observing the relation. Results are shown in Table 6-3. 

No. 

Power 

Difference 

between HS 

and FB (mW) 

PHS/PFB 
Data moves in 

HS 

Data moves in 

FB 

Difference of 

data moves 

1 2.98 112.24% 332 328 4 

70 3.13 112.56% 336 332 4 

39 3.53 113.91% 348 343 5 

87 3.29 113.14% 340 333 7 

78 2.74 111.51% 324 316 8 

37 2.99 112.00% 336 327 9 

10 3.05 112.97% 315 303 12 

22 3.41 113.97% 332 320 12 

60 3.59 114.38% 338 326 12 

2 3.66 114.82% 337 325 12 

80 3.73 114.83% 344 332 12 

73 3.53 114.91% 323 311 12 

85 3.76 114.97% 341 329 12 

24 3.62 114.99% 329 317 12 

52 3.66 115.02% 335 323 12 

6 3.64 115.41% 320 308 12 
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36 4.06 115.97% 350 338 12 

13 3.19 113.05% 334 320 14 

55 3.68 114.80% 340 326 14 

64 4.12 116.30% 349 335 14 

33 4.88 118.77% 364 350 14 

58 5.10 119.45% 372 358 14 

7 3.54 114.68% 330 315 15 

9 3.84 115.52% 340 325 15 

34 3.84 115.13% 354 338 16 

69 5.24 120.02% 368 352 16 

45 4.29 117.27% 350 332 18 

3 4.71 118.80% 357 339 18 

76 4.25 117.04% 352 332 20 

93 4.73 119.13% 353 333 20 

54 5.10 119.50% 368 348 20 

41 5.20 119.63% 374 354 20 

74 5.14 119.83% 366 346 20 

50 5.32 120.21% 376 356 20 

88 5.12 119.67% 374 353 21 

51 5.25 120.39% 372 351 21 

31 5.45 120.54% 378 357 21 

8 5.30 120.64% 364 342 22 

40 5.22 120.64% 360 338 22 

14 5.30 120.47% 372 349 23 

28 4.77 119.18% 360 336 24 

79 5.18 120.18% 368 344 24 

82 5.29 120.37% 372 348 24 

25 4.98 120.41% 348 324 24 

97 5.24 120.48% 366 342 24 

84 5.30 120.58% 369 345 24 

15 5.36 120.77% 369 345 24 

38 5.23 120.78% 358 334 24 

48 5.34 120.83% 364 340 24 

94 5.43 120.83% 372 348 24 

20 5.36 120.97% 363 339 24 

62 5.49 121.12% 376 352 24 

21 5.54 121.22% 374 350 24 

46 5.41 121.43% 367 343 24 

27 5.46 121.67% 359 335 24 

11 5.75 122.30% 374 350 24 

92 5.91 122.60% 376 352 24 

86 5.96 122.63% 382 358 24 

95 5.99 122.64% 385 361 24 

91 5.96 122.87% 376 352 24 

66 6.07 122.90% 378 354 24 

30 5.85 122.95% 370 346 24 

44 5.81 122.20% 374 349 25 

99 5.41 120.99% 376 350 26 
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75 5.35 121.05% 368 342 26 

35 5.50 121.30% 373 347 26 

68 5.59 121.30% 372 346 26 

4 5.50 121.70% 362 336 26 

56 5.99 122.73% 379 353 26 

29 6.25 123.28% 386 360 26 

47 5.75 122.15% 378 351 27 

43 5.87 122.37% 384 357 27 

61 6.17 123.57% 384 357 27 

23 5.98 122.73% 382 354 28 

63 6.19 123.24% 386 358 28 

32 7.12 127.98% 386 358 28 

100 6.80 125.46% 396 367 29 

18 6.03 122.93% 384 354 30 

12 6.00 123.27% 377 347 30 

71 6.26 123.65% 388 358 30 

42 6.55 124.50% 392 362 30 

98 6.59 124.63% 392 362 30 

65 6.36 124.76% 376 346 30 

5 6.26 123.50% 386 355 31 

19 6.40 124.01% 392 361 31 

67 6.51 124.51% 392 361 31 

81 6.22 123.66% 386 354 32 

83 6.59 125.14% 394 362 32 

49 6.41 124.69% 382 349 33 

77 6.87 125.71% 396 363 33 

89 6.69 124.88% 394 359 35 

90 6.86 125.50% 396 361 35 

17 6.46 124.22% 395 359 36 

96 6.82 125.98% 397 361 36 

72 6.93 126.37% 394 358 36 

26 6.91 126.42% 394 358 36 

53 6.99 126.69% 392 356 36 

16 7.35 127.31% 404 368 36 

59 7.59 128.31% 400 364 36 

57 6.63 125.04% 398 361 37 

Avg. 5.29 120.46% 367.6 344.82 22.78 

Table 6-3 : The relation between the power consumption and the number of their data 

movements 

6.4  Used Transistors Counting 

Although the Fish-Bone stack design is more complex than the design of the 

original hybrid stack, it is surprising that the number of used transistors is not more 
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than that used in the original hybrid stack. The numbers of the transistors used by two 

stacks are in Table 6-4. Although the more complex controls are needed to be handles 

and more GasP modules are needed, the number of transistors used is not increasing. 

The hybrid stack with three-level three-place linear stacks (HS) used 5198 transistors 

and the hybrid stack with Fish-Bone stacks (FB) used 4902 transistors only. 

Furthermore, the stack with Fish-Bone stacks got the better power performance, about 

83% of the power consumed by HS.  

The tricky situation occurs because there are many GasP modules used in 

Fish-Bone stacks are just for generating the control signals, not for the next state, and 

few transistors are needed to complete those GasP modules. Besides, lots of 

components are extracted out of the GasP modules. However, Table 6-4 doesn’t 

provide precise information on area cost because the transistor used in both design are 

not uniform. The sizes of transistors are turned for committing the delay requirement 

in both designs. So, the information in Table 6-4 is just for a reference. 

 Hybrid stack with 3-level 

3-place linear stacks (HS) 

Hybrid stack with 

Fish-Bone stacks (FB) 

Linear 

stack (LS) 

5198 4902 N/A 
Used transistor count 

106.58% 100% N/A 

30.985 25.699 337.683 Average power 

consumption (mW) 
120.46% 100% 1315.47%

Table 6-4 : the counting of both stacks with different leaf node designs 

6.5  Analysis of Result from Simulations 

Results from simulations are in Table 6-1 to Table 6-4. The idea that to reduce 

data movements can low down the power consumption is proved through these 

experiments. Figure 6-1 shows the trend of the power consumption with the 
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increasing difference of the data moves between HS and FB. The x axis is the ratio of 

P(HS) and P(FB) (P(HS) is the power consumed by HS and P(FB) is the power 

consumed by FB).The curve is not always increasing, but it goes in an increasing 

fashion. The reason is that some data items are actually not moved in some of the 

input commands because the target and the source are same value. And, there is no 

charge and discharge on these relative transistors.  

 
Figure 6-1 : the trend of the relation between the difference of moves and the P(HS)/P(FB) 
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Chapter 7 Conclusions and Future Works 

In this thesis, we proposed a power-efficient stack, named Fish-Bone stack, with 

fewer internal data movements during executing stack commands. Fish-Bone stack 

can execute stack commands within maximally two internal data movements in a 

dimension three Fish-Bone stack. We consider that the fewer internal data movements 

result in less power consumption and we have proved that with the results from 

simulations by HSPICE. 

The implementations of Fish-Bone stacks do not include wire delay information. 

The weakness of that without wire delay information caused the imprecise results 

gotten from simulations in experiments. However, we reserved a tolerance on speed 

when designing the Fish-Bone stack. The average power consumption of a hybrid 

stack with Fish-Bone stacks with generated 100 random combination and sized 100 

stack command sequences and random data input is 25.699mW, and the value is about 

83% to the average consumed power of a hybrid stack with three-level three-place 

linear stacks with no more transistors. Besides, in the experiment of power 

consumption with leaf stacks only, the results shows average 49.56% power 

consumption gained to a three-level three-place linear stack by a Fish-Bone stack. 

Then about the future works, more precise results from simulations can be gotten 

with the layout of the designs. Also, we consider that using Fish-Bone stacks only will 

lead to less power consumption as mentioned before. An ides of an extension in aster 

fashion was shown in section 5.3. And, there is only one kind of component to 

recursively compose a stack design. The easy and simple extension may cause some 

new problems in timing. The designs are only clock-less new and other properties of 

asynchronous circuits need more researches to reveal more.
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