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Area Minimization for CSA-Based Multiple Constant
Multiplication Designs using Smart Sign Extension and

Accurate Bit Counting

Student: Lin, Tzu-Ching Advisor: Dr. Huang, Juinn-Dar

Department of Electronics Engineering & Institute of Electronics
National Chiao Tung University

Abstract

Multiple constant multiplication (MCM) method is widely adopted as a
replacement of general purpose multiplier in many ASIC signal processing systems
such as FIR filter, IIR filter, DCT and FFT. The MCM block that consists only adders,
subtractors and shifters can reduce area cost significantly. For high-speed applications,
carry save adder (CSA) based MCM is proposed because the long carry propagation
path in traditional carry propagation adder (CPA) is reduced. Currently, all published
algorithms of CSA-based MCM problem only count to word level without touching
the details of implementation. However, unlike CPA, trivial sign extension is not
suitable for CSA. Also, the word length variation in different CSA's is large. In this
thesis, we propose a new systematic method called smart sign extension to reduce
adder bits and combine it with accurate bit counting while doing MCM area
optimization by an ILP (Integer Linear Programming) tool. Experimental results show

an area improvement up to 30% compared to the conventional MCM method.
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Chapter 1. Introduction

1.1 Multiple Constant Multiplication (MCM)

The FIR(finite impulse response) filter is one of the most important digital signal
processing(DSP) application because its inherit stability and linear phase property
which can be obtained easily by making the impulse response symmetric. The

following equation is used to describe an FIR filter:
N
yIn]=> hi*x[n - i]
i=0

where y[n] is the filter output at time n, h; is the iy, coefficient of the filter, x[n—i] is
input signal at time n—i, and N is the order of the filter. It can be implemented in the
direct form, as shown in Figure 1, or in the transposed form, as shown in Figure 2.
Compared to the direct form, the transposed form avoids the long adder chain, thus
having higher throughput and parallelism. The transposed form FIR filter can be
decomposed into two parts: one is called multiplier block, including the
multiplications of the input signal with a set of constant coefficients, while the other is
called structure adder, including the adders and registers, and its output is the

weighted sum of inputs.
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hy Nn-g {o
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Figure 1. Direct form FIR filter

o] I |
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Figure2. Transposed form FIR filter

The multiplication block is the critical part that determines the performance and
area. In addition to using the regular multiplier designs (see Figure 3(a)), the property

that either multiplicand or multiplier is a constant shows an opportunity of hardware

complexity reduction (see Figure 3(b)).

a) Y=A'X b) Y=A*X A=5
@) X, X X X L®) ke X %
Xafo KoAg %KqhAg XoAo Xz X2 X4 Xo
XaAq XoA; XyAq XA, 0 0 0 0
Xaho XoAg X1Ag XohA; Xz X X X
XaAg XoA3 X1Az XoAs 0 0 0 0
Pz P Ps Py Py P, Py Py Pz Pe Ps Py Py P Py P

Figure 3. (a)regular multiplier (b) constant multiplier

As shown in Figure 3(b), constant multiplication can be implemented by additions

and bit shifts. For example:



5X = x<<2 + X

Compared to a multiplier, this shift-and-add structure can significantly reduce area.
Because bit shifts have no cost in ASIC design, the optimization problem of finding
the smallest number of adders for the multiplication of single constant is called single

constant multiplication (SCM) problem.

Furthermore, the common input and bit-pattern similarity between constants in the
transposed form FIR filter provides the opportunity of sharing the intermediate
addition results among different constant multiplications. The problem of minimizing
the total number of adders in the structure of a single input multiplied with multiple
constants is called multiple constant multiplications (MCM) problem. For example,

the two constants 39 and 83 can be decomposed as:

39x = X<<5 + Xx<<3 — x

83X = X<<6 + X<<4 + x<<2 + X

They can be further reduced in the form of the following equations if 5x is shared in

both equations:

39X = (X<<2 + X)<<3 — X

83X = (X<<2 + X)<<4 + X<<2 + X

The total number of additions is reduced from 5 to 4, as shown in Figure 4, if we

find the intermediate results of additions properly.



AL 4
-1 £ :> LEJ
X X X 5x X
I [y
L_TL_J L L_TL_J -
39x 79x Iﬁ 5‘2 39x 79x i 5‘2
(a) 83x (b) 83x

Figure 4. (a) without sharing, 5 additions (b) with sharing of 5x, 4 additions

The MCM technique is generally used in many digital-signal-processing systems
such as FIR filter, IIR filter,-and FFT. In.the conventional MCM problem, an adder is
assumed to be a 2-1 compressor..It is called carry propagation adder (CPA). As shown
in Figure 5(a), the long timing path of carry propagation in every addition in the
MCM . block would be a bottleneck of timing optimization. The worst case time
complexity of a CPA (i.e., ripple adder) is O(N). If the timing constraint is very tight,
CPA is not an ideal implementation for addition. To reduce the delay caused by the
carry propagation, carry save adder (CSA) would be a promising choice. It is a 3-2
compressor with three inputs and two outputs (sum.and. carry, respectively). The
summation of sum and carry is the result of the addition. As shown in Figure 5(b),
CSA preserves the result of addition in both sum and carry, so the long timing path
caused by carry propagation in CPA does not exist (Time complexity of single CSA is

O(1)).
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Figure 5. (a) Carry propagation adder (CPA) (b) Carry save adder (CSA)

If we use a faster CPA, the hardware cost will increase. A comparison of different

CPA structures is shown in Figure 6. The CPA structures with timing complexity

which is O(logN) has the greatest area complexity which is O(NlogN) in a single N-bit

CPA. Compared to CSA, it-has-less chance to meet tight timing constraint with small

area of MCM block.

Y[0]

Table 10.3 Comparison of adder architectures

Architecture Classification Logic Levels Max Fanout Tracks Cells
Carry-Ripple N-1 1 1 N
Carry-Skip (7 = 4) IN/4+5 2 1 1.25N
Carry-Increment | N/4+2 |4 1 2N

(n=4)

Carry-Increment 1 2N

(Va:gble group) m m

Brent-Kung (I-1,0,0) 2log, N-1 |2 1 2N
Sklansky (0, 1-1,0) ' log, N (N/2+1 1 0.5 Nlog, N
Kogge-Stone (0,0, 1) log, N 2 N2 Nlog, N
Han-Carlson (1,0, L-2) log, N+ 1 2 N/4 0.5 Nlog, N
Ladner Fischer (7=1) | (1, L-2,0) log, N +1 N4 +1 1 0.25 Nlog, N
Knowles [2,1,...,1] | (0,1, Z-2) | log, N '3 N4 Nlog, N

Figure 6. Comparison of CPA structures [1]

Figure 7 and 8 shows two different structures for implementing an FIR filter.

Figure 7 is the traditional structure using CPA for addition and Figure 8 shows the

high-speed structure using CSA for addition in the transposed form FIR filter. For the

high-speed structure, the CSA representation is maintained until summation of

constants is done. Then an extra CPA is used to combine sum and carry into the FIR



output. However, the delay of critical path in Figure 7 is only the delay of three CPA's

and the delay of critical path in Figure 8 is the delay of three CSA's.

X[n] i 1 <<?

<< <<4 lEPA_

v
@ﬁj ho=5
h—.
[cral hy=21
=850 27 fornb{ it (o

Figure 7. Transposed form FIR filter using CPA for addition

<<?

he=5

y[n] - Sum

c —>ﬂ y[n]
i A
y[nLCarry

Figure 8. Transposed form FIR filter using CSA for addition

Before applying MCM algorithms, all constants are preprocessed to become
positive and odd, because any even constants can be generated by bitwise left shift of
an odd constant and each negative constant can be replaced by positive one by using
subtractor. Then, the problem definition becomes: given a set of constants, find the
minimum number of adders for implementation of all constant multiplications. An

illustration of conventional MCM problem flow is shown in Figure 9.



Input: a set of
constants

Make all constants positive
and odd(optional)

Proposed algorithm

Output: additions that corresponding

#CSA is minized

Figure 9..Conventional flow of MCM problem

1.2 Introduction to MCM Algorithms

The .MCM problem defined as finding the minimum number of adders to
implement all constant multiplications has been proven to be a NP-hard problem in
[2]. Various studies have been developed and proposed in decades. Usually, the
existing algorithms  can . be divided into two  types: common subexpression

elimination(CSE) and graph.

1.2.1 Common Subexpression Elimination (CSE) Algorithm

In computer science, an expression is a finite combination of symbols (constant,
variable, operation, function, etc.). All expressions can be divided into subexpressions,
which is a part of the original expression. If the same subexpression can be found

between in expressions, this subexpression is called common subexpression. Figure

7



10 shows an example of expressions of 11 and 7 using binary representation and part

of their corresponding subexpressions and common subexpressions:

1011 0111

<]

101 1001 11

\/

Common
subexpression

Figure 10..Expressions of 11(1011) and 7(0111) using binary representation

Besides the binary representation, the more commonly used number systems in
MCM problem are canonical signed digit (CSD) and minimal signed digit (MSD).
CSD is.a kind of signed digit number system using {1,0,1}(1 = —1) instead of {1,
0}. Itis unique and it has two significant properties: (i) it has the minimum number of
non-zero terms, and (ii) any two.non-zero terms shall not be adjacent. MSD-is similar
to CSD. The major difference is non-zero terms can be adjacent and this.results in the

uniqueness of MSD being not guaranteed. An example of 95 in different number

systems is shown in Figure 11.

95510100001

95=1100001"
95=10100001

Figure 11. 95 in different number systems

8



According to the pre-decided number representation, CSE algorithms first
decompose all constants into subexpressions and then search for subexpressions of the
target constants to find optimal sharing of addition results for saving the number of
adders being used. For example, 39 = 101001 and 83 = 1010101 in CSD
representation, where 101 = 535 is @ common subexpression. There are four adders
that are used as shown in Figure 4(b). Selecting different number representation will
affect the time complexity and solution quality of the CSE algorithm. Selecting CSD
can save run time because of its uniqueness. On the other hand, selecting MSD
enables larger design space and better solution quality. One disadvantages of CSE
algorithms is that the implementation of numbers is restricted in decomposition. The
decomposed number must be a subexpression of the original expression so.that they

cannot make use of the carry propagation for more sharing of addition results [3].

1.2.2 Graph Algorithm

Compared with the CSE algorithm, the graph-based algorithm removes the
restriction on decomposition. A solution for implementing constants set = {7, 13, 19}
provided by a CSE algorithm is shown in Figure 12. In Figure 12, the node is a
constant product of input and edge is the scaling of binary shift. One intermediate
result 5 is produced since no subexpression of 19 equal to 7. But a better solution with
3 adders can be found in a graph algorithm, as shown in Figure 13. The major
difference is in CSE algorithm, 19 cannot decompose any subexpression equal to 13

since the number of non-zero terms of 19 and 13 are equal. So the solution space of

9



graph algorithms is larger than the solution space of CSE algorithms.

#non-zero terms  #non-zero terms

If targets =
Node: output of {7,13, 19} using
addition/subtraction CSE algorithm
Edge: scaling of
corresponding binary shift {1,5,7,43,19}

Figure 12. {7, 13, 19} solution of a CSE algorithm

#non-zero terms  #non-zero terms
=2 a5

©, (1)

If targets =
Node: output of {7, 13,18} using
addition/subtraction graph algorithm
Edge: scaling of
corresponding binary shift {1,7,13,19)

Figure 13. {7, 13, 19} solution of a graph algorithm

Graph algorithms iteratively construct a graph by adding edges to connect desired

nodes. In the graph, a node is a number, representing a constant product of input. An

edge from constant A to constant B representing constant B is constructed by adding

constant A and another constant, and the number labeling on it defines the scaling of

10



bit-wise shift of constant A. Except for the node 1, the in-degree of every node is at
least 2. The solution space is extremely large for graph algorithms so the exact
solution is not feasible in the general size of MCM problem. That is the reason why
most graph algorithms are heuristic algorithms. Graph algorithms are not restricted to
any number representation. Degrees of freedom in graph algorithms are higher and
generally graph algorithms can find better solutions than CSE algorithms can. The
other example, as shown .in ‘Figure 14(a), one possible graph solution to
implementation of {39, 83} can be done using three additions. And Figure 14(b)
shows a 39<<2 + 5 under CSD representation. This addition will never be found using

CSE algorithms based on-CSD representation.

CSD

39<<1=78 1
/83 ) 1010010

g 4 . 5 101
‘ X

1 if_\_‘39' 82 1010101

]
y

(a) (b)

Figure 14. (a) One graph solution of {39, 83} (b) 39<<2 + 5 under CSD
representation

The general flow of graph algorithms is shown in Table 1. There are three sets.
One is the target constant set T which needs to be implemented, and another is an
empty set R representing the already implemented constants. The third is the
successor set S representing the constants that can be implemented based on the R set.
The procedures are as follows. First the R set will be initialized by inserting 1, since
constant 1 implies the input itself. Then the computation of the S set based on the R

set now is done by checking the combinations of any two elements in the R set
11



together with different bit-wise shifts. Then one of the elements of S, called s, will be
chosen based on a strategy (usually a heuristic strategy). The element s will be added
into the R set and it is deleted from the T set if s€ T. Repeat the above procedures

until the T set is empty [4][5].

Table 1. General flow of graph algorithm

T: target set

S: successor set

R: synthesized set

1. R={1}

2. While(Tl= @) do

3 compute S of R

4. selects € S (usually based on a heuristic algorithm)
5 RER+s

6 if(se T)TET —{s}

7. .End while

A comparison between CSE and graph algorithms is shown in Table 2:

Table 2. Comparison between CSE and graph algorithms

CSE Graph

Solution space Small Large
Algorithm Exact Exact/Heuristic

Exact solution runtime Short Long

#adders Large Small

12



1.3 MCM Using Carry Save Adder for Addition

Implementation

Most MCM algorithms only consider CPA-based structure. However, there are
some differences between the CPA-based and CSA-based structures. In a CSA-based
structure, every constant except for 1 is represented by 2 outputs (sum and carry). The
output ports from multiplier block to structure adder block are alsoin CSA form. If a
constant has only two non-zero terms; it needs no adder for implementation. An

example is shown in Figure 15:

X . SSx

Ty &

Figure 15. 5x(101) in CSA-based structure

We can bypass the input and 2-bit left shifted input to the output directly. Besides, in a
CSA-based structure, the summation of two constants (neither being 1) has 4 inputs.
Two adders are needed as shown in Figure 16 since a CSA only has three inputs. This
iIs why a direct transform from CPA structure to CSA structure is not an optimum
solution in terms of number of CSA's. So the algorithm using the CSA structure

should be developed.

13



SSQx Cagx S5x C5x

39x 5x <<1| <<

<<1 l . lCSAlI
LC%J <:::> B lCSA J
3

83x SSSx C83x

Figure 16. 39<<1 + 5 using CPA or CSA

In this thesis, we propose a new systematic method to minimize the area of MCM
block in terms of number of adder bits. A smart sign extension method and accurate
adder bits counting in the ILP formulation of MCM problem are proposed. \We change
the optimization targets to the number of adder bits and apply this method to a
CSA-hased structure algorithm using ILP optimization tool for finding the optimal
solution. We show the difference by changing the optimization target function and
effectiveness of our method. Experimental results indicate that with our proposed

method we can achieve around 25% area reduction.

The rest of this thesis is organized as follows: Chapter 2 shows the previous work
on different algorithms for CSA-based and CPA-based structures. Chapter 3 describes
the proposed algorithm for area optimization using CSA-based structure.

Experimental results are listed in Chapter 4. Chapter 5 is the conclusion.
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Chapter 2. Previous Work

2.1 CPA-Based Algorithms

MCM problem has attracted a lot of attention in decades. Many of the proposed
algorithms use CPA-based structure. Some of them are CSE algorithms, like [6] - [10].
They may use CSD ([6] - [8]) or MSD . ([9] [10]) representation. Others are graph
algorithms, like [3] - [5], [11] [12]. [11] is known as RAG-n. It has an optimal part
and a heuristic part. In the optimal part, all target constants can be implemented by
only one addition is synthesized. In the heuristic part, it relies on a look-up table for
single constant optimization. So it lacks sharing of intermediate addition results
among different constants. [12] is called Hcub, which includes the same optimal part
but is not restricted to a look-up table so it can deal with larger case that RAG-n is not
able to handle. [4], [5] use the graph search method BFS or DES and branch and
bound to restrict the search space. An algorithm called general number (GN) [3] uses
the same ILP optimization modeling in [6]. But first it would construct a set called
Nset Which is a result of sorting all positive and odd constants can be expressed using
the given word length(e.g., if word length = 12, sort 1~2047) based on the number of
non-zero terms in CSD in ascending order. Then during the decomposition for
searching the candidates of additions for a constant, it only considers additions in
which both inputs have smaller indices than the index of the constant. An example is
shown in Figure 17(a). Assume there are 3 additions that can synthesize 51x: 13x<<2

— X, 19x<<2 + 13x and 53x — x<<1. Since the index of 53 is larger than 51, it will not
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be a candidate for implementing 51x.

#non-zero #non-zero #non-zero #non-zero
terms =1 terms =2 terms =3 2 terms =4
(@) 113|579 ¢--111113119|21}--{43|45|51|53¢--
p -2
Approximate
#non-zero #non-zero #non-zero #non-zero
terms =1 terms =2 terms =3 2 terms =4

(b) 14315719 }--|11123|19|21}--143]|45|51|53}--

Figure 17. (a) Nt for general number (b) N for approximate general number

There are also some works based on different structures in the MCM problem. To
reduce the delay carry propagation in CPA, [13] modifies the MCM problem by
adding pipeline in every CPA as well as shift and the modified problem is called
PMCM. [14] uses the digit-serial adder as the CPA.structure. Each input data is
divided into d-bit (special case: d = 1) and processed serially. The area cost is

independent from word length of inputs and carry propagation can be reduced.

2.2 CSA-Based Algorithms

For high speed DSP application, CSA can be widely used [15]. Using CSA in FIR

filter is proposed in [16]. It also shows that using CSA can reduce power consumption.
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In MCM problem, the direct transform from CPA to CSA of a CPA-based solution is
proved that it is not optimal solution in [17]. So the CSA-based algorithm should be
developed. A CSE heuristic algorithm is proposed in [18]. It iteratively extracts all
three-term subexpressions of constants and then finds the most common one for adder
sharing. [19] - [20] are graph algorithms. [19] has an optimal part and a heuristic part.
Constants that can be implemented by one adder is synthesized in the optimal part
while in heuristic part the unimplemented constants will be implemented either by
two CSA's or a corresponding mapping from [17]. [17] has a look-up table of all
possible additions can be achieved by up to 5 adders and exhaustive search for area
minimization in terms of the number of CSA's is applied. The extra look-up table in
[20] is used if the input of the filter is the output of another filter, i.e., the filter input is
in the form of sum and carry of a CSA. An exact CSE algorithm and a revised general
number algorithm called approximate general number (AGN) are proposed in [21]
and transformed into a 0-1 ILP_problem as the ILP structure used in [6]. The
difference between AGN and GN is that in AGN one input of each CSA must be 1 as
illustrated in Figure 18. An example is shown in Figure 17(b). Assume there are 3
additions that can synthesize 51x: 13x<<2 — X, 19x<<2 + 13x and 53x — x<<1. Except

for 53 with larger index, the combination of 19 and 13 won't be accepted since neither

of them is 1.
<<2 S19x <<l
13x %1 S <<1 1% S
c <<2 C 51x C19x S C 51x
13x —~> S 5 Cgpy C - N Csix

Figure 18. One input of each CSA must be 1
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Chapter 3. Proposed Algorithm

3.1 Bit Level Area Optimization Using CSA-Based

Structure

Several algorithms of CSA-based MCM optimization are already proposed.
However they only count-on-the nhumber of CSAS, neglecting the size difference of
them. The fact that the word length of different CSAs are not identical makes these
algorithms not -obtaining minimum cost in bit-accuracy. An example is shown in
Figure 19. The inputis denoted by x and there are two solutions for implementing 51x:
13x<<2 — X and x<<6 — 13x. The constant 13X is implemented by 16X — 4x + X.
Implemented by our later proposed method the number of adder bits of 13x<<2 — x is
13 and x<<6 — 13x is 10 if we assume input's word length is 12. AAdder bit(%) is (13
—10) / 13 =23.08 %. Thus only considering number of adder without considering the
bit-level accuracy cannot obtain the smaller cost in.this case.

Assume input is

S1ax Crax X Siax Ciax X 12-pit
<<2 ‘<<2{ —J _ l _[(<Sl
#adderbits=13 || csaA E b csa #adder bits = 10
) AAdder bit(%) |
S, C =(13-10)/13| . ¢
51x 51x =23 08% 51x 51x

Figure 19. Two different additions for implementing 51x have different the number of
adder bits
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However, the word length calculation of CSA involves the number system.
Two's complement is the most generally used binary signed number system in digital
systems. For a N-bit number A, the MSB A[N — 1] is the sign bit and it represents a
negative value —A[N — 1]2™ =Y. On the other hand, the remaining bit A[x] represents
the positive value A[x]2*, x € {0,1,..., N — 2}. The corresponding value of the two's

complement is
N-2 f
—AN-1]2"" + > Afi]2'
i=0

For example, If A is an 8-bit two's complement number, the bit A[7] represents the

value —A[7]2". The corresponding value-is —A[7]*2" + A[6]*2° + ... + A[0]*2°.

Al7] | A[6] | A[S] | A[4] | A[3]|Al2] |Al1] | AlQ] N2
= _A[7]*27 + A[B]*26 + ... +A[0]*20= —A[N-1 JzN‘“+ZA[i]2‘
=0

Figure 20./An 8-bit two's complement number

In our proposed algorithm we will mark the sign bit by red square as in Figure 21
because it is different from the other bits. Due to the fact that the positions of sign bit
in all three inputs may be different, we may face the problem of adding sign bit with
unsigned bits. If we add sign bits with unsigned bits directly, the result will also
contain sign bits. However, inserting a sign bit in the middle of a data word is not

allowed in 2’s complement number system.
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o
\ unsigned bit /

sign bit
Figure 21. MSB is a sign bit while the other bits are unsigned bits

To deal with this problem, the inputs with smaller positions of MSB are needed to
do the sign extension. Extend the two inputs with smaller positions of MSB is a trivial
way to deal with the problem, but it comes with a high cost in terms of adder bits. An
example is shown in Figure 22(a). Assume the inputs 1 and 2 of the addition 16 + 2 +
1 =19 do the trivial sign extension and word length of input variable is 4. The total
number of adder bits is 4.-But in-our proposed-method we adjust the sign-extension as
shown_in Figure 22(b). Fewer bits are extended and the number of adder bits for the
addition is less. The principle and detail of the algorithm will be discussed in this

chapter.
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+
(a) Trivial sig [ ign extension
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L
Figure 22.(a) Tri gn extension
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3.2 Problem Formulation

As mentioned in 3.1, we have changed the optimization target from reduction of the
number of CSA's to reduction of the number of adder bits for implementing all

constants. The problem formulation is shown as below:

Area optimization. of CSA-based MCM block Problem: Given a set of
constants (positive and odd), find the minimum the number of adder bits for

implementation of all constant multiplications.

Definition 1: A CSA-based MCM block has single input and multiple output ports

that each output port has two data words (sum and carry of a CSA).

Definition 2: Adder bit isa bit which needs a full adder implementation in CSA.

The addition in adder bit is not replaced by simplerhardware like wiring and inverter.

3.3 Overall Flow

The overall flow of our proposed algorithm is shown in Figure 23. After the
preprocessing of making the given set of constants positive and odd, the following

four steps will be executed:
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1. Find AGN representations for constants

2. Build Boolean network for adder sharing

3. Calculate the number of adder bits for each adder

4. Formulation of 0-1 ILP problem

In step 1, the AGN representations for constants are found. Then in step 2, the
connections between constants and additions are built and a Boolean network is
constructed ‘to represent the connections. After step 2, the calculation of number of
adder bits for each adder-is-performed-in step 3. In step 4, the ILP constraints and
optimization target function are transformed from the Boolean network generated in
step 2 and calculated adder bits in step 3. Finally the ILP tool (in this thesis,
Gurobi5.0 is used) can be executed to find the optimal solution under the constraints
in step 4. ILP-optimized solution is-the additions that total number of adder bits is

minimal. The details of all 4 steps will be discussed in 3:4~3.7.
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Input: a set of
constants

Make all constants
positive and odd

.

1. Find AGN
representations for
constants

2. Build Boolean
network for
adder sharing

3. Calculate #adder bits
for each adder

4. Formulation of 0-1 ILP
problem

)

Run ILP tool Gurobi_5.0
for optimal solution

Output: additions that corresponding

#adder bit is minimized

Figure 23. Overall flow of our proposed algorithm
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3.4 Find AGN representations for Constants

To avoid the exponentially increasing number of ILP constraints because the
graph algorithms have an extremely large solution space, it is necessary to choose the
candidates of additions carefully. We adopt the approximate general number in this
step because it provides better solutions than CSE algorithms without adding too
many extra constraints. Furthermore, it utilizes the characteristic that adding 1 to a
CSA output only needs one CSA as shown in section 2.2. Compared to all previous

works, it provides the minimum number of adders to the best of our knowledge.

For atarget constant, we first find all combinations of adding or subtracting 2" to
another constant (can be negative). For example, 51 = 1<<3 + 43 means.the target
constant 51 can be implemented by adding 1<<3 = 2° to constant 43. But there is an
extra rule mentioned in 2.1. A set called Ng; IS built and stored in the ascending order
based on the sorting result of all odd constants that can be represented in.a given word
length with their number of non-zero terms in CSD representation. According to the
sorted order in Ny, only the constants with the smaller indices compared to the target
constant is allowed (see Figure 17(b)). An example is showed in Figure 24. Suppose
the 51 is the needed constant and the word length of the constant is 7, there are 14
possible candidates of AGN representations. But among these 14 candidates, three of
them (—1<<1 + 53, —1<<5 + 83 and —1<<6 + 115) have inputs with larger indices
compared to 51. So they won't be the legitimate AGN representations for generating
51x. Furthermore, there are 2 candidates with the same input constant but different
shift and sign (1<<6 — 13 and —1 + 13<<2). If only counting number of adder as in

[21], they have the same cost and one of them will be removed for reducing ILP
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constraints. But in our work the number of adder bits of these two adders and
corresponding position of MSB and LSB of sum and carry may be different, it is

necessary for us to keep all of the candidates.

51=1 + 25«2 Ignore one of
Implementation
51= 1«1 + 49 in previous

work while we

91=1K2+47 51=-1«2+55 have to keep_
51=1«3 +43 51=—-1«3+ 59 both since their

#adder bits are
51=1«4 + 35 51=-1«4 + 67 not the same
951= 1«5 + 19

Figure 24. Legitimate AGN representations of 51

The ‘overall process-of-finding legal AGN representations for all-constants is
shown_in Table 3. First a.set.of constant C is inserted of all target constants and the
word length of constant is assumed as n . For each element ¢ in C, it adds or subtracts
a left shift (from 0 to n — 1) of 1 and the addition/subtraction results are saved in a
temporary set temp_C. For every element in temp_C, it is transformed into a positive
and odd constant, c3; and its corresponding° AGN representation, 01: ¢, = sl *
(c3<<m) + s2 * (1<<n), is found. Both s1 and s2 is 1 or — 1 .and m as well as n are
how many bits should €3 and 1 to be shifted, respectively. If (1) the index of ¢3 in Ny
is smaller than the index of ¢k In Neet, (2) 01 is not found before and (3) the number of
non-zero digits of c3 in CSD representation is greater than or equal to 3, ol will be
saved. If the number of non-zero digits of ¢3 in CSD representation is greater than 3,
it will be inserted into C. Finally, cy is removed from C and temp_C is set as an empty

set. The process will be executed until C is an empty set.
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Table 3. Overall process of finding legal AGN representations for all constants

C: a set of unimplemented target constants

temp_C.: a set of constants that is a temporary storage

Index(x): index of x in Ngg

Nz(x): # non-zero digits of x in CSD representation

O,: a set of legal AGN representations of x

1. C < {all target constants}

2. while (C # @) do

3. Cy iS an arbitrary unimplemented element of C

4, temp C< o

5. Assume word length of constant = n

6. fori=0ton-1do

7. Find constant ¢7 such that ¢7 = ¢, — 1<<i

8. Find constant ¢2 such that c2 = ¢, + 1<<i

9. temp_C < temp_C + {c7, ¢c2}

10. end for

11. for each element femp_c; € temp_C do

12. Find positive and odd ¢3 such that ¢3 = (s7* temp_c)>>m, s71=1 or -1
13. Find AGN representation o7: ¢, = s1* (c3<<m) + s2 * (1<<n),s2=1or-1
14. if(Index(c3) < Index(c,) && o7 ¢ Ock && Nz(c3) = 3) then
15. if(Nz(c3) > 3 && ¢3 is unimplemented ) then

16. C < C +{c3}, label ¢3 as implemented

17. end if

18. C_)cké Ock+ {o1}

19. end if

20. end for

21. C < C- {c}

22. end while

3.5 Construct Boolean Network

If all AGN representations of each constant are found, a Boolean network would

be built to represent the connections of all constants and additions. First, we transform

all AGN representations to an AND gate. For example, 51 = —1 + 13<<2 is shown in

Figure 24. In Figure 25, every edge is either a constant or an adder output. Edge vX
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represents the constant X and edge vX_i represents the iy, AGN representation of
constant X. Bold edge represents the sum and carry of an addition and thin edge
represents the input variable. Each edge has a corresponding binary variable. The
value of the binary variable represents whether we need the constants or addition

implementation.

v13 <<

—— v51_1

Sum and carry of an-addition
Input variable

Figure 25. Corresponding AND gate of —1 + 13<<2

Afterr AGN representations are transformed into the AND gates, all of the
candidates for the same constants are connected to an OR gate as shown in Figure 26.
Only part of AGN representations are shown in Figure 26, but in practice all of the
AGN representations should be connected to the same OR gate. The output of the OR
gate is vX and the meaning of the OR gate is that if we need constant X, at least one of

the additions should be implemented.
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v13 <<

; R
Y

v51_1

v47

mmnm 1 <2 \Y V51

vB7 .

vo1_3
=i

Figure 26. OR gate connected with all AGN representations for 51

The edges v13, v47 and v67 in Figure 26 are not only connected to one AND gate,
of course. The sharing for the same input of different additions is common because
the sharing is the key of the area minimization in MCM designs. Part of the sharing is
shown in Figure 27. If vi13 is not only used in =1 + 13<<2 but also in 1<<6 + 13, the

branch of edge v13 will appear.
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1 <<6

D

v13 <<
mEn 1 ~
var’
1 <<2
ve7
. 1 <<4 _
V323 1

Figure 27. Part of the whole Boolean network

3.6 Calculation of Number of Adder Bits for All

Additions

3.6.1 Calculation of Number of Adder Bits

Unlike processor-based design, ASIC designs have the flexibility to adjust the
position of MSB (most significant bits) and LSB (least significant bits) according to
the dynamic range and resolution of a data word. In MCM design, because of bit-wise
shifting, the bit position of every data word may be varied. In our work, calculation of

number of adder bits depends on the bit positions of the data words and how we do
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sign extension. The MSB's and LSB's of the three inputs determine the number of
adder bits of an addition. LSB determines the starting point and MSB determines the
end point of a series of the full adders in CSA. Besides knowing the adder bits in a
CSA, in order to supply the MSB and LSB information to the fanout CSA, the
position of the MSB and LSB of both output words (sum and carry) in current CSA
would be the information we must know. So when we need to calculate the adder bits
of all additions, the MSB and LSB of three inputs of a CSA and its MSB and LSB of
both sum and carry-are necessary. The properties of input of MCM block such as
word length and number system will also affect the calculation. We assume input
variable of the MCM block-is-under the 2's complement representation and the word

length of MCM input is equal to the word length of constant.

In-our proposed algorithm, the calculation of adder bits of all additions is actually
finding.the weighting of all AND gates in the Boolean network. An example.is shown
in Figure 28. First we define MSB(x) is the MSB position of x and LSB(X) is the LSB
position:of x. Assume MSB’s and LSB’s of sum and carry of v67 are known. In the
figure we _denote the position of MSB and LSB of sum add carry by
( [MSB(sum):LSB(sum)], [MSB(carry):LSB(carry)] ). And the positions of MSB’s as
well as LSB’s of sum and carry of the output edge v51 3 are solved by the smart sign
extension method we proposed (will be shown in next section). The number of adder
bits in the addition is solved at the same time. Then the positions of MSB's and LSB's
of sum and carry of v51 1~v51 n and calculation of number of adder bits for each
addition implemented 51 are determined. How we obtain the bit information of v51

after the OR gate will be described in section 3.6.3.
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vX ([MSB(sum):LSB(sum)], [MSB(carry).LSB(carry)])

v13 <<
"'1— MSB(x): MSB LSB(x): LSB
— position of x position of x
v51 1
var v307_1 v307
1 <<

V67 ([14:0], [17:2])
1[11:0]cq _|Fadder
bits = 12 841\ 3(116.01. 11 7:2))

Figure 28. Calculation of #adder bits of v51_3

3.6.2 Smart Sign Extension

The smart sign extension we propose.is a systematic method to do sign extension
for any.input condition. The concept is similar to some booth multiplier, however, the
booth multiplier is a regular structure and there is no systematic method proposed yet
to the best of our knowledge. There are three cases are sorted out according to the
inputs of the CSA. We sorted out all input combinations into three cases, with some
common parts and some varied parts. We divide this method to two steps due to these
three cases. The common first step is for the LSB handling. The second step handles
sign extension for each case. Compared with the trivial sign extension, it has less

number of adder bits.

First step:

We rename the three inputs to X, y and z in CSA according to their position of
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(a) Input x: do sign extension to MSB(y)

Z X5l X4 | X3| X2 X1| X0
E Ys|Ya|Y3|Y2|Y1]Yo
2]

Zs|Z4|2Z3|2Z2|21|2p

(b) Direct wiring to the sum and carry

i Xs5|Xs5|X5|X4[X3|X2|X1| X0
y Ys|YaY3|Y2|Y1]Yo
Z

+ Z5|Z4|23|22|21|20
V
sum
carry
(c) Depending on MSB(z) (here zs), there are 3 cases
Z Xs| X5| X5/ X4
1 Ys|Ya|Y3]Y2
"‘; Z5|Z4|23|22| 24|20
sum S3|S2[S1[So
carry C1|Co

Figure 29. (a) Sign extension for input x (b) Direct wiring (c) First step complete



MSB(y) as shown in Figure 29(a). Then for those inputs whose LSB position it's not
the largest, we can do direct wiring to the sum and carry. Because there are two
outputs and inputs, no full adder is needed. This means from the bit 0 to max(LSB(x),
LSB(y), LSB(z)) — 1, no full adder is needed. The starting point of the series of full
adders is max(LSB(x), LSB(y), LSB(z)). In Figure 29(b), the LSB positions of input x
and input y are not the largest. So for the bits below LSB(z) (i.e., 0~LSB(z) — 1), no
full adder is needed. In implementation, the input with the smallest position of LSB
will be wired to the sum and the other input will be wired to carry because we want to
balance the word length of carry and sum. The smallest position of LSB is 0 since we
only implement the odd constant. The position of LSB of sum and carry become 0 and
median(LSB(X), LSB(y), LSB(z) ), respectively. The. following procedures of
proposed algorithm will depend on the largest position of MSB. In Figure 29(c), it is
the MSB(z). We find there are three cases would generate different results.and should

be discussed separately.

Second step:

We will divide this step into 3 cases according to the relative position of MSB(z) and
MSB(y). Case 1 is MSB(z) > MSB(y) + 1, case 2 is MSB(z) = MSB(y) + 1 and case 3
is MSB(z) = MSB(y). These ‘three cases contained all possibility because MSB(z) 2

MSB(y) by our definition.

Case 1: MSB(z) > MSB(y) + 1

In this case, as shown in Figure 30, MSB(z) is at least 2 bits higher than MSB(y).
The example used in Figure 30 is a CSA with three inputs and their word lengths are 6.

The addition implemented by this CSA is 1<<4 + 1<<2 + 1. So the input x is 1, input
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y is 1<<2 and input z is 1<<4. The first 4 bits of sum and first 2 bits of carry are from
the first 4 bits of x and first 2 bits of y, respectively. In this case, even if we extend
input x to the MSB(y), the bit at MSB(y) in input z is still not sign bit thus can’t be
added to x and y directly. So an extra operation is needed. We will inverse the bits at
MSB(y) of the input x and y and treat them as the unsigned bits. As shown in Figure
30(b), the equation of this operation is —xs —ys=—-2 + X5+ y5. The logical value of a
sign bit x is actually —xs while a-inversed Boolean variable xs is denoted by X; , To
prove the equation .is a tautology, the truth table of left part and right part of the

equation is shown in Table 4.

After handling the sign-bit-of x and y, we can add these unsigned bits in the
middle as shown in Figure 30(c). The end point of the series of the full adders
becomes MSB(y) as shown in Figure 30(d). So in this case the number of adder bits of
the addition is MSB(y) — max(LSB(x), LSB(y), LSB(z) ) + 1. In this example, the
number of adder bits is7 —4 + 1 =.4. The bits s,~S7 in sum are the sum outputs and

C3~Cg Intcarry are the carry outputs of the series of full adders. The bit ¢z in carry is

Table 4. The truth table of —xs - ysand -2 + Xs+ Vs.

X5 Ys —X5 — Y5 —2 + Xg+ y_5
0 0 -0-0=0 —2+1+1=0
0 1 -0-1=-1 —2+1+0=-1
1 0 -1-0=-1 —2+0+1=-1
1 1 -1-1=-2 —2+0+0=-2
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actually 0, but we will treat it as a variable to make the carry to be a continuous vector

for the simplicity of the whole process.

The —1 at MSB(y) + 1 can be used to transform the bit of input z at the same
position from unsigned bit to sign bit. In this example, the equation is -z;. =-1 +z4.
The truth table of left part and right part of the equation is shown in Table 5 to prove
the equation is also a tautology. The inversed z, can be used as the sign bit of the sum
and the remaining bit in the input z (i.e., the sign bit z) can be wired to the carry. So
both sum and carry are in the format of two's complement. The Table 6 shows the

MSB and LSB of both sum and carry.

Table 5. The truth table of -1 +z, and -z,

24 -1 +z4 —Z2
0 _140=-1 i
1 -1+1=0 0

Table 6. The MSB and LSB of both sum and carry in case 1

MSB LSB
Sum MSB(y) +1 0
Carry  MSB(2) median(LSB(x), LSB(y), LSB(z) )
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—X5— Y5= —2+Xs5+Ys

@ ®)
"' 2524|235/ 25]24] 29| "' EAEAEAEAEAEA
[[sum | [safs2]s4[sd
— -1+2z4=-2,
(c) |Z5|X5|X5 X4 (d)
L1 1yslyalyalya
+E |25|24]25|2]21] 2 "‘E
sum sum [S2185/S5[S4[8382[84[50]
] [Slesfedelceied
0 buttreated as a variable
e . |x| ® |x

i

’ |s7]s6|85]84s3[S5[S4/So] [Sels7[Sc[Ss]s4]s3]s2]s1/5
|carry | ¥ [Cs|Cs|Ca|cs e[| o) |carry |- [C7[cs[0s[caleslez ci e
#adder bits
= MSB(y) - max(LSB(x), LSB(y), LSB(z) ) + 1
=4

Figure 30. Example of case 1 after sign extension

Case 2: MSB(z) = MSB(y) + 1

In this case, as shown in Figure 31, MSB(z) is at actually 1 bit higher than MSB(y).
The example used in Figure 31 is a CSA with three inputs is a CSA with three inputs
and their word lengths are 6. The addition implemented by this CSA is 1<<3 + 1<<2

+ 1. So the input x is 1, input y is 1<<2 and input z is 1<<3. The first 3 bits of sum and
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first 1 bit of carry are from the first 3 bits of x and first 1 bits of y, respectively.

The following procedure is very similar to the procedure in case 1. We will
inverse the bits at MSB(y) of the input x and y and treat them as the unsigned bits.
This operation will increase an extra —1 at MSB(y) + 1. In Figure 31(b), this means
—X5 — Y5 = -2 + X5+ ¥5. After adding the middle bits, the bits s3~s7 in sum are the sum
outputs and c,~Cg in carry are the carry outputs as shown in Figure 31(d). The number
of adder bits is also MSB(y) — max(LSB(x), LSB(y), LSB(z) ) + 1. In the example
used in Figure 31, itis 7 =3+ 1 = 5. The bit ¢, in carry is actually 0, but we will treat

it as a variable like.in case 1.

The different point is the bit at MSB(y) + 1 of input z is the sign bit of the input z.
In this example as shown in Figure 31(d), it is —1 — zs, not —1 + zs in case 1. We will
do 1-bit sign extension for input z and inverse the bit at MSB(y) +1 of input z. The
inversed bit is used as the sign bit of sum and the extended bit is used as the sign bit
of carry. In the example, the sign bit of sum Is Zs and the sign bit of carry is z5. This
operation ‘is actually the equation =1 —zs= -1 + z5-2Z5 = - Z5 -2z5 .. Then we can take
Zs as the sign bit of sum and take zs as sign bit of carry. The Table 7 shows the MSB

and LSB of both sum and carry.

Table 7. The MSB and LSB of both sum and carry in case 2

MSB LSB
Sum MSB(y) +1 0
Carry  MSB(z) +1 median(LSB(x), LSB(y), LSB(z) )

38



—Xs—Y5= —2+X5+Ys

(a) (b)
El y4| Y3| Y2| y1|
+@ |Z5|24] z3| 25| 24| 2o "' |5|z4| 23| 2] 24 20|

sum [s2[S4]8) sum

-1 - Zs= -1+ Zs— 225= _Zj - 225

© el xalxehts @
11 [Vl yalys| yal¥i
tz)  [zlzifzilzdzi]z Hz) [z
S3[S2[$1/S0) [ sum | |S7/86]85|S4|S3]82]84/80|
[camy] . [Ce|Cs[CalCajCo|CiCol

0 but treated-as=a variable

@ x| ()
+iz] |zslz] *z|
[sum | | V[s7lSelss|salss[sa[s1[so) Lsum] _ [ss|s7]86[Ss|sa|ss|s2[s1]s0]
carry | ¥ |Cq| Cs|ca]Cs] 2] ¢4]Col [ carry.|" [C7] cs 05| ca]C3[€2] 1] o
#adder bits
= MSB(y)—max(LSB(x), LSB(y), LSB(z) ) + 1
=5

Figure 31. Example of case 2 after sign extension

Case 3. MSB(z) = MSB(y)

In this case, as shown in Figure 32, MSB(z) equals MSB(y). The example used in
Figure 32 is a CSA with three inputs and their word lengths are 6. The addition
implemented by this CSA is 1<<2 + 1<<2 + 1. So the input x is 1, input y is 1<<2 and

input z is 1<<2. The first 2 bits of sum are from the first 2 bits of x. In this example,
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due to LSB(y) = LSB(z), no bit is wired from input y or input z to the carry.

Since the bits at MSB(y) of three inputs are all sign bits, no extra operation is
needed to add these three bits. The following equation —Xs — Y5 — Zs = — (X5 + Y5 + Z5)
= —(sum + carry) = —sum —carry shows why no extra operation is needed. The sum
and carry of the full adder can be used as the sign bit of sum and carry of CSA,
respectively. The bits s,~s7 in sum are the sum outputs and co~Cg in carry are the carry
outputs of the series of full adders. The number of adder bits is also MSB(y) —
max(LSB(x), LSB(y), LSB(z) ) + 1. In the example used in Figure 32, itis7 -2+ 1=
6. The bit co incarry is actually 0, but we will treat it as a variable like in case 1. The

Table 8 shows the MSB and L.SB of both.sum and carry.

Table 8. The MSB and LSB of both sum and carry in case 3

MSB LSB
Sum MSB(y) 0
Carry  MSB(z) +1 median(LSB(x), LSB(y), LSB(z) )

Table 9 shows the equations of the position of MSB and LSB of sum and carry as well
as the number of adder bits for all three cases. We can find the equations of the
number of adder bits are the same for all three cases. And the equations of the position
of LSB of both sum and carry is the same for all three cases, too. Only the equations
of the position of MSB of sum and carry are slightly different for the 3 cases. By
using these equations, we can calculate the required number of adder bits and the bit

positions of the outputs if input bit information is available.
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—Y5—2Z5=— (X5 + Y5 + Zg)

= —(sum + carry) = —sum — carry
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(d)
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#adder bits

= MSB(y) - max(LSB(x), LSB(y), LSB(z) ) + 1

Figure 32. Example of case 3 after sign extension

Table 9. MSB and LSB of sum and carry as well as the number of adder bits for all three cases

MSB(z) > MSB(y) +1

MSB(z) - MSB(y) +1

MSB(z) - MSB(y)

MSB(sum) LSB(sum) MSB(carry) LSB(carry)
#adder bits
MSB(y) +1 O MSB(z) median(LSB(x) LSB(y) LSB(z) )

MSB(y) - max(LSB(x), LSB(y) LSB(z) )+ 1

MSB(y) +1 0 MSB(z) +1 median(LSB(X) LSB(y) LSB(z))

MSB(y) - max(LSB(x), LSB(y) LSB(z) ) + 1

MSB(y) 0 MSB(z) +1 median(LSB(x) LSB(y) LSB(z))
MSB(y) - max(LSB(x), LSB(y) LSB(z)) + 1



3.6.3 Bit Propagation for OR Operation

Figure 33 shows an example why we need to discuss the OR gate. Assume the
word length of input variable of MCM block is 12. After we find the number of adder
bits as well as the positions of MSB and LSB of sum and carry of additions v51_1 and
v51 2, we can see that the position of their MSB of sum and carry are not equal. The
MSB(sum) of v51_1 is-17 and the MSB(sum) of v51 2 is 16 and the MSB(carry) of
v51 1 is 18 and the MSB(carry) of v51_2 is 17. The output information of all inputs
of OR gate are not the same for every cases, so some decision must be made such that

we can calculated the additions with at least one input is 51.

13 ([14:0], [15:2])

A s 51 1([17:0],[18:2])
e
1[11:0]

51([2:2], [2:?])

307_1([2:2112:])

67 ([14:0], [17:2]) 807([?:7], [?:?])

- 4@_, 1[11:0]
T

1{11:0] 51 2 ([16:0], [17:2])

Figure 33.Example of Bit Propagation for OR operation

The exact solution of this problem can be found if setting the number of MSB of

OR gate in the form of the following equation:

va _i*MSB(vX _i)

But this will turn the optimization from ILP to quadratic programming

(multiplying two variable makes the constraint quadratic), which will cause runtime
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explosion. Since this exact solution is not appropriate, we decise to make estimation

instead.

Our strategy is taking the average of MSB of all inputs of OR gate and round

down the average to the nearest whole digit (flooring of the average).

N N
MSB(vX) = sum: L%z MSB(VX i . sum)J carry’: {%Z MSB(VX i _ carry)J

i=1 i=1

N N
LSB(vX )= sum: [%Z LSB(VX i sum)J Jcarry’: {%z LSB(VX i carry)J

i=1 i=1

where N is the number. of candidate additions and vX I _sum is the sum and
vX_i_carry is the carry of vX_i. Quantization to integer is necessary for our proposed
method.to calculate bit positions. \We adopted floor function ‘instead of .rounding
because the ILP optimization will potentially select smaller word length solution thus
the result is usually slightly 'smaller than average and selecting floor function of

average can.reduce the estimation error.

3.7 Transform Boolean Network to 0-1 ILP Problem

After the number of adder bits of each addition is determined, the Boolean
network can be transformed to ILP problem. ILP problem is finding a solution to
maximize the target function under the given linear constraints with some variable

limited to integers. An ILP problem can be written as:
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Maximize: ¢'x
Subject to: Ax <=b, x>=0,and x €z

The vector c is the vector of coefficients of target function, vector x is the variable

vector. Matrix A and vector b are used to describe the constraints.

An example is shown in_Figure 34. For the variables vX represent the target
constants, they will be set as 1 such that these variables must be implemented. Like
v51 in the Figure 34, the constraint of v51 = 1 is set. For each variable vX represent

the output of OR gate, a constraint is set in the form of:

NX

D VX _i>=VX

i=1
where Nx Is the number of inputs of the OR gate. This kind of constraints.is.to make
sure if vX'is required, at least one of the candidate additions of vX is implemented. For
each variable vX_i represents the output of AND gate, a constraint is set in the form

of:
vX _i<=min(vY,vZ)

where vY and vZ are the inputs of the AND gate. This constraint is set to make sure if
vX_i is needed to be implemented, its inputs vY and vZ have to be implemented at the
same time. But in AGN algorithm one of the inputs is always 1 while the other is a
constant. Thus, one of the inputs is always true. Using this constraint mainly for
keeping flexibility for using not only AGN in our experiments. Finally, the

optimization target function is set in the form of:
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minimize ' ivx CiFwX i

XeT i=1

where T is the target constant set, Nx is the number of candidate additions of constant

X and wX_i is the weighting(i.e., the number of adder bits) of the addition vX_i. So

the total number of adder bits can be minimized.

1 <<6

vli3 <<

1 <<2

1 <<«4

1 <<8

vbl

V323

Figure 34. Boolean network with weighting in.terms of number of adder bits

After all of the above procedures, we can run the ILP tool for finding the optimum

solution in terms of adder bits. After the optimum solution is found, we can obtained a

result of total adder bits from ILP tool, but this value is not a real value because the

cost function in ILP is an estimated value. In our algorithm we apply the same

techniques of bit calculation for the resultant MCM block to get a real cost result.
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Chapter 4. Experimental Results

We implement our proposed algorithm by C++ and Gurobi_5.0 is used for our ILP
optimization. We run the compiled executable binary file on the work station with the

following specification:
OS: CentOS 5.9 (final) 2.6.18-194.17.4.el5
CPU: Intel Xeon QC E5620 2.4GHz
RAM: 4GB*18, DDR3-1333

There are two experiments in this thesis. One of them is the implementation of 10
FIR filter benchmarks while the other is the implementation of uniformly distributed
random constants. In both experiments we assume the word length of input variable

equals the word length of the constant.

In the first experiment, we use 10 digital FIR filters benchmarks. The first 5 FIR
filters are cited from [22], while the rest of them are cited from [23] and their original
reference are [24] - [28]. Table 10 is the definition of different techniques. We set the
result of using trivial sign extension and optimizing the number of adders as the

reference point. Table 11 list 10 filters we used.
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Table 10. Definition of different techniques

Trivial sign Smart sign
extension extension
Optimization target:
P J Ref. @)
#adders
Optimization target:
(b) (@)+(b)

#adder bits

Table 11. 10 FIR filters used in Exp.1

FIR FIR name in website Original
reference
FIR1 fir3
FIR2 fir7
[19] FIR3 fir12
FIR4 fir22
FIR5 fir23
FIR6 JOHANSSONO08_30 [21]
FIR7 LIMAKTO08 121 [22]
[20] FIR8 VINODO3 26B [23]
FIR9 YOSHINO90 64 [24]
FIR10 LIM83_121 [25]

We show the comparison in terms of number of adder bits between trivial sign
extension and smart sign extension with optimizing the number of adders in Table 12.

The improvement is range from 13.4% to 26.1% and 17.8% in average. It is proved
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Table 12. Comparison between Ref. and (a)

FIR1 FIR2 FIR3 FIR4 FIR5 FIR6 FIR7 FIR8 FIR9 FIR10 Avg.

WL. 12 14 18 16 14 10 14 14 13 14
#taps 40 60 120 300 40 30 121 26 64 121
#adders 15 34 96 81 29 28 39 23 20 58

Ref.  #adder bits 207 554 2231 1493 500 337 637 422 301 957
Run time(s) 034 17 1719 33 24 017 26 6.3 0.18 8.7
#adders 15 34 96 81 29 28 39 23 20 58

#adder bits 162 463 1932 1255 430 249 536 346 243 793
@)
Aadder bits(%) 21.7 164 134 159 140 261 159 180 193 171 17.8

Run time(s) 035 16 1727 3.2 24 018 26 6.3 0.17 8.7

that our proposed algorithm can reduce the number of adder bits effectively.

If we want more improvement, changing the optimization targets from number of
adders to number of adder bits is considered. In the Table 13, the comparison of
changing the optimization target with full sign-extension is shown. The improvement
is 8.2% and estimation error is 0.8% in average. The number of addition is slightly
increased because changing the optimization targets from number of adders to number
of adder bits may increase number of adder in some special cases. However, actually
for each bit in a CSA there is no connection to any other bits in this CSA. It is natural
that in automatic placement and routing (APR) stage of the AISC design flow, the
adder hierarchy will be flattened to obtain better wiring reduction. Thus the extra

number of adder will not cause any problem in our point of view.
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Table 13. Comparison between Ref. and (b)
FIR1 FIR2 FIR3 FIR4 FIR5 FIR6 FIR7 FIR8 FIR9 FIR10 Avg.
WL. 12 14 18 16 14 10 14 14 13 14
#taps 40 60 120 300 40 30 121 26 64 121

#adders 15 34 96 81 29 28 39 23 20 58

#adder
207 554 2231 1493 500 337 637 422 301 957
Ref. bits
Run
034 17 1719 3.3 24 017 2.6 6.3 0.18 8.7
time(s)

#adders 15 35 99 81 29 28 39 23 20 59

#adder
N 192 510 2050 1347 460 309 580 379 282 885
Iits
Aadders
00 29 31 00 00 00 00 00 00 -1.7 -08
(%)
b Aadder
(b) 72 79 81 98 80 83 89 102 63 75 82
bits(%)
#adder
193 508 2002 1351 454 309 581 373 283 876
bits (Est.)

|Error| (%) 05 04 23 03 13 00 02 16 04 10 08

Run
_ 037 17 2914 34 29 017 3.1 6.9 017 117
time(s)

Then we change the optimization target with our proposed method and compare
the result with optimizing number of adders with full sign extension. The result is
shown in Table 14. We can discover that the improvement is now 25.6% in average
and it is roughly the summation of the improvements shown in Table 10 and Table 11.
The two techniques does not disturb each other to much so changing the optimization
target to number of adder bits with our method is the best way to get more
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improvement in terms of adder bits.

WL.
#taps
#adders
Ref.  #adder bits
Run time(s)
#adders
#adder bits
Aadders (%)
Aadder bits
(@)+(b) (%)
#adder bits
(Est.)

|Error| (%)

Run time(s)

Table 14. Comparison between Ref. and (a) + (b)

FIR1 FIR2
12 14
40 60
15 34
207 554
034 1.7
15 35
151 425
0.0 -29
27.1 233
152 422
0.7 0.7
035 23

FIR 3
18
120
96
2231
171.9
100
1737

-4.2

22.1

1727

0.6
1169.8

FIR4 FIR5 FIR6 FIR7 FIRS8

16
300
81
1493
3.3
81
1105
0.0

26.0

1113

0.7
3.4

14
40
29
500
2.4
29
386
0.0

22.8

375

2.8
2.8

10
30
28
337
0.17
28
225
0.0

33.2

226

0.4
0.18

14
121
39
637
2.6
41
478

25.0

478

0.0
2.9

14
26
23
422
6.3
23
307
0.0

27.3

297

3.3
7.8

FIR9 FIR10 Avg.

13 14
64 121
20 58
301 957
0.18 8.7
20 61
228 716
0.0 -5.2 -17
243 252 256
229 717
0.4 0.1 1.0
0.17 104

In the second experiment, we use different sets of uniform random constants. We

generate 100 sets of constants of different word length ‘and different numbers of

constants in the set and report the average improvement of 100 sets of constants. All

results of (a), (b), and (@) + (b) are compared to the results of Ref. The area

improvement of (a) decreases if bit width of constants increases. On the other hand,

the area improvement of (b) increases slightly as the number of constants increases.

The effect of (a) is more obvious in the area improvement of (a) + (b).
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Table 15. Exp. 2 results for different word length and #constants

© ot 20 4060
WL 1012 14 10 12 W10 12 14
(@ DAdderbit(%) 231 184 166 224 186 160 225 181 156

-13 30 -43 -12 -30 -43 -08 -35 -44
76 87 87 98 95 92 113 100 93
07 09 09 07 09 16 06 09 16
-36 -53 -67 -30 -60 -7.3 -26 -6.6 -7.6
31.0 28.0 259 321 28.8 261 334 288 26.0
05 08 08 05 08 08 04 06 038

»

\X 1896
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Chapter 5. Conclusion

In this thesis, we propose a systematic method for area optimization of
carry-save-adder-based multiple constant multiplication designs. A smart sign
extension method is proposed and combined with the accurate bit counting in the ILP

formulation of MCM problem. By using this systematic method, the area optimization

in terms of adder bits ¢u~\"\y ntal results show that our
] C ell as optimizing

new modeling is / d the combination of ou delin

the number of adde
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