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We prove that, for a function f inH∞ of the unit discwith ‖f ‖∞ � 1,

the existence of an operator T on a complex Hilbert space H with

its numerical radius at most one and with ‖f (T)x‖ = 2 for some

unit vector x in H is equivalent to that f be an inner function with

f (0) = 0. This confirms a conjecture of Drury [S.W. Drury, Symbolic

calculus of operators with unit numerical radius, Linear Algebra

Appl. 428 (2008) 2061–2069]. Moreover, we also show that any

operator T satisfying the above conditions has a direct summand

similar to the compression of the shift S(φ), where φ(z) = zf (z) for

|z| < 1. This generalizes the result of Williams and Crimmins [J.P.

Williams, T. Crimmins, On the numerical radius of a linear operator,

Amer. Math. Monthly 74 (1967) 832–833] for f (z) = z and of Crabb

[M.J. Crabb, The powers of an operator of numerical radius one,

Michigan Math. J. 18 (1971) 253–256] for f (z) = zn (n � 2).

© 2008 Elsevier Inc. All rights reserved.

For a bounded linear operator A on a complex Hilbert space H, its numerical range and numerical

radius are

W(A) = {〈Ax, x〉 : x ∈ H, ‖x‖ = 1}
and

w(A) = sup{|z| : z ∈ W(A)},
respectively, where 〈·, ·〉 and ‖ · ‖ denote the inner product and its associated norm in H. It is known

that W(A) is a bounded convex subset of the plane. When H is finite dimensional, it is even compact.

∗ Corresponding author.

E-mail addresses: hlgau@math.ncu.edu.tw (H.-L. Gau), pywu@math.nctu.edu.tw (P.Y. Wu).
1 Research supported by the National Science Council of the Republic of China under NSC 96-2115-M-008-006.
2 Research supported by the National Science Council of the Republic of China under NSC 96-2115-M-009-013-MY3 and by

the MOE-ATU.

0024-3795/$ - see front matter © 2008 Elsevier Inc. All rights reserved.

doi:10.1016/j.laa.2008.11.020

http://www.sciencedirect.com/science/journal/00243795


H.-L. Gau, P.Y. Wu / Linear Algebra and its Applications 430 (2009) 2182–2191 2183

Its closure W(A) contains the spectrum σ(A) of A. For other properties of the numerical range and

numerical radius, the reader may consult [11, Chapter 22] or [10].

An operator A is a numerical contraction (resp., contraction) ifw(A)� 1 (resp., ‖A‖ � 1). In 1967, Sz.-

Nagy and Foiaş [16] proved that every numerical contraction is similar to a contraction. Some years

later, Okubo and Ando [13] gave another proof basing it on a factorization of the numerical contraction

by Ando [1], which has the advantage of a sharp control on the invertible operator implementing the

similarity. As a consequence, an estimate on the norm of a function of a numerical contraction can

easily be obtained.

Theorem 1. (a) An operator A is a numerical contraction if and only if A = 2(I − B∗B)1/2B for some con-

traction B.

(b) If A is a numerical contraction, then A = XCX−1 for some invertible operator X with ‖X‖, ‖X−1‖ � √
2

and some contraction C.

(c) If A is a numerical contraction and f : D → C is a function analytic on D = {z ∈ C : |z| < 1} and
continuous on D, then ‖f (A)‖ � 2‖f ‖∞, where ‖f ‖∞ = sup{|f (z)| : z ∈ D}.

For our later use, we briefly sketch a proof of Theorem 1(b) based on (a), which is slightly different

from the one in [13, Theorem 2]. Let A be factored as in (a). If

g(t) =
{√

2(1 − t) if 0 � t � 1/2,

1/
√
2t if 1/2 � t � 1,

(1)

thenboth g and1/g are continuous functions on [0, 1]with ‖g‖∞ = ‖1/g‖∞ = √
2,where ‖ · ‖∞ denotes

the supremum of a function over [0, 1]. It is easily seen that X ≡ g(B∗B) is invertible, ‖X‖, ‖X−1‖ � √
2

and

‖X−1AX‖ � 2‖g(B∗B)−1(I − B∗B)1/2‖ · ‖(B∗B)1/2g(B∗B)‖
�2 · 1√

2
· 1√

2
= 1.

More recently, Drury [7] in studying thenormandnumerical radius of f (A)proposed a conjecture on

the sharpness of the inequality in Theorem 1(c). The purpose of this paper is to confirm this conjecture

with a more detailed information on the structure of A.

In the following, we will consider a more general functional calculus than the one in Theorem

1(c) for numerical contractions. Indeed, if A is a numerical contraction on H, then the Berger dilation

theorem [3] says that there is a unitary operator U on a space K containing H such that An = 2PHU
n|H

for all n � 1, where PH denotes the (orthogonal) projection from K onto H. Such a unitary 2-dilation

U of A can be taken to be minimal in the sense that K = ∨{UnH : n = 0,±1,±2, . . .}. In this case, U is

uniquely determined up to isomorphism, and, moreover, if A is completely nonunitary, that is, if A has

no unitary direct summand, then U is absolutely continuous (cf. [8, Theorem 1] and [14, Proposition

2]). (We thank G. Cassier and L. Kérchy for providing us the relevant references on this subject.) Hence

if A′ = U ′ ⊕ A on L ⊕ H is a numerical contraction, where U ′ is absolutely continuous unitary and A is

completely nonunitary, then f (A′) ≡ f (U ′)⊕ ((2PHf (U)|H)− f (0)I) for f in H∞ is well-defined, where

U is the minimal unitary 2-dilation of A. Note that Theorem 1(c) is obviously true for A a numerical

contraction with no singular unitary part and f in H∞.

For an inner function φ (φ bounded analytic on D with |φ| = 1 almost everywhere on ∂D), the

compression of the shift S(φ) is defined on H(φ) = H2  φH2 by

S(φ)f = PH(φ)(zf (z))|H(φ) for f ∈ H(φ).

Such operators have been studied extensively since the 1960s starting with the work of Sarason [15].

A nice account of their properties together with those of the more general C0 contractions can be

found in [2]. Sz.-Nagy and Foiaş [17] is the classical treatise on further developments of this subject. In

particular, if φ is a Blaschke product with n zeros (counting multiplicity), then H(φ) is n-dimensional.
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Our main result is the following:

Theorem 2. Let f be a function in H∞ with ‖f ‖∞ � 1. Then there exists a numerical contraction T with no

unitary part such that ‖f (T)x‖ = 2 for some unit vector x if and only if f is inner and f (0) = 0. Moreover,

any operator T satisfying the above conditions has a direct summand similar to S(φ), where φ(z) = zf (z)

for |z| < 1.

A finite-dimensional version of this confirms Drury’s Conjecture 6 in [7].

Corollary 3. Let f : D → C be analytic on D and continuous on D with ‖f ‖∞ � 1. Then there exists a

numerical contraction T with ‖f (T)x‖ = 2 for some unit vector x if and only if f is a finite Blaschke product

and f (0) = 0. In this case, if f has n zeros (counting multiplicity), then any such T is unitarily equivalent

to an operator of the form A ⊕ A′, where A can be represented by the (n + 1)-by-(n + 1) upper-triangular

matrix [aij]n+1
i,j=1

with ai ≡ aii satisfying a1 = an+1 = 0 and |ai| < 1 for all i, and

aij =

⎧⎪⎪⎨⎪⎪⎩
√
2bij if 1 = i < j � n or 2 � i < j = n + 1,

2bij if i = 1 and j = n + 1,

bij if 2 � i < j � n,

0 if i > j,

where

bij = (−1)j−i−1āi+1 · · · āj−1[(1 − |ai|2)(1 − |aj|2)]1/2 for i < j.

The matrix form of A here is a consequence of Theorem 8(b) below and the matrix representation

of the finite-dimensional compression of the shift S(φ) (cf. [9, Corollary 1.3]).

A special case of this yields a result of Crabb [5, Theorem 2].

Corollary 4. If T is a numerical contraction and ‖Tnx‖ = 2 for some n � 1 and some unit vector x, then T

is unitarily equivalent to an operator of the form A ⊕ A′, where A is the (n + 1)-by-(n + 1)matrix

[
0 2

0 0

]
or

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
√
2

0 1

· ·
· ·

· 1

0
√
2

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
depending on whether n = 1 or n � 2.

The case n = 1 was obtained earlier by Williams and Crimmins [18]. It will be invoked in the proof

of Theorem 8(b).

We start by proving the sufficiency part of Theorem 2.

Theorem 5. Let f be an inner function with f (0) = 0 and let φ(z) = zf (z) for |z| < 1. Let X = √
2 ⊕ I ⊕

(1/
√
2) on H(φ) = H1 ⊕ H2 ⊕ H3, where H1 = ker S(φ), H3 = ker S(φ)∗ and H2 = H(φ) (H1 ⊕ H3), and

let A = XS(φ)X−1. Then A is a cyclic irreducible operator with no unitary part such that W(A) = D and

‖f (A)x‖ = 2 for some unit vector x.

The next corollary is a special case (cf. [6, Theorem 3.1]).

Corollary 6. If f is a Blaschke product with n zeros (countingmultiplicity), then there is an (n + 1)-by-(n +
1)matrix A with W(A) = D and ‖f (A)‖ = 2.



H.-L. Gau, P.Y. Wu / Linear Algebra and its Applications 430 (2009) 2182–2191 2185

An operator A onH is cyclicwith cyclic vector x ifH = ∨{Anx : n � 0}. It is easily seen that for a cyclic

A the dimension of ker A∗ is at most one.

An operator is irreducible if it is not unitarily equivalent to the direct sum of two other operators.

To prove the irreducibility of the operator A in Theorem 5, we need the following lemma.

Lemma 7. If A is cyclic with a cyclic vector in ker A∗, then A is irreducible.

Proof. Assume that A = A1 ⊕ A2 onH = H1 ⊕ H2. Let x = x1 ⊕ x2, where xj ∈ Hj , j = 1, 2, be a cyclic vec-

tor of A in ker A∗. Then A∗x = (A1 ⊕ A2)
∗(x1 ⊕ x2) = 0 implies that (A1 ⊕ A2)

∗(x1 ⊕ 0) = (A1 ⊕ A2)
∗(0 ⊕

x2) = 0. On the other hand, since H1 ⊕ H2 = ∨{An
1
x1 ⊕ An

2
x2 : n � 0}, we infer that xj /= 0 for j = 1, 2.

Thus x1 ⊕ 0 and 0 ⊕ x2 are linearly independent, and, therefore, dimker A∗ = dimker(A1 ⊕ A2)
∗ � 2,

a contradiction. This proves our assertion. �

Proof of Theorem 5. Since φ(0) = 0, the function g ≡ 1 is in H(φ). It is a unit cyclic vector for S(φ)

and generates the one-dimensional subspace H3. On the other hand, from the facts that f is inner

and φ(z) = zf (z) on D we can easily check that f = PH(φ)f = f (S(φ))g and S(φ)f = 0. Thus f is a unit

vector which generates the one-dimensional H1. That f and g are orthogonal follows from a simple

computation using f (0) = 0. Note also that

f (A)g = Xf (S(φ))X−1g =
√
2Xf (S(φ))g =

√
2Xf = 2f ,

which shows that ‖f (A)g‖ = 2. Since g ∈ ker S(φ)∗ is a cyclic vector for S(φ),Xg = g/
√
2 ∈ ker A∗ is cyclic

for A = XS(φ)X−1. The irreducibility of A then follows from Lemma 7. Moreover, since S(φ)n converges

to 0 in the strong operator topology (SOT), the same is true for An. Hence A has no unitary part.

To prove thatW(A) ⊆ D, let B = S(φ)X−1/
√
2. Since rank(I − S(φ)∗S(φ)) = 1 and S(φ)∗S(φ)f = 0, we

have S(φ)∗S(φ) = 0 ⊕ I ⊕ 1 and hence B∗B = 0 ⊕ (1/2)I ⊕ 1 on H(φ) = H1 ⊕ H2 ⊕ H3. Therefore, B is a

contraction and

2(I − B∗B)1/2B = 2

(
1 ⊕ 1√

2
I ⊕ 0

)
1√
2
S(φ)X−1

= XS(φ)X−1 = A.

Theorem 1(a) then implies thatW(A) ⊆ D.

To prove the converse, let λ be any point in D. Then the operator I − λ̄S(φ) is invertible and u ≡
(I − λ̄S(φ))−1g − g = ∑∞

n=1(λ̄S(φ))
ng in norm. Let v = u − 〈u, f 〉f . Note that

〈v, g〉 =
∞∑
n=1

λ̄n〈S(φ)ng, g〉 − 〈u, f 〉〈f , g〉

= 0 − 〈u, f 〉 · 0 = 0

and

〈v, f 〉 = 〈u, f 〉 − 〈u, f 〉〈f , f 〉
= 〈u, f 〉 − 〈u, f 〉 = 0.

Hence v is in H2. Finally, letting y = 〈u, f 〉f ⊕ √
2v ⊕ g in H(φ) = H1 ⊕ H2 ⊕ H3, we show that λ̄By =

(I − B∗B)1/2y. Indeed, on the one hand, we have

λ̄By = λ̄S(φ)

(
1

2
⊕ 1√

2
I ⊕ 1

)
(〈u, f 〉f ⊕

√
2v ⊕ g)

= λ̄

(
1

2
〈u, f 〉S(φ)f + S(φ)v + S(φ)g

)
= λ̄[S(φ)(I − λ̄S(φ))−1g − S(φ)g] + λ̄S(φ)g

= λ̄S(φ)(I − λ̄S(φ))−1g.

On the other hand,
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(I − B∗B)1/2y =
(
1 ⊕ 1√

2
I ⊕ 0

)
(〈u, f 〉f ⊕

√
2v ⊕ g)

= 〈u, f 〉f + v

= u

= (I − λ̄S(φ))−1g − g

= λ̄S(φ)(I − λ̄S(φ))−1g.

Thus λ̄By = (I − B∗B)1/2y holds. Hence

|λ|2‖By‖2 = ‖(I − B∗B)1/2y‖2 = ‖y‖2 − ‖By‖2,
which implies that ‖By‖2 = ‖y‖2/(1 + |λ|2). Therefore,

〈Ay, y〉 = 〈2(I − B∗B)1/2By, y〉
= 2〈By, (I − B∗B)1/2y〉 = 2〈By, λ̄By〉
= 2λ‖By‖2 = 2λ

1 + |λ|2 ‖y‖2.

This shows that 2λ/(1 + |λ|2) is inW(A) for anyλ inD. HenceD ⊆ W(A) and thusW(A) = D as asserted.

This completes the proof. �

We now proceed to prove the necessity part of Theorem 2.

Theorem 8. Let f be a function in H∞ with ‖f ‖∞ � 1. If T is a numerical contraction with no singular

unitary part such that ‖f (T)x‖ = 2 for some unit vector x, then

(a) f is inner with f (0) = 0, and

(b) T is unitarily equivalent to an operator of the form XS(φ)X−1 ⊕ A′, where φ(z) = zf (z) for |z| < 1

and X = √
2 ⊕ I ⊕ (1/

√
2) on H(φ) = H1 ⊕ H2 ⊕ H3 (H1 = ker S(φ) and H3 = ker S(φ)∗).

For the proof of its part (b), we need the following lemma.

Lemma 9. Let A be a C0 contraction on H with minimal function φ. Then there is an operator Ã on H̃ ⊇ H

of class C0 such that (a) ÃH ⊆ H, (b) A = Ã|H, and (c) Ã is unitarily equivalent to
∑d

n=1 ⊕S(φ), where

d = rank(I − A∗A)1/2 � ∞.

This appeared in [12, Lemma4] (withT there replacedbyA∗) and isdependenton theSz.-Nagy–Foiaş

contraction theory.

Proof of Theorem 8. (a) That f (0) = 0 follows from Drury [7, Theorem 4]. Indeed, since the latter is

also valid for functions f in H∞ with ‖f ‖∞ � 1, we have ‖f (T)‖ � ν(|f (0)|), where

ν(t) = (2 − 3t2 + 2t4 + 2(1 − t2)(1 − t2 + t4)1/2)1/2 for 0 � t � 1.

Our assumption yields that

2 = ‖f (T)x‖ � ‖f (T)‖ � ν(|f (0)|) � 2

or ν(|f (0)|) = 2. This is equivalent to f (0) = 0.

Let M = ∨{Tnx : n � 0} and A = T |M. Then w(A) � 1 and ‖f (A)x‖ = ‖f (T)x‖ = 2. By Theorem 1(a),

A = 2(I − B∗B)1/2B for some contraction B. Let g be as in (1) and X = g(B∗B). Then, as indicated before,

X is positive definite and invertible with ‖X‖, ‖X−1‖ � √
2 and C ≡ X−1AX is a contraction. It is easily

seen that C, being similar to the operator A with no singular unitary part, is itself without singular

unitary part. Thus f (C) is well-defined. The chain of inequalities
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2 = ‖f (A)x‖ = ‖Xf (C)X−1x‖
� ‖X‖‖f (C)X−1x‖ � ‖X‖‖f (C)‖‖X−1x‖
� ‖X‖‖f (C)‖‖X−1‖ �

√
2‖f ‖∞

√
2 � 2,

where ‖f (C)‖ � ‖f ‖∞ is by the von Neumann inequality, yields equalities throughout. In particular, we

have

‖X‖ = ‖X−1‖ = ‖f (C)X−1x‖ = ‖X−1x‖ =
√
2

and ‖f (C)‖ = ‖f ‖∞ = 1. Note that for a positive semidefinite operator Y and vector u, the equali-

ties ‖Yu‖ = ‖Y‖‖u‖ and Yu = ‖Y‖u are equivalent. Thus from ‖X−1x‖ = √
2 = ‖X−1‖‖x‖, we infer that

X−1x = √
2x or Xx = (1/

√
2)x. Similarly, for y ≡ f (C)x, we have

‖y‖ = ‖f (C)x‖ = 1√
2

‖f (C)X−1x‖ = 1

and

‖Xy‖ = ‖Xf (C)x‖ = 1√
2

‖Xf (C)X−1x‖ = 1√
2

‖f (A)x‖ =
√
2 = ‖X‖‖y‖.

As above, this yieldsXy = √
2y. Thus x and y are eigenvectors associatedwith the eigenvalues 1/

√
2 and√

2 of the positive definite X , respectively. Hence they are orthogonal to each other. Since X = g(B∗B)
with g defined in (1), we infer that 1 and 0 are eigenvalues of B∗B with corresponding eigenvectors x

and y, respectively. We also have

f (A)x = Xf (C)X−1x =
√
2Xf (C)x =

√
2Xy = 2y. (2)

From B∗By = 0, we obtain By = 0. Thus

Af (A)x = 2Ay = 2(I − B∗B)1/2By = 0

and, consequently,

Af (A)Anx = An(Af (A)x) = 0

for all n � 0. Since M is generated by Anx, n � 0, this yields Af (A) = 0. Hence Cf (C) = X−1Af (A)X = 0,

which shows that C is a C0 contraction. Letψ be its minimal (inner) function, and let φ(z) = zf (z). Then

ψ divides φ.We necessarily haveψ(0) = 0 for otherwiseψ would divide f , whichwould imply f (C) = 0,

contradicting ‖f (C)‖ = 1. Hence ψ(z) = zη(z) for some inner function η and f (z) = ξ(z)η(z) for some ξ

in H∞ with ‖ξ‖∞ = 1. Let ξ(z) = ξ(0)+ zζ(z) for ζ in H∞. We have f (z) = ξ(0)η(z)+ ζ(z)ψ(z) and thus

f (C) = ξ(0)η(C). From

1 = ‖f (C)‖ = |ξ(0)|‖η(c)‖ � ‖η(C)‖ � 1,

we obtain |ξ(0)| = 1. Therefore, ξ(z) = ξ(0) is constant and f = ξ(0)η is inner.

(b) We first show that C is unitarily equivalent to S(φ), where φ(z) = zf (z). Note that, from the

proof of (a), φ is the minimal function of C. By Lemma 9, C can be extended to (an operator unitarily

equivalent to)
∑∞

n=1 ⊕S(φ). Hence f (C) extends to
∑∞

n=1 ⊕f (S(φ)). Let x = ∑∞
n=1 ⊕gn with gn inH(φ) for

all n. We infer from

1 = ‖y‖2 = ‖f (C)x‖2 =
∞∑
n=1

‖f (S(φ))gn‖2 �
∞∑
n=1

‖gn‖2 = ‖x‖2 = 1

that ‖f (S(φ))gn‖ = ‖gn‖ for all n. Since f (S(φ)) is a contraction, we have f (S(φ))∗f (S(φ))gn = gn. Thus

gn is in ran f (S(φ))∗, a one-dimensional space generated by the function g ≡ 1. Hence, for each n � 1,

gn = ang for some scalar an. Define the operator V : M → H(φ) by

V(p(C)x) = p(S(φ))g
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for any polynomial p. Since p(C)x = ∑∞
n=1 ⊕p(S(φ))gn, we have

‖p(C)x‖ =
( ∞∑
n=1

‖p(S(φ))gn‖2
)1/2

= ‖p(S(φ))g‖
( ∞∑
n=1

|an|2
)1/2

= ‖p(S(φ))g‖‖x‖ = ‖p(S(φ))g‖.

Note that M being generated by Anx, n � 0, is also generated by CnX−1x = √
2Cnx, n � 0. Thus the

set of vectors p(C)x, p polynomial, is dense in M. From above, we obtain that V is an isometry with

VC = S(φ)V . Since φ is the minimal function of C, the unitary equivalence of C and S(φ) follows.

LetH1 andH3 be the one-dimensional subspaces ofM which are generated by y and x, respectively,

and letH2 = M  (H1 ⊕ H3). OnM = H1 ⊕ H2 ⊕ H3, the operators X and B∗B can be decomposed as X =√
2 ⊕ X1 ⊕ (1/

√
2) and B∗B = 0 ⊕ D ⊕ 1. Let B = [Bij]3i,j=1

on M = H1 ⊕ H2 ⊕ H3. From B∗B = 0 ⊕ D ⊕ 1,

we obtain B∗
11
B11 + B∗

21
B21 + B∗

31
B31 = 0, which implies that B11, B21 and B31 are all zero operators.

Hence

A = 2(I − B∗B)1/2B

= 2

⎡⎣1 (I − D)1/2

0

⎤⎦⎡⎣0 B12 B13
0 B22 B23
0 B32 B33

⎤⎦

=
⎡⎣0 2B12 2B13
0 2(I − D)1/2B22 2(I − D)1/2B23
0 0 0

⎤⎦ . (3)

We now show that X1 = I. This is done by proving DB22 = B22/2 and DB23 = B23/2. Note that

C = X−1AX

=
⎡⎢⎣1/

√
2

X−1
1 √

2

⎤⎥⎦
⎡⎣0 2B12 2B13
0 2(I − D)1/2B22 2(I − D)1/2B23
0 0 0

⎤⎦⎡⎣
√
2

X1

1/
√
2

⎤⎦

=
⎡⎣0

√
2B12X1 B13

0 2X−1
1
(I − D)1/2B22X1

√
2X−1

1
(I − D)1/2B23

0 0 0

⎤⎦ ≡
⎡⎣0 C12 C13
0 C22 C23
0 0 0

⎤⎦ .
Since

I − C∗C =
⎡⎣1 0 0

0 I − C∗
12
C12 − C∗

22
C22 ∗

0 ∗ 1 − |C13|2 − C∗
23
C23

⎤⎦
has rank one, we have

C∗
12C12 + C∗

22C22 = I (4)

and

|C13|2 + C∗
23C23 = 1. (5)

From (4), we obtain

I=2X∗
1B

∗
12B12X1 + 4X∗

1B
∗
22(I − D)1/2X∗

1
−1X−1

1
(I − D)1/2B22X1

= 2X1(B
∗
12B12 + 2B∗

22X
−2
1
(I − D)B22)X1. (6)

Note that
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B∗B =
⎡⎣ 0 0 0

B∗
12

B∗
22

B∗
32

B∗
13

B∗
23

B∗
33

⎤⎦⎡⎣0 B12 B13
0 B22 B23
0 B32 B33

⎤⎦ =
⎡⎣0 D

1

⎤⎦
yields B∗

12
B12 + B∗

22
B22 + B∗

32
B32 = D. We derive from (6) that (1/2)X−2

1
= D − B∗

22
B22 − B∗

32
B32 +

2B∗
22
X−2
1
(I − D)B22 or

B∗
32B32 + B∗

22(I − 2X−2
1
(I − D))B22 = D − 1

2
X−2
1
. (7)

SinceX1 = g(D), a simple computation involving the expression of g in (1) yields that I − 2X−2
1
(I − D) �

0. Hence (7) givesD � X−2
1
/2 = g(D)−2/2. Again, from the expression of g in (1), we derive thatD � I/2

and thus

X1 = g(D) = 1√
2
D−1/2. (8)

It follows from (7) that B∗
22
(I − 4D(I − D))B22 = 0, which is the same as

0 = B∗
22(I − 4D + 4D2)B22 = B∗

22(I − 2D)2B22.

We thus obtain (I − 2D)B22 = 0 or DB22 = B22/2 as asserted.

To prove DB23 = B23/2, we use (5) to derive that

1 = |B13|2 + 2B∗
23(I − D)1/2X−2

1
(I − D)1/2B23

= |B13|2 + 2B∗
23X

−2
1
(I − D)B23.

Since B is a contraction, we have |B13|2 + B∗
23
B23 � 1. These two together yield 1 � 1 − B∗

23
B23 +

2B∗
23
X−2
1
(I − D)B23 or B∗

23
(I − 2X−2

1
(I − D))B23 � 0. Since I − 2X−2

1
(I − D) � 0 as was noted before, we

obtain B∗
23
(I − 2X−2

1
(I − D))B23 = 0 and thus

0 = B∗
23(I − 4D(I − D))B23 = B∗

23(I − 2D)2B23

by (8). Therefore, (I − 2D)B23 = 0 or DB23 = B23/2 as required.

From DB22 = B22/2 and DB23 = B23/2, we have (I − D)B22 = B22/2 and (I − D)B23 = B23/2 and thus

(I − D)1/2B22 = B22/
√
2 and (I − D)1/2B23 = B23/

√
2. It follows from (3) that

A =
⎡⎣0 2B12 2B13
0

√
2B22

√
2B23

0 0 0

⎤⎦ onM = H1 ⊕ H2 ⊕ H3. (9)

On the other hand, sinceM = ∨{Anx : n � 0} and H2 = M  (
∨{x, y}), we have H2 = ∨{P2Anx : n � 1},

where P2 denotes the (orthogonal) projection from M onto H2. A simple computation with (9) shows

that P2A
nx = (

√
2B22)

n−1(
√
2B23)x for all n � 1. Therefore,

D(P2A
nx) = D

(√
2B22

)n−1 (√
2B23

)
x

= 1

2

(√
2B22

)n−1 (√
2B23

)
x = 1

2
P2A

nx

if n � 2, and

D(P2Ax) = D
(√

2B23

)
x = 1

2

(√
2B23

)
x = 1

2
P2Ax.

These show that D = I/2 and hence X1 = D−1/2/
√
2 = I by (8) or X = √

2 ⊕ I ⊕ (1/
√
2).

Finally,weprove thatM is a reducing subspace of T . Since f is innerwith f (0) = 0,wehavew(f (T)) �
1 (cf. [4, Theorem 4]). This, together with ‖f (T)x‖ = 2, yields that the subspace K ≡ H1 ⊕ H3 reduces
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f (T) and f (T)|K has the matrix representation

[
0 2

0 0

]
relative to the orthonormal basis {y, x} of K (cf.

Corollary 4 or [18]). In particular, this gives f (T)∗x = 0 and f (T)∗y = 2x. Now we repeat these with T

and f replaced by T∗ and f̃ , where f̃ is the inner function f̃ (z) = f (z), |z| < 1. Since f̃ (T∗) = f (T)∗, we

have w(̃f (T∗)) � 1 and ‖̃f (T∗)y‖ = 2. Letting M̃ = ∨{T∗ny : n � 0}, we infer from what were proved

before for T and f that Ã ≡ T∗|M̃ = X̃C̃X̃−1 for some operator

C̃ =
⎡⎣0 C̃12 C̃13
0 C̃22 C̃23
0 0 0

⎤⎦ on M̃ = H̃1 ⊕ H̃2 ⊕ H̃3

(H̃1 = ∨{̃f (C̃)y} and H̃3 = ∨{y}) which is unitarily equivalent to S(φ̃) (φ̃(z) = z̃f (z) on D), and X̃ =√
2 ⊕ I ⊕ (1/

√
2) on M̃ = H̃1 ⊕ H̃2 ⊕ H̃3.We check that Ã is unitarily equivalent to A∗. Indeed, since C∗ is

unitarily equivalent to S(φ̃)and the latter is in turnunitarily equivalent to C̃, there is aunitaryoperatorU

mappingM onto M̃ such thatUC∗ = C̃U. In particular, we haveU(ker C∗) = ker C̃ andU(ker C) = ker C̃∗.
Note that

f̃ (C̃)y = 1

2
f̃ (̃A)y = 1

2
f̃ (T∗)y = 1

2
f (T)∗y = x

by theanalogueof (2).Henceker C∗ = ker C̃ = ∨{x}andalsoker C = ker C̃∗ = ∨{y}. Therefore,Ux = λ1x

and Uy = λ2y for some scalars λ1 and λ2 of modulus one. Thus U is of the form

U =
⎡⎣ λ1

U1

λ2

⎤⎦
fromM = H1 ⊕ H2 ⊕ H3 to M̃ = H̃1 ⊕ H̃2 ⊕ H̃3 and hence

U∗ÃU = U∗X̃C̃X̃−1U

=
⎡⎣ λ2

U∗
1

λ1

⎤⎦⎡⎣
√
2

I

1/
√
2

⎤⎦ C̃

⎡⎣1/
√
2

I √
2

⎤⎦⎡⎣ λ1
U1

λ2

⎤⎦

=
⎡⎣1/

√
2

I √
2

⎤⎦⎡⎣ λ2
U∗
1

λ1

⎤⎦ C̃

⎡⎣ λ1
U1

λ2

⎤⎦⎡⎣
√
2

I

1/
√
2

⎤⎦
= X−1U∗C̃UX = X−1C∗X = A∗.

Finally, we check that M̃ is contained in M. This is because, for any n � 0, the equalities

‖T∗ny‖ = ‖Ãny‖ = ‖UA∗nU∗y‖
= ‖UA∗n(λ2y)‖ = ‖A∗ny‖ = ‖(T |M)∗ny‖

hold, which yields that T∗ny belongs to M. Similarly, we can show that M ⊆ M̃. Hence M = M̃ and

T∗M = T∗M̃ ⊆ M̃ = M. ThusM reduces T . This completes the proof. �
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