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For a bounded linear operator A on a complex Hilbert space H, its numerical range and numerical
radius are

W(@A) = {{Ax,X) : x e H, || x|| = 1}
and
W(A) = sup{|z| : z e WA},

respectively, where (-,-) and || - | denote the inner product and its associated norm in H. It is known
that W(A) is a bounded convex subset of the plane. When H is finite dimensional, it is even compact.

* Corresponding author.
E-mail addresses: hlgau@math.ncu.edu.tw (H.-L. Gau), pywu@math.nctu.edu.tw (PY. Wu).
1 Research supported by the National Science Council of the Republic of China under NSC 96-2115-M-008-006.
2 Research supported by the National Science Council of the Republic of China under NSC 96-2115-M-009-013-MY3 and by
the MOE-ATU.

0024-3795/$ - see front matter © 2008 Elsevier Inc. All rights reserved.
doi:10.1016/j.1aa.2008.11.020


http://www.sciencedirect.com/science/journal/00243795

H.-L. Gau, PY. Wu / Linear Algebra and its Applications 430 (2009) 2182-2191 2183

Its closure W(A) contains the spectrum o (A) of A. For other properties of the numerical range and
numerical radius, the reader may consult [11, Chapter 22] or [10].

An operator A is a numerical contraction (resp., contraction) if w(A) < 1 (resp., |A|| < 1).In 1967, Sz.-
Nagy and Foias [16] proved that every numerical contraction is similar to a contraction. Some years
later, Okubo and Ando [13] gave another proof basing it on a factorization of the numerical contraction
by Ando [1], which has the advantage of a sharp control on the invertible operator implementing the
similarity. As a consequence, an estimate on the norm of a function of a numerical contraction can
easily be obtained.

Theorem 1. (a) An operator A is a numerical contraction if and only if A = 2(I — B*B)1/2B for some con-
traction B.

(b) IfAis a numerical contraction, then A = XCX~1 for some invertible operator X with || X||, IX~1|| < v/2
and some contraction C. -

(0) If A is a numerical contraction and f : D — C is a function analyticon D = {z € C : |z| < 1} and
continuous on D, then ||f (A)|| < 2||f|loo, Where |f |0 = sup{lf(2)| : z € D}.

For our later use, we briefly sketch a proof of Theorem 1(b) based on (a), which is slightly different
from the one in [13, Theorem 2]. Let A be factored as in (a). If

o= |v2I=0 ito<e<iz, M
EO=11v2t if12<e<,

then both g and 1/g are continuous functions on [0, 1] with ||gllec = |I1/€llec = v/2, Where || - || denotes
the supremum of a function over [0, 1]. It is easily seen that X = g(B*B) is invertible, |[X]|, IX~1|| < v2
and

IX~TAX|| < 2|lgB*B)~'d — B*B)!/?| - ||(B*B)*g(B*B)||

11
20— —=1
V2 V2

More recently, Drury [7] in studying the norm and numerical radius of f (A) proposed a conjecture on
the sharpness of the inequality in Theorem 1(c). The purpose of this paper is to confirm this conjecture
with a more detailed information on the structure of A.

In the following, we will consider a more general functional calculus than the one in Theorem
1(c) for numerical contractions. Indeed, if A is a numerical contraction on H, then the Berger dilation
theorem [3] says that there is a unitary operator U on a space K containing H such that A" = 2P4U"|H
for all n > 1, where Py denotes the (orthogonal) projection from K onto H. Such a unitary 2-dilation
U of A can be taken to be minimal in the sense that K = \/{U"H : n = 0,41, £2,...}. In this case, U is
uniquely determined up to isomorphism, and, moreover, if A is completely nonunitary, that is, if A has
no unitary direct summand, then U is absolutely continuous (cf. [8, Theorem 1] and [14, Proposition
2]). (We thank G. Cassier and L. Kérchy for providing us the relevant references on this subject.) Hence
if A =U @®AonL@H is a numerical contraction, where U’ is absolutely continuous unitary and A is
completely nonunitary, then f(A") = f(U") & (2Pyf(U)|H) — f(O)I) for f in H* is well-defined, where
U is the minimal unitary 2-dilation of A. Note that Theorem 1(c) is obviously true for A a numerical
contraction with no singular unitary part and f in H*.

For an inner function ¢ (¢ bounded analytic on D with |¢| = 1 almost everywhere on §D), the
compression of the shift S(¢) is defined on H(¢) = H? © ¢H? by

S@)f = Pu)(@f @)IH(¢) for f € H(g).

Such operators have been studied extensively since the 1960s starting with the work of Sarason [15].
A nice account of their properties together with those of the more general Cy contractions can be
found in [2]. Sz.-Nagy and Foias [17] is the classical treatise on further developments of this subject. In
particular, if ¢ is a Blaschke product with n zeros (counting multiplicity), then H(¢) is n-dimensional.

NN
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Our main result is the following:

Theorem 2. Let f be a function in H* with ||f |l < 1. Then there exists a numerical contraction T with no
unitary part such that ||f (T)x| = 2 for some unit vector x if and only if f is inner and f (0) = 0. Moreover,
any operator T satisfying the above conditions has a direct summand similar to S(¢), where ¢(z) = zf (2)
for|z| < 1.

A finite-dimensional version of this confirms Drury’s Conjecture 6 in [7].

Corollary 3. Let f : D — C be analytic on D and continuous on D with |f|« < 1. Then there exists a
numerical contraction T with ||f (T)x| = 2 for some unit vector x if and only if f is a finite Blaschke product
and f(0) = 0. In this case, if f has n zeros (counting multiplicity), then any such T is unitarily equivalent
to an operator of the form A ® A’, where A can be represented by the (n + 1)-by-(n + 1) upper-triangular
matrix [aij]:.ld.*:l] with a; = aj; satisfying a; = ay,1 = 0 and |a;| < 1 for all i, and
V2bj if 1=i<j<nor2<i<j=n+1,

o 2b;; if i=landj=n+1,

Y ) by if 2<i<j<n,
0 if i>],

blj = (—1)i_i_1(_1i+1 .. -aj71 (- ‘ailz)(l - |aj|2)]]/2 fOTi <j'

The matrix form of A here is a consequence of Theorem 8(b) below and the matrix representation
of the finite-dimensional compression of the shift S(¢) (cf. [9, Corollary 1.3]).
A special case of this yields a result of Crabb [5, Theorem 2].

Corollary 4. If T is a numerical contraction and ||T"x|| = 2 for some n > 1 and some unit vector x, then T
is unitarily equivalent to an operator of the form A @ A’, where A is the (n + 1)-by-(n + 1) matrix

0 V3 -
0 1

1
0 V2
O_

depending on whethern=1o0rn > 2.

The case n = 1 was obtained earlier by Williams and Crimmins [18]. It will be invoked in the proof
of Theorem 8(b).
We start by proving the sufficiency part of Theorem 2.

Theorem 5. Let f be an inner function with f(0) = 0 and let ¢(2) = zf(z) for |z] < 1. Let X =2 1 ®
(1/+/2) on H(¢) = Hy ® Hy @ H3, where Hy = ker S(¢), H3 = ker S(¢)* and Hy = H(¢) © (H1 & H3), and
let A= XS($)X~1. Then A is a cyclic irreducible operator with no unitary part such that W(A) = D and
If A)x|| = 2 for some unit vector x.

The next corollary is a special case (cf. [6, Theorem 3.1]).

Corollary 6. Iff is a Blaschke product with n zeros (counting multiplicity), then thereis an (n + 1)-by-(n +
1) matrix A with W(A) = D and ||f Q)| = 2.
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An operator A on H is cyclic with cyclic vector x if H = \/{A"x : n 2> 0}. It is easily seen that for a cyclic
A the dimension of ker A* is at most one.

An operator is irreducible if it is not unitarily equivalent to the direct sum of two other operators.
To prove the irreducibility of the operator A in Theorem 5, we need the following lemma.

Lemma 7. If A is cyclic with a cyclic vector in ker A*, then A is irreducible.

Proof. Assume thatA = Ay @ Ay onH = Hy @ Hp. Letx = X1 @ xp, wherex; € Hj,j = 1,2, be a cyclic vec-
tor of A in ker A*. Then A*x = (A1 ® Ay)*(x1 ® X3) = 0 implies that (A; @ Ay)*(x1 ® 0) = (A; ®A)*O0 @
x2) = 0. On the other hand, since Hy @ H = \/{Ax; ® Alx, : n > 0}, we infer that x; # 0 for j = 1,2.
Thus x; @ 0 and 0 & x, are linearly independent, and, therefore, dim ker A* = dimker(A; & Ay)* > 2,
a contradiction. This proves our assertion. []

Proof of Theorem 5. Since ¢(0) = 0, the function g =1 is in H(¢). It is a unit cyclic vector for S(¢)
and generates the one-dimensional subspace Hs. On the other hand, from the facts that f is inner
and ¢(z) = zf(z) on D we can easily check that f = Py f = f(S(¢))g and S(¢)f = 0. Thus f is a unit
vector which generates the one-dimensional Hy. That f and g are orthogonal follows from a simple
computation using f(0) = 0. Note also that

fAg = XfS@NX1g = V2Xf(S(¢)g = vV2Xf = 2f,

which shows that ||f (A)g| = 2.Since g € ker S(¢)* is a cyclic vector for S(¢), Xg = g/~/2 € ker A* is cyclic
for A = XS(¢)X~1. The irreducibility of A then follows from Lemma 7. Moreover, since S(¢)" converges
to 0 in the strong operator topology (SOT), the same is true for A". Hence A has no unitary part.

To prove that W(A) € D, let B = S(¢)X~1/+/2. Since rank(I — S(¢)*S(¢)) = 1 and S(¢)*S(¢)f = 0, we
have S(¢)*S(¢) =0@ 1@ 1 and hence B B=0&® (1/2)I ® 1 on H(¢) = H; ® H, ® H3. Therefore, B is a
contraction and

1

S)X 1
7 (@)

1
ZI—EﬁlﬂB=2<1®4—J®O)
( ) V2

=XS@)X ' =A.
Theorem 1(a) then implies that W(A) c D.

To prove the converse, let A be any point in D. Then the operator I — AS(¢) is invertible and u =
d—3S()1g —g =", (S($)"g in norm. Let v = u — (u,f)f. Note that

(v.g) =) A"S@)"g.8) — w.hHif.g)
n=1
=0-@f)-0=0
and
<va> = (u1f> - <uvf> (fv )
= <u1f> - (uvf> = 0

Hence v is in H,. Finally, letting y = (u,f)f & v2v & g in H(¢) = H; & H, ® H3, we show that 1By =
(I — B*B)1/2y. Indeed, on the one hand, we have

iBy = 1S(®) (% ® %1 o 1) (Whf & V2veg)

/1
=1 (5 Ww)S@)f +S@)Vv + s<¢)g>

= ST — AS(@)~'g — S(¢)g] + AS(p)g
=S - 1S(¢)~g.

On the other hand,
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(d —B*B)1 /2y = (1 ) \%1 ® 0) (Wif ®V2vD g)

=WNf +v
=Uu
=(1-1S@)'g-g
= 1S@)(I - S(¢)'g.
Thus By = (I — B*B)!/2y holds. Hence
IL21ByI? = [ — B*B)'/2y||? = |ly|® — IIBylI?,
which implies that |[By||2 = |[y|%/(1 + ||%). Therefore,

(Ay,y) = (2 — B*B)!/?By, y)
= 2(By, (I — B*B)'/2y) = 2(By, ABy)
2

= 2[By|* = 5 TP llyl>.

This shows that 2. /(1 + |1]2) isin W(A) forany 2 in D.Hence D € W(A) and thus W(A) = D as asserted.
This completes the proof. [

We now proceed to prove the necessity part of Theorem 2.

Theorem 8. Let f be a function in H* with |f|l« < 1. If T is a numerical contraction with no singular
unitary part such that ||f (T)x|| = 2 for some unit vector x, then

(@) f is inner with f(0) = 0, and
(b) T is unitarily equivalent to an operator of the form XS(@)X~! @ A, where ¢ (z) = zf (2) for |z| < 1
and X =2 @16 (1/4/2) on H(¢) = H; & Hy & H3 (H; = ker S(¢) and H3 = ker S(¢)*).

For the proof of its part (b), we need the following lemma.

Lemma 9. Let A be a Cy contraction on H with minimal function ¢. Then there is an operatorﬁ onH2H
of class Cy such that (a) AH € H, (b) A=A|H, and (c) A is unitarily equivalent to Zg:1 ®S(¢), where
d = rank( — A*A)1/2 < .

This appeared in[12,Lemma 4] (with T there replaced by A*) and is dependent on the Sz.-Nagy-Foias
contraction theory.

Proof of Theorem 8. (a) That f(0) = 0 follows from Drury [7, Theorem 4]. Indeed, since the latter is
also valid for functions f in H*® with ||f||. < 1, we have ||f(T)| < v(|f(0)|), where

) =2 =32+ 2t + 21 = tH A = 2 + tHVH12 foro <t < 1.
Our assumption yields that

2=fDxI < IFMDI < vAfO))) <2
or v(|f(0)|) = 2. This is equivalent to f(0) = 0.
Let M = \/{T"x : n > 0} and A = TIM. Then w(A) < 1 and ||f (A)x|| = |If (T)x|| = 2. By Theorem 1(a),
A = 2(I — B*B)1/2B for some contraction B. Let g be as in (1) and X = g(B*B). Then, as indicated before,
X is positive definite and invertible with |IX|, |X~!| < v2 and C = X~1AX is a contraction. It is easily
seen that C, being similar to the operator A with no singular unitary part, is itself without singular
unitary part. Thus f(C) is well-defined. The chain of inequalities
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2 = fAxIl = IXFOX x|
L IXIFOXx) < IXNIFONIX %))
L IXINFONX M < V2If1v2 < 2,
where ||f (O)] < |Ifllo is by the von Neumann inequality, yields equalities throughout. In particular, we
have
IXI = 1X~1 = IFOX x| = 1IX~ X1 = v2

and [If (O)]l = |Ifllo = 1. Note that for a positive semidefinite operator Y and vector u, the equali-
ties ||Yu|| = |Y|u| and Yu = ||Y|lu are equivalent. Thus from |X~1x| = +~/2 = |IX~ 1|, we infer that
X~1x = v/2x or Xx = (1/+/2)x. Similarly, for y = f(C)x, we have

1
= IfOx]| = —=If OX x| =1
il = If (Ox|| ﬁ\\f( XXl
and
1 1
Xyl = IXFOX]| = — IXFOOX x| = —If A)xX] = V2 = IX]1IVI.
IXyll = I1Xf (O)x|| ﬁll FOX x| ﬁl\f( )X|| X1y

As above, this yields Xy = +/2y. Thus x and y are eigenvectors associated with the eigenvalues 1/+/2 and
V2 of the positive definite X, respectively. Hence they are orthogonal to each other. Since X = g(B*B)
with g defined in (1), we infer that 1 and 0 are eigenvalues of B*B with corresponding eigenvectors x
and y, respectively. We also have

FAx = XFOX 1x = V2Xf (O)x = v2Xy = 2y. (2)
From B*By = 0, we obtain By = 0. Thus

Af(A)x =2Ay =2 — B*B)1/?By = 0
and, consequently,

Af AA"x = A"(Af (A)x) =0
for all n > 0. Since M is generated by A"x, n > 0, this yields Af (A) = 0. Hence Cf (C) = X~ 'Af(A)X =0,
which shows that C is a Cy contraction. Let v be its minimal (inner) function, and let ¢ (z) = zf (z). Then
¥ divides ¢. We necessarily have v (0) = 0 for otherwise v would divide f, which would imply f (C) = 0,
contradicting ||f (C)|| = 1. Hence v (z) = zn(z) for some inner function » and f(z) = £(z)n(z) for some &

in H*® with [|§]lc = 1. Let £(z) = £(0) + z£(2) for ¢ in H*°. We have f(z) = £(0)n(2) + {(2)¥ (2) and thus
f(©) = £(0)n(C). From

1=1fOI=1EOnOI < InOl <1,

we obtain |£(0)| = 1. Therefore, £(z) = £(0) is constant and f = £(0)n is inner.

(b) We first show that C is unitarily equivalent to S(¢), where ¢(z) = zf(z). Note that, from the
proof of (a), ¢ is the minimal function of C. By Lemma 9, C can be extended to (an operator unitarily
equivalent to) }"1° ; ®S(¢). Hence f(C) extends to "5 ; &f (S(¢)). Letx = Y72 ; gy with g, in H(¢) for
all n. We infer from

1=y = IfOx1* =D If S@ngnl® < Y llgnl® = lIx|> =1
n=1 n=1
that ||f (S(¢))gnll = lignll for all n. Since f(S(¢)) is a contraction, we have f(S(¢))*f(S(¢))gn = gn. Thus
gnisinranf(S(¢))*, a one-dimensional space generated by the function g = 1. Hence, for eachn > 1,
n = apg for some scalar a,. Define the operator V : M — H(¢) by

V(p(Ox) =pS(¢)g
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for any polynomial p. Since p(C)x = Y52 ®p(S(¢))gn, we have

oo 1/2 00 1/2
1Pl = <Z ||p(5(¢))gn||2> ~ IPS@gl <Z |an|2)

n=1 n=1

= lIp(S@Ngllxll = lipS@»gl.

Note that M being generated by A"x, n > 0, is also generated by C"X~1x = +/2C"x, n > 0. Thus the
set of vectors p(C)x, p polynomial, is dense in M. From above, we obtain that V is an isometry with
VC = S(¢)V. Since ¢ is the minimal function of C, the unitary equivalence of C and S(¢) follows.

Let H; and H3 be the one-dimensional subspaces of M which are generated by y and x, respectively,
andletH, = M & (Hy ® H3).OnM = H; & H, & H3, the operators X and B*B can be decomposed as X =
V2eXi®(1/vV2)andB*B=0& D@ 1. Let B= [Bi]-],?J.=1 onM=H; ®H, ® H;. FromB*B=0®D & 1,
we obtain Bf,Byy + B3, By + B3B3 = 0, which implies that By, By; and B3y are all zero operators.
Hence

A=2d-B*B)!/2B

1 0 By B3
=2 d-D)1/? 0 By By
0] 0 B3 B3

0 2By, 2By3
=|0 20-D)'2By; 2(1—-D)!/?By3|. 3)
0 0 0

We now show that X; = I. This is done by proving DB,; = B»,/2 and DB,3 = B,3/2. Note that

C=X"1AX
[1/v2 0 2By, 2By3 V2
= X! 0 20-D)2By; 2(—D)1/2Bys Xi
V2|0 0 0 12
[0 V2B12X4 B3 0 Cip G
=10 2X;'d-D)'2BpX1 V2X;'U-D)'/?By3 |=|0 Cnp Cp3.
L0 0 0 0 0 0
Since
1 0 0
[-C*C=|0 I-CiCp—C5Co0 *
0 * 1—1C3%2 - G3Ca3
has rank one, we have
C-TZC]Z + C;z(:zz =1 (4)
and
IC1312 + C33C3 = 1. (5)
From (4), we obtain
[1=2X;B},B1pX1 + 4X; B3, (I — D)'/2X; 7' X, 11 — D)/2Byo Xy
= 2X (B},B12 + 2B3,X; 2 (I — D)Byp)Xi. (6)

Note that
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0 0 07[0 B Bs] [0
B'B=|Bj, B, B,||0 By By|= D
B, Bi, Bi,||0 Bxp By 1

yields Bj,B1y +B3,B2 + Bj,B3; =D. We derive from (6) that (1/2)X1*2 =D - B3,By; — B3,B3; +
2B5,X;%(I — D)By; or

_ 1,
B%,B3y + Bs,(I — 2X;2(I = D))Byy = D — 5% 2, (7)

Since X; = g(D), a simple computation involving the expression of gin (1) yields thatI — 2Xf2(1 -D) >

0.Hence (7) gives D > X;Z/Z = g(D)~2/2. Again, from the expression of g in (1), we derive that D > /2
and thus

Xi =)= 50712, (8)

It follows from (7) that Bj, (I — 4D(I — D))B;, = 0, which is the same as
0 = B3, (I — 4D + 4D*)By; = B3, (I — 2D)?By;.

We thus obtain (I — 2D)B,; = 0 or DB,y = By, /2 as asserted.
To prove DB;3 = By3/2, we use (5) to derive that

1= B13|? + 2B35(I — D)X, 2(I — D)'/?B,3
= |B13|? + 2B33X; 2(I — D)Bys.
Since B is a contraction, we have [B3|? + B33By3 < 1. These two together yield 1 < 1 —B33By3 +
2B5, X% (I — D)Bays3 or Biy (I — 2X;72(I — D))By3 < 0. Since I — 2X;%(I — D) > 0 as was noted before, we
obtain B, (I — 2X;%(I — D))B,3 = 0 and thus
0 = Bj5(I — 4D(I — D))By3 = Bis (I — 2D)*B;3

by (8). Therefore, (I — 2D)B,3 = 0 or DB,3 = By3/2 as required.
From DB, = By;/2 and DBy3 = B,3/2, we have (I — D)By, = By /2 and (I — D)By3 = By3/2 and thus
(I = D)V/2Byy = By /+/2 and (I — D)'/2By3 = By3/+/2. It follows from (3) that

0 2B, 2Bg
A=1|0 \/2322 \/2323 onM =H; @H, ¢ Hs. (9)
0 0 0

On the other hand, since M = \/{A"x : n 2> 0} and H, = M © (\/{x,y}), we have Hy = \/{P,A"x : n > 1},
where P, denotes the (orthogonal) projection from M onto H,. A simple computation with (9) shows
that P,A"x = (v/2B53)"~1(v/2By3)x for all n > 1. Therefore,

D(P,A™) = D (\/5322)"71 (6323) p

(ﬁBzz)n_l (ﬁ323> X = 1PzAnX

_1
=2 2

ifn > 2, and
D(P,Ax) =D <\/§Bz3) X = % (\/5323))( = %PzAX.

These show that D = I/2 and hence X; = D" 1/2//2 =1by (8)or X = V2 &1 & (1//2).
Finally, we prove that M is a reducing subspace of T. Since f is inner with f (0) = 0, we have w(f(T)) <
1 (cf. [4, Theorem 4]). This, together with |f(T)x|| = 2, yields that the subspace K = H; ® H3 reduces
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f(T) and f(T)|K has the matrix representation [8 ?)] relative to the orthonormal basis {y, x} of K (cf.

Corollary 4 or [18]). In partlcular this gives f(T)*x = 0 and f(T) y = 2x. Now we repeat these with T
and f replaced by T* andf wheref is the inner function f(z) f@), |z < 1. Since f(T*) = f(T)*, we
have w(f(T*)) <1 and |[f(T*)y|| = 2. Letting M= \/{T*"y : n > 0}, we infer from what were proved
before for T and f that A = T*|M = XCX~! for some operator

[0 G G
C=1]0 C22 C23 0[1M:H1®H2®H3
0 0 0

( \/{f(C)y } and H3 = V{y}) which is unitarily eQu1valent to S@) ($2) = zf(z) on D), and X =
f 201® (1/v/2)onM = H1 @ H, @ H3. We check that A is unitarily equivalent to A*. Indeed, since C* is
unitarily equivalentto S (¢) and the latter isin turn unitarily equivalent to C, there is a unitary operator U
mapping M onto M such that UC* = CU.In particular, we have U (ker C*) = ker Cand U(ker C) = ker C*.
Note that

~ 1~ T oo 1.,
fOy = Ef(A)y= §f<T )y = if(T) y=X

by the analogue of (2). Hence ker C* = ker C = \/{x}and also ker C = ker Cr = \/{y}. Therefore, Ux = r»1x
and Uy = A,y for some scalars 11 and A, of modulus one. Thus U is of the form

M
U= Up
A2

from M = H; @ Hy @ Hs to M = H; @ H @ H; and hence
U*AU = U*XCX~'U

2 [V2 T1v2 e
ST | i |
o 1/v2 V2] [
1/\/2 E~ A V2
B P | R
NZAR IR A2 1/v2

= X"1U*Cux = x~1C*X = A*.

Finally, we check that M is contained in M. This is because, for any n > 0, the equalities

IT*"y|| = |Ay| = [UA*"U*y|
= |UA*" Gyl = IA*"y || = ITIM)*"y |

hold, which yields that T*"y belongs to M. Similarly, we can show that M C M. Hence M = M and
T*M = T*M € M = M. Thus M reduces T. This completes the proof. [l
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