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指導教授：鍾崇斌 博士 
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摘 要       

在記憶體受限的嵌入式爪哇執行環境中為了達到加速，在直譯器之外

加入一個輕型的即時編譯器(JIT compiler)來動態編譯經常被執行的程式片

段是一種常見的設計。然而這種混合模式(mixed-mode)的爪哇虛擬機器於

執行過程中，會經常在直譯器與動態編譯產生的程式碼之間做切換，造成

動態產生的程式碼中，出現大量對區域變數(local variable)與運算元堆疊

(operand stack)的載入/儲存(Load/Store)指令，約佔所有動態產生程式碼的

三分之一。 

在本篇研究中，便是針對此一現象設計優化動作，嘗試將這些載入/

儲存指令以多重載入/儲存(Load/Store Multiple)指令來取代，並且藉由調整

區域變數的順序與修改暫存器配置(register allocation)等方式，使得更多載

入/儲存指令能夠符合被取代的條件，以達到減少程式碼及增加執行速度的

目的。根據實驗結果顯示，在一個執行於 ARM7 的嵌入式混合模式爪哇虛

擬機器中使用多重載入/儲存指令，可使動態產生的程式碼平均加速可達

3.3%，程式碼減少達 6%。 
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ABSTRACT 

Mixed-mode execution that combines an interpreter with a light-weight JIT 

compiler is well suited to an embedded JVM that demands for speed 

performance and has limited memory budget. However, the mode switch 

between interpreter and JIT compiled code occurs frequently, and a great deal 

of load/store instructions are generated by JIT compiler to synchronize the local 

variable array and operand stack at each compiled code entry and exit point. 

These load/store instructions that access to local variable array and operand 

stack occupy about one-third of JIT compiled code.  

In this research, the optimization to utilize Load-Store-Multiple instruction 

to efficiently replace these load/store instructions is implemented for JIT 

compiled code size reduction and speedup. In addition, the approaches of 

adjusting the local variable placement and modifying register allocator to make 

more load/store replaceable are also adopted. Experimental results show that an 

average JIT compiled code speedup of 3.3% and code size reduction of 6% are 

achieved. 

 - ii -



誌謝 
 

首先要感謝我的指導教授 鍾崇斌教授。在老師的諄諄教誨與細膩地引

導之下，本篇論文才得以順利完成，也使我更知道該如何自我檢視，發現

缺失。鍾老師卓越超群的組織與表達能力，亦是學生終生學習的目標。 

在此也要感謝實驗室的另一位大家長─單智君老師。在研究的過程

中，單老師也同樣花費非常多的時間與精力來指導我，協助我克服了許多

困難。單老師在指導學生上的耐心與毅力，是大家有目共睹的。 

感謝陪伴我走過這段時間的每一個人，包括我的家人、朋友、實驗室

的學長與同學們，經常在我感到失意挫折時給予鼓勵和建議。如果沒有你

們的支持協助，我不會如此順利地完成這篇論文。 

在此向所有支持我、勉勵我的師長、同學、親友們，奉上我由衷的祝

福，謝謝你們。 

 

黃俊諭 

2005.8.26 

 

 - iii -



Table of Contents 
摘要 i 

ABSTRACT ii 

誌謝 iii 

Table of Contents iv 

List of Figures vi 

List of Tables viii 

Chapter 1 Introduction 1 

1.1 Embedded Java Environment 1 

1.2 Embedded Mixed-Mode Execution JVM 3 

1.3 Load/Store Multiple Instruction 4 

1.4 Research Motivation and Objectives 6 

1.5 Thesis Organization 7 

Chapter 2 Background 8 

2.1 Java Technology  8 

2.1.1 JVM Benefits  9 

2.1.2 JVM Internals  9 

2.1.3 JVM Implementation Alternatives  11 

2.2 Overview of Our Embedded Mixed-Mode JVM 12 

Chapter 3 Designs 15 

3.1 How to use Load/Store Multiple in embedded mixed-mode JVM 15 

3.1.1 Constraints of Replacing Load/Store by LDM/STM  15 

3.1.2 Strategies to Make More Load/Store Replaceable  17 

3.2 Design Overview 19 

3.3 Local Variable Relocation 20 

3.4 Modification of Register Allocator 25 

3.5 Group load/store into LDM/STM 28 

Chapter 4 Experiments 31 

 - iv -



4.1 Experiment Environment 31 

4.2 Benchmarks 31 

4.3 Experiment Results 32 

4.3.1 Effect on Execution Time 34 

4.3.2 Effect on Code Size 36 

Chapter 5 Conclusions 38 

References 40 

 - v -



List of Figures 
 
Figure 1-1. Java 2 Platform 2 

Figure 1-2. Example of LDM/STM 4 

Figure 1-3. Example of load/store and LDM/STM execution in ARM7 pipeline 

 5 

Figure 1-4. Mode switch between interpreter and JIT compiled code 6 

Figure 2-1. JVM Runtime Environment 9 

Figure 2-2. Three Alternatives to Executing Java Programs 11 

Figure 2-3. System Components and Their Interactions 12 

Figure 2-4. KJITC Compiler Architecture 13 

Figure 3-1. Example of Replaceable and Non-replaceable Load/Store 

Instructions 16 

Figure 3-2. Example of Replaceable and Non-replaceable Load/Store 

Instructions 16 

Figure 3-3. Example of Replaceable and Non-replaceable Load/Store 

Instructions 17 

Figure 3-4. Design Overview 19 

Figure 3-5. An Example of Gathering Grouping Information 21 

Figure 3-6. An Example of Transforming Grouping Information to Access 

Graph 22 

Figure 3-7. An Path Cover Obtained Largest-Weight-First Algorithm 23 

Figure 3-8. A Dependence Graph of a Basic Block in JIT Compiled Code 25 

Figure 3-9. An Example of Hint Generation 26 

Figure 3-10. An Example of Grouping Load/Store into LDM/STM 30 

Figure 4-1. JIT Compilation time Ratios of Configurations 35 

Figure 4-2. The Speedup of JIT Compilation and Compiled Code Execution 

Time of All Configurations 35 

Figure 4-3. The JIT Compiled Code Size Ratio of All Configurations 37 

 - vi -



Figure 5-1. Stall Cycle Reduction of Utilizing LDM/STM on 3-stage and 

5-stage Pipeline 38 

 

 - vii -



List of Tables 
 
Table 1-1. J2ME Configurations 2 

Table 4-1. Selected Tests of Embedded CaffeineMark 3.0 32 

Table 4-2. Configurations of Different Optimization Combinations 33 

Table 4-3. Execution Time Distribution Ratios of Benchmark Programs 34 

Table 4-4. JVM Code Size of Different Configurations 36 

 

 - viii -



 
Chapter 1  

Introduction 
 

In this chapter, we introduce terms in the title and the concept of our research. First, 

we give an overview of the current status of the Java technology in embedded 

environment. Second, we explain the meaning of mixed-mode, which actually combines 

interpretation and just-in-time (JIT) compilation. Third, we introduce the load/store 

multiple instruction that is supported by embedded architecture, such as the ARM and 

XScale processors. After the introduction comes our research motivation and objectives. 

Finally, organization of this thesis is provided. 

 

1.1 Embedded Java Environment 

Java technology is developed by Sun in 1991 and rapidly becomes popular in 

all application fields, such as desktop PCs, powerful large-scale server, or even in 

small portable devices. In order to meet the demands of different application fields 

with different characteristics, Sun in 1999 has grouped Java technologies into the 

Java 2 platform [1], which consists of three editions as in Figure 1-1, and each of 

which is specialized for a specific area: 

‧ Java 2 Enterprise Edition (J2EE) - targeted at scalable, transactional, and 

database-centered enterprise applications with an emphasis on server-side 

development. 
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1.2 Embedded Mixed-Mode Execution JVM 

Although the JVM can be easily realized by an interpreter, its slow 

performance is always a great issue in performance-aware system. In order to 

overcome this problem, some compilation technologies were applied for speedup. 

Ahead-of-time (AOT) compilers [2] allow offline compilation to translate bytecode 

into machine code; hence no run-time compilation overhead is caused but result in 

application code size expansion about five times. Conventional JIT compilers 

translate bytecode into machine code on the fly, and apply more optimization 

techniques for better performance with the cost of VM code size increase and 

run-time compilation overhead. However, these approaches might not be adoptable 

in some embedded JVM because of the memory constraint. 

The approach of mixed-mode execution in [3][4] relies an interpreter to 

execute bytecode for some parts of the program, and also executes compiled code 

that dynamically produced by a JIT compiler for the remaining parts. The line 

between a conventional JIT compiler and a JIT compiler that supports mixed-mode 

execution is, in actuality, unclear. However, the principles of mixed-mode 

execution can be clarified as follows. 

‧ Performance-critical parts of the program are compiled by a JIT compiler, and 

then natively executed. 

‧ Non-performance-critical parts of the program are interpreted by an interpreter. 

‧ Close interactions between the JIT compiler and the interpreter is necessary. 

By reusing the interpreter-based JVM as its infrastructure, the JIT compiler of 

a mixed-mode JVM can be implemented with very small code size (about several 

tens of kilo-bytes). Therefore, while designing an embedded JVM with the demand 

of speed performance, a mixed-mode JVM seems to be promising. And the 
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combination of an interpreter-based JVM and a light-weighted JIT compiler builds 

up an embedded mixed-mode JVM. 

 

1.3 Load/Store Multiple Instruction 

Some embedded architecture, such as the ARM processors support load 

multiple (LDM) or store multiple (STM) instructions to perform multiple register 

data transfers from/to memory. The formats of LDM/STM instruction are: 

LDM  baseRegister, {bitVector} 

STM  baseRegister, {bitVector} 

The operands of LDM/STM instruction consist of a base register that holds a 

memory address, called the base address, and a bit-vector that denotes a subset 

(possibly all) of the general-purpose registers. These registers indicated by 

bit-vector would be loaded from or stored to a contiguous block of memory word 

starting from base address. 

 

 simple example of load/store multiple instruction is showed in Figure 1-2. 

This

 

A

 example illustrates a common feature of these instructions: the lowest register 

is transferred from/to the lowest memory address and the other registers are 

transferred in order of register number from/to consecutive word addresses above 

the first address. 

r5
r7

r2

Memory

r0

Address

0x08
0x0C

0x04
0x00

0x10

0x08
0x0C

0x04
0x00

0x10

 STMIA r0, {r2, r5, r7} 
or 

00000000101001000000 STMIA 

r0r15 r2r5r7

Figure 1-2. Example of LDM/STM 
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The benefit of utilizing load/store multiple to replace several load/store 

instr

lacing n load/store instructions by single load/store 

‧ azard: In ARM7, a 

 

 simple example of executing load/store and the equivalent LDM/STM 

uctions are listed below: 

‧ Reducing code size: if rep

multiple instruction, code size can be reduced (n-1) word. 

Reducing pipeline stall cycles caused by structure h

3-stage pipeline RISC processor, both load and store instruction occupy 

execution stage more then one cycle: Store takes two cycles for address 

calculation and memory access; Load takes one cycle more then store because 

the extra work of writing data into register also takes one cycle. Therefore, 

Processor must stall one cycle for each store and stall two cycles for each load 

because of the structure hazard in execution stage. However, these stall cycles 

can be reduced after replacing several load/store instructions by equivalent 

LDM/STM.  

A

instructions by ARM7 pipeline is showed in Figure 1-3. During the execution of 

IF ID EX

IF ID EX

IF ID

IF ID

IF ID EX EX EX

IF ID EX EX EXstall

LDR r2, [r0, #0]

LDR r5, [r0, #4]

ADD r2, r2, r5

IF ID EX EXLDMIA r0, {r2, r5}

ADD r2, r5, r5
EX EX

IF ID EX EX

IF ID EX EXstall

STR r2, [r0, #0]

STR r5, [r0, #4]

STR r6, [r0, #8]

ADD r2, r2, r5

IF ID EXSTMIA r0, {r2,r5,r6}

ADD r2, r2, r5

EX

EX

EX

LDR r2, [r0, #0]

LDR r5, [r0, #4]

LDR r6, [r0, #8]

ADD r2, r2, r5

LDMIA r0, {r2,r5,r6}

ADD r2, r2, r5

IF ID EX EX EXstall

EX

EX

EX

EX

:address calculation

:memory access

:write back

IF ID EX EXstall

EX EX

4 cycles

2 cycles

Figure 1-3. Example of load/store and LDM/STM execution in ARM7 pipeline 
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LDM/STM, the address calculation, memory access and write back of different 

memory accesses are parallelized and hence the total execution cycles are 

reduced. To be more precise, replacing n load instructions by one equivalent 

LDM can result in 2(n-1) stall cycles reduction and replacing n store 

instructions by STM can result in (n-1) stall cycles reduction. 

 

1.4 Research Motivation and Objectives 

d some complex bytecodes that 

invo

Inspection load/store 

instr

Because of very limited memory budget an

lve complicated operations that suit for interpreter handling (such as object 

creation, method invocation), the JIT compiler of embedded mixed-mode JVM is 

usually designed to only compile a bytecode subset that produce great performance 

improvement. However, the mode switch between interpreter and JIT compiled 

code would become more frequent because those complex bytecodes must be 

executed by interpreter; as Figure 1-4 shows. 

JIT
compiled

Bytecodes
of one method

█ executed by interpreter        executed in JIT compiled code 
█ JIT compiled code block           mode switch

Figure 1-4. Mode switch between interpreter and JIT compiled code 

 of the JIT compiled code reveals that, a great deal of 

uctions is generated by JIT compiler to synchronize the local variable array 

and operand stack at each compiled code entry and exit point. In compiled code 

generated by KJITC [7], a JIT compiler of an embedded mixed-mode JVM 

 6



developed by our research group, these load/store instructions occupy 39% of JIT 

compiled code and 30% of JIT compiled code execution trace.  

Motivated by this fact, our objective is to make use of the benefits of 

repla

eveloped by [7]. 

It co

1.5 Thesis Organization 

 is organized as follows: Chapter 2 provides more 

detai

cing the load/store of local variable array and operand stack by load/store 

multiple instructions in embedded Java JIT compiled code to achieve speed 

performance improvement and JIT compiled code size reduction. 

In addition, the embedded mixed-mode JVM we choose is d

mbines an interpreter-based VM, which is modified form Sun’s CLDC KVM 

1.0.4, and a light-weighted JIT compiler, named KJITC, to generate ARM 

instructions. 

 

The rest of the thesis

led background knowledge on JVM internals and an overview of our 

embedded mixed-mode JVM. Chapter 3 discusses about how to utilize LDM/STM 

in JIT compiled code and describes optimizations for utilizing LDM/STM. Chapter 

4 gives the experiment results. The last chapter summarizes the work. 
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Chapter 2  

Background 
 

This chapter provides more background details on JVM internals and an overview 

of our embedded mixed-mode JVM. Readers who are already familiar with the two 

topics can skim over them. 

 

2.1 Java Technology 

Although generally used to refer to a computer language, Java is rather a 

complete architecture in reality. It consists of four components [8]. 

‧ Java programming language 

‧ Java class file format 

‧ Java Application Programming Interface (Java API) 

‧ Java Virtual Machine (JVM) 

A Java program which is written in Java programming language can be 

compiled into Java class files by Java source compiler. JVM is a virtual stack 

machine that execute Java class file. The Java program can access predefined 

libraries or system resources (such as I/O, for example) by calling methods in the 

classes that implement the Java API. During program execution, JVM loads and 

executes user-written class files as well as these system classes that Java API 

defines. 
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2.1.1 JVM Benefits 

Java Virtual Machine is the key component among the all. It is responsible for 

the well-known advantages of Java comparing to traditional native execution 

system. Those advantages include: 

‧ Cross-Platform Portability 

‧ Security of the Execution Environment 

‧ Small Size of the Compiled Code 

 

2.1.2 JVM Internals 

A JVM implementation must provide the functionality of a real processor and 

also conform to the JVM specification [9]. The specification defines a 

homogeneous run-time environment, as Figure 2-1 illustrates, by providing a 

detailed description of the following items: 

Figure 2-1. JVM Runtime Environment (extracted from [7]) 

‧ Instruction Set (Java Bytecode) 

‧ Register Set 

‧ Java Stack 

‧ Execution Environment 

‧ Constant Pool 
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‧ Method Area 

‧ Java Heap 

‧ Object Management and Garbage Collection 

Since the JVM is a stack-based architecture, the registers of its register set are 

not used for storing operands or passing arguments as in most register-based 

machine. They only hold the state of the JVM and are updated after every bytecode 

instruction is executed, such as program counter. 

Before the bytecode instruction is executed, operands must be pushed onto the 

operand stack, which resides in method frame pushed in Java stack. An executing 

instruction pops its operands from the operand stack and then places results on the 

operand stack when it completes. 

The Java stack is similar to the stack of conventional language, such as C; it 

contains method frames and is manipulated to realize method invocation/return. 

The JVM maintains a special table for each class, known as a constant pool. 

The constant pool contains string literals, class names, field names and other 

constant data objects that are referred to by the class structure. These constants do 

not change, and are created at compile-time. 

The method area is equivalent to the compiled code areas in the run-time 

environment used by other programming language. It contains bytecode 

instructions that are associated with the methods and the symbol table needed for 

dynamic linkage.  

The Java heap is the dynamic memory of JVM, and it usually contains a 

collection of objects. When an object is created with the “new” bytecode 

instruction, a reference to that object is returned. This reference can be used 

subsequently, or stored in the current frame. An object is live in Java heap until 

there are no references to it in any frame or in the field of any visible object. When 
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there are no such references, an object becomes garbage, and a garbage collector 

will reclaim its resources. 

 

2.1.3 JVM Implementation Alternatives 

The JVM is not restricted to software interpreter implementation. In fact, 

there are three common approaches, as depicted in Figure 2-2, to implement the 

JVM. 

The first approach is using interpreter to execute bytecode. It makes the VM 

porting easier, but the execution speed is low. The second approach is to replace 

interpreter with a bytecode compiler. The bytecode compiler is used to translate 

bytecode into native machine code. While ahead-of-time (AOT) compilers 

performs offline compilation, just-in-time (JIT) compilers performs on-the-fly 

compilation at run-time. Both of them have pros and cons, but JIT compilers seem 

to be more popular. The third approach is to implement the JVM directly on silicon. 

For example, picoJava is a Java processor that supports bytecode execution 

completely. 

Figure 2-2. Three Alternatives to Executing Java Programs (extracted and modified from [10]) 
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As discussed in Section 1.2, an interpreter can still coexist and cooperate with 

a JIT compiler in the JVM. Recently, a mixed software/hardware approach also 

arises; ARM has introduced its own Java instruction extension - Jazelle [11]. A 

subset of bytecode instructions can be directly executed when the ARM processor 

is operated in Java mode, and the remaining bytecode instructions are still handled 

in software. 

 

2.2 Overview of Our Embedded Mixed-Mode JVM 

In our mixed-mode embedded JVM, there are four main components. Their 

interactions can be simply illustrated in Figure 2-3. 

Now we respectively describe each component as follows. 

Figure 2-3. System Components and Their Interactions (extracted from [7]) 

‧ Interpreter-based JVM (KVM) 

The interpreter-based JVM provides a JVM infrastructure that performs 

exception handling, garbage collection, synchronization and etc. For mixed-mode 

execution, the interpreter is also responsible for invoking the hot spot detector and 

switching to/form compiled code in addition to interpretation of those bytecode 

that have not been compiled or will not be compiled. 
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‧ Hot Spot Detector 

Due to the tight memory constraints, only valuable parts of the input program 

are selected for JIT compilation. By the 80/20 rule, over eighty percent of 

execution time is spent in less than twenty percent of source code in a program. 

Apparently, the responsibility of the hot spot detector is to discover these 

performance-critical twenty percent of source code and then invoke JIT compiler 

for hot spot compilation. 

The basic unit of hot spot detection is a method. When a method is invoked 

frequently or contains at least one loop that iterate for many times, it is regarded as 

a hot spot an invoke KJITC to compile it. In our implementation, the threshold 

values of invocation count and iteration count must be set statically. Currently the 

values are both chosen to be 40, which are based on our evaluation results. 

‧ JIT Compiler (KJITC) 

The JIT compiler is further divided into the IR (Intermediate Representation) 

generator and the native code generator. The IR generator is mainly responsible for 

translating Java bytecode into semantically equivalent three-address IR. And then 

the code generator translates IR into targeted native code for later execution. A 

simple illustration is given in Figure 2-4. The design of the optimizations in KJITC 

IR Generator 
Function: 

translation of Java bytecode 

into semantically equivalent 

3-address IR 

Optimizations: 

1. rule-based null pointer check 

elimination 

2. strength reduction 

Native Code Generator 
Function: 

1. register allocation/assignment 

2. instruction selection/ generation 

 

Java 
Bytecode 

3-address 
IR 

Native Code
(eg. ARM) 

Optimizations: 

1. instruction folding for stack 

operations 

2. constant propagation 

Figure 2-4. KJITC Compiler Architecture (extracted and modified from [7]) 
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was described in [7] and we skip those details here. 

‧ Compiled Code Buffer 

The compiled code buffer holds all compiled native code. During native 

exec

 addition to the four components, the switching mechanism between the 

inter

ution, the machine program counter (PC) points to native code that resides in 

the buffer. In our current implementation, the compiled code buffer is allocated 

statically, and its size is also predetermined. 

 

In

preter and the compiled native code is also described here. Similar to a 

function call, the switch from the interpreter to the compiled native code involves 

spilling registers into memory and then transferring execution by a branch. The 

case of the switch from the compiled native code to the interpreter involves more 

operations. It has to restore registers from memory, to transfer execution by a 

branch, and to update Java PC (program counter) and Java SP (stack pointer). 
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Chapter 3  

Designs 
 

In this chapter, we discuss about how to utilize LDM/STM in JIT compiled code 

and describe optimizations for utilizing LDM/STM. Section 3.1 will discuss about the 

constraints of replacing load/store by LDM/STM and the strategies to deal with them, 

Section 3.2 will introduce the overview of my designs, and section 3.2 to 3.4 will show 

the design details. 

3.1 How to use Load/Store Multiple in embedded mixed-mode 

JVM 

As we mentioned in Section 1.4, the load/store instructions that access to 

local variable array and operand stack occupy a great portion of JIT compiled 

code. However, not all the load/store instructions can be replaced by load/store 

multiple instructions but within constraints. In this Section, we will discuss the 

constraints and the strategies to increase the replaceable load/store instructions. 

 

3.1.1 Constraints of Replacing Load/Store by LDM/STM 

The major constraints of replacing these load/store instructions by load/store 

multiple are listed below: 

1. Accessed memory locations are contiguous 

The load/store multiple are restricted to access consecutive memory words, 

and hence the load/store instructions that access to non-contiguous address can not 
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replace by LDM/STM. As Figure 3-1 (a) illustrates, only the first two loads that 

access to consecutive memory words are replaceable, but if the access address of 

the third load is adjusted to contiguous one as Figure 3-1 (b) show, all of them can 

be replaced by LDM. 

2. The DST/SRC register numbers and accessed memory addresses are in the 

same order 

During the execution of LDM/STM, registers are transferred in order of 

register number from/to consecutive word addresses. If the DST/SRC register 

numbers and accessed memory addresses of load/store instructions are not in the 

same order, replacing them by LDM/STM will cause different result in 

register/memory from the original code sequence. As Figure 3-2 (a) shows, only 

the first two load instructions satisfy the constraint and can be replaced by 

equivalent LDM. After adjusting the destination register numbers of the last two 

load instructions as Figure 3-2 (b), all of them become replaceable. 

(a) (b) 

LDR r2, [r0, #0]
LDR r5, [r0, #4]
LDR r7, [r0, #12]

LDMIA r0, {r2, r5}
LDR   r7, [r0, #12]

LDR r2, [r0, #0]
LDR r5, [r0, #4]
LDR r7, [r0, #8]

LDMIA r0, {r2, r5, r7}LDMIA r0, {r2, r5, r7}

Figure 3-1. Example of Replaceable and Non-replaceable Load/Store Instructions 

LDR r2, [r0, #0]
LDR 

LDR r2, [r0, #0]
LDR r7, [r

r5, [r
0, #4]

LDR 
r5,
r7,

 [r0, #4]
LDR  [r0, #8]

LDMIA r0, {r2, r5, r7}

0, #8]

LDMIA r0, {r2, r7}
LDR   r0, #8]r5, [

(a) (b) 

Figure 3-2. Example of Replaceable and Non-replaceable Load/Store Instructions 
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3. Load/store instructions only can be grouped together without affecting 

dependences 

The load/store instructions to be replaced by LDM/STM are not necessary to 

be adjacent to each other in a code sequence, but have to be independent to each 

other. If there are dependences between load/store instructions, replacing them by 

LDM/STM will affect dependences and result in error. As Figure 3-3 (a) shows, the 

two load instructions are dependent because of the true dependence between the 

first and the second instruction and the anti-dependence between the second 

instruction and the third instruction. Therefore these load instructions are not 

replaceable. But if the register numbers of the third instruction is adjusted to 

resolve the anti-dependence as Figure 3-3 (b), the two load instructions will 

 

become independent and replaceable. 

3.1.2 Strategies to Make More Load/Store Replaceable 

.1.1, the 

respe

1. M king

ous, since the 

oper

 

Basing on the three major constraints summarized in Section 3

ctive strategies to make more load/store replaceable are listed below: 

 

a  the access locations of groupable load/store contiguous 

The accesses to operand stack are almost always contigu

ations to access operand stack are simply push or pop rather then random 

(a) (b) 

LDR r2, [r0, #0]
ADD r4, R2, R3

r3, [r0, #4]LDR 
Anti-dependence

LDMIA r0, {r2, r5}
ADD   r4, R2, R3
LDMIA r0, {r2, r5}
ADD   r4, R2, R3

LDR r2, [r0, #0]
ADD r4, R2, R3
LDR r5, [r0, #4]

Independent

Figure 3-3. Example of Replaceable and Non-replaceable Load/Store Instructions 
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accesses. The local variable accesses are more likely to be random accesses, but it 

is possible to adjust or permute the local variable array for each method to make 

more load/store instructions access to contiguous address and become replaceable. 

In fact, there are already researches [12][13] about adjusting variable locations by 

add phases into C/C++ compiler to maximize the benefit of utilizing LDM/STM, 

and it is also possible to apply them to Java method at bytecode level with little 

modification. 

 

2. Making the order of register numbers right 

 guide-line: allocating lager register 

num

the register number constraint of utilizing is LDM/STM was also 

discu

This can be realized by following a simple

ber for lager memory address access. Since most RISC instructions are 

orthogonal and free to use any one of general purpose register, the register numbers 

of RISC instructions usually can be renamed/relabeled to obey the guideline 

without affecting correctness and/or code quality. Moreover, the register allocator 

might be modified to be aware of this guide-line without conflicting with the 

original allocation policy, because a simple register allocator for RISC machine 

usually only decide the range of variables reside in registers, and there is flexibility 

on which register number to allocate. We prefer to modify the register allocator to 

follow the guideline, since the register renaming might take an extra pass in JIT 

compilation. 

In [13], 

ssed and dealt with it by inserting extra instructions to swap register content. 

However, the extra instructions inserted will decrease the benefit of utilizing 

LDM/STM and this approach is even harder to implement when adjusting more 

then two register numbers at a time. 
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3. A oiding the name dependences between load/store and other instructions 

s of 

instr

3.2 Design Overview 

in components in my design: local variable relocation, 

mod

The objective of local variable relocation is to make more potentially 

ructions access to continous addresses and maxisize the 

bene

v

Name dependences can be avoided by adjusting register number

uctions. This is also can be realized by applying register renaming or 

modifying the register allocator to be aware of it. Because of the same reason we 

mentioned earlier, we prefer to modify the register allocator to avoid name 

dependences. 

 

There are three ma

ification of register allocation and grouping load/store into LDM/STM as 

illustrated in Figure 3-4. 

groupable load/store inst

fit of utilizing LDM/STM. It is performed offline since solving it is a very 

Run-time
KJIT compilation

Code gen

IR gen

register allocation

...

JIT compiled code

Java method
(modified or un-modified)Java method

Offline preprocess
for every compilable method

Modified
Java method

Local Variable 
Relocation

Grouped Load/Store
Info of each basic block

Offline Profiling Info 
(execution count of each 

basic block)

1

Modified
Java method

Local Variable 
Relocation

Grouped Load/Store
Info of each basic block

Offline Profiling Info 
(execution count of each 

basic block)

1

Register Allocation 2 3

Group load/store into 
LDM/STM

Group load/store into 
LDM/STM

Grouping scope: Intra basic block
3

Making the order of register numbers right 2Making the access location continuous1

Avoiding the name dependences 

JIT compilation

Register Allocation

Group load/store into 
LDM/STM

Group load/store into 
LDM/STM

Figure 3-4. Design Overview 
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time-consumed and memory-consumed process even by heuristic algorithm. After 

the local variable relocation decision comes out, relocation is simply done by 

rewriting the bytecodes that access to local variables. For example, if local variable 

one is decide to be relocated to local variable two, then the bytecodes such as 

ILOAD_1, IINC 1 2, and ISTORE_1 will be rewritten to ILOAD_2, IINC 2 2, and 

ISTORE_2. Therefore, the modified Java method is still correctly executable and 

those changes almost bring no effect on code size of program and the speed of 

interpretation. 

The register allocation is performed during the code generation of JIT 

compilation. In my design, it is modified to make the order of register numbers 

right

d here to find out replaceable load/store instructions within basic 

bloc

3.3 Relocation 

le relocation is to make the access location of 

 adjusting the locations of local variables for 

each

 and to avoid name dependences for making more load/store instruction 

replaceable. 

After the register allocation and load/store instructions are generated, an extra 

pass is adde

ks and group them into LDM/STM. 

The detail algorithms of each one of the three designs will be describe in the 

following sections. 

 

Local Variable 

The key idea of local variab

groupable load/store continuous by

 java method. The problem formulation is: given compiled instructions of each 

basic block with load/store of a method and the execution count of each basic 

block, obtain a memory layout of the local variables of the method that maximizes 

the benefit of using load/store multiple instructions. The benefit of utilizing 
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LDM/STM can be either code size reduction or stall cycle reduction as we 

discussed in Section 1.3. 

There are three phases to accomplish the local variable relocation: gathering 

grouping information, transforming grouping information to access graph and 

decid

e are the JIT compiled instructions of each basic block of a 

unt of each basic block obtained by offline 

profi

ping are 

inde

instructions to 

cons

ing the layout of local variable. The actions of each phase are described in 

following paragraphs. 

‧ Gathering grouping information 

Inputs of this phas

java method and the execution co

ling. Output is the grouping information consists of the load/store instruction 

groupings, the type and the execution count of each instruction grouping. 

The instruction grouping consists of multiple load or multiple store 

instructions within a basic block. The instructions in the same grou

pendent to each other and access to different local variables. In addition, each 

load/store instruction belongs to one grouping at most. Note that the instruction of 

a grouping is not necessary to access to contiguous addresses here. 

To find out the instruction groupings, we perform dependence check on 

instructions of each basic block and scan through the load/store 

truct instruction groupings in greedy fashion. A simple example of gathering 

grouping information of a method is illustrated is Figure 3-5. 

Access Grouping Info. of a method…
Load r1, r0, #b

21

Load r2, r0, #c
Load r3, r0, #d

…
Store r5, r0, #a
Store r6, r0, #c
Store r7, r0, #e

…

JIT compiled code of 
each basic block

in a method

…

2 (LD)

1 (ST)

2 (LD)

T(G)
( LD/ST)

…

a,b

a,c,e

b,c,d

Grouping
G

100a-c, c-e, a-e

150a-b

…

100

F(G)
(execution count)

…

b-c, c-d, b-d

Grouping
pairs

…

2 (LD)

1 (ST)

2 (LD)

T(G)
( LD/ST)

…

a,b

a,c,e

b,c,d

Grouping
G

100a-c, c-e, a-e

150a-b

…

100

F(G)
(execution count)

…

b-c, c-d, b-d

Grouping
pairs

…
Load r7, r0, #a
Load r8, r0, #b

…...basic block boundary

Figure 3-5. An Example of Gathering Grouping Information  



For ease of conduct the weighting formula to calculate benefit later, we define 

some

 consists of load/store instructions: 

‧ 

‧ T ing grouping information to access graph 

s transformed to an access 

grap

ction = Sum(F(Gn) × T(Gn)) , where Gn containing both 

‧ eduction = number of grouping that contain both vi and vj 

ph is 

show

 term for instruction grouping here: 

Definitions for an instruction group G

‧ F(G) = execution count of G (obtained by offline profiling) 

2 if G consists of load (stall cycle reduced by replacing
T(G) =   

 

ransform

In this phase, the grouping information gathered i

h. The access graph is a weighted graph; each node v of graph corresponds to a 

unique local variable; an edge<vi, vj> denotes the instructions access to vi and the 

instructions access to vj fall in one or more common instruction group; the weight 

of edge<vi, vj> is the benefit of vi and vj group together in a method. The benefit 

can be either one below: 

‧ Stall cycles redu

vi and vj  

Code size r

A simple example of transforming grouping information to access gra

ed in Figure 3-6. 

1 if G consists of store (stall cycle reduced by replacing one pair of store) 
 one pair of load) 

300a-b, b 1502(LD)a

4004001(ST)c-d, d-e, c-ec, d, e

2001002(LD)b-c, c-d, b-db, c, d

1001001(ST)a-c, c-e, a-ea, c, e

Grouping T(G) F(G) F(G) × T(G)group pairs

300a-b, b 1502(LD)a

4004001(ST)c-d, d-e, c-ec, d, e

2001002(LD)b-c, c-d, b-db, c, d

1001001(ST)a-c, c-e, a-ea, c, e

Grouping T(G) F(G) F(G) × T(G)group pairs

a

b

c d

e

300,1

200,1

100,1

400,1

100,1

500,2

600,2

200,1

Access Grouping Info. of a method transform to 
access graph

Weight: stall cycles reduction, code size reduction

Figure 3-6. An Example of Transforming Grouping Information to Access Graph 

 22



‧ Deciding the layout of local variable 

l variables can be mapped to a path cover 

in th

-6. The path cover obtained by 

“Lar

In fact, any memory layout of loca

e graph, and finding the optimal memory layout is equivalent to finding the 

path cover with maximum weight. The problem of finding the path cover with 

maximum weight is called maximum weighted path cover problem (MWPC), and 

it has been proved to be NP-complete. Therefore, a heuristic algorithm called 

“Largest Weight First” is used to solve it. The algorithm is described below. 

23

A simple example is illustrated in Figure 3

gest Weight First” in this example is “a-b-d-c-e”, which is also the optimal 

path cover in this graph. According this path cover, the memory layout local 

variables will be changed from “a-b-c-d-e” to “a-b-d-c-e”. 

Step 1: Initialize the path cover P = { }; 

aph according to their weights (in 

Step 3: P e largest weight and remove it from E. 

Step 4 nd 3 until E is empty 

Figu rithm 

Step 2: Sort the edges of the access gr

descending order) into set E; 

ick up the edge e in E with th

If adding the edge e to P (i) does not form a cycle in P , and (ii) does 

not increase the degree of any node in P to more than 2, then it is 

included in P . 

Repeat Steps 2 a

a

re 3-7. An Path Cover Obtained Largest-Weight-First Algo

b

c d

e

300,1

200,1

100,1

400,1

100,1

500,2

600,2

200,1

 

 



According to the JVM specification [9], some local variables can not be 

relocated, such as “this pointer” at local variable 0 or parameters, which must be 

placed in consecutive addresses start from local variable 0 or after “this pointer”. 

To deal with that, the initialization step in the “Largest Weight First” algorithm 

must be modified: while deciding the layout of local variables, these variables that 

can not be relocated are connected into a path according to their predetermined 

placement sequence and we put it in the path cover P at the step one. The rest of 

the algorithm is remained to build up the path cover. 

The process of local variable relocation is also influenced by whether the 

register allocator of the JIT compiler is designed to allocate right register numbers 

and to eliminate the name dependences for consecutive variable accesses. If the 

register allocator will try to eliminate the name dependences between the 

consecutive variable accesses and other instructions, it is assumed the all the name 

dependences are removed and only the true dependences remain during the 

instruction group construction in the first phase. If results of the register allocation 

are independent to the locations of variables, we use the directed edge to represent 

the register number order between grouped local variable access instructions 

during the access graph construction in phase two. In addition, the weight 

calculation is also slightly modified to takes the register number constraint into 

account. 
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3.4 Modification of Register Allocator 

The goal of modifying register allocator is to make more load/store 

instructions replaceable by making the order of register numbers right and 

avoiding name-dependences to. We use a simple example in Figure 3-8 to explain 

how to achieve this goal. 

A dependence graph of a basic block in JIT compiled code is showed in 

Figure 3-8. These instructions can be divided into two groups: the consecutive 

address access instructions and the other instructions, as the dotted lines separated. 

The consecutive address accesses are grouping candidates that might be replaced 

by LDM/STM later. 

To make the order of register numbers right, we can simply allocating 

ascending register numbers for consecutive address accesses that sorted in 

ascending order. 

However, some dependences between the consecutive address accesses and 

other instructions still make some loads/stores non-replaceable. For example, the 

name dependence between “ADD” and “LD mem[n+1]” in Figure3-8 making the 

“LD mem[n]” and “LD mem[n+1]” dependent and non-groupable. To avoid that, 

Inst. 
access to n+2

Inst.
access to n+1

Inst.
access to n

Inst. 
access to n+2

Inst.
access to n+1

Inst.
access to n

<                         <

Consecutive 
address 
accesses

(grouping candidates)

other instructions

Ri Rj Rk

Use other registers as destination register rather than Ri, Rj, Rk

LD mem[n] LD mem[n+1] LD mem[n+2]

ADDLD mem[n+4]ADDADD

Register:

true dependence

name dependence

true dependence

name dependence

Figure 3-8. A Dependence Graph of a Basic Block in JIT Compiled Code 
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we can allocate other registers for other instructions as destination registers rather 

then those allocated for consecutive address accesses. 

The scope of register allocation in the JIT compiler of our embedded 

mixed-mode JVM is extended basic block, which is code sequence with a unique 

entry point and possibly many exits points. The original register is two-pass 

register tracking, similar to the register allocator in [14]. The first pass is live-ness 

analysis; the second pass is sequentially allocating registers and generating 

instructions for each IR. 

Modified register allocator is still a 2-pass scheme. The first pass is modified 

to find out consecutive address accesses within basic block along with the live-ness 

analysis and generate hints (preserved register and address pairs) for them. The 

register allocation in second pass would be guided by these hints later. 

A simple example of hint generation in first pass is illustrated in Figure 3-9. 

First, we scan through the IR of EBB and log the read/written addresses for each 

basic block. If there are consecutive addresses to be read/written within a basic 

block, we preserve ascending register numbers for loading/storing these memory 

addresses as hints to register allocator. 

:Top of stack

R5R4R3R2R1

R/WR/WR/WRRR

R/W

5

RR/W

RR/W

WR

R

3 4

WR

R5R4

W

87…210

R5R4R3R2R1

R/WR/WR/WRRR

R/W

5

RR/W

RR/W

WR

R

3 4

WR

R5R4

W

87…210

MOV LV[7],LV[3]
MOV LV[8],LV[1]
ADD LV[7],LV[7],LV[8]
MOV LV[8],LV[4]
ADD LV[7],LV[7],LV[8]
ADD LV[5],LV[5],#1

ILOAD_3
ILOAD_1
IADD
ILOAD_4
IADD
INC 5 1

Address:

Local variable array Operand Stack
Bytecode IR

Preserved register for Load:

Preserved register for Store:

Access log:

Hints for register allocator

Figure 3-9. An Example of Hint Generation 
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The register allocation in second pass is also modified to follow the hint. The 

modified register allocation policy described as below. 

 

 

The modified allocation policy follows the hints in conservative way: if the 

preserved register is occupied at step 1, we do not spill that register but try to find 

another available one to allocate. The reason of the conservatism is that the 

overhead of the extra register spill is usually greater then the benefits of replacing 

more load/store by LDM/STM. Although the conservative policy might tend to 

failed to follow hints at step 1 (because the preserved register for m is occupied) 

when register pressure is high, but we found that the register pressure is rarely get 

high in JIT compiled code since the size of EBB is usually small. 

When spilling register, the register with the lowest spill cost, which represents 

the estimated number of extra instructions to be generated because of the register 

spilling, is chosen to spill in the original policy. The modified policy still use the 

original metric to choose the register, but if both non-preserved and preserved 

register are chosen, spill the non-preserved first to avoid the name dependences 

Allocation policy 

When allocating register for memory address m: 

Step 1: Try to allocate register according to hint 

If there is an available preserved register for m, use it and release the 

original register allocated for m then exit; otherwise go to Step 2 

Step 2: Use the original allocation policy to allocate register 

But if both non-preserved and preserved registers are free, use the 

non-preserved first 

 27



occur on preserved registers. 

Note that, the modified register allocation policy does not increase the amount 

of occupied register at each allocation point, since the original register number 

allocated will be released while allocating another register number of variable in 

step one. In addition, the modified spill policy also does not seem to cause more 

load/store instructions in JIT compiled code, since the spill cost of choused register 

is always the same as one that choused by original spill policy. 

 

3.5 Group load/store into LDM/STM 

The goal of this design is to efficiently replace the load/store instructions 

within basic block by LDM/STM whenever possible. Since the code scheduling 

crossing basic block, such as trace scheduling, is usually too expansive to 

implement in an embedded JIT compiler, the load/store grouping scope is decided 

to be basic block. 

There are three phases to group load/store into LDM/STM: dependence 

checking, load/store grouping, and instruction regeneration. The actions of each 

phase are described in following paragraphs. 

 

‧ Dependence checking 

After generating the first load/store in a basic block, we start to build the data 

dependence graph for later generated instructions. After the instructions of a basic 

block are all generated, if more than one load/store instruction is generated, go to 

the next phase and exit if otherwise, since it is not necessary to try to replace single 

load/store by LDM/STM. 
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‧ Load/store grouping 

The algorithm of load/store grouping is listed below. 

 

Step 1 (Sort load/store): put load/store instructions into two different queues and sort 

by accessed address respectively  

Step 2 (Find a load/store group): scan through the sorted load/store instruction queues 

and get a load/store group that satisfies all constraints; if no such group is 

found in queue, go to the next phase 

Step 3 (Replace the load/store group by LDM/STM): allocate a register as base 

address register and insert a instruction (if necessary) to set base address for 

each group; replace the grouped load/store instructions by load/store multiple 

and annotate it in the dependence graph, go to step 2 

‧ Instruction regeneration 

If any load/store replacement occurs, instructions will be regenerated 

according to the original instruction sequence and the dependence graph. While 

regenerating the instruction I, if there are instructions that I depends on and 

un-regenerated, we recursively regenerate those instructions first and then generate 

I. 
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An example of grouping load/store into LDM/STM is illustrated in Figure 

3-10 to help reader to realize the three phases. 

The time complexities of the second and the third phase: load/store grouping 

and instruction regeneration are both linear to the instruction count of a basic block 

and the same as the most optimizations in JIT compiler. The time complexity of 

dependence check is O(n2) where n is the instruction count of a basic block. 

However, the size of basic block is smaller then seven instructions in most cases; 

therefore the time spent on dependence seems to be affordable.  

 

1:LV3
r1

2:LV1
r2

4:LV4
r2

6:LV5
r3

1:LV3
r1

2:LV1
r2

4:LV4
r2

6:LV5
r3

1:LV3
r1

2:LV1
r2

4:LV4
r2

6:LV5
r3

sort load/store 
by accessed address

1:LV3
r1

2:LV1
r2

4:LV4
r2

6:LV5
r3

sort load/store 
by accessed address

Load Instruction Queue2
LV1

1
LV3

6
LV5

33
4
LV4

5 7

dependence
Dependence Graph

1

ADD  r1,r0,#12
LDM  r1,{r1,r2,r3}

LOAD r1,r0,#12
LOAD r2,r0,#16
LOAD r3,r0,#20

3
4:LV4
r2

6:LV5
r3

1:LV3
r1

2

LOAD r1,r0,#12;LV[3]
LOAD r5,r0,#4 ;LV[1]
ADD  r4,r1,r5
LOAD r2,r0,#16;LV[4]
ADD  r4,r4,r2
LOAD r3,r0,#20;LV[5]
ADD  r3,r3,#1

1:LV3
2:LV1
3:
4:LV4
5:
6:LV5
7:

ADD  r1,r0,#12
LDM  r1,{r1,r2,r3}
LOAD r5,r0,#4 ;LV[1]
ADD  r4,r1,r5
ADD  r4,r4,r2
ADD  r3,r3,#1

2:LV1
3:
5:
7:

3. Instruction
Regeneration

1. Dependence Checking

2. Load/Store
Grouping

Code size: 1 word reduced
Execution cycle:   3 cycle reduced

Figure 3-10. An Example of Grouping Load/Store into LDM/STM 
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Chapter 4  

Experiments 
 

This chapter is devoted to experiments. We first describe our set-up environment 

for experiments. Next, appropriate benchmarks are chosen for performance evaluation. 

Finally, experiment results including speed performance and memory usage are 

exhibited. 

 

4.1 Experiment Environment 

The embedded mixed-mode JVM we choose to modify is developed by our 

research group in [7]. It is designed and implemented based on version 1.0.4 of 

Sun's KVM, the reference implementation of J2ME CLDC. For our research usage, 

the KVM is ported to ARM's ADS1.2, a development environment which includes 

compiler, assembler, debugger, and instruction set simulator. For compiling Java 

benchmark programs and KVM's class libraries, the version of the Java compiler 

adopted is Sun's J2SDK1.4.2_03. For compiling KVM and our KJITC, maximum 

optimization is specified with -O2 option, and other options remain default. Last, 

our target architecture is ARM7TDMI, a three-stage pipeline and uncached 

Harvard architecture. 

 

4.2 Benchmarks 

Due to the limited APIs that J2ME CLDC specifies, common Java 
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benchmarks can not be applied in our experiment environment. By referring to 

related researches, we choose Embedded CaffeineMark 3.0 [15] for our 

experiments. 

The Embedded CaffeineMark 3.0 uses 6 tests to measure embedded JVM 

performance in various aspects. Excluding the floating point test which is not 

supported in CLDC 1.0, the remaining 5 tests are adopted (see Table 4-1). 

 Table 4-1. Selected Tests of Embedded CaffeineMark 3.0 

Name Brief Description 
String String comparison and concatenation. 
Sieve The classic sieve of Eratosthenes finds prime numbers. 
Logic Tests the speed with which the virtual machine executes 

decision-making instructions. 
Loop The loop test uses sorting and sequence generation as to 

measure compiler optimization of loops. 
Method The Method test executes recursive functional calls to 

see how well the VM handles method calls. 

 

The original design of Embedded CaffeineMark 3.0 is to execute each test for 

a fixed amount of time, and the reported score is proportional to the number of 

times the test is executed. There is a problem that the instruction set simulator on 

which benchmarks run may report inaccurate system timing information and make 

the reported scores untrustworthy. In order to solve this problem, we modify the 5 

tests to make the workload of each time of execution fixed. And therefore we 

measure the cycle counts of each test for performance evaluation. 

 

4.3 Experiment Results 

The objective of my designs is to reduce execution time and JIT compiled 

code size by utilizing LDM/STM in JIT compiled code, but applying these designs 
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in JIT compiler also makes the compilation time increasing and VM code size 

increasing. For accurate evaluation of benefits and overheads, the optimization 

flow for load/store grouping is implemented into KJITC to measure the effects on 

execution time, JIT compiled code size and VM code size. 

Besides, the effect of individual optimization and combinations of them are 

also evaluated. We list all the configurations of different combinations of 

optimizations in Table 4-2. 

 Table 4-2. Configurations of Different Optimization Combinations 

Configuration name 
Group load/store into 

LDM/STM 
(LSM) 

Modified Register 
Allocator 

(REG) 

Local Variable 
Relocation 

(LVR) 

Base X X X 

LSM O X X 

LSM_REG O O X 

LSM_LVR O X 
O  

Heuristic (LWF) 

LSM_LVR_opt O X 
O  

Optimal (brute force)

LSM_REG_LVR O O 
O  

Heuristic (LWF) 

LSM_REG_LVR_opt O O 
O  

Optimal (brute force)

 

The local variable relocation mentioned in Section 3.3 is solved by 

“Largest-Weight-First” heuristic algorithm, and the solution obtained by this 

algorithm is not necessary to be optimal. In order to evaluate the quality of the 

solutions obtained by heuristic, we also apply a brute force algorithm, which is 

simply trying out every permutations of local variable array to finding the best one, 

as comparison. 

Note that the local variable relocation can be performed to optimize for either 

code size or speed. Both of them are evaluated in experiments and we use “LVR” 

to stand for “local variable relocation for speed” and “LVRs” to stand for “local 

 33



variable relocation for code size”. 

 

4.3.1 Effect on Execution Time 

The execution time of embedded mixed-mode JVM can be divided into three 

parts: the JIT compilation time, the JIT compiled code execution time, and the 

other. The execution time distribution ratios of each benchmark program are 

measured by executing the original embedded mixed-mode JVM without my 

designs and listed in Table 4-3. 

 Table 4-3. Execution Time Distribution Ratios of Benchmark Programs 

  String Sieve Logic Loop Method Average 

JIT 
Compilation % 

0.08% 0.04% 0.28% 0.09% 0.01% 0.10% 

JIT Compiled 
Code Exec % 

66.22% 57.22% 99.24% 99.41% 11.71% 65.96% 

Other % 37.70% 42.74% 0.49% 0.50% 88.28% 33.94% 

 

After applying my designs in JIT compiler, only the JIT compilation time and 

the JIT compiled code execution time will change, and the “other” execution time 

will remain constant. Therefore, we focus on the speedup of affected execution 

time, which occupies about two-third of total execution time, in the following 

evaluation. 

The JIT compilation time ratios, which are the new JIT compilation time 

dividing by the original one, of configurations are illustrated in Figure 4-1. 

According to the results, 16% of compilation time increases while enabling 

load/store grouping, and 40% of compilation time increases while enabling 

load/store grouping with modified register allocator. The local variable relocation 

is an off-line process, and therefore it only brings little effect on compilation time. 

The results of “local variable relocation for speed” and “local variable relocation 
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for code size” in this evaluation are almost the same, and therefore we only show 

the former in this figure. 
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 Figure 4-1. JIT Compilation time Ratios of Configurations 

The speedup of JIT compilation and compiled code execution time of 

different configurations is showed in Figure 4-2. The configurations which are 

listed right side of dot line are those performing LVR for code size. 
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Figure 4-2. The Speedup of JIT Compilation and Compiled Code Execution Time of All Configurations 
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Some of our observations are: 

‧ The effect of local variable relocation is more than that of modified register 

allocator on speedup. 

‧ The solutions for local variable relocation obtained by "Largest-Weight-First" 

heuristic algorithm are near-optimal. 

‧ For different benchmark programs, improvements are in the range 0.5%~7.6% 

while all optimizations are enabled for speed. 

 

4.3.2 Effect on Code Size 

The JVM code size of different configurations is listed in Table 4-4. The 

configurations that perform local variable relocation is not showed, because the 

local variable relocation is an offline process that is not performed by JVM, and 

the JVM code size is not affected by it. According to the results, 3% of JVM code 

size increases while enabling load/store grouping, and 4.2% of JVM code size 

increases while enabling load/store grouping with modified register allocator. Note 

that all the JVM code sizes are smaller than 512 KB and meet the constraint of 

memory requirement of J2ME CLDC. 

 Table 4-4. JVM Code Size of Different Configurations 

  Code size (KB) 
Code size increased 

(KB) 
Code size increased 

ratio (%) 
Base 344 0 0% 

LSM 354 10 3.0% 

LSM_REG 358 14 4.2% 

 

Figure 4-3 shows the JIT compiled code size ratios, which is the new 

compiled code size dividing by the original one. The configurations which are 

listed right side of dot line are those performing LVR for speed. Some of our 
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observations are: 

‧ The effect of modified register allocator is more than that of local variable 

relocation on speedup. 

‧ The solutions for local variable relocation obtained by "Largest-Weight-First" 

heuristic algorithm are near-optimal. 

‧ For different benchmark programs, code size ratios are in the range 

86.4%~97.5% while all optimizations are enabled for code size. 
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Chapter 5  

Conclusions 
 

In this research, the optimizations to utilize the load/store multiple instructions in 

JIT compiled code are studied. First, an offline process named “local variable 

relocation” that originally used in C/C++ compiler is adopted to make more load/store 

instructions access to continuous addresses. Second, the register allocator of JIT 

compiler is modified to make more load/store instructions satisfy the constraints of 

replacing them by load/store multiple. Finally, an algorithm to efficiently replace 

load/store by load/store multiple in JIT compiled code is proposed. Our experiment 

results show that overall speedup of 2.1% and compiled code size reduction of 5.4% can 

be achieved with 14KB JVM code size increased only. Besides, these optimizations are 

easy to be added into a JIT compiler, since these optimization are not tend to conflict 

with other optimizations. 

LDR r2, [r0, #0]

LDR r5, [r0, #4]

LDMIA r0, {r2, r5}

IF ID EX EX EX

IF ID EX EX EXstall

IF ID EX EXEX EX

IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX WBEX/M M/WB

3-stage pipeline 5-stage pipeline
LDR r2, [r0, #0]

LDR r5, [r0, #4]

LDMIA r0, {r2, r5}

IF ID EX EX EX

IF ID EX EX EXstall

IF ID EX EXEX EX

IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX WBEX/M M/WB

3-stage pipeline 5-stage pipeline

Figure 5-1. Stall Cycle Reduction of Utilizing LDM/STM on 3-stage and 5-stage Pipeline 

In this research, the speedup of utilizing load/store multiple is realized by reducing 

the stall cycles caused by structure hazard in ARM three-stage pipeline. For deeper 

pipeline architecture, such as five-stage, replacing load/store by load-store-multiple will 

not reduce stall cycles if memory access always takes one cycle, as Figure5-1 illustrated. 

 38



However, the widening gap between processor speed and memory speed indicates that 

speedup is potentially realizable through the speedup of memory system by utilizing 

load/store multiple. 

Because of the nature of load/store multiple, the memory accesses caused by 

load/store multiple instruction is explicitly sequential, and the memory system usually 

designed to exploit sequential to achieve higher performance. For cache access, when 

sequential access falls within the same cache line, tag lookup can be skipped to increase 

the access speed; for DRAM access, when sequential access falls within the same row, 

data can be delivered 2~3 times faster. Besides, the sequential memory access also 

better utilize of wider bandwidth memory or bus protocols that provide burst transfers. 

Furthermore, the side-effect of code size reduction by utilizing load/store multiple is 

also potentially result in speedup, since the instruction memory accesses can be reduced 

and the better utilization of instruction cache might be achieved. 

In this research, the load/store grouping scope is basic block because of the 

consideration of compilation overhead. However, a large amount of branches caused by 

exception checks in JIT compiled code might separate those potentially groupable 

load/store instructions into different basic blocks. Therefore, the benefit of load/store 

grouping may be further improved by eliminating those exception checks by apply more 

aggressive exception check elimination in JIT compiler or modifying java source code 

by programmers to cache frequently accessed object fields or array elements in local 

variables. 
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