
國 立 交 通 大 學

資訊工程系
碩 士 論 文

在嵌入式混合模式爪哇虛擬機器中

使用多重載入/儲存指令之實驗

Experiment on Using Load/Store Multiple Instruction

in Embedded Mixed-Mode JVM

研 究 生：黃俊諭

指導教授：鍾崇斌 教授

中 華 民 國 九 十 四 年 八 月

在嵌入式混合模式爪哇虛擬機器中

使用多重載入/儲存指令之實驗

Experiment on Using Load/Store Multiple Instruction

in Embedded Mixed-Mode JVM

研 究 生：黃俊諭 Student：Jun-Yu Huang

指導教授：鍾崇斌 Advisor：Chung-Ping Chung

國 立 交 通 大 學
資 訊 工 程 系
碩 士 論 文

A Thesis

Submitted to Department of Computer Science and Information Engineering
College of Electrical Engineering and Computer Science

National Chiao Tung University
in partial Fulfillment of the Requirements

for the Degree of
Master

in

Computer Science and Information Engineering

August 2005

Hsinchu, Taiwan, Republic of China

中華民國 九十四 年 八 月

在嵌入式混合模式爪哇虛擬機器中
使用多重載入/儲存指令之實驗

學生：黃俊諭

指導教授：鍾崇斌 博士

國立交通大學資訊工程學系碩士班

摘 要

在記憶體受限的嵌入式爪哇執行環境中為了達到加速，在直譯器之外

加入一個輕型的即時編譯器(JIT compiler)來動態編譯經常被執行的程式片

段是一種常見的設計。然而這種混合模式(mixed-mode)的爪哇虛擬機器於

執行過程中，會經常在直譯器與動態編譯產生的程式碼之間做切換，造成

動態產生的程式碼中，出現大量對區域變數(local variable)與運算元堆疊

(operand stack)的載入/儲存(Load/Store)指令，約佔所有動態產生程式碼的

三分之一。

在本篇研究中，便是針對此一現象設計優化動作，嘗試將這些載入/

儲存指令以多重載入/儲存(Load/Store Multiple)指令來取代，並且藉由調整

區域變數的順序與修改暫存器配置(register allocation)等方式，使得更多載

入/儲存指令能夠符合被取代的條件，以達到減少程式碼及增加執行速度的

目的。根據實驗結果顯示，在一個執行於 ARM7 的嵌入式混合模式爪哇虛

擬機器中使用多重載入/儲存指令，可使動態產生的程式碼平均加速可達

3.3%，程式碼減少達 6%。

 - i -

Experiment on Using Load/Store Multiple Instruction
in Embedded Mixed-Mode JVM

Student: Jun-Yu Huang Advisors: Dr. Chung-Ping Chung

Department of Computer Science and Information Engineering
National Chiao Tung University

ABSTRACT

Mixed-mode execution that combines an interpreter with a light-weight JIT

compiler is well suited to an embedded JVM that demands for speed

performance and has limited memory budget. However, the mode switch

between interpreter and JIT compiled code occurs frequently, and a great deal

of load/store instructions are generated by JIT compiler to synchronize the local

variable array and operand stack at each compiled code entry and exit point.

These load/store instructions that access to local variable array and operand

stack occupy about one-third of JIT compiled code.

In this research, the optimization to utilize Load-Store-Multiple instruction

to efficiently replace these load/store instructions is implemented for JIT

compiled code size reduction and speedup. In addition, the approaches of

adjusting the local variable placement and modifying register allocator to make

more load/store replaceable are also adopted. Experimental results show that an

average JIT compiled code speedup of 3.3% and code size reduction of 6% are

achieved.

 - ii -

誌謝

首先要感謝我的指導教授 鍾崇斌教授。在老師的諄諄教誨與細膩地引

導之下，本篇論文才得以順利完成，也使我更知道該如何自我檢視，發現

缺失。鍾老師卓越超群的組織與表達能力，亦是學生終生學習的目標。

在此也要感謝實驗室的另一位大家長─單智君老師。在研究的過程

中，單老師也同樣花費非常多的時間與精力來指導我，協助我克服了許多

困難。單老師在指導學生上的耐心與毅力，是大家有目共睹的。

感謝陪伴我走過這段時間的每一個人，包括我的家人、朋友、實驗室

的學長與同學們，經常在我感到失意挫折時給予鼓勵和建議。如果沒有你

們的支持協助，我不會如此順利地完成這篇論文。

在此向所有支持我、勉勵我的師長、同學、親友們，奉上我由衷的祝

福，謝謝你們。

黃俊諭

2005.8.26

 - iii -

Table of Contents
摘要 i

ABSTRACT ii

誌謝 iii

Table of Contents iv

List of Figures vi

List of Tables viii

Chapter 1 Introduction 1

1.1 Embedded Java Environment 1

1.2 Embedded Mixed-Mode Execution JVM 3

1.3 Load/Store Multiple Instruction 4

1.4 Research Motivation and Objectives 6

1.5 Thesis Organization 7

Chapter 2 Background 8

2.1 Java Technology 8

2.1.1 JVM Benefits 9

2.1.2 JVM Internals 9

2.1.3 JVM Implementation Alternatives 11

2.2 Overview of Our Embedded Mixed-Mode JVM 12

Chapter 3 Designs 15

3.1 How to use Load/Store Multiple in embedded mixed-mode JVM 15

3.1.1 Constraints of Replacing Load/Store by LDM/STM 15

3.1.2 Strategies to Make More Load/Store Replaceable 17

3.2 Design Overview 19

3.3 Local Variable Relocation 20

3.4 Modification of Register Allocator 25

3.5 Group load/store into LDM/STM 28

Chapter 4 Experiments 31

 - iv -

4.1 Experiment Environment 31

4.2 Benchmarks 31

4.3 Experiment Results 32

4.3.1 Effect on Execution Time 34

4.3.2 Effect on Code Size 36

Chapter 5 Conclusions 38

References 40

 - v -

List of Figures

Figure 1-1. Java 2 Platform 2

Figure 1-2. Example of LDM/STM 4

Figure 1-3. Example of load/store and LDM/STM execution in ARM7 pipeline

 5

Figure 1-4. Mode switch between interpreter and JIT compiled code 6

Figure 2-1. JVM Runtime Environment 9

Figure 2-2. Three Alternatives to Executing Java Programs 11

Figure 2-3. System Components and Their Interactions 12

Figure 2-4. KJITC Compiler Architecture 13

Figure 3-1. Example of Replaceable and Non-replaceable Load/Store

Instructions 16

Figure 3-2. Example of Replaceable and Non-replaceable Load/Store

Instructions 16

Figure 3-3. Example of Replaceable and Non-replaceable Load/Store

Instructions 17

Figure 3-4. Design Overview 19

Figure 3-5. An Example of Gathering Grouping Information 21

Figure 3-6. An Example of Transforming Grouping Information to Access

Graph 22

Figure 3-7. An Path Cover Obtained Largest-Weight-First Algorithm 23

Figure 3-8. A Dependence Graph of a Basic Block in JIT Compiled Code 25

Figure 3-9. An Example of Hint Generation 26

Figure 3-10. An Example of Grouping Load/Store into LDM/STM 30

Figure 4-1. JIT Compilation time Ratios of Configurations 35

Figure 4-2. The Speedup of JIT Compilation and Compiled Code Execution

Time of All Configurations 35

Figure 4-3. The JIT Compiled Code Size Ratio of All Configurations 37

 - vi -

Figure 5-1. Stall Cycle Reduction of Utilizing LDM/STM on 3-stage and

5-stage Pipeline 38

 - vii -

List of Tables

Table 1-1. J2ME Configurations 2

Table 4-1. Selected Tests of Embedded CaffeineMark 3.0 32

Table 4-2. Configurations of Different Optimization Combinations 33

Table 4-3. Execution Time Distribution Ratios of Benchmark Programs 34

Table 4-4. JVM Code Size of Different Configurations 36

 - viii -

Chapter 1

Introduction

In this chapter, we introduce terms in the title and the concept of our research. First,

we give an overview of the current status of the Java technology in embedded

environment. Second, we explain the meaning of mixed-mode, which actually combines

interpretation and just-in-time (JIT) compilation. Third, we introduce the load/store

multiple instruction that is supported by embedded architecture, such as the ARM and

XScale processors. After the introduction comes our research motivation and objectives.

Finally, organization of this thesis is provided.

1.1 Embedded Java Environment

Java technology is developed by Sun in 1991 and rapidly becomes popular in

all application fields, such as desktop PCs, powerful large-scale server, or even in

small portable devices. In order to meet the demands of different application fields

with different characteristics, Sun in 1999 has grouped Java technologies into the

Java 2 platform [1], which consists of three editions as in Figure 1-1, and each of

which is specialized for a specific area:

‧ Java 2 Enterprise Edition (J2EE) - targeted at scalable, transactional, and

database-centered enterprise applications with an emphasis on server-side

development.

 1

‧ Java 2 Standard E

‧ Java 2 Micro Ed

such as wireless

lack the resource

To address th

connectivity and me

Limited Device C

(CDC). Each confi

provides different c

differences of the tw

Configurations Name

Target Devices

Typical Memory Requirement

Target Processor Type

Reference Virtual Machine

Other Features

Figure 1-1. Java 2 Platform (extracted from Sun)
dition (J2SE) - targeted at conventional desktop applications.

ition (J2ME) - targeted at embedded and consumer devices,

 handhelds, PDAs, TV set-top boxes, and other devices that

s to support full J2SE implementation.

e diversity of embedded devices with different network

mory footprint, J2ME specifies two configurations: Connected

onfiguration (CLDC) and Connected Device Configuration

guration targets at different types of devices and therefore

lass libraries and APIs. Table 1-1 shows an overview of the

o configurations.

C

hi

sc

2M

32

C

hi

m

Table 1-1. J2ME Configurations
onnected Device Configuration

(CDC)

Connected Limited Device

Configuration (CLDC)

gh-end PDAs, set-top boxes,

reen phones, and etc.

cell phones, two-way pagers,

low-end PDAs, and etc.

B~16MB 128KB ~ 512KB

-bit 16-bit, 32-bit

VM KVM

gh bandwidth network connection,

ost often based on TCP/IP

limited, low bandwidth

network connection

2

1.2 Embedded Mixed-Mode Execution JVM

Although the JVM can be easily realized by an interpreter, its slow

performance is always a great issue in performance-aware system. In order to

overcome this problem, some compilation technologies were applied for speedup.

Ahead-of-time (AOT) compilers [2] allow offline compilation to translate bytecode

into machine code; hence no run-time compilation overhead is caused but result in

application code size expansion about five times. Conventional JIT compilers

translate bytecode into machine code on the fly, and apply more optimization

techniques for better performance with the cost of VM code size increase and

run-time compilation overhead. However, these approaches might not be adoptable

in some embedded JVM because of the memory constraint.

The approach of mixed-mode execution in [3][4] relies an interpreter to

execute bytecode for some parts of the program, and also executes compiled code

that dynamically produced by a JIT compiler for the remaining parts. The line

between a conventional JIT compiler and a JIT compiler that supports mixed-mode

execution is, in actuality, unclear. However, the principles of mixed-mode

execution can be clarified as follows.

‧ Performance-critical parts of the program are compiled by a JIT compiler, and

then natively executed.

‧ Non-performance-critical parts of the program are interpreted by an interpreter.

‧ Close interactions between the JIT compiler and the interpreter is necessary.

By reusing the interpreter-based JVM as its infrastructure, the JIT compiler of

a mixed-mode JVM can be implemented with very small code size (about several

tens of kilo-bytes). Therefore, while designing an embedded JVM with the demand

of speed performance, a mixed-mode JVM seems to be promising. And the

 3

combination of an interpreter-based JVM and a light-weighted JIT compiler builds

up an embedded mixed-mode JVM.

1.3 Load/Store Multiple Instruction

Some embedded architecture, such as the ARM processors support load

multiple (LDM) or store multiple (STM) instructions to perform multiple register

data transfers from/to memory. The formats of LDM/STM instruction are:

LDM baseRegister, {bitVector}

STM baseRegister, {bitVector}

The operands of LDM/STM instruction consist of a base register that holds a

memory address, called the base address, and a bit-vector that denotes a subset

(possibly all) of the general-purpose registers. These registers indicated by

bit-vector would be loaded from or stored to a contiguous block of memory word

starting from base address.

 simple example of load/store multiple instruction is showed in Figure 1-2.

This

A

 example illustrates a common feature of these instructions: the lowest register

is transferred from/to the lowest memory address and the other registers are

transferred in order of register number from/to consecutive word addresses above

the first address.

r5
r7

r2

Memory

r0

Address

0x08
0x0C

0x04
0x00

0x10

0x08
0x0C

0x04
0x00

0x10

 STMIA r0, {r2, r5, r7}
or

00000000101001000000 STMIA

r0r15 r2r5r7

Figure 1-2. Example of LDM/STM

 4

The benefit of utilizing load/store multiple to replace several load/store

instr

lacing n load/store instructions by single load/store

‧ azard: In ARM7, a

 simple example of executing load/store and the equivalent LDM/STM

uctions are listed below:

‧ Reducing code size: if rep

multiple instruction, code size can be reduced (n-1) word.

Reducing pipeline stall cycles caused by structure h

3-stage pipeline RISC processor, both load and store instruction occupy

execution stage more then one cycle: Store takes two cycles for address

calculation and memory access; Load takes one cycle more then store because

the extra work of writing data into register also takes one cycle. Therefore,

Processor must stall one cycle for each store and stall two cycles for each load

because of the structure hazard in execution stage. However, these stall cycles

can be reduced after replacing several load/store instructions by equivalent

LDM/STM.

A

instructions by ARM7 pipeline is showed in Figure 1-3. During the execution of

IF ID EX

IF ID EX

IF ID

IF ID

IF ID EX EX EX

IF ID EX EX EXstall

LDR r2, [r0, #0]

LDR r5, [r0, #4]

ADD r2, r2, r5

IF ID EX EXLDMIA r0, {r2, r5}

ADD r2, r5, r5
EX EX

IF ID EX EX

IF ID EX EXstall

STR r2, [r0, #0]

STR r5, [r0, #4]

STR r6, [r0, #8]

ADD r2, r2, r5

IF ID EXSTMIA r0, {r2,r5,r6}

ADD r2, r2, r5

EX

EX

EX

LDR r2, [r0, #0]

LDR r5, [r0, #4]

LDR r6, [r0, #8]

ADD r2, r2, r5

LDMIA r0, {r2,r5,r6}

ADD r2, r2, r5

IF ID EX EX EXstall

EX

EX

EX

EX

:address calculation

:memory access

:write back

IF ID EX EXstall

EX EX

4 cycles

2 cycles

Figure 1-3. Example of load/store and LDM/STM execution in ARM7 pipeline

 5

LDM/STM, the address calculation, memory access and write back of different

memory accesses are parallelized and hence the total execution cycles are

reduced. To be more precise, replacing n load instructions by one equivalent

LDM can result in 2(n-1) stall cycles reduction and replacing n store

instructions by STM can result in (n-1) stall cycles reduction.

1.4 Research Motivation and Objectives

d some complex bytecodes that

invo

Inspection load/store

instr

Because of very limited memory budget an

lve complicated operations that suit for interpreter handling (such as object

creation, method invocation), the JIT compiler of embedded mixed-mode JVM is

usually designed to only compile a bytecode subset that produce great performance

improvement. However, the mode switch between interpreter and JIT compiled

code would become more frequent because those complex bytecodes must be

executed by interpreter; as Figure 1-4 shows.

JIT
compiled

Bytecodes
of one method

█ executed by interpreter executed in JIT compiled code
█ JIT compiled code block mode switch

Figure 1-4. Mode switch between interpreter and JIT compiled code

 of the JIT compiled code reveals that, a great deal of

uctions is generated by JIT compiler to synchronize the local variable array

and operand stack at each compiled code entry and exit point. In compiled code

generated by KJITC [7], a JIT compiler of an embedded mixed-mode JVM

 6

developed by our research group, these load/store instructions occupy 39% of JIT

compiled code and 30% of JIT compiled code execution trace.

Motivated by this fact, our objective is to make use of the benefits of

repla

eveloped by [7].

It co

1.5 Thesis Organization

 is organized as follows: Chapter 2 provides more

detai

cing the load/store of local variable array and operand stack by load/store

multiple instructions in embedded Java JIT compiled code to achieve speed

performance improvement and JIT compiled code size reduction.

In addition, the embedded mixed-mode JVM we choose is d

mbines an interpreter-based VM, which is modified form Sun’s CLDC KVM

1.0.4, and a light-weighted JIT compiler, named KJITC, to generate ARM

instructions.

The rest of the thesis

led background knowledge on JVM internals and an overview of our

embedded mixed-mode JVM. Chapter 3 discusses about how to utilize LDM/STM

in JIT compiled code and describes optimizations for utilizing LDM/STM. Chapter

4 gives the experiment results. The last chapter summarizes the work.

 7

Chapter 2

Background

This chapter provides more background details on JVM internals and an overview

of our embedded mixed-mode JVM. Readers who are already familiar with the two

topics can skim over them.

2.1 Java Technology

Although generally used to refer to a computer language, Java is rather a

complete architecture in reality. It consists of four components [8].

‧ Java programming language

‧ Java class file format

‧ Java Application Programming Interface (Java API)

‧ Java Virtual Machine (JVM)

A Java program which is written in Java programming language can be

compiled into Java class files by Java source compiler. JVM is a virtual stack

machine that execute Java class file. The Java program can access predefined

libraries or system resources (such as I/O, for example) by calling methods in the

classes that implement the Java API. During program execution, JVM loads and

executes user-written class files as well as these system classes that Java API

defines.

 8

2.1.1 JVM Benefits

Java Virtual Machine is the key component among the all. It is responsible for

the well-known advantages of Java comparing to traditional native execution

system. Those advantages include:

‧ Cross-Platform Portability

‧ Security of the Execution Environment

‧ Small Size of the Compiled Code

2.1.2 JVM Internals

A JVM implementation must provide the functionality of a real processor and

also conform to the JVM specification [9]. The specification defines a

homogeneous run-time environment, as Figure 2-1 illustrates, by providing a

detailed description of the following items:

Figure 2-1. JVM Runtime Environment (extracted from [7])

‧ Instruction Set (Java Bytecode)

‧ Register Set

‧ Java Stack

‧ Execution Environment

‧ Constant Pool

 9

‧ Method Area

‧ Java Heap

‧ Object Management and Garbage Collection

Since the JVM is a stack-based architecture, the registers of its register set are

not used for storing operands or passing arguments as in most register-based

machine. They only hold the state of the JVM and are updated after every bytecode

instruction is executed, such as program counter.

Before the bytecode instruction is executed, operands must be pushed onto the

operand stack, which resides in method frame pushed in Java stack. An executing

instruction pops its operands from the operand stack and then places results on the

operand stack when it completes.

The Java stack is similar to the stack of conventional language, such as C; it

contains method frames and is manipulated to realize method invocation/return.

The JVM maintains a special table for each class, known as a constant pool.

The constant pool contains string literals, class names, field names and other

constant data objects that are referred to by the class structure. These constants do

not change, and are created at compile-time.

The method area is equivalent to the compiled code areas in the run-time

environment used by other programming language. It contains bytecode

instructions that are associated with the methods and the symbol table needed for

dynamic linkage.

The Java heap is the dynamic memory of JVM, and it usually contains a

collection of objects. When an object is created with the “new” bytecode

instruction, a reference to that object is returned. This reference can be used

subsequently, or stored in the current frame. An object is live in Java heap until

there are no references to it in any frame or in the field of any visible object. When

 10

there are no such references, an object becomes garbage, and a garbage collector

will reclaim its resources.

2.1.3 JVM Implementation Alternatives

The JVM is not restricted to software interpreter implementation. In fact,

there are three common approaches, as depicted in Figure 2-2, to implement the

JVM.

The first approach is using interpreter to execute bytecode. It makes the VM

porting easier, but the execution speed is low. The second approach is to replace

interpreter with a bytecode compiler. The bytecode compiler is used to translate

bytecode into native machine code. While ahead-of-time (AOT) compilers

performs offline compilation, just-in-time (JIT) compilers performs on-the-fly

compilation at run-time. Both of them have pros and cons, but JIT compilers seem

to be more popular. The third approach is to implement the JVM directly on silicon.

For example, picoJava is a Java processor that supports bytecode execution

completely.

Figure 2-2. Three Alternatives to Executing Java Programs (extracted and modified from [10])

 11

As discussed in Section 1.2, an interpreter can still coexist and cooperate with

a JIT compiler in the JVM. Recently, a mixed software/hardware approach also

arises; ARM has introduced its own Java instruction extension - Jazelle [11]. A

subset of bytecode instructions can be directly executed when the ARM processor

is operated in Java mode, and the remaining bytecode instructions are still handled

in software.

2.2 Overview of Our Embedded Mixed-Mode JVM

In our mixed-mode embedded JVM, there are four main components. Their

interactions can be simply illustrated in Figure 2-3.

Now we respectively describe each component as follows.

Figure 2-3. System Components and Their Interactions (extracted from [7])

‧ Interpreter-based JVM (KVM)

The interpreter-based JVM provides a JVM infrastructure that performs

exception handling, garbage collection, synchronization and etc. For mixed-mode

execution, the interpreter is also responsible for invoking the hot spot detector and

switching to/form compiled code in addition to interpretation of those bytecode

that have not been compiled or will not be compiled.

 12

‧ Hot Spot Detector

Due to the tight memory constraints, only valuable parts of the input program

are selected for JIT compilation. By the 80/20 rule, over eighty percent of

execution time is spent in less than twenty percent of source code in a program.

Apparently, the responsibility of the hot spot detector is to discover these

performance-critical twenty percent of source code and then invoke JIT compiler

for hot spot compilation.

The basic unit of hot spot detection is a method. When a method is invoked

frequently or contains at least one loop that iterate for many times, it is regarded as

a hot spot an invoke KJITC to compile it. In our implementation, the threshold

values of invocation count and iteration count must be set statically. Currently the

values are both chosen to be 40, which are based on our evaluation results.

‧ JIT Compiler (KJITC)

The JIT compiler is further divided into the IR (Intermediate Representation)

generator and the native code generator. The IR generator is mainly responsible for

translating Java bytecode into semantically equivalent three-address IR. And then

the code generator translates IR into targeted native code for later execution. A

simple illustration is given in Figure 2-4. The design of the optimizations in KJITC

IR Generator
Function:

translation of Java bytecode

into semantically equivalent

3-address IR

Optimizations:

1. rule-based null pointer check

elimination

2. strength reduction

Native Code Generator
Function:

1. register allocation/assignment

2. instruction selection/ generation

Java
Bytecode

3-address
IR

Native Code
(eg. ARM)

Optimizations:

1. instruction folding for stack

operations

2. constant propagation

Figure 2-4. KJITC Compiler Architecture (extracted and modified from [7])

 13

was described in [7] and we skip those details here.

‧ Compiled Code Buffer

The compiled code buffer holds all compiled native code. During native

exec

 addition to the four components, the switching mechanism between the

inter

ution, the machine program counter (PC) points to native code that resides in

the buffer. In our current implementation, the compiled code buffer is allocated

statically, and its size is also predetermined.

In

preter and the compiled native code is also described here. Similar to a

function call, the switch from the interpreter to the compiled native code involves

spilling registers into memory and then transferring execution by a branch. The

case of the switch from the compiled native code to the interpreter involves more

operations. It has to restore registers from memory, to transfer execution by a

branch, and to update Java PC (program counter) and Java SP (stack pointer).

 14

Chapter 3

Designs

In this chapter, we discuss about how to utilize LDM/STM in JIT compiled code

and describe optimizations for utilizing LDM/STM. Section 3.1 will discuss about the

constraints of replacing load/store by LDM/STM and the strategies to deal with them,

Section 3.2 will introduce the overview of my designs, and section 3.2 to 3.4 will show

the design details.

3.1 How to use Load/Store Multiple in embedded mixed-mode

JVM

As we mentioned in Section 1.4, the load/store instructions that access to

local variable array and operand stack occupy a great portion of JIT compiled

code. However, not all the load/store instructions can be replaced by load/store

multiple instructions but within constraints. In this Section, we will discuss the

constraints and the strategies to increase the replaceable load/store instructions.

3.1.1 Constraints of Replacing Load/Store by LDM/STM

The major constraints of replacing these load/store instructions by load/store

multiple are listed below:

1. Accessed memory locations are contiguous

The load/store multiple are restricted to access consecutive memory words,

and hence the load/store instructions that access to non-contiguous address can not

 15

replace by LDM/STM. As Figure 3-1 (a) illustrates, only the first two loads that

access to consecutive memory words are replaceable, but if the access address of

the third load is adjusted to contiguous one as Figure 3-1 (b) show, all of them can

be replaced by LDM.

2. The DST/SRC register numbers and accessed memory addresses are in the

same order

During the execution of LDM/STM, registers are transferred in order of

register number from/to consecutive word addresses. If the DST/SRC register

numbers and accessed memory addresses of load/store instructions are not in the

same order, replacing them by LDM/STM will cause different result in

register/memory from the original code sequence. As Figure 3-2 (a) shows, only

the first two load instructions satisfy the constraint and can be replaced by

equivalent LDM. After adjusting the destination register numbers of the last two

load instructions as Figure 3-2 (b), all of them become replaceable.

(a) (b)

LDR r2, [r0, #0]
LDR r5, [r0, #4]
LDR r7, [r0, #12]

LDMIA r0, {r2, r5}
LDR r7, [r0, #12]

LDR r2, [r0, #0]
LDR r5, [r0, #4]
LDR r7, [r0, #8]

LDMIA r0, {r2, r5, r7}LDMIA r0, {r2, r5, r7}

Figure 3-1. Example of Replaceable and Non-replaceable Load/Store Instructions

LDR r2, [r0, #0]
LDR

LDR r2, [r0, #0]
LDR r7, [r

r5, [r
0, #4]

LDR
r5,
r7,

 [r0, #4]
LDR [r0, #8]

LDMIA r0, {r2, r5, r7}

0, #8]

LDMIA r0, {r2, r7}
LDR r0, #8]r5, [

(a) (b)

Figure 3-2. Example of Replaceable and Non-replaceable Load/Store Instructions

 16

3. Load/store instructions only can be grouped together without affecting

dependences

The load/store instructions to be replaced by LDM/STM are not necessary to

be adjacent to each other in a code sequence, but have to be independent to each

other. If there are dependences between load/store instructions, replacing them by

LDM/STM will affect dependences and result in error. As Figure 3-3 (a) shows, the

two load instructions are dependent because of the true dependence between the

first and the second instruction and the anti-dependence between the second

instruction and the third instruction. Therefore these load instructions are not

replaceable. But if the register numbers of the third instruction is adjusted to

resolve the anti-dependence as Figure 3-3 (b), the two load instructions will

become independent and replaceable.

3.1.2 Strategies to Make More Load/Store Replaceable

.1.1, the

respe

1. M king

ous, since the

oper

Basing on the three major constraints summarized in Section 3

ctive strategies to make more load/store replaceable are listed below:

a the access locations of groupable load/store contiguous

The accesses to operand stack are almost always contigu

ations to access operand stack are simply push or pop rather then random

(a) (b)

LDR r2, [r0, #0]
ADD r4, R2, R3

r3, [r0, #4]LDR
Anti-dependence

LDMIA r0, {r2, r5}
ADD r4, R2, R3
LDMIA r0, {r2, r5}
ADD r4, R2, R3

LDR r2, [r0, #0]
ADD r4, R2, R3
LDR r5, [r0, #4]

Independent

Figure 3-3. Example of Replaceable and Non-replaceable Load/Store Instructions

 17

accesses. The local variable accesses are more likely to be random accesses, but it

is possible to adjust or permute the local variable array for each method to make

more load/store instructions access to contiguous address and become replaceable.

In fact, there are already researches [12][13] about adjusting variable locations by

add phases into C/C++ compiler to maximize the benefit of utilizing LDM/STM,

and it is also possible to apply them to Java method at bytecode level with little

modification.

2. Making the order of register numbers right

 guide-line: allocating lager register

num

the register number constraint of utilizing is LDM/STM was also

discu

This can be realized by following a simple

ber for lager memory address access. Since most RISC instructions are

orthogonal and free to use any one of general purpose register, the register numbers

of RISC instructions usually can be renamed/relabeled to obey the guideline

without affecting correctness and/or code quality. Moreover, the register allocator

might be modified to be aware of this guide-line without conflicting with the

original allocation policy, because a simple register allocator for RISC machine

usually only decide the range of variables reside in registers, and there is flexibility

on which register number to allocate. We prefer to modify the register allocator to

follow the guideline, since the register renaming might take an extra pass in JIT

compilation.

In [13],

ssed and dealt with it by inserting extra instructions to swap register content.

However, the extra instructions inserted will decrease the benefit of utilizing

LDM/STM and this approach is even harder to implement when adjusting more

then two register numbers at a time.

 18

3. A oiding the name dependences between load/store and other instructions

s of

instr

3.2 Design Overview

in components in my design: local variable relocation,

mod

The objective of local variable relocation is to make more potentially

ructions access to continous addresses and maxisize the

bene

v

Name dependences can be avoided by adjusting register number

uctions. This is also can be realized by applying register renaming or

modifying the register allocator to be aware of it. Because of the same reason we

mentioned earlier, we prefer to modify the register allocator to avoid name

dependences.

There are three ma

ification of register allocation and grouping load/store into LDM/STM as

illustrated in Figure 3-4.

groupable load/store inst

fit of utilizing LDM/STM. It is performed offline since solving it is a very

Run-time
KJIT compilation

Code gen

IR gen

register allocation

...

JIT compiled code

Java method
(modified or un-modified)Java method

Offline preprocess
for every compilable method

Modified
Java method

Local Variable
Relocation

Grouped Load/Store
Info of each basic block

Offline Profiling Info
(execution count of each

basic block)

1

Modified
Java method

Local Variable
Relocation

Grouped Load/Store
Info of each basic block

Offline Profiling Info
(execution count of each

basic block)

1

Register Allocation 2 3

Group load/store into
LDM/STM

Group load/store into
LDM/STM

Grouping scope: Intra basic block
3

Making the order of register numbers right 2Making the access location continuous1

Avoiding the name dependences

JIT compilation

Register Allocation

Group load/store into
LDM/STM

Group load/store into
LDM/STM

Figure 3-4. Design Overview

 19

time-consumed and memory-consumed process even by heuristic algorithm. After

the local variable relocation decision comes out, relocation is simply done by

rewriting the bytecodes that access to local variables. For example, if local variable

one is decide to be relocated to local variable two, then the bytecodes such as

ILOAD_1, IINC 1 2, and ISTORE_1 will be rewritten to ILOAD_2, IINC 2 2, and

ISTORE_2. Therefore, the modified Java method is still correctly executable and

those changes almost bring no effect on code size of program and the speed of

interpretation.

The register allocation is performed during the code generation of JIT

compilation. In my design, it is modified to make the order of register numbers

right

d here to find out replaceable load/store instructions within basic

bloc

3.3 Relocation

le relocation is to make the access location of

 adjusting the locations of local variables for

each

 and to avoid name dependences for making more load/store instruction

replaceable.

After the register allocation and load/store instructions are generated, an extra

pass is adde

ks and group them into LDM/STM.

The detail algorithms of each one of the three designs will be describe in the

following sections.

Local Variable

The key idea of local variab

groupable load/store continuous by

 java method. The problem formulation is: given compiled instructions of each

basic block with load/store of a method and the execution count of each basic

block, obtain a memory layout of the local variables of the method that maximizes

the benefit of using load/store multiple instructions. The benefit of utilizing

 20

LDM/STM can be either code size reduction or stall cycle reduction as we

discussed in Section 1.3.

There are three phases to accomplish the local variable relocation: gathering

grouping information, transforming grouping information to access graph and

decid

e are the JIT compiled instructions of each basic block of a

unt of each basic block obtained by offline

profi

ping are

inde

instructions to

cons

ing the layout of local variable. The actions of each phase are described in

following paragraphs.

‧ Gathering grouping information

Inputs of this phas

java method and the execution co

ling. Output is the grouping information consists of the load/store instruction

groupings, the type and the execution count of each instruction grouping.

The instruction grouping consists of multiple load or multiple store

instructions within a basic block. The instructions in the same grou

pendent to each other and access to different local variables. In addition, each

load/store instruction belongs to one grouping at most. Note that the instruction of

a grouping is not necessary to access to contiguous addresses here.

To find out the instruction groupings, we perform dependence check on

instructions of each basic block and scan through the load/store

truct instruction groupings in greedy fashion. A simple example of gathering

grouping information of a method is illustrated is Figure 3-5.

Access Grouping Info. of a method…
Load r1, r0, #b

21

Load r2, r0, #c
Load r3, r0, #d

…
Store r5, r0, #a
Store r6, r0, #c
Store r7, r0, #e

…

JIT compiled code of
each basic block

in a method

…

2 (LD)

1 (ST)

2 (LD)

T(G)
(LD/ST)

…

a,b

a,c,e

b,c,d

Grouping
G

100a-c, c-e, a-e

150a-b

…

100

F(G)
(execution count)

…

b-c, c-d, b-d

Grouping
pairs

…

2 (LD)

1 (ST)

2 (LD)

T(G)
(LD/ST)

…

a,b

a,c,e

b,c,d

Grouping
G

100a-c, c-e, a-e

150a-b

…

100

F(G)
(execution count)

…

b-c, c-d, b-d

Grouping
pairs

…
Load r7, r0, #a
Load r8, r0, #b

…...basic block boundary

Figure 3-5. An Example of Gathering Grouping Information

For ease of conduct the weighting formula to calculate benefit later, we define

some

 consists of load/store instructions:

‧

‧ T ing grouping information to access graph

s transformed to an access

grap

ction = Sum(F(Gn) × T(Gn)) , where Gn containing both

‧ eduction = number of grouping that contain both vi and vj

ph is

show

 term for instruction grouping here:

Definitions for an instruction group G

‧ F(G) = execution count of G (obtained by offline profiling)

2 if G consists of load (stall cycle reduced by replacing
T(G) =

ransform

In this phase, the grouping information gathered i

h. The access graph is a weighted graph; each node v of graph corresponds to a

unique local variable; an edge<vi, vj> denotes the instructions access to vi and the

instructions access to vj fall in one or more common instruction group; the weight

of edge<vi, vj> is the benefit of vi and vj group together in a method. The benefit

can be either one below:

‧ Stall cycles redu

vi and vj

Code size r

A simple example of transforming grouping information to access gra

ed in Figure 3-6.

1 if G consists of store (stall cycle reduced by replacing one pair of store)
 one pair of load)

300a-b, b 1502(LD)a

4004001(ST)c-d, d-e, c-ec, d, e

2001002(LD)b-c, c-d, b-db, c, d

1001001(ST)a-c, c-e, a-ea, c, e

Grouping T(G) F(G) F(G) × T(G)group pairs

300a-b, b 1502(LD)a

4004001(ST)c-d, d-e, c-ec, d, e

2001002(LD)b-c, c-d, b-db, c, d

1001001(ST)a-c, c-e, a-ea, c, e

Grouping T(G) F(G) F(G) × T(G)group pairs

a

b

c d

e

300,1

200,1

100,1

400,1

100,1

500,2

600,2

200,1

Access Grouping Info. of a method transform to
access graph

Weight: stall cycles reduction, code size reduction

Figure 3-6. An Example of Transforming Grouping Information to Access Graph

 22

‧ Deciding the layout of local variable

l variables can be mapped to a path cover

in th

-6. The path cover obtained by

“Lar

In fact, any memory layout of loca

e graph, and finding the optimal memory layout is equivalent to finding the

path cover with maximum weight. The problem of finding the path cover with

maximum weight is called maximum weighted path cover problem (MWPC), and

it has been proved to be NP-complete. Therefore, a heuristic algorithm called

“Largest Weight First” is used to solve it. The algorithm is described below.

23

A simple example is illustrated in Figure 3

gest Weight First” in this example is “a-b-d-c-e”, which is also the optimal

path cover in this graph. According this path cover, the memory layout local

variables will be changed from “a-b-c-d-e” to “a-b-d-c-e”.

Step 1: Initialize the path cover P = { };

aph according to their weights (in

Step 3: P e largest weight and remove it from E.

Step 4 nd 3 until E is empty

Figu rithm

Step 2: Sort the edges of the access gr

descending order) into set E;

ick up the edge e in E with th

If adding the edge e to P (i) does not form a cycle in P , and (ii) does

not increase the degree of any node in P to more than 2, then it is

included in P .

Repeat Steps 2 a

a

re 3-7. An Path Cover Obtained Largest-Weight-First Algo

b

c d

e

300,1

200,1

100,1

400,1

100,1

500,2

600,2

200,1

According to the JVM specification [9], some local variables can not be

relocated, such as “this pointer” at local variable 0 or parameters, which must be

placed in consecutive addresses start from local variable 0 or after “this pointer”.

To deal with that, the initialization step in the “Largest Weight First” algorithm

must be modified: while deciding the layout of local variables, these variables that

can not be relocated are connected into a path according to their predetermined

placement sequence and we put it in the path cover P at the step one. The rest of

the algorithm is remained to build up the path cover.

The process of local variable relocation is also influenced by whether the

register allocator of the JIT compiler is designed to allocate right register numbers

and to eliminate the name dependences for consecutive variable accesses. If the

register allocator will try to eliminate the name dependences between the

consecutive variable accesses and other instructions, it is assumed the all the name

dependences are removed and only the true dependences remain during the

instruction group construction in the first phase. If results of the register allocation

are independent to the locations of variables, we use the directed edge to represent

the register number order between grouped local variable access instructions

during the access graph construction in phase two. In addition, the weight

calculation is also slightly modified to takes the register number constraint into

account.

 24

3.4 Modification of Register Allocator

The goal of modifying register allocator is to make more load/store

instructions replaceable by making the order of register numbers right and

avoiding name-dependences to. We use a simple example in Figure 3-8 to explain

how to achieve this goal.

A dependence graph of a basic block in JIT compiled code is showed in

Figure 3-8. These instructions can be divided into two groups: the consecutive

address access instructions and the other instructions, as the dotted lines separated.

The consecutive address accesses are grouping candidates that might be replaced

by LDM/STM later.

To make the order of register numbers right, we can simply allocating

ascending register numbers for consecutive address accesses that sorted in

ascending order.

However, some dependences between the consecutive address accesses and

other instructions still make some loads/stores non-replaceable. For example, the

name dependence between “ADD” and “LD mem[n+1]” in Figure3-8 making the

“LD mem[n]” and “LD mem[n+1]” dependent and non-groupable. To avoid that,

Inst.
access to n+2

Inst.
access to n+1

Inst.
access to n

Inst.
access to n+2

Inst.
access to n+1

Inst.
access to n

< <

Consecutive
address
accesses

(grouping candidates)

other instructions

Ri Rj Rk

Use other registers as destination register rather than Ri, Rj, Rk

LD mem[n] LD mem[n+1] LD mem[n+2]

ADDLD mem[n+4]ADDADD

Register:

true dependence

name dependence

true dependence

name dependence

Figure 3-8. A Dependence Graph of a Basic Block in JIT Compiled Code

 25

we can allocate other registers for other instructions as destination registers rather

then those allocated for consecutive address accesses.

The scope of register allocation in the JIT compiler of our embedded

mixed-mode JVM is extended basic block, which is code sequence with a unique

entry point and possibly many exits points. The original register is two-pass

register tracking, similar to the register allocator in [14]. The first pass is live-ness

analysis; the second pass is sequentially allocating registers and generating

instructions for each IR.

Modified register allocator is still a 2-pass scheme. The first pass is modified

to find out consecutive address accesses within basic block along with the live-ness

analysis and generate hints (preserved register and address pairs) for them. The

register allocation in second pass would be guided by these hints later.

A simple example of hint generation in first pass is illustrated in Figure 3-9.

First, we scan through the IR of EBB and log the read/written addresses for each

basic block. If there are consecutive addresses to be read/written within a basic

block, we preserve ascending register numbers for loading/storing these memory

addresses as hints to register allocator.

:Top of stack

R5R4R3R2R1

R/WR/WR/WRRR

R/W

5

RR/W

RR/W

WR

R

3 4

WR

R5R4

W

87…210

R5R4R3R2R1

R/WR/WR/WRRR

R/W

5

RR/W

RR/W

WR

R

3 4

WR

R5R4

W

87…210

MOV LV[7],LV[3]
MOV LV[8],LV[1]
ADD LV[7],LV[7],LV[8]
MOV LV[8],LV[4]
ADD LV[7],LV[7],LV[8]
ADD LV[5],LV[5],#1

ILOAD_3
ILOAD_1
IADD
ILOAD_4
IADD
INC 5 1

Address:

Local variable array Operand Stack
Bytecode IR

Preserved register for Load:

Preserved register for Store:

Access log:

Hints for register allocator

Figure 3-9. An Example of Hint Generation

 26

The register allocation in second pass is also modified to follow the hint. The

modified register allocation policy described as below.

The modified allocation policy follows the hints in conservative way: if the

preserved register is occupied at step 1, we do not spill that register but try to find

another available one to allocate. The reason of the conservatism is that the

overhead of the extra register spill is usually greater then the benefits of replacing

more load/store by LDM/STM. Although the conservative policy might tend to

failed to follow hints at step 1 (because the preserved register for m is occupied)

when register pressure is high, but we found that the register pressure is rarely get

high in JIT compiled code since the size of EBB is usually small.

When spilling register, the register with the lowest spill cost, which represents

the estimated number of extra instructions to be generated because of the register

spilling, is chosen to spill in the original policy. The modified policy still use the

original metric to choose the register, but if both non-preserved and preserved

register are chosen, spill the non-preserved first to avoid the name dependences

Allocation policy

When allocating register for memory address m:

Step 1: Try to allocate register according to hint

If there is an available preserved register for m, use it and release the

original register allocated for m then exit; otherwise go to Step 2

Step 2: Use the original allocation policy to allocate register

But if both non-preserved and preserved registers are free, use the

non-preserved first

 27

occur on preserved registers.

Note that, the modified register allocation policy does not increase the amount

of occupied register at each allocation point, since the original register number

allocated will be released while allocating another register number of variable in

step one. In addition, the modified spill policy also does not seem to cause more

load/store instructions in JIT compiled code, since the spill cost of choused register

is always the same as one that choused by original spill policy.

3.5 Group load/store into LDM/STM

The goal of this design is to efficiently replace the load/store instructions

within basic block by LDM/STM whenever possible. Since the code scheduling

crossing basic block, such as trace scheduling, is usually too expansive to

implement in an embedded JIT compiler, the load/store grouping scope is decided

to be basic block.

There are three phases to group load/store into LDM/STM: dependence

checking, load/store grouping, and instruction regeneration. The actions of each

phase are described in following paragraphs.

‧ Dependence checking

After generating the first load/store in a basic block, we start to build the data

dependence graph for later generated instructions. After the instructions of a basic

block are all generated, if more than one load/store instruction is generated, go to

the next phase and exit if otherwise, since it is not necessary to try to replace single

load/store by LDM/STM.

 28

‧ Load/store grouping

The algorithm of load/store grouping is listed below.

Step 1 (Sort load/store): put load/store instructions into two different queues and sort

by accessed address respectively

Step 2 (Find a load/store group): scan through the sorted load/store instruction queues

and get a load/store group that satisfies all constraints; if no such group is

found in queue, go to the next phase

Step 3 (Replace the load/store group by LDM/STM): allocate a register as base

address register and insert a instruction (if necessary) to set base address for

each group; replace the grouped load/store instructions by load/store multiple

and annotate it in the dependence graph, go to step 2

‧ Instruction regeneration

If any load/store replacement occurs, instructions will be regenerated

according to the original instruction sequence and the dependence graph. While

regenerating the instruction I, if there are instructions that I depends on and

un-regenerated, we recursively regenerate those instructions first and then generate

I.

 29

An example of grouping load/store into LDM/STM is illustrated in Figure

3-10 to help reader to realize the three phases.

The time complexities of the second and the third phase: load/store grouping

and instruction regeneration are both linear to the instruction count of a basic block

and the same as the most optimizations in JIT compiler. The time complexity of

dependence check is O(n2) where n is the instruction count of a basic block.

However, the size of basic block is smaller then seven instructions in most cases;

therefore the time spent on dependence seems to be affordable.

1:LV3
r1

2:LV1
r2

4:LV4
r2

6:LV5
r3

1:LV3
r1

2:LV1
r2

4:LV4
r2

6:LV5
r3

1:LV3
r1

2:LV1
r2

4:LV4
r2

6:LV5
r3

sort load/store
by accessed address

1:LV3
r1

2:LV1
r2

4:LV4
r2

6:LV5
r3

sort load/store
by accessed address

Load Instruction Queue2
LV1

1
LV3

6
LV5

33
4
LV4

5 7

dependence
Dependence Graph

1

ADD r1,r0,#12
LDM r1,{r1,r2,r3}

LOAD r1,r0,#12
LOAD r2,r0,#16
LOAD r3,r0,#20

3
4:LV4
r2

6:LV5
r3

1:LV3
r1

2

LOAD r1,r0,#12;LV[3]
LOAD r5,r0,#4 ;LV[1]
ADD r4,r1,r5
LOAD r2,r0,#16;LV[4]
ADD r4,r4,r2
LOAD r3,r0,#20;LV[5]
ADD r3,r3,#1

1:LV3
2:LV1
3:
4:LV4
5:
6:LV5
7:

ADD r1,r0,#12
LDM r1,{r1,r2,r3}
LOAD r5,r0,#4 ;LV[1]
ADD r4,r1,r5
ADD r4,r4,r2
ADD r3,r3,#1

2:LV1
3:
5:
7:

3. Instruction
Regeneration

1. Dependence Checking

2. Load/Store
Grouping

Code size: 1 word reduced
Execution cycle: 3 cycle reduced

Figure 3-10. An Example of Grouping Load/Store into LDM/STM

 30

Chapter 4

Experiments

This chapter is devoted to experiments. We first describe our set-up environment

for experiments. Next, appropriate benchmarks are chosen for performance evaluation.

Finally, experiment results including speed performance and memory usage are

exhibited.

4.1 Experiment Environment

The embedded mixed-mode JVM we choose to modify is developed by our

research group in [7]. It is designed and implemented based on version 1.0.4 of

Sun's KVM, the reference implementation of J2ME CLDC. For our research usage,

the KVM is ported to ARM's ADS1.2, a development environment which includes

compiler, assembler, debugger, and instruction set simulator. For compiling Java

benchmark programs and KVM's class libraries, the version of the Java compiler

adopted is Sun's J2SDK1.4.2_03. For compiling KVM and our KJITC, maximum

optimization is specified with -O2 option, and other options remain default. Last,

our target architecture is ARM7TDMI, a three-stage pipeline and uncached

Harvard architecture.

4.2 Benchmarks

Due to the limited APIs that J2ME CLDC specifies, common Java

 31

benchmarks can not be applied in our experiment environment. By referring to

related researches, we choose Embedded CaffeineMark 3.0 [15] for our

experiments.

The Embedded CaffeineMark 3.0 uses 6 tests to measure embedded JVM

performance in various aspects. Excluding the floating point test which is not

supported in CLDC 1.0, the remaining 5 tests are adopted (see Table 4-1).

 Table 4-1. Selected Tests of Embedded CaffeineMark 3.0

Name Brief Description
String String comparison and concatenation.
Sieve The classic sieve of Eratosthenes finds prime numbers.
Logic Tests the speed with which the virtual machine executes

decision-making instructions.
Loop The loop test uses sorting and sequence generation as to

measure compiler optimization of loops.
Method The Method test executes recursive functional calls to

see how well the VM handles method calls.

The original design of Embedded CaffeineMark 3.0 is to execute each test for

a fixed amount of time, and the reported score is proportional to the number of

times the test is executed. There is a problem that the instruction set simulator on

which benchmarks run may report inaccurate system timing information and make

the reported scores untrustworthy. In order to solve this problem, we modify the 5

tests to make the workload of each time of execution fixed. And therefore we

measure the cycle counts of each test for performance evaluation.

4.3 Experiment Results

The objective of my designs is to reduce execution time and JIT compiled

code size by utilizing LDM/STM in JIT compiled code, but applying these designs

 32

in JIT compiler also makes the compilation time increasing and VM code size

increasing. For accurate evaluation of benefits and overheads, the optimization

flow for load/store grouping is implemented into KJITC to measure the effects on

execution time, JIT compiled code size and VM code size.

Besides, the effect of individual optimization and combinations of them are

also evaluated. We list all the configurations of different combinations of

optimizations in Table 4-2.

 Table 4-2. Configurations of Different Optimization Combinations

Configuration name
Group load/store into

LDM/STM
(LSM)

Modified Register
Allocator

(REG)

Local Variable
Relocation

(LVR)

Base X X X

LSM O X X

LSM_REG O O X

LSM_LVR O X
O

Heuristic (LWF)

LSM_LVR_opt O X
O

Optimal (brute force)

LSM_REG_LVR O O
O

Heuristic (LWF)

LSM_REG_LVR_opt O O
O

Optimal (brute force)

The local variable relocation mentioned in Section 3.3 is solved by

“Largest-Weight-First” heuristic algorithm, and the solution obtained by this

algorithm is not necessary to be optimal. In order to evaluate the quality of the

solutions obtained by heuristic, we also apply a brute force algorithm, which is

simply trying out every permutations of local variable array to finding the best one,

as comparison.

Note that the local variable relocation can be performed to optimize for either

code size or speed. Both of them are evaluated in experiments and we use “LVR”

to stand for “local variable relocation for speed” and “LVRs” to stand for “local

 33

variable relocation for code size”.

4.3.1 Effect on Execution Time

The execution time of embedded mixed-mode JVM can be divided into three

parts: the JIT compilation time, the JIT compiled code execution time, and the

other. The execution time distribution ratios of each benchmark program are

measured by executing the original embedded mixed-mode JVM without my

designs and listed in Table 4-3.

 Table 4-3. Execution Time Distribution Ratios of Benchmark Programs

 String Sieve Logic Loop Method Average

JIT
Compilation %

0.08% 0.04% 0.28% 0.09% 0.01% 0.10%

JIT Compiled
Code Exec %

66.22% 57.22% 99.24% 99.41% 11.71% 65.96%

Other % 37.70% 42.74% 0.49% 0.50% 88.28% 33.94%

After applying my designs in JIT compiler, only the JIT compilation time and

the JIT compiled code execution time will change, and the “other” execution time

will remain constant. Therefore, we focus on the speedup of affected execution

time, which occupies about two-third of total execution time, in the following

evaluation.

The JIT compilation time ratios, which are the new JIT compilation time

dividing by the original one, of configurations are illustrated in Figure 4-1.

According to the results, 16% of compilation time increases while enabling

load/store grouping, and 40% of compilation time increases while enabling

load/store grouping with modified register allocator. The local variable relocation

is an off-line process, and therefore it only brings little effect on compilation time.

The results of “local variable relocation for speed” and “local variable relocation

 34

for code size” in this evaluation are almost the same, and therefore we only show

the former in this figure.

116.1%

139.6%

116.3% 116.3%

140.2% 140.3%

0.0%

20.0%

40.0%

60.0%

80.0%

100.0%

120.0%

140.0%

160.0%

LSM LSM_REG LSM_LVR LSM_LVR_opt LSM_REG_LVR LSM_REG_LVR_opt

C
om

p
il
at

io
n
 ti

m
e

ra
tio

 Figure 4-1. JIT Compilation time Ratios of Configurations

The speedup of JIT compilation and compiled code execution time of

different configurations is showed in Figure 4-2. The configurations which are

listed right side of dot line are those performing LVR for code size.

101.2%

102.0%

102.2% 102.2%

103.2%
103.3%

101.8%

101.4%

102.9%

102.5%

100.0%

100.5%

101.0%

101.5%

102.0%

102.5%

103.0%

103.5%

LSM LS G LS R LS s

S
pe

ed
up

M_RE M_LV M_LVR
LSM
REG LSM

LSM
LVR

LSM
LVR_opt

LSM
REG
LVR

LSM
REG

LVR_opt

LSM LSM LSM LSM
REG REG LVRs LVRs_opt
LVRs LVRs_opt

Figure 4-2. The Speedup of JIT Compilation and Compiled Code Execution Time of All Configurations

 35

Some of our observations are:

‧ The effect of local variable relocation is more than that of modified register

allocator on speedup.

‧ The solutions for local variable relocation obtained by "Largest-Weight-First"

heuristic algorithm are near-optimal.

‧ For different benchmark programs, improvements are in the range 0.5%~7.6%

while all optimizations are enabled for speed.

4.3.2 Effect on Code Size

The JVM code size of different configurations is listed in Table 4-4. The

configurations that perform local variable relocation is not showed, because the

local variable relocation is an offline process that is not performed by JVM, and

the JVM code size is not affected by it. According to the results, 3% of JVM code

size increases while enabling load/store grouping, and 4.2% of JVM code size

increases while enabling load/store grouping with modified register allocator. Note

that all the JVM code sizes are smaller than 512 KB and meet the constraint of

memory requirement of J2ME CLDC.

 Table 4-4. JVM Code Size of Different Configurations

 Code size (KB)
Code size increased

(KB)
Code size increased

ratio (%)
Base 344 0 0%

LSM 354 10 3.0%

LSM_REG 358 14 4.2%

Figure 4-3 shows the JIT compiled code size ratios, which is the new

compiled code size dividing by the original one. The configurations which are

listed right side of dot line are those performing LVR for speed. Some of our

 36

observations are:

‧ The effect of modified register allocator is more than that of local variable

relocation on speedup.

‧ The solutions for local variable relocation obtained by "Largest-Weight-First"

heuristic algorithm are near-optimal.

‧ For different benchmark programs, code size ratios are in the range

86.4%~97.5% while all optimizations are enabled for code size.

96.5%

95.3%

96.1%
95.7%

94.0% 94.0%

96.3% 96.3%

95.3%

94.6%

90.0%

91.0%

92.0%

93.0%

94.0%

95.0%

96.0%

97.0%

98.0%

99.0%

100.0%

LSM LS G LS Rs LS

C
od

e
Si

ze
 R

at
io

M_RE M_LV M_LVRLSM
REG LSM

LSM
LVRs

LSM
LVRs_opt

LSM_REG
LVRs

LSM_REG LSM LSM LSM_REG LSM_REG
LVRs_opt LVR LVR_opt LVR LVR_opt

Figure 4-3. The JIT Compiled Code Size Ratio of All Configurations

 37

Chapter 5

Conclusions

In this research, the optimizations to utilize the load/store multiple instructions in

JIT compiled code are studied. First, an offline process named “local variable

relocation” that originally used in C/C++ compiler is adopted to make more load/store

instructions access to continuous addresses. Second, the register allocator of JIT

compiler is modified to make more load/store instructions satisfy the constraints of

replacing them by load/store multiple. Finally, an algorithm to efficiently replace

load/store by load/store multiple in JIT compiled code is proposed. Our experiment

results show that overall speedup of 2.1% and compiled code size reduction of 5.4% can

be achieved with 14KB JVM code size increased only. Besides, these optimizations are

easy to be added into a JIT compiler, since these optimization are not tend to conflict

with other optimizations.

LDR r2, [r0, #0]

LDR r5, [r0, #4]

LDMIA r0, {r2, r5}

IF ID EX EX EX

IF ID EX EX EXstall

IF ID EX EXEX EX

IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX WBEX/M M/WB

3-stage pipeline 5-stage pipeline
LDR r2, [r0, #0]

LDR r5, [r0, #4]

LDMIA r0, {r2, r5}

IF ID EX EX EX

IF ID EX EX EXstall

IF ID EX EXEX EX

IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX WBEX/M M/WB

3-stage pipeline 5-stage pipeline

Figure 5-1. Stall Cycle Reduction of Utilizing LDM/STM on 3-stage and 5-stage Pipeline

In this research, the speedup of utilizing load/store multiple is realized by reducing

the stall cycles caused by structure hazard in ARM three-stage pipeline. For deeper

pipeline architecture, such as five-stage, replacing load/store by load-store-multiple will

not reduce stall cycles if memory access always takes one cycle, as Figure5-1 illustrated.

 38

However, the widening gap between processor speed and memory speed indicates that

speedup is potentially realizable through the speedup of memory system by utilizing

load/store multiple.

Because of the nature of load/store multiple, the memory accesses caused by

load/store multiple instruction is explicitly sequential, and the memory system usually

designed to exploit sequential to achieve higher performance. For cache access, when

sequential access falls within the same cache line, tag lookup can be skipped to increase

the access speed; for DRAM access, when sequential access falls within the same row,

data can be delivered 2~3 times faster. Besides, the sequential memory access also

better utilize of wider bandwidth memory or bus protocols that provide burst transfers.

Furthermore, the side-effect of code size reduction by utilizing load/store multiple is

also potentially result in speedup, since the instruction memory accesses can be reduced

and the better utilization of instruction cache might be achieved.

In this research, the load/store grouping scope is basic block because of the

consideration of compilation overhead. However, a large amount of branches caused by

exception checks in JIT compiled code might separate those potentially groupable

load/store instructions into different basic blocks. Therefore, the benefit of load/store

grouping may be further improved by eliminating those exception checks by apply more

aggressive exception check elimination in JIT compiler or modifying java source code

by programmers to cache frequently accessed object fields or array elements in local

variables.

 39

References

[1] "J2ME Building Blocks for Mobile Devices," Sun Microsystems, May 2000

[2] G. Muller, B. Moura, F. Bellard, and C. Consel, "Harissa: A Flexible and Efficient Java

Environment Mixing Bytecode and Compiled Code," Proc. of USENIX COOTS'97,

1997

[3] O. Agesen and D. Detlefs, "Mixed-mode Bytecode Execution," TR-2000-87, Sun

Microsystems, June 2000

[4] V. Colin de Verdiere, Sebastien Cros, C. Fabre, R. Guider, S. Yovine, "Speedup

Prediction for Selective Compilation of Embedded Java Programs," Proc. Of

EMSOFT'02, October 2002

[5] S. Furber, ARM System-On-Chip Architecture, 2nd Edition, Addison Wesley, 2000 S.

Wuytack, F. Catthoor, L. Nachtergaele, H. De Man, “Global communication and

memory optimizing transformations for low power signal processing systems,”

IWLPD-94: ACM/IEEE International Workshop on Low Power Design, Apr. 1994, pp.

203-208.

[6] Nik Shaylor, “A Just-In-Time compiler for memory constrained low-power devices”,

USENIX JVM'02, August 2002

[7] J. H. Huang, Design and Implementation of Embedded Mixed-Mode JVM for

ARM/Thumb Dual Instruction Set Processor, Master Thesis, CSIE, NCTU, 2004

[8] B. Venners, Inside the Java Virtual Machine, 2nd Edition, McGraw-Hill, 2000

[9] T. Lindholm, F. Yellin, The Java Virtual Machine Specification, 2nd Edition, Addison

Wesley, 1999

 40

[10] W. H. Chiao, ILP Exploration of Java Stack Operations, Master Thesis, CSIE, NCTU,

2001

[11] ARM Jazelle Technology, http://www.arm.com/products/solutions/Jazelle.html

[12] Ziang Hu, “Code Size Oriented Memory Allocation for Temporary Variables”, 2003

[13] V Krishna Nandivada, “Efficient Spill Code for SDRAM”, 2003

[14] C. N. Fischer, R. J. LeBlanc, Jr., Crafting a Compiler with C, The Benjamin/Cummings

Publishing, 1991

[15] Pendragon Software Corporation, Embedded CaffeineMark 3.0 benchmark,

http://www.webfayre.com, 1997

 41

