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Student: Jun-Yu Huang Advisors: Dr. Chung-Ping Chung

Department of Computer Science and Information Engineering
National Chiao Tung University

ABSTRACT

Mixed-mode execution that combines an interpreter with a light-weight JIT
compiler is well suited to: an embedded JVM that demands for speed
performance and has limited.' memory budget. However, the mode switch
between interpreter and JIT compiled code occurs frequently, and a great deal
of load/store instructions are generated by JIT compiler to synchronize the local
variable array and operand stack at each compiled code entry and exit point.
These load/store instructions that access to local variable array and operand

stack occupy about one-third of JIT compiled code.

In this research, the optimization to utilize Load-Store-Multiple instruction
to efficiently replace these load/store instructions is implemented for JIT
compiled code size reduction and speedup. In addition, the approaches of
adjusting the local variable placement and modifying register allocator to make
more load/store replaceable are also adopted. Experimental results show that an
average JIT compiled code speedup of 3.3% and code size reduction of 6% are

achieved.
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Chapter 1
Introduction

In this chapter, we introduce terms in the title and the concept of our research. First,
we give an overview of the current status of the Java technology in embedded
environment. Second, we explain the meaning of mixed-mode, which actually combines
interpretation and just-in-time (JIT) compilation. Third, we introduce the load/store
multiple instruction that is supported by embedded architecture, such as the ARM and
XScale processors. After the introduction.comes our research motivation and objectives.

Finally, organization of thisthesis is provided.

1.1 Embedded Java Environment

Java technology is developed by Sun in 1991 and rapidly becomes popular in
all application fields, such as desktop PCs, powerful large-scale server, or even in
small portable devices. In order to meet the demands of different application fields
with different characteristics, Sun in 1999 has grouped Java technologies into the
Java 2 platform [1], which consists of three editions as in Figure 1-1, and each of
which is specialized for a specific area:

Java 2 Enterprise Edition (J2EE) - targeted at scalable, transactional, and
database-centered enterprise applications with an emphasis on server-side

development.



[Gpiiumll

Java2
Enterprise
Edition
(J2EE)

" Java Virtual Machine

- Java 2 Standard Edition (J2SE) - targeted at conventional desktop applications.
+ Java 2 Micro Edition (J2ME) - targeted at embedded and consumer devices,

such as wireless handhelds PDAs TV set-top boxes, and other devices that

Java" 2 Platform, Micro Edition

E
Profile

Java2
‘Standard
| e lLﬁ]
(J2SE)

Figure 1-1. Java 2 Platform (extracted from Sun)

lack the resources to support full JZSE |mplementat|on

To address the; dlverSItyJLembedded devices with different network
connectivity and memory footprlnt J2ME specifies two configurations: Connected
Limited Device Configuration (CLDC) and Connected Device Configuration
(CDC). Each configuration targets at different types of devices and therefore

provides different class libraries and APIs. Table 1-1 shows an overview of the

differences of the two configurations.

Table 1-1. J2ME Configurations

Configurations Name

Connected Device Configuration
(CDC)

Connected Limited Device
Configuration (CLDC)

Target Devices

high-end PDAs, set-top boxes,

screen phones, and etc.

cell phones, two-way pagers,

low-end PDAs, and etc.

Typical Memory Requirement | 2MB~16MB 128KB ~ 512KB
Target Processor Type 32-bit 16-bit, 32-bit
Reference Virtual Machine CVM KVM

Other Features

high bandwidth network connection,

most often based on TCP/IP

limited, low bandwidth

network connection




1.2 Embedded Mixed-Mode Execution JVM

Although the JVM can be easily realized by an interpreter, its slow
performance is always a great issue in performance-aware system. In order to
overcome this problem, some compilation technologies were applied for speedup.
Ahead-of-time (AOT) compilers [2] allow offline compilation to translate bytecode
into machine code; hence no run-time compilation overhead is caused but result in
application code size expansion about five times. Conventional JIT compilers
translate bytecode into machine code on the fly, and apply more optimization
techniques for better performance with the cost of VM code size increase and
run-time compilation overhead. However, these approaches might not be adoptable
in some embedded JVM because. of the memory constraint.

The approach of.‘mixed-modeexecution in [3][4] relies an interpreter to
execute bytecode for:some parts.of the program, and also executes compiled code
that dynamically produced- by a-JIF compiler for the remaining parts. The line
between a conventional JIT compiler'and a JIT compiler that supports mixed-mode
execution is, in actuality, unclear. However, the principles of mixed-mode
execution can be clarified as follows.

Performance-critical parts of the program are compiled by a JIT compiler, and
then natively executed.

Non-performance-critical parts of the program are interpreted by an interpreter.
Close interactions between the JIT compiler and the interpreter is necessary.

By reusing the interpreter-based JVM as its infrastructure, the JIT compiler of
a mixed-mode JVM can be implemented with very small code size (about several
tens of kilo-bytes). Therefore, while designing an embedded JVM with the demand

of speed performance, a mixed-mode JVM seems to be promising. And the



1.3

combination of an interpreter-based JVM and a light-weighted JIT compiler builds

up an embedded mixed-mode JVM.

Load/Store Multiple Instruction

Some embedded architecture, such as the ARM processors support load
multiple (LDM) or store multiple (STM) instructions to perform multiple register
data transfers from/to memory. The formats of LDM/STM instruction are:

LDM baseRegister, {bitVector}
STM baseRegister, {bitVector}

The operands of LDM/STM instruction consist of a base register that holds a
memory address, called the base address, and a bit-vector that denotes a subset
(possibly all) of the.general=purpose tregisters. These registers indicated by
bit-vector would be loaded from.or stered to a contiguous block of memory word

starting from base address.

Memaory Address

STMIA rO, {r2, r5, r7} 000
o ro = r2 0x04

STMIA | 0000 | 0000000010100100 rs 0x08
t ——t r7 0x0C

ri5 r7 r5 r2 10 0x10

Figure 1-2. Example of LDM/STM

A simple example of load/store multiple instruction is showed in Figure 1-2.
This example illustrates a common feature of these instructions: the lowest register
is transferred from/to the lowest memory address and the other registers are
transferred in order of register number from/to consecutive word addresses above

the first address.



The benefit of utilizing load/store multiple to replace several load/store

instructions are listed below:

+ Reducing code size: if replacing n load/store instructions by single load/store

multiple instruction, code size can be reduced (n-1) word.

« Reducing pipeline stall cycles caused by structure hazard: In ARM7, a

3-stage pipeline RISC processor, both load and store instruction occupy

execution stage more then one cycle: Store takes two cycles for address

calculation and memory access; Load takes one cycle more then store because

the extra work of writing data into register also takes one cycle. Therefore,

Processor must stall one cycle for each store and stall two cycles for each load

because of the structure hazard in execution stage. However, these stall cycles

can be reduced after replacing several load/store instructions by equivalent

LDM/STM.

LDR r2, [rO, #0]
LDR r5, [rO, #4]
LDR r6, [rO, #8]
ADD r2, r2, r5

LDMIA rO, {r2,r5,r6}
ADD r2, r2, r5

E

[ e[|

IF

STR r2, [rO, #0]
STR r5, [r0, #4]
STR r6, [rO0, #8]
ADD r2, r2, r5

<>

STMIA rO, {r2,r5,r6}
ADD r2, r2, r5

[ e[|
IF

o ex 2 cycles)
—>

- :address calculation

- ‘memory access
:write back

Figure 1-3. Example of load/store and LDM/STM execution in ARM7 pipeline

A simple example of executing load/store and the equivalent LDM/STM

instructions by ARM?7 pipeline is showed in Figure 1-3. During the execution of



LDM/STM, the address calculation, memory access and write back of different
memory accesses are parallelized and hence the total execution cycles are
reduced. To be more precise, replacing n load instructions by one equivalent
LDM can result in 2(n-1) stall cycles reduction and replacing n store

instructions by STM can result in (n-1) stall cycles reduction.

1.4 Research Motivation and Objectives

Because of very limited memory budget and some complex bytecodes that
involve complicated operations that suit for interpreter handling (such as object
creation, method invocation), the JIT compiler of embedded mixed-mode JVM is
usually designed to only compile a bytecode subset that produce great performance
improvement. However, the mode ‘switch: between interpreter and JIT compiled
code would become:more frequent because those complex bytecodes must be

executed by interpreter;"as Figure 1-4 shows.

-
JIT
compiled
Bytecodes :>
of one method<
.

I executed by interpreter ! executed in JIT compiled code
B JIT compiled code block < mode switch

Figure 1-4. Mode switch between interpreter and JIT compiled code

Inspection of the JIT compiled code reveals that, a great deal of load/store
instructions is generated by JIT compiler to synchronize the local variable array
and operand stack at each compiled code entry and exit point. In compiled code

generated by KJITC [7], a JIT compiler of an embedded mixed-mode JVM

6



1.5

developed by our research group, these load/store instructions occupy 39% of JIT
compiled code and 30% of JIT compiled code execution trace.

Motivated by this fact, our objective is to make use of the benefits of
replacing the load/store of local variable array and operand stack by load/store
multiple instructions in embedded Java JIT compiled code to achieve speed
performance improvement and JIT compiled code size reduction.

In addition, the embedded mixed-mode JVM we choose is developed by [7].
It combines an interpreter-based VM, which is modified form Sun’s CLDC KVM
1.0.4, and a light-weighted JIT compiler, named KJITC, to generate ARM

instructions.

Thesis Organization

The rest of theZthesis is-organized :as follows: Chapter 2 provides more
detailed background Knowledge on JVM internals and an overview of our
embedded mixed-mode JVM. Chapter 3 discusses about how to utilize LDM/STM
in JIT compiled code and describes optimizations for utilizing LDM/STM. Chapter

4 gives the experiment results. The last chapter summarizes the work.



Chapter 2
Background

This chapter provides more background details on JVM internals and an overview
of our embedded mixed-mode JVM. Readers who are already familiar with the two

topics can skim over them.

2.1 Java Technology

Although generally:‘used to refer'to a computer language, Java is rather a
complete architecture«in reality. It consists ef four components [8].
Java programming-language
Java class file format
Java Application Programming Interface (Java API)
Java Virtual Machine (JVM)

A Java program which is written in Java programming language can be
compiled into Java class files by Java source compiler. JVM is a virtual stack
machine that execute Java class file. The Java program can access predefined
libraries or system resources (such as 1/0, for example) by calling methods in the
classes that implement the Java API. During program execution, JVM loads and
executes user-written class files as well as these system classes that Java API

defines.



2.1.1 JVM Benefits

Java Virtual Machine is the key component among the all. It is responsible for
the well-known advantages of Java comparing to traditional native execution
system. Those advantages include:

Cross-Platform Portability
Security of the Execution Environment

Small Size of the Compiled Code

2.1.2 JVM Internals

global Java Heap Register Set
Constant .
Pool Java Stack thread
per
class
Frame
Method Area

Figure 2-1. JVM Runtime Environment (extracted from [7])

A JVM implementation must provide the functionality of a real processor and

also conform to the JVM specification [9]. The specification defines a
homogeneous run-time environment, as Figure 2-1 illustrates, by providing a
detailed description of the following items:

Instruction Set (Java Bytecode)

Register Set

Java Stack

Execution Environment

Constant Pool



Method Area
Java Heap
Object Management and Garbage Collection

Since the JVM is a stack-based architecture, the registers of its register set are
not used for storing operands or passing arguments as in most register-based
machine. They only hold the state of the JVM and are updated after every bytecode
instruction is executed, such as program counter.

Before the bytecode instruction is executed, operands must be pushed onto the
operand stack, which resides in method frame pushed in Java stack. An executing
instruction pops its operands from the operand stack and then places results on the
operand stack when it completes.

The Java stack is similar to the stack of conventional language, such as C; it
contains method frames and is manipulated-to realize method invocation/return.

The JVM maintains a:special-table for each class, known as a constant pool.
The constant pool contains:string-literals, class names, field names and other
constant data objects that are referred to by the class structure. These constants do
not change, and are created at compile-time.

The method area is equivalent to the compiled code areas in the run-time
environment used by other programming language. It contains bytecode
instructions that are associated with the methods and the symbol table needed for
dynamic linkage.

The Java heap is the dynamic memory of JVM, and it usually contains a
collection of objects. When an object is created with the “new” bytecode
instruction, a reference to that object is returned. This reference can be used
subsequently, or stored in the current frame. An object is live in Java heap until

there are no references to it in any frame or in the field of any visible object. When

10



there are no such references, an object becomes garbage, and a garbage collector

will reclaim its resources.

2.1.3 JVM Implementation Alternatives

The JVM is not restricted to software interpreter implementation. In fact,
there are three common approaches, as depicted in Figure 2-2, to implement the

JVM.

Java Program

/ Java Compiler \

Bytecode
=

5 Java

=
_,.:_‘t':'l Machine Opel'ating
My .
) Binarv

v
/ Operating System System
General CPU Java CPU

An Executable Form

Figure 2-2. Three Alternatives to Executing Java Programs (extracted and modified from [10])

The first approach is using interpreter to execute bytecode. It makes the VM
porting easier, but the execution speed is low. The second approach is to replace
interpreter with a bytecode compiler. The bytecode compiler is used to translate
bytecode into native machine code. While ahead-of-time (AOT) compilers
performs offline compilation, just-in-time (JIT) compilers performs on-the-fly
compilation at run-time. Both of them have pros and cons, but JIT compilers seem
to be more popular. The third approach is to implement the JVM directly on silicon.
For example, picoJava is a Java processor that supports bytecode execution

completely.

11



2.2

As discussed in Section 1.2, an interpreter can still coexist and cooperate with
a JIT compiler in the JVM. Recently, a mixed software/hardware approach also
arises; ARM has introduced its own Java instruction extension - Jazelle [11]. A
subset of bytecode instructions can be directly executed when the ARM processor
is operated in Java mode, and the remaining bytecode instructions are still handled

in software.

Overview of Our Embedded Mixed-Mode JVM

In our mixed-mode embedded JVM, there are four main components. Their

interactions can be simply illustrated in Figure 2-3.

Time
Interpreter:
mterpret Java invoke hot spot
bytecode _ o detector
Hot Spot Detector:
detect a hotspot invoke KJITC
- KIITC:
. . perform hotspot
o chmetneenon 1 compilaion
Interpreter: N
interpret Java
byteoode | _
switch between interpreter Compiled Cod
and compiled code mp
Interpreter: S
interpret Java
] bytecode

Figure 2-3. System Components and Their Interactions (extracted from [7])

Now we respectively describe each component as follows.
+ Interpreter-based JVM (KVM)

The interpreter-based JVM provides a JVM infrastructure that performs
exception handling, garbage collection, synchronization and etc. For mixed-mode
execution, the interpreter is also responsible for invoking the hot spot detector and
switching to/form compiled code in addition to interpretation of those bytecode

that have not been compiled or will not be compiled.

12



+ Hot Spot Detector

Due to the tight memory constraints, only valuable parts of the input program
are selected for JIT compilation. By the 80/20 rule, over eighty percent of
execution time is spent in less than twenty percent of source code in a program.
Apparently, the responsibility of the hot spot detector is to discover these
performance-critical twenty percent of source code and then invoke JIT compiler
for hot spot compilation.

The basic unit of hot spot detection is a method. When a method is invoked
frequently or contains at least one loop that iterate for many times, it is regarded as
a hot spot an invoke KJITC to compile it. In our implementation, the threshold
values of invocation count and iteration count must be set statically. Currently the
values are both chosen to'be 40, which are based on our evaluation results.

« JIT Compiler (KJITC)

The JIT compiler is further.divided into the IR (Intermediate Representation)
generator and the native code generator. The IR generator is mainly responsible for
translating Java bytecode into semantically equivalent three-address IR. And then
the code generator translates IR into targeted native code for later execution. A

simple illustration is given in Figure 2-4. The design of the optimizations in KJITC

IR Generator Native Code Generator
Function: Function:
Java translation of Java bytecode 3-address | 1 register allocation/assignment Native Code
Bytecode into semantically equivalent IR 2. instruction selection/ generation (eg. ARM)
» | 3-address IR > -5
Optimizations: Optimizations:
1. rule-based null pointer check 1. instruction folding for stack
elimination operations
2. strength reduction 2. constant propagation

Figure 2-4. KJITC Compiler Architecture (extracted and modified from [7])

13



was described in [7] and we skip those details here.
Compiled Code Buffer
The compiled code buffer holds all compiled native code. During native
execution, the machine program counter (PC) points to native code that resides in
the buffer. In our current implementation, the compiled code buffer is allocated

statically, and its size is also predetermined.

In addition to the four components, the switching mechanism between the
interpreter and the compiled native code is also described here. Similar to a
function call, the switch from the interpreter to the compiled native code involves
spilling registers into memory and then transferring execution by a branch. The
case of the switch from.the compiled native code to the interpreter involves more
operations. It has to-restore registers from memory, to transfer execution by a

branch, and to update Java PC-(program counter) and Java SP (stack pointer).

14



Chapter 3
Designs

In this chapter, we discuss about how to utilize LDM/STM in JIT compiled code
and describe optimizations for utilizing LDM/STM. Section 3.1 will discuss about the
constraints of replacing load/store by LDM/STM and the strategies to deal with them,
Section 3.2 will introduce the overview of my designs, and section 3.2 to 3.4 will show

the design details.

3.1 How to use Load/Store Multiple in embedded mixed-mode

JVM

As we mentioned in ~Section-1.4, the load/store instructions that access to
local variable array and operand:stack occupy a great portion of JIT compiled
code. However, not all the load/store instructions can be replaced by load/store
multiple instructions but within constraints. In this Section, we will discuss the

constraints and the strategies to increase the replaceable load/store instructions.

3.1.1 Constraints of Replacing Load/Store by LDM/STM

The major constraints of replacing these load/store instructions by load/store
multiple are listed below:
1. Accessed memory locations are contiguous

The load/store multiple are restricted to access consecutive memory words,

and hence the load/store instructions that access to non-contiguous address can not

15



replace by LDM/STM. As Figure 3-1 (a) illustrates, only the first two loads that

access to consecutive memory words are replaceable, but if the access address of

the third load is adjusted to contiguous one as Figure 3-1 (b) show, all of them can

be replaced by LDM.

FEER_FQZ_IFET_#G]_] rEﬁP_Fij_fFﬁj_#ﬁj_]

:LDR r5, [r0, #4] | | LDR r5, [r0, #4] |

| LDR r7, Jr0, #12]] | LDR r7, Jr0, #8] |
________ <>z ______ T
"LDMIA r0, {r2, r5} | |LDMIA r0, {r2, r5, r7}i

| LDR _ r7, [rO, #121 !

(@)

(b)

Figure 3-1. Example of Replaceable and Non-replaceable Load/Store Instructions

same order

The DST/SRC register numbers and accessed memory addresses are in the

During the execution of "LDM/STM, registers are transferred in order of

register number from/to consecutive word addresses. If the DST/SRC register

numbers and accessed memory addresses of load/store instructions are not in the

same order, replacing them by LDM/STM will cause different result in

register/memory from the original code sequence. As Figure 3-2 (a) shows, only

the first two load instructions satisfy the constraint and can be replaced by

equivalent LDM. After adjusting the destination register numbers of the last two

load instructions as Figure 3-2 (b), all of them become replaceable.

MLDR r2, [rO,
| LDR r7, [rO,
| LDR r5, [r0,

"LDMIA 10, {r2,
LLOR _ 15, [rO,

(@)

#OT | MOR r2, [0, #0]1")
#4] : | LDR r5, [r0, #4] |
#8] | | LDR r7, r0, #8] |
______ | S s
rv} | | LDMIA r0, {r2, r5, r7}|
#8]_ |

(b)

Figure 3-2. Example of Replaceable and Non-replaceable Load/Store Instructions

16



3. Load/store instructions only can be grouped together without affecting
dependences

The load/store instructions to be replaced by LDM/STM are not necessary to
be adjacent to each other in a code sequence, but have to be independent to each
other. If there are dependences between load/store instructions, replacing them by
LDM/STM will affect dependences and result in error. As Figure 3-3 (a) shows, the
two load instructions are dependent because of the true dependence between the
first and the second instruction and the anti-dependence between the second
instruction and the third instruction. Therefore these load instructions are not
replaceable. But if the register numbers of the third instruction is adjusted to
resolve the anti-dependence as Figure 3-3 (b), the two load instructions will
become independent and replaceable.

LLDR r2, [rO, 7#6]_}

_____________ Independent (L aAppD r4. R2. R3 |

DR r2, [rO, #0] | % ’ ’ |
| 2 ’ |

| L Nz
| LDR r377]r0, #4] | "LDMIA r0, {r2, r5} !
Anti-dependence | ADD rd. R2. R3 :

(a) (b)

Figure 3-3. Example of Replaceable and Non-replaceable Load/Store Instructions

3.1.2 Strategies to Make More Load/Store Replaceable

Basing on the three major constraints summarized in Section 3.1.1, the

respective strategies to make more load/store replaceable are listed below:

1. Making the access locations of groupable load/store contiguous
The accesses to operand stack are almost always contiguous, since the

operations to access operand stack are simply push or pop rather then random
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accesses. The local variable accesses are more likely to be random accesses, but it
is possible to adjust or permute the local variable array for each method to make
more load/store instructions access to contiguous address and become replaceable.
In fact, there are already researches [12][13] about adjusting variable locations by
add phases into C/C++ compiler to maximize the benefit of utilizing LDM/STM,
and it is also possible to apply them to Java method at bytecode level with little

modification.

2. Making the order of register numbers right

This can be realized by following a simple guide-line: allocating lager register
number for lager memory address access. Since most RISC instructions are
orthogonal and free to use any one of general purpose register, the register numbers
of RISC instructions- usually can.-be renamed/relabeled to obey the guideline
without affecting correctness and/or-code quality. Moreover, the register allocator
might be modified to be aware of this guide-line without conflicting with the
original allocation policy, because a simple register allocator for RISC machine
usually only decide the range of variables reside in registers, and there is flexibility
on which register number to allocate. We prefer to modify the register allocator to
follow the guideline, since the register renaming might take an extra pass in JIT
compilation.

In [13], the register number constraint of utilizing is LDM/STM was also
discussed and dealt with it by inserting extra instructions to swap register content.
However, the extra instructions inserted will decrease the benefit of utilizing
LDM/STM and this approach is even harder to implement when adjusting more

then two register numbers at a time.
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3. Avoiding the name dependences between load/store and other instructions
Name dependences can be avoided by adjusting register numbers of
instructions. This is also can be realized by applying register renaming or
modifying the register allocator to be aware of it. Because of the same reason we
mentioned earlier, we prefer to modify the register allocator to avoid name

dependences.

3.2 Design Overview
There are three main components in my design: local variable relocation,
modification of register allocation and grouping load/store into LDM/STM as

illustrated in Figure 3-4.

Offline preprocess Run-time _
for every compilable method ; KJIT compilation

‘ Java method

‘ Java method ’ (modified or un-modified)

v 1
JIT compilation IR ;en
jj2ossssessssssssessssssssseen e i __________________ ! é *
5[?5:!2::&2?&%::5: [ Grouped Load/Store || Code gen
. bocic blocko Info of each basic block H
v | @6

@ Local Variable ¥
Relocation ¥

( Modified ] |
i Java method 3 *_
e IJIT compiled code\

@ Making the access location continuous (@ Making the order of register numbers right

5 @ Avoiding the name dependences

Figure 3-4. Design Overview

The objective of local variable relocation is to make more potentially
groupable load/store instructions access to continous addresses and maxisize the

benefit of utilizing LDM/STM. It is performed offline since solving it is a very
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3.3

time-consumed and memory-consumed process even by heuristic algorithm. After
the local variable relocation decision comes out, relocation is simply done by
rewriting the bytecodes that access to local variables. For example, if local variable
one is decide to be relocated to local variable two, then the bytecodes such as
ILOAD_1, IINC 1 2, and ISTORE_1 will be rewritten to ILOAD_2, IINC 2 2, and
ISTORE_2. Therefore, the modified Java method is still correctly executable and
those changes almost bring no effect on code size of program and the speed of
interpretation.

The register allocation is performed during the code generation of JIT
compilation. In my design, it is modified to make the order of register numbers
right and to avoid name dependences for making more load/store instruction
replaceable.

After the register-allocation and load/store instructions are generated, an extra
pass is added here to find-out-replaceable load/store instructions within basic
blocks and group them into LDM/STM.

The detail algorithms of each one of the three designs will be describe in the

following sections.

Local Variable Relocation

The key idea of local variable relocation is to make the access location of
groupable load/store continuous by adjusting the locations of local variables for
each java method. The problem formulation is: given compiled instructions of each
basic block with load/store of a method and the execution count of each basic
block, obtain a memory layout of the local variables of the method that maximizes

the benefit of using load/store multiple instructions. The benefit of utilizing
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LDM/STM can be either code size reduction or stall cycle reduction as we
discussed in Section 1.3.

There are three phases to accomplish the local variable relocation: gathering
grouping information, transforming grouping information to access graph and
deciding the layout of local variable. The actions of each phase are described in
following paragraphs.

« Gathering grouping information

Inputs of this phase are the JIT compiled instructions of each basic block of a
java method and the execution count of each basic block obtained by offline
profiling. Output is the grouping information consists of the load/store instruction
groupings, the type and the execution count of each instruction grouping.

The instruction grouping consists of multiple load or multiple store
instructions within a- basic block.- The 'instructions in the same grouping are
independent to each other and-access-to different local variables. In addition, each
load/store instruction belongs.to_one grouping at most. Note that the instruction of
a grouping is not necessary to access to contiguous addresses here.

To find out the instruction groupings, we perform dependence check on
instructions of each basic block and scan through the load/store instructions to
construct instruction groupings in greedy fashion. A simple example of gathering
grouping information of a method is illustrated is Figure 3-5.

Load ri; 0. #b Access Grouping Info. of a method

Load r2, r0, #c Grouping | Grouping T(G) F(G)
Load r3« 10, #d G pairs (LD/ST) | (execution count)
_ Store 15, 10, #a b,c.d bc,c-d,b-d | 2(LD) 100
JIT compiled code of Store 16, 10, #c
each basic block < Store r7, 10, #e |:> a,ce a-c, c-e, a-e 1(ST) 100
inamethod | ... e ab ab 2 (LD) 150

Load r7 r0, #a

Load r8, r0, #b

------ basic block boundary

Figure 3-5. An ExaMple of Gathering Grouping Information



some term for instruction grouping here:

For ease of conduct the weighting formula to calculate benefit later, we define

Definitions for an instruction group G consists of load/store instructions:

+ F(G) = execution count of G (obtained by offline profiling)

. T(G) =

{ 2 if G consists of load (stall cycle reduced by replacing one pair of load)
1 if G consists of store (stall cycle reduced by replacing one pair of store)

« Transforming grouping information to access graph

In this phase, the grouping information gathered is transformed to an access

graph. The access graph is a weighted graph; each node v of graph corresponds to a

unique local variable; an edge<v;, vj> denotes the instructions access to v; and the

instructions access to v; fall’in-one-or.more common instruction group; the weight

of edge<v;, v> is the benefit of v;;and. v; group together in a method. The benefit

can be either one below:

showed in Figure 3-6.

- Stall cycles reduction = Sum(F(Gn) x T(Gn)) , where Gn containing both

Vi and Vi

+ Code size reduction = number of grouping that contain both v; and v;

A simple example of transforming grouping information to access graph is

Access Grouping Info. of a method

Grouping group pairs | T(G) | F(G) F(G) x T(G)
b, c,d b-c,c-d, b-d | 2(LD)| 100 200
a,c,e a-c,c-e,a-e | 1(ST)| 100 100

a,b a-b 2(LD)| 150 300
c,de c-d, d-e,c-e | 1(ST) | 400 400

transform to
access graph

=

Weight: stall cycles reduction, code size reduction

Figure 3-6. An Example of Transforming Grouping Information to Access Graph
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Deciding the layout of local variable
In fact, any memory layout of local variables can be mapped to a path cover
in the graph, and finding the optimal memory layout is equivalent to finding the
path cover with maximum weight. The problem of finding the path cover with
maximum weight is called maximum weighted path cover problem (MWPC), and
it has been proved to be NP-complete. Therefore, a heuristic algorithm called

“Largest Weight First” is used to solve it. The algorithm is described below.

Step 1: Initialize the path cover P = { };
Step 2: Sort the edges of the access graph according to their weights (in
descending order) into set E;

Step 3: Pick up the edge e in E with the largest weight and remove it from E.
If adding the edge e to P (i) does not form a cycle in P, and (ii) does
not increase the degree of any node in P to more than 2, then it is
included in P .

Step 4 Repeat Steps 2 and 3 until E is empty

A simple example is illustrated in Figure 3-6. The path cover obtained by
“Largest Weight First” in this example is “a-b-d-c-e”, which is also the optimal
path cover in this graph. According this path cover, the memory layout local

variables will be changed from “a-b-c-d-e” to “a-b-d-c-e”.

Figure 3-7. An Path Cover Obtained Largest-Weight-First Algorithm
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According to the JVM specification [9], some local variables can not be
relocated, such as “this pointer” at local variable O or parameters, which must be
placed in consecutive addresses start from local variable O or after “this pointer”.
To deal with that, the initialization step in the “Largest Weight First” algorithm
must be modified: while deciding the layout of local variables, these variables that
can not be relocated are connected into a path according to their predetermined
placement sequence and we put it in the path cover P at the step one. The rest of
the algorithm is remained to build up the path cover.

The process of local variable relocation is also influenced by whether the
register allocator of the JIT compiler is designed to allocate right register numbers
and to eliminate the name dependences for consecutive variable accesses. If the
register allocator will .try to eliminate the name dependences between the
consecutive variable accesses and other.instructions, it is assumed the all the name
dependences are removed..and.-only. the- true dependences remain during the
instruction group construction.in the-first phase. If results of the register allocation
are independent to the locations of variables, we use the directed edge to represent
the register number order between grouped local variable access instructions
during the access graph construction in phase two. In addition, the weight
calculation is also slightly modified to takes the register number constraint into

account.
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3.4 Modification of Register Allocator

The goal of modifying register allocator is to make more load/store
instructions replaceable by making the order of register numbers right and
avoiding name-dependences to. We use a simple example in Figure 3-8 to explain

how to achieve this goal.

Register: Ri

Consecutive Inst.
accesston
address
accesses

(grouping candidates)

— true dependence

other instructions
---+ name dependence

Use other registers as destination register rather than R;, R;, Rk

Figure 3-8. A Dependence Graph*of a-Basic Block in JIT Compiled Code

A dependence graph of /abasic’ block in JIT compiled code is showed in
Figure 3-8. These instructions can be divided into two groups: the consecutive
address access instructions and the other instructions, as the dotted lines separated.
The consecutive address accesses are grouping candidates that might be replaced
by LDM/STM later.

To make the order of register numbers right, we can simply allocating
ascending register numbers for consecutive address accesses that sorted in
ascending order.

However, some dependences between the consecutive address accesses and
other instructions still make some loads/stores non-replaceable. For example, the
name dependence between “ADD” and “LD mem[n+1]” in Figure3-8 making the

“LD mem[n]” and “LD mem[n+1]” dependent and non-groupable. To avoid that,
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we can allocate other registers for other instructions as destination registers rather
then those allocated for consecutive address accesses.

The scope of register allocation in the JIT compiler of our embedded
mixed-mode JVM is extended basic block, which is code sequence with a unique
entry point and possibly many exits points. The original register is two-pass
register tracking, similar to the register allocator in [14]. The first pass is live-ness
analysis; the second pass is sequentially allocating registers and generating
instructions for each IR.

Modified register allocator is still a 2-pass scheme. The first pass is modified
to find out consecutive address accesses within basic block along with the live-ness
analysis and generate hints (preserved register and address pairs) for them. The
register allocation in second pass would‘be guided by these hints later.

A simple example of ‘hint generation in first pass is illustrated in Figure 3-9.
First, we scan through the IR -0f EBB and-log the read/written addresses for each
basic block. If there are"consecutive addresses to be read/written within a basic
block, we preserve ascending register numbers for loading/storing these memory

addresses as hints to register allocator.

:Top of stack

Local vayiable array Operand Stack

Bytecode IR Address:| 0 1 2 3 4 5 7 8

1LOAD_3 MOV LV[7].,LV[3] R w
ILOAD 1 MOV LV[8],LV[1] R w
1ADD ADD LV[7],LV[7].LV[8] rw | R
ILOAD_4 MOV LV[8],LV[4] R w
1ADD ADD LV[7].LV[7].LV[8] rw | R

INC 5 1 ADD LV[5],LV[5].#1 R
Access log: R R R R;W RW  RW
|: Preserved register for Load: Rl R2 R3 R4 R5
Hints for register allocator

Preserved register for Store: R4 R5

Figure 3-9. An Example of Hint Generation
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The register allocation in second pass is also modified to follow the hint. The

modified register allocation policy described as below.

Allocation policy
When allocating register for memory address m:
Step 1: Try to allocate register according to hint
If there is an available preserved register for m, use it and release the
original register allocated for m then exit; otherwise go to Step 2
Step 2: Use the original allocation policy to allocate register
But if both non-preserved and preserved registers are free, use the

non-preserved first

The modified allocation policy follows the hints in conservative way: if the
preserved register is occupied at step 1; we do not spill that register but try to find
another available one to allocate. The reason of the conservatism is that the
overhead of the extra register spill is usually greater then the benefits of replacing
more load/store by LDM/STM. Although the conservative policy might tend to
failed to follow hints at step 1 (because the preserved register for m is occupied)
when register pressure is high, but we found that the register pressure is rarely get
high in JIT compiled code since the size of EBB is usually small.

When spilling register, the register with the lowest spill cost, which represents
the estimated number of extra instructions to be generated because of the register
spilling, is chosen to spill in the original policy. The modified policy still use the
original metric to choose the register, but if both non-preserved and preserved

register are chosen, spill the non-preserved first to avoid the name dependences
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3.5

occur on preserved registers.

Note that, the modified register allocation policy does not increase the amount
of occupied register at each allocation point, since the original register number
allocated will be released while allocating another register number of variable in
step one. In addition, the modified spill policy also does not seem to cause more
load/store instructions in JIT compiled code, since the spill cost of choused register

is always the same as one that choused by original spill policy.

Group load/store into LDM/STM

The goal of this design is to efficiently replace the load/store instructions
within basic block by LDM/STM, whenever possible. Since the code scheduling
crossing basic block,.'such asitrace scheduling, is usually too expansive to
implement in an embedded JIT compiler, the load/store grouping scope is decided
to be basic block.

There are three phases ‘to ‘group load/store into LDM/STM: dependence
checking, load/store grouping, and instruction regeneration. The actions of each

phase are described in following paragraphs.

Dependence checking
After generating the first load/store in a basic block, we start to build the data
dependence graph for later generated instructions. After the instructions of a basic
block are all generated, if more than one load/store instruction is generated, go to
the next phase and exit if otherwise, since it is not necessary to try to replace single

load/store by LDM/STM.

28



Load/store grouping

The algorithm of load/store grouping is listed below.

Step 1 (Sort load/store): put load/store instructions into two different queues and sort
by accessed address respectively

Step 2 (Find a load/store group): scan through the sorted load/store instruction queues
and get a load/store group that satisfies all constraints; if no such group is
found in queue, go to the next phase

Step 3 (Replace the load/store group by LDM/STM): allocate a register as base
address register and insert a instruction (if necessary) to set base address for
each group; replace the grouped load/store instructions by load/store multiple

and annotate it in the dependence graph, go to step 2

Instruction regeneration
If any load/store replacement occurs, instructions will be regenerated
according to the original instruction sequence and the dependence graph. While
regenerating the instruction I, if there are instructions that I depends on and
un-regenerated, we recursively regenerate those instructions first and then generate
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An example of grouping load/store into LDM/STM s illustrated in Figure

3-10 to help reader to realize the three phases.

1:LV3 LOAD rl1,r0,#12;LV[3] ADD rl1,r0,#12

2:LV1 LOAD r5,r0,#4 ;LV[1] LM r1,{r1,r2,r3}
3: ADD r4,rl,r5 2:LV1 LOAD r5,r0,#4 ;LV[1]
4:1LV4 LOAD r2,r0,#16;LV[4] 3: ADD r4,rl1,r5

5: ADD r4d,r4d,r2 3. Instruction 5 - ADD r4,r4,r2

6:LV5 LOAD r3,r0,#20;LV[5] Regeneration 7 - ADD r3,r3,#1

& ADD  r3,r3,#1 Code size: 1 word reduced

2. Load/Store
Grouping

1. Dependence Checking@

Dependence Graph
— dependence

rl,r0,#12
r2,r0,#16
r3,r0,#20

rl,r0,#12

rl,{rl,r2,r3} @

Execution cycle: 3 cycle reduced

Load Instruction Queue

1:LV3
rl

2:Lv1
r2

4:LV4 | 6:LV5
r2 r3

sort load/store
by accessed address

2:LV1
r2

>

Figure 3-10,/An"‘Examplerof:Grouping Load/Store into LDM/STM

The time complexities of‘the second and the third phase: load/store grouping

and instruction regeneration.are both linear to the instruction count of a basic block

and the same as the most optimizations in JIT compiler. The time complexity of

dependence check is O(n?) where n is the instruction count of a basic block.

However, the size of basic block is smaller then seven instructions in most cases;

therefore the time spent on dependence seems to be affordable.
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Chapter 4
Experiments

This chapter is devoted to experiments. We first describe our set-up environment
for experiments. Next, appropriate benchmarks are chosen for performance evaluation.
Finally, experiment results including speed performance and memory usage are

exhibited.

4.1 Experiment Environment

The embedded mixed-mode-JVM we choose to modify is developed by our
research group in [7].%It is- designed and-implemented based on version 1.0.4 of
Sun's KVM, the reference implementation of J2ME CLDC. For our research usage,
the KVM is ported to ARM's ADS1.2, a development environment which includes
compiler, assembler, debugger, and instruction set simulator. For compiling Java
benchmark programs and KVVM's class libraries, the version of the Java compiler
adopted is Sun's J2SDK1.4.2_03. For compiling KVM and our KJITC, maximum
optimization is specified with -O2 option, and other options remain default. Last,
our target architecture is ARM7TDMI, a three-stage pipeline and uncached

Harvard architecture.

4.2 Benchmarks

Due to the limited APIs that J2ME CLDC specifies, common Java
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4.3

benchmarks can not be applied in our experiment environment. By referring to
related researches, we choose Embedded CaffeineMark 3.0 [15] for our
experiments.

The Embedded CaffeineMark 3.0 uses 6 tests to measure embedded JVM
performance in various aspects. Excluding the floating point test which is not

supported in CLDC 1.0, the remaining 5 tests are adopted (see Table 4-1).

Table 4-1. Selected Tests of Embedded CaffeineMark 3.0

Name Brief Description

String String comparison and concatenation.
Sieve The classic sieve of Eratosthenes finds prime numbers.

Logic Tests the speed with which the virtual machine executes
decision-making instructions.
Loop The loop test uses sorting and sequence generation as to

measure compiler-optimization of loops.
Method The Method test.executes recursive functional calls to
see how well the VM:handles method calls.

The original design of Embedded CaffeineMark 3.0 is to execute each test for
a fixed amount of time, and the reported score is proportional to the number of
times the test is executed. There is a problem that the instruction set simulator on
which benchmarks run may report inaccurate system timing information and make
the reported scores untrustworthy. In order to solve this problem, we modify the 5
tests to make the workload of each time of execution fixed. And therefore we

measure the cycle counts of each test for performance evaluation.

Experiment Results

The objective of my designs is to reduce execution time and JIT compiled

code size by utilizing LDM/STM in JIT compiled code, but applying these designs
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in JIT compiler also makes the compilation time increasing and VM code size
increasing. For accurate evaluation of benefits and overheads, the optimization
flow for load/store grouping is implemented into KJITC to measure the effects on
execution time, JIT compiled code size and VM code size.

Besides, the effect of individual optimization and combinations of them are
also evaluated. We list all the configurations of different combinations of

optimizations in Table 4-2.

Table 4-2. Configurations of Different Optimization Combinations

Group load/store into Modified Register Local Variable
Configuration name LDM/STM Allocator Relocation
(LSM) (REG) (LVR)
Base X X X
LSM ¢ X X
LSM_REG O O X
LSM_LVR O X °
_ Heuristic (LWF)
O
LSM_LVR_opt 0 X Optimal (brute force)
O
LSM_REG_LVR O © Heuristic (LWF)
O
LSM_REG_LVR_opt 0 O Optimal (brute force)

The local variable relocation mentioned in Section 3.3 is solved by
“Largest-Weight-First” heuristic algorithm, and the solution obtained by this
algorithm is not necessary to be optimal. In order to evaluate the quality of the
solutions obtained by heuristic, we also apply a brute force algorithm, which is
simply trying out every permutations of local variable array to finding the best one,
as comparison.

Note that the local variable relocation can be performed to optimize for either
code size or speed. Both of them are evaluated in experiments and we use “LVR”

to stand for “local variable relocation for speed” and “LVRs” to stand for “local
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variable relocation for code size”.

4.3.1 Effect on Execution Time

The execution time of embedded mixed-mode JVM can be divided into three
parts: the JIT compilation time, the JIT compiled code execution time, and the
other. The execution time distribution ratios of each benchmark program are
measured by executing the original embedded mixed-mode JVM without my

designs and listed in Table 4-3.

Table 4-3. Execution Time Distribution Ratios of Benchmark Programs

String Sieve Logic Loop Method Average
I 008% | 004% | 028% | 009% | 001% | 0.10%
Compilation %
JIT Compiled

Code Exec % 66.22% 57.22% 99.24% 99.41% 11.71% 65.96%

Other % 37.70% 42.74% 0.49% 0.50% 88.28% 33.94%

After applying my designs in JIT compiler, only the JIT compilation time and
the JIT compiled code execution time will change, and the *“other” execution time
will remain constant. Therefore, we focus on the speedup of affected execution
time, which occupies about two-third of total execution time, in the following
evaluation.

The JIT compilation time ratios, which are the new JIT compilation time
dividing by the original one, of configurations are illustrated in Figure 4-1.
According to the results, 16% of compilation time increases while enabling
load/store grouping, and 40% of compilation time increases while enabling
load/store grouping with modified register allocator. The local variable relocation
is an off-line process, and therefore it only brings little effect on compilation time.
The results of “local variable relocation for speed” and “local variable relocation
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for code size” in this evaluation are almost the same, and therefore we only show

the former in this figure.

160.0%

140.0%

120.0%

100.0%

80.0%

60.0%

Compilation time ratio

40.0%

20.0%

0.0%
LSM LSM_REG LSM_LVR LSM_LVR _opt LSM_REG_LVR  LSM_REG_LVR _opt

JIT-Compilation time Ratios of Configurations

103.5%

103.0%

102.5%

102.0%

Speedup

101.5%

101.0%

100.5%

100.0%

LSM LSM LSM LSM LSM LSM LSM LSM LSM

LSM REG LVR LVR_opt REG REG LVRs LVRs_opt REG REG
LVR LVR_opt LVRs LVRs_opt

Figure 4-2. The Speedup of JIT Compilation and Compiled Code Execution Time of All Configurations
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Some of our observations are:
The effect of local variable relocation is more than that of modified register
allocator on speedup.
The solutions for local variable relocation obtained by "Largest-Weight-First"
heuristic algorithm are near-optimal.
For different benchmark programs, improvements are in the range 0.5%~7.6%

while all optimizations are enabled for speed.

4.3.2 Effect on Code Size

The JVM code size of different configurations is listed in Table 4-4. The
configurations that perform local yvariable relocation is not showed, because the
local variable relocation is an offline. process that is not performed by JVM, and
the JVM code size is-not affected by it. According to the results, 3% of JVM code
size increases while enabling load/store -grouping, and 4.2% of JVM code size
increases while enabling load/stare grouping with modified register allocator. Note
that all the JVM code sizes are smaller than 512 KB and meet the constraint of
memory requirement of J2ME CLDC.

Table 4-4. JVM Code Size of Different Configurations

. Code size increased | Code size increased
Code size (KB) )
(KB) ratio (%)
Base 344 0 0%
LSM 354 10 3.0%
LSM_REG 358 14 4.2%

Figure 4-3 shows the JIT compiled code size ratios, which is the new
compiled code size dividing by the original one. The configurations which are

listed right side of dot line are those performing LVR for speed. Some of our
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observations are:

+ The effect of modified register allocator is more than that of local variable

relocation on speedup.

- The solutions for local variable relocation obtained by "Largest-Weight-First"

heuristic algorithm are near-optimal.

- For different benchmark programs, code size ratios are in the range

86.4%~97.5% while all optimizations are enabled for code size.

Code Size Ratio

100.0%

99.0%

98.0%

97.0%

96.0%

95.0%

94.0%

93.0%

92.0%

91.0%

90.0%

LSM

LSM LSM LSM LSM_REG LSM_REG LSM LSM LSM_REG LSM_REG

REG LVRs LVRs_opt LVRs LVRs_opt LVR LVR_opt

LVR

LVR_opt

Figure 4-3. The JIT Compiled Code Size Ratio of All Configurations
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Chapter 5
Conclusions

In this research, the optimizations to utilize the load/store multiple instructions in
JIT compiled code are studied. First, an offline process named “local variable
relocation” that originally used in C/C++ compiler is adopted to make more load/store
instructions access to continuous addresses. Second, the register allocator of JIT
compiler is modified to make more load/store instructions satisfy the constraints of
replacing them by load/store, multiple. Finally, an algorithm to efficiently replace
load/store by load/store multiple in-JFT".cempiled code is proposed. Our experiment
results show that overall speedup of-2.1% and compiled code size reduction of 5.4% can
be achieved with 14KB JVM: ¢code size increased only. Besides, these optimizations are
easy to be added into a JIT compiler, since these optimization are not tend to conflict

with other optimizations.

3-stage pipeline 5-stage pipeline
LDR r2, [ro, #0] F | D H IF
LDR r5, [rO, #4] E IF stall ID EX E

<+ ' :
LDMIA r0, {r2, r5} | F | i | | ex | ex | CF | D | hwe| we |

Figure 5-1. Stall Cycle Reduction of Utilizing LDM/STM on 3-stage and 5-stage Pipeline

In this research, the speedup of utilizing load/store multiple is realized by reducing
the stall cycles caused by structure hazard in ARM three-stage pipeline. For deeper
pipeline architecture, such as five-stage, replacing load/store by load-store-multiple will

not reduce stall cycles if memory access always takes one cycle, as Figure5-1 illustrated.
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However, the widening gap between processor speed and memory speed indicates that
speedup is potentially realizable through the speedup of memory system by utilizing
load/store multiple.

Because of the nature of load/store multiple, the memory accesses caused by
load/store multiple instruction is explicitly sequential, and the memory system usually
designed to exploit sequential to achieve higher performance. For cache access, when
sequential access falls within the same cache line, tag lookup can be skipped to increase
the access speed; for DRAM access, when sequential access falls within the same row,
data can be delivered 2~3 times faster. Besides, the sequential memory access also
better utilize of wider bandwidth memory or bus protocols that provide burst transfers.
Furthermore, the side-effect of code size reduction by utilizing load/store multiple is
also potentially result in speedup, since the instruction memory accesses can be reduced
and the better utilization of-instruction cache might be achieved.

In this research, the-load/store-grouping: scope is basic block because of the
consideration of compilation overhead. However, a large amount of branches caused by
exception checks in JIT compiled code might separate those potentially groupable
load/store instructions into different basic blocks. Therefore, the benefit of load/store
grouping may be further improved by eliminating those exception checks by apply more
aggressive exception check elimination in JIT compiler or modifying java source code
by programmers to cache frequently accessed object fields or array elements in local

variables.
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