EI R T .

SEYS e

i oA e
By AN FoE
Heon g

P AR -0z &# - 1



B R R AT TR R L AR SRR R

DES SES 2 AR

The determinant of volatility risk premium and #féect of trading volatility

risk premium: Evidence from the Taiwan index optioarket

Student : Chin-Ho Chen
isers: Dr. Huimin Chung
Dr. Wen-Liang G. Hsieh

7= i‘ 4 “i‘f‘."
SR e éﬁ_,%% %

In

Finance

November 2013
Hsinchu, Taiwan, Republic of China

P X K/ -0z &# -



AR R ER R FIR S R AR R R

M R BCE R 5 b

N | EE S LS N (&
Are L

B2 2 M g A et L

¥

AEF AR LIRS B E R % E Y (volatility risk premium)iE & 2REL o ¥ - B
WA EER DT RRA U F b e B PR FIE § L3 H 7 547 (order
imbalanceli ¥ A BLp| 2 Mt (T2 27 RPIRDEE TR N EH sk EX
(liquidity providers)y§ & 3 % + » #rri a2 3 ® * § § L3225 7 2%(order |mbalancé§
REFERENET R B SRR RpRERER AT RS G d R RER &
BRG RaBd B bk R Al e B T R § 7 S AR < g ensg
B (JUmp)pE o E 3 1 T R 4k g < o

5 BRAR A AFAR A AT R REPET SRR SR T T E R RER 6
il 2 b I B 2 b (volatility trading) AR 7 A sRdeogt kL R £ A 4 -
Bw Ak e gk o] B Frengd b @ A2 2Eagd en F] % RI2E (linear and nonlinear
Granger causality tests)g % F AT R GEFE D S AT 53 e DT 5B G @
HY e &b "GE YRGB D BB ORI A e Ak a0 o ZEA T K
B I B b G E Y e A% T3 il R #+ (continuous volatility ~ § it 5 B
B (negative jump volatility? & ;4 $ g E (positive jump volatility > i 74 & & &
g

A T s b Ak T iR E o

MaET A B R GEM EFRAE 2R AP M ~FoE Lo H 7 e
AU F] 5 B TR R



The determinant of volatility risk premium and #féect of trading volatility

risk premium: Evidence from the Taiwan index optioarket

Student: Chin-Ho Chen Advisers Dr. Huimin Chung
Dr. Wen-Liang G. Hsieh

Graduate Institute of Finance
National Chiao Tung University

ABSTRACT

This dissertation consists of two separate essays@volatility risk premium (VRP).
The first essay Is to examine the impact of optiemand pressure on the volatility risk
premium.The order imbalance-in options is used to proxydption net demand because
this measure /is easily observable from public orftevs and the result based on this
demand measure can be applied to the adjustmetiteobid-ask quote of options for
liquidity providers. Our empirical results show tiltlemand in options can help to explain
time-varying VRP. A positive (negative) demand ptes for an index option raises
(decreases) the VRP. In particular, this effeal@hand pressure on VRP becomes stronger
at the arrival of market jumps.

The second essay is to investigate the feedbaektelf trading volatility risk premium.
Large VRP attracts volatility trading that seekdemefit from the temporary mispricing in
volatility. This" study suggests that such trading generatesealbéck effect that
subsequently raises the market volatility. Usimg#r and nonlinear Granger causality tests,
the bidirectional influence between VRP and masadatility is documented. The finding
of higher volatility following large VRP supportid existence of feedback effect. In the
nonlinear test, the VRP is found to Granger cause three volatility components:
continuous volatility, negative jump volatility, drpositive jump volatility. The feedback
effect remains significant after controlling forfonmation shocks that may lead to
persistence in volatility.

Keywords: volatility risk premium; realized volatyl; vector heterogeneous autoregressive

(VecHAR) model; order imbalances; nonlinear Grarggersality test
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CHAPTER 1 INTRODUCTION

Volatility risk premium (VRP) is the premium thabrapensates risk stemming from
the fluctuation in volatility or jumps. Empiricaésearch also provides strong evidence that
this risk premium is priced in options. One intetption within the most existing literature
is that investors who purchase options need to @gyemium for protection against
volatility risk. Along this line, the VRP is linkedith expected future volatility, hedging
demand, and liquidity provisionHowever, in practice, to meet the obligation of the
liquidity provision, market makers must take on dtker side of the end-user net demand.
This gives a rise to an _interesting but less undeds question whether the VRP is
determined by the option-net.demand of end users.

In.addition, over the past few years, volatilitgding has become increasingly popular.
A large volatility risk premium provides opportues to engage in volatility trading. In real
market, the VRP is often substantial and impliegdaprofits for option sellers (Eraker,
2008). Despite the overwhelming evidence that largitility increases VRP, much is
unknown _about what happens afterward, in partichlawwv a widened VRP may affect
subsequent volatility. Therefore, this dissertafiocuses on two important issues regarding
the VRP in financial market.

The first issue in this dissertation is to discisimpact of option demand pressure on
volatility risk premium. Instead of using actualtlmobserved option net demand, the order
imbalance in the options is used because this me#seasily observable from public order
flows and the result based on this demand measlongsaliquidity providers to quickly
adjust their bid-ask quote of options.

This paper calculates two types of order imbalaneasures, one in number of trades
and the other in traded dollar amount. For eaclerorthbalance measure, three order

imbalance variables are calculated separately uemighy three unhedgeable risks for

1



market makers that correspond to aggregate ridiatily risk, and jump risk. They are

proxies for three demand variables for options:daiinand, volatility demand, and jump
demand. Each of these order imbalances variablesppdied to examine the demand
pressure effect on VRP.

The VRP is quantified as risk-neutral volatilitgseexpected realized volatilitiyor the
risk-neutral volatility, it is calculated directlfrom option prices using the approach
proposed by Jiang and Tian (2005, 2007). Follovidagch, Christensen, and Nielsen (2011)
and Bollerslev and Todorov (2011), the expectedized volatility is estimated using a
vector heterogeneous autoregressive model. Spabjifithe estimate for VRP relies on two
recently developed model-free measures: realizegtiity and implied volatility. Using
these two model-free measures, it is not only tocutate VRP easily but also has the
advantages of the unspecified volatility process @mcing kernel.

Our empirical results show that the level of demé&dan index option plays a key
role in determining the time variation in VRP. larfcular, as market jumps occur, the
demand pressure leads to a greater impact on ViR# three demand variables.

The second issue is to investigate the dynamicess®Es between VRP and volatility
while focusing on the afterward effect of a larg@R/ This study argues that a large VRP
attracts volatility .trading and is accompanied bgdd¢ing transactions, which could
subsequently raise market volatility, resultinganfeedback effect that further enlarges
market volatility. The bidirectional causality beten VRP and market volatility is tested in
5-minute frequency using OLS regression, lineam@ea causality, and nonlinear Granger
causality tests. A traditional linear Granger céitisanodel is applied to estimate the
dynamic relationship between VRP and the realizelatiity. The nonlinear causal test
adopts a nonparametric method based on the mod#iesion of the Baek and Brock (1992)
nonlinear Granger causality test.

The results in the OLS regressions and the linedm@anlinear Granger causality tests
2



show significant two-way impact between realizedhtility and VRP. The causal relation
from VRP to the realized volatility suggests th&R/plays an important role in explaining
future realized volatility: a large volatility pream could lead to greater realized volatility.

This study further separates the market volatiliyp three components: continuous
volatility, negative jump volatility, and positijemp volatility, and examines the causality
between VRP and each volatility component. In tbalinear test, the VRP is found to
Granger cause the three volatility components: iogous volatility, negative jump
volatility, and positive jump volatility. This fekdck effect that the VRP nonlinearly
Granger causes the three volatility componentsgisifcant even after controlling for the
higher volatility attributed to unexpected informnost shocks.

In conclusion, the dissertation gives some insightis the issues of the influence of
option'demand pressure on VRP and the effect dingathe VRP. The research results will
offer us with the empirical evidence to comprehémel dynamic relationship between the
demand pressure of index option and VRP, and betwearket volatility and VRP in

financial market.



CHAPTER 2 THE IMPACT OF ORDER IMBALANCE IN OPTIONSN VOLATILITY

RISK PREMIUM: EVIDENCE FROM THE TAIWAN INDEX OPTIONVARKET
1. INTRODUCTION

Recent literature documents that volatility riskersming from the fluctuation in
volatility is compensated by volatility risk premiu(VRP) and priced in optiorlsOne
economic interpretation within.the most literatigehat investors.who purchase options are
willing to pay a premium for protection against afility risk. Several studies also show
that the VRP represents option market makers’'mgiiess to absorb inventory and provide
liquidity (Bollen, & Whaley,.2004; Garleanu, Pedans & Poteshman, 2009; Nagel, 2012).
Along these lines, the magnitude of VRP dependsupeestors’ demand for hedging
volatility risk and intermediaries’ willingness tmeet the liquidity demand. Despite the
abundant evidence has linked the VRP.to liquidiygermediation, and hedging demand,
much less is known about the effect of option reehand of end users on the time-varying
VRP?

Garleanu, Pedersen, and Poteshman (2009) propdsmand-based model in which
the equilibrium option price is partly determiney ibs demand. The model shows that
demand pressure for an option increases its piycanbamount proportional to option’s
expensiveness, i.e., the premiums of all unhedgeask of options such as discrete-time
trading, volatility risk, and jump risk. It alsoisas the prices of other options on the same
underlying proportional to the covariance of thénesigeable parts. These results suggest
that option demand impacts the VRP.

In addition, the demand pressure effect for VRRNikdiffers when risk aversion of

! See, for example, Bakshi and Kapadia (2003), Bsi#e and Todorov (2011), ; Buraschi and Jackwerth
(2001), Carr and Wu (2009), Chernov and Ghysel®@p0Coval and Shumway (2001), and Jackwerth and
Rubinstein (1996).

% As reported in Bollerslev, Gibson, and Zhoud (90Ebllerslev and Todorov (2011), and Todorov (2010
volatility risk premium varies over time.
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market participants varies because it may affeetvifilingness of market participants to
buy or sell options. Todorov (2010) finds that tiweeying risk aversion is mainly driven by
large or extreme market moves. A large price shtocktock market increases investors’
fears for future jumps because investors view tbeuoence of jumps as more likely,
thereby raising their willingness to pay more footpction against jumps. At such time, it
may result in a greater demand effect on VRP, ealheevhen preceded by recent jumps,
even through option demand remains the same ares3his matches the pattern of VRP
in Todorov (2010): it increases and slowly revedsts long-run mean after jumps occur.
However, price jumps often appear in the most majarket indices. This provides us a
venue to test the differential effect of demandspuee on VRP with and without jumps.

This study investigates the effect of option demprebssure on VRP and test whether
the demand pressure effect is greater when maukepg occur. The order imbalance in
options is used instead of actual option net demarahalyze the demand pressure effect
because this measure is easily observable fromgpafder flows and the result based on
this demand measure can be applied to adjust thadk quote of options for liquidity
providers. A finding that the order imbalances positively affe/RP with and without
market jumps, with former having a larger impacgvides evidence that option demand
pressure influences the VRP. To the best of ounkentge, this study is the first of its kind
to investigate the dynamic relation between optiemand pressure and VRP. Our study
contributes to the existing literature not only flystrating the importance of demand
pressure in determining VRP but also by expliclihking the demand pressure effect on

VRP with time-varying risk aversion.

The Taiwan index options (TXO) written on the Tam@tock Exchange Capitalization

Weighted Stock Index (TAIEX) are analyzed, in whitkO is one of the most liquid index

® Indeed, most major market indices appear to comtdce jumps (Bakshi, Cao, and Chen, 1997; Bd#ers
and Todorov, 2011; Eraker, Johannes, and Pols@3; Zan, 2002; Todorov, 2010).
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options in the world. The trading volume by individuals far exceeds #neels of trading

by domestic or foreign institutional investdrslhe dominance by individual investors
contrasts with the common knowledge that instindlanvestors dominate the index option
market such as the U.S. market. Our study in theedramarket sheds light on many other

markets at a similar stage of development suchaasa&and Poland.

To meet the obligation of the liquidity provisiamarket makers must take on the other
side of the end-user net demand. If market makears ot perfectly hedge their net
exposure on the option positions, the option pribas they quote include a component that
compensates their risk. In real world, the riskseth by market makers stem from
incomplete markets such. .as. transaction costs, efestme transaction, unexpected
volatility, and sudden jumps-in-the underlying pridViarket makers who accept these
unhedgeable risks thus require a premium for progidiquidity on option markets.
Garleanu, Pedersen, and Poteshman (2009) and Bail@n/Nhaley (2004) find that the
option’s expensiveness is related to the leveiséftaken on by the market makers.

The order imbalances are used to proxy for optetrdemand. Many studies show that
order imbalances between buyers and sellers cdectrefonmarket maker net demand.
Chordia, Roll, and Subrahmanyam (2002) and Choatid Subrahmanyam (2004) use
order imbalance t0 measure both direction and @egiduying or selling pressure. Bollen
and Whaley (2004) gauge net demand using order lamb@s between the number of
buyer-initiated and seller-initiated trades. Momeportant, in contrast to the end-user net
demand identified with a unique data set by Gade®=sdersen, and Poteshman (2009) and
Ni, Pan, and Poteshman (2008), this demand me#sqteckly observed from public order

flows.

4 On a global scale, the TXO is ranked the fifth trfesquently traded index option in 20IThe constituent
stocks of the underlying spot index are also abtitraded.

®> For example, in 2010 individuals, domestic insiinal investors, and foreign institutional invasto
accounted for 39.6%, 1.5%, and 5.9 % of tradepeively.
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This study follows Chordia, Roll, and Subrahmany@®08) to calculate two types of
order imbalance measures, one in number of tradeghe other in traded dollar amount.
For each order imbalance measure, three order ambalvariables are calculated separately
weighted by three unhedgeable risks for market msateat correspond to aggregate risk,
volatility risk, and jump risk. They are proxies fihree demand variables for options: all
demand, volatility demand, and jump demand. Eacthede order imbalances variables is
applied to examine the demand pressure effect da VR

The VRP is quantified as risk-neutral volatilitpseexpected realized volatility. For the
risk-neutral volatility,it is calculated directly from option prices usitig method proposed
by Jiang and Tian (2005, 2007). Following Buschyistbnsen, and Nielsen (2011) and
Bollerslev and Todorov (2011), the expected redlizelatility is estimated using a vector
heterogeneous autoregressive (VecHAR) model. Spaityf the estimate for VRP relies on
two recently developed model-free measures: rahliz@atility and implied volatility.
Using these two model-free measures, it is not eamalculate VRP easily but also has the
advantages of the unspecified volatility process$ @nicing kernef

Our empirical results show that the level of demémdan index option plays a key
role in determining the time variation in VRP. Irtime-series test, a positive influence of
option demand pressure on VRP is found, similah&ofinding of Garleanu, Pedersen, and
Poteshman (2009) that a proportion of an optiorXpeasiveness reflects the effect of
demand pressure. The finding of a strong linkage/éen demand pressure and VRP during
the period of recent market-maker losses indictitasdemand pressure effect is related to
the risk aversion of liquidity providers. In padiar, when market jumps occur, the demand
pressure leads to a greater impact on VRP fohedetdemand variables. The result provides

evidence to support the finding of Todorov (201gtttime-varying risk aversion is driven

® For example, utilizing the joint estimation of tasset returns and prices of its underlying deisieat
requires complicated modeling and estimation promesl (Ait-Sahalia & Kimmel, 2007; Bates, 1996;
Chernov & Ghysels, 2000; Eraker 2004; Jackwertb020ones, 2003; Pan, 2002).
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by large, or extreme, market moves.

The remainder of this paper is organized as follo8&ction 2 contains the formal
development of our method. Section 3 provides af lmtescription of the empirical data.
Section 4 analyzes the empirical results. Sectipnobides the key results of the study and

a conclusion.

2. METHODOLOGY

2.1. Volatility Risk Premium

VRP ‘represents the premium associated with unogytan volatility and is often
measured by the difference between  the statisiodl risk-neutral expectations of the
forward variation in the asset return. To measuRP\faced by liquidity providers, this
study follows Bollerslev and Todorov (2011) and @aom/ (2010) and define VRP over the
nextt trade days as the risk-neutral volatility lesséRkpected realized volatility, quantified

as

VRR=1/\T. B (0, )~ 1NT .E @) 1)

where E°() and EP() indicate the expectations under risk-neutral amaktissical

measures, respectively.

2.1.1. Estimate of risk-neutral volatility
The risk-neutral volatility at the first term in Eation (1) is calculated directly from

option prices. As demonstrated in Bakshi and Ma@&90), Britten-Jones and Neuberger

" Note that our VRP measure in Equation (1) is ojtpds the definition of Bollerslev and Todorov (20
and Todorov (2011). They calculate the VRP paidhbyigers, which is negative on average, whereas we
measure the VRP earned by option liquidity supgligshich is positive on average.

8



(2000), and Jiang and Tian (2005), this risk-néutrdatility is equal to option implied
volatility. In this study, the approach proposedlJmng and Tian (2005, 2007) is adopted to
compute the implied volatilities of call and puttiops directly from option priceslhis
method corrects the inherent methodological problanthe most widely used Black—
Scholes (1973) model for deriving the option-imglieolatility, which assumes that the
underlying asset’s return follows a lognormal dlition that is virtually found to be too
fat-tailed to be lognormal.

Britten-Jones and Neuberger (2000) derive a maeéeldneasure of implied volatility
under the diffusion asset price process, and JAadgTlian (2005) further extend their result
to the case of jump diffusion. The model-free irag@livariance is defined as an integral of

option . prices over —an-infinite = range of = exercise icg®, denoted as

in which the superscripi# denotes the forward probability

» C*(7, K) —max(0,F, — K )
2 % dK

measure, K is the exercise price, denotes the time to maturity, Bnd C"(7, K) are the
forward asset and option prices.

However, in reality, options are trades in the megslace only over a finite range of
exercise prices. The limited availability of distomous exercise prices may lead to
truncation and discretization errors in the nunarintegration for the model-free implied
volatility.®> To resolve the problem, Jiang and Tian (2005, P@@Xelop an interpolation—

extrapolation scheme to reduce the influence etation and discretization errdrs.

8 The truncation error results from disregardingreise prices beyond the range of the listed exemgices
in the marketplace, and the discretization err@earfrom the discontinuous exercise prices. Iregdnthe
truncation error is negligible while the truncatipoints are more than two standard deviations fthen
forward asset price (Jiang & Tian, 2005).

° The steps are specified as follows. At first, @levirange of exercise prices relative to availaxercise
prices is set up by given left and right truncatpmints K, and K., Next, to obtain the not-traded option
prices between these two truncation points, a capiimes method is used to interpolate the Blackes
implied volatilities per thelK price interval between available exercise pri¢esally, the extracted implied
volatilities are translated into option prices tsing the Black—Scholes model, and the implied vdiais
further computed from these option prices. In addjtfor options with exercise prices beyond thailable
range in option market, Jiang and Tian suggest ttiatslope of the extrapolated segment (on botas¥id
should be adjusted to match the corresponding stbgbe interior segment at the minimum or maximum
available exercise price.
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Following the approach of Jiang and Tian (2005, 720@he model-free implied

variance is written as

ZIKW C"(r,K)—max(0,F, - K

. K2 )dK=i(f(T,Kj)+f(T,KJ._l))AK, )

for 0<i<M. The truncation interval [Kin, Kna] denotes the range of available exercise
prices, in which K, and Kyax are referred as left and right truncation poingspectively.
In our empirical work, option and asset pricesus@d instead of forward prices to calculate the
implied volatility. Under the-assumption of detenmstic interest rate, the forward option price
and forward asset price at time t-are respectiagyesent aL" (7, K) = C(r, K)/ B(t,7) and
F =S/ Btr), inwhich Sis spot price,C(7, K)is the option price, and(t,7)is the timet
price of a zero-coupon bound that pays $1 at time

To avoid the bid—ask bounce problem, the midpditii® quote rather than the transaction
price is used to compute the implied volatility kBai, Cao, and Chen, 1997, 2000). As
calculating the implied volatility in Equation (Shis study truncates the integration at the
lower and upper bounds of 95% and 140% of the ouimelex price for call options and of
60% and 105% of the current index price for puianst TheAK in numerical integration
scheme of Equation (2) is set as 20 index poihts.

In each day, the implied volatilities at the nearéso maturities are linearly
interpolated to obtain the implied volatility atfexed 22 trading-day horizon. For the

implied volatility at each contract month, the age implied volatility of call and put is

1 The strike price intervals of TXO stipulated by tRAIFEX are grouped into three categories. Firsien a
strike price is below 3,000 points, the strike eriatervals are 50 points in the nearby month aechext two
calendar months and 100 point intervals for all therin excess of two months in distance. Secon@nveh
strike price is between 3,000 and 10,000 points,sthike price intervals are 100 points in the hganonth
and the next two calendar months, and 200-poiervats for far months. Third, when a strike priseover
10,000 points, the strike price intervals are 20s in the nearby month and the next two calemdaamths,
and 400-point intervals for far months.
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first calculated every five-minute interval and ih&veraged across intervals in a day. The
five-minute implied volatility of the call (and puis backed out from call (put) prices by

using Equation (2).

2.1.2. Estimate of expected realized volatility

The expected realized volatility at the second terfaquation (1) is estimated using a
VecHAR model constructed on the volatility compaiseaf model-free realized volatility.
Andersen, Bollerslev, and Diebold (2007) find thtta¢ forecasting to.the future realized
volatility improves significantly when using contious volatility (CV) and jump volatility
(JV) decomposed from realized. volatility as separagressors. They show that volatility
components provide better forecasting than reaha#ditility itself because of the distinct
features associated with the CV series and JV se@¥ is strongly serially correlated
while JV is less persistent and far less predietaban CV. The different features for the
two components indicate separate roles in the &steof realized volatility. In addition,
Barndorff-Nielsen and Shephard (2001), Bollerslgvetschmer, Pigorsch, and Tauchen
(2009), and Todorov and Tauchen (2006, 2011) fvad the future volatility increases more

following negative price jumps.

Following the /Bollerslev and. Todorov (2011), theilylaclose-to-close realized
volatility is decomposed into four parts with driéat characteristics: overnight volatility
(NV), CV, nJV, and pJV. In brief, the daily realdevolatility is first calculated using
5-minute intraday returns and then decomposedtd four volatility componentsThis
process produces four daily series, one for eadatilty component, CV, nJV, pJV, and
NV.

The VecHAR model in Equation (3) proposed by BusChristensen, and Nielsen
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(2011} is applied to forecast the one-period ahead odtility components. The model
follows Andersen et al. (2007) to contain daily,ekly, and monthly volatility measures in
the VecHAR forecasting specifications. The expeatedlized volatility with a 22-day
horizon is the square root of the relevant foreagim for the volatility components. The
VecHAR model uses the four-dimensional vectgrcénsisting of the CV, nJV, pJV, and

NV estimated previously, as input:

Ziizy = Bt B2+ BZ i+ B, 2 55t & 5

~ . 3)
L =(CV, Y p3V NY

where 4, Zis, and 4 ,,, respectively, denote the vector of lagged daibekly, and monthly
volatility components. Bis a vector of the intercept term,, Bs, and B,are matrices for the
regression coefficients, in which the first colunsecond column, third column, and fourth
column in each matrix correspond to the paramedérthe four volatility components,
respectivelyThe model uses the past 800 days for the estimafigarameters § B, Bs,
and B2 The one-period-ahead volatility component vectoobtained using the estimated
parameters and the past 22 days’ volatility comptsn&o produce daily-frequency forecasting,

this study rolls forward daily, using the same vawdength (800 days) for every forecasting.

2.2. Option Demand Variables

The option net demand i1s measured using order ambal in optionsThe order
imbalance is defined as buyer-initiated trade miselter-initiated trade, where the Lee and
Ready (1991) algorithm is used to classify eachionptrade into buyer-initiated or

seller-initiated trade¥. Following Chordia, Roll, and Subrahmanyam (20@®&) types of

* Busch, Christensen, and Nielsen (2011) introdud&eeHAR model for the joint modeling the separate
components of realized volatility to forecast vidigt components. This model generalizes the hefen@ous
autoregressive approach proposed by Corsi (2004¢#&dized volatility analysis and extended by Arsda et
al. (2007) to include the separate volatility comgets of past realized volatility as regressors.

12 According to Lee and Ready (1991), a transactoregarded as a buyer-initiated trade if it ocalreve
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order imbalance measures are calculated: one irbeuof trades and the other in traded
dollar amount. The order imbalance in trade #OlBuantified as the difference between
the number of buyer- initiated and seller-initiateddes divided by the total number of
trades within every 5-minute interval. Dollar ordebalance $OIB is the total dollars paid
by buyer-initiated trades less the total dollarsereed by seller-initiated trades divided by
the dollars for all trades within every 5-minutéeirval.

For each order imbalance measure, three order @ambalvariables are calculated
separately weighted by three unhedgeable risksnfarket makers that correspond to
aggregate risk, unexpected volatility, and suddenps in underlying price. They serve as
proxies for option demand (DdAIlIRisk), volatilityechand (DdVolRisk), and jump demand
(DdJpRisk), respectively.

DdAIlIRisk places equal weights across all optiond thus measures the aggregate risk
demand. DdVolIRisk  captures the volatility risk-induced demdaby weighting order
imbalances across all options according to Blackels's vegaThe vega reflects an
option’s sensitivity to the changes in volatilid.large order imbalance in the high vega
options indicates that traders are volatility bsy€rder imbalances averaged across option
series using vegas as the weight would, therefi@present demand due to increased
volatility risk as documented in Garleanu, Pedersaml Poteshman (2009) and Ni, Pan,
and Poteshman (2008). For daily measure of DdAkRiIsd Dd\oIRisk, the variable for
every 5-minute interval is first calculated andrtlaeraged across intervals in a day.

DdJpRisk captures the jump risk-induced demand bighting the 5-minute option
demand (DdAIIRisk) across all 5-minute intervalsaome day using the implied volatility

skew. The implied volatility skew for an index apii as documented in Bates (2000) and

the prevailing quote mid-point. Conversely, a tet®n is regarded as a seller-initiated tradd dcurs
under the prevailing quote mid-point. For tradesun@xactly at the midpoint of the quote, a “tiektt’ is used
whereby the trade is classified as buyer-(sellaitf)ated if the sign of the last non-zero priceanbe is
positive (negative).
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Pan (2002), reflects the risk of market jumps. kaigplied volatility skew indicates that
investors highly anticipate future market jumpsu3horder imbalances weighted across all
5-minute intervals using implied volatility skew #ge weight represent the demand due to
increased jump risk. In addition, the implied viitt skew is gauged using the slope of
option implied volatility, which is calculated byéd out-the-money implied volatility, the
average implied volatility of call and put with sgo-exercise ratio beyond the (1.03, 0.97)
range, less the at-the-money implied volatility.

Table 1 provides the averages of daily order inmi@da and implied volatilities of calls
and puts in the negative and positive returns. dinle in. the market price leads to negative
order imbalances for near and second calls (C1Ghdespectively) in each of the three
demand variables and every order imbalance meaautealmost positive order imbalances
for near and second puts (P1 and P2, respectivEyg.result indicates that investors have
a preference for selling calls and buying puts wheamket price decreases. Inversely, they
are inclined to buy calls and sell puts when magkéte increases. In addition, positive
(negative) average order imbalances are found ¢ce@se (decrease) average volatility
spread (I\d = 1Vy), which is the average difference in implied vitikgtbetween negative or
positive return period and the entire sample peride increased (decreased) option price
in respond to positive (negative) demand pressuowiges evidence for the positive
(negative) demand pressure effect on VRP, congsistetn Garleanu, Pedersen, and
Poteshman (2009). For example, negative order emnlcak in C1 and C2 (P1 and P2)
decrease the option’s price about the size of 197a(52 and 10) basis-points, respectively,

of implied volatility during the negative (positivesturn period.
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Table 1 Average order imbalances and option impladitility

Negative returns Positive returns
C1 c2 P1 P2 Cc1 c2 P1 P2
#DdAlIRisk -0.0207 —-0.0343 0.0003 0.0158 —0.0001 0082 -0.0240 -0.0134
#DdVoIRisk —0.0427 -0.0462 -0.0211 0.0131 —0.0207 .00T2 -0.0450 -0.0177
#DdJpRisk -0.0197 —-0.0370 0.0008 0.0184 0.0011  50.080.0242 -0.0150
$DdAIIRisk —-0.0312 —0.0330 0.0040 0.0200 0.0032 064 -0.0316 —-0.0104
$DdVoIRisk —-0.0623 —-0.0440 -0.0152 0.0188 -0.0113 .0115 -0.0607 —0.0131
$DdJIpRisk —-0.0299 —0.0356 0.0045 0.0226 0.0044  90.060.0319 -0.0123
(8 0.2040 0.1942 0.2669 0.2530 0.2075 0.195@.2557 0.2507
IV, 0.2058 0.1948 0.2609 0.2518 0.2058 0.1948.2609 0.2518
Vq—1IV, -0.0019 —0.0007 0.0060 0.0012 0.0016 0.0006.0052 —0.0010

Notes This table ‘reports average order imbalances anudied volatilities of call and put options sepahat
corresponding to negative and positive returns. ddta cover the period from January.1, 2005 to Bbes 1,
2009. The order imbalances are measured by bothutheer of trades (#) and traded dollar amountH&) each
order imbalance measure, we calculate three ordbalance variables which correspond to aggregate ri
volatility risk, and jump risk, respectively. Thegrve proxies for aggregate demand, volatility deimand jump
demand. - #DdAllIRisk#DdVolRisk-and #DdJpRisk ($DdAIIRisk$DdVoIRisk and $DdJpRisk) are the order
imbalances measured by the number of trades (trdoléat amount). C1 and P1 (C2 and P2) indicate-meenth
(second-month) call and put optionsylié the average of implied volatility in respond regative or positive
returns; I\, is the average implied volatility during all thensple period. The difference in implied volatility,q —
IV, indicates the volatility spread.

In addition, to simplify our analysis, we aggreg#éie demand of call and put options
with the same exercise price and maturity in eemnginute interval. Garleanu; Pedersen,
and Poteshman (2009) argue .that linearly dependemtatives have the same demand
effect on option prices. If the put—call parity &) the prices of a call and a put with the
same exercise.price and maturity must linearlyteelaAny demand pressure on the call

(price increase) would similarly affect the putusimg the put price to increase.

2.3. Model Specifications
2.3.1. Testing the effect of option demand pressuréRP

The regression model of Chan and Fong (2006) and Gaurent, and Petitjean (2010)
is adopted to assess the impact of demand pressukRP.VRP is regressed against a

Monday dummy (MD), twelve lags for VRPs, and twdiop order imbalances in the near

and second monthg)(B,, OIB,, respectively) The t-statistics of estimated parameters are
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calculated using the Newey and West (1987) staneiaculs.

In addition, two types of order imbalance measuaesused to proxy for option net
demand: one in number of trades (#OIB) and therathaded dollar amount ($OIB). For
every order imbalance measure, three order imbalaagables are calculated to separately
proxy for all demand (DdAIlIRisk), volatility demanfDdVolRisk), and jump demand
(DdJpRisk). The three order imbalance variablesuaes to test for the demand pressure
effect on VRP in the presence of the sources ofedgbable riskEach of them is

individually included in the regression model ofuatjon (4):
12

VRR=ay+a:MQ +@ OIB, +¢,01B, +> @ VRP, +&, (4)
=1

where MD is a Monday dummy variable that takesriMonday, and zero otherwise. This
dummy variable controls for the Monday effégiB, and OIB, respectively denote the
daily option order imbalances in the near and seécoonths. VRE;s are lagged VRPs to
control for serial dependence in the VRP.

Further; this study illustrates whether the linkdgéween demand pressure and VRP is
strong following market-maker losses. In realitgrket makers are sensitive to risk due to the
capital constraints, tolerance of leverage, and@gdf the risk aversion held by market makers
plays a crucial role in determining the compensat®y accommodating option demand, then
the VRP would be expected to be sensitive to denamiohg their loss period. Following
Garleanu, Pedersen, and Poteshman (2009), thadimber between the market-maker profits
and demand pressure, denoted as IntDdP&L, is wsgduge the demand pressure effect of
recent profits and losses of market makers. Ther attntrol variables for the daily index return
(IR) and daily realized volatility (RV) associatedth option price (implied volatility) are also

included into the regression model in Equation (5).
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VRR=a, +a,MD, +@OIB,, + p,0IB, + AInDdP&. L, + 5, R\+ IR

12 (5)

+Y WVRR, +5,
=1

The daily IntDdP&L is calculated by the sum of potof lag daily market-maker hedged
profits (P&Ls) and daily option net demand (DdAKR) in the near and second monthsr
each of call and put options in the near- and sgeponth, it is assumed to be sold or
bought at the midpoint price of quotes. Furtheicgrisk every 30 minutes is dynamically
hedged to keep delta-neutral of option positionsl wption expiration date by buying or
selling |deltaj units of the underlying futuresttie case of a call (putj.In each contract
month, the daily hedged profits (P&LSs) for marketk@rs are calculated depending on the sign
of order imbalance in a trade day. If the optiohdemand of end users (order imbalance) is
positive, i.e., a sell demand for market makerg, daily P&Ls sum up the 30-minutes
delta-hedged gains for all sold option series itragle day. Similarly, for negative order
imbalance, the daily P&Ls are sum of the 30-mindielsa-hedged gains for all bought option
series in'a trade day. In addition, RV, denotelzezhvolatility, is measured by the sum of the

squared 5-minute returns in a day

2.3.2. Testing the effect of demand pressure witk-varying risk aversion

In addition to empirical evidences In favar of cbes in risk aversion (e.g., Brandt and
Wang, 2003), Todorov (2010) also finds that majletps drive time-varying risk aversion.
Large or extreme price moves increase both investord market makers’ fear of future

jumps. Immediately after the occurrence of jumpwestors are willing to pay a higher

3 The delta is calculated by constructing on theeBiScholes model, in which the implied volatility day t
is used to forecast the realized volatility on tted. Moreover, in our study, every TXO can be hetgely by
a quarter of TXF contract because the multiplierstifie futures and options contracts are NT$200NF$50
per index point, respectively.
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premium for protection against jumps because thew the possibility of future jumps as
more likely. However, most major market indices egapto contain price jumps. If risk
aversion is indeed driven by jump activity, the @eich pressure effect with jumps should
result in a substantial impact on VRP in each of¢ldemand variables.

To link the demand pressure effect with time-vagynsk aversion, a jump dummy
variable (D) is included in Equation (6). The norgwaetric test proposed by Lee and
Mykland (2008) is adopted to identify the price jpsnD is a dummy variable that is equal
to 1 if a price jump occurs during the daily tragltnme period on dat; and zero otherwise.
D*OIB: captures the demand pressure effect in the ocwmer®f jumps. Here, it is

expected to be larger demand pressure effect éothtiee demand variables as jumps occur:

VRP 2@ty +a, MQ +a, D+ +4 OB,  ,0IB, +¢,0* OIB, +4/,[ OIB, + 5 IntDAP& I,

12 (6)
+BRV + B, IR+ @ VRP, +&.
=

3. DATA

This study requires two sets of data. The intradata on the Taiwan index option
(TXO), which is traded on the TAIFEX are obtained from the Taiwan Economic JournalfTE
database. The data contain trade and quote fileeptibns. The transaction prices,
transaction volumes for every trade are extractemhfthe trade file and the bid and ask
prices are acquired from the quote file for Januarg005 through December 31, 2009. The
minute-by-minute Taiwan stock index data are albtained from the TEJ database for
January 1, 2002 through December 31, 20009.

Several data filters are applied to select our fsaaple. First, the options with a quote

* The TAIFEX introduced the European style TXO, teit on the TAIEX, on December 24, 2001. The
contract matures on the third Wednesday of thevelslimonth. The contract months involve five coctsa
with different maturities in the nearby month, thext two calendar months, and the following two rtprty
months.
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price of less than 0.1, the minimum tick size, exeluded. These prices cannot reflect true
option value. Second, due to the potential ligyidibncerns, the options with less than five
trading days remaining to maturity are eliminat€dird, the options violating the put—call
parity boundary conditions are deleted. These optiare significantly undervalued and
have negative Black—Scholes implied volatilities.

Table 2 presents the results of the parameter a&stim for the realized volatility
forecast based on the VecHAR model in Equation TBe procedure of a daily rolling
window generates 927 estimations for every parantkigng the sample period. Table 2
reports the average. The mean coefficients for ®¥,first elements in the ;BandB;,
matrices, ‘are significantly positive, indicating ewn persistence in the CV component.
There exist dynamically asymmetric dependenciesvdrmt CV, nJV, pJV, and NV. For
instance, CV is'lagged to nJV as shown by the Begmt estimates for the second elements
in the B matrices whereas nJV is only lagged to nJV. Tloeegfall four volatility

components are included in the forecasting of zedliolatility.

Table 2 Parameter estimates for the VecHAR model

CcV nJv pJV NV
Coeff. t-value Coeff. t-value Coeff. t-value Coeff. t-value
Bo 0.0068 5.18" 0.0002 3.85" 0.0003 2.98" 0.0096 3.02"
0.0700" 1.76 0.0005 0.24 —0.0006 =0.27 0.0749 1.06
0.2106 2.06" -0.0023 -0.74 0.0027 0.64 0.3389 1.90
By 0.3807 2.52" 0.0068  1.18 0.0041 —-0.14 0.1551 0.21
0.0291 0.45 0.0004 0.03 0.0030 0.27 0.2137 0.49
-0.5322 -0.52 -0.0235 -1.07 0.0143 -0.08 -0.0272 0.28
0.4751  0.00 -0.2242 -3.23" 0.0195 -0.24 1.1956 -0.67
Bs 0.0236 -0.19 -0.0027 —0.63 0.0008 0.15 0.2272 0.31
0.4727 0.34 -0.0209 -0.81 0.0223 0.56 1.6656 0.52
—-2.5681 -2.19 0.1157 1.20 -0.1771 -2.31 1.2893 -1.69
0.0077 1.31 0.0002 0.88 -0.0002 -0.35 0.0122 1.25
Boz 0234 _1.47 0.0010 —1.09 ~0.0001 0.01 0.0415 0.02
0.0509 1.82 -0.0009 -0.24 -0.0048 —0.69 0.0319 1.08
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Notes This table presents the estimating results cdupaters for realized volatility forecast based amector
autoregressive (VecHAR) model in Equation (3):

Zt+22 = BO+ BlZ—1+ &Z—S-i- %2 Z— 22+ £t+ 22
Z,=(CV Y pJy NV".

The expected realized volatility is estimated usiing moving window data of past 800 days. The zedli
variation measures underlying the estimate arecbasé-minute high-frequency data from JanuarydD22to
December 31, 2009 inclusively. The procedure ofidydolling window generates 927 estimations facte
parameter during the sample periddble 2 reports the average. In Equation (3)isB vector of the intercept
term. B, Bs, and B,are matrices for the regression coefficients, incthhe first column, second column,
third column, and fourth column in each matrix espond to the parameters of the four volatility ponents,
respectively. A four-dimensional vector is includiedthe VecHAR model, involving continuous volatli
(CV), negative jump volatility (nJV), positive jumylatility (pJV), and overnight volatility (NV).n addition,
Newey—West standard errors are used to calculatevilues of the estimated parameters. Coeff. indictie
regression coefficient. ***, ** and * indicate thavalues are significant at the 0.01, 0.05, and|ével,
respectively.

(3)

Figure 1 exhibits the plot of the time-series favdal-free implied volatility (IV) and
expected realized volatility (RY in the top panel and VRP in the bottom parelisual
inspection reveals that both-the implied volatilapd expected realized volatility track
closely., Overall, the IV is slightly above the RYy 162 basis. points, indicating a positive

VRP (The means of IV and R\are 0.2320 and 0.2158, respectively).
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Figure 1. Time series plots of implied volatiligxpected realized volatility, and volatility riskepnium. The
volatility risk premium (VRP) is quantified as timeodel-free implied volatility (V) less the expedteealized
volatility (RVg). The model-free method proposed by Jiang and 2805, 2007) is adopted to extract the
implied volatility, and a vector heterogeneous esgoessive (VecHAR) model is used to estimate tpected

realized volatility.
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The second panel of Figure 1 shows that the timess&RP ranges from —0.2883 to
0.2245 during the period of 2005-2009 and has anr@d#L62. The 1.62% volatility spread
provides evidence to support the finding of Boleemd Whaley (2004) and Garleanu et al.
(2009) that market makers who provide liquidity ttee buy side are compensated for
accepting riskHowever, when the market is more volatile, markekens also face substantial
risk of losses. In the period of financial crisis2008, a negative VRP, also shown in Todorov
(2010) and Bollerslev, Gibson, Zhou (2011), occinegjuently. That is, market makers
providing liquidity to the buy side suffer tradimgsses. In addition, the VRP is stationary

time series according to the results of the Diclkepter test with test statistic of -44.6.

Panels A and B of Table 3 respectively report thiarmsary statistics of option order
imbalances measured by the number of trades (#&#)traded dollar amount ($OIB).
#DdAlIRisk;, #DdVoIRisk, and #DdJpRisk (#DdAllIRisk,, #DdVolRisk, and #DdJpRisk)
indicate option demand, volatility demand, and judgmand in the near (second) month, in
which all'are measured by the number of tradesil&ily) $DdAlIRisk; $DdVoIRisk and
$DdJIpRisk ($DdAIlIRisky $DdVOIRIsk, and $DdJpRISR are option demands-in the near
(second) month measured by the dollars $OIB: Thkalteeshow that all the option order
imbalances .are slightly negative, negative skewnassl leptokurtic. For instance, the
DdAIIRisk;, DdVoIRisk;, and DdJpRisk measured by #OIB ($OIB) in the near month
average —0.0058, —0.0284, and —-0.0055 (-0.012037#9, and —0.0125), respectively. In
addition, the augmented Dickey-Fuller (ADF) unitotrotests significant reject the
hypothesis of one unit root for every individualries, indicating that these demand
variables are stationary. The correlation coeffitsebetween option order imbalances in
near- and second-month for #DdAlIRiskDdVoIRisk and #DdJpRisk ($DdAlIRisk
$DdVoIRisk and$DdJpRisk) are 0.09, 0.06, and 0.09 (0.18, 0.2@,0ah5), respectively. The
correlation coefficients range from 0.06 to 0.28owing a low correlation between these

option demand variables in the near- and secondkimon
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Table 3 Summary statistics for order imbalances

obs. Mean Std Min p5 p50 p95 Max Skew Kurt ADF
Panel A: Order imbalances measured by number désré#OI1B)
#DdAIIRisk; 927 —0.0058 0.0324 -0.3271 -0.0577 —-0.0055 0.0451 0.0946-0.9921 13.20 -569
#DdVolRisk 927 -0.0284 0.0300 -0.3376 -0.0778 -0.0272 0.0177 0.0717-1.2059 15.01 -307
#DdJpRisk 927 —0.0055 0.0334 -0.3549 -0.0598 -0.0049 0.0477 0.1201-1.1050 15.73 -587
#DdAIIRisk, 927 —0.0118 0.0389 -0.2435 -0.0808 —0.0093 0.0487 0.1582-0.4361 4.76 -477
#DdVolIRisl, 927 —0.0166 0.0536._ -0.2315 -0.1120 -0.0160 0.0704 0.1504-0.0733 3.43 -556
#DdJpRisk 927 —0.0111 0.0409 -0.2565 -0.0824 -0.0092 0.0532  0.1522-0.4527 4.66 -511
Panel B: Order imbalances measured by dollars ($0IB)
$DdAIIRisky 927 —0.0127 0.0348 -0.3112 —-0.0690 —0.0114 0.0393.  0.1211-0.7107 9.13 -647
$DdVoIRislky 927 —0:0379 0.0341 -0.3226 -0.0940 -0.0362 0.0155 0.0732-0.7141 8.31 -401
$DdJpRisk 927 —0.0125+0:0357+=0:3359 -0.0712 —-0.0114 0.0407 0.1300-0.8016 10.47 -668
$DdAIIRisk, 927. —0.00700:0396 —-0.2428 —=0.0760.-0.0055 0.0551 0.1879-0.3370: 5.08 -516
$DdVoIRislky 927 —0.0097 0.0568 -0.2301 '-0.1032 --0.0119 0.0827 . 0.1804-0.0155. 3.59 -626
$DdJpRisk 927 —0.0064 0.0418 -0.2517 -0.0796 -0.0056 0.0572 0.1726-0.3298 = 4.85 -554

Notes This table presents summary statistics for dgljon order imbalances in the near and secondhsofanel
A and Panel B report the statistics of order imhzda measured by number of trades (#0IB) and ddqIB),
respectively. #DdAlIRisk #DdVoIRisk and#DdJpRisk (#DdAllRisk,, #DdVolIRisk, and#DdJpRisk) indicate
option demand, volatility demand, and jump demamthe near (second) month, in'which order imbalarare
measured by the number of trades. Similarly, $DRi&k; $DdVoIRisk and $DdJpRisk ($DdAIlIRisk;,
$DdVoIRisk, and$DdJpRisf are option demands in the near (second) montivhioh they are measured by the
dollars $OIB. ADF is the augmented Dickey—Fulleituoot test.

4. EMPIRICAL RESULTS

4.1. Option Demand Pressure on VRP
In practice, the price of the option that marketkara sell (buy) includes (excludes)
risk premiums that compensate the unhedgeable Aigbositive (buy) demand pressure,
which is opposite to the sell demand pressure farket makers, raises VRP, whereas a
negative (sell) demand pressure decreases VRP., Tthdemand pressure in an option
affects VRP, it is expected to be a positive eftdalemand pressure on VRP.
Panels A and B of Table 4 report the results ofdymand effect measured by #OIB and

$0IB, respectively. In Panel A, the coefficients fgg and ¢ in the near and second
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months are both significant and positive for optaamand (DdAIlIRisk) and jump demand
(DdJpRisk). This finding indicates that demand poes stemming from aggregate option
demand and jump demand positively affects VRP. Hmwethe volatility demand
(DdVoIRisk) pressure has relatively weak influenoe VRP due to the positive but
insignificant coefficients forgg and ¢ . Panel B reports similar results for the positive
effect of demand pressure measured by $OIB. Thegs@rieal results support a positive

effect of option demand pressure on VRP.

Table 4 The effect of option demand pressure on VRP

DdAIIRisk DdVolRisk DdJpRisk

Coeff. t Coeff. t Coeff, t
Panel A: Demand measured by number of trades (#QIB)
a, 0.0051 3.04° 0.0048 2.88 0.0052 3.04
Q 0.0988 2.11 0.0732 1.30 0.0980 2.10
@ 0.0464 2.08 0.0202 1.30 0.0488 2.05
Adi.R " 0.8754 - 0.8735 - 0.8757 -
obs. 927 - 927 - 927 -
Panel B: Demand measured by traded dollars ($OI1B)
a, 0.0051 3.01 0.0047 2.86 0.0051 3.03
a 0.0903 2.41 0.0628 1.54 0.0863 2.26
@ 0.0423 1.93 0.0150 1.11 0.0484 2.06
Adj.R 0.8754 - 0.8735 - 0:8757 -
obs. 927 — 927 - 927 -

Notes This table presents the results for the regresamdel, shown in Equation (4), of option demarespuare on
volatility risk premium (VRP).

12
VRR=ay+a, MD+¢OIB, +¢,0IB, +> w, VRP, +5, 4)

=1
Two types of option order imbalance are used tosomeathe option net demand, one in number of tr&desB)
and the other in dollars ($0IB). The results aporeed in Panel A and Panel B, respectively. Fohégpe of
order imbalance measure, three order imbalanceblesi are calculated separately weighted by aggreisk,
volatility risk, and jump risk and are used to prosespectively, for option demand (DdAlIRisk), atlity
demand (DdVoIRisk) and jump demand (DdJpRisk). Téeyindividually included in the regression moutel
investigate the demand pressure effect on VRP. dépendent variable, VRP, is quantified as the mifvdel
implied volatility less expected realized volailitOIB, and OIB, denote the daily option order imbalances in
the near and second months, respectively. MD isoaddy dummy and the VR are lagged volatility risk
premiums. Newey—West standard errors are useditalate thet-statistics of the estimated parameters. For
brevity, this table does not repott,and W;. *** ** and * indicate thatt-values are significant at the 0.01,
0.05, and 0.1 level, respectively.

Compared with the demand pressure effects in theesgand variables, DdAIIRisk and
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DdJpRisk explain VRP better than DdVoIRisk. A pbtsicause for the weak volatility
demand pressure effect is that market makers asknfaller compensation to take the
relatively small volatility risk associated with athprice moves. In addition, the significant
and positive coefficients for dummy variapte in both Panels A and B confirm the
Monday effect (i.e., VRP is greater on Monday). Menday effect may result from the
accumulation of information over the weekend nafitrg period. The high uncertainty
during weekend may increase demand for using opttonadjust the portfolios against
volatility risk or jumps and subsequently causeghar VRP on Monday.

Table 5 provides the results of demand pressueeteliy controlling on interaction
between recent market-maker hedged profits and ne@meessure (IntDdP&L), daily realized
volatility (RV), and daily index return (IR). As efvn in Panels A and Bg and @ are
almost significant positive for the three demandaldes. This evidence makes it clear that
demand pressure has a positive impact on the EHv&IRP regardless of the sources of
unhedgeable risk. In addition, all thecoefficients are found to be significant negativéanel
A and Panel B. The negative coefficients on theraution between market-maker hedged
profits and option net demand indicate an incrédserease) in the demand pressure effect on
VRP following recent market-maker losses (profitRacing the trading loss, market makers
with risk aversion.ask a higher risk premium focejating additional risk, consistent with
Garleanu, Pedersen, and Poteshman (2009) who fnodigslinkage between demand
pressure effect and risk aversion. The result@euides evidence in supportive to that market
makers play a crucial role in determining VRP.

The negativeoefficients for £, in Panels A and B suggest that a negative retuyriead
to higher VRP because investors are willing to peye to hedge the potential decline than

to hedge a possible increase.
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Table 5 The effect of option demand pressure on WiPcontrol variables

DdAlIRisk DdVolRisk DdJpRisk

Coeff. t Coeff. t Coeff. t
Panel A: Demand measured by number of trades (#OIB)
a 0.0859 1.88 0.0710 1.32 0.0831 1.81
@ 0.0677 2.98 0.0391 2.38 0.0698 2.87
B -0.0005 —4.85 -0.0004 —4.56 —0.0004 -5.40
B, -0.0109 -0.97 -0.0099 -0.90 -0.0116 -1.04
B, —-0.3752 -3.19 —-0.3929 -3.34 -0.3710 -3.19
Adj.R 0.8841 2 0.8828 - 0.8845 -
obs. 927 - 927 4 927 -
Panel B: Demand measured by traded dollars ($0IB)
Q 0.0886 2.41 0.0860 217 0.0836 2.23
@ 0.0627 2.86 0.0282 1.99 0.0668 2.87
B ~£0.0004 -3.86 —-0.0004 -5.03 —0.0004 -5.27
B, -0.0118 -1.06 ~0.0131 -1.19 -0.0132 -1.19
B -0.3896 -3.34 -0.4208 -3.60 -0.3888 -3.37
Adj.R 0.8844 — 0.8840 E 0.8851 -
obs. 927 — 927 — 927 -

Notes This table presents the results for the regregsiadel, shown in Equation (5), of option demaresgure on
volatility risk premium (VRP) by controlling on thateraction between market-maker hedged profits @ption
net demand (IntDdP&L), daily realized volatility\(lR daily index return (IR), and lagged VRPs:

12
VRR=a,+a,MD+@OIB, +¢,0IB, +AIntDAP& L +B8,RV+ 5, IRt Y @ VRR#¢. )
j=1

Two types of option order imbalance are used tosoregthe option.net demand, one in number of trédeB)
and the other in dollars ($OIB). The results aported in Panel A and Panel B, respectively. Fohégpe of
order imbalance measure, three ‘order imbalanceblesi are calculated separately weighted by aggreisk,
volatility risk, and.jump.risk and are used to prosespectively, for option demand (DdAllRisk), atlity
demand (DdVolRisk) and jump-demand (DdJpRisk). Taeyindividually included in the regression mottel
investigate the demand pressure effect on VRP.VIRE is quantified as.the model-free implied voigtiless
expected realized volatilityOIB, andOIB, denote the-daily option order imbalances in ther rreal second
months, respectively. IntDdP&L is the interactioptwseen market-maker hedged profits and option net
demand. MD is a Monday dummy. The ViR®are lagged volatility risk premiums. Newey—-Westindard
errors are used to calculate thstatistics of the estimated parameters. For byettis table does not
reporta,, @,,, and w;. ***, ** and * indicate thatt-values are significant at the 0.01, 0.05, andlével,
respectively.

4.2. Option Demand Pressure on VRP with Time-Vayyisk Aversion

Table 6 reports the results of the demand pressifeet on VRP with jumps. Aliy;

coefficients in Panels A and B are significantlyspioe and larger than those fag for all
three demand variables (DdAIlIRisk, DdVoIRisk, andJpRisk). This indicates a greater
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impact of demand pressure on VRP at the time of dbeurrence of market jumps.
Specifically, the demand pressure effect with junigpsnore than a fourth larger as that
without jumps. For example, for all demand (DdABR) measured by #0OIB ($0IB), the
estimates for demand effegt; and ¢ are 0.2818 and 0.0339 (0.2574 and 0.0493),

respectively.

Table 6 The effect of option demand pressure on WHPmarket jumps
DdAlIRisk DdVolRisk DdJpRisk
Coeff. t Coeff. t Coeff. t

Panel A: Demand measured by number of trades (#0IB)

a 0.0339 1.57 0.0094 0.43 0.0301 1.40
@ 0.0467 2.86 0.0251 1.79 0.0456 2.50
V1 0.2818 2.87 0.3122 277 0.2424 2.84
V2 0.0766 0.94 0.0459 0.97 0.1228 1.61
B —-0.0005 —4.73 -0.0004 —4.45 -0.0004 -5.56
B, -0.0079  -0.71 -0.0088 =0.79 -0.0085  -0.77
B -0.3852 221/ ~0.4008  -3.40 -0.3822 -3.29
Adj.R 0.8897 = 0.8886 — 0.8904 -
obs. 927 L 927 — 927 -
Panel B: Demand measured by traded dollars ($0IB)

a 0.0493 2.38 0.0516 2.46 0.0452 2.18
@ 0.0432 2.60° 0.0176 1.34 0.0423 2.30
V1 0.2574 2.31 0.2289 1.72 0.2118 1.97
V2 0.0794 0.93 0.0302 0.61 0.1504 1.79
B —0.0004 -3.74 -0.0004  —4.65 —0.0004 -5.46
B, -0.0091  -0.83 -0.0112  -1.05 -0.0101  -0.94
B -0.3926 -3.33 —0.4208 -3.51 -0.3927 -3.38
Adj.R 0.8900 -~ 0.8887 -~ 0.8911 -~
obs. 927 - 927 -~ 927 -

Notes This table presents the results for the regressiadel, shown in Equation (6), of option demarespuare on
volatility risk premium (VRP) with market jumps:

VRR=a,+a, MQ+a,D+@O0IB, +¢,0IB,+¢,0Q* OIB,+y 0¥ OIB,+BIntDdP& L + 4 ,R)

12
+BIR +> WVRP, +5.

=1

(6)

The price jumps are identified by a nonparametat proposed by Lee and Mykland (2008). Two tydes o
option order imbalance are used to measure theropét demand, one in number of trades (#OIB) haddther
in dollars ($0IB). The results are reported in Palheand Panel B, respectively. For each type ofeord
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imbalance measure, three order imbalance varigdescalculated separately weighted by aggregate ris
volatility risk, and jump risk and are used to prosespectively, for option demand (DdAIIRisk), ablity
demand (DdVolRisk) and jump demand (DdJpRisk).Taey individually included in the regression model t
investigate the demand pressure effect on VRP. ddpendent variable, VRP, is quantified as the mivdel
implied volatility less expected realized volafiliD,, a jump dummy variable, is equal to 1 if a prieep occurs
during the daily trading time period on dgyand zero otherwiseOIB, and OIB,denote the daily option
order imbalances in the near and second monthsectpely. IntDdP&L is the interaction between
market-maker hedged profits and option net dem&wWis the daily realized volatility and IR is theity
index return. MD is a Monday dummy. The VR® are lagged volatility risk premiums. Newey-West
standard errors are used to calculatetttatistics of the estimated parameters. For byrethits table does not
reporta,, @,,,a,, and w;. ***, ** and * indicate thatt-values are significant at the 0.01, 0.05, andéuél,
respectively.

In particular, as the arrival of market jumps, thés a great increase in the effect of
volatility demand pressure, arising from small erichanges, suggests that jump activity
motivates market makers to be more risk averseelyeasking for more compensation for
accepting unhedgeable risk. This result also supgbe finding of Todorov (2010) that

market jumps drives time-varying risk aversion.

4.3. Robustness Tests on Option Demand Pressweet Bfi VRP

Two robustness checks are conducted to furthefywere finding of a positive effect
of demand pressure on VRP. First, a liquidity iatlic of options is included into the
regression model to control the probable influencethe VRP. Second, an alternative
measure of realized volatility is used to re-examwhether the result of demand pressure
effect on the VRP is robust. They are specifietbsws.

First, option-liquidity is likely to affect the eftt of demand pressure on VRP. Brenner,
Eldor, and Hauser (2001) and Chou, Chung, Hsiad, \Wang (2011) find that option
liquidity impacts its implied volatility (price) asciated with the estimation of the VRP, the
implied volatility less expected realized volatilitTherefore, a liquidity indicator, the daily
aggregate option liquidity (QSPR), is incorporateth the regression model as a control
variable for potential bias due to liquidity in thption market?

The QSPR averages daily percentage quoted spreautiohs in the near and second

!> For conciseness, only the effect of option dempressure on VRP is examined by controlling on the
interaction between market-maker hedged profits@stibn net demand, daily realized volatility, gaithdex
return, lag VRPs, and option liquidity.
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months.For daily option percentage quoted spread in eadfract month, the average of
percentage quoted spread of call and put optiorfgsiscalculated in every five-minute
interval and then averaged across intervals inyaidavhich the percentage quoted spread
in calls (and puts) is equally weighted acrossrallvidual call (put) options with different
exercise prices. As for the percentage quoted dpkandividual option, it is calculated as
the difference between ask and bid prices dividimgmid-quote.

The results are reported in Table 7. The coefficedrB, picks up the effect of option
liquidity on VRP. Table 7 continues to show thaignificant and positive effect of demand
pressure on VRP persists after controlling foritiéy in options, consistent with the results
in Table 5.In addition, the insignificant coefficients for Uglity indicator(B,) indicate that

option demand pressure-in-contrast to its liquiditplains the time-varying VRP well.

Table 7 The effect of option demand pressure on b{réontrolling on option liquidity
DdAlIRisk DdVolRisk DdJpRisk
Coeff. t Coeff. t Coeff, t

Panel A: Demand measured by number of trades (#OIB)

a 0.0851 1.84* 0.0747 1.39 0.0821 1.77*
@ 0.0687 X0 0.0396 2.39% 0.0708 2.90%**
B -0.0005 -4.88* -0.0004 el -0.0004 -5.41 %
B, -0.0117 -1.04 -0.0108 -0.98 -0.0123 -1.11
B -0.3800 -3.19%+ -0.3988 3389 -0.3760 -3.18%
B, -0.0455 -0.88 -0.0599 -1.16 -0.0454 -0.88

Adj.R 0.8842 . 0.8831 . 0.8846 -

Panel B: Demand measured by traded dollars ($0I1B)

a 0.0890 2.42% 0.0943 2.37% 0.0838 2.24%*
@ 0.0630 2.86%** 0.0272 1.91* 0.0674 2.84%%
B -0.0004 -3.90%** -0.0004 -5.07%** -0.0004 -5.30%**
B, -0.0126 -1.13 -0.0145 -1.31 -0.0140 -1.26
B -0.3945 -3.34%x* -0.4302 -3.62%** -0.3939 -3.37%%
B, -0.0489 -0.96 -0.0798 -1.52 -0.0501 -0.99

Adj.R 0.8846 - 0.8844 - 0.8852 -

Note. This table presents the results of optionadehpressure on volatility risk premium (VRP) bytrolling on the
interaction between market-maker hedged profits @ptétbn net demand (IntDdP&L), daily realized vdlgt
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(RV), daily index return (IR), option liquidity (Q&P), and lag VRPs. The coefficientfafpicks up the effect of
option liquidity on the VRP. Two types of optiorder imbalance are used to measure the option netrdk one in
number of trades (#OIB) and the other in dollar®I@®). The results are reported in Panel A and P&el
respectively. For each type of order imbalance mreashree order imbalance variables are calculségdrately
weighted by aggregate risk, volatility risk, andgnju risk and are used to proxy, respectively, faroopdemand
(DdAlIRisk), volatility demand (DdVolRisk) and jumgemand (DdJpRisk). They are individually includedhe
regression model to investigate the demand pressfaet on VRP. QSPR is the dailliquidity in the option
market. The VRP is quantified as the implied viitatiess expected realized volatilityOIB, andOIB, denote the
daily option order imbalances in the near and sgaoanths. RV is daily realized volatility, and IR the daily
index return. MD is a Monday dummy. The VR®are lagged volatility risk premiums. Moreovegwey-West
standard errors are used to calculatetibimtistics of the estimated parameters. For byrethts table does not
report thex,,a,,and w;’s. The Adj. R denotes the adjusted Rr the regression. ***, ** and * indicate that
t-values are significant at the 0.01, 0.05, andé\x&l, respectively.

Second, an alternative measure of realized vdiatsi used to_examine whether our
results of the demand effect are robust under réiffemeasures. Many empirical studies
find positive autocorrelation-between high-frequemelex returns. As reported in Andersen
et al. (2001), the serial autocorrelation in higbgiiency returns may bias the estimation of
realized volatility, measured by summing up theasqd intraday returns. This bias likely
leads to an inaccurate estimate of VRP and canegubstly result in an improper
conclusion from our analysis.

Andersen et al. (2001) suggest that the intradayme should be cleaned up using an
MA(1) filter before computing realized volatilitythe de-meaned MA(1)-filtered returns
can reduce serial correlation and are better sdidethe calculation of realized volatility.
Thus, this study follows their suggestion by appdyithe MA(1) filter to the 5-minute
returns. Using the filtered series, the relatedabdes are recalculated such as the expected
realized volatility, VRP, and the detection of jusngnd re-examine the effect of demand

pressure on the VRP.

Table 8 The demand effect of option based on thélfitered returns
DdAllIRisk DdVolRisk DdJpRisk
Coeff. t Coeff. t Coeff. t

Panel A: Demand measured by number of trades (#OI1B)
q 0.0241 1.12 —0.0001 0.00 0.0232 1.10
@ 0.0563 2.98 0.0316 1.78 0.0549 2.59
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e e 3

V1 0.3590 3.10 0.4160 2.78 0.3346 3.33

V2 0.1344 1.56 0.0485 0.92 0.1504 1.79
B, -0.0005 -4.82 —0.0004 —4.40 —0.0004 -5.56
B, -0.0063 -0.58 -0.0077 -0.71 -0.0071 -0.68
B, —-0.3968 -3.4% -0.4086 -3.53 -0.3853 -3.36
Adj.R 0.9021 - 0.9005 - 0.9029 -
obs. 927 - 927 - 927 -~
Panel B: Demand measured by traded dollars ($0IB)

a 0.0414 2.12 0.0443 2.21 0.0402 2.06
@ 0.0533 2.78 0.0233 1.44 0.0513 2.46
V1 0.2936 212 0.3103 1.69 0.2804 2.17
V2 0.1465 1.53 0.0270 0.50 0.1808 1.89
B, -0.0004 -3.54 —0.0004 —4.65 —0.0004 -5.29
B, ~0.0071 -0.67 -0.0101 -0.97 -0.0088 -0.84
B, -0.4091 -3.58 -0.4284 -3.65 -0.3992 -3.52
Adj. R 0.9015 = 0.8997 3 0.9028 -
obs. 927 — 927 — 927 -

Notes This table presents the results for the regressmdel, shown in Equation (6), of option demarespuare on
the volatility risk premium (VRP) based on MA(1)téred returns:

VRR=a,+a, MO +a;Q++@OIB +¢,0IB, +y,D* OIB +¢ ,0¢ OIB, + 5 |ntDAP& L+ ,R)

1 (6)
+BIR +> WVRR, +&.

j=1
An MA(1) filter is used to remove the serial-autoetation in high-frequency 5-minute returns. Supsmitly,
the filtered returns are used to recalculate rdlatiables in the regression model. Two typesptiba order
imbalance are used to measure the option net demmaadn-number of trades (#OIB) and the otherathads
($0IB). The results are reported in Panel A andePBnrespectively. For each type of erder imbatameasure,
three order imbalance variables are calculatedratgg weighted by aggregate risk, volatility risklgd jump
risk and are used to proxy, respectively, for aptiemand (DdAIIRisk), volatility demand (DdVolRisknd
jump demand (DdJpRisk). They are individually inlgd in the regression model to investigate the ddma
pressure effect on VRP. VRP is. quantified as theli@d volatility less expected realized volatilitpIB,
andOIB, denote the daily option.order imbalances in ther @@l second months, respectively, & jump
dummy variable, is equal to 1 if a price jump oescduring the daily trading time period on daynd zero
otherwise. The price jumps are identified by a rmyametric test proposed by Lee and Mykland (2008).
IntDAP&L is the interaction between market-makedded profits and option net demand. RV is dailyized
volatility, and IR is the daily index return. MD @&Monday dummy. VRP are lagged volatility risk premiums.
Newey—West standard errors are used to calculatesfatistics of the estimated parameters. For brethts
table does not reporty,, a,,,a,, and w,. ***, ** and * indicate thatt-values are significant at the 0.01,
0.05, and 0.1 level, respectively.

The results of a positive demand pressure effedRR are similar to those in Tables
4, 5, and 6. For brevity, only the result of demanessure on VRP with jumps is illustrated
in Table 8.Panels A and B continue to show highly significemtlues ofy, for all three

demand variables, indicating that jumps general@@er impact of demand pressure on
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VRP. A positive and larger coefficienig relative to ¢ for volatility demand at time of

jump occurrence suggests that time-varying risksaga is driven by market jumps. In sum,
it is thus concluded that higher (lower) VRP is endikely to be the result of the positive
(negative) demand pressure effect rather than ¢hial sautocorrelation in high-frequency

returns and liquidity effect.

5. CONCLUSIONS

This study examines the effect of option demandgures on volatility risk premium
(VRP) and investigates whether the demand pressifeet becomes stronger as market
jumps occur. The order-imbalance in; options Is usmstiead of option net demand to
analyze the demand pressure effect on VRP. Toekeds our knowledge, this study is the
first to investigate the effect of option demaneégsure on VRP and the linkage between
demand effect and time-varying risk aversion.

The option net demand is gauged using two ordeglanize measures: one in number
of trades and the other in traded dollar amount.dv@ry order imbalance measure, three
order imbalance variables are calculated separatehighted by the aggregate risk,
unexpected volatility, and sudden jumps in undedyprice. They are proxies for all
demand, volatility demand, and jump demand, resgdygt The three demand variables are
used to test the effect of demamessure in the presence of the sources of unheldgesk.

Our empirical results show that demand pressureaomdex option helps to explain
time-varying VRP. A positive (negative) demand prtes raises (decreases) VRP.
Specifically, market jumps generate a greater efdéademand pressure on VRP even for
the volatility demand resulting from the small metriprice moves. This result provides
evidence, as documented in Todorov (2010), thgeJasr extreme, market moves can drive

time-varying risk aversion.
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CHAPTER 3 THE FEEDBACK EFFECT OF TRADING VOLATILITRISK PREMIUM:

EVIDENCE FROM THE TAIWAN INDEX OPTION MARKET

1. INTRODUCTION

Variations in market return volatility or jumps iatluce a source of risk known as
volatility risk. A large body of literature has fiod evidence that volatility risk is priced in
options and compensated by a volatility risk premiVRP), for example, Bakshi and
Kapadia (2003), Buraschi-and Jackwerth (2001), @adrWu (2009), Chernov and Ghysels
(2000), Coval and Shumway (2001), and Ting (20@&mMpirical evidence also indicates
that higher volatility often.leads-to increased V@®llerslev & Todorov, 2011; Todorov,
2010). Despite the overwhelming evidence for thesence and the cause of VRP, much
less is known about the market reaction followinigrge VRP. The current study fills this
gap by investigating the dynamic processes betwédia and volatility while focusing on
the afterward effect of a large VRP. This studyuagythat a large VRP is followed by a
feedback effect that increases market volatiligye&fically, a large VRP attracts volatility
trading and is accompanied by hedging transactishi&h could subsequently raise market
volatility, resulting in a feedback effect that ther enlarges market volatility. The
mechanism is explained as follows.

A large volatility risk premium provides opportues to engage in volatility trading.
The VRP, estimated by the difference in option iegblolatility and the actual volatility, is
often substantial in the real market and could yrggnificant profits for option writers.
Eraker (2008) finds that the implied volatility thie S&P 500 index option, measured by the
VIX index, averages about 19%, while the uncondaicannualized return volatility is only
about 16%. The 3% volatility spread between impéed realized volatilities translates into

an 18% premium for some options, indicating a neialr reward for sellers of index
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options.

Attracted by this premium, hedge funds, investniramks, and market makers actively
search for options mispriced in volatility termsak®hi and Kapadia (2003) and Carr and
Madan (1998) demonstrated that the time-varying WaR be captured by using the
delta-hedge approach. The delta-hedge approaclogmitie underlying spot assets of the
options to neutralize price risk in the portfolibhe approach sells (buy) options with
overvalued (undervalued) ‘volatility and, at.the eatime, hedge away price risk through
buying or selling the underlying shar&sAdjusting the delta-neutral portfolio dynamically,
volatility traders target a profit roughly the siakthe spread between implied volatility and
future realized volatility.

The delta-hedging strategies employed by volatiligders may subsequently raise
market volatility, leading to the feedback effecsadvered in this study. According to the
market crash model developed by Gennotte and Le(@®80), even relatively little
hedging can cause price discontinuities, partitplan an illiquid market. The price
discontinuities (or crashes) occur because investmistake hedging activity for
informed-based trades and thus revise their expactafor future prices. This incorrect
perception reduces the willingness of liquidity yaston necessary to absorb the impacts of
dynamic-hedging transactions. As a result, a retismall amount of hedging could drive
significant market price change, leading to greatatility. Frey and Stremme (1997)
demonstrate that the demand generated by dynarht&tdige raises the volatility of the
underlying assets. Similarly, Sircar and Papan@molgd1998) and Schoenbucher and
Wilmott (2000) find an increase in market volajilitollowing the implementation of the

delta-hedging strategy. The above studies imply tth& hedging strategy employed by the

6 According to the findings of Chaput and Ederingt@®05), delta neutral is the primary concern of
volatility traders when speculating on volatilithanges. A delta-neutral position can be maintaibgd
dynamically trading the underlying assets or, di&ble, futures contracts.
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VRP-stimulated volatility trading could result intstantial increase in volatility.

This study investigates the presence of the feddlediect from VRP to market
volatility. The bidirectional causality between VRIAd realized volatility is examined in
5-minute frequency using OLS regression, lineam@ea causality, and nonlinear Granger
causality tests. A finding that the VRP Grangerseauvolatility provides evidence in
support of the presence of the feedback effectth€dbest of our knowledge, this study is
the first of its kind to explore the bidirectione¢lationship. between VRP and market
volatility. Our results provide useful informatioon the dynamic influence between
volatility and.volatility trading. Findings in thistudy also shed light on whether knowledge

of past VRP improves the forecasts of current amaé realized volatility, and vice versa.

The TXO index options-offered by the Taiwan FutuEeEhange are analyzed. The
TXO options are written on the Taiwan Stock Excler@apitalization Weighted Stock
Index' (TAIEX) and are one of the most liquid_ indegtions in the world® At least two
properties of the TXO make it the ideal venue fog study of the VRP feedback effect.
First, the TXO option market is operated under ctonic call market with designated
market makers, who trade for their own accounts faitfdl the exchange obligation of
liquidity provision at the same time. To meet th®igation of liquidity provision, market
makers hold positions of calls and puts of the samgerlying but different strike prices
while neutralizing the net exposure on the pris& by dynamically trading index futures or

spot portfolios that replicate the index rettitriTheir trading portfolios thus resemble the

" For index options, delta hedging is often impletednusing index futures, which is much cheaper than
hedging by trading the underlying portfolio. Dynanmtedge using index futures is also liable to have
destabilising effect on the market too. The conégptell discussed in the seminal works of Mark Retein
and Hayne Leland for portfolio insurance and thessquent debates on the causes of the market afash
October 1987.

8 The TXO is ranked the fifth most frequently tradedex option on a global scale in 20Te constituent
stocks of the underlying spot index are also abtiteded. The market capitalization and tradinguwee of
Taiwan stock market rank respectively twenty-fastl fourteenth in 2010, despite the relatively $sedle of
the local economy.

1% |In addition to market makers, individual, domedtistitutions, and foreign institutions investohsaatively
engage in volatility trading using the TXO contsadhccording to the summary statistics of Changehisand
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popular volatility trading with the option/assetnaioination strategy. Since the market
makers account for the lion’s share of the TXO wmduin recent years, we anticipate that

the VRP feedback effect would be pronounced inrtrasket*°

Since the underlying index of TXO options is nadied directly, delta hedging in
Taiwan is often implemented using the index futucestract, an instrument with low
transaction costs and high pricing efficieityrhe index futures traded on the Taiwan
market share the same underlying index and matayitie as the TXO options. According
to the seminal works of Mark Rubinstein and Hayméahd in portfolio insurance and the
discussions on the causes of the market crash tdb@c 1987, the hedging-stimulated

volatility on index futures prices could quickhatrsmit to the spot index.

Second, unlike the U.S.-market, where instrumeaitdirectly trading volatility are
available, in Taiwan market there is no derivatbsased on volatility index, nor vehicle
specific for trading volatility spread. In U.S. rkat, for example, a variance swap allows
investors to bet directly on the difference betweealized stock price variation and the
variation _implicit in options prices (the VIX inde%® With the presence of such
instruments, volatility trading is straightforwaadd requires no dynamic hedging using the
underlying spot assets. On the other hand, in Traiwdoere derivatives to trade volatility
efficiently is still absent, strategies. intendedptofit from the changes in VRP are more
likely to induce subsequent higher volatility besadheir hedging transactions involve spot

assets. It is therefore expected that the VRP feddeffect will be more pronounced in

Wang (2010), the most widely used volatility traglistrategy in the Taiwan option market is the coration

of options and futures trades with an almost nédelia. Conventional straddle and strangle arelyarsed.

% In 2010, approximately 53% of trading volume oé tiXO options is contributed by market markers.
Domestic individuals, domestic institutional invest, and foreign institutional investors respedyivaccount

for 39.6%, 1.5%, and 5.9 %.

2L The liquidity, transaction costs, pricing efficign and price discovery has been explored by Raopk
Zurbruegg (2002), Hsieh (2004), Huang (2004), ahdwCand Wang (2006). Evidence in general confirms
that the market of index futures is good in qualigm all perspectives.

22 A typical variance swap pays the difference betweealized variance”, defined to be the averageased
daily return, and the squared VIX index. The peofiind losses from a variance swap depend only @n th
volatility spread but not the level changes of thderlying asset.
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Taiwan than in the U.S. market. Our study in thevada market sheds light on many other

markets that are at a similar stage of developitent.

This study uses both the linear and nonlinear dayisests to analyze the relationship
between VRP and market volatility. The nonlineausa test adopts a nonparametric
method based on the modified version of the Baek Brock (1992) nonlinear Granger
causality test.

The significant two-way impact from lagged realizedlatility to VRP and from
lagged VRP to realized volatility is documentdthe bidirectional causality found by the
OLS regressions and the linear and nonlinear Gracaygsality tests, confirms the findings
in literature (Bakshi and Kapadia, 2003; Bollerséd Todorov, 2011; Eraker et al., 2003;
Todorov, 2010) that uncertainty-in volatility rassthe VRP, and supports the contention that
the feedback effect of VRP positively Granger caube subsequent volatility. This finding
suggests that VRP plays an important role in_erpigi future realized volatility: a large

volatility premium could lead to greater realizealatility.

This study further decomposes the market volatilitg three components: continuous
volatility, negative jump volatility, and positijemp volatility, and examines the causality
between VRP. and each volatility component. The doeth results of the linear and
nonlinear causal tests show that the VRP feedféatt & the most pronounced for continuous
volatility, moderate for negative jump volatilitgnd least pronounced for positive jump
volatility. This pattern suggests that the dynawhéita-hedging is largely followed by small
volatility change but less by large volatility gkif Since the continuous volatility is the
variation attributable to the small price movemefits., smooth price process) whereas

jump volatility is the variation due to sudden dadje-scale price movemefit,the finding

% For instance, Korea and India both have very aciidex options, the KOPI 200 and NIFTY 50 index
option, respectively, but the derivatives to tradtatility index have yet to be launched.

24 According to Barndorff-Nielsen and Shephard (200Bpllerslev and Todorov (2011), and Eraker,
Johannes, and Polson (2003), the continuous \platt estimated by suming small price changes
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implies that the VRP stimulated trading/hedgingputh tending to increase price
fluctuation, does not frequently lead to sudderceogumps. In addition, the stronger
feedback effect for negative jump volatility thaor fpositive jump volatility indicates that

the VRP induced jump, once it occurs, tends tods®a@ated with a decline rather than an

increase in price.

The feedback effect that the. VRP nonlinearly Grangguses the three volatility
components is robust even after controlling forhigher volatility attributed to unexpected
information shocks. Results remain unchanged asstdg for potential bias caused by the
scale difference between overnight interval andstimeinute intervals during regular trading

session.

The remainder of this-paper is organized as folldection 2 contains descriptions of
methodologies used in this study. Section 3 prevel&rief description of the data. Section
4 reports the empirical results. Section 5 perfommisustness analyses for control of
information flow and different treatments of ovei interval. Section 6 concludes the

paper.

2. METHODOLOGY

2.1. Estimating Volatility Risk Premium

VRP represents the risk premium associated withiltioguations in return volatility or
jumps and is often measured by the difference betwstatistical and risk-neutral
expectations of the forward variation in the agsdtirn (Bollerslev and Todorov, 2011;

Todorov, 2010). To measure the VPR faced by liquidiuppliers, this study follows

decomposed from the squared return incrementsgwhé jump volatility is measured as the summatibn
large price discontinuities.
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Todorov (2010) and define daily standardized VRRrathe nextr trading days as the

risk-neutral volatility less expected realized vibky, quantified as

VRR=1/V1. B (01 1)~ 1NT B Oy 1), 7)

where E(.) and E(.) indicate the expectations under risk-neutral atatistical measures,
respectively, an€; indicates information filtration for market paipants®

Todorov (2010) noted that the first term in Equat(@) can be viewed as the daily
standardized volatility swap rate. Bakshi and Ma@2000), Britten-Jones and Neuberger
(2000), and Carr and Wu-(2009) show that the sved on the S&P 500 index can be
inferred from a portfolio-of-short-maturity out-ttfie-money options over a continuum of
strike ‘prices, which is adopted by the constructbthe CBOE new VIX index since 2003.
Therefore, the first term in Equation (7) is measuby the risk-neutral volatility computed
from the VIX'index, denoted by IV.

Since the VIX index is calculated using a calend@arating convention involving 365
days in one year, and reflects volatility in a 38¢geriod, this study adopts Equation (8) to
convert the VIX into a risk-neutral volatility thakeflects one-day volatility under a
business-day counting convention with 22 businegs th each month. Following Todorov
(2010), the VIX is converted into the daily riskeial volatility (1V) with horizon of 22

business days using following equations.

IV, =4/30/365*1/ 22VIX? ©)

% Note that our VRP measure in Equation (1) is difie from the definition in Todorov (2010). Todorov
(2010) calculates the VRP paid by hedgers, whicheigative on average, whereas we measure the VRP
earned by option liquidity suppliers, which is & on average.

38



For the statistical measures of forward variatibwe, second term in Equation (7), the
forecast of realized volatility is used as a praxy denote as RVInstead of forecasting
the expected realized volatility directly from tpast realized volatility, this study forecasts
using a trivariate vector autoregressive (VAR) maoensisting of continuous volatility
(CV), positive jump volatility (pJV), and negatiyemp volatility (nJV), all decomposed
from the realized volatility. Andersen, Bollersleand Diebold (2007) find that the
forecasting to the future realized volatility-impes significantly when using continuous
volatility (CV) and jump volatility (JV) decomposedom realized volatility as separate
regressors. They show that volatility componentsvigle better forecasting than realized
volatility itself because of the distinct featur@ssociated with the CV series and JV series:
CV is strongly serially correlated while JV is lggsrsistent and far less predictable than CV.
The different features for the two components iaticseparate roles in the forecast of

realized volatility.

Barndorff-Nielsen and Shephard (2001), Bollersléretschmer, Pigorsch, and
Tauchen (2009), and Todorov and Tauchen (2006, )28kdw that the future volatility
increases more following negative price jumps. Jumap volatility is decomposed into
negative and positive jump volatility to capture ghotential asymmetric impact of jumps
on volatility.

The detailed process of decomposition is provigedppendix A. In brief, the daily
RV is first calculated using 5-minute intraday retiseries and then decomposed every
one-day RV into three volatility components. Thrsguces three daily series, one for each
of the volatility components CV, nJV, and pJV.

Then the trivariate VAR model including EVhJV, and pJV, as specified in equation
(9), is used to forecast the one-period-ahead vegi@omponents. The realized volatility is

the square root of the forecasts’ sum for the tlwa@ance components forecasted by the
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VAR model. The VAR model uses the three-dimensiomator, estimated previously, as

the input?®

5 22
Z, =My +MZ ,+ MY Z 15+ M,y 7 122+4
=1 j=1

Z,=(CV?, IV, pay),

9)

5 22
where Z_,, > Z4, and Y_Z,_ indicate the vector of the lag daily, weekly, andrthly
i=1 =

variance components of realized variance, resggtMg is a vector of the intercept termaM
Ms, and My, are matrices. for the regression coefficients, incthhe first column, second
column, and third column-in-each matrix corresptmthe parameters of the three variance
components, respectivelyhe model uses the past 822 days for the estimatiparameters
Mo, M1, Ms, and M. The one-period-ahead variance component vectitagned using the

estimated parameters and the past 22 days’ Zs.

For data of daily frequency, the process rolls tohdaily, using the same window length
(822 days) for each forecast. Since we intend ¢olyme five-minute frequency forecasts, we
roll the data forward every five minutes. Thattiss study drops the earliest 5-minute return
observation in the previous dataset and adds theé asual return, treating every 55
consecutive observations (which may span acrossalamdar days) as data of one ‘trading
day’. The updated dataset is used to re-calcuteté822 decomposets which will be the
input of VAR model for parameteMs) estimation and forecasting, following exactlg th
same procedures as above. This will produce adstexfZ; every five minutes, wherg is

the forecasted realized volatility components artext ‘trading day’.

% A similar reduced-form predictive procedure foalized volatility measure has been verified to wal
empirically by Andersen et al. (2003). Our approeldsely follows the procedures of Bollerslev arai@rov
(2011) and Busch, Christensen, and Nielsen (2011).
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2.2. Linear Granger Causality

A traditional linear Granger causality model is kb to estimate the dynamic
relationship between VRP and the realized volgtiftfinding that VRP Granger causes the
realized volatility would support the VRP feedbatdfect.

Consider two time series,; d¥nd Y;. Linear Granger causality investigates whether
lagged Y has significant linear predictive power for cutred, which is conditioned on
past values of X.If so, then Y linearly Granger causes;. XIwo-way causality exists if
Granger causality runs in both directions.

The test for Granger causality between X and Y Ive® estimating a linear

multivariate regression as

Z,= A+ AZ ot AZ ot E, (10)

where Z.=(X;, Y)'denotes the two-dimensional vecta, = (¢, £,,) 'are zero-mean error

terms. A, Ag ..., and Ay, indicate the regression coefficientsvo test statistics are used to
detect the linear Granger causality. First, then@ea causality test statistic is computed
based on the Lagrange Multiplier (LM) test, whdre score covariance is estimated under
assumption of heteroskedasticity and- correlation tfef residuals’ The asymptotic
chi-square2) statistic is used to test the null hypothesa il the lag coefficients of X (Y)
are jointly zero. A rejection of the null hypothesndicates that X (Y) Granger causes Y (X).
Next, we test for cumulative linear Granger nonaditysfrom X (Y) to Y (X) by testing the
null hypothesis that the sum of all the lagged ftaehts of X (Y), denoted as b, is zero

using a t-statistic. The t-statistics for the sum ealculated using the Newey-West (1987)

" The matlab code used here is kindly provided hyk@wrin Sheppard, http://www.kevinsheppard.com/iviki
MFE_ Toolbox.
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autocorrelation and heteroskedasticity consistemtigance matrix. The optimal lag lengths

(m) are determined using the Akaike informationezion (AIC).

2.3. Nonlinear Granger Causality

Baek and Brock (1992) developed a nonparametrit fias potential nonlinear
causality among time series. The test uncovers@mgaining nonlinear causal relationship
after the liner causal effect has been accounted Tim detect the nonlinear Granger
causality from VRP to realized volatility, this diuadopts the modified version of the Baek
and Brock (1992)'s nonlinear Granger causality,t@sbposed by Hiemstra and Jones
(1994). This modified test is based on the nonparametiicnesors of temporal relations
within and across time series. It relaxes the apsiom of independent and identical
distribution in each time series in Baek and Br¢tR92), allowing each series to have
weak temporal dependence. To determine whethein@amlcausality exist between given
time series, we implement the modified Baek andcBitest to the residuals from Granger
causality equation (10). Appendix B provides a tiedadescription of the modified Baek
and Brock test used to detect the nonlinear cagksionship.

Assuming that Xand Y are strictly stationary and weakly dependent aattsfy the
mixing conditions as specified in Denker and Ke(E983). If Y; does not strictly Granger
cause X then the test statistic for nonlinear Grangersa#ity, G, is asymptotically
normally distributed. A rejection of the null hybesis of Granger noncausality indicates

that there exists nonlinear causality betweenwltetime series. The statistic G is given as

GUm+Lx Ly d)_ G(m Lxd 25 1 20y 1y ) (11)

= axyd) (X d) In

where G1, G2, G3, and G4 are joint probabilitiesjsrthe lead length; Lx and Ly are,
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respectively, the lag lengths of X and Y; d is tiance measure; n = T + 1 — m — max(LXx,
Ly); and o%(m,Lx,Ly,d) is the asymptotic variance of the maetif Baek and Brock test

statistic®®

3. DATA

The study collects _two sets of data: the minuteryute Taiwan stock index data
obtained from the Taiwan Economic Journal (TEJphiase for January 1, 2002 through
December 31, 2009; and the minute-by-minute TaiwéX index data provided by the
Taiwan Futures Exchange (TAIFEX) for December 1@)@through December 31, 2089.
The TAIFEX constructs its-VIX-index based on therdpean-style Taiwan.index option
(TXO) using the same approach as the CBOE new Witiex. This study retrieved, from
TEJ database, the three month time deposit of dstapsaving system for the risk-free

interest rate.

For every 5 minutes, the daily risk-neutral volgtil(1V) from the VIX.index is
computed using Equation (8) and the expected exhNolatility (RVg) Is estimated using
the VAR model in Equation (9). The 5-minute freqoeeWVRP is obtained using equation (7)

by subtracting R¥ from V.

Table 8 presents the results of parameter estimédiothe realized volatility forecast
based on the vector autoregressive model in Equgfh The 5-minute rolling window
procedure generates 41,195 estimations for eacmeaer during the sample period. Table
2 reports the average. The mean coefficients fof, @ first elements in the §yIMs, and
Mo, matrices, are significantly positive, indicating sorong own persistence in the

continuous variance over time. There are dynanyicadlymmetric dependencies between

8 Based on the Monte Carlo simulations, Hiemstra donks (1993) find that the modified test is ndiyon
robust to nuisance-parameter problems but alsgdad finite sample size and power properties.
? The TAIFEX began releasing data on the VIX on Deler 18, 2006.
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CV? nJV, and pJV. For instance, C¥is lagged to nJ¥as shown by the significant
estimates for the second elements in thealtd M5 matrices; and n3\s lagged to C¥as
shown by the significant estimates for the firgneénts in the Mmatrices in coefficients

for nJ\A. Therefore, we include all three volatility compaits in forecasting the realized

volatility.

Table 9 Parameter Estimates for the VAR Model indgn (9)

CcV? nJV? pJV?
Coeff. t Coeff. t Coeff. t
Mo 0.0017 2.38 —0.0006 -0.52 0.0004 0.41
26.6413 6.29 -10.7504 -0.85 10.6337 0.90
M, 2.1806 1.71 7.6145 2.04 ~2.8320 —0.88
—3.1440 -1.39 -3.8041 -0.61 ~2.2845 -0.55
24.7616 3.08 47.4784 2.12 14.7803 1.14
Ms 14.3758 2.70 —17.4456 aF 12.4233 241
—6.9938 -0.99 -19.1471 ~1.53 —8.4190 -0.75
38.0826 4.0T —11.8802 -0.61 4.8106 0.43
Mz, = —0.2093 -0.12 34.3943 1.96 18.5513 0.25
-19.5826 -1.47 52.0699 1.61 ~7.5304 -0.36

Notes.This table presents the estimating results ofrpaters for realized volatility forecast every 5 oigs
based on the vector autoregressive model in Equé&gip

5 22
Z =My +M,Z_, + Msz Z 15+ Mzzz Z—j /22""% )
i=1 j=1

Z/=[CV? nIV paVL.

The realized variation measures underlying thenegtis are-based on 5-minute return data from Jariyar
2002 to December 31, 2009 inclusively. For eaclthef estimated parameters, it averages all parameter
estimations with 41,195 observations during the @anperiod. The realized variance is decomposea int
three variance components, including continuoug@mae (C\#), negative jump variance (n3y and positive
jump variance (pJ¥). Based on the three variance components of eshlariance, the expected realized
volatility every 5 minutes is estimated using ateeautoregressive model for a three-dimensionatore
Coeff. and t are the estimated parameters of reigresinct-value of parameter test, respectively. In Equation
(9), My is a vector of the intercept term;MVIs5, and M, are matrices for the regression coefficients, irictvh
the first column, second column, and third columreach matrix correspond to the parameters ofhreet
variance components (GVnJV, pJV?), respectively All coefficients are multiplied by 100. *** ** ag *
indicate that thé-values are significant at the 0.01, 0.05, and G=46l, respectively.

)

Figure 2 exhibits the plot of the 5-minute frequenitne-series for the daily risk-

neutral volatility (IV) and the expected realizealatility (RVg). A visual inspection shows
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that both the IV and R¥closely track each other. The relationship holsneduring the

period of financial crisis in 2008 when the mar&eperienced large fluctuation in volatility.
Over the sample period, the daily risk-neutral titig is slightly above the expected
realized volatility by 15 basis points, indicatirag positive VRP. This positive VRP is
consistent with most other studies (Bakshi and id&pna2003; Bollerslev and Todorov,

2011; Todorov, 2010).

The daily risk neutral volatility and expected realized volatility
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Figure 2. Time 'Series Plots of the Daily Risk-Nauiolatility and Expected Realized Volatility. Ehifigure
depicts the time-series relation between daily-nisktral volatility (IV) and expected realized vitity (RV g)

at five minute intervals. The time period is frored@@mber 18, 2006 to December 31, 2009, inclusitie. IV

is computed from the VIX index using Equation (Bl Rk is estimated by using the vector autoregressive
model in Equation (9).

Figure 2 also shows that the size of VRP changes time and has a mean reversion
tendency. It is consistent with. the findings in-®oav (2010) that VRP increases
significantly after large market moves and revexsits long-term mean. Facing a
mean-reversion trading opportunity, volatility tesid engage trade based on the swing in the
VRP rather than the size of the VRP. The deviafrom the median VRP thus can better
reflect the trading opportunities of volatility thrs®® We therefore use the absolute
deviations from the median, denoted by |dVRP|, gsoxy of volatility trading profit.

Figure 3 shows that the |dVRP| fluctuates over t@me is more volatile during 2008. Any

%0 We thank the referee for this insightful suggestio
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noticeable variation indicates a profitable oppoittufor volatility traders.

The absolute deviations from the median of volatility risk premium
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Figure 3. Time Series Plots of Absolute Deviatimsn Median Volatility Risk Premium. This figure piets the
5-minute time-series of the absolute deviationsnftbe median of volatility risk premium (JdVRPPVRP|,

is the average of the |dVRP| during the sampleodeiRP is defined as the daily risk-neutral vdiytiess

expected realized volatility, where the risk-nel@atility .is computed from the VIX index and tlexpected
realized volatility is estimated by using the vecatoregressive model in Equation (9).

Table 10 provides summary statistics of the 5-nairithe series for [dVRP|, VRP, 1V,
RVe, RV, -and the three components of realized volgt{CV, nJV, and pJV}* Note that
both |dVRP| and VRP are positive in mean, indigatitat volatility sellers, on average, may
acquire profits about 4.8% annualized volatilityregl. The augmented Dickey—Fuller
(ADF) unit root tests significant reject the hypesis of one unit root for every individual

series, indicating that these variables are station

%1 For RV, this study first obtains 5-minute indexura series while treating the entire overnighigee(clock
time 13:30 to 9:00 next day) as one interidie realized volatility over a day is defined as trariation of
returns in any window that contains 55 consecutitervals (including 54 5-minute returns and oneraight
return). This study then estimates return variatigthin the window for a daily volatility estimateising the
Equation (Al) in Appendix A. By rolling the windoferward at 5-minute intervals, the RV estimation is
obtained every 5 minutes. For example, at t=1,izedlvolatility RV; is calculated using 5-minute returns
from 9:00 to 9:00 next calendar day. At t=2, wd tbé window 5 minutes forward, calculating the lized
volatility RV, using 5-minute returns from 9:05 current day @59mext calendar day, and so forth. This will
produce a time series of ‘daily’ RV every 5 minyte$ere a ‘day’ is defined as any consecutive %éruals
that does not necessarily begin at 9:00 am. Ttosgss is similar to the approaches used in Andessah
(2003), Clements, Galvao, and Kim (2008), and Wrggid Zhou (2009) to measure the monthly, quarterly
yearly realized volatility with rolling window appach for every day. The data constructed aboveised to
calculate the three volatility components: CV, pdil nJV, adopting the methodology in Appendix A.
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Table 10 Summary Statistics

Volatility components

|dVRP| VRP \Y, RV RV

Ccv nJv pJVv
Mean 0.0030 0.0015 0.0181 0.0166 0.0153 0.0121 0.0029 0.0034
Med 0.0020 0.0023 0.0179 0.0153 0.0129 0.0112 0.0000 0.0000
Min 0.0000 —0.0536 0.0072 0.0002 0.0030 0.0022 0.0000 0.0000
Max 0.0559 0.0210 0.0379 0.0808 0.0796 0.0796 0.0691 0.0599
Std 0.0035 0.0046+ 0.0056 0.0081 0.0098 + 0.0060 0.0085 0.0074
Skew 3.98 —2.33 0.46 1.58 2.35 2.26 4.01 63.4
Kurt 33.91 16.84 3.19 7.33 10.78 17.65 21.96 19.05
ADF  -283.84 -206.85 —20.56 —61.94 -350.29 40 -722.13 -784.69

Notes. This table presents summary statistics for alesaleviations from the median of volatility riskemium
(|[dVRPJ), volatility risk premium (VRP), risk-neatrvolatility (IV), expected realized volatility {R), realized
volatility (RV), and three volatility'"components r#alized volatility. The volatility components deaposed from
the realized volatility are continuous volatilitZV), negative jump volatility (nJV), and positivemip volatility
(pJV). The data cover the period from December20®6 to December 31, 2009. All series are compirted
5-minute frequency. The VRP is defined as IV le¥s,Rvhere the 1V is directly computed from VIX index
and the R¥ s estimated by a vector autoregressive model. ADke augmented Dickey—Fuller unit root test.

4. EMPIRICAL RESULTS

4.1. OLS Regressions

Figure 4 presents the intraday |dVRP| pattern lyg dathe week. The graph shows a
strong opening spike on:Monday and weak openingespn Wednesday and Friday,
indicating that the opening is often associatedh weighted uncertainty in market volatility.
The |dVRP| spike at opening may be caused by tbenadation of information shocks
during overnight or weekend periods. In respondmthe accumulated information during
the non-trading period, option traders rush to stdfheir portfolio at market opening. The
strong trading demand at market open likely residtsjumps in market price and

subsequently increases the need of using optioasjtest portfolios against jump risk and
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volatility risk. Facing higher unhedgeable risk,riket makers require a higher premium for
providing liquidity, which leads to greater VRPtae opening (Bollen and Whaley 2004;
Garleanu, Pedersen, and Poteshman 2009). The |dMR&}s quickly afterward and levels
off for the rest of the day. This matches the pattef volatility risk premium under

information shock documented in Todorov (2010)jndreases after a large jump in price,

then slowly reverts to its long-run me¥n.

10 The intraday volatility risk premium (JdYRP[) pattern by days of the week
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Figure 4. Intraday Pattern of |dVRP| by Day of\tfeek. This figure depicts the intraday: patternhaf &bsolute
deviations from median volatility risk premium (|&¥|) from 9:00aM to 1:30 PM™ (Taipei time) across
weekdays. The volatility risk premium (VRP) is defd, as the daily risk-neutral volatility less exjgelc
realized volatility. For each weekday, the |dVRPfiist computed every 5 minutes and then averdgeah at
each interval time. [dVRRHenotes the average of the interval VRP acros&dese

Previous literature shows that raw series data @athmon regularities and time trends
may lead to spurious conclusions in regression yaeal To mitigate the potential
spuriousness problem, each individual raw timeesas adjusted for deterministic variables
using regression equation (12) before proceedirig thie causality tests. The approach is
similar to that used in Roll, Schwartz, and Subrahyam (2007) for adjusting the series of

the stock-futures basis. The innovations (regressesiduals) from Equation (12) are used

32 Note that while calculating the 5-minute returnieg our process treats the entire overnight pesi® one
5-minute interval. This likely raises the conceffnspurious result because of the scale differencesiurn,
volatility, and VRP between overnight interval aheé rest of the 5-minute intervals. In section &, perform
robustness checks by adding a binary variable ¥erraght interval, and by removing the overnightipe
from the time series. Results are not materialgnged with different treatments of overnight intdrv
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for subsequent causality analysis.

4 11 4
X =0+ ) A Weekdayr), @ Monftkd y* TimMatry  Holdawat
i= i=1 k=1

+ T2 +0% R +e,

In equation (12), the; denotes the raw time series (JdVRP|, RV, CV, ra\fpJV) to be
adjusted. Following deterministic variables aresghoto adjust the raw series:\(eekday
four day-of-the-week dummies for Monday through fHaay; (if) Month: eleven calendar
month dummies for January through November; (iilpnMai : four dummies for the four
days prior to option expiration.to control for matyrrelated effects, wittk=1 representing
the last trading day; (iviHoliday-y : a dummy for the trading day prior to major halyd
including New Year (January 1), Double Tenth NagioDay (October 10), and Chinese
Lunar New Year; (v) a linear time trendl, and a quadratic time tren@?, to remove any

long-term trend; and (vig : the risk-free rate.

Table 11 reports the coefficients of the adjustnregtessions using Equation (12) for
[dVRP]|, RV, CV, nJV, and pJV. The regression R-sspiaange from 0.04 to 0.42,
suggesting that the chosen variables explain atmviat portion of the realized volatility
and volatility components. More importantly, marmgressors are statistically significant
across multiple regressions, indicating that [dVR®] CV, nJV, and pJV do share common
components. The residuals of Equation (12), theesevith common regularity removed,
are used for subsequent OLS regression, linearg8racausality, and nonlinear Granger
causality analyses. Residuals of the five regressare stationary time series according to

the results of the Dickey—Fuller test (not tabudite
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Table 11 Adjustment of Time Series Data

|dVRP| RV CV nJV pJVv

Variables Coeff. t Coeff. t Coeff. t Coeff. t Coeff. t

Intercept  0.0082  0.68 0.412; 1253" 07726 42217 -0.482: -15.15"  -0.0227 -0.79
Monday 0.0077  1.41 0.150¢ 10.26” -0.0034 -0.42 -0.047¢ -3.36" 0.243¢ 18.97"
Tuesday 0.0115 2.3 -0.0357 -2.45  —0.0304 -3.75° -0.002¢ -0.19 -0.058¢ -4.58"
Wednesday 0.0120 223" -0.08® -5.69° -0.0151 -1.86 -0.220¢ —15.66" 0.107: 8.42"
Thursday  0.0479 9.38"  0.110¢ 8.01"  0.0243 3.16" -0.043: -3.22" 0.134¢ 11.15"
January  -0.0349 -454"  0.312¢ 1501 0.0588 5.06" 0.288! 14.28" 0.207: 11.35"

February -0.1260 -15.28" -0.321: -14.40" -0.4408 -35.48~ 0.0317 1.47 0.2235 11.44"

March -0.1475 -19.93" -0.137( -6.84" 02772 —24.85° 0.014. 0.73 0.2062 11.76"
April -0.3237 -43.82" 03197 -15.96° =0.3708 -33.31" -0.139:¢ -7.20"  0.2113 12.07"
May -0.2897 -39.27" —0.381: —-19.08" -0.4401 -39.59"  -0.097( -5.02"  0.2241 12.82"
June -0.2706 —-37.397 -0.328. =16.75" —0.3713 —84.04" 0.014t 0.77 0.0164 0.95
July -0.1294 -18.39" " -0.227: =11.93" -0.3341 —31.49° -0.027: -1.48 0.2243 13.45"
August -0.2332-32.84" -0.072( -3.757 -0.1949 -18.21" . 0.028:  1.52 0.1950 11.59"

September -0.1379 -19.23"  0.105¢ 545" -0.1418 -13.17" 0.147C 6277  0.2644 15.56"
October  —0.0889 —-12:69°  0.2007 10.58" =0.1708 -16.18" = 0.4167 22.68" = 0.1702 10.25"
November -0.0159 - —2.24" 0.327¢ 17.07° -0.0091 -0.85 0.389: 20.94" _.0.1557 9.26"
TimMat=1 0.0861 10.97" ~=0.002(~ —0.09 0.0632 5.35° -0.004( -0.19 —0.1245 -6.70"
TimMat=2 0:.0914 11.26" __0.205¢  9.37""  0.0408 3.34" 0.067: 3.16 = 0.2453 12.76"
TimMat=8 ..0.1268 15.75" ~—=0.212¢ -9.77°| 00568 4.68" -0.065¢ -3.10" —0.2945-15.44"
TimMat=4  0.1175 14.47" __0.035(  1.59 0.0066 0.54 -0.148: -6.98" | 0.1689 8.78"

Holiday,;  -0.0556 -3.94"  0.024¢ 0.65 0.1539  7.24" -0.195. -5.28" | 0.0848 2.54"

T 0.0026 = 76.20"  0.009: 100.40"  0.0075 144.83" 0.002: 23.64" 10.0014 16.71"
T2 —-0.0000 -57.96° —0.000( —75.36°  0.0000 -111.64" -0.000( —14.25" -0.0000-13.18"
R 0.0321 6.177 -0.105: -7.48" . -0.2306 —29.46°  0.235. 17.31" -0.0452 -3.67"
Adj. R? 0.2553 0.2942 0.4165 0.1104 0.0412

Notes This table presents the adjustment of raw tim@sedata, including absolute deviations from the
median of volatility risk premium (|dVRP]), realizgolatility (RV), continuous volatility (CV), andegative
and positive_jump volatilities (nJV and pJV, respeay). All the variables are computed every 5 uias.
Dummy variables are included for days of the wee#l for months of the year. TimMat is the number of
trading days until option contract expiration, witliepresenting the last trading day. Holiday a dummy for
the trading day prior to New Year (January 1), Deubenth National Day (October 10); or Chinese lLtuna
New Year. R, T and T are risk-free interest rate and linear and quadtiate trends, respectively. Coeff. and
t are the parameters of regression smdlue of parameter test, respectively. All'coééiits are multiplied by
100. »** ** and * indicate that thé-values are significant at the 0.01; 0.05, and (246I, respectively.

The univariate OLS regressions are first perforreetest whether shocks to |dVRP|
have a feedback effect on realized volatility atgl volatility componentsThis study
regresses each of volatility components on lag [@hé&RP|, where the |dVRP| is the
innovation in Equation (12). Panel A of Table 12wk that the coefficients of lag [dVRP|
are all significantly positive in all regressiomssiggesting that the lagged VRP can explain
realized volatility and its components. This regutivides preliminary evidence in support

of our conjecture that VRP may affect realized tibtg Judged by the regression R-square,
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the feedback effect is mostly pronounced for thaized volatility and for the continuous
volatility component but least significant for thenp volatility component. The result is
consistent with the findings of Busch, Christensand Nielsen (2011) that the jump

component is far less predictable than the contisuwmlatility.

Table 12 Ordinary Least Squares Regression Casifii

Indep: Der  |dVRP| RV CV nJV pJV R
Panel A: Each of the realized volatility and vdigticomponents is regressed against the laggeRRjV
Lag(JdVRP]) gy 20.81%
a a " — — — .
g (104.08") °
Lag(|dVRP]) = 35.28%
a B I kK E S .
g (149.84™) °
Lag(|dVRP)) -’ 2.25%
a — — - * LY :
g (30.78™) °
Lag(|dVRPJ) 15 0.53%
a —_— —_— =2 B Kok .
g (14.83") °
Panel B: The |dVRP| is regressed against eacledatiyed realized volatility and volatility compane
0.1690
Lag(RV " — _ — _ 920
ag(RV) (104.40") 20.92%
0.3944
Lag(CV " — — — - 320
ag(CV) (149.98") 35.32%
0.0589
Lag(nJV F s — — ¥ 389
ag(ndv) (31.707) 2.38%
0.0297
L JV n, —5 — ) r i 0
ag(pJv) (@4.30%) 0.49%

Notes This table presents regression results for tfecedf lagged |[dVRP| on each of RV,.CV, nJV, add m
Panel A, and the effect of each lagged RV, CV, rahg pJV on |dVRP| in-Panel B. The adjusted saries
residuals resulting from the regression model inudfpn (6). |dVRP|, RV, CV, nJV, and pJV denote the
adjusted absolute deviations from the median oftidly risk-premium, realized volatility, continus
volatility, negative jump volatility, and. positiveimp volatility; respectively. The-values are given in
parentheses. *** ** and * indicate that thevalues are significant at the 0.01, 0.05, and QJeh@l,
respectively.

In Panel B, the dependent and independent variadnesreversed in the previous
model by regressing |dVRP| on lagged RV, CV, niMd pJV. The reversed regressions
examine whether changes in volatility induce VRPPhnel B of Tabld2, the coefficients
of lag-one RV, CV, nJV, and pJV are found to bepaltitive and statistically significant.
This is consistent with Bollerslev and Todorov (2Dland Todorov (2010) that both

time-varying volatility and jump volatility are ingotant determinants of VRP. The
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R-squares in the regressions show that the VRPxptaieed most by CV (35.32%),
followed by negative jump volatility (2.38%), anebkst by positive jump volatility (0.49%).
The greater explanatory power of continuous vatgtihan jump volatility may result from
the fact that stock index, as a weighted averageaniy individual stock prices, tends to
move continuously but rarely jumps. The jump vdilgttherefore accounts for only a small
portion in overall realized volatility. The changes VRP thus are explained more by

continuous volatility than jump volatility.

The negative jump volatility is more influential dature VRP, with ,@:0.0589 and

t=31.70, than positive jump volatility,f(:o.0297, t=14.3), indicating that investors’ fear f

future uncertainty increases-more following a ladyep than a large increase in market

price (Bollerslev and Todorov,-2011).

4.2. Linear Granger Test Results

The univariate OLS regressions.in Table 12 indithée VRP and RV are influenced
by the lag-one terms of each other. Next, the hi&@anger causality is used to test whether
there is bidirectional causal relation between \&RE RV.The linear Granger causality test
incorporates the own and other lag term beyondeapamiod lag. Thus, it is able to account
for the autocorrelation in dependent. variables. @iixeamic relation between |dVRP| and
RV is explored using the Granger causality tessscifying Z= [|[dVRP| RV] in Equation
(10). The appropriate lag lengths in this modelsaeto be four, according to the Akaike
information criterion (AIC). If VRP Granger caus¥, then the past values of VRP should
contain information that helps predict RV. In otlvewsrds, the Granger causality helps test

whether the VRP feedback effect exists.

In Panel A of Table 13, the results of the lineaartger causality test are summarized

by presenting the t-tests on the sum of the estichabefficients, b, which represents the
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cumulative effect of lagged RVs on VRP, as welttees chi-square test for the jointly zero
hypothesis of all the lag coefficientsor the |dVRP|, the null hypothesis of linear Geng

non-causality from the realized volatility (RV) ®srongly rejected by the significant
summed coefficients of all lagged RVs (summ;@d:0.0074,t-value = 13.47) and by the

significant chi-square statistig’€16.59,p-value <0.01). The finding that realized volatility
positively Granger causes VRP suggests that thé&anharices of options reflect volatility

risk. This is consistent with the findings of Bakahd Kapadia (2003), Bollen and Whaley
(2004), and Garleanu et al. (2009) that the VRPpmomeates liquidity suppliers of options

for bearing the volatility risk.

Table 13 Results of Linear Granger Causality Test

X Statistics [dVRP| RV Cv nJv pJVv
Panel A: Linear Causal Tests between |dVRP| and RV
b 1.0}2*5
(3.04")
[dVRP 2 i 14:10 i ] o
x [0.0070]
b O.7353
RV (13.477) - - o o
2 16.59
X [0.0023]
Panel B: Linear Causal Tests between |[dVRP| andpad¥/’and CV
b 0.3;34 0.0851 0.4042
(2.577) (0.19) (1.07)
ldVRP| 2 o o 22.27 11.17 7.46
x [0.0023] [0.1316] [0.3828]
b 0.3630
(3.02)
cv 2 49.35 o B o o
x [0.0000]
b 0.0EE/SO
(1.97)
nJv ) 20.41 — - - -
x [0.0047]
b 0.0066
(0.14)
pJV , 12.78 - - — -
X [0.1026]

Notes.This table presents the sum b of all the lag cdefits for variable in first column and itsvalues (in
parentheses), and the chi-square statigfifsr linear Granger causality test andpitsalue (in brackets). Both
test statistics are used to detect the linear Grangusality. The sum b indicates the cumulatiecéfof
lagged |[dVRP| on realized volatility (RV) and itslatility components, and vice versa. Tyfestatistics test
the null hypothesis that all the lag coefficienfscolumn variable are jointly zero. A rejection thfe null
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hypothesis indicates that column variable (x) Geangauses row variable (y). Panel A reports thaliesf
linear causal tests between |dVRP| and RV, and|Bapeesents the results of pairwise linear catssis
between |dVRP| and three volatility componentseafized volatility. The-statistic is calculated as t=adp/
where b=3a + a, +...+ g,is the given sum of coefficients and n is numbelags on the independent variable.
For instance, if n=3 then, bzea+a; and o, :\/in +o; +o. +2%(0,, t0,,+0, ) . Thet-statistics of b
are calculated using the Newey-West (1987) autetairon and heteroskedasticity consistent covadanc
matrix. |dVRP| is absolute deviations from the raaddf volatility risk premium. nJV, pJV, and CV dee
negative jump volatility, positive jump volatilitand continuous volatility, respectively. All coefénts are
multiplied by 100. *** ** and * indicate that thé&values are significant at the 0.01, 0.05, and Oei®@l,
respectively.

More importantly, linear Granger causality alsosuts the existence of the feedback
effect from VRP to RV. In Panel A of Table 13, thall hypothesis of linear Granger

non-causality from |dVRP| to RV is rejected by #gnificant summed coefficients of all
lagged |dVRP|s (summe@:0.0103 and t-statistic 3.04) and the significahit-sgjuare

statistic §2=14.10, p-value <0.01). The finding supports theP/feedback effect that
higher VRP positively impacts future realized viitgt Frey and Stremme (1997),
Gennotte and Leland (1990), Schoenbucher and WiIng®000), and Sircar and
Papanicolaou (1998) suggest that dynamic hedgiagsléo greater market volatility. It is
likely that the dynamic hedging induced by vol&filitrading that seeks to-neutralize
unanticipated price changes also affects the sulesegnarket volatility, resulting in the
feedback effect found in Table 13.

To further examine the causal relation between [V&hd the three components of
realized volatility (CV, nJV, and pJV), this stuggts Z = [|dVRP| ndV pJV CV] in Equation
(10) and performs the pairwise Granger-causaliggstéor |dVRP| versus each volatility
component.The third column in Panel B shows the test whetheividual volatility
component Granger causes |dVRPe results show a significant causal relationgiom
CV to [dVRP| and from nJV to |[dVRP| with t-valués3®2 and 1.97, respectively. This

indicates that both continuous volatility and jumglatility due to large price declines

33 Based on the Akaike information criterion (AlChjg study includes 8 lag variables while performihig

model.
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enlarge VRP (Bollerslev and Todorov 2011; Erakerlet2003; Todorov 2010), whereas
volatility due to large price increases has lesawfeffect on the VRP. This finding is
consistent with the OLS results in Table 11 that @V and nJV play more important roles
than pJV in explaining the VRP changes. The OLS larehr Granger causality together
suggest an asymmetric effect of positive jump agghative jump on the VRP.

In the first row of Panel B, where the test is prasd for the feedback effect, the linear
Granger causality is only found from |[dVRP| to C¥ bot from |dVRP| to nJV or from
|dVRP| to pJV. One limit of the test in Table 13that the traditional Granger causality
model aims to test for linear dependence. Thusastless power to detect nonlinear causal
relations (Baek and Brock 1992; Hemstra and Jor@®!l)1 If the impact from lagged
|dVRP| to any component of jump volatility is now@ar, the traditional approach may fail to

uncover the feedback effect.

4.3. Nonlinear Granger Test Results

In"this section, a more general form of the Grangparsality test is' provided. The
modified-Baek and Brock test, which allows~nonlingé@pendence .in both |dVRP| and
components of realized volatility, is adopted tamne the VRP feedback effedihe test
statistic is specified in Equation (11). In thisttevalues for the lead length m, the lag
lengths Lx and Ly, and the distance measure d tebe selected. Unlike linear causality
testing, no approaches exist for choosing optimrelles for lag lengths and distance
measure. Following Hiemstra and Jones (1994), stugly sets the lead length at m=1,
Lx=Ly, and a common distance measure of dslvBherec denotes the standard deviation
of the time series. The results for lag lengthsnfrb to 8 are presented for the robustness
analysis.

Table 14 reports the results of the modified Baekl 8rock test applied to the

estimated residuals of linear Granger causality ehdor |dVRP| and RV. The nonlinear
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tests indicate stronger feedback effect than thava previously by the linear test. The null
hypothesis of no nonlinear Granger causality frotht® |dVRP| is strongly rejected at 1%
significance level in every specification. The nulpothesis of no nonlinear Granger
causality from |dVRP| to RV is also rejected. Risswf nonlinear Granger tests again
support that the causality between |dVRP| and R\Widérectional. This bidirectional

nonlinear relation holds for all the common laggd#rs used in constructing the test. It
suggests that the duration'of the predictabilityddRP| for RV is equivalent to that RV for
|dVRP]|. This nonlinear impact from lagged |dVRRJurent RV provides stronger evidence

to the VRP feedback effect.

Table 14 Results of Nonlinear Granger Causality Tes

Ho: RV Does-Not-Cause |dVRP| Ho: |dVRP| Does Not Cause RV
Lx=Ly Stat. t Stat. t
1 0.0008 4.3% 0.0006 2.33
2 0.0022 7.15 0.0029 7.00
3 0.0023 7.07 0.0025 6.33
4 0.0023 6.86 0.0022 5.47
5 0.0027 7.2 0.0018 4.46
6 0.0026 6.95 0.0017 3.96
7 0.0027 6.75 0.0014 3.34
8 0.0027 6.52 0.0012 2.76

Notes This table reports the results of the modifie@iBand Brock nonlinear-Granger causality testsiagpl
to the vector autoregression residuals correspgnttinabsolute deviations from the median volatilitgk
premium (JdVRP|) and realized volatility (RV). Lxglindicates the lag lengths of the residuals uretie test.
In all cases, the tests are applied to uncondilipiséandardized series, the lead length, m, igsédt and the
distance measure, d, is set to 1.5. Stat. andspentively, denote the test statistic in Equatibh) @nd its
t-value. Under the null hypothesis of nonlinear @emnoncausality, the test statistic is asympttjica
distributedN(0,1). ***, ** and * indicate that the-values are significant at the 0.01, 0.05, and Gel®l,
respectively.

Table 15 examines the pairwise nonlinear Grangesalay between |dVRP| and each
of the three volatility components of RV. The vdigt components are found to be
significantly Granger cause VRP, as shown by thaiicant t-values in the left part of the
panel. This finding holds for every lag-length s#ien in every volatility component.

The feedback effects from VRP to volatility compotgeare almost as pronounced as
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the impact from volatility components to VRP. Iretlast two columns of Panels A and B,
the hypothesis of no nonlinear Granger causaliynfidVRP| to CV and from |dVRP]| to
nJV is rejected in every case, clearly showing evod for the VRP feedback effect. Only
the nonlinear Granger causality from |dVRP| to p&gorted in the last two columns of
Panel C, is somehow weaker. The VRP Granger catisesositive volatility jump
component for models with lags up to lag 4.

In summary, the modified Baek and Brock test repsignificant VRP feedback effect
for all volatility components. The VRP feedbackeeffis stronger for continuous volatility
(with greater coefficient and higher_significanca)d lower on jump. volatility. The
feedback effect is asymmetrical such that negaitine volatility (nJV) responds more than

positive jump volatility (pdV) to the changes inlatdity risk premium.

Table15 Results of Pairwise Nonlinear Granger GiyJast
Panel A: Nonlinear Causal Relation between |dVRB|GV

Ho: CV Does Not Cause |dVRP| Ho: |dVRP| Does Not Cause CV
Lx=Ly Stat. t Stat. t
1 0.0043 9.94 0.0044 9.78
2 0.0083 14.17 0.0074 13.07
3 0.0082 13.66 0.0072 12.71
4 0.0082 13.18 0.0067 11.86
5 0.0076 12.45 0.0066 11.33
6 0.0078 12.24 0.0062 10.80
7 0.0078 11.96 0.0061 10.36
8 0.0080 11.75 0.0061 10.03
Panel B: Nonlinear Causal Relation between |dVRE|raV
Ho: nJV'Does Not Cause |dVRP| Ho: |dVRP| Does Not Cause nJV
Lx=Ly Stat. t Stat. t
1 0.0005 3.62 0.0005 27T
2 0.0016 6.20 0.0016 5.47
3 0.0017 6.16 0.0014 471
4 0.0015 5.79 0.0012 4.07
5 0.0016 5.84 0.0010 3.31
6 0.0015 551 0.0009 2.80°
7 0.0015 5.27 0.0007 2.27
8 0.0015 5.15 0.0006 1.78
Panel C: Nonlinear Causal Relation between |dVR& jpdV
Ho: pJV Does Not Cause |dVRP| Ho: |dVRP| Does Not Cause pJV
Lx=Ly Stat. t Stat. t
1 0.0008 4.37 0.0004 1.92
2 0.0021 7.05 0.0014 4.61
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3 0.0022 6.84 0.0011 3.57
4 0.0023 6.87 0.0007 2.11
5 0.0027 7.35 0.0004 1.06
6 0.0027 7.09 0.0001 0.21
7 0.0028 6.99 -0.0002 -0.44
8 0.0028 6.77 —-0.0003 -0.74

Note. This table reports the results of the paewisnlinear Granger causality tests between |[d\&R&|CV,
nJV, and pJV. They are reported in Panel A, Panehrigl Panel C, respectively. [dVRP| indicates aibsol
deviations from the median volatility risk premiur@V is continuous volatility; nJV is negative jump
volatility; pJV is positive jump volatility. Lx=Lyindicates the lag lengths of the residuals usetthéntest. In

all cases, the tests are applied to unconditiorsitiyndardized series, the lead length, m, is sé&t eind the
distance measure, d, is set to 1.5. Stat. andpectisely denote the test statistic in Equation) (dad the
t-value of test statistic. Under the null hypothesfsnonlinear ,Granger noncausality, the test giatis
asymptotically distributed N(0,1). ***, ** and *ndicate that thé-values are significant at the 0.01, 0.05, and
0.10 level, respectively.

The explanations for the ranking of the VRP on theee volatility components are
provided as follows. First, the higher VRP woulédeto a measurable increase in jump
volatility only if the dynamic-hedging transactiorsults in substantial price changes (a sudden
shift in_realized volatility is.often associatedttwradical changes in price). This occurs in the
scenario described in Gennotte and Leland (1988j},i$, the dynamic-hedging transactions
substantially alter the expectations and liquidgypply of other uninformed market
participants. The consequence.is that a relatigefall amount of hedging would drive
significant price and volatility change. This saemegof course, is not commonly observed in
the market, which is consistent with our resultt the VRP feedback effect is less significant

for jump volatility than continuous volatility.

Second, the results of asymmetric VRP feedbackctefkow that high VRP is more
likely to be followed by a negative jump than aipes jump. This is consistent with prior
evidence that investors are more sensitive to ge lararket decline than a large increase in
return and are willing to pay more to hedge theeptial decline than the possible increase.
That is why the volatility risk premium widens mqugor to a negative jump than a positive

jump3*

% Pan (2002) and Bollerslev and Todorov (2011) piewvévidence for the asymmetric responses to upward
versus downward jumps. They find that such asymniethe fear of jump risk leads to a larger premiun the
out-of-the- money puts than calls.
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The asymmetric VRP feedback effect could be usddfer the strategies of volatility
traders. The tendency of a negative jump aftergel&RP implies that volatility traders
tend to engage in hedge transactions that invdleeisag spot assets or futures contracts, so
that their hedging leads to negative jumps subsetjudBased on Chaput and Ederington
(2005), popular volatility trading strategies thetuire delta hedge using short spot/futures
positions include 1. long volatility by buying asll2. short volatility by selling puts, and 3.
straddles. Chang, Hsieh, and Wang (2010) show dtrategy 1. and 2. are the most
frequently used volatility trading strategies inwWan. Since the sample in this study spans
the period of global financial tsunami, a periodam@eterized by high volatility and
substantial market decline, there should be mopopnities for long volatility than for
short volatility.lt is therefore speculated that the long volatibtybuying calls (strategy 1.)
would 'be the most likely approach for volatilitading. The delta hedging of such strategy
creates downward pressure on the underlying as®et and leads to subsequent widening

in the VRP.

5. ROBUSTNESS ANALYSIS

5.1. Control of Infermation Flow

An alternative interpretation of the feedback effiecthat the higher VRP implies that
option traders perceive information shocks thatnseaift the level of volatility. The
increased volatility (and its components) followiaglarge VRP might be merely the
realization of the option traders’ forecasts inatibity, rather than the feedback effect
resulting from hedging the volatility trading.35 &amine whether the increased volatility

followed by a large VRP is a direct result of infation shock or the feedback effect due to

% Evidence of volatility changes due to informatiiocks is provided by Andersen (1996), who shows th
return volatility dynamics is governed by infornmatiflows and Chen and Ghysels (2010), who find tuth
very good news and bad news increase volatilitih thie latter having a more severe impact.
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volatility trading, we assess the nonlinear bidi@l predictability between VRP and
realized volatility (and its volatility componentsyhile controlling for the impact of
information flows.

A Granger causality test is performed by incorparatvariables for returns due to
positive and negative information to capture theatyic impact of bad and good news on
volatility components. Specifically, Z in equati¢hO) is re-specified as a six-dimensional

vector, i.e., Z= [dVRP nJV pJV CV e+ e-], addingdtwariables respectively for the positive

information impact, " = /max{tr -7,0} , and the negative ‘information impact,

e :—1*\/| min{g - T,0}| , where rt is the index return at t aifdis the average return in

previous 30 days. For..each series, we remove tHectefof day-of-the-week,
month-of-the-year, and time-trends using regressiqumtion (12) and use the innovations
for the causality tests.

The linear Granger causality test is first perfodnusing Equation (10) and then the
residual is used for nonlinear Granger test apglyguation (11). Table 16 reports the test
statistics and its t-values for pairwise nonlin€aanger causality between |dVRP| and each

of nJV, pJV, and CV.

Table 16 Pairwise Nonlinear Causality Tests aftantflling of Information Flows
Panel A: Nonlinear Causal Relation between |dVRE|GV

Ho: CV Does Not Cause |dVRP| Ho: |dVRP| Does Not Cause CV
Lx=Ly Stat. t Stat. t
1 0.0044 10.18 0.0045 9.91
2 0.0084 14.19 0.0075 13.18
3 0.0083 13.74 0.0073 12.84
4 0.0083 13.27 0.0067 11.96
5 0.0077 12.55 0.0066 11.36
6 0.0078 12.33 0.0062 10.87
7 0.0079 12.04 0.0061 10.36
8 0.0080 11.87 0.0060 9.98
Panel B: Nonlinear Causal Relation between |dVRE &V

Ho: nJV Does Not Cause |dVRP| Ho: |dVRP| Does(Q¥aise nJV
Lx=Ly Stat. t Stat. t
1 0.0005 3.62 0.0005 2.65
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2 0.0016 6.29 0.0016 551
3 0.0017 6.27 0.0014 4.69
4 0.0016 5.84 0.0012 3.99
5 0.0016 5.90 0.0010 3.27
6 0.0016 5.54 0.0009 2.76
7 0.0015 5.26 0.0007 2.23
8 0.0016 5.23 0.0006 1.78
Panel C: Nonlinear Causal Relation between |dVR& jpdV
Ho: pJV Does Not Cause |dVRP| Ho: |dVRP| Does(v¥aise pJV

Lx=Ly Stat. t Stat. t

1 0.0009 4.39 0.0004 1.88
2 0.0022 7.17 0.0014 457
3 0.0022 6.90 0.0011 3.49
4 0.0023 6.90 0.0007 2.10
5 0.0027 7.4%5 0.0004 1.04
6 0.0027 7.19 0.0001 0.18
7 0.0028 7.07 —-0.0002 -0.48
8 0.0029 6.87 -0.0003 -0.76

Notes This table reports the results of the pairwiselinear Granger causality tests between |dVRP|Gwd
nJV, and pJV, reported in Panels A, B, and C, retdgdy, after controlling for impacts of informati flows.
The impact. of information is..controlled by addingriables representing positive and-negative return
innovations into the vector of Z in Equation (4VRP| indicates absolute deviations from the median
volatility risk premium; CV is continuous volat§it nJV is negative jump volatility; and pJV is pmse jump
volatility.. Lx=Ly/indicates the lag-lengths of thesiduals used in the test. In all cases, the &stapplied to
unconditionally standardized series, the lead kengt, is set to 1, and the distance measure, sktiso 1.5.
Stat. and t, respectively, denote the test statistEquation (5) and thievalue of test statistic. Under the null
hypothesis 'of nonlinear Granger noncausality, @ statistic.is asymptotically distributed N(O,1%:, **,

and * indicate that thevalues are significant at the 0.01,.0.05, and (%8I, respectively.

In Table 16, the modified Baek and Brock test curés to show a bidirectional
nonlinear Granger causality between |dVRP| and &N/, and pJV. Focusing on the
causality from VRP to the volatility components odpd in the last two columns of each
panel, the results of the significance of the mediBaek and Brock tests are comparable to
the results in Table 14, with CV and nJV being #igant for 8 lags and pJV being
significant up to 4 lagRResults suggest that the nonlinear Granger cays$aiin |dVRP| to
CV, nJV, and pJV persists after controlling for tinéormation shocké® It is therefore
concluded that the causality from VRP to realizetatlity found in Table 14, 15, and 16 is

more likely to be the result of VRP feedback effether than information shocks.

% The linear Granger causality between |[dVRP| and ®¥ nJV, and pJV are similar with and without
controlling for information shocks.
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5.2. Treatments of Overnight Interval

In section 4, the daily VRP series is computed-mibute frequency while treating the
entire overnight period (13:30 to 9:00 next daypase interval. This treatment of overnight
returns leads to periodical spikes in the timeesedue to the larger price changes in
overnight interval. Because of the scale differebedween overnight interval and the
5-minute intervals in regular trading hours, thalized volatility and VRP measured in the
overnight period may not be directly comparabléhmse in regular trading hours. In this
section,two approaches are adopted to check the robustiede VRP feedback effect
under different treatments of the overnight intérva

The first approach re-performs the univariate tseees OLS regressions in Table 12,
adding a dummy variable to distinguish the overhigériod from the intraday 5-minute
periods. Specifically, this study regresses redlizelatility and each volatility component
on lag one |dVRP|, whilst allowing the lag |dVR®|be interacted with the overnight
dummy variable. The coefficient of the interactitesm, denoted byd, picks up the
difference.in the effect of VRP on realized volati(and its volatility components) during

overnight period and intraday 5-minute intervals&es are reported in Table 17.

Table 17 OLS Coefficients Distinguishing Overni@hiservations

Indep: Dep. Parm.. |dVRP| RV CV nJv pIV R
Panel A: The Effect of lagged |dVRP]| on.each of &, nJV, and PJV
B 1.2343
e (102.96") 1 _ _ 0
Lag(JdVRP|) 5 0.0169 20.81%
(1.41)
B 0.8931
Lag(|dVRP]) — _asesgy — 35.29%
9 (2.35)
B 0.3926
Lag(|dVRP)) _ _ _ (%065727) _ 2.25%
J (0.83)
B 0.1704
Lag(JdVRP|) — — — — (14.487)  0.53%
o 0.1045
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(1.02)

Panel B: The Effect of each of the lagged RV, CW,rand pJV on |dVRP|
0.1626
(103.18")

Lag(RV) 00196 — — — — 20.93%
(1.66)
0.3936

(148.33")
0.0405
(2.06")
0.0582

(31.567)
0.0162
(1.23)
0.02492

(13.947)

Lag(pJV) 5 0.0203 — — — — 0.50%

(1:42)
Notes This table presents regression results for tfecedf lagged |dVRP| on each of RV, CV, nJV, add m
Panel A, and the effect of each lagged RV, CV, rhd pJV on |dVRP| in Panel B. For every univariate
regression, /this._study includes a binary varialge dvernight interval and allows it.to interact fwithe
independent variable. The coefficient-of the int&kee term is denoted a® . The adjusted series are residuals
resulting from the regression model in Equation (6VRP]|, RV, CV, nJV, and pJV denote the adjusted
absolute deviations from the median of volatiliigkr premium, realized volatility, continuous volyj,
negative jump volatility, and positive jump vol#ii|] respectively. The-values are given in parentheses. ***,
** and * indicate that thé-values are significant at the 0.01, 0.05, and (&%6l, respectively.

Lag(CV) — — — — 35.33%

Lag(ndV) — — — — 2.39%

W Y _R Y D Y

As reported in Panel A of Table 17, the coefficiehthe interactive term is positive in
every regression, indicating that the feedbackceffe somehow stronger for overnight
interval. However, the only significand is found for regression of CV. In Panel B, where
|dVRP]| is regressed on lagged realized volatility s -components, thé coefficients for
RV and CV:are significantly positive. It shows thiae realized volatility and continuous
volatility induce higher VRP in the overnight peatithan in the intra-day 5-minute interval.
These findings of large effect from RV and CV to FRind from VRP to CV in the
overnight period suggest that the overnight obsems are different from the others.

Nevertheless, we note that th8 coefficients and their significance in both pan#ls
Table 17 are very similar to the corresponding rigguin Table 12, where overnight and
intraday intervals are not distinguished. Resulfgasts that, despite the difference in effect
during overnight period, the feedback effect docot®é previously are robust to different

treatments of overnight interval.
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In the second approach, all the linear and nonliGanger causality tests are redon
in Table 13 through Table 15, with the overnightipes removed from the time series of
|dVRP]|, RV, CV, nJV, and pJV. To save space, tioidysonly reports, in Table 18, the results
of pairwise nonlinear Granger test for the cauglgtween VRP and volatility components.
The G statistics show only minor difference in thealue and significance from those in
Table 16 (where overnight interval is included asther 5-minute return). The hypothesis
of no nonlinear Granger causality from |dVRP| to @l from |dVRP| to nJV is again
strongly rejected.in every case in Panel A and tgpsrting the presence of the VRP
feedback effect. Similar to Table 15, only the moedr Granger causality from |dVRP| to pJV,
reported in Panel C, has weaker significance: tR€® \Granger causes the positive volatility
jump component for models with lags up to lag 5e Tihdings of the feedback effect from
VRP to realized volatility remain unchanged witidamithout the overnight period.

In summary, the robust tests suggest that, dettelifferent nature in the overnight
interval, our findings in the feedback effect asbust to various treatments of the overnight

period.

Table 18 Results of Pairwise Nonlinear Granger @laygest without Overnight Observation
Panel A: Nonlinear Causal Relation between |dVRE|GV

Ho: CV Does Not Cause |dVRP| Ho: |dVRP| Does Not Cause CV
Lx=Ly Stat. t Stat. t
1 0.0044 10.08 0.0050 11.03
2 0.0076 13.36 0.0066 12.34
3 0.0079 13.26 0.0060 11.53
4 0.0078 12.84 0.0060 11.15
5 0.0077 12.43 0.0058 10.54
6 0.0079 12.16 0.0057 10.26
7 0.0081 12.09 0.0057 9.90
8 0.0080 11.76 0.0057 9.53
Panel B: Nonlinear Causal Relation between |dVRB|rdV
Ho: nJV Does Not Cause |dVRP| Ho: |dVRP| Does Not Cause nJV
Lx=Ly Stat. t Stat. t
1 0.0010 4.95 0.0004 2.34
2 0.0015 5.88 0.0016 5.63

3" In unreported results, we reproduce the analysi3able 12 and Table 13 using time series excluding
overnight interval. Results are unaltered in thatsignificant variables keep their significance ilsh the
insignificant ones remain insignificant.
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3 0.0014 5.67 0.0015 4.96
4 0.0014 5.61 0.0013 4.28
5 0.0014 5.471 0.0011 3.61
6 0.0014 517 0.0010 3.14
7 0.0013 4917 0.0009 2.64
8 0.0014 4.7% 0.0007 2.15
Panel C: Nonlinear Causal Relation between |dVR& jpdV

Ho: pJV Does Not Cause |dVRP| Ho: |dVRP| Does Not Cause pJV
Lx=Ly Stat. t Stat. t
1 0.0014 5.96 0.0001 1.73
2 0.0019 6.52 0.0016 5.17
3 0.0020 6.43 0.0013 4.05
4 0.0023 6.78 0.0010 2.88
5 0.0022 6.44° 0.0007 1.88
6 0.0023 6.24 0.0004 1.05
7 0.0023 5.99 0.0001 0.35
8 0.0022 5.67 —-0.0000 -0.12

Note. This table reports the results of the paewisnlinear Granger causality tests between |d\&R&|the
three volatility components (CV, nJV, and pJV). Yhare reported in Panel A, Panel B, and Panel C,
respectively. The observations of the overnigtervel are removed from each time series of |dVRF|nJV,

and pJV. |dVRP| indicates absolute deviations ftben median volatility risk premium; CV is continuou
volatility; ndV is negative jump.volatility; pJV igositive jump volatility. Lx=Ly indicates the ldgngths of
the residuals used in the test. In all cases,dsis fare applied to unconditionally standardizegtsethe lead
length, m, is set'to 1, and the-distance-measuiis, st to 1.5. Stat. and t respectively denatetdist statistic

in Equation (5)/and thevalue of test statistic. Under 'the null hypothesfisionlinear Granger noncausality,
the test statistic is asymptotically distributedN{. ***, ** and * indicate that the-values are significant at
the 0.01, 0.05, and 0.10 level, respectively.

6. CONCLUSIONS

Over the past few years, volatility trading-has dme increasingly popular. Large
volatility risk-premium (VRP), measured by the smtebetween .option implied volatility
and realized volatility, may attract volatility thag from investors who seek to benefit from
the volatility spread. Despite the abundant evidetiwat large volatility increases VRP,
much is unknown about what happens afterward, nicodar how a widened VRP may
affect subsequent volatility. This study examines teedback effect from VRP to realized
volatility. We postulate that a widened VRP mayftkkowed by higher volatility, because
volatility traders who seek to profit from the wigkel VRP need to hedge their exposure to
changes in price. It is their delta hedging tratisas that further destabilize price and result

in the feedback effect from VRP to volatility.
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The causal relationship between VRP and the rehhzarket volatility is investigated
while setting the stage on the Taiwan markets, e/kige index option is actively traded and
volatility trading is frequently engaged. Both lareand nonlinear Granger causality tests
show bidirectional influence between VRP and realizolatility. This indicates that VRP
tends to be triggered by high volatility and plays important role in explaining future
realized volatility. The finding of higher volatyi following enlarged VRP provides

evidence for the presence ‘of a feedback effect.

As decomposing the realized volatility into threemponents: continuous volatility,
negative jump volatility, and positive jump Vvolétil the nonlinear Granger causality model
reports significant feedback effect for all thredatility components, with the effect most
pronounced for continuous-volatility, followed bygative jump volatility, and least for
positive jump volatility. The asymmetric VRP feedkaeffect on negative and positive
jump volatility indicates that options traders amere sensitive to a large market decline than
a large increase in return, a finding consistenihwhe asymmetric volatility to return

changes documented in the literature.

Our findings on the feedback effect are robust eaftar controlling for shock by

instantaneous .information and different treatmeftsvernight interval.
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CHAPTER 4 SUMMARY AND CONCLUSIONS

Volatility risk premium (VRP) is the premium thabrapensates risk stemming from
the fluctuation in volatility or jumps. In finandianarkets, this risk premium is commonly
viewed as the price that option market makers redoi provide liquidity and investors pay
to hedge their tail risk. Although the abundantdevice has linked the VRP to liquidity,
intermediation, and hedging demand, much lessasvknabout the impact of an imbalance
between supply and demand for options on VRP. thtiad, higher volatility often leads to
increased VRP. Inversely, large VRP attracts vdlatinvestors that seek to benefit from
the temporary mispricing in volatility. This givesrise to-an interesting but less understood
question is about what happens afterward, in pdatichow a widened VRP may affect
subsequent volatility. This dissertation therefeets out to focus on two important VRP
issues in financial market, including the impacbption demand pressure on VRP and the
effect of trading the VRP.

In the first issue regarding the impact of optie@ménd pressure on VRP, the results
show that the level of demand for an index optitayp a key role in determining the time
variation in VRP. A positive (negative) demand gree of an index option raises
(decreases). the VRP, similar to the finding of €amlu, Pedersen, and Poteshman (2009)
that a proportion of an option’s expensivenesectdl the effect of demand pressure. This
indicates that the option prices include a compobtieat compensates market-makers’ risk
since market makers can not perfectly hedge tletiexposure on the option positions.

In particular, the demand pressure effect on VRRelated to the risk aversion of
market-makers supported by a significant and negalinkage between the effect of
demand pressure and recent market-maker losseagRhbeir trading losses, market makers
with risk aversion ask a higher risk premium foceuting additional risk. Thus, these
premiums for unhedgeable risks are all contributimgye, thereby leading an increase in

VRP. In addition, at the arrival of market jump® tdhemand pressure leads to a greater
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impact on VRP for all three demand variables duentweased jump fear. The result
provides evidence to support the finding of Todof2910) that time-varying risk aversion
is driven by large, or extreme, market moves.

The second issue in this dissertation is to ingagti the dynamic processes between
VRP and volatility while focusing on the afterwagtfect of a large VRP. The bidirectional
causality in the OLS regressions and the linear ramdinear Granger causality tests are
documented. This result ‘confirms the findings iterature . (Bakshi & Kapadia, 2003;
Bollerslev & Todorov, 2011; Eraker et al., 2003, dboov, 2010) that uncertainty in volatility
raises the VRP, and supports the contention thatféledback effect of VRP positively
Granger causes the subsequent volatility. Thigriopnduggests that VRP plays an important
role in explaining future realized volatility: arége volatility premium could lead to greater

realized volatility.

The feedback effect that the VRP. nonlinearly Grangsuses the three volatility
components, continuous volatility, negative jumgatibty, and positive jump volatility, is
significant even after controlling for the higheolatility attributed to the unexpected

information.shocks.

In conclusion, this dissertation provides somegiis into the issues of the impact of
option demand on VRP and the effect of trading #t&P. The research results would
provide us with empirical evidences to comprehene importance of option demand
pressure in determining VRP and the dynamic infbeehetween volatility and volatility

trading.
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APPENDIX
Appendix A: Decomposition of Realized Variance
This appendix presents the processes by which s@rgmse the realized volatility into three
volatility components: continuous volatility, pag# jump volatility, and negative jump
volatility. Assume that dp(t) follows the generaéchastic volatility jump diffusion process
dp(t) = () dt+ o () dWM I+« () dq }, t=0. p(t) denotes the logarithmic asset price at time
u(t) is the instantaneous drift proces&).is instantaneous volatility; W(t) is a Browniarotion
processk(t) is the random jump size; and q(t) is a jJumpEpss with intensity(t).

Following Andersen and Bollerslev (1998) and Ander8Benzoni, and.Lund (2002), the

realized variance (RY over the day t is defined as the sum of the sgliatraday returns,

m-1

RV=> ¢, (A1)
=1

wherer ; =p,; — R ;IS thecompounded intra-period return, and m is the nundbethe

observed prices during the period t thagispled during the intra-period)(

As mfoo, RV converges in probability to two different comporgnthat is, the
integrated variance (the variation attributablecémtinuous process, simplified &8\V,?)

and the sum of squared jumps (the variation dugritee jumps, simplified a3V/*). It is

represented as
RV - [ o%(3d §Nt 2 A2
v .[t—la (9 dst jlet,J" (A2)

where Nand «, ; are the number of jumps and the jth jump size duday t, respectively.
This study separates the €¥ind J\? from R\? using the realized bipower variation
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(BV) presented in Equation (A3), following Barndexfielsen and Shephard (2004 and 2006).
According to Barndorff-Nielsen and Shephard (2084l Barndorff-Nielsen, Shephard, and
Winkel (2006), the asymptotic convergence of BV yowhptures the continuous price
variations even in the presence of jumps. FdromBV converges in probability to
integrated volatility in Equation (A2). We thus iesate the contribution of jump to the

realized variance by differencing RWith BV.

B = G e a2l 1 M (13)

This study is required to detect the arrival junupsto intraday level. The significant
intraday price jumps are identified using the noapeetric test proposed by Lee and
Mykland (2008). By their approach, for any givemei t the arrival time and direction of
detected jump can be accurately recognized. Anathecal merit is that the test statistic
can identify the multiple jumps during one tradidgy. The jump detection statisticis
given as

2

L, =r /o, whereg’=(K-2)" > |1 |If | (A4)

j=i-K+1

where r, is a realized return at given time ©, ;-an estimated instantaneous volatility, is

the local variation only from the continuous paftasset return process; and K is the
window size to estimate instantaneous volatility.

In the absence of jumps, Lee and Mykland (2008)estda reasonable rejection region
by deriving the limiting distribution of the maximuof the statistic. This process guides us

to choose the relevant threshold for the test sdirdjuish the presence of jumps at any

testing time. The statistic is given@s (L, —C,)/ §,, where
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C, =+/2logn/c- (logrr+ log(logn))/(2¢/ 2logn,c=~/2/m, and S, =1/(c/2log n).

The cumulative distribution function dfis given a®(J < X) =exp(€™). Given any
significance level, we can solve for x to determine threshold for significant jumps. For
example, the corresponding threshold, rejectingrihié hypothesis of no jumps, is 4.60
(2.97) at 1% (5%) significance level.

Based on a significance levglthe size of the jump on day t is denoted as

V= e, (RV BY) (15)

where I(.) is the indicator functiod®;, is the critical value for the () level test; and is
the statistic of detected jumps.

Obviously, JV is the excess realized variance over the contimwauiance. It is zero
in the absence of jumps and greater than zerowiserFurther, jump variance is split into
negative jump variancengV?) and positive jump-variancep{V?), depending on the
cumulative returns that correspond to the pricegsinwvithin the one-day period. If the
cumulative return is negative (positive), thensitidentified as a negative (positive) jump

variance. By contrast, the variation contributeccbgitinuous price process is written as

CV? = RV - IV (A6)

In our empirical work, this study estimates®d¥ingo=0.99 and computes R\ising
the 5-minute returns. In addition, following Leedadykland (2008), the jump test statistic

L is calculated using the past 270 5-minute intyagdurns.
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Appendix B: The Modified Baek and Brock Test

This appendix details the modified Baek and Brot89@)’'s nonlinear Granger causality
test, proposed by Hiemstra and Jones (1994). Bamk Brock (1992) developed a

nonparametric statistical method for detecting mamar causal relationships. The nonlinear

causality between time series is detected by uslgg correlation integral approach.
Consider two strictly stationary and weakly depenidene series Xand Y. Let X" denote

Lx

the m-length lead vector of {XandX, and th{yare the Lx-length-and Ly-length lag

vectors of X and Y, respectively. For given values of m, Lx, and3lyand for d >0, Y

does not strictly nonlinearly Granger cause X if

P(IX™ = X Ik d X5 = X dUIN= Y, 4 d

(B1)
=P>IX = Xl d [1X5 = X2 d),

where P(.) is probability; ||.]| is the maximummdor vectoiZ =(Z,, Z,, ..., 4 )J O, which

is defined as max{%.i =1,2, ..., k; and s,t=max(Lx,Ly)+1, ..., T-m+1.

The left-hand side of Equation (B1l) is the condiéib probability for two arbitrary
m-length lead vectors of Xvithin a distance d of each other, given that teaesponding
Lx-length lag vectors of xand two Ly-length lag vectors of; gre within distance d of each
other. The probability on the right-hand side oti&ipn (B1) is the conditional probability
that two arbitrary m-length lead vectors of Zre within a distance d of each other,
conditional only on that their corresponding Lxdém lag vectors are within distance d of
each other.

The test based on Equation (B1) can be restatedxpyessing the conditional

probability in terms of the corresponding ratiogaht probabilities:
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G1(m+ Lx Ly, d): &S(m Lx d

(B2)
G2(Lx, Ly, d) 4(Lx d)
The joint probabilities are defined as
GL(m+ Lx Ly, d)= RJ| X0 - XU dlY,- YL H ¢
G2(Lx, Ly, d)= P(| X, - >§LX ‘F d,IY_‘Ly— Yy H d) (83)

G3(m+ Lx d)= R XL = X3 Ik d)
GA(Lx, d)=P(I| X7, = X7, Ik d)

The correlation-integral estimators of the G= 1, 2, 3, and 4) in Equation (B3) are
used to test the condition in Equation (B2). The@ation integral, an estimator of spatial
dependence across time, is defined as a propatitdre number of observations within the
distance d of each other to the total number ofeniaions. These correlation-integral

estimators are calculated as

GLm+ Lx Ly, d)= 2/(r( D> A" XL 9. 108 ¥, ¢

t<s

G2(Lx, Ly, d)=2/(n(m- 1), > 1%L X0 ) 108, 0 X,
s B4
G3(m#+ Lx d)= 24(n( - DS 10>, X, d) (B4

t<s

G4(Lx, d)=2/ ((n=1) 3" (X X, )

t<s

Assume that Xand Y; are strictly stationary, weakly dependent, antfathe mixing
conditions as specified in Denker and Keller (19&B)der the null hypothesis that does
not strictly Granger cause;Xthe test statistic G is asymptotically normaligtdbuted,

according to Hiemstra and Jones (1994). That is,
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Gl(m+ Lx Ly,d &(m Lxd 2 1,
G= - ~N(0,—=0oc“(m, Lx Ly, d)), B5
Copa - Car ) N0~ o (m Lx Ly ) (B5)
where s,t=max(Lx,Ly)+1, ..., T-m+1; n=T+1-m-max(Lx)Ly(Z;,Z,,d) denotes a kernel

that equals 1 when two variables, @hd 2, are within the maximum norm distance d of

each other, and zero otherwise.

In Equation (B5), the asymptotic varianes(m,Lx,Ly,d), is calculated using the

estimator derived in Hiemstra and Jones (1994) dilws for errors to be weakly

dependent. This variance estimator is formulated as

&2(m, Lx Ly, d)= 2 DX( 0" ),

where

2(N=1/R(Lx Lydn~ Q(m Lxlydi @(LxLydy 1/ @( Lxd

G3(m+ Lx d, N/ G (Lx d n]

o K(n) . A ~ x
201(M= 4.3, W SO A (0t (2 ACD)
(1 if k=1
W () = 2(1- [(k-1) /K (n)]), otherwise
A = (S IO X D06 @)~ Am Lx Ly d )

A (1) =~ (S 1K X DO, W @)= @(Lx Ly d
A() =~ (S 1K X ) - GXme+ Lx d, )

A () == (31X X2 @)= GA(Lx d 1),

and where t =max(Lx, Ly) +k,..., T-m+1; n =T+1-m-miax(Ly); K(n)= (int)n". Gi(, n),

i=1, 2,3, and 4, is the correlation integral irukiipn (B4).

80

(B6)

(B7)

(B8)

(B9)

(B10)



