國立交通大學

機械工程學系

論文

以直流磁控及高功率脈衝磁控 濺鍍之TiO₂光觸媒薄膜的特性分析比較

Comparison of TiO₂ photocatalyst thin films characteristics deposited by direct current and high-power impulse magnetron

sputtering

研 究 生:楊偉仁 指導教授:徐瑞坤 教授 共同指導教授:許春耀 教授

中華民國一零二年十一月

以直流磁控及高功率脈衝磁控

濺鍍之TiO2光觸媒薄膜的特性分析比較

Comparison of TiO₂ photocatalyst thin films deposited

characteristicsby direct current and high-power impulse magnetron

sputtering

Student : Wei-Jen Yang

指導教授:徐瑞坤

共同指導教授:許春耀

研究生:楊偉仁

Advisor : Dr. Ray-Quen Hsu

Co-advisor : Dr. Chun-Yoa Hsu

國 立 交 通 大 學 機 械 工 程 學 系 博 士 論 文

A Thesis

Submitted to Department of Mechanical Engineering National Chiao Tung University in partial Fulfillment of the Requirements for the Degree of

PhD.

Mechanical Engineering

November 2013

Hsinchu, Taiwan, Republic of China

中華民國一零二年十一月

以直流磁控及高功率脈衝磁控

濺鍍之 TiO2 光觸媒薄膜的特性分析比較

學生:楊偉仁

指導教授:徐瑞坤

共同指導教授:許春耀

國立交通大學機械工程學系(研究所)博士班

摘

要

本研究以TiO₂半導體材料為靶材,分別使用直流(direct current, DC)磁 控濺鍍及高功率脈衝磁控濺鍍(high-power impulse magnetron sputtering, HiPIMS)沉積 TiO₂光觸媒薄膜,於無鹼玻璃(non-alkali glass)及可撓性塑膠 (Polyethylene terephthalate, PET)基材。以田口實驗設計(Taguchi methods), L₉直交表(Orthogonal arrays)配合變異數分析,探討TiO₂光觸媒沉積參數(直 流功率、濺鍍壓力、基板溫度、沉積時間)對薄膜的沉積速率、亞甲基藍 (Methylene Blue, MB)降解程度、水滴接觸角(親水性)、抗菌效果等特性。使 用 AFM、SEM、及 XRD 探討TiO₂薄膜的表面型態、微結構及結晶性質。

為防止氧化物靶材(oxide targets) 於濺鍍時產生靶中毒,因此皆以射頻 為薄膜沉積的電源。但是氧化物靶材只要有合理的導電性,就可以使用 DC 磁控濺鍍,TiO₂陶瓷靶為半導體材料(導電率約 0.3 Ω cm),對於 DC 電源有 足夠的導電性,不會產生靶中毒現象。TiO₂陶瓷靶使用 DC 磁控濺鍍,優 點為沉積層容易控制,可有效提昇薄膜沉積速率,且薄膜有良好的附着性 及均匀性。此外 TiO₂光觸媒薄膜需在高溫或高能量製程,才可獲得銳鈦礦 (anatase)與金紅石(rutile)結構。因此,若將 TiO₂光觸媒薄膜,以直流(DC) 磁控濺鍍沉積於 PET 塑膠基板,因塑膠無法耐高溫,TiO₂薄膜無法獲得足

i

夠能量成長,所以其光催化效果不顯著。本研究使用高功率脈衝磁控濺鍍 (HiPIMS),屬於低溫電漿製程,基板不需加熱,就能使薄膜獲得足夠能量。 高功率脈衝磁控濺鍍(HiPIMS)藉由調整脈衝中斷時間,將能量累積於電 容,瞬間釋放出來,使靶材原子獲得更強大的能量濺射到基板,增加薄膜 的緻密性、附著力與晶體結構,解決傳統磁控濺鍍於耐熱性低的基材,不 易製作 TiO₂ 光觸媒薄膜的問題,研究顯示使用 HiPIMS 可以有效提昇 TiO₂ 光觸媒薄膜沉積於 PET 塑膠的光催化效果。

Comparison of TiO₂ photocatalyst thin films characteristics deposited by direct current and high-power impulse magnetron sputtering

student : Wei-Jen Yang

Advisor : Dr. Ray-Quen Hsu

Co-advisor : Dr. Chun-Yoa Hsu

Department of Mechanical Engineering National Chiao Tung University

ABSTRACT

In this study, TiO₂ photocatalytic thin films were deposited on non-alkali glass and polyethylene terephthalate (PET) substrates, by means direct current (DC) sputtering of and high-power impulse magnetron sputtering (HiPIMS), using a ceramic TiO₂ target in an argon gas environment. The Taguchi method with orthogonal array, signal-to-noise ratio and analysis of variance were employed to study the performance characteristics. The experimental studies were conducted under different powers, sputtering pressures, substrate temperatures, and deposition time. Effects of coating parameters on the structural, surface morphology, and photocatalytic activities of the TiO2 thin films were investigated. We performed the photoinduced decomposition of methylene blue (MB), photoinduced hydrophilicity and antibacterial under UV light illumination. The films were characterized by X-ray diffraction (XRD), atomic force microscopy (AFM), scanning electron microscopy (SEM) and UV-vis-NIR spectroscopy.

Oxide targets can be used in DC operated magnetrons, provided they are reasonably electrically conducting. The TiO_2 ceramic target was a semiconductor having a sufficient conductivity of approximately 0.3 Ω cm as a

iii

target for DC sputtering. The DC magnetron sputtering from TiO_2 ceramic targets can be readily controlled and the deposited layers show good adhesion as well as good coating uniformity. Crystallite films can grow through substrate heating. High substrate temperature results in good crystalline structure, whereas low substrate temperature leads to amorphous TiO_2 structure. The HiPIMS is a recently developed sputtering technique, where very short and intense pulses are used. The plasma density near the target increases enough to ionize a significant proportion of the sputtered metal ions, to improve thin film adhesion, density or texture. The experimental results show that using the HiPIMS improved the photocatalytic characteristics of the TiO₂ films deposited on PET substrates.

就讀交通大學博士班研究所期間,經歷許多風風雨雨,也讓我的人生旅 程充滿一段難忘的回憶,非常感謝我的指導教授徐瑞坤教授,適時的在我 的課業與博士論文及人生規劃,給予我莫大的建議予鼓勵,感謝周長彬教 授,在我剛入學與博士期間對我的照顧與學業上的教導,也感謝共同指導 教授許春耀教授,提供我優良的實驗環境與實驗資源,讓我在實驗上無後 顧之憂,此外許春耀教授常鼓勵我對任何事情都不能放棄,只要肯學永遠 都不嫌晚,要為自己的將來打拼,一天當三天用的經典名言讓我永記在心。 在人生的道路上,徐瑞坤教授、周長彬教授、許春耀教授常給我新的建議 與莫大的鼓勵,往後不論在任何地方,必定以老師的話來勉勵自己,使自 已在未來的旅程發光發熱。

此外感謝鍾添淦教授、黃正昇教授、洪景華教授、徐文祥教授、鄭璧瑩 教授、楊秉祥教授及大同大學許正勳教授,對學生的論文提供寶貴的意見 及不足的地方,使得論文內容更加正確完善。感謝赫普真空科技(股)公司大 力支持與幫忙,使我獲得更多的設備資源。

在實驗的這段期間,感謝龍華科技大學貴重儀器中心,提供 SEM、 XRD、AFM 等精密儀器供我使用。感謝交通大學研究室的學長、學弟的支 持。也感謝莊漢鵬學弟與林佑全學弟,在研究室陪伴我做實驗渡過許多漫 長的夜晚,真的非常感激你們。謝謝你們讓我博士期間生活更豐富且多彩 多姿,我會銘記在心。

最後,我要將本論文獻給我最親愛的家人們,感謝父母親無怨無悔 的栽培與付出,還有姐姐的關心與叮嚀,及女友亞芬的支持與體諒,我才 能全心全意的完成博士學位,謝謝你們的包容,有了你們才有今日的我, 我會在未來的旅程繼續打拼,絕不會讓你們失望,謝謝你們。

v

	目錄	
中文摘要		i
英文摘要		iii
誌謝		v
目錄		vi
表目錄		ix
圖目錄		xi
- `	緒論	1
1.1	前言與研究背景	1
1.2	研究動機	4
1.3	研究目的	6
= 5	實驗相關理論與文獻回顧	7
2.1	光觸媒簡介	7
2.2	光觸媒氧化還原原理	7
2.3	二氧化鈦薄膜	9
2.3.1	二氧化鈦的超親水性	9
2.3.2	二氧化鈦薄膜製備方法	10
2.4	文獻回顧	11
2.5	電漿(plasma)原理	12
2.6	薄膜沉積理論	13
2.6.1	沉積現象	13
2.6.2	薄膜表面及截面結構	14
2.7	直流濺鍍	15
2.8	磁控濺鍍	16
2.9	高功率脈衝磁控濺鍍	17

	2.10	田口式實驗規劃法	17
	2.10.1	因子的分類	18
	2.10.2	數據分析方法	19
Ξ		實驗方法與步驟	23
	3.1	實驗流程	23
	3.2	實驗規劃	25
	3.3	實驗材料	27
	3.3.1	靶材	27
	3.3.2	基板	27
	3.3.3	工作氣體	27
	3.4	實驗設備	27
	3.5	實驗步驟	30
	3.5.1	基板前處理	30
	3.5.2	薄膜濺鍍步驟	30
	3.5.3	亞甲基藍溶液	31
	3.6	鍍層分析及量測	32
	3.6.1	膜厚量测	32
	3.6.2	薄膜結構分析	35
	3.6.3	薄膜表面型態分析	35
	3.6.4	薄膜表面分析	36
	3.6.5	光吸收度分析	37
	3.6.6	水滴接觸角試驗	37
	3.6.7	附著力量測(Pull of Test)	39
四、		結果與討論	42
	4.1	第一組實驗結果與討論	42

4.1.1	薄膜沉積速率	42
4.1.2	薄膜表面型態結構分析與亞甲基藍(MB)降解程度	47
4.1.3	TiO ₂ 薄膜親水性實驗	54
4.1.4	TiO ₂ 薄膜附著力檢測分析	59
4.2	第二組實驗結果與討論	61
4.2.1	薄膜沉積速率	61
4.2.2	薄膜表面型態結構分析與亞甲基藍(MB)降解程度	66
4.2.3	TiO2 薄膜親水性實驗	73
4.3	高功率脈衝磁控濺鍍(HiPIMS) TiO2 光觸媒薄膜	78
4.4	可見光降解亞甲基藍(MB)溶液實驗	82
4.5	抗菌測試	84
4.5.1	抗菌测試方法	84
4.5.2	無殺菌功能的紫外光抗菌測試結果與討論	88
五、二	結論與未來展望	90
5.1	結論	90
5.2	未來展望	94
參考文獻		95

表 1.1	anatase與Rutile的物理性質比較表	3
表 1.2	塑膠基板及金屬薄板之特性比較	5
表 1.3	可撓性塑膠材料之物性比較	5
表 2.1	二氧化鈦製程比較表	10
表 3.1	實驗控制因子	25
表 3.2	TiO2薄膜沉積於無鹼玻璃田口實驗計畫法L9直交表	26
表 3.3	TiO2 薄膜沉積於 PET 田口實驗計畫法 L9 直交表	26
表 3.4	設備之元件規格表	29
表 3.5	拉伸試驗機之元件規格表	41
表 4.1	實驗配置參數	43
表 4.2	I組TiO2薄膜沉積速率	43
表 4.3	II 組 TiO ₂ 薄膜沉積速率	44
表 4.4	I、II 組 TiO2 薄膜平均沉積速率及標準差	44
表 4.5	TiO2沉積速率與信號雜訊比(S/N)	45
表 4.6	沉積速率因子回應	46
表 4.7	TiO2沉積速率變異數分析	46
表 4.8	Ⅰ、Ⅱ組亞甲基藍溶液光吸收量測值及標準差	48
表 4.9	亞甲基藍溶液光吸收量測值與信號雜訊比(S/N)	49
表 4.10	亞甲基藍溶液光吸收量測值因子反應表	50
表 4.11	亞甲基藍溶液光吸收量測值變異數分析	50
表 4.12	TiO2 薄膜水滴接觸角及表面粗糙度(Ra)量測值	54
表 4.13	TiO2 薄膜膜厚與附著力量測值	59
表 4.14	實驗配置參數	62
表 4.15	III 組 TiO ₂ 薄膜沉積速率	62

表目錄

表 4.16	IV 組TiO2薄膜沉積速率	63
表 4.17	III、IV 組TiO2薄膜平均沉積速率及標準差	63
表 4.18	TiO2沉積速率與信號雜訊比(S/N)	64
表 4.19	沉積速率因子回應表	65
表 4.20	TiO2沉積速率變異數分析	65
表 4.21	III、IV 組亞甲基藍溶液光吸收量測值及標準差	68
表 4.22	亞甲基藍溶液光吸收量測值與信號雜訊比(S/N)	69
表 4.23	亞甲基藍溶液光吸收量測值因子反應表	69
表 4.24	亞甲基藍溶液光吸收量測值變異數分析	69
表 4.25	TiO2薄膜水滴接觸角及表面粗糙度(Ra)量測值	73
表 4.26	HiPIMS 參數規劃表	79
表 4.27	抗菌試驗規畫表	87
表 4.28	抗菌試驗結果表	89
E		
	1896	

圖	1.1	光觸媒 TiO2 應用場所	1
圖	1.2	半導體能隙圖	2
圖	1.3	(a)銳鈦礦(anatase)(b)金紅石(rutile)(c)板鈦礦(brookite)分	
		子結構圖	3
圖	2.1	氧化還原反應示意圖	8
圖	2.2	二氧化鈦親水性機制	9
圖	2.3	薄膜沉積步驟	14
圖	2.4	鍍層微結構模型	15
圖	2.5	磁控溅鍍示意圖	16
圖	2.6	高功率脈衝(HiPIMS)電源架構	17
圖	2.7	影響產品品質之因子方塊圖	22
圖	3.1	實驗流程圖	24
圖	3.2	自行設計組裝之濺鍍設備外觀	28
圖	3.3	溅鍍設備內部構造圖	28
圖	3.4	UV 暗箱外觀圖	29
圖	3.5	基板清洗步驟	30
圖	3.6	亞甲基藍溶液光吸收量測	32
圖	3.7	表面輪廓儀外觀圖	33
圖	3.8	表面輪廓儀示意圖	34
圖	3.9	膜厚量測示意圖	34
圖	3.10	XRD 繞射儀外觀圖	35
圖	3.11	原子力顯微鏡外觀圖	36
圖	3.12	場發射電子顯微鏡外觀圖	36
圖	3.13	UV-VIS 光譜儀外觀圖	37

圖 目 錄

圖	3.14	水滴接觸角儀外觀圖	38
圖	3.15	水滴接觸角示意圖	38
圖	3.16	附著力測試示意圖	39
圖	3.17	試棒放於兩平行塊間	40
圖	3.18	黏著好之試棒	40
圖	3.19	薄膜拉伸試驗附著性測試	41
圖	4.1	Ⅰ·Ⅱ組 TiO2薄膜平均沉積速率及標準差圖	45
圖	4.2	TiO2沉積速率因子回應圖	46
圖	4.3	Ⅰ、Ⅱ 組亞甲基藍溶液平均光吸收標準差圖	49
圖	4.4	亞甲基藍溶液光吸收度因子回應圖	50
圖	4.5	No. 1~9 及 10 最佳沉積參數之薄膜 SEM 表面形態	52
圖	4.6	No.1~9及最佳沉積參數之降解 MB 吸收光譜圖	52
圖	4.7	No.1~9及最佳沉積參數之TiO2薄膜XRD繞射圖	53
圖	4.8	No.1~9及(10)最佳沉積參數水滴接觸角與AFM形態	58
圖	4.9	拉伸試驗完成之示意圖	60
圖	4.10	下試棒之TiO2薄膜拉伸試驗破斷面	60
圖	4.11	III、IV 組 TiO2 薄膜平均沉積速率及標準差圖	64
圖	4.12	TiO2沉積速率因子回應圖	65
圖	4.13	III、IV 組亞甲基藍溶液平均光吸收及標轉差圖	68
圖	4.14	亞甲基藍溶液光吸收度因子回應圖	70
圖	4.15	(PET)No. 1~9及10最佳沉積參數(E ₂ F ₃ G ₁ H ₃)之SEM表面	
		形態	71
圖	4.16	(PET)No.1~9 及最佳沉積參數(E ₂ F ₃ G ₁ H ₃)之降解 MB 吸收	
		光譜圖	72
圖	4.17	(PET)No.1~9 及最佳沉積參數(E ₂ F ₃ G ₁ H ₃)之 TiO ₂ 薄膜	

	XRD 繞射圖	72
圖 4.18	No.1~9及10最佳沉積參數(E ₂ F ₃ G ₁ H ₃)之水滴接觸角變化	
	與 AFM 表面形態	77
圖 4.19	示波器讀取電壓電流圖	79
圖 4.20	(a)HiPIMS (E ₂ F ₃ G ₁ H ₃), (b)DCMS (E ₂ F ₃ G ₁ H ₃)之薄膜 SEM	
	表面形態	79
圖 4.21	(a)HiPIMS (E ₂ F ₃ G ₁ H ₃),(b)DCMS (E ₂ F ₃ G ₁ H ₃)之水滴接觸	
	角變化與 AFM 表面形態	80
圖 4.22	HiPIMS (E ₂ F ₃ G ₁ H ₃)與 DCMS (E ₂ F ₃ G ₁ H ₃)之降解 MB 吸收	
	光譜圖	81
圖 4.23	HiPIMS (E ₂ F ₃ G ₁ H ₃) 與 DCMS (E ₂ F ₃ G ₁ H ₃)之 TiO ₂ 薄膜	
	XRD 繞射圖	81
圖 4.24	TiO2 薄膜經可見光照射 4 小時降解亞甲基藍溶液之吸收	
	光譜圖	83
圖 4.25	保濕容器	85

第一章 緒論

1.1 前言與研究背景

科技進步提升人們生活水準,但環境污染源卻與日俱增。一氧化碳、硫 氧化物(SOX)、氮氧化物(NOX)、懸浮微粒及各種污染物,嚴重危害人類生 活。因此,如何分解污染物為提升生活品質的重要課題。1972 年由 Fujishima 及其指導教授 Honda [1]發表於 Nature 雜誌中,發現 TiO₂ 在光照射下會分解 水成 H₂及 O₂之反應,接著越來越多的學者及研究機構投入 TiO₂光催化性 質相關的研究,致力於各種可能的改善方法,以提高 TiO₂光觸媒的效果。 目前光觸媒已開始大量被使用在各個方面如圖 1.1 所示 [2],尤其是利用在 人類的日常生活上占有相當的比例。

圖 1.1 光觸媒 TiO2 應用場所

光觸媒具有殺菌與分解環境污染的效果,擁有光觸媒性質的材料有 ZnO、WO₃、CdO、MnO₂、Fe₂O₃、TiO₂、SnO₂等等,其中以 TiO₂運用最 廣泛,因 TiO₂擁有良好的化學穩定性,且製備容易、價格便宜和無毒等優 點,圖 1.2 為常見半導體能隙圖[3]。TiO₂ 半導體觸媒能隙值(band-gap)大約 為 3.2 eV,經由紫外光的照射後,其觸媒表面的電子因吸收足夠能量而脫 離,而在電子脫離的位置會形成帶正電的電洞,附近水分子所游離出的氫 氧基(OH-)會被電洞氧化(即奪取其電子),成為活性極大的氫氧自由基;有 機物質一旦遇上氫氧自由基,其電子會被奪回,使其因鍵結的潰散而分崩 離析,最後產生水及二氧化碳。此特性可用於殺菌、淨化空氣、廢水處理[4,5] 等。

TiO₂ 有三種結晶相分別為正方晶型的銳鈦礦(anatase)、金紅石(rutile)及 斜方晶型的板鈦礦相(brookite) [6],一般常被使用的都是正方晶型結構,其 中金紅石礦(Rutile)是熱力學最穩定的,密度大於銳鈦礦與板鈦礦,具有最 高的折射率與紫外光吸收能力。銳鈦礦的表面積比金紅石大,所以表面水 分子較易產生反應,故光催化效果較佳。圖 1.3 為銳鈦礦金紅石礦及板鈦礦 之分子結構圖[7],表 1.1 為 anatase 與 Rutile 的物理性質比較表。

圖 1.3 (a)銳鈦礦(anatase)(b)金紅石(rutile)(c)板鈦礦(brookite)分子結構圖[7]

表 11 anatas	e 與 Rutile 的物理性	曾比較表
	Anatase	Rutile
結晶系	正方晶系	正方晶系
密度(g/cm ³)	3.89	4.25
分子量(g/mol)	79.866	79.866
能隙(energy gap)	3.2 eV	3.0 eV
折射率(air)	2.55	2.7
對應UV光波長(nm)	385	410
熔點(℃)	Converts to rutile	1855

1.2 研究動機

TiO₂物理與化學穩定性佳、氧化能力強、價格便宜及無毒等優點,因 此,眾多光觸媒材料中,以TiO₂光觸媒應用最為廣泛。二氧化鈦為n型半 導體結構,以Ti原子為中心,有6個氧原子形成配位數在Ti原子周圍, 為6之八面體結構,Ti原子擁有22個電子,利用外圍3d軌域的4個價 電子與氧原子形成共價鍵。且TiO₂的半導體觸媒其能隙值(band-gap)大約為 3.2eV,所以會吸收385 nm以下之光波長。當TiO₂薄膜受到紫外光(UV)的 照射,位於價帶(VB)上的電子會被激發而跳至導帶(CB),形成一組電子-電 洞對。此電子-電洞對與表面接觸的水(H₂O)及氧(O₂)作用後,可產生過氧化 物與自由基,此特性可以運用於殺菌、淨化空氣、廢水處理等等。TiO₂有 三種結晶相分別為銳鈦礦(anatase)、金紅石(rutile)及板鈦礦相(brookite),其 中以銳鈦礦相與金紅石相的光觸媒活性較高。

隨著科技發展現代產品朝著輕、薄、短、小的發展趨勢,以塑膠材料 取代玻璃為市場上受矚目的新技術。塑膠材料具有質量輕、耐衝擊(impact resistance)、可撓性(flexible)等特性,可利用連續捲繞(Roll to Roll)的方式, 適合大量生產及可降低成本。

目前能做為可撓性基板的材料有塑膠基板(Plastic)及金屬薄板,表 1.2 為兩種可撓性基板之特性比較,由表得知在可撓性、厚度、耐衝擊性與成 本上為塑膠基板較佳。一般常見的軟性塑膠材料,依其分子結構之差異而 有不同的光學特性、耐熱性等,如表 1.3 所示,由表得知(PET, polyethylene terephthalate;聚乙烯對苯二甲酸酯)具有良好的光學穿透率與低的熱膨脹係 數,且價格便宜。

	塑膠基板	金屬薄板
Flexibility	佳	尚可
Thickness	較 薄	較厚
Shock resistance	佳	差
Cost	低	較高
Insulation	佳	差
Transparency	上住	極差

表 1.2 塑膠基板及金屬薄板之特性比較

長1.3 可撓性塑膠材料之物性比	上較	Ż
------------------	----	---

	PEN	PC	PES	PAr	PET	COC
密度(g/cm ³)	1.36	1.20	1.37	1.21	1.20	1.05
折射率	1.74	1.59	1.65	1.60	1.40	1.52
光穿透率(%)	89	92	90	92	92	92
熱變型溫度(℃)	120	145	220	215	210	165
熱膨脹係數(ppm/℃)	35	70	55	53	17	61

1.3 研究目的

TiO₂薄膜常以溶膠凝膠法(Sol-Gel method)製成 [8-10],此種方法附著性 不佳, 膜易剝落且膜厚不易控制。相關文獻指出以濺鍍法(Sputter)[11-13] 鍍 製的 TiO₂薄膜能改善這些缺點。

本研究分別使用直流(direct current, DC)磁控濺鍍及高功率脈衝磁控濺 鍍(high-power impulse magnetron sputtering, HiPIMS)沉積 TiO₂ 光觸媒薄 膜,於無鹼玻璃(non-alkali glass)及可撓性塑膠(Polyethylene terephthalate, PET)基材,提昇 TiO₂照射紫外光及可見光後所產生的光觸媒反應。因一般 玻璃大部分都有含鈉,會影響 TiO₂光觸媒的性能,固本研究使用無鹼玻璃 當為底材,使 TiO₂光觸媒不會受到鈉的影響而降低光觸媒性能。本實驗運 用田口實驗設計,觀察不同的濺鍍參數對 TiO₂光觸媒薄膜的影響,探討的 濺鍍參數為直流功率(DC. power)、濺鍍壓力(Sputtering pressure)、基板溫 度(Substrate temperature)、及沉積時間(Deposition time),分析 TiO₂光觸媒 薄膜的表面微結構(SEM、AFM)、X-Ray 結晶相、亞甲基藍降解程度、親水 性、抗菌效果。最後使用 HiPIMS (High-power impulse magnetron sputtering) 技術,改善TiO₂光觸媒薄膜沉積於 PET 塑膠基板之光催化特性。再以拉伸 試驗進行薄膜附著力測試,進一步觀察薄膜的機械性質。

第二章 實驗相關理論與文獻回顧

2.1 光觸媒簡介

觸媒本身並不發生反應,卻可以促進化學反應進行的物質,觸媒僅扮演 催化劑角色,本身並不會消耗掉,且沒有不良副作用。 其作用原理是利用 觸媒來降低所需的能量,增快其反應速率;反之,觸媒若會使反應速率下 降,則稱為負觸媒。

要使光觸媒產生氧化還原反應,必須有足夠的光線能量激發它,位於價 電帶(VB)上的電子會被激發而跳至導電帶(CB),形成一組電子-電洞對。此 電子-電洞對與表面接觸的水(H₂O)及氧(O₂)作用後,可產生過氧化物與自由 基,形成•OH(氫氧自由基;Hydroxide radical)。氫氧自由基會將污染物質 分解成水及二氧化碳,此即為光觸媒反應。

2.2 光觸媒氧化還原原理

光觸媒的氧化還原反應多屬於異相光催化反應,而異相光催化反應意指 光觸媒與反應物存在不同的物理相中,反應物會經由擴散而附著在固體觸 媒表面,當光觸媒受足夠的光線能量照射時,位於價帶(Valence band)的電 子會被光的能量激發,電子跳躍至導帶(Conduction Band),價帶缺少一個電 子變成帶正電之電洞,故與導帶組成電子-電洞對。當電子遇到空氣的氧分 子(O₂)時,會形成反應性極強的超級氧分子(•O₂);當空氣中的水氣(H₂O) 奧電洞相遇時,電洞會透過光化學反應搶奪水中氫氧基的電子,氫氧基失 去電子後,會變成不安定的氫氧自由基(•OH),所生成的•O₂及•OH 自由基會與有機污染物進行化學反應,將有機污染物分解成水及二氧化 碳,如圖 2.1 [14]所示。以上各項反應,由下列反應式說明 [15]: (1)激發光觸媒產生電子-電洞對

圖 2.1 氧化還原反應示意圖[14]

2.3 二氧化鈦薄膜

2.3.1 二氧化鈦的超親水性

二氧化鈦除了有光催化活性外,其另一項特性是具有超親水性。二氧化 鈦受到光線照射後,二氧化鈦表面部分氧分子會脫離(4h⁺+2O₂²⁻→O₂↑), 形成氧離子空缺,水分子會佔據該氧離子空缺,形成氫氧基(OH),而二氧 化鈦表面有超親水性質也是因為氫氧基的存在。圖 2.2 為二氧化鈦親水性 與疏水性機制[16]。二氧化鈦未接受光線照射時,其水滴接觸角皆在幾十度 以上,當光線(UV)能量照射後,水滴接觸角會減小甚至接近零度,使表面 形成超親水性,當停止光源照射,其水滴接觸角就會慢慢回復成原來的角

圖 2.2 二氧化鈦親水性機制[16]

2.3.2 二氧化鈦薄膜製備方法

製備二氧化鈦薄膜的方式有很多,如濺鍍法[17-18]、溶膠凝膠法(Sol-Gel method) [19]、燃燒法(combustion) [20]、化學氣相沈積(Chemical vapor deposition, CVD) [21]等。其中以濺鍍法所沉積出的薄膜具有較佳的緻密結構,表面平坦度優良等,濺鍍法也可藉由改變氣體流量來控制薄膜成份, 並對大面積的製程也有較快的效率,可連續生產高品質薄膜,所以濺鍍法 在製作薄膜上具有很大的優勢。表 2.1 為不同製程比較。

S	溶膠凝膠法	濺鍍法	氣相沉積法	燃燒法
製備原理	化學還原	物理化學性	化學性	化學氣化
產品純度	低	高	高	低
粒徑	小		96	t
粒徑分布	佳	佳	佳	不佳
操作難易度	容易	尚可	困難	容易
優點	適於製備氧 化物	適合製備金 屬微粒	結晶性較佳	
缺點	製程中引入 的離子去除 不易	設備要求高	原料成本昂 貴	非球狀粉末

表 2.1 二氧化鈦製程比較表

2.4 文獻回顧

Dwight R. Acosta[22]等人以鈦為靶材,利用反應式直流磁控濺鍍系統沉 積TiO₂薄膜於玻璃上,其研究指出當基板溫度為300℃且壓力為3.2×10⁻² torr 時薄膜呈現非晶狀態,當溫度上升至450℃且壓力下降到1.6×10⁻² torr時,此 時TiO₂薄膜產生銳鈦礦結構,且擁有良好的光催化效果。

O. Zywitzki [23]等人以反應式直流脈衝磁控濺鍍系統沉積 TiO₂薄膜於 玻璃上,其基板溫度為 400℃,探討製程壓力 0.3 Pa 到 3 Pa 對薄膜型態的 影響,該研究指出製程壓力從 0.3 Pa 上升到 1.2 Pa 時,沉積的 TiO₂薄膜其 平均粗糙度值(Ra)從 4.5 nm 增加到 8.0 nm,且晶粒尺寸在 75 nm 和 100 nm 之間,而進一步增加製程壓力至 2 Pa 和 3 Pa 時,沉積的 TiO₂薄膜其平均粗 糙度值(Ra) 會降低至 2.4 nm,且晶粒尺寸小於 50 nm,此研究指出在擁 有較大的平均粗糙度值(Ra) 其光觸媒效果較佳。

Y. Sato [24]等人以反應式直流脈衝磁控濺鍍系統沉積 TiO₂薄膜於未加熱無檢玻璃上,研究指出固定製程壓力及濺鍍功率,基板在未加熱的狀況下,所鍍製出的 TiO₂薄膜是屬於非晶結構,光觸媒效果非常的低,而基板 溫度上升至 300℃時,所鍍製出的 TiO₂薄膜有銳鈦礦結構的產生,在照射 UV 光之後,有良好的光觸媒效果及親水性質。

M.F. Hossain [25]等人以反應式濺鍍沉積TiO₂光觸媒薄膜,其固定氫氧 比例和製程壓力,探討濺射功率對薄膜的表面形態和結晶度的影響,研究 結果指出製程壓力在7.5×10⁻³ toor、氫氧比例7比3、濺射功率200W時,薄 膜有銳鈦礦相的結晶,而當濺射功率提升至500W時,所沉積出的TiO₂薄膜 有最佳的光催化效率。

Ohno [26] 等人以反應性中頻磁控濺鍍法沉積TiO₂於無鹼玻璃,研究指 出未加熱基板沉積的TiO₂薄膜沒有任何的光催化效果,但薄膜經由退火 200℃後,晶格轉變為銳鈦礦結構,有良好的光催化效果與親水性。製程壓

11

力3 Pa比1 Pa所鍍製之TiO2薄膜,有較佳的光觸媒反應。此外,較慢的沉積 速率可讓光觸媒反應有增加的趨勢。

Yang [27] 等人以離子源輔助電子束蒸鍍(ion beam assisted electron beam evaporation)沉積TiO₂於玻璃基板,研究指出在100℃至300℃所沉積出的薄膜為非晶結構,經由真空退火450℃持續一小時,薄膜由非晶轉變為銳 鈦礦結構,且基板溫度在300℃時沉積之TiO₂薄膜,經真空退火450℃持續 一小時擁有較佳可見光穿透率。

Erik Lewin [28] 等人分別以直流磁控濺鍍(DCMS)及高功率脈衝 (HiPIMS) 沉積AlSiN薄膜,探討(DCMS)與(HiPIMS)的差異,研究指出使用 HiPIMS沉積AlSiN薄膜硬度大於(DCMS),因HiPIMS可增加靶材原子沉積至 基板的能量,使薄膜晶格結構密度增加,附著力上升。

P.J. Kelly [29]等人,固定濺鍍參數沉積薄膜於PET塑膠基材上,探討直 流磁控及高功率脈衝對PET塑膠及薄膜之影響,結論顯示直流磁控濺鍍會使 塑膠融化無法鍍製薄膜,而使用高功率脈衝所鍍製之薄膜有良好的晶格結 構及薄膜特性,且PET塑膠不會因高功率脈衝受損害,顯示高功率脈衝可用 於低熔點之基材。

2.5 電漿(plasma)原理

電漿是一種完全游離或部分游離的氣體,其反應主要是由粒子和粒子間 的相互碰撞所引起,在碰撞的過程中能量會互相轉移,而依序產生激發、 離子化、弛緩、再結合等反應。氣體分子發生激發及離子化是因為受到光、 電子、放射線等具有能量的粒子碰撞,受放電而導致激發及離子化的氣體 中,含有原子、中性分子、電子及各種離子,此即為電漿。電漿主要反應 如下列公式所示[30]:

e代表電子,A、B或AB代表原子及分子,A*或AB*代表激發態的原子

或分子。

(1) Excitation

$A+e^- \rightarrow A^* + e^-$	(2-11-1)
$AB+e^- \rightarrow A+B+e^-$	(2-11-2)
(2) Dissociation	
$AB+e^- \rightarrow A+B+e^-$	(2-11-3)
(3) Direct ionization	
$A+e^{-} \rightarrow A^{+}+e^{-}$	(2-11-4)
$AB+e^- \rightarrow AB^+ + 2e^-$	(2-11-5)
(4) Cumulative ionization	
$A^* + e^- \rightarrow A^+ + 2e^-$	(2-11-6)
$AB^* + e^- \rightarrow A^+ + B + 2e^-$	(2-11-7)
(5) Dissociative ionization	
$AB+e^{-} \rightarrow A^{+}+B+2e^{-}$	(2-11-8)
2.6 薄膜沉積理論	

2.6.1 沉積現象

薄膜的生長過程會直接影響到薄膜的結構與最終的性能,薄膜沉積時依發生順序可分為下列五個步驟[31-32];圖 2.3 為薄膜沉積步驟[33]

- (a)成核:撞擊基板後的粒子失去垂直於基板的速度分量,以物理吸附於基板表面。
- (b)晶粒成長:吸附於基板上的粒子並不處於熱平衡狀態,因此利用剩餘能量在基板上移動並反應結合成為更大的核團。沉積時的參數不同會改變

核團的熱平衡狀態,並可能從基板表面脫附。若在脫附前與吸附粒子發 生碰撞,則晶粒尺寸將逐漸增加。若要克服成核之能障,則要達到臨界 成核的大小與熱力學的平衡,才會形成一個穩定的化學吸附及有臨界大 小之晶核。

- (c)晶粒聚結:達到臨界尺寸之晶核一直增加到飽和階段,孕核方才完成。 吸附粒子經由擴散會使晶核平行成長,入射粒子直接撞擊會使晶核垂直 成長。每個晶核會在基板上形成許多島狀核(Island nuclei),晶核的成長會 增加半徑,開始與附近的其他晶核相接觸,此階段稱為聚結。
- (d)縫道填補:所吸附的原子會不斷的沉積到晶粒與晶粒間所形成的縫道裡,而將此縫道填滿。
- (e)薄膜成長:長晶、晶粒成長、晶粒聚結,薄膜結構是由非連續之島狀結構形成多孔但連續的網狀結構,藉由空的孔縫填補而生成連續且完整的薄膜。

(a) (b) (d I I

圖 2.3 薄膜沉積步驟[33]

2.6.2 薄膜表面及截面結構

薄膜沉積時鍍層結構受到基板溫度與工作氣體壓力影響, Thorton [34] 在濺鍍時改變這兩項參數,提出鍍層微結構模型如圖 2.4,其中大致可分為 四種形態: (1)Zone1:此區有明顯的圓錐狀晶粒組織,且在晶粒間有許多孔洞存在,因此晶粒間結合力差。在低溫高壓的情況下濺鍍所得到的鍍層具有Zone1的結構,當高壓射出之粒子到達基板前會與氣體分子增加碰撞機會,造成能量損失,低溫時會使原子移動率(Mobility)下降,故其動能降低而無足夠能量達到緊密堆積的位置,形成鍍層結構鬆散的現象。
(2)ZoneT:此區是介於Zone1及Zone2之間的過渡組織,結構為緊密排列

之纖維狀形態,不易分辨出晶粒邊界。

- (3)Zone2:基板溫度升高後使沉積在基板的原子擴散能力增加,形成緊密 排列的直徑狀組織。
- (4)Zone3:當基板溫度接近於鍍層熔點(T_m)時,由於再結晶與擴散的因素 形成 Zone3 之軸晶(Equi-Axis Grains)結構。

圖 2.4 鍍層微結構模型[34]

2.7 直流濺鍍

直流式電浆在相同電場加速下,因離子質量遠大於電子質量,故電子移 動速度遠大於離子移動速度,因此電子會集中在電極兩側,而電浆中離子 濃度將高於電極表面,產生電浆電位,陰極上的靶材表面會受到經電場加 速後的離子轟擊,使得靶材表面的原子揮發,沉積到陽極的基板上。離子 轟擊的過程中會產生二次電子,二次電子受到電場加速而撞擊腔體內的氣 態粒子產生離子,此時離子會再經由電場加速而轟擊靶面,在此循環下靶 面的原子將被轟擊出來沉積至基板上。

2.8 磁控溅鍍

磁控濺鍍為在靶材後方加裝永久磁鐵,使靶材表面形成封閉環狀磁場, 如圖 2.5 所示。該磁場使電子在靶材附近作螺旋狀運動,提升氣體分子與靶 材之碰撞機率,使有更多的離子撞擊靶材,濺射出原子沉積於基板上,可 有效的提高濺鍍速率。

圖 2.5 磁控濺鍍示意圖

2.9 高功率脈衝磁控溅鏡

圖 2.6 高功率脈衝(HiPIMS)電源架構[35]。高功率脈衝磁控濺鍍 (high-power impulse magnetron sputtering, HiPIMS)與一般傳統直流濺鍍的差 異,在於增加一組高功率脈衝電源供應器,其原理是一組直流電源供應器 將其電能累積至脈衝模組中的電容,此電容必須能承受充電電壓達數百、 千伏特,接著調整放電的脈衝頻率及脈衝時間,將電能釋放出來。要達到 高功率脈衝的定義,其脈衝頻率介於 10 到 10 KHz 和脈衝時間介於 5-5000 μs,在這些條件下,其電流密度會高於傳統直流濺鍍所產生的電流密度 10-100 倍,所以會形成超高密度電漿,因而增加靶材原子沉積至基板的能 量,有助於提升薄膜的附著性與緻密性[36]。

2.10 田口式實驗規劃法[37]

田口式實驗設計(Taguchi quality design)法的特色在於利用直交表規劃 實驗與信號雜音比(Signal-noise ratio, S/N)分析實驗數據。利用直交表設 計實驗可以使實驗者以快速、經濟的方式,同時研究多個可控制因子對品 質特性平均值及變異數之影響,而信號雜音比分析實驗數據,可使實驗者 很容易找出最適合的參數組合,達到節省時間之目的。

通常在實驗過程中,最常犯的錯誤是由固定一條件改變另外條件而得到 一個結果,並迅速的為此結果下結論,然而這個結果不一定為最佳化之組 合,原因為在其他條件固定下,可能有一些因素被強迫抑制,若進而再改 變其一條件,所得到之結果可能就不相同。田口式實驗設計法已經廣泛應 用於工業界以提高生產品質,而學術界也採田口式實驗設計法在實驗設計 上,在田口式實驗設計法的直交表配置中,每一組實驗配置的因子水準均 不相同,並考慮了因子間的交互作用,因此,如果某一因子被分析出來是 顯著要因,表示即使改變其他因子的條件,仍不會改變該顯著要因的效果, 故以直交表所得到的結果,其可信度較傳統組合法為高。

影響薄膜品質之鍍膜參數眾多,本研究主要找出較具影響力的鍍膜參 數,因此採用田口式實驗計畫法中的混合型直交表,可以減少大量實驗次 數,該混合型直交表,任兩行(因子)間的交互作用與特定行的效果不交絡, 除了第一行和第二行之交互作用與其他各行不交絡外,三水準行間的交互 作用平均分散在其餘的三水準行列中,所以各行的效果,除了配置在該行 因子的主效果外,尚有其他各行的交互作用效果配置在此行,因此,本來 具有很大主效果之因子,其所配置行的效果,與不具有很大主效果的行比 較,相對地更大,因此,可以找到真正顯著的因子。

2.10.1 因子的分類

影響產品品質特性或反應的因子有三類,分別是信號因子、可控因子與 雜音因子,詳細分述如下,圖2.7為影響產品品質之因子方塊圖。 (1)信號因子(Signal factor)

此類因子的水準可由使用者或設計者設定,以決定品質特性之輸出值。 例如,駕駛員可用方向盤的角度來控制汽車方向的角度,所以汽車方向盤 的角度就是一個信號因子。信號因子是依產品的需求去作選擇與設計的,

如何做汽車方向的控制,工程師先想到用汽車方向盤去控制,接著設計者 就必須設法設計出方向盤的角度正比於汽車方向變化角度的車子,以達到 產品的需求。

(2)可控因子(Control factor)

此類因子的水準可由設計者自由設定與選擇,並調整這些可控因子的水準, 找出最適參數組合,使品質特性符合產品的要求。例如,直流功率、 製程壓力、氫氧比例、基板溫度等的選擇。

(3) 雜音因子(Noise factor)

雜音因子則是對品質特性具有影響,但設計者無法自由選擇或控制其 水準的因子。一般而言,雜音因子可分成三種:

(a)外部雜音(Outer noise):

來自於使用產品時的環境,例如環境的溫度。 (b)內部雜音(Inner noise):

又稱為劣化雜音(Deteriorating noise)。產品因使用時間長久,各零件產 生變質或磨損,而導致產品的劣化。

(c)零件間變異(Unit-to-unit variation):

為製程上最不可避免的變異,雖然規格值一定,但是在製程中仍會造成 每件產品間的差異,但其原因可能並不明確。雜音因子通常是導致產品機 能性產生變異之主因,且是不可控制或控制成本非常的高,而在傳統的檢 驗制度與統計品管

對於外部雜音與內部雜音的改善幾乎沒有任何效果,為了有效的改善產品 對雜音的敏感度,田口博士利用線外品管中的參數設計法,選擇對品質特 性影響最強的因子來達成穩定產品機能特性的目的。

2.10.2 數據分析方法

就 TiO2 薄膜的特性而言,一般我們比較在乎的是薄膜沉積速率、薄膜

分解率、親水性及疏水性等,其中薄膜沉積速率代表的是單位時間內薄膜 厚度的高低,我們希望它愈高愈好,這種非負值其值愈大愈好的特性稱為 望大特性(Higher is better, HB);而親水性之水滴接觸角我們希望愈小愈 好,此種非負值其值愈小愈好的特性稱為望小特性(Lower is better, LB)。

在品質工程學上,我們希望能得知鍍膜參數與薄膜特性之間的關係,進 而能有助於我們達到參數最佳化的目的,為此,信號雜訊比(Signal to Noise Ratio 簡稱 S/N 比)的引用就成為一種極理想的特性表示方法。所謂 S/N 比即 每單位所對應單位量大小的變異(誤差)的大小之倒數,而 S/N 比取對數後的 十倍即稱為分貝單位的 S/N 比,在望大、望小特性 S/N 比的定義不同,分 別敘述如下:

如果有 n 個具望大特性的實驗數據值 y_1 , y_2 , y_n , 其 y 值愈大, 損失 函數 L(y)愈小, 且 $L(\infty)=0$, $L'(\infty)=0$, 則單位的變異大小

$$\sigma^{2} = \frac{1}{n} \left(\frac{1}{y_{1}^{2}} + \frac{1}{y_{2}^{2}} + \dots + \frac{1}{y_{n}^{2}} \right)$$
(2-12)

反之,假設 N 個具有望小特性的實驗數據值 y₁, y₂y_n,其目標 值為零,則單位的變異大小

$$\sigma^{2} = \frac{1}{n} \left(y_{1}^{2} + y_{2}^{2} + \dots + y_{n}^{2} \right)$$
(2-13)

在田口式品質工程上取 σ²之倒數就是 SN 比,若對 SN 比取對數再乘 10,則稱為分貝單位的 S/N 比,以符號 η 表示之,即

$$\eta = 10\log \frac{1}{\sigma^2} = -10\log \sigma^2$$
 (2-14)

應用上面的公式,我們便可以逐一的計算實驗中加工參數及其水準的 S/N 比及建構 S/N 的回應表,並應用這些結果來得到製程參數對薄膜特性之 影響。

變異數分析是基於總平方和(或總變異V)及自由度f之分割,即資料之 收集會產生各種變異,這些變異之總和即總變異,根據變異之加成性分解 成組間變異(即各因素之變異)和誤差變異(或稱組內變異),根據變異數分析 的理論,總變異可以分解如下:

$$V_T = \sum V_i + V_E \tag{2-15}$$

其中Vi表示各因素之變異,VE表示誤差變異

而在求出變異數之前,需先計算各加工參數和誤差因素的變動平方和 S 如下:

推定因素是否顯著要看是否大於誤差變異,這裡採F檢定,將組間變異 與誤差變異相除即為F之比值,計算如下:

$$V_A = \frac{S_A}{f_A} \tag{2-20}$$

$$F_{A0} = \frac{V_A}{V_E} \tag{2-21}$$

其中 f_A :變數A的自由度

21
V_A :變數A的變異數

F_{A0}:變數A的F值

要判斷F的計算值要大於多少才有效果,國際上使用F檢定表來判斷,因此只需查表就可以查到F之臨界值(F_{0.05,n1,n2}),其中F_{0.05,n1,n2}為統計學上自由度n₁、n₂且大於F分佈95%的參考值,若變數AF_{A0}的值大於F_{0.05,n1,n2}值,則可推論此變數A為顯著因素,此即為F檢定方法。

第三章 實驗方法與步驟

3.1 實驗流程

本研究的實驗流程如圖 3.1 所示,分別對無鹼玻璃及 PET 決定控制因 子及水準值,進行 TiO₂薄膜鍍製,分析薄膜結構、降解亞甲基藍溶液 (Methylene Blue, MB)實驗(光觸媒效應測試)、水滴接觸角(親水性)測試、抗 菌分析,以拉伸試驗進行薄膜附著力測試,觀察薄膜的機械性質。求 出 TiO₂薄膜鍍製於 PET 基板,降解 MB 最佳參數組合後,再以 HiPIM 進 行 TiO₂薄膜沉積,探討 HiPIMS 與傳統直流濺鍍沉積 TiO₂薄膜差異性。

圖 3.1 實驗流程圖

3.2 實驗規劃

本研究分別以田口式實驗設計(Taguchi methods)兩組參數,針對無鹼玻 璃基材及 PET 基材,利用 L9 直交表(Orthogonal arrays)配合變異數分析,探 討 TiO₂ 光觸媒沉積參數(直流功率、濺鍍壓力、基板溫度、沉積時間)對薄 膜的沉積速率、亞甲基藍(Methylene Blue, MB)降解程度、水滴接觸角(親水 性)、抗菌分析、薄膜表面型態的影響。最後以 HiPIMS 技術,改善最佳製 程參數(PET 塑膠)之光催化效果,探討 HiPIMS 與傳統直流濺鍍沉積 TiO₂ 光觸媒薄膜的差異。表 3.1 為 TiO₂ 光觸媒(TiO₂ purity 99.995%/glass)鍍膜參 數及水準設定,表 3.2 為 TiO₂ 薄膜沉積於無鹼玻璃田口實驗計劃法 L9 直交 表。表 3.3 為 TiO₂ 薄膜沉積於 PET 田口實驗計劃法 L9 直交表。濺鍍的固 定參數包括:基板轉速 10 rpm、基板與濺鍍源(Gun)相距約 8 cm、背景壓力 為 6.0×10⁴ Pa。

表 3.1 實驗控制因子

	and the second s			101 1							
Su	Substrate : Non-alkali glass & Polyethylene terephthalate(PET)										
Ta	Target : TiO ₂ ; 99.999% purity										
Ga	s : Ar (99.995	5%)	25		1	96		7			
Ba	se pressure :	6.0×1	0^{-4} Pa								
Su	hstrate rotate	vertica	laxis	: 10 r	nm						
ou		vertieu	I uAIS	. 101	Pm						
Su	bstrate to targ	et dista	ince :	8 cm							
	Non-al	kali gla	ass		1	Р	ЕТ				
		Level 1 L	evel 2 I	Level 3	14		Level 1 L	evel 2 I	Level 3		
A	DC power (W)	90	120	150	Е	DC power (W)	170	200	230		
_	Sputtering			_		Sputtering			_		
В	pressure	1	1.5	2	F	pressure	1	1.5	2		
	(Pa)					(Pa)					
	Substrate					Substrate					
С	temperature	300	400	500	G	temperature	room	100	150		
	(°C)					(°C)					
	Deposition					Deposition					
D	time	60	120	180	Η	time	60	90	120		
	(min)					(min)					

Experiment No.	А	В	С	D
1	1	1	1	1
2	1	2	2	2
3	1	3	3	3
4	2		2	3
5	2	2	3	1
6	2	3		2
7	3		3	2
8	3	E2 5	14	3
9	3	3	2	1

表 3.2 TiO2 薄膜沉積於無鹼玻璃田口實驗計畫法 L9 直交表

表 3.3 TiO2 薄膜沉積於 PET 田口實驗計畫法 L9 直交表

Experiment No.	Е	Ŧ89	96 ⁶	Бн
1	1	1		1
2		2	2	2
3	1	3	3	3
4	2		2	3
5	2	2	3	1
6	2	3	1	2
7	3	1	3	2
8	3	2	1	3
9	3	3	2	1

3.3 實驗材料

3.3.1 靶材

本實驗所使用的靶材為純度 99.995%的 TiO₂ 氧化物靶,其規格為直徑 2 英吋、厚度 0.25 英吋,由國內台灣格雷蒙偉斯企業所提供。靶材背面另外 以銦膠固定一片直徑 2 英吋、厚度 0.25 英吋的銅背板(Backing plate),在銅 背板背面中心以螺絲鎖上鐵片(Keeper),使靶材固定在濺鍍槍。

3.3.2 基板

選用國內基礎光電科技公司所提供之無鹼玻璃(Non-alkaliglass)及 PET,無鹼玻璃(Non-alkaliglass)基板規格大小為 25×25 mm、厚度 1.1 mm。 PET 基板規格大小為 25×25 mm、厚度 0.25 mm。

3.3.3 工作氣體

工作氣體為國內春源公司所生產之高純度氫氣(純度 99.995%)。破真空及清潔用氣體為國內春源公司所生產之高純度氮氣(純度 99.995%)。

3.4 實驗設備

濺鍍設備如圖 3.2 所示,包含兩個部分,一為真空系統,另一為濺鍍系統。其內部構造圖及各部位元件規格,分別如圖 3.3、表 3.4 所示。濺鍍過 程濺鍍源(Gun)會產生高熱,裝置冷卻水循環系統以防止濺鍍源中的磁鐵因 高溫消磁。此外,為了研究基板加熱對薄膜性質的影響,設計石英加熱器 及溫度控制器。

使用暗箱配合 UV 燈管(UVP UVL-225D),進行亞甲基藍溶液分解實驗,其設備如圖 3.4。亞甲基藍溶液分解實驗過程,首先將 TiO₂薄膜放置於 濃度 12 μmol/L 亞甲基藍溶液中,經紫外燈(1.5 mW/cm²)照射 4 小時,測 量亞甲基藍溶液光吸收度。

圖 3.3 溅鍍設備內部構造圖

抽真空系統							
名稱	規格	數量					
(1)真空腔體	ϕ 500mm × 500mm	1					
(2)機械幫浦	300 L/min	1					
(3)渦輪分子幫浦	550 L/s	1					
(4)熱陰極真空計	$5^{-3} \sim 10^{-8}$ torr	1					
	Ar 500 sccm	1					
(5)M F C	N ₂ 100 sccm	1					
(5)111.1.C	O ₂ 100 sccm	1					
	H ₂ 100 sccm	1					
(6)真空閥門	1"	3					
(7)真空直角門	4"						
(8)基板旋轉系統	0~100 rpm	1					
	溅鍍系統						
名稱	規格	數量					
(9)磁控溅鍍源	2"	2					
(10)石英加熱器	30~500°C	2 2					
(11)Pulsed DC	1 KW						
Generator and RF							
Generator	300 W	1					
	1896						
	1994 FCIGC+						
171							
2							
		5					
	A PARTY OF THE PAR	1					

表 3.4 設備之元件規格表

圖 3.4 UV 暗箱外觀圖

3.5 實驗步驟

3.5.1 基板前處理

基板表面若有油脂或有機化合物等汙染,會影響薄膜之特性,所以實驗 前每個清洗步驟,會影響薄膜沉積的結果,圖 3.5 為基板清洗步驟。首先將 試片浸入介面活性劑或異丙醇溶液中,再以超音波震盪 15 分鐘,去除試片 上的油脂及有機化合物,接著將試片取出放入去離子水中,已超音波震盪 15 分鐘,去除試片上殘留溶劑,最後利用高純度氮氣吹乾試片上殘留水漬, 將清洗好之試片放入濺鍍腔體進行實驗。

圖 3.5 基板清洗步驟

3.5.2 薄膜濺鍍步驟

(1)將試片送入真空腔體後關上腔門,先以油迴轉幫浦(Rotary pump, RP) 抽至 3×10⁻² torr,開啟石英加熱器加熱至 100℃持溫半小時,對基板做 outgassing 處理。

(2)烘乾基板,開啟渦輪幫浦(Turbo pump, TP)精抽至 6.0×10⁻⁴ Pa 以下。再通

入氣氣,待腔體壓力上升至1.5 Pa 並維持穩定。

(3) 開啟 DC power 點燃電漿對靶材作預鍍動作,以功率 20W 清靶 10 分鐘,

去除靶材表面雜質及表面氧化層。

(4)待預濺鍍動作完成後,調整氣氣流量使腔體壓力維持穩定,電漿穩定後 即移開擋板(Shutter)進行濺鍍。

(5) 鍍膜結束後關閉電漿及氣體,將試片置於真空腔體中自然冷卻。

(6)待試片溫度冷卻至室溫時,以氮氣破真空後取出試片,防止試片與空氣

中的氣體反應影響實驗結果。

3.5.3 亞甲基藍溶液

TiO2 光觸媒可以分解空氣中污染物與固態有機分子,本實驗選用亞甲基 藍溶液作為光催化效能測定,亞甲基藍為價格便宜且不具毒性的有機物。

調配 12 µmol/L 的亞甲基藍溶液,將溶液倒入石英試管中量測起始吸 收度,如圖 3.6 所示在波長 664 nm 時為最高吸收度之處約為 0.89 左右,將 此處設定為比較點,將不同條件的試片放入裝有 10 ml 之亞甲基藍溶液,使 用紫外燈(UV 光波長為 365 nm、照度為 1.5 mW/cm²)照射 4 小時,將溶液 取出量测光吸收度。

111

3.6.1 膜厚量测

將試片上之真空膠帶撕去,便可獲得膜層與基材的落差,落差之高度可 利用表面輪廓儀(α-step;ET-4000A)來測量。α-step 的量測方式是以機械傳 動方式,使一探針在試片表面由鍍膜區掃向未鍍膜區,在此距離內試片表 面有高度上之差異,再經由微處理機計算而畫出剖面圖,其高度差即為膜 厚,將測量到的厚度除以濺鍍的時間即可算出濺鍍速率。圖 3.7 為表面輪廓 儀,圖 3.8 為表面輪廓儀示意圖。本研究每一組實驗分別取五點量 測位置進行膜厚量測,最後計算五點膜厚平均值,再將每組實驗 膜厚平均值帶入田口運算。圖 3.9 為膜厚量測示意圖。

圖 3.9 膜厚量測示意圖

3.6.2 薄膜結構分析

使用 X 光繞射儀(Rigaku-2000 X-ray generator)來分析薄膜結構,所得之 XRD 繞射圖形再比對 JCPDS Card 鑑定薄膜之結構。圖 3.10 為 XRD 繞射 儀。操作條件如下:

(1) X-ray source: 銅靶(CuKα, λ=1.54056Å)

(2) 20 掃描範圍: 20°~80°

3.6.3 薄膜表面型態分析

利用具有原子級解析度的 AFM 檢測(SPA-400),可以得知薄膜表面的粗 糙度與微觀表面結構。其工作原理是原子與原子因距離近時會產生引力及 斥力兩種原子力,一般利用探針與試片表面之固定距離範圍之原子力,以 雷射反射原理,偵測探針之高低起伏,掃描後形成影像,即是原子力顯微 鏡成像之原理。圖 3.11 為原子力顯微鏡外觀圖。

圖 3.11 原子力顯微鏡外觀圖

3.6.4 薄膜表面分析

使用場發射電子顯微鏡(JEOL JSM-6500F),來觀察薄膜的表面型態。電 子束與試片的作用可分為彈性及非彈性碰撞兩類,掃描式電子顯微鏡以偵 測器偵測物質表面,因電子束撞擊而產生的二次電子及背向散射電子,可 推知表面結構的起伏。圖 3.12 為場發射電子顯微鏡。

圖 3.12 場發射電子顯微鏡外觀圖

3.6.5 光吸收度分析

利用 UV-VIS 光譜儀(Jasco V-670)進行亞甲基藍溶液可見光吸收度及薄膜吸收光譜之量測。其工作原理是讓 UV 光束先後通過基準試片及另一已 待測試片,經接收器所接收後,比較能量變化,即可得到光吸收度與薄膜 吸收光譜,圖 3.13 為 UV-VIS 光譜儀。掃瞄範圍: 300 nm~800 nm。

3.6.6 水滴接觸角試驗

使用水滴接觸角(CA-VP150),圖 3.14 為水滴接觸角儀。接觸角為黏著 力(adhesive,liquid to solid)與內聚力(cohesive,liquid to liquid)之間的關係,接 觸角度範圍為 $0 \le \theta \le 180^\circ$ 。當 $\theta > 90^\circ$ 時,定義此材料對液滴為疏水性 (unwettable),即材料表面能低; $\theta < 90^\circ$ 時,為親水性(wettable),即材料表面 能高。

1805 年楊格(Young)推導楊格公式(Young's equation)[38],由力學平衡可 說明接觸角與表面張力的關係。圖 3.15 為水滴接觸角示意圖。

$$\gamma_{LV}COS\theta = \gamma_{SV} - \gamma_{SL} \tag{3.1}$$

其中 γ_{LV} 為液體-氣體表面張力、 γ_{SV} 為固體-氣體表面張力、 γ_{SL} 為固體-液體表面張力、 θ 為接觸角。通常量測的接觸角有一定範圍,稱上限角為前 進接觸角(advancing contactangle, θ_a),下限角為後退接觸角(receding contact angle, θ_r),此兩角度差稱為接觸磁滯角(contact angle hysteresis, $\theta_h = \theta_a - \theta_r$), 此物理量跟液滴分子大小與材料對液滴的吸收性有關。

圖 3.15 水滴接觸角示意圖

3.6.7 附著力量测(Pull of Test)

本研究利用 Pull off test 法[39]來量測薄膜與基材間之附著力, Pull off test 法示意圖如圖 3.16 所示。先用異丙醇將試片黏接面擦式, 以清除試片上的油污和殘留物。接著將 3M Scotch-weld DP-460 之 Epoxy 均 勻塗附在拉伸試棒上(經噴砂且清洗),將沒有鍍製 TiO₂ 薄膜的無鹼玻璃面 與試棒 \u03c6 16mm 面接合,有鍍製 TiO₂ 薄膜另一面與試棒 \u03c6 5mm 面接合,需 施加壓力確保緊密接合。將試棒放於兩平行塊間,確保上、下兩試棒的同 心度如圖 3.17 所示,等待 12 小時以上,確定 Epoxy 凝固,取出試棒,利用 拉伸試驗機進行附著力之量測。圖 3.18 為黏著好之試棒,圖 3.19 為薄膜 拉伸試驗附著性測試,表 3.5 為拉伸試驗機之元件規格表。

圖 3.16 附著力測試示意圖

圖 3.18 黏著好之試棒

圖 3.19 薄膜拉伸試驗附著性測試

表 3.5 拉伸試驗機之元件規格表

		拉伸試驗機
代號	名稱	功能
(1)	上極限設定塊	其主要功能為設定試驗機橫擔移動範圍的上 限。
(2)	荷重元	損取力量資料,提供給顯示器做為計算試驗 力量的依據。
(3)	下極限設定塊	其主要功能為設定試驗機橫擔移動範圍的下 限。
(4)	萬向接頭	讓施力點維持在一直線。
(5)	試棒	將薄膜試片固定在試棒上面。
(6)	手動調整鈕	其主要功能為調整試驗機橫擔位置。
(7)	緊急停止鈕	機器發生非預期的緊急動作時,強制停止機 器運轉。
(8)	快速接頭	其主要功能是做為安裝夾具固定座。
(9)	顯示器	其主要功能為資料的計算、顯示、輸出、輸 入等重要功能。
(10)	電源開闢	其主要功能為開啟和關閉試驗機的電源。
(11)	電源指示燈	其主要功能為判斷電源是否有開啟。

第四章 結果與討論

4.1 第一組實驗結果與討論

4.1.1 薄膜沉積速率

第一組實驗是將 TiO₂ 薄膜鍍至於無鹼玻璃上。表 4.1 為實驗配置參數。 本研究將每組參數分別鍍製 I、II 兩組, 且每組薄膜量測 5 個點, 計算其平 均值及標準差。最後將 I、II 兩組平均值帶入田口運算。表 4.2 為 I 組 TiO₂ 薄膜沉積速率,表 4.3 為 II 組 TiO₂薄膜沉積速率,表 4.4 為 I、II 組 TiO₂ 薄膜平均沉積速率及標準差,圖 4.1 為 I、II 組 TiO₂薄膜平均沉積速率及標 準差圖。由圖中得知本實驗之膜厚沉積再現性良好。

表 4.5 為 TiO₂ 沉積速率與信號雜訊比(S/N),顯示沉積條件 No.7(A₃B₁C₃D₂)有較高的沉積速率(約 5.85 nm/min)。表 4.6 為 TiO₂沉積速 率因子回應圖。顯示沉積速率最快之最佳沉積參數為 DC 功率: 150 W (A₃), 濺鍍壓力:1 Pa(B₁),基板溫度:500°C(C₃),沉積時間:180min(D₃),以此 最佳沉積參數進行薄膜鍍製實驗應證。變異數分析顯示各個沉積參數的貢 獻程度,影響 TiO₂沉積速率的主要因子為直流功率(貢獻度為 76.05 %),高 直流功率可使 Ar 離子濺射出較多且動量較大的靶材原子,因此,可有效提 昇薄膜沉積速率[40]。影響 TiO₂沉積速率的次要因子是濺鍍壓力(19.75 %), 本研究濺鍍壓力在 1Pa 時沉積速率大於 2Pa,當腔體內氣體達到飽和,此時 沒有更大的能量將氫氣解離時,電浆密度並不會增加,沉積速率也不會提 升,而表中也顯示基板溫度及鍍膜時間對薄膜沉積速率的影響不大。經由 最佳沉積參數所鍍製之薄膜,其沉積速率約為 6.13 nm/min。

	А	В	С	D
Experiment No.	DC power (W)	Sputtering pressure (Pa)	Sputtering pressure (Pa)Substrate temperature (°C)	
1	90		300	60
2	90	1.5	400	120
3	90	2	500	180
4	120	1	400	180
5	120	1.5	500	60
6	120	2 5	300	120
7	150	1	500	120
8	150	1.5	300	-180
9	150	2	400	60

表 4.1 實驗配置參數

表 4.2 I組 TiO2 薄膜沉積速率

Experiment	dı	da	d ₂	d	ds	(D1)	Standard
No	(nm/min)	(nm/min)	(nm/min)	(nm/min)	(nm/min)	Mean	deviation
NO.				(IIII/IIIII)		(nm/min)	(nm/min)
1	3.09	3.07	3.06	3.09	3.09	3.08	0.0127
2	2.16	2.17	2.19	2.2	2.23	2.19	0.0245
3	2.41	2.47	2.46	2.43	2.48	2.45	0.0261
4	4.58	4.55	4.56	4.55	4.56	4.56	0.0110
5	3.89	3.9	3.91	3.93	3.92	3.91	0.0142
6	3.15	3.16	2.99	3.12	3.18	3.12	0.0679
7	5.86	5.83	5.86	5.87	5.88	5.86	0.0168
8	4.91	4.92	4.95	4.89	4.93	4.92	0.02
9	4.09	4.12	4.15	4.13	4.11	4.12	0.02

Experiment	d	d. d.		d	d	(D2)	Standard
Experiment	u_1	\mathbf{u}_2	u_3	\mathbf{u}_4	u_5	Mean	deviation
INO.	(nm/min)	(nm/min)	(nm/min)	(nm/min)	(nm/min)	(nm/min)	(nm/min)
1	3.12	3.14	3.15	3.13	3.16	3.14	0.0142
2	2.16	2.14	2.17	2.18	2.2	2.17	0.02
3	2.39	2.42	2.4	2.41	2.43	2.41	0.0142
4	4.58	4.57	4.59	4.6	4.56	4.58	0.0142
5	3.97	4.01	3.98	3.99	4	3.99	0.0142
6	3.05	3.08	3.09	3.06	3.02	3.06	0.0245
7	5.84	5.81	5.87	5.85	5.83	5.84	0.02
8	4.97	4.95	4.92	4.94	4.92	4.94	0.0190
9	4.06	4.08	4.1	4.09	4.07	4.08	0.0142

表 4.3 II 組 TiO2 薄膜沉積速率

表 4.4 I、II 組 TiO2 薄膜平均沉積速率及標準差

1E

٦

_				and a second		
	Experiment No.	D1 (nm/min)	D2 (nm/min)	Mean (nm/min)	Standard deviation (nm/min)	
	1	3.08	3.14	3.11	0.03	
-	2	2.19	2.17	2.18	0.01	2
	3	2.45	2.41	2.43	0.02	
1	4	4.56	4.58	4.57	0.01	
	5	3.91	3.99	3.95	0.04	
	6	3.12	3.06	3.09	0.03	
	7	5.86	5.84	5.85	0.01	
	8	4.92	4.94	4.93	0.01	
	9	4.12	4.08	4.1	0.02	

Experiment	Control factors				Deposition rate (nm/min)		S/N
No.	Α	В	С	D	D1	D2	(dB)
1	1	1	1	1	3.08	3.14	9.85
2	1	2	2	2	2.19	2.17	6.76
3	1	3	3	3	2.45	2.41	7.71
4	2	1	2	3	4.56	4.58	13.19
5	2	2	3	1	3.91	3.99	11.93
6	2	3	1	2	3.12	3.06	9.79
7	3	1	3	2	5.86	5.84	15.34
8	3	2	1	3	4.92	4.94	13.85
9	3	3	2	1	4.12	4.08	12.25

	А	В	С	D
Level 1	8.111	12.798	11.170	11.347
Level 2	11.642	10.852	10.741	10.637
Level 3	13.818	9.922	11.662	11.589
Effect	5.707	2.877	0.921	0.952
Rank	1	2	4	3

表 4.6 沉積速率因子回應表

表 4.7 TiO2 沉積速率變異數分析

圖 4.2 TiO2 沉積速率因子回應圖

4.1.2 薄膜表面型態結構分析與亞甲基藍(MB)降解程度

表4.8為I、II組亞甲基藍溶液光吸收量測值及標準差,圖4.3為I、II組亞 甲基藍溶液平均光吸收標準差圖,本實驗將I、II兩組TiO2薄膜放入MB溶液 中,進行紫外光照射4小時後,利用UV/VIS光譜儀進行MB溶液量測,因波 長664nm為最高點將其設為比較點,取此點量測值分別為M1、M2,計算 M1、M2平均值及標準差,觀察本實驗再現性。最後將M1、M2帶入田口運 算。

表4.9為TiO2薄膜降解MB之光吸收量測值與信號雜訊比(S/N),表4.10為 亞甲基藍溶液光吸收因子反應表,圖4.4為亞甲基藍溶液光吸收度因子回應 圖,顯示降解MB之最佳TiO2薄膜沉積參數為DC功率: 90W(A1), 濺鍍壓力: 2 Pa(B₃), 基板溫度: 500°C(C₃), 沉積時間: 180min(D₃), 本次實驗的最佳 化参數落在田口法裡,與No.3的實驗條件一樣,以此最佳沉積參數進行薄 膜鍍製應證實驗。圖4.5為No.1~9及最佳沉積參數TiO。薄膜SEM表面形態。 表4.11為TiO2降解MB之光吸收變異數分析,顯示基板溫度為影響MB降解程 度之最主要因子(貢獻度為60.117%)。因銳鈦礦相與金紅石相成長需要一定 的能量,提高基板溫度可使TiO2薄膜獲得足夠能量,以形成銳鈦礦(anatase) 和金紅石(rutile)結構,更有助於提升 TiO_2 薄膜對MB的降解程度。Y. Sato [24] 等人以反應式磁控濺鍍系統沉積TiO2薄膜於未加熱無檢玻璃上,研究指出 固定濺鍍壓力及濺鍍功率,基板在未加熱的狀況下,所鍍製出的TiO2薄膜 是屬於非晶結構,光觸媒效果非常的低,而基板溫度上升至300℃時,所鍍 製出的TiOo薄膜有銳鈦礦結構的產生,在照射UV光之後,有良好的光觸媒 效果及親水性質。影響MB降解程度之次要因子為沉積時間(貢獻度為32.016 %),沉積時間增加可使TiO,薄膜有足夠的時間長晶,使其有更多銳鈦礦與 金紅石的結晶結構。圖4.5為No.1~9及最佳沉積參數TiO,薄膜SEM表面形 態。由圖中得知高沉積時間(圖4.5(3)、(4)、(8),180 min)較低沉積時間(圖

47

4.5(1)、(5)、(9),60 min)之薄膜晶粒大,因此提高沉積時間有助於TiO2薄膜 長晶。而沉積濺鍍壓力為影響TiO2薄膜MB降解程度的第三因子(貢獻度為 6.269%)。濺鍍壓力會影響濺鍍粒子在真空系統中的平均自由路徑及TiO2濺 鍍原子沉積基板上之晶體結構。Ohno[26]等人以反應性磁控濺鍍法沉積TiO2 於無鹼玻璃上,指出當濺鍍壓力在3 Pa時,TiO2薄膜其光觸媒反應高1 Pa所 鍍製之薄膜。此外,較慢的沉積速率可讓光觸媒反應有增加的趨勢。增加 直流功率會使靶材原子沉積於基板時有足夠能量與周圍原子結合。

圖 4.6 為實驗條件 No.1~9 及最佳沉積參數(A₁B₃C₃D₃)之降解 MB 吸收 光譜圖,圖中顯示 No.1~No.9 其光吸收介於 0.72~0.27 之間,而最佳沉積參 數所鍍之 TiO₂薄膜,其降解 MB 之光吸收值為 0.27 與 No.3 吻合。

圖 4.7 為 No.1~9 及最佳沉積參數之 TiO₂ 薄膜 XRD 繞射圖,圖中顯示 No.1、No.4 沒有明顯的繞射尖銳波峰(no sharp diffraction),且在 20°至 35° 有類似駱駝峰(broad-hump)的型態此為非結晶結構[41]。其餘實驗條件顯示 在 26.5°、39.2°有金紅石結構,而在 48°有銳鈦礦結構。

896

Experiment No.	M1	M2	Mean	Standard deviation (nm/min)
1	0.712	0.717	0.7145	0.0025
2	0.465	0.467	0.466	0.001
3	0.271	0.269	0.27	0.001
4	0.431	0.432	0.4315	0.0005
5	0.419	0.417	0.418	0.001
6	0.595	0.597	0.596	0.001
7	0.436	0.431	0.4335	0.0025
8	0.489	0.489	0.489	0
9	0.53	0.53	0.53	0

表 4.8 I、Ⅱ 組亞甲基藍溶液光吸收量測值及標準差

Experiment	Control factors				MB abso	MB absorbance	
No.	А	В	С	D	M1	M2	(dB)
1	1	1	1	1	0.712	0.717	2.92
2	1	2	2	2	0.465	0.467	6.63
3	1	3	3	3	0.271	0.269	11.37
4	2	1	2	3	0.431	0.432	7.31
5	2	2	3	1	0.419	0.417	7.58
6	2	3	1	2	0.595	0.597	4.50
7	3	1	3	2	0.436	0.431	7.26
8	3	2	1	3	0.489	0.489	6.21
9	3	3	2	1	0.53	0.53	5.51

表 4.9 亞甲基藍溶液光吸收量測值與信號雜訊比(S/N)

	А	В	С	D			
Level 1	6.975	5.827	4.543	5.337			
Level 2	6.457	6.808	6.483	6.129			
Level 3	6.329	7.127	8.736	8.296			
Effect	0.646	1.301	4.193	2.959			
Rank	4	3	1	2			

表 4.10 亞甲基藍溶液光吸收量测值因子反應表

表 4.11 亞甲基藍溶液光吸收量測值變異數分析

圖 4.4 亞甲基藍溶液光吸收度因子回應圖

圖 4.6 No.1~9 及最佳沉積參數之降解 MB 吸收光譜圖

4.1.3 TiO2 薄膜親水性實驗

表4.12為No.1~9及最佳沉積參數(A₁B₃C₃D₃)之TiO₂薄膜水滴接觸角及表 面粗糙度(Ra)量測值,TiO₂薄膜照射紫外光前水滴接觸角範圍是61.85° ~12.95°,當TiO₂薄膜照射紫外光9分鐘後,其水滴接觸角皆小於45°,而No.3 與最佳製程參數所鍍製TiO₂薄膜照射紫外光9分鐘後,其水滴接觸角下降到 4.3°左右,顯示本實驗所鍍製的TiO₂薄膜皆有親水性的效果。因TiO₂薄膜經 照光後會產生光觸媒反應,形成氫氧自由基,因此會有親水性的效果[42]。 圖4.6為No.1~9及最佳製程參數之水滴接觸角變化與AFM表面形態,圖中顯 示薄膜表面呈尖錐狀其水滴接觸角會較大。

Experiment	Ra (nm)	未照 UV 光	照UV 光3分	照 UV 光 6 分	照 UV 光9分
No.1	1.99	54.95°	48.1°	46.4°	42.2°
No.2	4.59	45.65°	18.15°	11.55°	7.35°
No.3	8.40	53.75°	4.95°	4.75°	4.4°
No.4	16.7	12.95°	3.5°	2.8°	2.2°
No.5	6.90	61.85°	13.1°	7.9°	4.15°
No.6	2.60	43.6°	22.15°	17.2°	15.9°
No.7	1.41	13.95°	3.55°	3.15°	2.95°
No.8	4.18	13.2°	3°	1.95°	1.6°
No.9	2.87	59.25°	17.05°	7.25°	5.65°
最佳沉積 參數	8.37	53.86°	5.0°	4.5°	4.3°

表 4.12 TiO2 薄膜水滴接觸角及表面粗糙度(Ra)量测值

圖 4.8 No.1~9 及(10)最佳沉積參數水滴接觸角與 AFM 形態

4.1.4 TiO2 薄膜附著力檢測分析

表 4.13 為 TiO₂ 薄膜與附著力量測值,根據文獻[43]指出,薄膜越厚在 相同的應力下越容易脫落,殘留應力與厚度成正比,薄膜越厚殘留應力就 越大,造成薄膜附著力下降。本實驗所有製程參數鍍製之 TiO₂薄膜,在進 行薄膜附著力檢測分析時,因 TiO₂薄膜附著力非常良好,使 TiO₂薄膜在拉 伸過程中無法從玻璃基板上脫落,導致薄膜附著在玻璃基板上同時破裂的 情況,顯示本實驗所有製程參數之 TiO₂薄膜都有良好的附著力。根據文獻 [44]指出,當沉積薄膜時如有提高基板溫度,則有利於薄膜和基材間的原子 相互擴散,且會加速化學反應,有利於形成化學鍵附著及擴散附著,因此 會使薄膜與基材的黏著力增加。圖 4.9 拉伸試驗完成之示意圖(拉伸參數設 定:速度 0.5 mm/min,預荷重 0.05 kgf),圖 4.10 為工具顯微鏡(vertex-220) 所拍攝下試棒之 TiO₂薄膜拉伸試驗破斷面。

衣 4.15	1102	竹者刀里冽值
Experiment	thickness (Å)	Adhesion strength (Mpa)
無鹼玻璃	無鍍膜	29.37
No.1	186.6	29.63
No.2	261.6	28.97
No.3	437.4	29.35
No.4	822.6	28.87
No.5	237	29.53
No.6	370.8	29.05
No.7	702	28.86
No.8	887.4	28.97
No.9	246	29.55
$A_1B_3C_3D_3$	443.5	29.22

表 4.13 TiO2 薄膜膜厚與附著力量測值

圖 4.10 下試棒之 TiO2 薄膜拉伸試驗破斷面

4.2 第二組實驗結果與討論

4.2.1 薄膜沉積速率

第二組實驗是將 TiO₂ 薄膜鍍至於 PET 上。表 4.14 為實驗配置參數。表 4.15 為 III 組 TiO₂ 薄膜沉積速率,表 4.16 為 IV 組 TiO₂ 薄膜沉積速率,表 4.17 為 III、IV 組 TiO₂ 薄膜平均沉積速率及標準差,圖 4.11 為 III、IV 組 TiO₂ 薄膜平均沉積速率及標準差圖,本實驗將每組參數分別鍍製 III、IV 兩 組,且每組薄膜量測 5 個點,計算其平均值及標準差。最後將 III、IV 兩組 平均值 D3、D4 帶入田口運算。

表 4.18 為 TiO₂ 沉積速率與信號雜訊比(S/N),顯示 沉積條件 No.7(E₃F₁G₃H₂)有較高的沉積速率(約 9.69 nm/min)。表 4.19 為 TiO₂ 沉積速 率因子回應表,表 4.20 為 TiO₂ 沉積速率變異數分析,影響 TiO₂ 沉積速率的 主要因子為直流功率(貢獻度為 82.8568 %),影響 TiO₂ 沉積速率的次要因子 是濺鍍壓力(12.0339 %),此結果與上一章節相同,也可印證直流功率、濺 鍍壓力都是影響薄膜沉積速率的主要因素,並不會因基板、基板溫度與鍍 膜時間的不同,使沉積速率有明顯的改變。圖 4.12 為 TiO₂ 沉積速率因子回 應圖。顯示沉積速率最快之最佳沉積參數為 DC 功率: 200 W (E₃),濺鍍壓 力:1 Pa(F₁),基板溫度: room (G₁),沉積時間:90min(H₂),以此最佳沉積 參數進行薄膜鍍製實驗應證。經由最佳沉積參數所鍍製之薄膜,其沉積速 率約為 10.06 nm/min。

	Е	F	G	Н
Experiment No.	DC power (W)	Sputtering pressure (Pa)	Substrate temperature (°C)	Deposition time (min)
1	170	1	room	60
2	170	1.5	100	90
3	170	2	150	120
4	200	1	100	120
5	200	1.5	150	60
6	200	2	room	90
7	230		150	90
8	230	1.5	room	120
9	230	2	100	60

表 4.14 實驗配置參數

E

I

Exporimont	d	d	d	d	d	(D3)	Standard
Experiment	u_1		u_3	u_4		Mean	deviation
INO.	(nm/min)						
1	6.98	6.97	6.99	6.96	7	6.98	0.0142
2	6.3	6.28	6.25	6.31	6.26	6.28	0.0229
3	5.33	5.31	5.29	5.32	5.3	5.31	0.0142
4	8.38	8.37	8.35	8.42	8.38	8.38	0.0229
5	7.23	7.17	7.16	7.22	7.17	7.19	0.0290
6	7.62	7.68	7.65	7.66	7.64	7.65	0.02
7	9.62	9.63	9.68	9.65	9.57	9.63	0.0364
8	9.23	9.28	9.24	9.23	9.17	9.23	0.0353
9	8.66	8.67	8.62	8.72	8.68	8.67	0.0323

Exporimont	d	d	d	d	d	(D4)	Standard
Experiment	u_1	u_2	u_3	u_4	u ₅	Mean	deviation
INO.	(1111/11111)	(1111/11111)	(1111/11111)	(1111/11111)	(1111/11111)	(nm/min)	(nm/min)
1	7.14	7.12	7.13	7.1	7.11	7.12	0.0142
2	6.2	6.12	6.16	6.18	6.14	6.16	0.0283
3	5.66	5.68	5.71	5.69	5.71	5.69	0.0190
4	8.23	8.26	8.25	8.28	8.28	8.26	0.0190
5	7.35	7.33	7.36	7.38	7.33	7.35	0.0190
6	7.95	7.91	7.93	7.9	7.96	7.93	0.0229
7	9.77	9.75	9.76	9.73	9.74	9.75	0.0142
8	9.23	9.21	9.25	9.19	9.17	9.21	0.0283
9	8.55	8.61	8.63	8.58	8.58	8.59	0.0276

表 4.16 IV 組 TiO2 薄膜沉積速率

表 4.17 III、IV 組 TiO2 薄膜平均沉積速率及標準差

Experiment	D3	D4	Mean	Standard deviation
No.	(nm/min)	(nm/min)	(nm/min)	(nm/min)
1	6.98	7.12	7.05	0.07
2	6.28	6.16	6.22	0.06
3	5.31	5.69 🍗	5.5	0.19
4	8.38	8.26	8.32	0.06
5	7.19	7.35	7.27	0.08
6	7.65	7.93	7.79	0.14
7	9.63	9.75	9.69	0.06
8	9.23	9.21	9.22	0.01
9	8.67	8.59	8.63	0.04

Experiment	C	Control factors				Deposition rate (nm/min)	
No.	E	F	G	Н	D3	D4	(dB)
1	1	1	1	1	6.98	7.12	16.9625
2	1	2	2	2	6.28	6.16	15.8746
3	1	3	3	3	5.31	5.69	14.7917
4	2	1	2	3	8.38	8.26	18.4018
5	2	2	3	1	7.19	7.35	17.2291
б	2	3	1	2	7.65	7.93	17.8265
7	3	1	3	2	9.63	9.75	19.7260
8	3	2	1	3	9.23	9.21	19.2946
9	3	3	2	1	8.67	8.59	18.7199

表 4.18 TiO2 沉積速率與信號雜訊比(S/N)

	Е	F	G	Н
Level 1	15.88	18.36	18.03	17.64
Level 2	17.82	17.47	17.67	17.81
Level 3	19.25	17.11	17.25	17.50
Effect	3.37	1.25	0.78	0.31
Rank	1	2	3	4

表 4.19 沉積速率因子回應表

表 4.20 TiO2 沉積速率變異數分析

圖 4.12 TiO2 沉積速率因子回應圖

4.2.2 薄膜表面型態結構分析與亞甲基藍(MB)降解程度

表4.21為III、IV組亞甲基藍溶液光吸收量測值及標準差,圖4.13為III、 IV組亞甲基藍溶液平均光吸收及標準差圖,本實驗將III、IV兩組TiO2薄膜 放入MB溶液中,進行紫外光照射4小時後,利用UV/VIS光譜儀進行MB溶 液量測,因波長664nm為最高點將其設為比較點,取此點量測值分別為M3、 M4,計算M3、M4平均值及標準差,觀察本實驗再現性。最後將M3、M4 帶入田口運算。

表4.22為TiO₂薄膜降解MB之光吸收量測值與信號雜訊比(S/N),表4.23 為亞甲基藍溶液光吸收因子反應表,圖4.14為亞甲基藍溶液光吸收度因子 回應圖,顯示降解MB之最佳TiO₂薄膜沉積參數為直流功率:200 W (E₂),滅 鍍壓力:2 Pa(F₃),基板溫度:room (G₁),沉積時間:120min(H₃),以此最 佳沉積參數進行薄膜鍍製實驗應證。圖4.15為No.1~9及最佳沉積參數TiO₂ 薄膜SEM表面形態。表4.24為TiO₂降解MB之光吸收變異數分析,顯示沉積 時間為影響MB降解程度之最主要因子(貢獻度為40.583 %),次要因子為基 板溫度(貢獻度為26.293%)。此結果與上一章節相反,上一章節顯示基板溫 度的提升對銳鈦礦相與金紅石相形成有極大的影響,但此章節運用至PET 塑膠基板,基板溫度不能高於PET塑膠所能承受之溫度,故沉積時間顯得相 當重要,增加沉積時間可使TiO₂薄膜累積足夠能量長晶。雖基板溫度對薄 膜結構有極大影響,但是塑膠基材的關係,所以在室溫下鍍製出的薄膜品 質較佳,推測原因為當沉積時間及濺簸功率增加時,所產生的熱能會累積 至基板上,導製塑膠超過熱變型溫度而影響光催化效果。

直流功率為第三因子(貢獻度為21.2%)。因銳鈦礦相與金紅時相須高溫 或高能量才能形成,但此章節是選用PET塑膠做為基板,並不能耐高溫,所 以藉由提升直流功率,使TiO₂薄膜形成銳鈦礦(anatase)和金紅石(rutile)結 晶。濺鍍功率增加有助於提升TiO₂光觸媒薄膜效能,但運用在塑膠基板會

因高功率導致離子撞擊的速度加快,且電漿溫度也會上升使得塑膠變形。 本章節使用直流功率230(W),PET塑膠已有輕微翹曲情況產生。

第四因子為濺鍍壓力(貢獻度為11.922%),平均自由路徑隨著壓力變大 其移動距離也會跟著變小,使粒子與其它粒子碰撞的距離縮短,因此會增 加更多離子轟擊靶面,使更多原子從靶材被轟擊出來沉積至基板。M. Yamagishi[45]等人固定濺鍍功率與基板溫度,改變濺鍍壓力0.3、1.0、3.0 (Pa),結果顯示濺鍍壓力3.0 (Pa)有最佳的光觸媒效果。圖4.15為 TiO₂薄膜 (No. 1~9)及(10)最佳沉積參數(E₂F₃G₁H₃)之薄膜SEM表面形態,圖中顯示(No. 1~9)薄膜晶粒大致相同,最佳沉積參數(E₂F₃G₁H₃)其晶粒有明顯較大。

圖 4.16 為實驗條件 No.1~No.9 及最佳沉積參數(E₂F₃G₁H₃)之降解 MB 吸 收光譜圖,圖中顯示 No.1~No.9 其光吸收介於 0.71~0.62 之間,與 base 吸 收度 0.89 比對其降解 MB 效果較慢,而最佳沉積參數(E₂F₃G₁H₃)所鍍之 TiO₂ 薄膜,其降解 MB 之光吸收值為 0.6。此結果與上一章節有很大差距,原因 為基板溫度能量不足所導致。

圖 4.17 為 No.1~9 及最佳沉積參數(E₂F₃G₁H₃)之 TiO₂ 薄膜 XRD 繞射 圖,TiO₂ 薄膜所產生的光催化效果與薄膜表面的晶體結構有很大的關係 [46],圖中顯示 No.1~9 及最佳沉積參數(E₂F₃G₁H₃)在 26.5°、36.3°、39.2°、 43.2°有金紅石結構,而在 48°有銳鈦礦結構。

Experiment No.	M3	M4	Mean	Standard deviation (nm/min)
1	0.676	0.682	0.679	0.003
2	0.688	0.692	0.69	0.002
3	0.666	0.662	0.664	0.002
4	0.624	0.626	0.625	0.001
5	0.703	0.701	0.702	0.001
6	0.615	0.613	0.614	0.001
7	0.677	0.679	0.678	0.001
8	0.641	0.645	0.643	0.002
9	0.688	0.684	0.686	0.002

表 4.21 III、IV 組亞甲基藍溶液光吸收量測值及標準差

圖 4.13 III、IV 組亞甲基藍溶液平均光吸收及標轉差圖

Co	ontrol	facto	ors	MB abs	S/N	
Е	F	G	Н	M3	M4	(dB)
1	1	1	1	0.676	0.682	3.36252
1	2	2	2	0.688	0.692	3.22298
1	3	3	3	0.666	0.662	3.55660
2	1	2	3	0.624	0.626	4.08239
2	2	3	1	0.703	0.701	3.07325
2	3	1	2	0.615	0.613	4.23662
3	1	3	2	0.677	0.679	3.37540
3	2	1	3	0.641	0.645	3.83574
3	3	2	1	0.688	0.684	3.27348
			E	S	A	E
3 亞	甲基	藍溶液	夜光吸	收量測住	直因子反	應表
	Е		F	G	H	
el 1	3.38	81	3.60	7 3.81	12 3.2	36
el 2	3.79	97	3.37	7 3.52	26 3.6	12
el 3	3.49	95	3.68	9 3.33	35 3.8	25
ect	0.41	7	0.312	2 0.47	77 0.5	88
nk	3		4	2	1	
	Ca E 1 1 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	Control E F 1 1 1 2 1 3 2 1 2 2 2 3 3 1 3 2 3 3 4 5 5 5 5 5 5 5 5 5 5 5 5 5	Control factor	E F G H 1 1 1 1 1 2 2 2 1 3 3 3 2 1 2 3 1 2 2 3 1 2 3 1 3 2 3 3 2 1 3 3 3 2 1 3 3 3 2 1 3 3 3 3 2 1 3 3 3 2 1 3 3 3 2 1 3 3 3 2 1 3 3 3 2 1 3 4 5 3.60° 5 5.68° 9 3 3.495 3.68° 5 9 3 3.495 3.68° 5 9 3 4 3 4	Control factors MB abs E F G H M3 1 1 1 1 0.676 1 2 2 2 0.688 1 3 3 3 0.666 2 1 2 3 0.624 2 2 3 1 0.703 2 3 1 2 0.615 3 1 3 2 0.677 3 2 1 3 0.641 3 3 2 1 0.688	Control factors MB absorbance E F G H M3 M4 1 1 1 1 0.676 0.682 1 2 2 2 0.688 0.692 1 3 3 3 0.666 0.662 2 1 2 3 0.624 0.626 2 2 3 1 0.703 0.701 2 3 1 2 0.615 0.613 3 1 3 2 0.677 0.679 3 2 1 3 0.641 0.645 3 3 2 1 0.688 0.684 3 3 4 5 5 1 3 3 5 3 3 3 3 3 3 4 5 3 3 3 3 4 4 5 3 3 4 5 3 4 5 3 5 3 4 4 5 4 5 5 6 6 7 <

表 4.22 亞甲基藍溶液光吸收量測值與信號雜訊比(S/N)

表 4.24 亞甲基藍溶液光吸收量測值變異數分析

Factor	Degree of freedom	Sum of square	Variance	Contribution
	(F)	(S)	(V)	(P%)
E	2	0.27823	0.139113	21.2
F	2	0.15647	0.078236	11.922
G	2	0.34507	0.172537	26.293
Η	2	0.53261	0.266304	40.583
Total	8	1.31238		100

圖 4.15 (PET)No. 1~9 及 10 最佳沉積參數(E2F3G1H3)之 SEM 表面形態

圖 4.16 (PET)No.1~9 及最佳沉積參數(E2F3G1H3)之降解 MB 吸收光譜圖

圖 4.17 (PET)No.1~9 及最佳沉積參數(E₂F₃G₁H₃)之 TiO₂ 薄膜 XRD 繞射圖

4.2.3 TiO2 薄膜親水性實驗

表4.25為No.1~9及最佳沉積參數(E₂F₃G₁H₃)之TiO₂薄膜水滴接觸角及表 面 粗 糙 度 (Ra) 量 測 值 , TiO₂ 薄 膜 照 射 紫 外 光 前 水 滴 接 觸 角 範 圍 是 64.1°~42.65°,當TiO₂薄膜照射紫外光9分鐘後,其水滴接觸角皆小於40°, 而最佳沉積參數(E₂F₃G₁H₃)所鍍製TiO₂薄膜照射紫外光9分鐘後,其水滴接 觸角下降到18.15°左右,顯示本實驗所鍍製的TiO₂薄膜皆有親水性的效果。 圖4.18為No.1~9及最佳沉積參數(E₂F₃G₁H₃)之水滴接觸角變化與AFM表面 形態,圖 中顯示最佳沉積參數(E₂F₃G₁H₃)有較高的表面粗糙度(Ra)為 3.196nm,表面粗糙度高有較大的表面積接觸MB,可增加降解MB效率。。

	Sec. 2 10				
Exp.	Ra (nm)	未照UV光	照 UV 光 3 分	照UV 光6分	照 UV 光9分
No.1	2.466	57.7°	54.55°	50.3°	33.1°
No.2	2.395	53.95°	42.45°	29.45°	24.25°
No.3	2.546	52.05°	36.5°	24.3°	13.65°
No.4	2.974	50.75°	44.95°	30.05°	25.25°
No.5	2.054	62.2°	49°	44.55°	34.55°
No.6	2.566	55.4°	36.6°	32°	25.4°
No.7	2.747	58.8°	41.2°	33.4°	27.55°
No.8	2.969	53.05°	30.15°	20.15°	18.85°
No.9	2.206	64.1°	57.25°	49.55°	39.1°
最佳製程		~ 4			
參數	3.196	42.65°	24.05°	19.65°	18.15°
$E_2F_3G_1H_3$					

表 4.25 TiO2 薄膜水滴接觸角及表面粗糙度(Ra)量測值

圖 4.18 No.1~9 及 10 最佳沉積參數(E2F3G1H3)之水滴接觸角變化與 AFM 表

4.3 高功率脈衝磁控濺鍍(HiPIMS) TiO2 光觸媒薄膜

高功率脈衝磁控濺鏡簡稱 HiPIMS(High-power impulse magnetron sputtering),根據相關文獻[47-48]指出此技術因低溫特性可運用至塑膠基材, HiPIMS 不需藉由加熱基板輔助薄膜獲得足夠能量[49],HiPIMS 藉由調整脈 衝中斷時間,將電壓累積在電容上瞬間釋放出來,使靶材原子獲得更強大 的能量濺射到基板上,可增加薄膜的緻密性、附著力與晶體結構強度。 HiPIMS 技術[50-52]被廣泛運用在硬質薄膜 TiAICN/VCN、TiAIN、DLC 等 等。

本節將使用第二組實驗最佳沉積參數(E₂F₃G₁H₃),運用 HiPIMS 技術期 望能提高降解 MB 效率及殺菌能力。表 4.26 為 HiPIMS 參數規劃表。圖 4.19 為示波器讀取電壓電流圖。圖中顯示電壓為 580V,瞬間電流為 40A。由表 4.26 及圖 4.19 可計算出平均功率密度為 9.87(W/cm²),瞬間功率密度為 1145.2(W/cm²)。此節將直流磁控濺鍍(DC magnetron sputtering)簡稱為 DCMS。

圖 4.20 (a)HiPIMS (E₂F₃G₁H₃),(b)DCMS (E₂F₃G₁H₃)之薄膜 SEM 表面 形態,圖中顯示 HiPIMS 所沉積之薄膜其晶粒更緻密更明顯,因 HiPIMS 瞬 間功率密度為 1145.2(W/cm²),比直流磁控濺鍍之平均功率密度大 100 倍以 上,故薄膜更加緻密。圖 4.21 為(a)HiPIMS (E₂F₃G₁H₃),(b) DCMS (E₂F₃G₁H₃) 之水滴接觸角變化與 AFM 表面形態,使用 HiPIMS 鍍製之 TiO₂ 薄膜照射 紫外光前水滴接觸角為 11.5°,照射紫外光9 分鐘後,水滴接觸角降為 4.1°, 其表面粗糙度(Ra)為 4.3 nm。圖 4.22 為 HiPIMS (E₂F₃G₁H₃) 與 DCMS (E₂F₃G₁H₃)之降解 MB 吸收光譜圖,圖中顯示使用 HiPIMS 沉積之 TiO₂ 光觸媒薄膜,經紫外光照射4小時,亞甲基藍(MB)吸收度降為 0.3,有極佳 的光觸媒效果。圖 4.23 為 HiPIMS (E₂F₃G₁H₃) 與 DCMS (E₂F₃G₁H₃)之 TiO₂ 薄膜 XRD 繞射圖,使用 HiPIMS 鍍製薄膜其繞射強度比 DCMS 所鍍製之薄

	DC power (W)	Sputtering pressure (Pa)	Substrate temperature (°C)	Deposition time (min)	Pulse time t _{on} /t _{off} (µs)	Volta ge (V)	Average current (A)
$E_2F_3G_1H_3$	200	2	room	120	50/3000	580	0.34

表 4.26 HiPIMS 參數規劃表

圖 4.20 (a)HiPIMS (E₂F₃G₁H₃), (b)DCMS (E₂F₃G₁H₃)之薄膜 SEM 表面形態

圖 4.22 HiPIMS (E₂F₃G₁H₃)與 DCMS (E₂F₃G₁H₃)之降解 MB 吸收光譜圖

圖 4.23 HiPIMS (E₂F₃G₁H₃) 與 DCMS (E₂F₃G₁H₃)之 TiO₂ 薄膜 XRD 繞射圖

4.4 可見光降解亞甲基藍(MB)溶液實驗

本實驗取照射紫外光之後,擁有降解亞甲基藍最好效果之 TiO₂ 薄膜試片,來進行可見光降解亞甲基藍溶液實驗。分別為第一組實 驗鍍製於無鹼玻璃 TiO₂ 光觸媒薄膜最佳沉積參數(A₁B₃C₃D₃),及第 二組實驗鍍製於 PET 塑膠 TiO₂ 光觸媒薄膜最佳沉積參數(E₂F₃G₁H₃), 與使用 HiPIMS 鍍製第二組實驗最佳沉積參數(E₂F₃G₁H₃) TiO₂ 光觸媒 薄膜於 PET 塑膠。

圖 4.24 為第一組實驗最佳沉積參數(A₁B₃C₃D₃)及第二組實驗最佳 沉積參數(E₂F₃G₁H₃)與 HiPIMS 鍍製(E₂F₃G₁H₃)經可見光照射降解亞甲基 藍溶液吸收光譜圖。首先使用鹵素燈來照射 TiO₂薄膜,進行可見光 降解亞甲基藍溶液實驗。鹵素燈規格為 12 V 500 W,因光源與太陽 光相近,所以使用紫外光過濾片(搭配紫外光照度計檢驗)來濾除鹵素 燈紫外光,使光源在可見光範圍。將 TiO₂薄膜置於濃度 12 μ mol/L 相對於吸收度 0.89 亞甲基藍溶液中,以鹵素燈光源照射 4 小時,亞甲基 藍溶液皆有降解的情形。第一組實驗最佳沉積參數(A₁B₃C₃D₃)TiO₂ 薄膜照射可見光 4 小時,吸收度從 0.89 降到 0.48 左右。第二組實驗 最佳沉積參數(E₂F₃G₁H₃) TiO₂ 薄膜照射可見光 4 小時,吸收度從 0.89 降到 0.72 左右。HiPIMS 鍍製(E₂F₃G₁H₃) TiO₂ 薄膜照射可見光 4 小時, 吸收度從 0.89 降到 0.35 左右。圖 4.20 顯示本實驗 TiO₂ 薄膜在可見 光範圍有光觸媒的反應。

圖 4.24 TiO2 薄膜經可見光照射 4 小時降解亞甲基藍溶液之吸收光譜圖

4.5 抗菌測試

4.5.1 抗菌测試方法

本章節分別選用第一組實驗鍍製於無鹼玻璃 TiO₂ 光觸媒薄膜最佳 沉積參數(A₁B₃C₃D₃),及第二組實驗鍍製於 PET 塑膠 TiO₂ 光觸媒薄 膜最佳沉積參數(E₂F₃G₁H₃),使用 HiPIMS 鍍製第二組實驗最佳沉積 參數(E₂F₃G₁H₃) TiO₂ 光觸媒薄膜於 PET 塑膠,進行金黃色葡萄球菌抗 菌測試 。

委託財團法人紡織產業綜合研究所進行抗菌測試,採用無殺菌功能的紫 外光,照射光觸媒抗菌加工製品,抗菌試驗方法為JISR 1702:2006,抗菌測 試步驟如下:

1. 樣品前處理

無驗玻璃(A₁B₃C₃D₃)裁成 50mm × 50mm × 厚度 1mm 和 PET 塑膠 (E₂F₃G₁H₃) 裁成 50mm × 50mm × 厚度 0.25mm。分別取無鹼玻璃及 PET 塑膠空白樣(未鍍膜)各 9 片,試驗片各 6 片(明暗條件),以 UV 燈(365 nm) 強度 1 mW/cm²照射 24 小時,再以 99.5%之乙醇在試片表面來回擦拭 2~3 回。表 4.27 抗菌試驗規劃規劃表。

2. 菌種前培養

以 NA 斜面培養基培養 16~24 h(37℃), 再移植至新的 NA 斜面培養基 培養 16~20 h(37℃)。

3. 試驗菌液調製

以 1/500 NB 調製成 6.7×10⁵~2.6×10⁶ cells/mL 之試驗菌液。

4. 試驗菌液接種

取 0.15 mL 之試驗菌液接種於試片上,保濕容器如圖 4.25。

圖 4.25 保濕容器

5. 試片培養

將已接種菌液之試片(3 組對照組及3 組樣品組)於 25±5℃、365 nmUV 燈強度 100µW/cm²下培養 8 小時-----明條件。另外3 組對照組及3 組 樣品組以鋁鉑紙包覆於 25±5℃培養 8 小時------暗條件。

6. 接種菌液洗出

a. 試驗菌液接種後之立即沖刷

將其餘 3 組對照組在接種菌液後,立即以 10 mL 之 SCDLP 沖 刷液將菌液洗出,以 10 倍稀釋(10⁰、10¹、10²、10³)做平板培養(24~48 h)。

b. 培養後之試片沖刷

將培養 8 小時後之明條件及暗條件的試片各以 10 mL 之 SCDLP 沖刷液將菌液洗出,以 10 倍稀釋(10⁰、10¹、10²、10³、10⁴、10⁵) 做平板培養(24~48 h)。

7. 生菌數之計算

計數各平板培養皿之菌落數,求出各組之生菌數。

8. 試驗結果

光觸媒抗菌加工製品之抗菌活性值計算 a.

R_(L)=logB_(L)-logC_(L)(2.0 以上有效果)

 $R_{(D)} = log B_{(D)} - log C_{(D)}$

R_(L)紫外線照射條件L下光觸媒抗菌加工製品之抗菌活性值 B(L):紫外線照射條件L下8小時培養對照組生菌數平均值 C(L):紫外線照射條件L下8小時培養樣品組生菌數平均值 R_(D) 暗條件下光觸媒抗菌加工製品之抗菌活性值

B(D):暗條件8小時培養對照組生菌數平均值

C(D):暗條件8小時培養樣品組生菌數平均值

b. △R 光照射效果=R_(L)-R_(D)

試驗項目 試驗結果 抗菌活性值 i iii $\triangle R$ ii (R) 無鹼玻璃 暗 $A_1B_3C_3D_3$ $R_{(D)}$ ------直流磁控 *3 (Dark) (未鍍膜)*3 無鹼玻璃 無鹼玻璃 無鹼玻璃 明 $A_1B_3C_3D_3$ $(A_1B_3C_3D_3)$ $\triangle \mathbf{R}$ $R_{(L)}$ 金 (未鍍膜)*3 (未鍍膜)*3 *3 (Light) 黃 色 PET 塑膠 暗 $E_2F_3G_1H_3$ 直流磁控 $R_{(D)}$ ---葡 (未鍍膜)*3 (Dark) *3 PET 塑膠 萄 $(E_2F_3G_1H_3)$ 球 明 PET 塑膠 PET 塑膠 $E_2F_3G_1H_3$ $\triangle R$ $R_{(L)}$ (未鍍膜)*3 *3 菌 (未鍍膜)*3 (Light) HiPIMS 暗 PET 塑膠 ---- $E_2F_3G_1H_3$ $\mathbf{R}_{(D)}$ ---HiPIMS (Dark) (未鍍膜)*3 *3 PET 塑膠 HiPIMS PET 塑膠 PET 塑膠 明 $(E_2F_3G_1H_3)$ $\triangle R$ $E_2F_3G_1H_3$ $R_{(L)}$ (未鍍膜)*3 (Light) (未鍍膜)*3 *3

89

-

表 4.27 抗菌試驗規畫表

4.5.2 無殺菌功能的紫外光抗菌測試結果與討論

表 4.28 為抗菌試驗結果,顯示本實驗所鍍製之三組薄膜(A₁B₃C₃D₃、 E₂F₃G₁H₃、HiPIMS E₂F₃G₁H₃),具有殺菌效果。大部分的抗菌方法僅止於 讓細菌死亡,但是其毒性與細菌屍體卻仍殘留不能分解。光觸媒可有效殺 死細菌,並去除細菌死後所排出的毒素,同時細菌的死體也會被分解。抗 菌測試過程,細菌在薄膜上培養 8 小時之後,沒有照射 UV 光時,所沖刷 下來之菌數也比對照組上的菌數少,推測其因為薄膜表面不適合細菌生長 並降低了細菌的活性。光觸媒薄膜照射 UV 光後,會產生 · OH(氫氧自由基) 與 · O²(超氧陰離子)將細菌分解,因此(A₁B₃C₃D₃)照射 UV 光後 8 小時所 沖刷下來的菌數小於 10。直流磁控濺鍍(E₂F₃G₁H₃) 照射 UV 光後 8 小時所 沖刷下來的菌數為 1.2E+3,使用 HiPIMS 鍍製(E₂F₃G₁H₃) 照射 UV 光後 8 小時所 時所沖刷下來的菌數小於 10,由此得知使用 HiPIMS 系統可提升光觸媒殺 菌效率。本次三組實驗鍍製之光觸媒薄膜具有抗菌效果,因抗菌活性值三 組皆大於 2.0。

下列9點註解是表 4.19 所附註: 註: 1.i=對照組立即沖刷之菌數。

2.ii=對照組8小時培養後沖刷之菌數。

3.iii=樣品組8小時培養後沖刷之菌數。

4.△R=光觸媒抗菌加工製品光照射的效果。

5.2.0 E+2 表示 200, 1.3 E+4 表示 13000, 依此類推。

6.當下述測試條件成立,則表示本測試有效

(1)3 組空白組立即沖刷之菌數[(最大 log 值-最小 log 值)]÷[平均 log

值]≦0.2,平均菌數在 1.0~4.0 E+5 內。

(2)3 組空白組 8 小時培養後均不得小於 1.0 E+4。

7.明條件之抗菌活性值(logB-logC)大於 2.0 以上,表示樣品有抗菌效果。

8. 光照條件:FL20WBLB *2 (UVA-365nm), UV 強度: 200μW/cm², 全程 照射。

9.樣品不足,數據僅供參考。

試驗項目			試驗結果								
				ii	iii	抗菌活性值 (R)	∆R				
金黃色葡萄球菌	直流磁控 無鹼玻璃 (A ₁ B ₃ C ₃ D ₃) 直流磁控 PET 塑膠 (E ₂ F ₃ G ₁ H ₃)	暗 (Dark)		3.7 E+5	6.3 E+3	1.77					
		明 (Light)	2.3 E+5	3.6 E+5	< 10	4.56	2.79				
		暗 (Dark)		3.8 E+5	3.6 E+4	1.02					
		明 (Light)	2.3 E+5	3.6 E+5	1.2E+3	2.48	1.46				
	HiPIMS PET 塑膠 (E ₂ F ₃ G ₁ H ₃)	暗 (Dark)		3.8 E+5	4.5E+3	1.92					
		明 (Light)	2.3 E+5	3.6 E+5	< 10	4.56	2.64				

表 4.28 抗菌試驗結果表

第五章 結論與未來展望

5.1 結論

TiO₂光觸媒薄膜有許多製作方法,溶膠凝膠法(Sol-Gel method)最常被使 用,此方法製作 TiO₂光觸媒薄膜有優良的光觸媒效果,但其薄膜附著力不 佳容易脫落,膜厚也不易控制使得製作成本增加,所以許多學者以濺鍍製 程來改善上述缺點。本研究分別使用直流磁控(DC)及高功率脈衝 (High-power impulse magnetron sputtering, HiPIMS)磁控濺鍍 TiO₂光觸媒薄 膜,於無鹼玻璃(non-alkali glass)及可撓性塑膠(Polyethylene terephthalate, PET)基材。應用田口實驗設計,配合 L9 直交表,觀察不同的濺鍍參數對 TiO₂光觸媒薄膜的影響,分析 TiO₂光觸媒薄膜的表面微結構(SEM、AFM)、 X-Ray 結晶相、亞甲基藍降解程度、親水性、抗菌分析。使用 HiPIMS 技術 進行 PET 最佳沉積參數改善 TiO₂光觸媒性質,再以拉伸試驗進行薄膜附 著力測試,進一步觀察薄膜的機械性質。將本文結論歸納如下: 第一組實驗結論:

- TiO₂薄膜沉積速率經變異數分析,顯示直流功率為影響薄膜沉積速率的 主要因子(76.05%)。提高直流功率,可使濺射原子獲得較大能量,增進 薄膜沉積速率,使晶粒粗大。本研究基板溫度及沉積時間對薄膜沉積速 率的影響不大。
- 2. TiO₂薄膜經照紫外光後水滴接觸角明顯下降,推測原因為銳鈦礦薄膜結構,經紫外光照射後產生的光催化效果,因為水分子會被吸附到氧原子脫離表面所形成的缺陷中,接著水分子會被分解成H⁺及OH⁻,而OH 即是TiO₂薄膜產生親水性的原因。
- 3. TiO₂薄膜降解亞甲基藍溶液能力,經光吸收變異數分析,顯示基板溫度為影響 MB 降解程度之最主要因子(貢獻度為 60.117 %),因銳鈦礦相與金紅石相成長需要一定的能量,提高基板溫度可使 TiO₂薄膜獲得足夠能

量,以形成銳鈦礦(anatase)與金紅石(rutile)結構,更有助於提升 TiO₂ 薄 膜對 MB 的降解程度。次要因子為沉積時間(貢獻度為 32.016 %), 鍍膜 時間增加可使 TiO₂薄膜有足夠的時間長晶,使其有更多銳鈦礦與金紅石 的結晶結構。。

- 4. 實驗 No.3 與最佳沉積參數之 TiO₂ 薄膜, 置入濃度 12 μmol/L 相對於吸收 度 0.89 亞甲基藍溶液中,照射 UV 光 4 小時,其 MB 光吸收度為 0.26。
- 5. 將 TiO₂ 薄膜放置於濃度 12 μmol/L 亞甲基藍溶液中,進行降解亞甲基 藍溶液實驗,經鹵素燈光源照射4小時後(使用紫外光過濾片,濾除鹵 素燈所含的紫外光),亞甲基藍溶液吸收度從 0.89 降到 0.48 左右, 顯示本實驗 TiO₂ 薄膜在可見光範圍有光觸媒反應。
- 6. 經無殺菌功能的紫外光抗菌測試,顯示最佳沉積參數(A1B3C3D3)TiO2 薄膜具有百分之百的殺菌效果,照光後薄膜菌數從 3.6 E+5 降至 10 以內。 該 TiO2 薄膜光觸媒抗菌活性值,經測試為 4.56,顯示有優良的抗菌功能。

第二組實驗結論:

- 第二組實驗參數包括:直流功率、濺鍍壓力、基板溫度、沉積時間,結果 顯示鍍製的 TiO₂薄膜在 26.5°、36.3°、39.2°、43.2°有金紅石結構,而 48° 有銳鈦礦結構,但結構強度不是非常明顯,因此光催化效果不顯着,最 佳沉積參數(E₂F₃G₁H₃)所鍍製之 TiO₂薄膜,放入亞甲基藍溶液(MB)中, 經 UV 光照射 4 小時後,其 MB 光吸收度為 0.6°若經可見光照射 4 小時, 吸收度從 0.89 降到 0.72 左右。此結果與第一組實驗有很大差距,原 因為基板溫度能量不足所導致。
- 經無殺菌功能的紫外光抗菌測試,顯示最佳沉積參數(E₂F₃G₁H₃)TiO₂薄 膜具有殺菌效果,照光後薄膜菌數從 3.6 E+5 降至 1.2E+3。該 TiO₂薄膜 光觸媒抗菌活性值,經測試為 2.48,顯示有抗菌功能。
- 3. 因第二組實驗參數所鍍製的 TiO2 光觸媒薄膜效果有限,故將最佳沉積參

數(E₂F₃G₁H₃)使用 HiPIMS 鍍製 TiO₂ 光觸媒薄膜。結果顯示 HiPIMS 鍍 製 TiO₂ 光觸媒薄膜,照射紫外光 4 小時後,亞甲基藍(MB)吸收度降為 0.3。若經可見光照射 4 小時後,亞甲基藍(MB)吸收度從 0.89 降到 0.35 左右。

4. 經無殺菌功能的紫外光抗菌測試,顯示使用 HiPIMS 鍍製之(E₂F₃G₁H₃) 照射 UV 光 8 小時所沖刷下來的菌數小於 10,抗菌活性值為 4.56,由此 得知使用 HiPIMS 系統可提升光觸媒殺菌效率。

本研究貢獻:

- 濺鍍製程常用電源系統,包括直流、直流脈衝、射頻等,直流電源選用 之靶材以金屬類、導電性佳為主,如要形成氧化物薄膜,通常以反應式 方法製作,需通入氧氣,此製作方式容易造成靶材表面累積電荷,使薄 膜沉積速率下降。因大部分陶瓷靶導電率不佳,使用直流磁控濺鍍會導 致沉積速率下降。直流脈衝與射頻雖可選用陶瓷靶且不會使靶材表面累 積過多電荷,但頻率及休止時間,會導致沉積速率變慢。此結果會使薄 膜沉積時間增加,導致生產時間增加,加重成本。
- 2. 本研究以直流磁控濺鍍選用 TiO₂陶瓷靶,沉積 TiO₂光觸媒薄膜於無鹼玻璃及 PET 塑膠基材上,不以反應式氣體(O₂),只通入氫氣沉積 TiO₂光觸 媒薄膜,此方式有較高的沉積速率,且 TiO₂陶瓷靶為半導體材料(導電率約0.3 Ω cm),對於 DC 電源有足夠的導電性,不會使靶材表面累積過多 電荷。較高的沉積速率可使生產製程加快,降低成本。
- 3. 根據文獻及本研究實驗,影響 TiO2 光觸媒效果的重要濺鍍參數為基板溫度、直流功率及濺鍍壓力等, TiO2 薄膜要形成銳鈦礦(anatase)與金紅石(rutile)結構需要較高的基板溫度與高濺鍍能量。現今科技產品走向輕、薄化,許多產品都以塑膠做為主流,塑膠可撓性高、便宜,但缺點為不耐高溫,所以濺鍍時基板不加熱所沉積的 TiO2 光觸媒薄膜,其光催化效果

非常差。

4. 本研究使用直流磁控濺鍍沉積 TiO₂ 光觸媒薄膜於 PET 基板上,因基板温度無法設定大於塑膠熔點,故其光觸媒效果不顯著。本實驗選用高功率脈衝磁控濺鍍系統(HiPIMS),藉由調整放電的脈衝頻率及脈衝時間,將電能釋放出來,使靶材表面形成超高電漿密度,因而增加靶材原子沉積至基板的能量,有助於提升薄膜的附著性與緻密性。研究結果顯示高功率脈衝磁控濺鍍所沉積之 TiO₂ 光觸媒薄膜,其光觸媒效果優於傳統直流磁控濺鍍,不需藉由基板加溫形成銳鈦礦(anatase)與金紅石(rutile)結構,此技術可運用至不耐熱之產品上,使產品在材料方面有更多的選擇。

5.2 未來展望

濺鍍法沉積 TiO₂ 光觸媒薄膜已發展許久,而選用之電源不外乎是直流、 直流脈衝、射頻等,且沉積之基板都需耐高溫,如要運用至不耐高溫之基 板都需再進行快速退火製程,使 TiO₂薄膜獲得足夠能量,形成銳鈦礦及金 紅石之結構。

根據相關文獻[53]指出大部分的塑膠,受到紫外光的照射下本身結構鍵結 會受到破壞,發生氧化、老化等情況,且塑膠在高溫的環境下會發生變形、翹 曲等現象。高功率脈衝磁控濺鍍是未來之主流,因其可將電漿密度提升,比 傳統磁控濺鍍高上數百倍,所以沉積出的薄膜擁有良好緻密性與附著力, 也可使 TiO₂薄膜獲得足夠能量,形成銳鈦礦及金紅石之結構,而不需依賴 基板加溫,但也因此特性,濺鍍槍溫度會提升,靶材會因溫度過高而損壞, 且濺鍍槍內部磁鐵也會因過熱而消磁,所以目前仍有許多改進空間如下:

- 1. 改良濺鍍槍冷卻之機構,使靶材與磁鐵之熱源能迅速被帶離。
- 在塑膠上先鍍緩衝層氧化鋁(Al₂O₃),因氧化鋁可防止塑膠受到紫外 光照射而產生老化現象。

0

- 利用共鍍方式沉積 TiO₂ 及 Cr, 掺雜微量的 Cr 可降低 TiO₂ 的能隙值 (band gap), 讓 TiO₂ 的吸收範圍往可見光偏移,也可加速電子躍升 至導帶的速度,提升光催化反應的效率。
- 施加基板偏壓,使反應離子加速撞擊基板,增加薄膜緻密性及附著力。
- 使用離子槍輔助濺鍍,加速離子轟擊靶材,使靶材原子獲得更多能量沉積至基板上,增加薄膜緻密性與附著力。
- 探討高功率脈衝的頻率及休止時間對 TiO₂ 薄膜的影響,尋找最佳化 之參數。

参考文獻

- 1. K. Honda, A. Fujishima, "Electrochemical Photolysis of Water at a Semiconductor Electrode", Nature, 238, pp.37-38(1972).
- 林有銘,「奈米光觸媒環境大氣淨化應用技術」,化工技術,第14卷4 期,pp.86-102(2006).
- 羅志緯,「於鈦/矽基材上成長含氮二氧化鈦薄膜及其作為光觸媒之材料
 及性質研究」,國立台灣科技大學,碩士論文,民國 95 年。
- R. Jain, M. Shrivastava, "Photocatalytic removal of hazardous dye cyanosine from industrial waste using titanium dioxide", Journal of Hazardous Materials, 152, pp.216-220(2008).
- K.S. Yao, D.Y. Wang, C.Y. Chang, K.W. Weng, L.Y. Yang, S.J. Lee, T.C. Cheng and C.C. Hwang, "Photocatalytic disinfection of phytopathogenic bacteria by dye-sensitized TiO₂ thin film activated by visible light", Surface and Coatings Technology, 202, 4-7, pp.1329-1332(2007).
- O. Carp, C.L. Huisman, A. Reller, "Photoinduced reactivity of titanium dioxide", Progress in Solid State Chemistry, 32, pp.33–177, (2004).
- J. K. Burdett, T. Hughbank, G. J. Miller, J. W. Richardson and J. V. Smith, "Structural-electronic relationships in inorganic solids: powder neutron diffraction studies of the rutile and anatase polymorphs of titanium dioxide at 15 and 295 K", Journal of American Chemical Society, 109, pp.3639-3646 (1987).
- J. Wang, S. Uma, K.J. Klabunde, "Visible light photocatalysis in transition metal incorporated titania-silica aerogels", Applied Catalysis B: Environmental, 48, pp.151–154 (2004).
- B. Palanisamy, C. M. Babu, B. Sundaravel, S. Anandan, V. Murugesan, "Sol–gel synthesis of mesoporous mixed Fe₂O₃/TiO₂ photocatalyst : Application for degradation of 4-chlorophenol", Journal of Hazardous

Materials, 252–253, pp.233-242 (2013).

- 10.Y. Kim, G. N. Shao, S. J. Jeon, S.M. Imran, P. B. Sarawade, H. T. Kim, "Sol-gel synthesis of sodium silicate and titanium oxychloride based TiO₂–SiO₂ aerogels and their photocatalytic property under UV irradiation", Chemical Engineering Journal, 231, pp.502-511 (2013).
- 11.J. Sicha, J. Musil, M. Meissner, R. Cerstvy, "Nanostructure of photocatalytic TiO₂ films sputtered attemperatures below 200°C, Applied Surface Science, 254, pp.3793–3800 (2008).
- K. Eufinger, D. Poelman, H. Poelman, R. De Gryse and G.B. Marin, "Photocatalytic activity of dc magnetron sputter deposited amorphous TiO₂ thin films", Applied Surface Science, 254, 1, pp. 148-152(2007).
- Y. Sung and H. Kim, "Sputter deposition and surface treatment of TiO₂ films for dye-sensitized solar cells using reactive RF plasma", Thin Solid Films, 515, 12, pp. 4996-4999(2007).
- 14. 許明琮,「射頻磁控濺鍍法製備 TiO2及 TiO2-xNx 光觸媒薄膜之研究」, 國立雲林科技大學工業化學與災害防治研究所,碩士論文,民國 94 年。
- 15. I. Sopyan, M. Watanabe, S. Murasawa, K. Hashimoto, A. Fujishima, "An efficient TiO₂ thin-film photocatalyst: photocatalytic properties in gas-phase acetaldehyde degradation", Journal of Photochemistry and Photobiology A: Chemistry, 98, pp.79-86 (1996).
- 16. 呂信德,「磁控濺鍍 TiO2-WO3 複合膜光催化性質之研究」,國立成功 大學資源工程學系碩博士班,碩士論文,民國 92 年。
- 17. Y. Tachibana, H. Ohsaki, A. Hayashi, A. Mitsui, Y. Hayashi, "TiO_{2-X} sputter for high rate deposition of TiO₂", Vacuum, 59, pp.836-843 (2000).
- B. Liu, X. Zhao, Q. Zhao, C. Li, X. He, "The effect of O₂ partial pressure on the structure and photocatalytic property of TiO₂ films prepared by sputtering", Materials Chemistry and Physics, 90, pp.207–212 (2005).
- 19. Y. Ma, J. Qiu, Y. Cao, Z. Guan, J. Yao, "Photocatajytic activity of TiO₂ films

grown on different substrates", Chemosphere, 44, pp.1087-1092 (2001).

- A. L. Linsebigler, G. Lu, J. T. Yates, "Photocatalysis on TiO₂ Surfaces: Principles, Mechanisms, and Selected Results", Chem. Rev., 95, pp.735-758 (1995).
- 21. Hu and R. G. Gorden, "Textured aluminium-doped zinc oxide thin films from atmosphere pressure chemical-vapor deposition", Journal of Applied Physics, 71, pp.880-890 (1992).
- Dwight R. Acosta, Arturo I. Martinez, Alcidez A. Lopez, Carlos R. Magana, "Titanium dioxide thin films: the effect of the preparation method in their photocatalytic properties", Journal of Molecular Catalysis A: Chemical, 228, pp.183-188(2005).
- O. Zywitzki, T. Modes, P. Frach, D. Gloss, "Effect of structure and morphology on photocatalytic properties of TiO₂ layers", Surface & Coatings Technology, 202, pp.2488–2493 (2008).
- 24. S. Ohno, N. Takasawa, Y. Sato, M. Yoshikawa, K. Suzuki, P. Frach and Y. Shigesato, "Photocatalytic TiO₂ films deposited by reactive magnetron sputtering with unipolar pulsing and plasma emission control systems", Thin Solid Films, 496, 1, pp. 126-130 (2006).
- 25. M. F. Hossain, S. Biswas, T. Takahashi, Y. Kubota, A. Fujishima, "Influence of direct current power on the photocatalytic activity of facing target sputtered TiO₂ thin films", Thin Solid Films, 517, pp.1091–1095 (2008).
- S. Ohno, D. Sato, M. Kona, P. K. Song, M. Yoshikawa, K. Suzuki, P. Frach, Y. Shigesato, "Plasma emission control of reactive sputtering process in mid-frequency mode with dual cathodes to deposit photocatalytic TiO2 films", Thin Solid Films, 445, pp.207–212 (2003).
- 27. C. Yang, H. Fan, Y. Xi, J. Chen, Z. Li, "Effects of depositing temperatures on structure and optical properties of TiO₂ film deposited by ion beam assisted electron beam evaporation", Applied Surface Science, 254,

pp.2685–2689 (2008).

- Erik Lewin, Daniel Loch, Alex Montagne, Arutiun P. Ehiasarian, Jörg Patscheider, "Comparison of Al–Si–N nanocomposite coatings deposited by HIPIMS and DC magnetron sputtering", Surface & Coatings Technology, 232, pp. 680-689 (2013).
- P.J. Kelly, P.M. Barker, S. Ostovarpour, M. Ratova, G.T. West, I. Iordanova, J.W. Bradley, "Deposition of photocatalytic titania coatings on polymeric substrates by HiPIMS", Vacuum, 86, pp. 1880-1882 (2012).
- 30. 溫文杰,「電漿氣氛對射頻磁控濺鍍法沉積 AZO 薄膜特性影響之研究」,大同大學材料工程學系(所),碩士論文,民國 96 年。
- J. Venables, "Nucleation and growth of thin films", rep. prog. phys., 47, pp. 399-459 (1984).
- 32. 朱政彦,「以金屬層前驅物硒化法製備硒化銅銦鎵薄膜太陽能電池之研究」,國立交通大學,博士論文,民國 101 年。
- 33. 郭益男,「反應性射頻磁控濺鍍氧化鋅薄膜之光激發光特性之研究」,國 立中山大學電機工程學系研究所,碩士論文,民國 93 年。
- 34. J. Thornton, "Influence of apparatus geometry and deposition conditions on the structure and topography of thick sputtered coatings", Journal of Vacuum Seience and Technology, 11, pp. 666-670 (1974).
- K. Sarakinos, J. Alami, S. Konstantinidis, "High power pulsed magnetron sputtering: A review on scientific and engineering state of the art", Surface & Coatings Technology, 204, pp. 1661-1684 (2010).
- 36. U. Helmersson, M. Lattemann, J. Bohlmark, A. P. Ehiasarian, J. T. Gudmundsson, "Ionized physical vapor deposition (IPVD): A review of technology and applications", Thin Solid Films, 513, pp. 1-24 (2006).
- J. R. Phillip, "Taguchi Techniques For Quality Engineering", McGraw-Hill, pp. 18-33 (1989).
- 38. R. Flitsch, and D.Y. Shih, "A study of modified polyimide surfacesas related

to adhesion", Journal of Vacuum Science Technology, A8(3), pp.2380 (1990).

- 39. K. T. Wan, S. Guo, D. A. Dillard, "A theoretical and numerical study of a thin clamped circular film under an external load in the presence of a tensile residual stress", Thin Solid Films, 425, pp.150–162 (2003).
- 40. H. Ohsaki, Y. Tachibana, A. Hayashi, A. Mitsui, Y. Hayashi, "High rate sputter deposition of TiO₂ from TiO_{2-x} target", Thin Solid Films, 351, pp.57-60 (1999).
- M. Dhayal, J. Jun, H. B. Gu, K. H. Park, "Surface chemistry and optical property of TiO₂ thin films treated by low-pressure plasma", Journal of Solid State Chemistry, 180, pp.2696–2701 (2007).
- L. Sirghi, T. Aoki, Y. Hatanaka, "Hydrophilicity of TiO₂ thin films obtained by radio frequency magnetron sputtering deposition", Thin Solid Films, 422, pp. 55–61 (2002).
- 43. 連曼君,「以磁控濺鍍法在聚亞醯胺基材上沉積金屬鍍層之性質研究」, 國立成功大學材料科學及工程學系碩博士班,碩士論文,民國91年。
- 44. 田民波,「薄膜技術與薄膜材料」,五南圖書出版(2007)。
- 45. M. Yamagishi, S. Kuriki, P.K. Song, Y. Shigesato, "Thin film TiO₂ photocatalyst deposited by reactive magnetron sputtering", Thin Solid Films, 442, pp.227–231 (2003).
- 46. H. Ogawa, T. Higuchi, A. Nakamura, S. Tokita, D. Miyazaki, T. Hattori, T. Tsukamoto, "Growth of TiO₂ thin film by reactive RF magnetron sputtering using oxygen radical", Journal of Alloys and Compounds, 449, pp.375–378 (2008).
- 47. M. Audronis a, S.J. Hinder, P. Mack, V. Bellido-Gonzalez, D. Bussey, A. Matthews, M.A. Baker, "A comparison of reactive plasma pre-treatments on PET substrates by Cu and Ti pulsed-DC and HIPIMS discharges", Thin Solid Films, 520, pp. 1564-1570 (2011)

- 48. J. Olejnicek, Z. Hubicka, S. Kment, M. Cada, P. Ksirova, P. Adamek, I. Gregora, "Investigation of reactive HiPIMS + MF sputtering of TiO₂ crystalline thin films", Surface & Coatings Technology, 232, 376-383 (2013).
- S. Rtimi, O. Baghriche, C. Pulgarin, J. C. Lavanchy, J. Kiwi, "Growth of TiO₂/Cu films by HiPIMS for accelerated bacterial loss of viability", Surface & Coatings Technology, 232, pp. 804-813 (2013).
- 50. M. Hiratsuka, A. Azuma, H. Nakamori, Y. Kogo, K. Yukimura, "Extraordinary deposition rate of diamond-like carbon film using HIPIMS technology", Surface & Coatings Technology, 229, pp. 46-49 (2013).
- 51. T. F. Zhang, Q. M. Wang, J. Lee, P. Ke, R. Nowak, K. H. Kim, "Nanocrystalline thin films synthesized from a Ti₂AlN compound target by high power impulse magnetron sputtering technique", Surface & Coatings Technology, 212, pp. 199-206 (2012).
- 52. G. Kamath, A.P. Ehiasarian, Y. Purandare, P.Eh. Hovsepian, "Tribological and oxidation behaviour of TiAlCN/VCN nanoscale multilayer coating deposited by the combined HIPIMS/(HIPIMS-UBM) technique", Surface & Coatings Technology, 205, pp. 2823-2829 (2011).
- 53. K.O. Awitor, A. Rivaton, J.-L. Gardette, A.J. Down, M.B. Johnson, "Photo-protection and photo-catalytic activity of crystalline anatase titanium dioxide sputter-coated on polymer films", Thin Solid Films, 516, pp.2286-2291 (2008).