
 

 

國 立 交 通 大 學 
 

資訊科學與工程研究所 
 

博 士 論 文 
 

 

應用組合對局知識解決遊戲及改良 

搜尋效能 
 

Solving Games and Improving Search Performance 

with Embedded Combinatorial Game Knowledge 

 

 

 

研 究 生：單益章 

指導教授：吳毅成  教授 

          高國元  教授 

 

中 華 民 國 一○二 年 十 月 



 

應用組合對局知識解決遊戲及改良搜尋效能 

Solving Games and Improving Search Performance with Embedded 

Combinatorial Game Knowledge 
 

 

 

研 究 生：單益章 Student：Yi-Chang Shan 

指導教授：吳毅成 

          高國元 

Advisor：I-Chen Wu 

Kuo-Yuan Kao 

  

 

 

 

國 立 交 通 大 學 

資 訊 科 學 與 工 程 研 究 所 

博 士 論 文 

 

 

A Dissertation 

Submitted to Institute of Computer Science and Engineering 

College of Computer Science 

National Chiao Tung University 

in partial Fulfillment of the Requirements 

for the Degree of  

Doctor of Philosophy 

in 

 

Computer Science 

 

October 2013 

 

Hsinchu, Taiwan, Republic of China 

 

 

 

中華民國 一○二 年 十 月



 

 i 

應用組合對局知識解決遊戲及改良搜尋效能 

 

研究生：單益章 指導教授：吳毅成 博士 

高國元 博士 

 

 

國立交通大學資訊科學與工程研究所博士班 

 

摘要 

本篇論文，主要是應用組合對局知識解決遊戲及改良搜尋效能。組合對局理論已

經成為許多益智遊戲分析的基本數學模型，其利用數學代數的特性來降低問題的複雜

度。本論文主要研究三種組合對局遊戲，包括三角殺棋 (Triangular Nim)、XT 

Domineering 及 NoGo。 

首先，三角殺棋是一種 Nim 的變形，是流行台灣及中國的二人遊戲。本論文使用

Retrograde 方法，全解九層三角殺棋盤面，並運用旋轉及對稱方法，降低記憶空間需

求達 5.72 倍，並增進運算速度達 4.62 倍。 

第二、本論文介紹新的組合對局遊戲 XT Domineering 及其數學分析，XT 

Domineering 其變化來自於 Domineering。變化後的規則，在遊戲中所有盤面皆為微數

字(Infinitesimal)，計算得出所有 3×3 盤面的遊戲值(Game values)，並得出每一盤面的

遊戲值為 8 種基本微數字的線性組合，利用一個簡單代數和的式子，即可以迅速算出

雙方勝敗，以取代搜尋全部遊戲樹(Game tree)。  

第三、本論文分析 2011年BIRS組合對局會議提出的一種新的組合對局遊戲NoGo，

計算其許多 4×4 NoGo 盤面的遊戲值，發現其最高溫度（Temperature）為 2，並在研

究中推導出一些基本定理，以幫助我們瞭解 NoGo 遊戲特性。 



 

 ii 

Solving Games and Improving Search Performance with Embedded 

Combinatorial Game Knowledge 

 

 

Student：Yi-Chang Shan Advisor：Dr. I-Chen Wu                                     

Dr. Kuo-Yuan Kao    

 

 

Institute of Computer Science and Engineering 

National Chiao Tung University 

 

Abstract 

In this thesis, we study to solve games and improve search performances with 

embedded combinatorial game knowledge. Combinatorial game theory (CGT) has become 

the common fundamental mathematical model for the analysis of many intelligent games. 

CGT uses algebra characteristics to reduce the complexity of many intelligent games. For 

this study, we investigate three combinatorial games, including Triangular Nim, XT 

Domineering and NoGo.  

First, Triangular Nim, one variant of the game Nim, is a common two-player game in 

Taiwan and China. Using a retrograde method, we strongly solve nine layer Triangular Nim. 

In our design, improved by removing some rotated and mirrored positions, the program 

reduces the memory by a factor of 5.72 and the computation time by a factor of 4.62.  

Secondly, we introduce a new combinatorial game, named XT Domineering, together 

with its mathematical analysis. XT Domineering is modified from the Domineering game 

with the game value of each position becoming an infinitesimal. We calculate the game 

values of all 3×3 positions and shows that each 3×3 position’s game value is a linear 



 

 iii 

combination of 8 elementary infinitesimals. A simple rule is presented to determine the 

optimal outcome of any sum of these positions, instead of searching the whole game trees.  

Thirdly, NoGo is a game introduced by the organizers of the BIRS workshop on 

Combinatorial Game Theory 2011 for being a completely new combinatorial game. We 

calculate the game values of many 4×4 NoGo positions and find the maximum of 

temperature is 2 among them. We also present some propositions to help us understand the 

characteristics of NoGo game. 

 



 

 iv 

致謝 

 感謝指導老師吳毅成教授及高國元教授多年來的提攜與照顧，不斷地指導及鼓勵

我做研究。二位老師在理論和實務方面的教學研究，指引我研究的方向，我將秉持老

師的教導，在未來的道路上，一步步努力前進。 

 除了影響我最深的老師之外，特別感謝我的內人，在研究過程中，一直鼓勵、扶

持和砥礪我，讓我無後顧之憂的研究，順利通過這充滿困難、歡欣和淚水的博士道路。 

 感謝論文口試委員吳昇教授、林順喜教授、許舜欽教授、陳榮傑教授、蔡錫鈞教

授和顏士淨教授（以上按姓氏筆劃排列），對論文的改進方向，提出寶貴的意見，讓

我的研究能更上層樓。 

 培育了我多年的交大和我在 CYC Lab 的所有好友們，給予我各式各樣的支持，

在此衷心的感謝大家，包括隆彬學長、秉宏學長，博班同學德中、宏軒、汶傑，及學

弟冠翬、益嘉、博玄、挺富、元耀、振綱、庭築、育賢…等等，特別感謝學弟在我的

口試時細心地幫我準備餐點。 

 最後，感謝從小教導我的爸爸、媽媽及和讓我無後顧之憂的岳父、岳母及所有幫

助我的兄弟姊妹，讓我可以專心在論文研究，讓我在遇到困難時，內心仍能充滿溫暖

向前。沒有您們，這篇論文將無法完成。謹以此論文獻給我敬愛的師長及最摯愛的家

人。 

單益章 

2013 年 10 月 12 日 

 



 

 v 

Contents 

摘要 ....................................................................................................................................... i 

Abstract................................................................................................................................ ii 

致謝 ..................................................................................................................................... iv 

Contents ................................................................................................................................v 

List of Figures .................................................................................................................... vii 

List of Tables ....................................................................................................................... ix 

Chapter 1 Introduction ...................................................................................................1 

1.1 Background....................................................................................................1 

1.2 Game tree search ...........................................................................................2 

1.2.1 Min-Max Tree ................................................................................................2 

1.2.2 Monte Carlo Tree Search ..............................................................................3 

1.3 Combinatorial Game Theory ........................................................................5 

1.4 Framework of Research ................................................................................7 

1.5 Organization ..................................................................................................8 

Chapter 2 Triangular Nim ..............................................................................................9 

2.1 Introduction ...................................................................................................9 

2.2 Related Work ............................................................................................... 12 

2.2.1 Backward Induction Approach ................................................................... 12 

2.2.2 Retrograde Method ..................................................................................... 14 

2.3 Solving Approach ........................................................................................ 15 

2.3.1 Data Structures and Algorithms ................................................................. 15 

2.3.2 Removing Redundancy ............................................................................... 19 

2.4 Experimental results.................................................................................... 22 

2.4.1 Eight Layer Triangular Nim ....................................................................... 22 

2.4.2 Nine Layer Triangular Nim ......................................................................... 25 

2.5 Conclusion ................................................................................................... 28 

Chapter 3 XT Domineering: A New Combinatorial Game ......................................... 30 

3.1 Introduction ................................................................................................. 30 

3.2 Combinatorial Games ................................................................................. 31 

3.2.1 Numbers ....................................................................................................... 32 

3.2.2 Nimbers ........................................................................................................ 32 

3.2.3 Sumbers ....................................................................................................... 33 

3.2.4 Infinitesimal and Atomic Weight ................................................................ 35 



 

 vi 

3.3 Domineering and XT Domineering ............................................................. 36 

3.4 Game Values of 3×3 XT Domineering......................................................... 38 

3.5 Outcome of 3×3 XT Domineering ............................................................... 43 

3.6 Conclusion And Further Consideration ..................................................... 46 

Chapter 4 NoGo Endgame Analysis ............................................................................. 48 

4.1. Introduction ................................................................................................. 48 

4.2. Classification of Moves ................................................................................ 49 

4.3. Mean and Temperature ............................................................................... 50 

4.3.1 Definitions of Mean and Temperature ........................................................ 51 

4.3.2 Thermograph ............................................................................................... 52 

4.4. Game Values of NoGo Positions .................................................................. 54 

4.4.1 Game Values ................................................................................................ 55 

4.4.2 Means and Temperatures ............................................................................ 58 

4.4.3 More Analysis .............................................................................................. 63 

4.5. NoGo Propositions ....................................................................................... 64 

4.6. Conclusion ................................................................................................... 72 

Chapter 5 Conclusions .................................................................................................. 73 

References ........................................................................................................................... 75 

Appendix A  The Derivations for XT Domineering Games Values of Positions .... 81 

Appendix B  The proof for XT Domineering inequalities ...................................... 85 

Vita ...................................................................................................................................... 91 

 



 

 vii 

List of Figures 

Figure 1. An example of minimax Tree. ..................................................................................2 

Figure 2. Monte Carlo Tree Search .........................................................................................5 

Figure 3. The framework of research ......................................................................................7 

Figure 4. A scenario of Triangular Nim with side size five. ................................................... 10 

Figure 5. A piece mapping of 5 layer Triangular Nim. ........................................................... 13 

Figure 6. Six block representations for 8 layer Triangular Nim. ............................................ 16 

Figure 7. Inter-block updates of the block representations in Figure 6 (a) and (b), 

respectively. .................................................................................................................. 19 

Figure 8. Six rotated and mirrored blocks. ............................................................................ 20 

Figure 9. An isomorphic group with one, two and three distinct blocks only. ........................ 21 

Figure 10. The moves to win in 8 layer normal Triangular Nim. ........................................... 24 

Figure 11. The moves to win in 8 layer misère Triangular Nim. ............................................ 24 

Figure 12. Three block representations with 13 BID pieces. .................................................. 25 

Figure 13. Three block representations with 15 BID pieces. .................................................. 26 

Figure 14. The moves to win in 9 layer normal Triangular Nim. ........................................... 27 

Figure 15. The moves to win in 9 layer misère Triangular Nim. ............................................ 27 

Figure 16. The ratio of the number of P-positions to that of N-positions. .............................. 28 

Figure 17. Middle game of 6×6 Domineering. ...................................................................... 36 

Figure 18. Sub-positions of the graph in Figure 17 ................................................................ 37 

Figure 19. Some game values in Domineering. ..................................................................... 37 

Figure 20. Some game values in XT Domineering. ............................................................... 42 

Figure 21. Some game values in XT Domineering. ............................................................... 43 

Figure 22. Some game values in XT Domineering. ............................................................... 46 

Figure 23: The classification of moves in NoGo. .................................................................. 49 

Figure 24: Thermographs of (a) a simple max function and (b) a simple min function. ......... 53 

Figure 25: The thermograph of 𝐺 = {3|{0| − 2}}. ............................................................... 54 

Figure 26. A specific 5×5 Nogo position. .............................................................................. 62 

Figure 27. The temperature is greater than 2 in a 4×7 NoGo position. ................................... 63 

Figure 28. The example of NoGo definitions. ....................................................................... 65 

Figure 29. Each No-Go has game value zero......................................................................... 66 

Figure 30. The example of B-Dragons and W-Dragons. ........................................................ 67 

Figure 31. Three different walls in NoGo. ............................................................................. 68 



 

 viii 

Figure 32. The board forms left and right independent regions. ............................................. 69 

Figure 33. The symbol of black triangle is represented for B-EGo . ...................................... 71 

Figure 34. The example of B-Ego and W-Ego. ...................................................................... 72 

Figure 35. Deriving both game values of C and E of Figure 18 in (a) and (b) respectively. .... 81 

Figure 36. Deriving the game values of C + E. ..................................................................... 82 

Figure 37. Deriving both game values of C and E of Figure 18 in (a) and (b) respectively. .... 83 

Figure 38. Deriving the game values of C + E. ..................................................................... 84 

  



 

 ix 

List of Tables 

Table 1. Experimental results for the block representations without removing redundancy in 

Figure 6. ....................................................................................................................... 23 

Table 2. Experimental results for three block representations with removing redundancy in 

Figure 6. ....................................................................................................................... 24 

Table 3. Experimental results for the block representations in Figure 12. .............................. 25 

Table 4. Experimental results for the block representations in Figure 13. .............................. 26 

Table 5. The result of k layer Triangular Nim. ....................................................................... 28 

Table 6. Game values of 3×3 XT Domineering ..................................................................... 41 

Table 7. Minimum ups U required for U + SB + SC > 0 .......................................................... 44 

Table 8. The list of special game values of 4×4 NoGo. .......................................................... 58 

Table 9. The highest and lowest of means with endgame search depth 6 and 8 of 4×4 NoGo 59 

Table 10. The lists of maximum temperature with endgame search depth 6 in 4×4 NoGo. .... 61 

Table 11. The lists of maximum temperature with endgame search depth 8 in 4×4 NoGo. ..... 62 

Table 12. The temperature analysis with endgame search depth 6 in 4×4 NoGo positions. .... 64 

Table 13. The temperature analysis with endgame search depth 8 in 4×4 NoGo positions. .... 64 

 





 

 1 

Chapter 1 Introduction 

Combinatorial game theory (CGT) [7][20] has become the common fundamental 

mathematical model for the analysis of many intelligent games. In CGT, a game can be 

viewed as a tree where the branches are classified into left and right branches and the 

terminal nodes are numbers. A sum of games is a collection of trees where each player can 

choose one to move at a turn. Combinatorial games include many games like chess [23][49], 

Chinese chess [26], Go [6][53], Heap Go [41][42], Nim [8], Triangular Nim 

[3][14][33][47][57], Domineering [5][9][12][16][17][44], XT domineering [40][43], and 

NoGo [15][45]. If the positions of games are public to both players and their all available 

moves are also public, noted perfect information game [2]. Other games are called imperfect 

information game, like Bridge Poker, Mahjong [68][69] and so on. These games hide some 

information from other players.  

1.1 Background 

CGT is one of the applied mathematics which uses algebra characteristics to reduce the 

complexity of many intelligent games. Based on the theory, playing or solving many 

combinatorial games may simply become mathematical calculations, such as summation, 

instead of a complex tree search. 

CGT studies two-player games with perfect information. The two players are assumed 

to take turns alternatively, and a game is considered as a sum of local positions, where each 

player can choose one local position to move at each turn.  

 

http://en.wikipedia.org/wiki/Chess
http://en.wikipedia.org/wiki/Go_(board_game)
http://en.wikipedia.org/wiki/Perfect_information


 

 2 

1.2 Game tree search 

The game search has been an important issue in computer science. From early 

minimax tree search to recently Monte Carlo Tree Search (MCTS), most of researches 

focused on improvement of tree search. In the following two subsections, we review 

minimax search and MCTS, respectively.  

1.2.1 Minimax Tree 

Figure 1 (below) shows a minimax tree. Square nodes usually represent Max nodes 

which get the maximum of the values of all children, and circular nodes represent Min 

nodes which get the minimum of the values of all children. Claude Shannon first estimated 

lower bound on the game-tree complexity of chess [58]. Recently, MCTS is a search 

paradigm that has been remarkably successful in computer games like Go. MCTS uses 

Monte-Carlo simulation to evaluate the values of nodes in a search tree. Currently MCTS is 

popular for game search method which also follows the original game-tree estimated.  

 

 
Figure 1. An example of minimax Tree. 

 

max

min

max

min

7

1 5 6 7 2

8

1

7

2 7

81

http://en.wikipedia.org/wiki/Claude_Shannon
http://en.wikipedia.org/wiki/Game-tree_complexity
http://en.wikipedia.org/wiki/Chess


 

 3 

1.2.2 Monte Carlo Tree Search 

MCTS [21] is a search paradigm for two-player and zero-sum games. It has been applied 

to various computer games [4][11][25][29][48][56][61][62][66]. This subsection reviews the 

basic ideas of MCTS and its related policy improvements, following the definitions of [30]. 

Let S denote the state space of a game, and st be the state of a game at time t. Let A 

denote the space of actions and let A(s) denotes the set of legal actions from state s. The two 

players alternate turns, at each turn t selecting an action at in A(st). The game finishes upon 

reaching a terminal state with outcome z.  One player’s goal is to maximize z; the other 

player’s goal is to minimize z. A policy π is defined as a stochastic action selection strategy 

that determines the probability of selecting actions in any given state. ),( asQ  is defined as 

the expected outcome after playing action a in state s, and then following policy π for both 

players until termination. 

 ],|[),( aasszEasQ tt  


        

The basic idea of MCTS is to evaluate the expected outcome online from simulated 

games. Each simulated game starts from a root state s0, and sequentially samples actions until 

the game terminates. At each step t of simulation, a simulation policy π is used to select an 

action at. The outcome z of each simulated game is used to update the Q-values encountered 

during that simulation. This update can be implemented incrementally by incrementing the 

state-action simulation count ),( tt asN and updating the Q-value towards the outcome z. 

 1),(),(  tttt asNasN         



 

 4 

 ),(

),(-
),(),(

tt

tt
tttt

asN

asQz
asQasQ 

        

There are two policy stages in the simulations. A tree policy is used to select actions on 

the state st represented in the search tree, while a default policy is used on those not in the 

tree, mainly for the playout simulations. 

The second idea of MCTS is policy improvement. The values in the search tree are 

used as references to select the actions during subsequent simulations. As the number of 

simulations increases, the policy π continues to improve. Eventually, with sufficient 

simulations, the policy will reach the optimal strategy. 

UCT [28] is an example of policy improvement scheme. It selects actions by using the 

UCB algorithm which maximizes an upper confidence bound on the value of actions. 

Specifically, the Q-value is augmented by an exploration bonus that is high for rarely visited 

actions, and the policy selects the action a* maximizing the augmented value. 


)s,(

)(log
),(),(

aN

sN
casQasQUCB          


),(* maxarg asQa UCB

a
        

where c is a scalar exploration constant, N(s) is the number of visits to state s, and log is the 

natural logarithm. The underlying idea of UCT is to provide a balance between exploitation of 

the current best action and exploration of other potential better actions. 



 

 5 

 

Figure 2. Monte Carlo Tree Search 

 

Figure 2 shows four steps in MCTS including selection, expansion, simulation and 

back propagation in loop while.  

1.3 Combinatorial Game Theory 

Combinatorial game theory [7][20] starts from a simple definition of game: A game is 

an ordered pair of sets of games. Conventionally, a game G is denoted as: 

 G = {G
L
 | G

R
},        

where G
L 

and G
R 

are sets of games. A special game is named 0, when both G
L 

and G
R 

are empty sets, . 

Negation, addition and comparisons are defined as follows.  

 GG
R
G

L
        

 G + HG
L
 + H, G + H

L
G

R
 + H, G + H

R
      

Selection Expansion Simulation Backpropagation

Repeated  X times



 

 6 

 G  0, if and only if there is no element in G
R 
 0,     

 G  0, if and only if G
 
 0,        

 G  H, if and only if G  H  0.        

When neither G  H nor G  H, it is said G confused with H, denoted by G || H. G <| H 

denotes either G < H or G || H, and similarly for G |> H. Furthermore, an equivalence 

relation on the sets of games is defined as follows. 

 G  H, if and only if G  H and G  H.       

The equivalence classes of games form an algebraic group, which can be used to 

describe the positions of many intelligent games as follows.  

 There are two players (say Left and Right) move alternatively. 

 The game is a sum of positions; each position has two sets of next positions; one for 

each player. 

 On each player’s turn, the player can choose one position and move the position to one 

of its next positions. 

 The player who cannot find a move is the loser. 

 

For each game G, there are 4 types of possible outcomes. The corresponding relations 

between G and 0 are described as below: 

 G  0: The first player cannot win the game. 

 G < 0: Left cannot win the game. 

 G > 0: Right cannot win the game. 

 G || 0: The first player can win the game. 



 

 7 

 

In general, players are concerned with who can win a given game G. Mathematically 

speaking, the question is equivalent to determining one of the above four relations between 

G and 0.  

1.4 Framework of Research 

In this thesis, we study to solve games and improve search performances with 

embedded combinatorial game knowledge. For this study, we investigate three 

combinatorial games, including Triangular Nim, XT Domineering and NoGo. From the 

viewpoint of CGT, Triangular Nim and XT Domineering belong to nimbers and 

infinitesimals, respectively. But the third game NoGo, which was introduced in 2011, 

contains numbers, infinitesimals and hot games. Figure 3 shows the framework of research 

in this thesis. 

 

 

Figure 3. The framework of research 

 

Combinatorial Games

Numbers

Nimbers

Infinitesimals

2. XT Domineering

3. NoGo game

1.Triangular Nim

Hot 

Games



 

 8 

1.5 Organization 

Chapter 2 presents the solving of nine layer Triangular Nim. We propose some 

methods to improve the performance, such as designing data structures in blocks, using the 

retrograde method, removing redundancy and selecting the block representation with the 

less number of inter-block updates.  

Chapter 3 introduces a new game: XT domineering. We present a mathematical 

approach to solve sums of 3×3 XT Domineering and find several infinitesimal games with 

interesting properties. Chapter 4 is NoGo game analysis and derives three important 

propositions. Chapter 5 concludes this thesis.  

 

 



 

 9 

Chapter 2 Triangular Nim 

This chapter introduces the game of Triangular Nim. We propose a solving approach to 

strong solve the nine layer Triangular Nim and use isomorphism of Triangular Nim to 

reduce storage requirement and improve the performance.  

2.1 Introduction 

Triangular Nim [10][65], which is a common two-player game in Taiwan and China, is 

one variant of the game Nim. Nim is a two-player mathematical game of strategy in which 

players take turns removing pieces from distinct heaps, each containing a set of pieces. Two 

players alternatively remove one or more pieces from the same heaps. The game won by the 

player who removes the last piece is called a normal play game. In contrast, the game won 

by the other is called a misère play game, or simply a misère game [7][20].  

Many interesting and useful theories were developed for Nim in [7][8][20]. Obviously, 

Nim games are never drawn. Nim games are also called impartial games since from all 

positions
1
 the moves available to move by either player are exactly the same. Sprague [60] 

and Grundy [31] also gave some useful theoretical analysis, such as Sprague–Grundy 

theorem. 

Since Nim games are never drawn, all positions are either winning or losing to the 

player to move. The positions that the player is to move wins are commonly called 

N-positions, while the others are called P-positions [7]. The positions that have no 

                                                
1 In this thesis, positions for Triangular Nim include the information of the remaining pieces, but exclude the information 
of the player turn.  

http://en.wikipedia.org/wiki/Mathematical_game
http://en.wikipedia.org/wiki/Game_of_strategy


 

 10 

subsequent moves are called terminal positions. Apparently, all terminal positions are 

P-positions in the normal play game, while they are N-positions in the misère play game. In 

addition, it is clear to see the following two rules: [24] 

For each N-position, there is at least one move to a P-position. 

For each P-position, every move is to an N-position. 

 

 

Figure 4. A scenario of Triangular Nim with side size five. 

 

In the game of Triangular Nim, all pieces are placed in an equilateral triangle as shown 

in Figure 4. Two players alternatively remove one or more consecutive pieces from one row 

or diagonal in the triangle of pieces. Triangular Nim shares some properties of Nim. For 

example, the games are never drawn; and the games are also impartial games. Similarly, the 

game won by the player who removes the last piece is called a normal Triangular Nim, 

while the game won by the other is called a misère Triangular Nim. Illustrated in Figure 4, 

player 2 who removes the last piece loses the game in the misère. The version commonly 

played in Taiwan and China is the misère Triangular Nim.  

A Triangular Nim is called a k layer Triangular Nim, if the equilateral triangle is of side 

size k. For example, Figure 4 shows a 5 layer Triangular Nim which has 15 pieces in total. 

The position with all the 15 pieces is the initial position of a 5 layer Triangular Nim.  

In the past, Hsu [33] solved 7 layer Triangular Nim by a brute force approach, called a 

backward induction approach in [24]. This approach tends to verify exhaustively all game 

positions to win or lose, from those with fewer pieces to more pieces. For the position 



 

 11 

without any pieces, set it to P-position or N-position depending on normal or misère, 

initially. Then, evaluate positions from those with fewer pieces to those with more pieces. 

For each position P to be evaluated, set it to P-position or N-position from all legal moves, 

according to the above two rules. Since all the moves will make the number of pieces fewer, 

the new position, say P', must have been evaluated earlier than P. Thus, we can quickly 

derive the result of P from all P'. The method checking all legal moves for each position is 

called forward checking method in this thesis.   

Recently, both research teams [3] and [47] solved 8 layer Triangular Nim by different 

methods independently. The researchers in [3] used the forward checking method by Hsu, 

while the researchers in [47] used a faster method to improve the performance. This method 

is a kind of retrograde methods.  

In the past, the retrograde methods were successfully used by researchers in 

[34][63][64][70]. In retrograde methods, whenever the game-theoretical value (or just value) 

of a position, the win/loss status of a position, is derived to be a loss, we update the values 

of all its parents to be wins. Note that this thesis follows the definitions of the terms in [35], 

such as strongly solved and game-theoretical values of positions. 

The retrograde methods were shown to be very efficient, since the loss ratio (the 

number of losing positions over the number of all positions) is usually low. Thus, the update 

operations are not done often. In this chapter, we will also show that the loss ratio is very 

low in Triangular Nim.  

This thesis follows, in principle, the retrograde method used in [47] to strongly solve 9 

layer Triangular Nim and obtains the results that the first player wins in both normal and 

misère. However, strongly solving 9 layer Triangular Nim requires huge amount of memory. 

Our first version with the retrograde method requires 4 terabytes of data in memory. Since it 

is impossible to store all the data into RAM in most computer systems, the hard disks are 



 

 12 

used. Hence, it also increases much more computation time to solve.  

For this problem, this section proposes the block representation to decrease I/O 

frequencies and allow parallel processing to speed up the performance. Thus, it takes about 

32.31 days on a machine with four cores and 129.21 days on one core aggregately.  

Furthermore, we also improve the performance by making use of the characteristics of 

rotation and mirroring. The second version with the improvement efficiently reduces the 

memory by a factor of 5.72 and the computation time by a factor of 4.62. 

2.2 Related Work 

This section reviews the research for Triangular Nim in the past. Subsection 2.2.1 

introduces the backward induction approach and described the forward checking method 

used in [3][33]. Subsection 2.2.2 described the retrograde method used in [47]. 

2.2.1 Backward Induction Approach 

As described above, the backward induction approach is to evaluate the values of all 

game positions, from those with fewer pieces to more pieces. Since either player wins in 

Triangular Nim, the value of a given position is either a win or a loss, and therefore can be 

represented by one bit of data. Without loss of generality, let 1 indicate an N-position where 

the player is to move win; and let 0 indicate a P-position, otherwise.  

For k layer Triangular Nim, since it has k(k+1)/2 pieces, the total number of positions 

is 2
k(k+1)/2

. Thus, the space complexity is O(2
k(k+1)/2

). From above, we can use 2
k(k+1)/2

 bits to 

represent the values of all the positions. For example, 5 layer Triangular Nim requires 2
15

 

bits to represent all the values, while 9 layer Triangular Nim requires 2
45

 bits, equivalent to 

2
42

 bytes, about 4 terabytes. 



 

 13 

In order to identify the value of a given position in all the 2
k(k+1)/2

 bits, Hsu [33] simply 

used a k(k+1)/2-bit binary number as a position identifier. In the position identifier, each bit 

indicates whether a corresponding piece exists. The corresponding pieces to bits are 

designated by a piece mapping in advance. For example, in Figure 5, a piece mapping is 

shown, and a position of 5 layer Triangular Nim is identified as 011010111001011, 

equivalent to 13,771 in decimal, by a piece mapping. The initial position of 5 layer 

Triangular Nim is 111111111111111, all 1s. The initial positions for other layer Triangular 

Nim are all 1s, too. 

 

Figure 5. A piece mapping of 5 layer Triangular Nim. 

 

For a piece mapping, a legal move, removing some consecutive pieces, can also be 

represented by a k(k+1)/2-bit binary number corresponding to these removed pieces. For 

example, for the piece mapping in Figure 5, 000000000001011 is a legal move that removes 

the top three pieces at 0, 1 and 3. Since a legal move must remove consecutive pieces in a 

row or diagonal, the move at 1, 3 and 7 and the one at 1 and 8 are illegal. In [33], Hsu 

derived that the total number of moves is k
2
(k+1)/2 in k layer Triangular Nim. Hence, the 

number of legal moves is 75 for 5 layer Triangular Nim, while the number is 405 for 9 layer 

Triangular Nim. Thus, the time complexity for k layer Triangular Nim is roughly 

O(k
3
2

k(k+1)/2
).  



 

 14 

For a given position P, assume that a move M is legal in P. The bits with 1 in M must 

be 1 in P, too. We can use the following simple bit-wise operation to detect whether M is a 

legal move in P: The bit-wise AND operation on P and M is still M. In addition, we can also 

easily derive the position after the move M, by using bit-wise operations to remove all 1s of 

M from P. Namely, the new position P' is P  M, where  is a bit-wise exclusive OR 

operation. For simplicity of discussion, P' is called a child of P, and P is the parent of P'.  

For Triangular Nim, the backward induction approach is to derive V(P) from P = 0 to 

2
k(k+1)/2

 – 1. V(P) denotes the value of a given position P. An important property is: The 

values V(P') for all children P' of P must have been evaluated, before the value V(P) is 

evaluated.  

In [3][33] the researchers simply used a forward checking method to evaluate V(P). 

Initially, the position 0 is a P-position in the normal play, that is, V(0) = 0, while it is an 

N-position in the misère play, that is, V(0) = 1. When scanning to the position P, evaluate 

V(P) from the values V(P') for all of its children P' by the two rules in Section 2.1. 

2.2.2 Retrograde Method 

The research in [47] used a more efficient method, a kind of retrograde method, which 

is also used in this thesis. Initially, the value V(0) is initialized as the forward checking 

method. In addition, all the other V(P) are initialized to 0. Then, the retrograde method also 

follows the backward induction approach to visit position P from position 0 to 2
k(k+1)/2

 – 1 

and perform the following update operation when visiting P.  

 If V(P) = 0, then set V(Ppar) = 1 for all of its parents Ppar. 

 



 

 15 

By induction, we can show that the above operation satisfies the following property: 

When position P is visited, the value V(P) indicates the correct value. Assume that the 

properties are satisfied for all of its children. Then, if some child P' is a P-position, V(P) is 

set to 1 when visiting P' based on the above operation. This is correct since the position P is 

indeed an N-position based on the first rule in Section 2.1. If all children are N-positions, 

V(P) remains 0. This is also correct since P is indeed a P-position based on the second rule. 

Thus, it is concluded that the above property is satisfied. 

The retrograde method is very efficient for the following reason. The above update 

operation is done only when the position P is a P-position (a loss to the next player to move). 

Most importantly, the loss rate, the number of P-positions to that of all positions, is 

normally low. The loss rate is only 6.0% for 8 layer Triangular Nim according to [47], while 

the loss rate is only 5.0% for 9 layer Triangular Nim according to the experiments in 

Section 2.4. That is, the computation times can be reduced by a factor of 20 or so. 

2.3 Solving Approach 

This section presents our approach to strongly solve 9 layer Triangular Nim. In our 

approach, we use the retrograde method and also propose some new methods for efficient 

data structures and removing redundancies, respectively described in Subsections 2.3.1 and 

2.3.2. 

2.3.1 Data Structures and Algorithms 

Since 9 layer Triangular Nim requires a huge amount of memory (4 terabytes for the 

design described in Subsection 2.2.1), the memory space must be cut into disjoint blocks to 

make it feasible to process. To facilitate identifying the blocks, we let the most significant 



 

 16 

bits of position identifiers be the block identifier. For simplicity of discussion, the block 

representation in 8 layer Triangular Nim is illustrated in the rest of this subsection. 

 

     

(a)                               (b)                              (c) 

      

(d)                               (e)                              (f) 

Figure 6. Six block representations for 8 layer Triangular Nim. 

 

As described in Subsection 2.2.1, 8 layer Triangular Nim requires 2
36

 bits, equivalent 

to 2
33

 bytes or 8 gigabytes. Assume to cut the memory space into 16 blocks, each with 512 

megabytes. Then, the most four significant bits in the position identifier are used to indicate 

the block identifier (Block ID or BID), 0 to 15. The 16 blocks are denoted by B0, ..., B15. 

From the piece mapping described in Subsection 2.2.1, four pieces are designated as the bits 

of block identifier. The four pieces are called Block-ID pieces or BID pieces. For example, 

two such block representations using different BID pieces, marked with double cycles, are 

shown in Figure 6 (a) and (b). Other block representations using six BID pieces are shown 

in the rest of Figure 6.  



 

 17 

Following the backward induction approach (in Subsection 2.2.1), we visit positions 

from B0 to B15. Now, the next question is how to evaluate each block. Let us still follow the 

approach as the retrograde method. We need to update the values in Bi+1, …, B15, when 

visiting Bi. However, since the system memory (like RAM) may not be able to include all 

blocks, we use the following operations when visiting the block Bi. 

 

1. Load the block Bi (into the system memory). 

2. Evaluate the values of Bi as follows.  

a. Evaluate all positions P inside Bi by following the retrograde method. 

Namely, for each P with V(P) = 0, set V(Ppar) = 1 for all of its parents Ppar 

inside Bi.  

b. Restore the block Bi into the peripheral memory like hard disks.  

3. For all j > i, repeatedly perform the following.  

a. Load the block Bj.  

b. For each position P in Bi with V(P) = 0, set V(Ppar) = 1 for all of its parents 

Ppar in Bj. 

c. Restore the block Bj.  

 

The above operations can be separated into different jobs. The operations 1 and 2 

together, called intra-block update on Bi, is to update Bi itself. The operations 1 and 3 

together for each j, called inter-block update from Bi to Bj, is to update Bj from Bi. For 

inter-block updates from Bi to Bj, the block Bj is called a parent of Bi, or Bi is the child of Bj.  

The above operations can be further improved by saving the restore operations in the 

inter-block updates (at Step 3.c), if we use a forward-checking method in the block level, 



 

 18 

instead of a retrograde method in the block level. Namely, all inter-block updates from Bi to 

Bj are done when visiting block Bj, not when visiting block Bi. The improved algorithm is 

modified as follows.  

 

1. Initialize the block Bj . 

2. For all i = 0 to j–1, repeatedly perform the following inter-block updates.  

a. Load the block Bi.  

b. For each position P in Bi with V(P) = 0, set V(Ppar) = 1 for all of its parents 

Ppar in Bj. 

3. Process the intra-block update on Bj as follows. 

a. Evaluate all positions P inside Bj by following the retrograde method. 

Namely, for each P with V(P) = 0, set V(Ppar) = 1 for all of its parents Ppar 

inside Bj.  

b. Restore the block Bj into the peripheral memory like hard disks.  

 

The above operation for 8 layer Triangular Nim requires 16 intra-block updates and 

120 (=15×16/2) inter-block updates. In fact, the number of inter-block updates can be far 

below the above number. For example, for the block representation in Figure 6(a), no 

operations are required for the inter-block update from B0 to B5, since it is impossible to 

have a move remove pieces 32 and 34 without removing 33. 

 

 



 

 19 

  
                          (a)                                                    (b) 

Figure 7. Inter-block updates of the block representations in Figure 6 (a) and (b), 

respectively. 

 

The number of required inter-block updates is usually small if the BID pieces are 

distributed sparsely, and large if the BID pieces are grouped. After our analysis, the number 

of required inter-block updates is 49 for the one in Figure 6(a), and 32 for the one in Figure 

6(b). Figure 7 shows the inter-block updates for the two block representations, respectively. 

Usually, the smaller number of required inter-block updates is, the better performance is. 

This is also shown in our experiment in Section 2.4. 

2.3.2 Removing Redundancy 

Due to symmetry and rotation, we do not have to evaluate all the positions. However, it 

is hard to save space for all symmetric and rotated positions directly, since it is hard to 

identify saved bits in our data structure shown in Subsection 2.3.1. Fortunately, it becomes 

easier to save space on blocks.  

Let us illustrate the block representation with six BID pieces shown in Figure 6(f) and 

the blocks, B1, B2, B4, B8, B16 and B32, shown in Figure 8 (below). Due to symmetry and 

rotation, all the position values in one block, say B2, can be found from those in another, say 



 

 20 

B1, by finding the corresponding mirrored or rotated position values, and vice versa. Here, 

B1 is said to be an isomorphic block of B2, and vice versa.  

All of the six blocks shown in Figure 8 are actually isomorphic. Thus, it is sufficient to 

evaluate the values of one block, say B1, only. And, we can get the values of other blocks 

from the values of B1. These blocks form an isomorphic group of blocks.  

In an isomorphic group of blocks, we can simply choose to evaluate the block with 

smallest BID for simplicity. For example, in the group shown in Figure 8, we choose B1 to 

evaluate. For the improved algorithm in the previous subsection, we add the following rules.  

 

     
(a)                              (b)                              (c) 

      
(d)                               (e)                             (f) 

Figure 8. Six rotated and mirrored blocks. 

 

1. When visiting Block Bi, skip it if there exists another isomorphic block with smaller 

BID.  

2. When making an inter-block update from Bi to Bj, access Bi' instead of Bi, if Bi' is the 

block with smallest BID among all the isomorphic blocks of Bi.  



 

 21 

 

In the second rule, when accessing block Bi, the block Bi' (with the smallest BID) must 

be available, since we evaluate blocks from the lower BID to higher. In the rule, when 

accessing positions in Bi, access the corresponding positions in Bi' according to the 

directions of rotation and mirroring.  

 

     
(a)                              (b)                              (c) 

Figure 9. An isomorphic group with one, two and three distinct blocks only. 

 

An isomorphic group may contain one, two, three, six distinct blocks, as illustrated in 

Figure 9(a), Figure 9(b), Figure 9(c), and Figure 8(a), respectively. Since an isomorphic 

group contains at most six distinct blocks, we can reduce the space by a factor of at most six. 

For the block representation (in both Figure 8 and Figure 9), the number of isomorphic 

groups with one distinct block is 2, that with two is 1, that with three is 6, and that with six 

is 7. Thus, for this block representation, we need to evaluate 16 blocks, among all the 64 

blocks. Thus, we can save the space by a factor of four in this case.  

The space saving rate grows higher and approximates to 6, if the block representation 

is well designed with large number of BID pieces. For example, for the block representation 

for 9 layer Triangular Nim shown in Figure 13(b), the number of isomorphic groups with 

one distinct block is 16, that with two is 8, that with three is 496, and that with six is 5,208. 



 

 22 

Thus, for this block representation, we need to evaluate 5,728 blocks only, among all the 

32,768 blocks. The space is reduced by a factor of 5.72, approximate to 6. More specifically, 

we can reduce the space from 4 terabytes to 716 gigabytes.  

2.4 Experimental results 

In this section, all experiments were done on a 4 cores personal computer equipped 

with Intel® Core™ 2 Quad CPU Q6600, 2.4GHz CPU, 8 gigabytes RAM and 6 terabytes 

hard disks with RAID, which had been used in the desk-top system [67]. We used a simple 

parallel method to exploiting the parallelism of the four cores as follows. Whenever a core 

is idle, we choose a block Bi which has not been evaluated yet and whose children have 

been evaluated. However, since parallelism is not the goal of our destination, we used the 

total times aggregated from the four cores.  

Since it takes a huge amount of computation time for solving 9 layer Triangular Nim, 

we first investigate 8 layer Triangular Nim in Subsection 2.4.1. Then, based on the 

experiences for 8 layer Triangular Nim, we solve 9 layer Triangular Nim in Subsection 

2.4.2.  

2.4.1 Eight Layer Triangular Nim 

This subsection investigates how to solve 8 layer misère Triangular Nim. We used the 

six block representations in Figure 6 as our testing cases. We used (a), (b), (c), (d), (e) and (f) 

to indicate the six representations respectively.  

Table 1 shows the experimental results, using the method without removing 

redundancy as described in Subsection 2.3.1. Without removing redundancy, the total 

memory space requires 8 gigabytes for all cases. Table 1 clearly shows that the block 



 

 23 

representations with the less numbers of inter-block updates are more efficient, since the 

overhead for inter-block updates becomes smaller. Due to the overhead for inter-block 

updates, the block representations with larger block sizes tend to run faster. On the other 

hand, the block size cannot exceed the physical or virtual memory size of the operating 

systems. Thus, this is a tradeoff for the block size.  

Table 2 shows the experimental results with removing redundancy. This table does not 

include the cases (a), (b) and (d), since the results are the same as Table 1. Both cases (a) 

and (d) are not symmetric and rotatable. Although the case (b) is symmetric, all the 

isomorphic groups contain one block only, and therefore the results are the same as Table 1.  

In Table 2, both cases (e) and (f) perform apparently more efficiently than the case (c), 

since the case (c) does not remove the redundancy caused by rotation. The case (f) performs 

more efficiently than the case (e), since both the number of blocks and the number of 

inter-block updates are smaller.  

From the above experiments, we observe that the most important factor for high 

performance is to remove redundancy, and then to reduce the number of blocks or the 

number of inter-block updates. From the observation, we solve 9 layer Triangular Nim.  

 

 
Inter-block Number  Block Number Block Size  Total Space  Aggregated Time 

a 49 16 512MB 8GB 8,992 sec 

b 32 16 512MB 8GB 8,472 sec 

c 360 64 128MB 8GB 13,453 sec 

d 208 64 128MB 8GB 11,042 sec 

e 288 64 128MB 8GB 12,339 sec 

f 336 64 128MB 8GB 13,128 sec 

Table 1. Experimental results for the block representations without removing redundancy in 

Figure 6. 

 



 

 24 

 

 
Inter-block Number  Block Number Block Size  Total Space  

Aggregated 

Time 

c 228 40 128MB 5GB 8,423 sec 

e 96 20 128MB 2.5GB 4,161 sec 

f 87 16 128MB 2GB 3,705 sec 

Table 2. Experimental results for three block representations with removing redundancy in 

Figure 6. 

 

From the above experiments, we strongly solved all positions of 8 layer Triangular 

Nim with both normal and misère play. The results show that both initial positions for both 

normal and misère play are N-positions. The first player wins both by making the moves 

shown in Figure 10 for the normal play and those in Figure 11 for the misère play.  

 

 

Figure 10. The moves to win in 8 layer normal Triangular Nim. 

 

 

     

Figure 11. The moves to win in 8 layer misère Triangular Nim. 

 

 

http://en.wikipedia.org/wiki/Mis%C3%A8re


 

 25 

2.4.2 Nine Layer Triangular Nim 

In this subsection, we first investigated the block representations with 13 BID pieces, 

three of them shown in Figure 12 (below). Although each block requires a large block size, 

512 megabytes, these BID pieces cannot form symmetry or rotation so that we cannot 

remove redundant blocks as described in Subsection 2.3.2. Among the three in Figure 12, 

the one in Figure 12(c) has the least number of inter-block updates. Unfortunately, since it is 

still not symmetric and rotatable, it took 32.31 days on four cores (129.21 days on one core) 

to finish the whole computation in Table 3. 

 

     

(a)                             (b)                              (c) 

Figure 12. Three block representations with 13 BID pieces. 

 

 

 

 

 

Inter-block 

Number  

Blocks 

Number 
Block Size  Total Space  

Parallel 

Computation 

Time 

Aggregated 

Time 

a 121,600 8,192 512MB 4TB N/A N/A 

b 107,024 8,192 512MB 4TB N/A N/A 

c 88,064 8,192 512MB 4TB 32.31 days 129.21 days 

Table 3. Experimental results for the block representations in Figure 12. 

 



 

 26 

      
(a)                             (b)                             (c) 

Figure 13. Three block representations with 15 BID pieces. 

 

 

 
Inter-block 

Number  
Blocks 

Number 
Block Size  Total Space  

Parallel 
Computation 

Time 

Aggregated 
Time 

a 298,320 16,640 128MB 2,080GB N/A N/A 

b 102,950 5,728  128MB 716GB 8.32 days 33.23 days 

c 78,852 5,728 128MB 716GB 6.99 days 27.93 days 

Table 4. Experimental results for the block representations in Figure 13. 

 

This subsection also investigates the block representations with 15 BID pieces, three of 

them shown in Figure 13. Apparently, the one in Figure 13(a) is symmetric, while the other 

two are symmetric and rotatable. Due to symmetry and rotation, the number of blocks can 

be reduced by a factor of near 2 for the first and near 6 for the other two. The results showed 

that the computation times for the second and third are reduced to 8.32 days and 6.99 days 

as shown in Table 4, respectively. The third is slightly better than the second, since the 

number of inter-block updates is smaller as shown in Table 4. In brief, from the one in 

Figure 12(c) to that in Figure 13(c), we reduce the memory by a factor of 5.72 and the 

computation time by a factor of 4.62.  

From the above experiments, we strongly solved all positions of 9 layer Triangular 

Nim in both normal and misère play. The results also show that both initial positions in both 

normal and misère play are N-positions. The first player wins both by making the moves 



 

 27 

shown in Figure 14 for the normal play and those in Figure 15 for the misère play.  

 

 

Figure 14. The moves to win in 9 layer normal Triangular Nim. 

 

 

     

Figure 15. The moves to win in 9 layer misère Triangular Nim. 

 

Table 5 lists all the values of the initial positions of k layer Triangular Nim in both 

normal and misère, where k is 1 to 9. This table shows that the first player tends to win or 

that the initial positions tend to be N-positions. This is because the ratio of the number of 

P-positions to that of N-positions tends to be low, that is, most positions are N-positions.  

We also analyzed the ratio in both normal and misère in Figure 16 for all k layer 

Triangular Nim, where k is 1 to 9. From the Figure 16, the ratios get smaller for large k. For 

9 layer Triangular Nim, the ratio is 5.0% only. This explains why most of initial positions 

are N-positions. In addition, since most positions are N-positions, this shows that the 

retrograde method is clearly superior. 

 

 

 

http://en.wikipedia.org/wiki/Mis%C3%A8re
http://en.wikipedia.org/wiki/Mis%C3%A8re
http://en.wikipedia.org/wiki/Mis%C3%A8re


 

 28 

k k Layer Normal Triangular Nim k Layer Misère Triangular Nim 

1 Win Loss 

2 Loss Win 

3 Win Loss 

4 Win Win 

5 Win Loss 

6 Win Win 

7 Win Win 

8 Win Win 

9 Win Win 

Table 5. The result of k layer Triangular Nim. 

 

 

Figure 16. The ratio of the number of P-positions to that of N-positions. 

 

2.5 Conclusion 

We summary our contributions in this chapter as following lists.  

 Using the retrograde methods, this thesis strongly solves 9 layer Triangular Nim.  

http://en.wikipedia.org/wiki/Mis%C3%A8re


 

 29 

 This thesis also proposes some methods to improve the performance, such as designing 

data structures in blocks, using the retrograde method, removing redundancy and 

selecting the block representation with the less number of inter-block updates. 

Especially, by removing redundancy, we reduce the memory by a factor of 5.72 and the 

computation time by a factor of 4.62 using personal computer equipped with Intel®  

Core™ 2 Quad CPU Q6600, 2.4GHz CPU, 8 gigabytes RAM.  

 Our experiment result also shows that the ratio of the number of P-positions to that of 

N-positions is low, 5.0% for 9 layer Triangular Nim. Due to the low ratio, the 

retrograde method does perform well when compared with the traditional forward 

checking.  

We also got all game values of 6 layer Triangular Nim positions in normal play. During 

the game play, if the board is divided to several subgames which are all under 6 layer 

Triangular Nim positions, we can calculate the sum of game values of subgames to quickly 

judge who to win by Sprague–Grundy Theorem. 

 



 

 30 

Chapter 3 XT Domineering: A New Combinatorial 

Game 

This chapter introduces a new combinatorial game of XT Domineering. We use 

combinatorial game theory (CGT) to calculate the game values of all sub-graphs of 3×3 

squares and show that each sub-graph of 3×3 squares is a linear combination of 8 

elementary infinitesimals.  

 

3.1 Introduction 

Domineering, designed by Göran Andersson [27], is one of combinatorial games that 

were based on the model. In an m×n Domineering, two players alternatively place 1×2 and 

2×1 domino at a position, if there exists such a vacancy in a board with m×n squares. One 

player is allowed to place 1×2 domino only, while the other is 2×1 domino only. The one 

who cannot place domino loses.  

In the past, many Domineering problems were solved. The general Domineering 

problem of 2×n board for all odd n was solved by Berlekamp [5]. The researchers in [9] used 

the technique of transposition tables to solve the 8×8 board. Subsequently, the researchers in 

[44] found out the results for boards of width 2, 3, 5, and 7 and some specific cases. Recently, 

Bullock solved the 10×10 board Domineering [12]. Furthermore, Cincotti developed three 

players Domineering on a three dimensional board [16][17]. 



 

 31 

This chapter introduces a new game named XT Domineering (named from eXTended 

Domineering). XT Domineering, modified from the Domineering game, allows players to 

place a 1×1 domino on an empty square s while unable to place a 1×2 or 2×1 domino in the 

connected group of empty squares that includes s. A connected group of empty squares is 

called an active group. After modifying the rule, players are allowed to place 1×1 domino 

on any square of an active group on which players are not allowed to place any dominos in 

the original Domineering game. For example, in XT Domineering, all 1×1 isolated 

vacancies in the board are allowed to be placed by more dominos. Thus, the move lengths in 

the new game are normally longer than those in Domineering. Thus, the game has higher 

game-tree complexity, based on the definition in [35].  

This chapter also introduces the mathematical analysis of XT Domineering. In XT 

Domineering, each game position is actually an infinitesimal (as described in Section 3.4). 

In this chapter, we study several interesting infinitesimals in XT Domineering. This chapter 

calculates the game values of all sub-graphs of 3×3 squares and presents a rule to determine 

the outcome of any sum of these positions.  

Section 3.2 reviews the combinational games including three subgroups of games. 

Section 3.3 reviews the game Domineering and introduces the new game, XT Domineering. 

Section 3.4 derives the game values of 3×3 XT Domineering, while Section 3.5 derives the 

outcomes of sums of 3×3 XT Domineering. Section 3.6 concludes this chapter.  

3.2 Combinatorial Games 

CGT [7] starts from a simple definition of game: A game is an ordered pair of sets of 

games. Since we are dealing with equivalence classes, for simplicity, we shall use the 

symbol = to replace  in the following context. 



 

 32 

There are several subgroups of combinatorial games whose addition and outcome 

properties are well-studied. Some of them are reviewed in the following subsections. 

3.2.1 Numbers  

A game G is called a number [7][20] if all the elements in G
L
 and G

R
 are numbers and 

there is no element in G
L
 greater than or equal to any element in G

R
. Some numbers are 

illustrated as follows:  

  1 = {0 | }, … 

n = {n – 1 | },…         (13)  

  1/2 = {0 | 1}, … 

m/2
k
 = { (m – 1)/2

k
 | (m + 1)/2

k
 }.        (14)  

These numbers (integers and rationals) can be added as the usual ways. Numbers are 

well ordered, and their relations with 0 are clear. Hence, one can easily determine the 

outcome for any sum of numbers. 

3.2.2 Nimbers 

A game G is a nimber [8][31] if all the elements in G
L
 and G

R
 are nimbers and G

L
 = G

R
. 

Nimbers are defined as: 

*1 = { 0 | 0}, 

*2 = {0, *1 | 0, *1}, 

… 



 

 33 

*n = {0, *1, *2, …, *(n – 1) | 0, *1, *2, …, *(n – 1)}.      (15) 

For simplicity, *1 is also denoted as * and named star. The special nimber with infinite 

options: 

☆ = {0, *1, *2, … | 0, *1, *2, …}.        (16) 

is named remote star. 

For each non-zero nimber, the first player can win a game. That is, each non-zero 

nimber is confused with 0. Hence one can easily determine the outcome of any sum of 

numbers [31][60]. From this, two well-known properties are (1) *n + *n = 0, and (2) {*n | 

*n} = 0. 

3.2.3 Sumbers 

For each number d, there is a corresponding up defined as [7][20][36]. 

↑(d) = {↑(d
L
) , * | ↑(d

R
) ,*}.        (17)  

The negation of up is called down. 

↓(d) = ↑(d).         (18)  

A property between all ups and stars [7][20] is: for all numbers d > 0 and n > 1, we 

have  

↑(d)n and↑(d)☆         (19)  

and, for all numbers d, we have 



 

 34 

↑(d)*(or ↑(d)*)        (20)  

We use the notation m.↑(d) to denote the sum of m copies of ↑(d). A sumber S (cf. [39]) 

is a sum of ups, downs and stars(*).  

S = ∑k=1,n  ak↑(dk) + a0*.        (21) 

where ak are integers and dk are numbers, 0 < k  n. Without loss of generality, in (21), 

we assume 0 < d1 < d2 < …< dn and a0=0 or 1. Clearly, sumbers are closed under addition. 

We use the notation G << H to denote that the sum of any number of copies of G is less 

than H. The sumbers have the following properties:  

0 < ↑(d1) < ↑(d2),         (22) 

0 << ↑(dn+1) – ↑(dn) << ↑(dn) – ↑(dn-1),        (23) 

↑(dn+1) + ↑(dn+1) – ↑(dn) > *,        (24) 

where 0 < d1 < d2 < …< dn < dn+1 < …. These properties are sufficient to determine the 

outcome of any sum of sumbers. The research in [39] provides a simple rule to determine 

the outcome of (21): 

S > 0 if and only if ∑k=1,n ak > a0 or (∑k=1,n ak = a0, and a1 < 0),  

where a0 is either 1 or 0. Note that the net number of ups is greater than the net number 

of *, or the net number of ups equals the net number of * and the smallest up has a negative 

coefficient. 

For example, consider SA = –↑(3) + 3.↑(1) + *. In SA, the net number of ups (=2) is 

greater than the net number of * (=1), thus SA >0. Consider SB = –↑(3) + 3.↑(2) – ↑(1) + *. In 

SB, the net number of ups (=1) equals the net number of * (=1), and the smallest up (=↑(1)) 



 

 35 

has a negative coefficient (= –1), thus SB >0. Consider SC = ↑(3) – 2.↑(2) + 2.↑(1) + *. In SC, 

the net number of ups (=1) equals the net number of * (=1), but the smallest up (=↑(1)) has 

a positive coefficient (=2), thus SC ≯ 0. Let “≯” denote “not greater than”. 

3.2.4 Infinitesimal and Atomic Weight 

A game G is called an infinitesimal if and only if G is less than any positive numbers 

and greater than any negative numbers. Nimbers and sumbers are all infinitesimals. 

Researchers in [7][20] introduced the definition of atomic weight. If G = {Ga, Gb, Gc, …| Gd, 

Ge, Gf,…} where Ga, Gb, Gc, Gd, Ge, Gf, … have atomic weight a, b, c, d, e, f, …, then the 

atomic weight of G is 

G0 = {a – 2, b – 2, c – 2,… | d + 2, e + 2, f + 2,…} 

unless G0 is an integer and either G > ☆ or G < ☆. In these exceptional cases, if G > 

☆ then the atomic weight of G is the largest integer <| d + 2, e + 2, f + 2, …, and if G < ☆ 

then the atomic weight of G is the least integer |> a – 2, b – 2, c – 2, ….  

According to the above definition, each nimber has atomic weight 0; each up has 

atomic weight 1.  

Two important properties [7][20] about atomic weights are described as follows.  

1. The atomic weight of a sum of games equals to the sum of the atomic weights of the 

games.  

2. If the atomic weight of a game is greater than or equals to 2, then Left wins the game. 

On the other hand, if it is less than or equals to –2, then Right wins the game. However, 

there are no general rules when the atomic weight is between –2 and 2.  

 



 

 36 

For example, ↑ + ↑(2) has atomic weight 2, hence Left can win the game; ↓ + ↑(2) + 

↓(3) + ↓(4) – ☆ + * – *(3) has atomic weight –2, hence Right can win the game. Thus, for 

some games, we can determine the winners by computing the atomic weight of sub-games, 

instead of searching complex trees. 

3.3 Domineering and XT Domineering 

Domineering (also called Stop-Gate or Crosscram) [27] is a mathematical game played 

on a board with n×n squares. Two players have a collection of 1×2 and 2×1 dominos which 

they place on the grid in turn, covering up squares. One player, Left, plays first and places 

domino vertically (1×2), while the other, Right, places horizontally (2×1). The first player 

who cannot place a domino loses the game. 

 

 

 

 

 

 

 

Figure 17. Middle game of 6×6 Domineering. 

 

As the game progresses, the original n×n squares may be partitioned into a set of 

disjoint sub-positions. Figure 17 shows a graph in the middle of a 6×6 Domineering. It 

contains 5 disjoint sub-positions shown in Figure 18. 

 

 



 

 37 

. 

 

 

Figure 18. Sub-positions of the graph in Figure 17 

 

In terms of CGT, the game G in Figure 17 is a sum of sub-positions A, B, C, D, and E, 

i.e., G = A + B + C + D + E. Note that by rotating position D 90° counter clockwise, one can 

get position E. In general, rotating a Domineering position 90° (either clockwise or counter 

clockwise) will result a negation of the original position, and reflecting a Domineering 

position with respect to a vertical axis or horizontal axis will not change the game value of 

the position. Hence, E = －D, and G = A + B + C. 

Domineering attracted many combinatorial game researchers because the game contains 

many numbers, switches of numbers, and complicated hot positions.  

Figure 19 (below) shows the game values of the positions in Figure 18. Note that the 

derivations are based on [5] and the details of derivations are therefore omitted in this thesis. 

By summing up the values, we have G = 3/4 + { 1 | －1}－1 =－1/4 + { 1 | －1} = {3/4 | 

－5/4}, thus the first player can win the game. This illustrates the power of using 

combinatorial theory, since we can derive the result without tree search as many board 

games do. A simpler example is illustrated in Appendix A.  

 

 

 

 

 

Figure 19. Some game values in Domineering. 

A B C D E 

3/4 { 1 | －1} －1 －1/2 1/2 



 

 38 

 

XT Domineering is modified from the Domineering game by changing the rule to 

allow a player placing a small (1×1) domino on a sub-position while unable to place his big 

domino (1×2 or 2×1) in the sub-position in the original Domineering game. For example, 

consider sub-position C in Figure 18. In Domineering, Left cannot place a domino vertically 

(1×2) at sub-position C, while in XT Domineering, Left is allowed to place a 1×1 domino at 

sub-position C. More specifically, sub-position C has the value { | 0} = －1 in 

Domineering, and {{0 | 0} || 0} = {* | 0} = ↓ in XT Domineering. Note that Left is not 

allowed to place a 1×1 domino at a position while he is able to place a 1×2 domino at that 

position and Right is not allowed to place a 1×1 domino at a position while he is able to 

place a 2×1 domino at that position. For example, both players are not allowed to place 1×1 

domino at positions A, B, D and E in Figure 18.  

Since XT Domineering has at least the same number of options as Domineering and 

allows more moves (e.g., on 1×1 vacancies), XT Domineering has higher game-tree 

complexity [35].  

Note that each player has at least one option at any non-empty position in XT 

Domineering. This nature prevents the occurrence of non-zero numbers and ensures that 

each position in XT Domineering is an infinitesimal. One of the major motivations of this 

thesis is to see what kind of infinitesimals may be shown up in this game. 

3.4 Game Values of 3×3 XT Domineering 

For XT Domineering with 1×n squares, the games have periodic values with period 

length 8, {0, *, ↓, ↑, *, 0, ↑*, ↓*} [38]. This is in fact a partisan octal game [51]. In this 

section, we investigate a total of 2
9
 sub-graphs of 3×3 squares in XT Domineering.  



 

 39 

After excluding non-connected sub-graphs, rotated negation sub-graphs, or reflected 

equivalence sub-graphs, there are 34 distinct positions. The game values of these distinct 

positions are derived based on the above inequalities (6) to (24), and shown in Table 6. 

Each position in Table 6 is a linear combination of the following 8 elementary games: 

         

↑ = {0 | *},         

↑
+
 = {↑ | *},         

↑/2 = {↑↑* | ↓*         

★ = {0, ↑* | ↓*, 0}        

*/2 = {↑↑ | ↓↓*},         

(*/2)
 + 

= {↑↑, ↑↑* | ↓↓*}        

◇ = {↑↑↑* | ↓↓↓* }        

For simplicity, let ↑↑ indicate ↑ + ↑, and similarly for ↑↑*, ↑↑↑*, etc.   

The games *, ↑ and ↑
+ 

(=↑(2))  have been introduced in Section 3.3. * has atomic 

weight 0 (as described in Subsection 3.2.4), while ↑ and ↑
+
 have atomic weight 1 each. We 

use the symbol ↑
2
 to denote ↑

+ － ↑.  

 ↑
2 
= ↑

 －↑ .         

From inequality (23), we have 

↑ >> ↑
2 

 > 0.         

The game ↑/2 (half up), as the name suggested, has atomic weight 1/2 and the 

following properties: 



 

 40 

↑/2 + ↑/2 = ↑.         

↑/2 > ↑
2
.         

The game ★ (black star) has atomic weight 0 and with property similar to nimbers: 

★ + ★ = 0,          

★ || *(n), for integer n > 0        

The game */2 (half star), as the name suggested, has the following property: 

*/2 + */2 = *.         

The game */2 has atomic weight {0 | 0} = *, since the atomic weight of ↑↑ is + 2 and 

that of ↓↓* is –2.  

The game (*/2)
+
 (half star plus), as the name suggested, is just slightly greater than */2 

and has atomic weight {0, 0 | 0} = *. The difference between  (*/2)
+ 

and */2 is named △*: 

△* = (*/2)
+ － */2 > 0.        

Since the atomic weight of both (*/2)
+ 

and  */2 are *, the atomic weight of △*  

equals * – * = 0. 

The game ◇ (diamond) has atomic weight {1 | –1}. Since the incentive of ◇ 

(diamond) is greater than the ones of all the other 7 elementary games, ◇ should always 

be played first among the 8 elementary games. Diamond also has the property below: 

◇ + ◇ = 0         

 

 



 

 41 

No. Position Value No. Position Value 

P1-1  * P6-1 
 */2 

P2-1  ↑ P6-2 
 */2 

P3-1 
 0 P6-3 

 ↑↑* 

P3-2 
 ↓ P6-4 

 ↑
+
 

P4-1 
 * P6-5 

 ↑/2 

P4-2 
 * P6-6 

 ★ + * 

P4-3 
 ↑↑* P6-7 

 0 

P4-4 
 * P6-8 

 0 

P5-1 
 ★ P7-1 

 * 

P5-2 
 * P7-2 

 ↑* 

P5-3 
 ↑↑ P7-3 

 ↑ 

P5-4 
 ★ P7-4 

 ↑* 

P5-5 
 ↑↑ P7-5 

 * 

P5-6 
 ↑ P7-6 

 0 

P5-7 
 0 P7-7 

 * + (*/2)
+
 

P8-1 
 * P8-3 

 0 

P8-2 
 ◇ P9-1 

 0 

Table 6. Game values of 3×3 XT Domineering 

 



 

 42 

The calculation for the values of positions in Table 6 is a tedious process. In general, 

one first derives a position expression according to the rule and then simplifies the 

expression by removing the dominated options and replacing with the reversible options (c.f. 

[7] and [20]). For example, considering P4-3, according the rule P4-3 = {0, ↓ | ↑}. After 

eliminating the dominated option ↓ (↓<0), one can get P4-3 = {0 | ↑}. Considering P5-7, 

according the rule P5-7 = {* | *}. After replacing P5-7 with reversible option (P5-7
LR

= 0), one 

can get P5-7 = 0. After simplifying a position, one needs to check whether the position can 

be represented as a sum of simpler game. For example, P4-3 = {0 | ↑} = ↑↑*. The research in 

[39] provided an algorithm to simplify switches of up sums into up sums whenever possible. 

The game values in Table 6 have also been verified in CgSuite [59], a useful tool for 

deriving game values.  

Figure 20 (below) shows the corresponding XT Domineering games values of positions 

in Figure 18. The derivations for C, E, and E+* are illustrated in Appendix A.  

 

 

 

 

Figure 20. Some game values in XT Domineering. 

 

The sum in Figure 20 is ↑/2 + * + ↓ + ↓↓* + ↑↑* = ↓/2 + * = {↑ | ↓↓}. Hence the first 

player can win the game.  

 

 

 

↑/2 * ↓ ↓↓* ↑↑* 



 

 43 

 

 

 

 

Figure 21. Some game values in XT Domineering. 

 

Assume that sub-position C is changed as shown in Figure 21. Then, the sum in Figure 

21 becomes ↑/2 + * + ↑↑ + ↓↓* + ↑↑* = ↑↑ + ↑/2 + *. Since the atomic weight of the above 

sum is 2 + 1/2, over 2, Left wins the game. From above examples, Table 6 becomes an 

important knowledge base for playing the game of XT Domineering. 

3.5 Outcome of 3×3 XT Domineering 

In the previous section, we derive the values of positions in Table 6. Then, we can 

easily determine the outcome of sums, if the atomic weights are at least 2 or at most –2. 

However, there are no simple rules when the atomic weights are between –2 and 2. 

This section discusses the approach to determine the outcome of sums of 3×3 XT 

Domineering, even when the atomic weights are between –2 and 2. Since the game ◇ will 

always be played before any other games in Table 6, we may only focus on the analysis of 

sums of the other 7 elementary games. Without loss of generality, a sum S of any positions 

in Table 6 can be written as: 

S = SA + SB + SC,         

where SA is a linear combination of ↑
+
, ↑ and ↑/2, 

  SB is a linear combination of * and ★, and 

↑/2 * ↓↓* ↑↑ ↑↑* 



 

 44 

  SC is a linear combination of */2 and △*. 

 

SA measures the up-ness (or advantage for Left) of S; SB is a sum that neither player has 

advantage; SC consists of games with atomic weight *. There are only 4 possible cases of SB, 

as shown in the column subhead of Table 7, and 9 possible cases of SC, as shown in the row 

subhead of Table 7. Note that the atomic weight of SC is 0 in row 1, 2, 3 and 4, and * in row 

5, 6, 7, 8 and 9. 

 

SC \ SB 

(n > 0) 

1 2 3 4 

0 ★ * ★ + * 

1 (n+1).△* 0 ↑
2
 0 ↑

2
 

2 △* 0 ↑
2
 ↑+2.↑

2
 ↑+↑

2
 

3 0 
↑

2
, 

↑/2–↑
2
 

↑
2
 ↑+2.↑

2
 ↑+↑

2
 

4 –n.△* ↑+2.↑
2
 ↑+↑

2 
↑+2.↑

2
 ↑+↑

2 

5 */2+ (n+2).△* ↑/2 ↑/2+↑
2
 ↑/2 ↑/2+↑

2
 

6 */2+2.△* ↑/2 ↑/2+↑
2
 

↑–↑
2
, 

↑/2+2.↑
2
 

↑/2+↑
2
 

7 */2+△* ↑/2 ↑/2+↑
2
 ↑/2+↑+2.↑

2
 ↑/2+↑+↑

2
 

8 */2 
↑–↑

2
, 

↑/2+2.↑
2
 

↑/2+↑
2
 ↑/2+↑+2.↑

2
 ↑/2+↑+↑

2
 

9 */2–n.△* ↑/2+↑+2.↑
2
 ↑/2+↑+↑

2
 ↑/2+↑+2.↑

2
 ↑/2+↑+↑

2
 

Table 7. Minimum ups U required for U + SB + SC > 0 

 

Table 7 is a set of 39 inequalities (note that there are two values in each of grid(3,1), 

grid(8,1) and grid(6, 3)), 1 ≦ i ≦ 9, 1 ≦ j ≦ 4,  



 

 45 

 grid(i, j) + row(i) + col(j) > 0.        

The proof for these inequalities is given in Appendix B. Let us illustrate by some 

example. The ups in grid(9, 2) is ↑/2 + ↑ + ↑
2
, it corresponds to the inequality: 

↑/2 + ↑ + ↑
2 

+ */2 – n.△* + ★ > 0, for n > 0. 

Grid(3, 1) represents 2 inequalities: ↑
2 

> 0 and ↑/2 – ↑
2 

> 0; grid(8, 1) represents 2 

inequalities: ↑ – ↑
2
 + */2 > 0 and  ↑/2 + 2.↑

2
 + */2 > 0. These inequalities are sufficient to 

determine the outcome of any sum of the 8 elementary games. The general steps to 

determine the outcome of a sum S of 3×3 XT Domineering is described as follows: 

1. Check the game value of each of S’s position from Table 6. 

2. If there is any ◇ in the sum, play it out first. 

3. Denote the sum SA + SB + SC, (42) by S, and determine the value of SA, SB and SC. 

4. Use SB and SC to lookup Table 7 for the minimum ups U required. 

5. Determine whether SA ≧ U or not. Inequalities (34), (35) and (36) can help the 

determining process.  

6. S > 0 if and only if SA ≧ U. 

7. To determine whether S < 0 or not, it is equivalent to determining whether –S > 0 

or not. Apply the above steps to –S. 

 

For example, consider the sum S of the sub-positions as shown in Figure 22 (below) 

and who wins the game.  

 

 



 

 46 

   

 

  

★ + * */2 ↑↑* ↑↑* ↓↓ * + (*/2) + 

Figure 22. Some game values in XT Domineering. 

 

The sum S can be simplified as: 

S  =  ★ + * + */2 + ↑↑* + ↑↑* + ↓↓ + * + (*/2)
 + 

=  ★ + * + */2 + ↑↑           + * + (*/2)
+ 

=  ★    – */2 + ↑↑           + * + (*/2)
+ 

=  ★         + ↑↑*          + △*
 

and, 

 

     SA = ↑↑, 

     SB = ★ + *, 

     SC = △*. 

Using SB and SC to lookup Table 7, we get U = ↑ + ↑
2
. Since SA = ↑↑ > ↑ + ↑

2 
= U, we 

conclude S > 0. Hence the game is a win for Left, no matter who moves first. 

3.6 Conclusion And Further Consideration 

This chapter has the following three major contributions. First, we present a new game, 

XT Domineering, which has higher game-tree complexity [35] than Domineering. 



 

 47 

Second, we also have presented a mathematical approach to solve sums of 3×3 XT 

Domineering. Again, this success demonstrates the potential of applying CGT to solving 

more of other intelligent games.  

After solving 3×3 XT Domineering, it is natural to think of 3×4, 4×4, or even larger 

size XT Domineering. According to our preliminary study, there seems to be no simple 

close form equation that can relate a given position to its game value. Thus a lookup table is 

required to store the values of all the positions. CgSuite [59] is a useful tool to derive the 

values. After deriving the canonical form of the game values, one still needs to check 

whether a game can be decomposed as a sum of simpler elementary games. Unfortunately, 

there are too many sub-positions in 3×4, 4×4, or even larger size XT Domineering, we 

cannot afford to examine all the positions and check whether they can be decomposed as 

simpler elementary games. An automated game decomposition procedure is in need and 

deserves further research in the future. 

Third, we find several infinitesimal games with interesting properties, including ★, 

*/2, (*/2)
+
 and ↑/2. It is worth further research to find more other interesting infinitesimal 

games. The game of XT Domineering is a rich source of infinitesimal games. 



 

 48 

Chapter 4 NoGo Endgame Analysis 

This chapter investigates a combinatorial game named NoGo. We use combinatorial 

game theory (CGT) to calculate the mean and temperature values of NoGo positions. In the 

rest of this chapter, Section 4.1 introduces the game, Section 4.2 classifies the moves, 

Section 4.3 defines means and temperatures of games, Section 4.4 analyzes means and 

temperatures of NoGo positions, Section 4.5 proposes some more propositions for NoGo, 

and Section 4.6 makes conclusion.  

4.1. Introduction 

NoGo is a young game which was first called Anti-Atari Go in 2005, by John Moore 

[55]. Later, the game was also introduced by the organizers of the BIRS workshop, 

Combinatorial Game Theory 2011, for being a completely new combinatorial game [15] 

and named NoGo. NoGo is a 2-player and perfect-information board game whose rules are 

almost the same as Go, but stones cannot be removed after placed. Namely, the rules 

different from Go are summarized as follows. First, the moves to capture stones like stone 

capturing in Go are prohibited. Note that suicide moves prohibited in Go are also prohibited 

in NoGo. Second, the move pass is not allowed in NoGo, and then the player who has no 

moves to play loses the game.  

The first NoGo competition was also held in the BIRS workshop on Combinatorial 

Game Theory 2011. Since that time, several NoGo computer game competitions have been 

held, such as the 2011 and 2013 Computer Olympiads in Netherlands and Japan, 

respectively, and 2012 TAAI, 2012 TCGA, and 2013 TCGA in Taiwan. 

http://senseis.xmp.net/?impu1se


 

 49 

NoGo is a PSPACE problem as shown in [13], but it is not ensured to be PSPACE 

completeness. In this chapter, we use CGT to analyze the game positions to understand the 

characteristics of NoGo.  

4.2. Classification of Moves 

All empty grids in the board of NoGo are classified in the following categories.  

1. The grid which both players can place a stone on is called Both-Go or 2-Go. 

2. The grid which only one player can place a stone on is called One-Go or 1-Go. If only 

Black can place a stone on, the grid is called Black-Go or B-Go, and otherwise called 

White-Go or W-Go. A property is that a player can no longer place a stone on a grid 

once the player cannot place a stone on it. That is, when a grid becomes 1-Go, it will 

not become a 2-Go again.  

3. The grid which neither player can place a stone on is called No-Go or 0-Go. Similarly, 

a property is: when a grid becomes a 0-Go, it will not become a 1-Go or 2-Go again.  

 

 

 

 

 

 

 

 

  

 

 

Figure 23: The classification of moves in NoGo. 

 

Figure 23 illustrates the classification. B1, marked with the black circle is a B-Go 



 

 50 

which only Black can place a stone on it. If White places a stone on the grid, it will capture 

the Black’s stones. Similarly, J9, marked with the white circle is a W-Go which only White 

can place a stone on it. If Black places a stone on the grid, the stone commits suicide due to 

the surrounding of White. E5, marked with an X symbol is a No-Go which neither Black 

nor White can place any stone on, since Black cannot place on it due to the prohibition of 

suicide and White cannot due to the prohibition of capturing Black’s stone.  

4.3. Mean and Temperature 

For each combinatorial game, there are two important values, mean and temperature. 

Roughly speaking, mean is a measure of the average outcome and temperature is a measure 

of the move size of a game. The existence of mean values of games was first raised and 

proved by Milnor (1953) [52] and Hanner (1959) [32].  

A constructive algorithm, named thermograph, for mean and temperature was due to 

Berlekamp et al. (1982) [7] and Conway (1976) [20]. An approach to calculating mean and 

temperature with partial information of a single branch game was proposed by Kao (1998) 

[37]. Müller et al. (2004) [54] proposed to use a coupon stack CS with descreasing 

temperatures to simulate the environment and calculating the temperature of a game G by 

tracing the move sequence of the sum G + CS. Lew and Coulom (2010) [46] proposed to 

estimate the mean and temperature of a game from its left and right stops and calculating 

these stops by temporal difference learning.  

In the rest of this section, Subsection 4.3.1 introduces definitions of mean and 

temperature. Then, a method of calculation of mean and temperature presents in Subsection 

4.3.2. 



 

 51 

4.3.1 Definitions of Mean and Temperature 

 

In this subsection, we review the definitions of the mean and temperature of a game 𝐺, 

denoted as 𝑚(𝐺) and 𝑡(𝐺), respectively [7][20][42]. 

 

Let 𝐺 be a game and t be a number, define 

  

𝐿(𝐺, 𝑡) = 𝑚𝑎𝑥{𝑥∈𝐺𝐿} {
𝑚(𝐺)

𝑅(𝑥, 𝑡) − 𝑡
  (44) 

 

𝑅(𝐺, 𝑡) = 𝑚𝑖𝑛{𝑦∈𝐺𝑅} {
𝑚(𝐺)

𝐿(𝑦, 𝑡) + 𝑡
   (45) 

 

𝐿(𝐺, 𝑡) is called the left wall and 𝑅(𝐺, 𝑡) the right wall of 𝐺. 𝐿(𝐺, 𝑡) (𝑅(𝐺, 𝑡)) is 

the min-max optimal outcome of the game 𝐺 when 𝐿 (𝑅) moves first and subject to the 

constraint that L has the right either to accept the mean of 𝐺 as the outcome or to make a 

move at 𝐺 and pay a tax 𝑡. When 𝐺 is a number (terminal position), both players will 

accept the number (equals its mean) as the outcome value and make no more move. Note 

that, for non-number games, 

 

1. When the tax 𝑡 is low, the players may prefer to make a move and pay the tax 𝑡 than 

accept the mean as the outcome. 

2. When the tax 𝑡 is too high, the players may prefer to accept the mean as the outcome 

than make a move and pay the tax 𝑡. 

3. 𝐿(𝐺, 𝑡) is monotonically decreasing with respect to 𝑡. The higher the tax 𝑡, the lower 

the optimal outcome value when 𝐿 moves fist. 

4. 𝑅(𝐺, 𝑡) is monotonically increasing with respect to 𝑡. The higher the tax 𝑡, the higher 

the optimal outcome value when 𝑅 moves fist. 



 

 52 

5. When the tax 𝑡 is low, we have 𝐿(𝐺, 𝑡) > 𝑚(𝐺) > 𝑅(𝐺, 𝑡). When the tax 𝑡 reaches 

or exceeds some critical value, we have 𝐿(𝐺, 𝑡) = 𝑚(𝐺) = 𝑅(𝐺, 𝑡). 

 

Thus, finding the mean and temperature of a game 𝐺 is indeed a task of solving 

the min-max equation below. 

 

𝑚𝑎𝑥{𝑥∈𝐺𝐿} 𝑅(𝑥, 𝑡) − 𝑡 = 𝑚𝑖𝑛{𝑦∈𝐺𝑅} 𝐿(𝑦, 𝑡) + 𝑡 

 

(46) 

 

There might be more than one solution of 𝑡 for the above equation. The minimum 

solution of 𝑡 is 𝑡(𝐺). When 𝑡 = 𝑡(𝐺), the solution of the min-max equation equals 𝑚(𝐺). 

Mean and temperature of a game have the following properties. Let 𝐺 and 𝐻 be two 

games. We have 

 

𝑚(𝐺 + 𝐻) = 𝑚(𝐺) + 𝑚(𝐻)  (47) 

 

𝑡(𝐺 + 𝐻) ≦ 𝑚𝑎𝑥{𝑡(𝐺), 𝑡(𝐻)}  (48) 
 

Hence knowing the mean and temperature of games in a sum can help the estimation 

of the mean and temperature of the sum. Another important feature of mean and 

temperature is that they can be used to estimate the range of the optimal outcome of a game. 

The inequality below shows the bounds of the optimal outcomes 𝐿(𝐺, 𝑡) and 𝑅(𝐺, 𝑡). 

 

𝑚(𝐺) − 𝑡(𝐺) ≦ 𝑅(𝐺, 𝑡) ≦ 𝑚(𝐺) ≦ 𝐿(𝐺, 𝑡) ≦ 𝑚(𝐺) + 𝑡(𝐺)  (49) 
 

4.3.2 Thermograph 

This subsection reviews the thermograph approach to calculating the mean and 

temperature of a game. 

A function 𝑓(𝑡) is called simple max if it can be written as:  



 

 53 

 𝑓(𝑡) = 𝑚𝑎𝑥{𝑐1, 𝑚𝑖𝑛{𝑐2 − 𝑡, … 𝑚𝑎𝑥{𝑐2𝑘−1, 𝑚𝑖𝑛{𝑐2𝑘 − 𝑡, … }}}}    (50) 

 where 𝑐2𝑘 > 𝑐2𝑘+2, 𝑐2𝑖 > 𝑐2𝑘+1 > 𝑐2𝑘−1. 

 

Similarly, 𝑔(𝑡) is called simple min if it can be written as: 

 𝑔(𝑡) = 𝑚𝑖𝑛{𝑐1, 𝑚𝑎𝑥{𝑐2 + 𝑡, …  𝑚𝑖𝑛{𝑐2𝑘−1, 𝑚𝑎𝑥{𝑐2𝑘 + 𝑡, … }}}}   (51) 

where 𝑐2𝑘−1 > 𝑐2𝑘+1 > 𝑐2𝑖 , 𝑐2𝑘+2 > 𝑐2𝑘. 

 

Each simple max(min) function can be represented as a sequence [𝑐1, … 𝑐𝑛] of 

constants. The graph of a simple max(min) function is a folded line. Figure 24(a) and (b) 

show the graph of simple max and min functions. 

 

 

 

 

 

 

(a)                                 (b) 

Figure 24: Thermographs of (a) a simple max function and (b) a simple min function. 

 

It should be clear that the max(min) of two simple max(min) functions is again a 

simple max(min) function. If 𝑓(𝑡) is a simple max function and c is a number, then 

𝑚𝑖𝑛{𝑐, 𝑓(𝑡) + 𝑡} is a simple min function. If 𝑔(𝑡) is a simple min function and c is a 

number, then 𝑚𝑎𝑥{𝑐, 𝑔(𝑡) − 𝑡} is a simple max function. Thus, the left wall of a game is a 

simple max function and the right wall is a simple min function. Figure 25 illustrates the 

thermograph of 𝐺 = {3|{0| − 2}}. 

 

 

 

t 

c2 c4 c6 c5 c1 c3 g(t) 

t 

f(t) c2  c6 c5 c3 c1 c4 



 

 54 

 

 

 

 

 

Figure 25: The thermograph of 𝐺 = {3|{0| − 2}}. 

 

The general procedure to calculate the left wall (LW) and the right wall (RW) of a game 

𝐺 is as follows. 

1. Calculate the walls of all 𝐺’s children. 

2. Find the max of the RWs of 𝐺’s left children. Store the result as 𝑅(𝑡). 

3. Find the min of the LWs of 𝐺’s right children. Store the result as 𝐿(𝑡). 

4. Calculate 𝑚(𝐺). That is to solve the equation 𝑅(𝑡) − 𝑡 = 𝐿(𝑡) + 𝑡. 

5. 𝐿𝑊 = max{𝑚(𝐺), 𝑅(𝑡) − 𝑡} 

6. 𝑅𝑊 = min{𝑚(𝐺), 𝐿(𝑡) + 𝑡} 

 

The above procedure is recursive. To calculate the walls of 𝐺, one needs to calculate 

the walls of all 𝐺’s children first (Step 1). Eventually, the walls of all the offspring of 𝐺 

must be calculated in order to calculate the walls of 𝐺. 

4.4. Game Values of NoGo Positions  

Since 4×4 NoGo positions include many interesting game values, this section only 

investigates the game values of 4×4 NoGo positions. Especially, we calculate game values 

for 4×4 NoGo positions with endgame search depth 6 and 8. A position is called to have 

m 

t 

t(G)=2 

m(G)=1 3 0 

1 



 

 55 

endgame search depth d, if at most d moves are required to end the game and there exists 

some case where d moves are required to end the game. From the game values, we can also 

obtain their means, temperatures and atomic weights. We investigate, in total, 89,964 and 

21,454 4×4 NoGo positions with endgame search depth 6 and 8, respectively. All of 4×4 

NoGo game values were derived by CgSuite [59]. Since the computation times by CgSuite 

are high for positions with high endgame search depth, we analyze the positions with the 

depth 6 and 8, not higher.  

4.4.1 Game Values  

The game values of 4×4 NoGo positions include numbers, infinitesimals, and hot 

games. In Table 8, the first 5 games, Game 1~5, are numbers with values, 2, 1, 0, -1 and -2, 

respectively; and the next 6 games, Game 6~11, are infinitesimals with values, *, ↑, ↑*, ↑↑, 

↑↑*, and ↑
2
, respectively. Note that Left represents Black and Right represents White. The 

hot games are discussed further in the next two subsections.  

 

ID Position and Game Values 

1 

 



 

 56 

2 

 

3 

 

4 

 

5 

 



 

 57 

6 

 

7 

 

8 

 

9 

 



 

 58 

10 

 

11 

 

Table 8. The list of special game values of 4×4 NoGo. 

4.4.2 Means and Temperatures  

For analysis of hot games, we solved the game values of 89,964 and 21,454 4×4 NoGo 

positions with endgame search depth 6 and 8, respectively, in a brute force way. For 

positions with endgame search depth 6 of NoGo, the highest and lowest of means are 3
1

4
, 

−2
1

2
, Game 12~13, respectively. For positions with endgame search depth 8 of NoGo, the 

highest and lowest of means are 2
1

4
, −1

1

2
, Game 14~15, respectively. These NoGo 

positions are all shown as Table 9 (below). 

 

 

 

 



 

 59 

ID Position Game Value Temperature Mean 

12 

 

{4*||3*|2*} 
3

4
 3

1

4
 

13 

 

{-2|-3} 
1

2
 −2

1

2
 

14 

 

{3*||2|1} 
3

4
 2

1

4
 

15 

 

{-1↑*,{*|-1,{-1,-1*|-2}}|-2} 
1

2
 −1

1

2
 

Table 9. The highest and lowest of means with endgame search depth 6 and 8 of 4×4 NoGo 

 

The maximum of temperature of all position is 2 with endgame search depth 6 of 4×4 

NoGo positions as shown Table 10. There are totally 5 different positions whose 

temperatures are all the same and means may be different. The maximum of temperature of 

all position is 1
3

4
 with endgame search depth 8 of 4×4 NoGo positions as shown Table 11. 

Note that the lowest temperatures are not listed since they are number games whose 



 

 60 

temperatures are negative. There are also totally 6 different positions whose temperatures 

are all the same and means may be different. 

 

ID Position Game Value Temperature Mean 

16 

 

{4*|0} 2 2 

17 

 

{4*|*,↓} 2 2 

18 

 

{4*|||1*|*||*} 2 2 

19 

 

{2|1*||-5/2} 2 -1/2 



 

 61 

20 

 

{3*|-1*} 2 1 

Table 10. The lists of maximum temperature with endgame search depth 6 in 4×4 NoGo. 

 

ID Position Game Value Temperature Mean 

21 

 

{{4|3},{4|3*}|{3|1},{3*|1}||2*|||-

1*} 
1

3

4
 

3

4
 

22 

 

{3|2||-1} 1
3

4
 

3

4
 

23 

 

{3*||*,{*,{2*|*}|*,{*,↓

|-1}}|-1*,{{*|-1*},{↓|-1*},{*,

↓|-1}|{-1|-2*},{-1*|-2*}}} 

1
3

4
 

5

4
 

24 

 

{3*|{*|-1*},{*||{-1/2*|-1},{-1/2*

|-1*}|-1,-1↓*}} 
1

3

4
 

5

4
 



 

 62 

25 

 

{3*||↓,{*,{1|0,*}||*|-1*}|-1*} 1
3

4
 

5

4
 

26 

 

{3*|{*,{{1|0},{1|1,{1|0}}|0,*}|-

1*},{0||{-1/2*|-1},{-1/2*|-1*}|-1

,-1↓*}} 

1
3

4
 

5

4
 

Table 11. The lists of maximum temperature with endgame search depth 8 in 4×4 NoGo. 

 

In fact, the article in [15] also showed a specific 5×5 board NoGo position with 

temperature 2 as shown Figure 26. This position is favor for Black. If Black move a stone in 

the center grid, it will appear 4 B-Go in the board. The White cannot move any stone on the 

position. We calculate the game value of the specific position which the temperature is 2. If 

Black moves first, it has game value 4. Otherwise, if White first move, it has game value * 

(star). It is a hot game for both players. Both of players may try to compete the benefit in 

this position.  

 

 

Figure 26. A specific 5×5 Nogo position.  

 



 

 63 

In fact, there exists some NoGo position with the temperature greater than 2. Figure 27 

shows such an example whose game value G={7|6||2|1} and temperature 2
1

2
 is greater than 

2. The upper bound of temperature is an open question. 

 

 

Figure 27. The temperature is greater than 2 in a 4×7 NoGo position. 

4.4.3 More Analysis  

We analyze, in total, 89,964 positions and 21,454 positions with endgame search depth 

6 and 8 in 4×4 NoGo, respectively, in Table 12 and Table 13. In Table 12, the percentages of 

all positions that are numbers (T<0), infinitesimals (T=0) and hot games (T>0) are about 

3.28%, 25.16% and 67.43%, respectively. In Table 13, the percentages of all positions that 

are numbers (T<0), infinitesimals (T=0), and hot games (T>0) are about 2.13%, 26.33% and 

71.55%, respectively.  

 

 

 

 

 

 



 

 64 

Infinitesimal 

(T=0) 

Temperature 

Total 

Positions 

T<0 

Non- 

Infinitesimal 

(T=0) 

(

T

=

0

) 

0<T<1 1≦T<1.5 1.5≦T<2 T=2 

22639 2954 3719 43983 15930 734 5 89964 

25.16% 3.28% 4.13% 48.89% 17.71% 0.82% 0.01% 100.00% 

Table 12. The temperature analysis with endgame search depth 6 in 4×4 NoGo positions. 

 

Infinitesimal 

(T=0) 

Temperature 

Total 

Positions 

T<0 

Non- 

Infinitesimal 

(T=0)  

(

T

=

0

) 

0<T<1 1≦T<1.5 1.5≦T<2 T=2 

5648 456 519 11922 3353 75 0 21454 

26.33% 2.13% 2.42% 55.57% 15.63% 0.35% 0.00% 100.00% 

Table 13. The temperature analysis with endgame search depth 8 in 4×4 NoGo positions. 

 

Moreover, we also investigate the game values of 3×3 and the 4×4 of empty boards are 

star (*) and zero (0), respectively. It represents that the first player wins in 3×3 NoGo and 

loses in 4×4 NoGo. 

4.5. NoGo Propositions 

In this section we show three important propositions using CGT analysis. It helps 

understand the characteristics of NoGo game. The propositions can efficiently reduce the 

depth and branches of search tree which improves the performance and helps determine 

who to win. Some of these propositions were used by a NoGo program, named HappyNoGo 



 

 65 

[18][19], to improve the strength. HappyNoGo won the champion in the NoGo tournaments, 

such as 2013 Computer Olympiads in Japan, 2013 TCGA, 2012 TCGA and 2012 TAAI in 

Taiwan. 

In order to investigate more propositions, we give more definitions as follows. Two 

grids are called neighboring if they are either vertical or horizontal neighboring. Among a 

set of grids, a grid is called to be connected to another, if there exists a sequence of 

neighboring grids between the two grids in the same set. A connected component is the 

maximum set of grids which are mutually connected. A Black (White) string is a connected 

component of Black (White) grids, where a Black (White) grid is a grid on which there 

exists a Black (White) stone. A closed region is a connected component of empty grids. A 

Black (White) region is a connected component of grids which are not Black (White) grids.  

 

 

Figure 28. The example of NoGo definitions. 

 

For example, in Figure 28 the stones of blue line are Black strings and the stones of red 

lines are White strings. The surrounded region of the stones of orange lines is Black closed 



 

 66 

regions and the surrounded region of the stones of green lines are White closed region. 

A subgame is defined to be a game where players can play on a designated region only, 

namely a set of designated grids. For a subgame played in a designated region, if its game 

value is independent of any moves on the grids not in this region, the subgame is called an 

independent subgame, and the region is called an independent region. 

 

Proposition 1: (No-Go game value) 

For a subgame on a No-Go, its game value is zero. 

 

 

Figure 29. Each No-Go has game value zero. 

 

In the No-Go of board position as shown Figure 29, it is trivial that the Black and 

White cannot place any stone on No-Go. Since No-Go cannot become 1-Go or 2-Go, the 

grid remains No-Go till the end of the game. Moreover, they are independent of any other 

No-Go which any available moves cannot change its state. So, the game value of No-Go is 

{ |  } = 0. 

 

For CGT, the Number-Avoidance Theorem [2] states that one should only move on 

numbers as a last resort. When 𝐺 is a game and 𝑥 is a number, the sum can be simplified 



 

 67 

as 

𝐺 + 𝑥 = {𝐺𝐿 + 𝑥 | 𝐺𝑅 + 𝑥}  (52) 

 

𝑥 + 𝐺 = { 𝑥 + 𝐺𝐿 | 𝑥 + 𝐺𝑅}  (53) 

 

 

  

Figure 30. The example of B-Dragons and W-Dragons. 

 

In order to investigate independent subgames, especially for those whose game values 

are numbers, we define more in the following: 

 B-Dragon: It is a set of Black strings such that one string can be connected to 

another via No-Go or B-Go. Note that these No-Go and B-Go are not included in the 

B-Dragon. As illustrated in Figure 30, the Black strings, connected in blue lines, are 

B-Dragons.  

 W-Dragon: It is a set of White strings such that one string can be connected to 

another via No-Go or W-Go. As illustrated in Figure 30, the White strings, 

connected in red lines, are W-Dragons. Note that B-Dragons and W-Dragons may 

intersect in No-Go. 



 

 68 

 

 

Figure 31. Three different walls in NoGo. 

 

 B-Wall: A B-Dragon is also a B-Wall if the B-Dragon is adjacent to some No-Gos. 

As illustrated in Figure 31, the one connected in blue lines is also a B-Wall. 

 W-Wall: A W-Dragon is also a W-Wall if the W-Dragon is adjacent to some No-Gos. 

As illustrated in Figure 31, the one connected in red lines is also a W-Wall. 

 Wall: A Wall is one of No-Go, B-Wall and W-Wall. 

 

Let us remove those grids on all the walls. Then, we can cut a position into several 

disjoint connected components of grids, named group regions. Proposition 2 (below) shows 

that each group region is also an independent region.  

 

 

 

 



 

 69 

Proposition 2: (Independent region) 

Each group region is an independent region. A subgame on each group region is an 

independent subgame. The game value is the sum of the values of all subgames.  

 

Proposition 2 is satisfied for the following reason. For a string adjacent to a No-Go, 

assume that it neighbors to empty grids of more than two group regions, say R1 and R2. 

Since the string will not be captured due to a No-Go, all the moves on the empty grids of R1 

will not affect the moves on those of R2, and vice versa. For a string adjacent to a 1-Go, say 

a Black string to a B-Go, assume similarly that it neighbors to empty grids of more than two 

group regions, say R1 and R2, and that the B-Go is in R2. All the moves on the empty grids 

of R1 will not affect the moves on those of R2 and vice versa. This is because the string will 

not be captured for the following reason. Even if the B-Go is occupied by Black stone, the 

string is still connected to a No-Go or another B-Go, and therefore can be proved 

recursively.  

 

 

Figure 32. The board forms left and right independent regions. 

 

Illustrated by Figure 32, we obtain that the group regions in the left and right regions 

Region R1

Region R2



 

 70 

form two main independent regions.  

Furthermore, we actually can cut it into more group regions, if we can extend the 

definition of Wall to including X-Wall. X-Wall is a Black or White string neighboring to 

one closed region only. The stones marked by green lines in Figure 31 are X-Walls. 

Proposition 2 is still true for the extension for the following reason. Since these strings are 

neighboring to one closed region only, all the moves in other group regions will not affect 

this group region.  

From Proposition 2, the game value is the sum of the game values for all group regions. 

Here are some examples. If the game value of a subgame is zero, the group region can be 

ignored. If the game values on two regions are both star (*), the sum of the two regions is 

*+*=0. The Proposition 2 helps reduce the depth and branches in expanding search tree.  

Unfortunately, the boards cannot partition the position and still leave a big region in 

most of game competitions. However, fortunately, we can easily identify those 1-Go with a 

game value 1 or -1. A B-Go is called B-eventually-Go or B-EGo, if Black will be able to 

place on the grid eventually (not become a No-Go), regardless of the subsequent moves. A 

W-EGo is defined similarly. Both are also called 1-EGo. Thus, we have Proposition 3 as 

below.  

 

Proposition 3: (1-EGo) 

A 1-Go is also a 1-EGo, if all of its neighbors are Walls. Each B-EGo (W-EGo) has 

game value 1 (-1). 

 

Proposition 3 is correct for the following reason. Since all of its neighbors are Walls, 

the grid itself is a group region, an independent region. Since it is 1-Go, it will be played by 

one player only eventually. In addition, the game value is 1 (-1) if it is a B-EGo (W-EGo).  



 

 71 

The example is illustrated as the black triangle in Figure 33. In this B-EGo, its game 

value is { 0 |  }=1. 

 

  

Figure 33. The symbol of black triangle is represented for B-EGo . 

 

Similarly, each W-EGo has game value -1 for White. Below Figure 34 shows the 

example of B-EGo. Black has five triangles which gets the number of five and White has 

one triangle which gets the number of minus one. In Figure 34 the position is favor to 

Black.  

 



 

 72 

  

Figure 34. The example of B-Ego and W-Ego. 

 

4.6. Conclusion 

NoGo game analysis has the following three major contributions. First, we calculate 

the game values of many NoGo positions with endgame search depth 6 and 8. In 4×4 NoGo, 

the game values include integers such as 2, 1, 0, -1 and -2, and infinitesimals including star, 

ups and downs such as *, ↑, ↑*, ↑↑, ↑↑*, and ↑
2
. 

Second, we find the maximum of temperature is 2 among all the above 4×4 board 

positions and the temperature is low in most of these positions. There are five different 

positions whose temperatures are 2 and means may be different. 

Third, we present three propositions to help understand the characteristics of NoGo 

game. Moreover, the propositions can efficiently reduce the depth and branches of search 

tree which improves the performance and helps determine who to win.  



 

 73 

Chapter 5 Conclusions 

In this thesis, we study to solve games and improve search performances with 

embedded combinatorial game knowledge. For this study, we investigate three 

combinatorial games, including Triangular Nim, XT Domineering and NoGo. 

First, solving nine layer Triangular Nim has the following contributions.  Using the 

retrograde methods, this thesis strongly solves 9 layer Triangular Nim. This thesis also 

proposes some methods to improve the performance, such as designing data structures in 

blocks, using the retrograde method, removing redundancy and selecting the block 

representation with the less number of inter-block updates. Especially, by removing 

redundancy, we reduce the memory by a factor of 5.72 and the computation time by a factor 

of 4.62. 

 Our experiment result also shows that the ratio of the number of P-positions to that 

of N-positions is low, 5.0% for 9 layer Triangular Nim. Due to the low ratio, the retrograde 

method does perform well when compared with the traditional forward checking.  

Second, XT domineering has the following three major contributions. We present a 

new game, XT Domineering, which has higher game-tree complexity than Domineering. 

We also have presented a mathematical approach to solve sums of 3×3 XT Domineering. 

Again, this success demonstrates the potential of applying CGT to solving more of other 

intelligent games. 

Third, NoGo endgame analysis has the following three major contributions. We 

calculate the game values of many NoGo positions with endgame search depth 6 and 8 in 

brute force search from empty 4×4 board. In NoGo 4×4 board, the game values include 



 

 74 

integers such as 2, 1, 0, -1 and -2,and infinitesimals including star, ups and downs such as 

*, ↑, ↑*, ↑↑, ↑↑*, and ↑
2
. In experiments, we find the maximum of temperature is 2 among 

all the above 4×4 board positions and the temperature is low in most of these positions. 

Furthermore, we present three propositions to help understand the characteristics of NoGo 

game. 

In this thesis, we use algebra characteristics of CGT to help solve and reduce the 

complexity of three combinatorial games. Based on the theory, playing or solving these 

combinatorial games may simply become mathematical calculations, such as summation, 

instead of a complex tree search. CGT also helps cut some unnecessary branches in search 

tree in some combinatorial games, e.g. NoGo. 

 



 

 75 

References 

[1] M. H. Albert, J. P. Grossman, R. J. Nowakowski and D. Wolfe, “An introduction to 

Clobber,” Integers, Electr. J of Combinat. Number Theory vol. 5, no. 2, #A01, 2005. 

[2] M. H. Albert, R. J. Nowakowski, D. Wolfe, Lessons in Play: An Introduction to the 

Combinatorial Game Theory, A.K. Peters, Wellesley (2007) 

[3] S.-Q. Bai, S.-S. Lin, “On the Study of 8 Layer Triangular Nim,” (in Chinese) National 

Computer Symposium (NCS 2009), Taipei, Taiwan, 2009. 

[4] R. Balla, A. Fern, UCT for tactical assault planning in real-time strategy games, in: 21st 

International Joint Conference on Artificial Intelligence, pp. 40–45. 

[5] E. R. Berlekamp, “Blockbusting and Domineering,” Journal of Combinatorial Theory Ser. 

A, vol. 49, pp. 67-116, 1988. 

[6] E. R. Berlekamp, D. Wolfe, Mathematical Go: Chilling Gets the Last Point, A K Peters, 

Wellesley, MA, 1994. 

[7] E. R. Berlekamp, J. H. Conway, and R. K. Guy, Winning Ways for your Mathematical 

Plays, 1st edition, 2 vols, New York: Academic Press, 1982. 

[8] C. L. Bouton, “Nim, A Game with a Complete Mathematical Theory,” the Annals of 

Mathematics, 2nd Ser., Vol.3, 1/4. (1901-1902), pp.35-39. 

[9] D. M. Breuker, J. W. H. M. Uiterwijk and H. J. van den Herik, “Solving 8×8 

Domineering,” Theoretical Computer Science, Vol. 230, pp. 195-206, 2000. 

[10] B. Brian, A Mathematical Pandora’s Box, Cambridge Univ Pr, 1993. 

[11] C. Browne, E. Powley, D. Whitehouse, S. Lucas, P. Cowling,  P. Rohlfshagen, S. Tavener, 

D. Perez, S. Samothrakis, S. Colton, “A survey of Monte Carlo Tree Search,” IEEE 

Transactions On Computational Intelligence and AI in Games, Vol. 4, No. 1, March 2012. 

[12] N. Bullock, “Domineering: Solving Large Combinatorial Search Spaces,” ICGA Journal, 

vol. 25, no. 2, pp. 67-84, 2002. 

[13] A. K. Chandra, D. C. Kozen, and L. J. Stockmeyer. Alternation. J. ACM, 28(1):114–133, 

1981. 

http://wapedia.mobi/en/Elwyn_R._Berlekamp
http://wapedia.mobi/en/John_H._Conway
http://wapedia.mobi/en/Richard_K._Guy
http://wapedia.mobi/en/Academic_Press
http://search.books.com.tw/exep/prod_search.php?cat=all&key=Bolt%2C+Brian&f=author
http://search.books.com.tw/exep/prod_search.php?cat=all&key=Cambridge%20Univ%20Pr


 

 76 

[14] C.-Y. Chen. S.-S. Lin, On the Study and Improvement of 8 Layer and 9 Layer Triangular 

Nim, Master Thesis, National Taiwan Normal University, 2010. 

[15] C.-W. Chou, O. Teytaud, S.-J. Yen, "Revisiting Monte-Carlo tree search on a normal form 

game: NoGo," in: The main European events on Evolutionary Computation (Evo⁄ 2011), 

Torino, Italy, April 27–29, 2011. 

[16] A. Cincotti, “Three-Player Domineering,” Proceedings of World Academy of Science, 

Engineering, and Technology 36:92-95,December 2008.  

[17] A. Cincotti, “Further Results on Three-Player Domineering,” Proceedings of World 

Academy of Science, Engineering and Technology 51:187-189, 2009. 

[18] Computer game tournaments in the 2012 Conference on Technologies and Applications of 

Artificial Intelligence (TAAI 2012), 

http://idb.csie.ncku.edu.tw/taai2012conference/index.php/awards/tournaments. 

[19] Computer Olympiad 2013, in Japan, Yokohama , http://icga.uvt.nl/?page_id=627.  

[20] J. H. Conway, On Numbers and Games, New York: Academic Press, 1976. 

[21] R. Coulom, “Efficient Selectivity and Backup Operators in Monte-Carlo Tree Search”, in: 

5th International Conference on Computer and Games, pp. 72–83. 

[22] E. D. Demaine, “Playing games with algorithms: algorithmic combinatorial game theory,” 

in: Mathematical Foundations of Computer Science (Mariánské Lázn˘e), Lecture Notes in 

Comput. Sci. 2136, Springer, Berlin (2001), pp. 18–32. 

[23] N. D. Elkies. On numbers and endgames: combinatorial game theory in chess endgames. 

In R. J. Nowakowski, editor, Games of No Chance, Proc. MSRI Workshop on 

Combinatorial Games, July, 1994, Berkeley, CA, MSRI Publ., volume 29, pages 135-150. 

Cambridge University Press, Cambridge, 1996. 

[24] T. S. Ferguson, Game Theory, lecture notes, UCLA 2008.  

[25] H. Finnsson, Y. Björnsson, “Simulation-based approach to general game playing,” in: 

23rd Conference on Artificial Intelligence, pp. 259–264. 

[26] R. Fleischer and S. U. Khan. Xinagqi and combinatorial game theory. Technical Report 

HKUST-TCSC-2002-01, Hong Kong University of Science and Technology, February 

2002. 

[27] M. Gardner, “Mathematical games,” Scientific American, Vol. 230, pp. 106-108, 1974. 

http://idb.csie.ncku.edu.tw/taai2012conference/index.php/awards/tournaments
http://icga.uvt.nl/?page_id=627


 

 77 

[28] S. Gelly, “A Contribution to Reinforcement Learning; Application to Computer Go”, Ph.D. 

Thesis, University of South Paris, 2007. 

[29] S. Gelly, D. Silver, “Achieving master level play in 9 x 9 computer Go,” in: 23rd 

Conference on Artificial Intelligence, 2008, pp. 1537–1540. 

[30] S. Gelly, D. Silver, “Monte-Carlo Tree Search and Rapid Action Value Estimation in 

Computer Go,” Artificial Intelligence, Volume 175, Issue 11, pp. 1856-1875, 2011. 

[31] P. M. Grundy, “Mathematics and games,” Eureka 2, pp.6-8, 1939, Reprint, Eureka 27, pp. 

9-11, 1964. 

[32] O. Hanner, (1959). “Mean Play for Sums of Positional Games,” Pacific J. Math. 9, pp. 

81-99. 

[33] S.-C. Hsu, “Solving the Problem of 7 Layer of Triangular Nim,” (in Chinese) National 

Computer Symposium (NCS 1985), pp.798-802, Dec. 1985. 

[34] T.-S. Hsu. and P.-Y. Liu, "Verification of Endgame Databases," International Computer 

Game Association (ICGA) Journal, volume 25, number 3, pp. 132-144, 2002. 

[35] H. J. van den Herik, J.W.H.M. Uiterwijk and J.V. Rijswijck, “Games solved: Now and in 

the future,” Artificial Intelligence, vol. 134 (1-2), pp. 277–311, 2002. 

[36] K.-Y. Kao, “On Hot and Tepid Combinatorial Games,” Ph.D. Thesis, UNC Charlotte 

1997. 

[37] K.-Y. Kao, (1998). “Mean and Temperature Search for Combinatorial Games,” JCIS 

Proceedings, Vol I, pp. 389-392. 

[38] K.-Y. Kao, “The game of un-impartial Kayles,” Proceedings of the 25th Workshop on 

Combinatorial Mathematics and Computation Theory, Chung Hua University, Hsinchu 

Hsien, Taiwan, April 25-26, 2008, pp. 151-153. 

[39] K. Y. Kao, “Sumbers – Sums of Ups and Downs,” Integers, E. Journal of Combinatorial 

Number Theory, Vol. 2005. 

[40] K.-Y. Kao, I-C. Wu, Y.-C. Shan and H.-H. Lin, “Chilled Domineering,” International 

Conference on Technologies and Applications of Artificial Intelligence (TAAI 2010), 

pp.427-432. 

[41] K.-Y. Kao, I.-C. Wu, S.-J. Yen and Y.-C. Shan, "Incentive Learning in Monte Carlo Tree 

Search," IEEE Transactions on Computational Intelligence and AI in Games (IEEE 



 

 78 

TCIAIG), Feb 2013. 

[42] K.-Y. Kao, I.-C. Wu, Y.-C. Shan, and S.-J. Yen), "Selection Search for Mean and 

Temperature of Multi-Branch Combinatorial Games," ICGA Journal, Vol. 35, No. 3, pp. 

157-176, Sep. 2012. 

[43] K.-Y. Kao, I.-C. Wu, and Y.-C. Shan, "XT Domineering: A New Combinatorial Game," 

Knowledge-Based Systems, Volume 34, pp. 55-63, October 2012. 

[44] M. Lachmann, C. Moore, I. Rapaport, “Who Wins Domineering on Rectangular Boards,” 

in More Games of No Chance, R.J. Nowakowski, Ed. Cambridge University Press, 2002, 

pp. 307-315. 

[45] C.-S. Lee, M.-H. Wang, Y.-J. Chen, H. Hagras, M.-J. Wua, O. Teytaud, "Genetic fuzzy 

markup language for game of NoGo," Knowledge-Based Systems, Volume 34, pp. 64-80, 

October 2012. 

[46] L. Lew, and Coulom, R. (2010). “Simulation-based Search of Combinatorial Games,” in 

ICML Workshop on Machine Learning and Games, Israel. 

[47] H.-H. Lin, I-C. Wu and Y.-C. Shan, "Solving Eight Layer Triangular Nim," (in Chinese) 

National Computer Symposium (NCS 2009), Taipei, Taiwan, November 2009. 

[48] R. Lorentz, “Amazons discover Monte-Carlo,” in: 6th International Conference on 

Computers and Games, pp. 13–24. 

[49] F. Mäser, Global threats in combinatorial games: a computational model with applications 

to chess endgames, in: More Games of No Chance, Proc. MSRI Workshop on 

Combinatorial Games, July, 2000, Berkeley, CA, MSRI Publ. (R. J. Nowakowski, ed.), 

Vol. 42, Cambridge University Press, Cambridge, pp. 137-149. 

[50] S. K. McCurdy and R. Nowakowski, “Cutthroat, an all-small game on graphs,” Integers, 

Electr. J of Combinat. Number Theory vol. 5, no. 2, #A13, 2005. 

[51] G. A. Mesdal, “Partzan Splittles,” Games of No Chance 3, Cambridge University Press, 

2009, pp 447-461. 

[52] J. Milnor, (1953). “Sums of Positional Games,” in Kuhn and Tucker (eds.) “Contributions 

to the Theory of Games,” Ann. Math. Studies #28, Princeton, pp. 291-301. 

[53] M. Müller, “Computer Go,” Artificial Intelligence, Vol.134, No.1-2 (Special issue on 

Games, Computers and AI), January 2002, pp145-179. 



 

 79 

[54] M. Müller, Enzenberger, M., and Schaeffer, J., (2004). “Temperature discovery search,” In 

AAAI, pp. 658–663, San Jose, CA. 

[55] M. Müller, NoGo History and Competitions, 

http://webdocs.cs.ualberta.ca/~mmueller/nogo/history.html 

[56] J. Schäfer, “The UCT algorithm applied to games with imperfect information,” Diploma 

Thesis. Otto-von-Guericke-Universit ät Magdeburg, 2008. 

[57] Y.-C. Shan, I.-C. Wu, H.-H. Lin, and K.-Y. Kao, "Solving Nine Layer Triangular Nim," 

Journal of Information Science and Engineering, vol.28, No.1, pp.99-113, January, 2012. 

[58] C. E. Shannon. "Programming a Computer for Playing Chess," in Philosophical Magazine, 

7th series, 41, NO. 314 (March 1950): 256-75. 

[59] A. N. Siegel, CGSuite, A java based toolkit for evaluating games, http://www.cgsuite.org/ 

[60] R. P. Sprague, "Ü ber mathematische Kampfspiele," Tohoku Mathematical Journal 41, pp. 

438-444, 1936. 

[61] N. Sturtevant, “An analysis of UCT in multi-player games,” in: 6th International 

Conference on Computers and Games, pp. 37–49, 2008. 

[62] F. Teytaud, O. Teytaud, “Creating an Upper Confidence Tree program for Havannah,” in: 

12th Advances in Computer Games Conference, pp. 65–74, 2010. 

[63] K. Thompson. “Retrograde analysis of certain endgames,” ICCA Journal, Vol. 9, No. 3, 

pp.131-139, 1986. 

[64] K. Thompson. “6-Piece Endgames,” ICCA Journal, Vol. 19, No. 4, pp. 215-226, 1996. 

[65] A. Tucker, Applied Combinatiorics, 3rd edition, New York: Wiley, pp396-403, 1994. 

[66] M. Winands, Y. Björnsson, “Evaluation function based Monte-Carlo LOA,” in: 12th 

Advances in Computer Games Conference, pp. 33–44. 

[67] I-C. Wu, C.-P. Chen, P.-H. Lin, G.-Z. Huang, L.-P. Chen, D.-J. Sun, Y.-C. Chan, and H.-Y. 

Tsou, "A Volunteer-Computing-Based Grid Environment for Connect6 Applications," The 

12th IEEE International Conference on Computational Science and Engineering 

(CSE-09), August 29-31, Vancouver, Canada, 2009. 

[68] I.-C. Wu, Y.-C. Shan, C.-H. Lin and S.-J. Yen, "LongCATMJ Wins Mahjong Tournament 

in TCGA 2011," ICGA Journal, vol. 34, no. 3, 2011, pp. 166–167. 

http://webdocs.cs.ualberta.ca/~mmueller/index.html
http://webdocs.cs.ualberta.ca/~mmueller/nogo/history.html
http://www.cgsuite.org/
http://en.wikipedia.org/wiki/Tohoku_Mathematical_Journal
https://chessprogramming.wikispaces.com/ICGA+Journal


 

 80 

[69] I.-C. Wu, C.-H. Lin, Y.-C. Shan, "Tournament Framework for Computer Mahjong 

Competitions," The International Workshop on Computer Games (IWCG 2011), Chunli, 

Taiwan, November 2011. 

[70] P.-H. Wu, P.-Y. Liu and T.-S. Hsu, "An External-Memory Retrograde Analysis 

Algorithm," Proc. 4th International Conference on Computers and Games (CG), 

Springer-Verlag LNCS# 3846, pp. 145-160, 2004. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  



 

 81 

Appendix A  The Derivations for XT Domineering 

Games Values of Positions 

The power of using combinatorial theory is to derive the game value (or result) without 

tree search as many board games do. This is well described in many articles such as [1][50]. 

In this appendix, a simple Domineering example with C and E in Figure 18 as well as a XT 

Domineering example is illustrated to demonstrate the power of using combinatorial theory.  

 

 

(a) 

 

 

(b) 

Figure 35. Deriving both game values of C and E of Figure 18 in (a) and (b) respectively. 

 

{ | 0 } = – { 0 | } = –1

{ |  }= 0

{ 0, –1 | 1 }= { 0 | 1} = 1/2

{ 0 |  }= 1{  |  }= 0 {  | 0 }= –1

{  |  }= 0{  |  }= 0



 

 82 

First, let us investigate the game of Domineering. The game value of C, –1, is derived 

in Figure 35 (a). The negative game value indicates that Right wins the game. The game 

value of E, 1/2, is derived in Figure 35 (b). The positive value indicates that Left wins the 

game. In the derivation, a cross is used to indicate that Left does not choose –1 since 

choosing 0 is better to Left.  

 

 

Figure 36. Deriving the game values of C + E. 

 

If both C and E are left in a game, we can derive the game value, –1+1/2 = –1/2, by 

using the combinatorial theory, and easily conclude that Right wins the game due to the 

negative game value. However, in case of using tree search, we need to derive the same 

game value as shown in Figure 36, whose computational complexity grows exponentially as 

more are added.  

{–1, –2 | 1/2, 0 }={–1 | 0 }= –1/2

0

+ + + +

+

+ + +

–1 + (–1) = –2 –1+0 = –1 1/2 –1 + 1 = 0

–1

+

0

+

1

0



 

 83 

 

(a) 

 

 

(b) 

Figure 37. Deriving both game values of C and E of Figure 18 in (a) and (b) respectively. 

 

Now, let us investigate the game of XT Domineering. As described in Section 3.3, the 

game becomes more complex since 1×1 dominos are also allowed to be placed. For both 

games C and E, the derivations for both are shown in Figure 37 (a) and (b), respectively. 

The game value of C, ↓ (a negative infinitesimal), indicates that Right still wins the game, 

{*,* | 0 } = {* | 0 } = ↓

0{ 0 | 0 }= *

0

{ 0 | 0 }= *

000

{ 0, ↓ | ↑ } = { 0 | ↑ } = ↑ ↑ *

{ 0 | * }= ↑ { * | * }= 0 { * | 0 }= ↓

00 { 0 | 0 }= *{ 0 | 0 }= *

0 0 0 0

******

0

... ... ... ... ... 

0



 

 84 

while the game value of E, ↑↑*, indicates that Left wins the game. The derivations for both 

are clearly much more complex, when compared with Figure 35. 

 

 

Figure 38. Deriving the game values of C + E. 

 

For simplicity, we choose the game * + E, as shown in Figure 38. Its game value is ↑↑ 

with atomic weight 2, which indicates that Left wins the game, as described in 3.2.4.  

 

 

+

{ *, ↓*, ↑↑ * | ↑↑ *, ↑* } = {↑↑* | ↑* } = ↑↑+

+ ++ + +
↑↑ *↓** ↑↑ * ↑*

+ +
↓

+
↑

... 

0

+
*

+
*

+
*

+
*

+
0

+
0

... ...

+
0 *

+
*

+
0

+
0

... 

+
↑

+
*

+
↑

... ... ... 

... 



 

 85 

Appendix B  The proof for XT Domineering 

inequalities 

Proposition: The ups in the grids of Table 7 are the sufficient and necessary conditions 

for 

grid(i, j) + row(i) + col(j) > 0. 

Proof: 

Let (Gi,j) denote the inequality  

grid(i, j) + row(i) + col(j) > 0. 

We first show the sufficiency of the conditions. 

 Since ↑ > ↑/2 > ↑
2 
> 0, we have (G3,1), ↑

2 
> 0 and ↑/2－↑

2 
> 0. 

 Since */2 + △* + ↑/2 > 0, we have (G7,1). 

 Since */2 + ↑ － ↑
2 

> 0 and */2 + ↑/2+2.↑
2  

> 0, we have (G8,1). 

 Since */2 + ↑/2 + ↑
2
 > ★, we have (G8,2). 

 Since △* + △*> *, we have (G1,3), and 

(G7,1) => (G5,3), 

(G8,1) => (G6,3), and 

(G8,2) => (G6,4). 

 Since */2 + ↑/2 + ↑ + ↑
2 
> ★+*, we have (G8,4). 

(G8,2) and (G8,4) => (G9,2) and (G9,4). 

 Since ↑
2
 > ★ and ↑ + ↑

2 
> ★ + *, we have (G3,2) and (G3,4). 

(G3,2) and (G3,4) =>  (G4,2) and (G4,4). 



 

 86 

 Since ↑
2
 > ★, we have (G3,2), and 

(G4,2) => (G4,1),  

(G9,2) => (G9,1), 

(G1,3) => (G1,4), 

(G4,4) => (G4,3), and  

(G9,4) => (G9,3). 

  Since △*> 0, we have (G2,1), and 

(G2,1) => (G1,1) 

(G7,1) => (G6,1) => (G5,1), 

(G3,2) => (G2,2) => (G1,2), 

(G8,2) => (G7,2) => (G6,2) => (G5,2), 

(G4,3) => (G3,3) => (G2,3), 

(G9,3) => (G8,3) => (G7,3), 

(G3,4) => (G2,4), 

(G6,4) => (G5,4), and 

(G8,4) => (G7,4). 

 

This completes proof for the sufficiency of the conditions. 

 

Next, we prove the necessary of the conditions. We need to show that any sums of ups 

less than or confused with the value in a corresponding grid will result in an insufficient 

condition. Note that the smallest increments of sums ups are ↑
2 

and ↑/2 – ↑
2
, and the only 

possible sums of ups confusing with 0 are ↑/2 – (n + 1).↑
2
, n > 0. 

 



 

 87 

For (G3,1), (G6,3) and (G8,1), we only need to show that if the value in the corresponding 

grid reduced by ↑
2
, then the inequality will not hold. For all the other grids, in order to 

prove the necessary conditions, we need to show that if the value in a grid reduced by ↑
2 
or 

↑/2 – ↑
2
, or, if the value in a grid increased or reduced by ↑/2 – (n + 1).↑

2
, n > 0, then the 

corresponding inequality will not hold. Since ↑/2 – 2.↑
2 ≧ ↑/2 – (n + 1).↑

2 
> –(↑/2 – ↑

2
) > –

(↑/2 – (n + 1).↑
2
), it is sufficient to show: if the value in a grid reduced by ↑

2
 or increase by 

↑/2 – 2.↑
2 
then the corresponding inequality will not hold.  

 

 Consider (G3,1), ↑
2 
> 0 and ↑/2 – ↑

2 
> 0.  

But  0
  ≯ 0 and ↑/2 – 2.↑

2 ≯ 0. 

Thus ↑
2 

or ↑/2 – ↑
2 
is a necessary condition. 

 

 Consider (G6,3),  

*/2 + 2.△* + ↑/2 + 2.↑
2 
> * and */2 + 2.△* +↑ – ↑

2 
> *. 

But */2 + 2.△* + ↑/2 + ↑
2  ≯ * and */2 + 2.△* + ↑ – 2.↑

2
 ≯ *. 

Thus ↑/2 + 2.↑
2 
or ↑ – ↑

2 
is a necessary condition. 

 

Note that, since 2.△* > *, the necessary condition of (G6,3) implies the necessary 

condition of (G8,1). 

 

 Consider (G1,2), (n + 1).△* + ↑2
 

 
> ★. 

But (n + 1).△* ≯ ★ and (n + 1).△* + ↑/2 – ↑
2 ≯ ★ 

Thus ↑
2  

is a necessary condition. 

 



 

 88 

 Consider (G1,4), (n + 1).△* + ↑
2
> ★ + *. 

But (n + 1).△*  ≯ ★ + * and (n + 1).△* + ↑/2 – ↑
2 ≯ ★ + * 

Thus ↑
2 

is a necessary condition. 

 

 Consider (G2,3), △* + ↑ + 2.↑
2
 

 
> *. 

But △* + ↑ + ↑
2
 ≯ * and △* + ↑ + ↑/2

 ≯ * 

Thus ↑ + 2.↑
2 
is a necessary condition. 

 

 Consider (G4,1), –n.△ * + ↑ + 2.↑
2
 

 
> 0. 

But –n.△ * + ↑ + ↑
2
 ≯ 0 and –n.△ * + ↑ + ↑/2

 ≯ 0 

Thus ↑ + 2.↑
2 
is a necessary condition. 

 

 Consider (G5,2), */2 + n.△* + ↑/2 + ↑
2 
> ★. 

But */2 + n.△* + ↑/2 ≯ ★ and */2 + n.△* + ↑ – ↑
2 ≯ ★ 

Thus ↑/2 + ↑
2 
is a necessary condition. 

 

 Consider (G5,4), */2 + (n + 2).△* + ↑/2 + ↑
2
 

 
> ★ + *. 

But  */2 + (n + 2).△* + ↑/2 ≯★ + * and  

*/2 + (n + 2).△* + ↑ – ↑
2 ≯ ★ + *. 

Thus ↑/2 + ↑
2 
is a necessary condition. 

 

 Consider (G7,3), */2 + △* + ↑/2 + ↑ + 2.↑
2
 

 
> *. 

But */2 + △* + ↑/2 + ↑ + ↑
2≯ * and */2 + △* + 2.↑  ≯ *. 

Thus ↑/2 + ↑ + 2.↑
2 
is a necessary condition. 

 



 

 89 

 Consider (G9,1), */2 – n.△ * + ↑/2 + ↑ + 2.↑
2
 

 
> 0. 

But */2 – n.△ * + ↑/2 + ↑ + ↑
2
 ≯ 0 and */2 –n.△ * + 2.↑≯ 0. 

Thus ↑/2 + ↑ + 2.↑
2 
is a necessary condition. 

 

Let (Gi,j)
*
 denote the inequalities  

grid(i, j) + row(i) + col(j) – ↑
2 ≯ 0, and 

grid(i, j) + row(i) + col(j) + ↑/2 – 2.↑
2 ≯ 0 

 

 Since ↑
2
 > ★, we have 

(G1,2)
 *
 => (G1,1)

 *
, 

(G1,4)
 *
 => (G1,3)

 *
, 

(G2,3)
 *
 => (G2,4)

 *
, 

(G4,1)
 *
 => (G4,2)

 *
, 

(G5,2)
 *
 => (G5,1)

 *
, 

(G5,4)
 *
 => (G5,3)

 *
, 

(G7,3)
 *
 => (G7,4)

 *
, and  

(G9,1)
 *
 => (G9,2)

 *
. 

 

 Since △*> 0, we have  

(G1,1)
 *
 => (G2,1)

 *
, 

(G5,1)
 *
 => (G6,1)

 *
 => (G7,1)

 *
, 

(G1,2)
 *
 => (G2,2)

 *
 => (G3,2)

 *
, 

(G5,2)
 *
 => (G6,2)

 *
 => (G7,2)

 *
 => (G8,2)

 *
, 

(G2,3)
 *
 => (G3,3)

 *
 => (G4,3)

 *
, 



 

 90 

(G7,3)
 *
 => (G8,3)

 *
 => (G9,3)

 *
, 

(G2,4)
 *
 => (G3,4)

 *
 => (G4,4)

 *
, 

(G5,4)
 *
 => (G6,4)

 *
, and 

(G7,4)
 *
 => (G8,4)

 *
 => (G9,4)

 *
. 

 

This completes the proof for the necessary of the conditions. 

 

 



 

 91 

Vita 

Yi-Chang Shan was born in Taipei, Taiwan in 1969. He received the B.S. 

and M.S. degrees in Computer Science from National Taiwan Normal 

University, in 1991 and 2002, respectively, and Ph.D. degree in Institute of 

Computer Science, National Chiao Tung University, Hsinchu, Taiwan, in 2013. 

His research interests include computer game, combinatorial game theory, and 

cloud computing. 

 


