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摘要 

 

 

 

在執行程式過程中動態改變處理器的電壓以及執行頻率（Dynamic Voltage and 

Frequency Scaling, DVFS）可顯著的降低電耗。因為 JAVA 在嵌入式系統上受到重視，

所以本論文在嵌入式 JAVA 虛擬機器上發展了一套完整的 DVFS 實作。我們修改現有的

DVFS 策略，其主要參考目前工作的程式中記憶體存取時間以及處理器計算時間的比例，

計算適合的電壓，節省電耗。修改並發展出一套完整的方法論，在不同的平台下都可以

用類似的方式來估算記憶體存取時間以及處理器計算時間的比例，其誤差在本論文的實

驗環境下小於 8%。實做之 DVFS 系統包含兩種運作方式，其中以時間間隔為基礎的方式

可以在效能損失 15.89%~ 41.16%的情況下，達到 12.04%~28.68% 的電耗節省。 我們同

時驗證，以函式方法為基礎的系統並不適合使用於嵌入式爪哇虛擬機器中。 
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Department of Computer Science and Information Engineering 

National Chiao Tung University 

 

ABSTRACT 

 
    Dynamic voltage and frequency Scaling (DVFS) is recognized as one of the most 

effective power reduction techniques. JAVA is getting popular in mobile embedded systems 

in recent year. Thus we propose a low-power research platform on an embedded JVM and 

implement DVFS on it. We refer to an accurate DVFS algorithm which calculates proper 

frequency of a program according to the ratio of on-chip computation time to off-chip access 

time. Proposed methodology for estimating the ratio of on-chip computation time to off-chip 

access time can be applied on defacement platforms. On our experiment platform, average 

error of estimations is less than 8%. Implemented design contains two schemes. Proposed 

interval-based design reduces 12.04%~28.68% energy consumption of the CPU with 

15.89%~ 41.16% performance losses. We also experiment the potential of method-based 

design. And we conclude that method-based design is not suitable for embedded JVMs. 
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Chapter 1 Introduction 
 

 

    In this chapter, we will present some introduction materials to help readers to get better 

understand of basic concepts behind our research. First, we remind that the importance of 

reducing power consumption of embedded applications. Second, we simply introduce and 

discuss the dynamic voltage and frequency scaling. Third, we explain why embedded JAVA 

environment becomes popular in recent year. After the introduction come our research 

motivation and objectives. In the final, we provide the organization of this thesis. 

  

1.1 Power Consumption of the Embedded Applications 
 

    The increase in user demands for mobile and embedded systems requires an equivalent 

increase in processor performance, which causes an increase of the power consumption of 

these devices. Managing energy consumption, especially in devices that are battery operated, 

increases the number of applications that can run on the device and extends the device’s 

battery lifetime. With efficient power management, an increase in mission duration and a 

decrease in both device weight and total cost of manufacturing and operation can be achieved 

[1]. 

 

1.2 Dynamic Voltage and Frequency Scaling (DVFS) 
 

    Dynamic voltage and frequency Scaling (DVFS) is recognized as one of the most 

effective power/energy reduction techniques. In a DVS equipped processor, such as Intel's 

XScale processors, the CPU voltage and frequency can be changed on-the-fly [2]. The key to 
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make use of this technique is to reduce clock frequency (and of course, reduce it with voltage) 

of processor only when it is not critical to meet the deadlines of software or CPU is stalled by 

memory or I/O systems [3]. Since the performance of those memory-bound applications is 

limited by memory, reducing of processor frequency will not cause significant performance 

degradation but yielding significant reduction of energy consumption [4]. 

 

1.3 Popularity of Embedded Java Virtual Machine 
 

    JAVA is getting popular in mobile embedded systems in recent year because of four 

reasons discussed later [5]. Portability, platform neutrality, means that programmer can write 

code once and runs everywhere without taking care about underlay system architectures. 

Dynamic nature means that the code can be used as data, download or upgrade on demand, 

thus it reduce the cost of redistribution. Most importantly of all, the security mechanism of 

JAVA provides trust and reliable environment of embedded environments and since many of 

them must work for a long term without restarting or upgrade. Finally, the small footprint of 

JAVA bytecode and runtime memory requirement decreases the cost of embedded 

applications. 

 

1.4 Research Motivation and Objectives 
 

    Since the need of reducing power consumption of embedded JAVA environments is 

increasing, we propose a low-power research platform on a JAVA embedded system. Using 

this platform, we can easily collect information about a program in its running time. So we 

can apply some low-power techniques according to collected information to reduce power 

consumption. We focus on DVFS technology because of the effectiveness provided by it.  
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DVFS research in virtual machine (VM) proposed by Haldar et al. [6] is the first and the 

only one in the past. They declare that VM has some advantages of implementation of DVFS. 

First, virtual machines have an infrastructure allowing them to profile and reoptimize 

programs in execution. Second, VM can gather and make use of information from HW, OS, 

VM, and programs at run time to provide accurate prediction of future behavior of programs. 

However, there exist some disadvantages in Haldar et al.’s effort. First, they do not discuss 

the efficiency of dynamic profiler. Profiling overhead may increase run time and power 

consumption. Second, the frequency/voltage decision policy proposed by them is a simple and 

inaccurate heuristic and it may yields inaccurate prediction of needed frequency of programs. 

 

Thus our objectives are as follows. Design and implement effective DVFS for embedded 

JAVA virtual machines which reduces power and energy consumption while meeting the 

performance requirements specified by user. We will focuses on designing a low run-time 

overhead dynamic profiler and implementing an accurate frequency/voltage decision policy 

 

1.5 Organization of This Thesis 
 

    The remaining parts of this thesis are organized as follows. The next chapter provides 

more detailed background knowledge about DVFS and JAVA technique, and introduces some 

related works. Chapter 3 details on our design and implementation of DVFS in JVM. In 

Chapter 4, experiment results are exhibited. In the end we make a brief summary and 

conclusions in Chapter 5. 
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Chapter 2 Background 
 

 

 This chapter provides more background details on JAVA technology and DVFS. We will 

first introduce JAVA technology. Then, background of DVFS will be presented. We also 

discuss some related work which inspires our research.  

 

2.1 Java Technology 
 

Although generally used to refer to a computer language, Java is a rather a complete 

architecture in reality. It consists of four distinct but interrelated components [6]. 

 

• Java programming language 

• Java class file format 

• Java Application Programming Interface (Java API) 

• Java Virtual Machine (JVM) 

 

A Java program is written in Java programming language, and then compiled into Java 

class files by Java source compiler. Java class files can be executed on any environment that 

equips a JVM. Also, the Java program can access predefined libraries or system resources 

(such as I/O, for example) by calling methods in the classes that implement the Java API. 

During program execution, JVM loads and executes user-written class files as well as these 

system classes that Java API defines. 
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2.1.1. JVM Benefits 
 

Java Virtual Machine is definitely the key component among the all. It is responsible for 

the well-known advantages that Java possesses over traditional native execution system. 

Those advantages include: 

 

• Cross-Platform Portability 

Each type of processor has its unique instruction set. For example, the instruction set of 

x86 is not compatible with that of MIPS. Moreover, each operating system (OS) has its own 

application interface or system calls to upper application programs. As a result, programs 

compiled to run on one platform (combination of processor and OS) cannot be executed on 

others without recompilation. Java overcomes this limitation by inserting JVM between the 

application programs and the real environment. If JVM has been ported to the environment, 

Java programs can be first compiled to Java bytecode in the form of class files and then be 

executed over the JVM without any porting efforts. This encourages software reuse and 

alleviates great pains from programmers. 

 

• Security of the Execution Environment 

One of Java’s original intentions is its integration into the network environment. In this 

environment, class files can be automatically downloaded from network and be locally 

executed. They might be malicious and might do dangerous operations to the local execution 

system. To deal with this important issue, Java build up its own security model - the sandbox. 

As a brief explanation, Java verifies every class file from untrusted resources. The verification 

process mainly involves two steps in JVM. First, class file verification checks the layout and 

the contents of the class file. Second, bytecode verification checks if the bytecode within a 
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method adheres to predefined rules. For example, one basic rule is that all goto and branch 

instructions refer to valid bytecode addresses. 

 

• Small Size of the Compiled Code 

Due to the rich semantics and the stack-based operations, Java bytecode, the instruction 

set of JVM, is more compact space-wise than a statically compiled program. In other words, 

Java has high code density. According to [8], the dynamic average instruction size is 1.8 bytes. 

Compared with typical RISC instruction requiring 4 bytes, this result is satisfactory. For a 

speed-limited network environment or a memory constrained embedded 

 

2.2 Dynamic Voltage and Frequency Scaling 
 

    In this subsection, we will describe background knowledge of DVFS. The term, DVFS, 

means that scale frequency with scaling voltage. According to [2] and equation below, there is 

a proper/lowest voltage for each clock frequency to run stably. Thus we can provide 

enough/lowest voltage for processor to run stably on current frequency to save power. The 

frequency can be estimated by the following equation, 

dd

tg
V

VV
f

2)( −
∝                                 (1) 

where f is the frequency of processor, Vdd the supply voltage, Vt the threshold voltage, and 

Vg the voltage of the input gate. The dominant source of power dissipation in a digital CMOS 

circuits is the dynamic power dissipation [2], 

2
ddVfcP ⋅⋅∝                               (2) 

 

where c is total load capacitance of all gates. In equation (2), we can get conclusion that 
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power is linear in frequency and quadratic in voltage. But we know that energy consumption, 

E=Pt, where t is execution time, which is an inverse proportion to frequency. Thus we can 

derive that energy is quadratic in voltage. There is trade-off between 1/frequency and voltage, 

between execution time and energy if we consider both performance and energy consumption. 

There are some clear examples in figure 2-1 [9]. 

 

Figure 2-1 :  Example of Energy-Saving in DVFS 

 

In figure 2-1 (A), program runs at highest frequency with highest voltage thus gets 

highest energy consumption even if the power supply is turned off after finishing the program. 

Under the given time constraint of 25 seconds, the voltage scheduling in (B) and (C) get 

better energy consumption. 
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2.2.1 Generic Flow of DVFS 
 

    Figure 2-2 describes the generic flow of DVFS system. When running a program, DVFS 

system will trigger profiler at some time or at somewhere in code. After triggered profiler and 

collected needed information, the system needs to verify the condition of program of runtime 

and decide whether to scaling frequency and voltage or not. Collected information then will 

be analyzed by system to produce proper frequency and voltage for current status. After then, 

we need to map the continuous values to closet discrete hardware settings. 

 

 

Program 
Execution 

Profile collection

Frequency & 
voltage 

calculation 

Frequency & 
voltage setting 

Trigger 
Profiler?

No

Yes

Satisfy 
condition?

No

Yes

Reach specified point 
in program or 

periodically triggered 

Collect past information of 
programs such as execution 

time, idle time, instruction 
counts, memory access 

counts, cache miss counts, 
power, energy, battery 

status…  

Depend on policy such as 
idle time > threshold, 

cache miss > threshold, 
battery capacitance < 

threshold  
Predict future 

behavior of programs 
according to profile 
E.g. It has the same 
idle time in the future 

as that in the past 

Mapping continuous 
F / V value to discrete 

F / V HW setting 
E.g. 620345 KHZ 

map to 600000 KHZ 

Figure 2-2 : Generic Working Flow of DVFS 
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2.2.2 Implementation Levels of DVFS 
 

DVFS can be implemented in at a number of levels. These include the hardware level, 

operating system level, compiler level, virtual machine level, and application level. Nearly all 

DVFS research has focused on the first three levels. Though the hardware level provides 

mechanisms for reducing frequency and voltage, it also needs information about program 

behavior to decide when to apply these mechanisms. Techniques for deriving this information 

are too expensive to implement in bare hardware [10]. 

 

 

Operating System 

Program  
(Application or Compiler) 

 

Hardware 

Virtual  
Machine 

Figure 2-3 : Implementation Levels of DVFS 
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Operating systems have more information, namely, about what programs are running and 

what resources they use. Thus, they can make DVFS decisions based on CPU usage patterns. 

However, operating systems lack forward looking information about program behavior and 

are hence limited to extrapolating future behavior from past behavior [3][4][11]. 

 

Compilers, however, receive an entire program as input. Thus, they can predict with 

greater accuracy the paths a program’s execution will take. Compilers can make DVFS 

decisions at a finer granularity than operating systems by inserting DVFS instructions into 

program regions such as basic blocks. Nevertheless, statically optimizing compilers lack 

runtime information and often resort to exhaustive simulation or previously collected offline 

profiles to decide what program regions should slow down and how much they should slow 

down. Once made, these decisions remain fixed for a program’s execution [12]. 

 

Like compilers, virtual machines have a model of future program behavior and can thus 

make more accurate power management decisions than operating systems or bare hardware. 

However, unlike static compilers, virtual machines have an infrastructure allowing them to 

profile and reoptimize programs in execution. This dynamic optimization infrastructure 

allows virtual machines to continuously adapt power management decisions to varying 

execution behavior [6]. 

 

At the application level, programmers can make design decisions that reduce execution 

time and create opportunities for slowing down the processor. However, doing all of the 

analysis for DVFS at the application level may place too much of a burden on programmers 

[2]. 
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2.2.3 Granularity Levels of DVFS 
 

DVFS has been explored at different granularity levels. These include the interval level, 

intertask level and intratask level. At the largest granularity are interval-based policies that 

regularly adjust processor speed based on prior workloads. The simplest algorithm of this 

kind is PAST [11]. PAST adjusts CPU speed at fixed length intervals based on the idle and 

active cycles of the previous interval. If the idle cycles exceed a threshold, it slows down the 

processor. Else if the active cycles are higher, it speeds it up. 

 

Interval1 Interval2 Interval3Interval0 Interval4 

Time 

Frequency 

Figure 2-4 : Interval Level DVFS 

At a higher granularity are intertask policies that determine execution frequencies of 

individual tasks. The simplest example of an intertask policy is Energy-priority scheduling 

[13]. This policy maintains an even workload distribution as new tasks enter a system, to 

minimize battery drain rate. In every iteration, EPS schedules the task with furthest deadline 

and fewest overlapping tasks. It computes the minimum workload increase due to the new 

task and speeds up already scheduled tasks to make room and fill up slack. 

 

Task1 Task2 Task4

Time 

Frequency 
Task3Task0 

Figure 2-5 : Intertask Level DVFS 
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Intratask approaches vary clock frequency and voltage within individual tasks. These 

approaches have been implemented in operating systems and compilers. Example of 

OS-assisted intratask policies are Dudani et al. [14]. To combine EDF scheduling with 

frequency scaling, Dudani et al. split each task the scheduler chooses into two subtasks, later 

running at full speed and the earlier running slower. They choose the earlier subtask’s speed 

to keep the combined execution time of both subtasks below the average execution time for 

the whole task. 

 

Compiler-assisted intratask DVFS by Hsu and Kremer [15] discusses how to select 

regions where DVFS decisions should be made. The idea is to instrument a program with 

profiling code and execute the program to build a table of execution frequencies and average 

cycles for each region under all possible clock frequencies. Using this exhaustive approach, 

Hsu and Kremer select the region whose slowdown minimizes energy dissipation and incurs 

the smallest increase in runtime. 

 

 

Task0

Section

Task0

Section

Task0 

Section

Time 

Frequency 
Task0

Section

Task0 

Section

Section :  

Program units, 

such as function, 

loop, basic block

Figure 2-6 : Intratask Level DVFS 
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2.3 Related Works 
 

    The first part of this subsection details on the related work which implements a DVFS 

algorithm in an operating system [4]. It gives a way to select suitable CPU frequency and 

voltage settings according to behavior of processes. This work inspires us to use hardware 

event counter to characterize program and choose proper setting of CPU. In the second 

subsection, we introduced a DVFS effort which is also implemented on JVM [6]. The final 

subsection introduces a novel and accurate DVFS algorithm implementing in an operating 

system [16]. This effort also makes use of hardware event counter to choose proper setting of 

CPU. It contains an online regression based algorithm which calculates frequency 

dynamically instead of looking up table. We implement a variation of this effort because of its 

accuracy. 

 

2.3.1 Process Cruise Control 
 

 The subtitle of this effort is "Event-driven clock scaling". It suggests making use of 

some sort of event counts occurred at runtime to select a proper CPU frequency for a process. 

They use two hardware events as metric, memory requests and executed instruction counts. In 

fact, according to this related work, we can characterize program by analyzing hardware event 

counts and select proper frequency for each program. 

 

 They implement DVFS mechanism in an operating system. It samples hardware event 

counters for each process at each schedule point. At the same time, using past recorded 

hardware event counts to choose suitable execution frequency for selected process.  
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 The proposed DVS strategy is based on statistics. They write special programs which can 

generate various hardware event counts, such as twenty memory requests and one thousand 

executed instructions. For each clock speed setting, they record execution time for each of 

these programs. The next step is to find the minimal clock speed which can be tolerated for 

given performance requirements. For experiment, they chose 10% as an acceptable 

performance loss. Using the minimal clock speed under different event counts, they construct 

a table named frequency domains (for an example see figure 2-7 [4]). An optimal clock speed 

is chosen by looking up this matrix. 

 

 As previously mentioned, the more memory accesses program does the less 

performance degradation program get when scaling down clock speed. They make use of 

memory requests and instruction counts to choose clock speed according to it. And this 

concept is also the basis of our research. 

 

 

Figure 2-7 : Frequency Domain 
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2.3.2 Virtual-Machine Driven Dynamic Voltage Scaling 
 

  To our knowledge, this is the first effort to implement DVS in JVM. Their system use 

recorded method execution time to predict expected execution time of a method. The 

expected execution time is then used to estimate clock speed of a method. The main concept 

of this research is to make use of trade-off between speed loss and energy saving. Main flow 

is described as follows. 

   

 

1. Calculating new clock speed at the entry of a method. If it is changed (current clock 

speed doesn’t equal to maximum speed), it will not be scale to any new speed setting. 

2.  

3. Sampling the execution time of method after leaving it. Then calculating the average 

execution time and saving it. 

 

 The way to calculate suitable clock speed is trivial. This algorithm assumes that the 

application’s future execution time will be the same as the time it spent executing so far. The 

goal of equation (3) is to estimate total execution time when executing a specific method. In 

equation (4), the estimated time of method is in inverse proportion to clock. After adding 

overhead of switching, the total execution time after scaling is calculated. New clock speed is 

estimated by using equation (5). 

TappTmdTtotal ×+= 2                             (3) 

 TsTappFn
FmTmdTpre ×+×+×= 22                  (4) 

  TtotalKaTpreTtotal ×<<                          (5) 
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Figure 2-8 : Estimated Total Run Time 

 
 
 They made many correct design decisions, such as profiling each method [17], 

considering switching overhead, and making use of trade-off between speed loss and energy 

saving. But they don’t consider overhead of runtime profiling since this effort profiles at each 

method entry and exit. The simple heuristic they proposed has two problems. First, linear 

relation between run time and frequency yields inaccurate prediction of run time after scaling 

frequency. Second, over-predicted total run time of a application yields inaccurate prediction 

of frequency. 
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2.3.3 DVFS based on the Ratio of Off-chip to On-chip Times 
 

 The complete title of this related work is “Fined-Grained Dynamic Voltage and 

Frequency Scaling for Precise Energy and Performance Trade-off based on the Ratio of 

Off-chip Access to On-chip Computation Times”. The key idea of this research is to make use 

of runtime information about the external memory access statistics in order to perform CPU 

voltage and frequency scaling with the goal of minimizing the energy consumption while 

meeting the performance requirements. Unlike [4], it relies on dynamically-constructed 

regression models that allow the CPU to calculate the expected workload for the next time 

slot, and thus, adjust its voltage and frequency in order to save energy while meeting soft 

timing constraints. This is in turn achieved by estimating and exploiting the ratio of the total 

off-chip access time to the total on-chip computation time. The equations below show how to 

calculate the ratio of the off-chip CPI to on-chip CPI using regression model: 
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 In that DVFS system, CPI and MPI (memory request per cycle) are sampled each 

interval. The monitored event values are used to estimate coefficient b and c of regression 

equation (6), and then to use this equation to predict the ratio of off-chip CPI to on-chip CPI 

(equation (9)) of a program. Coefficients b and c at quantum t≥N , are calculated from the 

last N event samples as equation (7) and (8). Once βt is obtained, the target CPU frequency 

for the next quantum, f t+1, is calculated from equation (10) with the specified PFloss factor. 

 

 Proposed DVFS algorithm has some advantages, such as light runtime overhead of 

dynamic profiler, accurate prediction of the program run time after scaling, and accurate 

prediction of needed frequency of program. In contrast, it has some disadvantages, such as 

inaccurate prediction of program behavior with interval basis, heavy runtime overhead of 

online regression calculation, and incompatible estimation of ratio on different platforms. 

 

  Finally, we present a comparison table of related works. We compare these three 

related works from different respects. This table contains implementation level, runtime 

profiling overhead, prediction accuracy of future behavior and needed frequency, runtime 

computation overhead and platform neutrality of them. 
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Table 2-1 : Comparison of Related Works 

Related Work 
A. Weissel, and F. 

Bellosa [4] 

V. Haldar, Ch. W. 

Probst, V. 

Venkatachalam, and 

M. Franz [6] 

K. Choi, R. Soma, and 

M. Pedram [16] 

Implementation 

Level 
OS VM OS 

Profiling 

overhead 

Light 

(Interval-based) 

Heavy 

(Method-based) 

Light 

(Interval-based) 

Prediction of 

future behavior 

Inaccurate 

(Interval-based) 

Accurate 

(Method-based) 

Inaccurate 

(Interval-based) 

Prediction of 

needed 

frequency 

Accurate 

(Base on ratio of 

on/off-chip time, 

statically constructed 

table) 

Inaccurate 

(Simple heuristic) 

Accurate 

(Base on ratio of 

on/off-chip time, 

dynamically regression 

model) 

Computation 

Overhead 

Light 

(Table lookup) 

Light 

(Simple heuristic) 

Heavy 

(Online linear 

regression) 

Prior knowledge 

about Platform 

Necessary 

(Ratio of on/off-chip 

time) 

Unnecessary 

Necessary 

(Ratio of on/off-chip 

time) 
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Chapter 3 System Design 
 

 

 This chapter details on design and software implementation. First subsection describes 

architecture of entire system and relations between all system components. In second 

subsection, we describe runtime profiling mechanism, DVS subsystem and working flow 

between them. Third section is the most important part of this research. It details on a 

modified DVS strategy from [16]. It uses hardware event counts to estimate future behavior 

(CPI) of a program. 

 

3.1 System Overview 
 

 Our implementation is based on KVM (Kilobytes virtual machine) of version 1.04 [18]. 

As its name suggests, it is a special JVM for small embedded systems. The features of KVM 

are small code footprint, small memory footprint and simple architecture. Referring to [4], [6] 

and [12], we design and implement two kinds of schemes, interval-based and method-based. 

Our goal is to evaluate efficiency of interval-based scheme and to exploit the potential of 

method-based scheme. Figure 3-1 is the concept diagram of entire system. The rectangle in 

center is KVM. We add some software components to KVM that describe as follows. 

 

•Dynamic Profiler: 

 This component takes reasonability for collecting runtime information of programs. 

Method-based profiler consists of two parts. First part collects invocation counts and 

durations of each method, then finds out those hot methods. Second part collects hardware 

event counts of each hot method. We record cycle, instruction, I/D cache miss, DTLB miss 
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counts. We also implement an interval-based profiler. 

 

•DVS policy model: 

 According to the information provided by dynamic profiler, it estimates a suitable clock 

speed. We adapt policy/equation from [16] for our experiment platform. We will discuss this 

later. 

 

•DVS mechanism:  

 According to the clock speed policy model estimated, it maps value to setting 

commands and sends them to processor to scale execution frequency. We use a customized 

Linux kernel module to implement this component. 

 

 When a program is being executed, the dynamic profiler is invocated in proper situation 

(periodically or at specified point). DVS policy model estimate proper clock speed according 

to profile collected. Then DVS mechanism is invoked. 

 

Dynamic 
Profiler 

Processor 

 DVFS Policy 
Model 

 

Cycles, Instructions, 
I/D cache misses,  
DTLB misses  

DVFS  
Mechanism

KVM 

Interpreter 

Frequency & 
Voltage 
setting 

Method 
invocation

counts 

Profiles

Frequency 
& 

Voltage 

Original New 

Bytecode 

Figure 3-1 :  System Architecture 

21 



3.2 System Flow and Dynamic Profiler 
 

 A complete DVS algorithm must consist two main important parts. First part is profiling 

behavior of programs. Second part is estimating clock speed according to profile. We present 

working flow of interval-based scheme firstly. Next, working flow of method-based scheme is 

proposed. 

 

3.2.1 Working Flow of Interval-based Scheme 
 

 In a word, interval-based scheme samples hardware event counters at each interval. 

Length of interval is set to a multiple of V/F switching overhead to reduce the influence 

yielded by switching. Complete working flow is provided in Figure 3-2. At the beginning of 

each interval, DVFS system samples HW events, calculates frequency from events, maps 

frequency to actual HW setting and sets the setting. 
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(DVFS Policy Model)

Frequency & voltage 
setting 
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Time to 
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No 
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Profile as input to 
predefined equation, 

frequency and voltage 
value as output  

Mapping target V/F 
value to minimum V/F 
HW setting great than 

target V/F and setting it

Figure 3-2 : Working Flow of Interval-based Scheme 

 
3.2.2 Working Flow of Method-based Scheme 
 

 First mission of method-based scheme is to choose hot methods for DVFS. In our 

design, hot methods are defined as frequent and long run-time methods. The goal of this 

limitation is to select suitable method with reducing the runtime overhead of profiling and 

calculation. In our design, profiling is done at each invoke bytecode to record duration and 

invocation counts. While a invoke bytecode is executed for some times, system will judge if it 

is suitable for DVFS by its average duration. Call site with short average durations will be 

replaced by a non-profiling bytecode to prevent continuing profiling at this call site. 

 

 After figuring out those hot methods, we use another profiler to record average 

hardware event counts of each of them. The collected hardware event counts include cycle, 
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instruction, I/D cache miss, DTLB miss counts. Those counts are collected by using a 

customized linux kernel module.  

 

 While the system collects enough information of the method and satisfies some 

assumption (cycle counts is bigger than a threshold), DVFS policy model will estimate a 

proper clock speed of it. If it decides to switch frequency, system will do change before 

executing the method. Figure 3-3 is the complete flow diagram of this section. 
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Figure 3-3 : Working Flow of Method-based Scheme 
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3.3 DVFS Policy Model 
 

 This section describes the most important part of our effort, a modified DVFS algorithm 

from [16]. It is based on some import observation and assumptions. And the goal of it is to 

make use of slight speed loss to trade significant energy saving. As mentioned before, the 

speed of memory is much slower than processor so performance of program will be limited. 

Although we scale down clock speed of processor, it will not make significant degradation of 

performance [4]. In common, the scaling of processor will not degrade significant speed of 

memory access. So we assume the speed of memory will not be changed after changing the 

speed of processor.  

 

 Before explaining how to calculate proper frequency, we need to describe a 

methodology for selecting HW events to calculate ratio of on-chip CPI to off-chip CPI. 

Because the ratio is the most important variable in this policy and our target platform do not 

provide a trivial way to figure it out, we need to obtain the ratio by a more complicated way. 

 

3.3.1 Selection of Input Hardware Events 
 

 Our target platform is Intel XScale PXA27x developer’s kit [19]. The processor in this 

platform contains four HW event counters and one cycle counter. We extend the policy from 

[16] by estimating the ratio of on-chip CPI to off-chip CPI with five counters. We extend the 

original regression model from two variables to four variables. Thus we need a methodology 

to select events with accurate prediction of CPIs. The complete flow is described as follows. 

We use our target platform as example to help understanding. 
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1. Select events belong to either on-chip or off-chip events except mixed. The intention of 

this step is to filter out unsuitable event. Since we want to calculate regression of 

off-chip and on-chip CPI, we filter out those mixed events. Table 3-1 provides examples 

for categorizing events on PXA27x. Except instruction executed event, we filter out all 

mixed events since we want to calculate CPIs. 

 

Table 3-1 : Event Category of PXA27x 

On-chip Off-chip Mixed 

(5)Branch instruction executed 

(6)Misspredicted branch count 

(13)Number of times software 

changed the PC 

(0)ICache miss count 

(3)ITLB miss count 

(4)DTLB miss count 

(8)Number of stall cycles due to 

buffers full 

(9)Number of times buffers are 

detected full 

(11)DCache miss count 

(12)Number of write-back events 

(1)Number of stall cycles for fetch 

unit 

(2)Data dependency duration count

(10)DCache access count 

(7)Number of instructions executed

 

2. Run benchmarks and collect all selected HW events at different frequencies. We using 

MiBench [20]and four programs from SPECJVM98 [21]. The real-life behaviors of 

programs on target platform are collected to help figure out the most important events 

since target platform provides limit number of counters. 

 

3. Choose HW events with high correlation to CPI. Correlations of all events normalized 

with instructions counts to CPI are calculated for different frequencies. We choose three 

events of highest correlation to CPI, instruction cache miss, data cache miss, and data 

TLB miss counts. Table 3-2 present average correlations of events to CPI. 
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Table 3-2 : Correlation of HW events to CPI 

Event Correlation 

DTLB_MISS/INST(7) 0.5557 

ICACHE_MISS/INST(1) 0.5287 

DCACHE_MISS/INST(3) 0.5194 

DCACE_WRITE_BACK/INST(13) 0.4263 

DCACHE_FULL_STALL/INST(10) 0.3809 

DCACHE_FULL_STALL_CONTIG/INST(11) 0.2948 

ITLB_MISS/INST(6) 0.1804 

BRANCH/INST(8) 0.0528 

PC_CHANGED/INST(12) 0.0321 

BRANCH_MISS/INST(9) -0.0624 

 

4. Calculate linear regression coefficients of selected events to validate the accuracy. The 

error of selected events on PXA27x with those benchmarks is 8% 

 

3.3.2 Linear Regression Model 
 

 Dynamic profiler samples CPI, instruction cache miss per instruction, data cache miss 

per instruction, and data TLB miss per instruction each time it is invoked. Sampled data are 

then fed to regression model (Equation 11) to calculate coefficients of Equation 12. The ratio 

of on-chip CPI to off-chip CPI (Equation 13) is calculated immediately. While β is calculated, 

proper frequency of next interval/method can be estimated by Equation (14). 

 

CPIsEventsEventsEventsCoffs TT ⋅⋅⋅= −1)(                   (11) 

dDTMPIcDMPIbIMPIaCPI +⋅+⋅+⋅=                    (12) 

d
DTMPIcDMPIbIMPIa ⋅+⋅+⋅

=β                        (13) 

1)1(
max

++⋅
≥

βloss

new
PF

FF                               (14) 
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factor  loss  Perfomance :PF
 Frequency  CPUNew   :F

frequency  CPU  Maxinum :F

CPI to CPI of Raio:β
CPI  of  samples  K  matrix,  Kx1:CPIs

eventsHW    4  of  samples  K  matrix, 4K:Events
d  c,   b,  a, represent   matrix, 4x1:Coffs
ninstructio  per  miss  TLB  Data:DTMPI

ninstructio  per  miss  Dcache:DMPI
ninstructio  per  miss  Icache:IMPI

ninstructio  per  Cycles:CPI

loss

new

max
onchipoffchip

×

 

 

 There is a problem in implementation of online regression calculation. The runtime 

overhead of matrix operations is significant on target platform since it does not have float 

point processor and divider. It yields about 200k cycles on PXA27x platform to calculate a set 

of coefficients. So we also propose a static method using training sets to calculate coefficient 

offline. We will evaluate on/off line method in next chapter. 

 

3.4 DVFS Mechanism 
 

 In order to obey performance requirement and simplify design, we use a conservative 

method for mapping calculated frequency into actual HW setting. It maps frequency produced 

by the policy model to minimum CPU frequency setting which is equal to or great than target 

frequency. Table 3-3 shows the example on our target platform. 

Table 3-3 : Frequency Mapping Table 

Calculated 

Frequency 
624 ≤ f < 520 520 ≤ f < 416 416 ≤ f < 312 312 ≤ f < 208 208 ≤ f 

Mapped 

Frequency 
624 520 416 312 300 
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Chapter 4 Experiments 
 

 

This chapter is devoted to experiments. We first describe experiment methodology. Next, 

our hardware and software environment for experiments are detailed. Third, appropriate 

benchmarks are chosen for performance and energy evaluation. Finally, experiment results 

including speed performance and energy reduction are exhibited. 

 

4.1 Methodology 
 

In a word, evaluation of our design is done with two kinds of ways, measuring of real 

run time and simulating of relative energy consumption. Relative performance of speed is 

measured by performance monitor counters while running benchmarks and calculated with 

comparing to baseline KVM. Relative energy consumption is calculated with equation (15). 

All durations under different frequency settings in a run are record. According to F/V table 

(see Table 4-3 and Table 4-4), related energy consumption of this run can be calculated. 

tVfE dd ⋅⋅∝ 2                               (15) 

 

4.2 Experiment Environment 
 

Our effort is designed and implemented based on version 1.1 of Sun’s KVM [18], the 

reference implementation of J2ME CLDC. For our research usage, the KVM is ported to the 

Intel XScale PXA27x developer’s kit [19], an evaluation board which consist a PXA270 

processor, 64MB SDRAM, LCD, and many other peripherals (see Table 4-1). This evaluation 
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board supports three kinds of mechanisms for switching frequencies and voltages of the 

processor (see Table 4-2). We use different mechanisms for different granularity of settings of 

our design. 

 

Table 4-1 : Features of Intel PXA27X Developer’s Kit 

Feature Description 

Processor Single issue super-pipelined(7~8) microprocessor 

On-chip Memories 

256 KB scratch-pad memory 

32 KB, 32 ways set associative I/D cache 

2 ways set associative mini D cache 

2 KB, 2 ways set associative BTB 

32 entry full associative I/D TLB 

Off-chip Memories 
64 MB SDRAM 

32 MB Flash RAM 

Performance 

Monitor 
1 cycle counter, 4 event counters (support 14 events) 

Limitation of V/F 13 MHZ ~ 624 MHZ, 0.9V ~ 1.5V 

Other peripherals LCD, USB, Ethernet, Serial ports… 

 

Table 4-2 : V/F Switching Abilities of PXA27x 

Description V/F coupling F only Turbo-mode (F only)

Delay ~1000 μs ~150 μs ~5 μs 

# of settings 

(according to bus 

frequency) 

1~7 1~7 1~3 

Granularity of Our 

Design 
> 10 ms > 1ms > 500μs 
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We also add supporting code of performance monitoring and V/F switching for PXA270 

processor to linux kernel version 2.4.21. Setting using in experiments of our design is detailed 

as follows. For SPECJVM98, heap memory size is set to 8MB. With exhaustive experiment, 

we set length of sample queue of regression model to 10.  

 

Interval-based scheme is experimented with 1000, 100, and 10 ms interval. Because 

average run time of benchmarks is less than ten seconds, interval longer than 1000 ms is 

unreasonable. The timer mechanism support by OS/HW put the limit of shortest length of the 

interval.  

 

Method-based scheme is experimented with hotspot thresholds of 5 invocation counts 

and 500 us length. Currently, it is the best setting of method-based scheme with considering 

performance of speed and energy and runtime overhead of profiling and switching. In final, 

relations between frequency and voltage settings using in experiments are presented in Table 

4-3 and Table 4-4. 

  

Table 4-3 : Mapping Table of Frequency and Voltage 

Frequency (MHZ) 208 312 416 520 624 

Voltage (mv) 1150 1250 1350 1450 1500 

 

Table 4-4 : Mapping Table of Frequency and Voltage for Turbo-mode 

Frequency (MHZ) 208 312 624 

Voltage (mv) 1150 1250 1500 
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4.3 Benchmarks 
 

Due to the limited APIs that J2ME CLDC specifies, common Java benchmarks can not 

be applied in our experiment. By referring to related academic researches, we find that there 

are rare J2ME benchmarks suited for our experiments. Thus we modify KVM and four 

benchmarks from SPECJVM98 [21]. SPECJVM98 is commonly used in academic researches 

for JVMs for desktops or servers. But four benchmarks of it can be modified to run on 

embedded JVM with reasonable resource. Below are the descriptions of four benchmarks. 

Table 4-5 : Descriptions of Benchmarks 

Name Description 

_201_compress Modified Lempel-Ziv compression method (LZW). 

_202_jess 
A Java Expert Shell System is based on NASA's CLIPS expert shell 

system. 

_205_raytrace A raytracer that works on a scene depicting a dinosaur 

_209_db Performs multiple database functions on memory resident database. 

 

4.4 Experiment Results 
 

First, granularity of interval-based scheme and influence of online regression calculation 

are evaluated. Next, we examine the efficiency of method-based scheme and discuss some 

issues behind it. Finally, we compare the efficiency of method-based and interval-based 

scheme. All figures in section 4.4 except 4.4.2 show either average performance or average 

energy of four benchmarks under different settings. “Dynamic” means online regression 

calculation, “Static” refers to offline regression calculation and “PFloss” presents the 

requirement of performance loss in percentage. 
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4.4.1 Efficiency of Interval-based DVFS Scheme 
 

This section is to test the effect of different granularities and influence of regression 

model calculation of interval-based design. Different granularities yield different overhead of 

profiling and regression calculation. Different granularities also influence accurate of 

prediction of needed frequency.  

 

Figure 4-1 shows that the finer granularity is the more accurate performance meets. First 

reason is that behaviors, CPI and ratio of on-chip/off-chip CPI, between adjacent intervals are 

more dissimilar with longer than it with shorter interval. In another point of view, short 

interval setting has more potential to exploit memory-bound codes than long one. Since 

memory-bound codes are tends to be much shorter than an interval and randomly distributed. 
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Figure 4-1 : Actual Performance of Interval-based Scheme 
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We find that in figure 4-2, the energy consumption of 100 ms (dynamic setting) is less 

than 10 ms setting. This fact illustrates that overhead of regression computation in the 10 ms 

setting is too heavy. Performance loss brings by 10 ms dynamic setting interval scheme does 

not trade completely with energy saving. Part of it is introduced by regression calculation. 
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Figure 4-2 : Energy Consumption of Interval-based Scheme 

 

It can be concluded that dynamic with 100 ms setting is the best setting. Although the 

finer granularity is the more accurate prediction is in static setting, the dynamic with 100 ms 

setting is still better than static with 10 ms setting. Because regression coefficients in static 

setting can’t be adapted with behavior of programs, static settings make inaccurate predictions 

of needed frequency. 
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4.4.2 Efficiency of Method-based DVFS Scheme 
 

One of goals of this thesis is to experiment the potential of method-based DVFS scheme. 

Heavy runtime overhead is a problem of method-based scheme. We try to solve this problem 

by applying some techniques, hot method only and dynamic bytecode replacement. Even with 

these optimizations, overhead still yields negative effects in our experiments.  
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Figure 4-3 : Actual Performance of Four benchmarks under Method-based Scheme 

 

This is due to the nature of JAVA language. JAVA programs tend to be call-intensive 

with tiny method. In four benchmarks we use, _205_raytrace is an extremely example. We 

measured that 91.12% method calls cost only 28.29% total run time in _205_raytace. In 

Figure 4-3 and 4-4, _205_raytrace costs up to 80% performance loss with negative energy 

saving. The reason behind this is illustrated. Also, online regression calculation is too heavy 

for method-based scheme. So performance loss differences of _205_raytace between dynamic 

and static setting are up to about 40%. Other benchmarks yield slight energy saving but heavy 

35 



performance loss. This fact is also the influence of profiling and calculation overhead. We 

conclude that static setting is better than dynamic one in method-based scheme. We also 

guess that there are some spaces for improvement of this scheme if the overhead problem can 

be minimized. 
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Figure 4-4 : Energy Consumption of Four benchmarks under Method-based Scheme 

 

4.4.3 Comparison of Interval-based and Method-based Scheme 
 

In this section, we put results of interval-based scheme and method-based scheme 

together and examine them at the same time. Figure 4-5 looks like that method-based scheme 

is more aggressive to trade speed with energy. In fact, performance loss of the method-base 

scheme is introduced by profiling and calculation overhead we mentioned in previous section. 

Thus, in Figure 4-6, energy saving of method-based scheme is slight or even negative. 
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Figure 4-5 : Actual Performance of Interval-based and Method-based Schemes 
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Figure 4-6 : Energy Consumption of Interval-based and Method-based Schemes 
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As mentioned in section 4.4.1, interval-based scheme provides good results in 

performance loss and energy saving. Comparing to method-based scheme, this observation is 

validated again. We can conclude that interval-based scheme is suitable for embedded JVMs. 

 

Finally, the experiments results of best settings of interval-based and method-based 

schemes are listed in Table 4-5.  

Table 4-6 : Experiment Results of Best Settings 

 Setting Performance Loss Energy Reduction 

Dynamic, PFloss=20 15.89% 12.04% 
Dynamic, PFloss=30 20.59% 16.00% 
Dynamic, PFloss=40 32.31% 23.81% 
Dynamic, PFloss=50 41.16% 28.68% 

Static, PFloss=20 14.68% 10.93% 
Static, PFloss=30 17.29% 13.28% 
Static, PFloss=40 29.28% 22.29% 

Interval 

Static, PFloss=50 37.26% 27.01% 
Dynamic, PFloss=20 29.30% -8.57% 

Dynamic, PFloss=30 38.37% -7.07% 

Dynamic, PFloss=40 42.54% -5.69% 

Dynamic, PFloss=50 44.92% -4.42% 

Static, PFloss=20 22.35% -1.61% 

Static, PFloss=30 31.11% -0.11% 

Static, PFloss=40 34.80% 0.93% 

Method 

Static, PFloss=50 35.30% 1.24% 
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Chapter 5 Conclusion and Future Work 
 

In this research, we proposed a research platform for studying program behavior on 

embedded JAVA virtual machine. We design, modify and implement a DVFS system to 

reduce energy consumption of processor in an embedded JVM. Follows are detail conclusion 

and future work. 

 

5.1 Conclusion 
 

Proposed Interval-based DVFS scheme is sufficient for embedded JVMs. It reduces 

12.04%~28.68% energy consumption of the CPU with 15.89%~ 41.16% performance losses. 

And we experiment the possibility of method-based DVFS scheme. We find that proposed 

method-based DVFS scheme is not suitable for embedded JVMs. It reduces -1.61%~1.24% 

energy consumption of CPU with 22.35%~ 35.30% performance losses. Because JAVA 

programs tend to be composed by many tiny methods, method-based profiling and frequency 

calculation yields heavy runtime overhead. Performance loss introduced by runtime overhead 

consumes additional energy. Energy saved by DVFS is wasted by additional runtime 

overhead. Although this scheme presents poor result, in some benchmarks, such as _209_db, 

it yields significant energy reduction. It implies that the potential of this scheme is needed to 

be further exploring 

 

Finally, Methodology for exploiting relations between HW events proposed by us is 

practical. Using this methodology, estimation on/off-chip CPI with 8% error is made. We also 

expand one more column from Table 2-1 to compare our effort with others and then remake a 

new table as Table 5-1. We list features of two schemes, interval-based scheme with dynamic 
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regression and method-based scheme with static regression. 

 

Table 5-1 : Comparison with Related Works 

Related Work 

A. Weissel, 

and F. Bellosa 

[4] 

V. Haldar, Ch. 

W. Probst, V. 

Venkatachala

m, and M. 

Franz [6] 

K. Choi, R. 

Soma, and M. 

Pedram [16]

Proposed Design 

Implementation 

Level 
OS VM OS VM 

Profiling 

overhead 

Light 

(Interval-based) (Method-based)

Heavy Light 

(Interval-based)

Light 

(Interval-based) 

Medium 

(Modified 

Method-based)

Prediction of 

future behavior 

Inaccurate 

(Interval-based) (Method-based)

Accurate Inaccurate 

(Interval-based)

Inaccurate 

(Interval-based) (Method-based)

Accurate 

Prediction of 

needed 

frequency 

Accurate 

(Base on ratio 

of on/off-chip 

time, static 

constructed 

table) 

Inaccurate 

(Simple 

heuristic) 

Accurate 

(Base on ratio 

of on/off-chip 

time, dynamic 

regression 

model) 

Accurate 

(Base on ratio 

of on/off-chip 

time, dynamic 

regression 

model) 

Accurate 

(Base on ratio 

of on/off-chip 

time, static 

regression 

model) 

Computation 

Overhead 

Light 

(Table lookup) 

Light 

(Simple 

heuristic) 

Heavy 

(Online linear 

regression) 

Heavy 

(Online linear 

regression) 

Light 

(Offline linear 

regression) 

Prior 

knowledge 

about Platform 

Necessary 

(Ratio of 

on/off-chip 

time) 

Unnecessary

Necessary 

(Ratio of 

on/off-chip 

time) 

Necessary 

(Ratio of on/off-chip time) 
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5.2 Future Work 
 

For future research directions, more improvements may be incorporated into our effort. 

For method-based DVFS scheme, suitable method for DVFS can be selected with offline 

whole program analysis to prevent online profiling overhead with tradeoff of flexibility. Or 

we can try to exploit potential of another program unit for DVFS such as trace, loop and basic 

blocks. 

 

For interval-based scheme, combining with historical heuristic such as pattern [22], 

control-theory based algorithm [23] may be a proper direction for improving accuracy. 

Extending current design to make use of other hardware component such as memory, bus, and 

LCD may also a good direction. Since energy is consumed not only by the processor but also 

by other components. A more precise DVFS model is required to save energy with 

considering all components in a system. 
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