
國立交通大學

資訊科學與工程研究所

碩 士 論 文

利用群聚法分析網路記錄

Network Security Management with Traffic Pattern

Clustering

研 究 生：邱韜瑋

指導教授：蔡錫鈞 教授

中 華 民 國 一○二 年 十一 月

利用群聚法分析網路記錄

Network Security Management with Traffic

Pattern Clustering

研 究 生：邱韜瑋 Student : Tao-Wei Chiou

指導教授：蔡錫鈞 Advisor : Shi-Chun Tsai

國立交通大學

資訊科學與工程研究所

碩士論文

A Thesis

Submitted to Institute of Computer Science and Engineering

College of Computer Science

National Chiao Tung University

in partial Fulfillment of the Requirements

for the Degree of

Master

in

Computer Science and Engineering

November 2013

Hsinchu, Taiwan, Republic of China

中華民國一○二年十一月

摘 要

本篇論文藉由觀察網路用戶的連線行為，結合殭屍網路的連線特徵尋找校園網路內潛

在中電腦病毒的受害機器以及由Domain Generating Algorithm(DGA)產生的惡意網域，

我們針對無法連接的網域(NXdomains)提出了一個分辨一般網域以及由DGA產生惡意網

域的特徵叫做Popular 2gram(兩個連續的英文單字)，並且透過群聚法以及分類法找

到受害的機器以及惡意的網域。我們另外觀察受害機器的連線目標並且計算每一個受

害機器的連線相似程度去法絕這些機器在一起行動時的行為模式。為了加快分析的時

間，我們使用Hadoop的技術去分析大量的網路紀錄。本論文提出的方法可以提供中毒

機器的連線行為模式，惡意的網域以及IP的資訊給網路管理人員，使網路管理人員能

做出相應的措施此殭屍網路所造成的傷害降低。

關鍵詞:殭屍網路、動態網域產生演算法、群聚法、機器學習、分散式阻斷攻擊、海量

資料、網域名稱系統。

i

Abstract

Profiling network traffic pattern is an important approach for tackling net-

work security problem. Based on campus network infrastructure, we propose

a new method based on connection behavior of botnet to identify randomly

generated malicious domain names and pinpoint the potential victim groups.

We characterize normal domain names with the so called popular 2gram (2 con-

secutive characters in a word) to distinguish between active and nonexistent

domain names and classify the clients as victims or not with the spectral

clustering method. We also track the destination IPs of sources IPs and

analyze their similarity of connection pattern to uncover potential anomalous

group network behaviors. We apply the Hadoop technique to deal with the big

data of network traffic. Our approach can give information about connection

pattern of victims, malicious domains and malicious IPs, which is can help

network administrators to mitigate the effect of botnet

Keywords: Botnet, Domain Generating Algorithm, Clustering, Machine learning,

Denial of service, Big data, Domain Name System.

ii

Acknowledgments

首先我要感謝蔡錫鈞教授每個禮拜的個別指導，老師在我做研究期間給我很多有用的

建議，並且在我研究完成時耐心地修改我的論文。我也得感謝我的好夥伴智誼，程式

能力極強的智誼除了給我很多實作上的建議之外，他也是Hadoop Cluster的管理人員，

真的很感謝他在Hadoop Cluster壞掉的時候放下他手邊的工作，就是為了讓我早一點

跑實驗，真的很感激他，另外也得謝謝名全學長在我機器學習理論碰到理論上的瓶頸

的時候，願意跟我討論數學的證明，而且學長也常常幫我修投影片與報告。還有蘇俊

憲學長也教導我DNS log和PA的log的知識，並且也是因為蘇學長給我存取DNS log的權

限，我才有機會完成這一份論文。我也要感謝煥博，裕堡，上全，大慶，韋翔學弟以

及奕任在研究上的討論，很多討論的結果都給我在研究上的啟發。最後我也要謝謝我

的父母以及室友，在我研究期間也曾沮喪過低潮過，謝謝他們一直支持我，使我能度

過一次次在研究上的低潮，使我能完成碩士的學業。

iii

Contents

1 Introduction 1

2 Analysis of DNS log 7

2.1 Notations . 7

2.2 Workflow . 7

3 Traffic analysis 24

4 Conclusion 30

iv

List of Tables

2.1 Comparsion of different popular 2gram sizes 12

2.2 Simulation on Zbot . 23

v

List of Figures

1.1 The infect stage and attack stage of command-and-control server. 2

1.2 Victims infected by DGA-based malware connect to C&C server . . 4

1.3 System overview . 6

2.1 DGA detection workflow . 8

2.2 Unique stage pseudo code . 8

2.3 Domain extraction stage pseudo code 11

2.4 Pseudo code for computing popular 2gram ratio 12

2.5 Pseudo code for building Trie 13

2.6 Longest meaningful substring 14

2.7 The ROC curve for our approach and approach from [2] 15

2.8 Finding connected components: (a) initial step. (b) send index

to neighbors. (c) update index. (d)(e) repeat until no node can

be updated . 18

2.9 Pseudo code for Join Stage 20

2.10 Pseudo code for Victim Group Detector 21

2.11 Theta measurement . 22

3.1 Scan Activity: (a)The ordinary clusters. (b) The clusters when

scan happened (c) The summary of one cluster 26

3.2 Json file to specify the connections behavior in one period . . 28

3.3 Fragments of connected component 29

vi

Chapter 1

Introduction

There are many malware flooding in the Internet today. It’s an important and difficult task

for network administrator to know which client has been infected by malware. Botnet is a

collection of compromised machines, called victims and controlled by a botmaster, which

controls the compromised computers by command-and-control (C&C) server. Botnet

causes many security problems, such as DDoS attacks, spam mail, phishing, click fraud,

information leakage, etc. With the rapid growth rate of the network complexity and traffic

size, it is important to build a system to detect victims infected by malware and provide

stable IT service. However, it is a challenge to build such a system, because of the huge

traffic size and diversity of end-hosts. Even the infected victims are identified, we may not

be able to defuse the problem in time, because of the shortage of network facility crew. In

this paper, we show a network alarm system, that can detect the potential victim group

and monitor group activity when the botnet launches a massive attack.

1

(a)

(b)

Figure 1.1: The infect stage and attack stage of command-and-control server.

The behavior of C&C server consists of infection stage and attack stage as shown in Fig.

1.1. During the infection stage, when a system is infected and becomes a victim, it will try

to find the C&C server by querying the DNS server with some specific domain names. The

infected computer will download and execute malicious codes for identity theft, backdoor

codes, etc. The victims connect to C&C server via randomly generated domain names

to avoid detection, such as the notorious bot Conficker [1], whose infected victims will

randomly generate tens of thousands domain names with the domain generation algorithm

(DGA) [1, 2, 5, 6]. While only very few of the domains are registered and can be used

2

to connect to C&C server. DGA could evade the blacklist and counter measurement,

since the botmaster could change the active domains rapidly. The procedure that victims

connect to C&C server is shown in Fig. 1.2. We can split the procedure into two stages:

try stage and connect stage. In try stage, victims generate a set of domains and the

botmaster already has registered a subset of these domains. Victims do not know which

domains are registered, and thus select domains from the list randomly and try to connect

to C&C server one by one. Note that when these victims try to find the registered

domains, they might query the same unregistered domains (NXdomains). We extract

from the NXdomains which look like DGA domains by using 2 features: popular 2gram

and longest meaning substring, and group these domains into a number of clusters called

NX group. NXDomains in the same NX group indicate that these domains look like

random string and are queried by common clients. After these victims find the active

domains, domain name server would return one or multiple IPs which can connect to

C&C server. Because these domains belong to the same botmaster, they might share

some resolve IPs, because of the limit of available IPs. We consider the domains and

IPs as a bipartite graph G = (D,P) where D is a set of domains and P is a set of IPs.

If there is a query on domain d ∈ D for it’s IP and the returned IP address is p ∈ P,

then we construct an edge for (d, p). We perform a Hadoop job proposed by [7] on G

to find connected components to group active domains called active group. The domains

in the same active group indicate that these domains belong to the same network. The

detecting intuition is that only victims infected by the same malware connect to the same

NXdomains (NXdomains queried by infected clients), and most of these victims would

connect to the same active component which others clients never connect with. In other

words, it can be observed that one NX group and one active group serve the same clients,

which is an unusual event. We build a detection system to analyze DNS log, find DGA-

based domains and discover victims infected by the malware based on this observation.

We will discuss the details in Section II.

Many malicious malwares, such as botnet, spyware, spammer etc., abuse DNS to carry

out their misconduct. For example, the botmaster, such as Conficker [1] and Torpig [6],

usually registers some domains and the compromised computer systems will connect to

the C&C server through these domains and start a joint massive attack later. Many

researchers [2, 3, 4, 5, 8, 9, 10] have applied machine learning techniques to identify these

3

(a) Try stage

(b) Connect stage

Figure 1.2: Victims infected by DGA-based malware connect to C&C server

domains. Choi and Lee[9] found that botnet generally acts as a group and they developed a

system to identify malicious domains by capturing botnet’s group activities. Antonakakis

et al. [8] proposed a dynamic reputation system for DNS by providing a reputation score

from 35 features for each new domain. Yadav et al. [5] determined malicious domains by

domain’s zone features. Some of the domain names are generated by DGA. Yadav et al.

also leveraged the fact that the alphanumeric distribution of algorithmically generated

domain is very different from those generated by human.

After we got the victims, we consider botnet group activity during the attack stage,

the infected computers will execute the instructions downloaded from C&C server and

usually target at certain systems to block normal service, conduct click fraud, send spam

mails, etc. It means that connection behaviors of these victims are similar because vic-

tims connect to the same destination. We build the Traffic log monitor system to capture

the group activity and report the destinations where they want to connect and the cor-

responding source and destination ports. Then Network administrator could build the

access control rules with the obtained information and block the botnet attack.

4

Xu et al. [12] extracted source and destination IPs from backbone network traffic, and

explored the behavior similarity of end-hosts with the same prefix and grouped together

the end-hosts with high similarity by the spectral clustering method [11]. The end-hosts

in the same cluster means that these clients have similar connection behavior in the time

window. Particularly, the cluster is very sensitive to massive activity, such as DDoS attack

and scanning. Once we obtain the victim group after inspecting the DNS logs, we use

spectral clustering method to analyze the relation between source and destination IPs.

As in the work by Xu et al.[12], we can model the relation as a bipartite graph, where

the analysis unit is the IPs of victim groups. Then we can identify effectively the security

related problems, such as DDoS, scan activity. We will discuss it in Section III.

Since the size of DNS logs and traffic data is huge, it is already a challenge to move

the big data around efficiently, let alone processing the data. To this end, we use Hadoop

[13] technique to handle the humongous data size. Hadoop is a Java-based platform,

which supports big data computation and storage. The MapReduce computation model

is adopted in Hadoop, which processes a job in two phases, i.e., Map phase and Reduce

phase. While in Map phase it splits input data into chunks and processes them in parallel,

and in Reduce phase it collects outputs from Map phase and combines them into the final

answer.

Our system overview is as shown in Fig. 1.3. We consider clients in campus network

and network traffics pass through the firewall PA [14] and the router, then directed to two

collectors, i.e., DNS log collector and PA-Traffic collector. DNS log collector collects the

log if a client requests to the domain name server on campus. DNS log collector records the

client, queried domains and the corresponding timestamp. PA-Traffic collector collects

packet information about source IP, destination IP, source port, and destination port,

but PA-Traffic collector does not collect the payload. We apply the DNS Log Analyzer to

detect victim group and malicious domains, and store them into Victim Group Database

with MongoDB[15]. Finally we use network traffic log to monitor botnet group activity.

Network administrator can leverage the information about victims’ malicious domains

and results of victim behavior to construct control access rules or simply block the botnet

activity.

We summarize our contributions as follows.

• We propose a new feature, popular two gram, to detect DGA domains.

5

Figure 1.3: System overview

• We propose a system for detecting (1) DGA-based malicious domains, (2) corre-

sponding IPs, which can connect to C&C server, (3) the victims infected by these

malwares, and (4) the victim behavior when acting together.

The rest of the paper is organized as follows. In section II, we show the details of capturing

the victims, DGA-based domain names and victim groups from the DNS log. In section

III, we show the network behavior analysis with spectral clustering method. We conclude

the paper in section IV.

6

Chapter 2

Analysis of DNS log

In this section we introduce our DNS log analysis workflow.

2.1 Notations

First we introduce some notation. For a DNS record r, we define r.c as the client’s

IP which was queried to DNS server by the domain r.d. Note that we only focus on

A type query. For example, a DNS record r is as in the following form 29-Oct-2013

15:14:53.722 queries: info: client 140.113.xx.xx#61974: query: ssl.gststic.com IN A +.

It means client 140.113.xx.xx queries for domain ssl.gststic.com with port 61974,, i.e.,

r.c = 140.113.xx.xx and r.d = ssl.gstatic.com.

A domain d can be separated into several parts by dot. The right most part of a

domain is called top-level domain (TLD(d)), and the second part is called second-level

domain (2LD(d)), and so on. For example, the top-level domain of mail.google.com is

com, the second-level domain is google, and the third level domain is mail.

2.2 Workflow

Our DNS log analysis workflow is shown in Fig. 2.1. There are seven stages: Unique

Stage, DNS Query Stage, DGA domain detection Stage, Join Stage, Spectral Clustering

Stage, Connected Component Stage, and Victim Group Detector. We now describe how

they work.

(1) Unique Stage: This stage extracts the set of domains which have been queried

7

Figure 2.1: DGA detection workflow

in one day. The input of Unique Stage is the raw data of DNS log and white list domains.

For each record r in DNS log, this process removes duplicate records and records with r.d

in the white list, then output a list of distinct domains queried in a day. The algorithm

is shown in Fig. 2.2. In practice, we confront the problem of the huge size of DNS log.

Therefore, we adopt Hadoop [13] technique to parallelize this process. Mappers extract

r.d from DNS log and send the (r.d, null) key/value to the Reducers. Reducers receive

the domains list from Mappers, filter out the domains in white list and output the unique

domain list.

Input : The DNS log DNS = {r1, r2, ..., rn} , white l i s t domains W = {d1, d2, ..., dm}

Output : The unique domain l i s t D

Unique (DNS)

D = ∅

for each r ∈ DNS

i f r.d /∈ D and r.d /∈ W

D = D ∪ {r.d}

end i f

end for

return D

Figure 2.2: Unique stage pseudo code

(2) DNS Query Stage: In this stage, we categorize the domains from Unique

8

Stage into two classes: active domains and NX domains. For each domain d, we query

world-wide domain name servers to resolve the domain. If we receive the IP list P =

{p1, p2, ...pN} from world-wide domain name servers, it means that this domain is active

domain, and we add this domain and the corresponding IPs into Active Domains List. On

the other hand, if the domain is a failure domain or expired domain, then we add these

domains into NX Domains List. Note that when we query to some domain name servers

with NXDomains, the domain servers would return a specific IP. For example, OpenDNS

[16] would return 67.215.65.132 if the domain is NXDomain. We prepare an IP list that

represents the NXDomain from the report on the internet [17]. If domain name server

returns an IP appearing in the list, then we add the domain into NX Domains List.

(3) DGA Detection Stage: In NX Domains List, there are some type error domains

like yqhoo.com or expired domains or DGA domains queried by victims. This stage is

responsible for classifying the domains from DGA and other NX domains. To classify

these domains, we choose six features and adopt the Alternating Decision Tree (ADT)

[18] to classify domains. Antonakakis et al. [2] used a similar approach to classify domains

from DGA and benign domains. Intuitively, legitimate domain names are usually easy to

memorize or spell. While the names generated by botnet, such as Conficker, are usually

hard to pronounce. To quantify this observation, we use two features, popular 2-gram (two

consecutive alphanumeric characters) and longest meaningful substring (longest substring

which can be found in dictionary). For example, the longest meaningful substring of

getsomeinformation is information. To determine the longest meaningful substring, we

define that a string is meaningful if the string appears in English dictionary. Benign

domains tend to have longer LMS than DGA domains. The idea of longest meaningful

substring was proposed by Bilge et al. [19]. They query strings on google search engine,

and define a string to be meaningful, if the number of results returned by google is larger

than a threshold. We use the English dictionary from Debian GNU/Linux 6.0.4 (/usr/

share/dict/american-english). We build a trie data struct [20] to store and match words.

Trie is a prefix tree which can be used to store a set of strings and can be looked up

efficiently.

Google scanned over two trillions of English words and computed the frequency of

each pair of consecutive letters [21]. The frequency list of 2gram is shown on the webpage:

http://norvig.com/mayzner.html. We choose the top 250 most frequent 2gram as the so

9

called popular 2grams. We will argue why 250 is a reasonable choice later. The popular

2grams help us pinpoint the random domains generated by algorithms. For example,

consider a well known domain name wordpress, whose 2gram set is: { wo, or, rd, dp, pr,

re, es, ss} and popular 2gram set is { wo, or, rd, pr, re, es, ss}, i.e., over 80% of the

2grams are popular. While the domain name jsgjeyxsko, generated by Conficker, has the

popular 2gram set {je, ey, sk, ko}, which is less than 50% of its 2gram set.

Note that there are 2grams not popular in English but may be popular in other

countries. We include three non-popular 2grams: ku, ko, ao, which are common in

Chinese and Japanese domain names.

For each domain d, we extract the following features for classification.

1. Length of 2LD(d)

2. Length of 3LD(d)

3. Ratio of popular 2gram in 2LD(d)

4. Ratio of popular 2gram in 3LD(d)

5. Longest meaningful substring in 2LD(d)

6. Longest meaningful substring in 3LD(d)

We collect many DGA-based domains from Threat Expert [22], and other malware reports

[1, 23, 24]. We got domains from Conficker, Zbot, Srizbis, Bobax, Kraken. We randomly

choose 4/5 of these domains as training DGA domains, and collect the top 10000 domains

from Alexa [25] website http://www.alexa.com/ as training benign domains, and build an

ADT by these training data. To verify the classifier, we use Receiver operating charac-

teristic (ROC) curves [26] to measure the accuracy of a model. We used top 10000 ~

12000 domains from alexa.com and the remaining 1/5 DGA domains as testing data. We

measure the ROC curve for different popular 2gram definitions (used top 100, 150, 200,

250, 300 as popular 2gram). With the result shown in Table 2.1, we choose the top 250

most frequent 2gram as our popular 2gram. The domain features extraction procedure is

shown in Fig. 2.3.

Recently, [2] Antonakakis et al. proposed a method to classify a group of domains

whose size is equal to γ as DGA domain group or benign group by ADT. We focus on

10

Input : a domain d , pop2gram i s a s e t o f popular gram , W i s a s e t o f d i c t i o n a r y words .

Output : an array o f double r ep r e s en t the f e a t u r e s o f domain d

DOMAIN_EXTRACT(d ,pop2gram ,W)

Let features[0..5] be a new array .

missing = −1

Let s2 be 2Ld(d)

s3 = NIL

i f 3LD(d) e x i s t

s3 = 3Ld(d)

end i f

Let S = {s2, s3}

// l ength f e a t u r e s

index = 0

for i = 2 to 3

i f si == NIL

features[index] = missing

else

features[index] = si.length

end i f

index = index+ 1

end for

//compute r a t i o o f popular 2gram

for i = 2 to 3

i f si == NIL

features[index] = missing

else

features[index] = POP2GRAM_RATIO(si)

end i f

index = index+ 1

end for

//compute LMS

t = Bui ldTr ie (W)

for i = 2 to 3

i f si == NIL

features[index] = missing

else

maxString = LMS(si ,t)

features[index] = maxString.length

end i f

index = index+ 1

end for

return

Figure 2.3: Domain extraction stage pseudo code

11

Size ROC curve %

0 94.2%

50 95.6%

100 96.1%

150 96.2%

200 95.9%

250 96.3%

300 95.9%

Use All 94.5%

Table 2.1: Comparsion of different popular 2gram sizes

Input : an array o f ch a r a c t e r s label

Output : an array o f 2gram l i s t gram

GET_2GRAM(label)

Let gram[0...label.length− 2] be a new array

for i = 0 to label.length− 2

Let onegram[0, 1] be new ch a r a c t e r s array

onegram[0] = label[i]

onegram[1] = label[i+ 1]

gram[i] = onegram

end for

return gram

Input : an array o f ch a r a c t e r s s

Output : the r a t i o o f popular 2gram

POP2GRAM_RATIO(s) :

popcount = 0 // counter popular 2gram

grams = GET_2GRAM(s)

for i = 0 to gram.length− 1

i f gram[j] ∈ pop2gran

popcount = popcount + 1

end i f

end for

return popcount/gram.length

Figure 2.4: Pseudo code for computing popular 2gram ratio

12

Input : W i s s e t o f words

Output : Root o f t r i e r

Bui ldTr ie (W)

Let r be a t r e e node

for each w ∈ W

trace = r

for i = 0 to w.length− 1

i f trace.cw[i] == NIL // Located new c h i l d

Let trace.cw[i] be a new t r e e node

trace.cw[i].accept = fa l se

end i f

trace = trace.cw[i]

end for

trace.accept = true

end for

return root

Figure 2.5: Pseudo code for building Trie

γ = 1, because we want victims infected by the same malware to be grouped into the

same cluster in the following Spectral Clustering Stage. Antonakakis et al. split a list of

NXDomains into k groups with size γ and classify each group by 33 features. They allowed

some of DGA domains to be classified as benign domains (i.e., four from benign domains

and one from DGA domains in one group and classify them as benign domain group),

because they used the Hidden Markov Model (HMM) to find the C&C server based on the

domain text string. In this work, we find the C&C server domains by victims’ connection

behaviors. The DGA domains, which are connected by different clients, are extremely

important (most of the DGA NXDomains are just queried by one client). If we used

γ > 1, the extremely important NXDomains might be dropped. So we use γ = 1.

Results of our experiments show that our features are better than [2] when γ = 1. We

give the ROC curves of our approach and the one by [2] as shown in Fig. 2.7. Note that

several features from [2] are not considered, such as the variance of length, variance of

entropy etc, when γ = 1. The 18 active features used in [2] are as follows:

1. Ngram features: measure the frequency distribution of ngrams for the domain name

strings, with n = 1,..,4 and use median, average and standard deivation as features

13

Input : S t r ing s , root o f t r i e t .

Output : Longest meaningful sub s t r i ng o f s

LMS(s ,t)

trace = t

Let maxLenString be an empty s t r i n g

for i = 0 to s.length− 1

for j = i to s.length− 1

i f trace.accept == true and j − i+ 1 > maxLenString.length

maxLenString = s[i...j]

end i f

i f trace.cs[j] == NIL

break

else

trace = trace.cs[j]

end i f

i f trace.accept == true and j − i+ 1 > maxLenString.length

maxLenString = s[i...j]

end i f

end for

return maxLenString

Figure 2.6: Longest meaningful substring

14

Figure 2.7: The ROC curve for our approach and approach from [2]

(3×4=12 features).

2. Meansure entropy of character distribution from 2LD(d).

3. Meansure entropy of character distribution from 3LD(d).

4. Number of distinct characters

5. TLD(d) is .com or not

6. Length of domains

7. Number of levels.

Comparing with the area under ROC curve, Antonakakis [2] has 0.918. and our approach

has 0.963. We get a larger area, which is better under the measure of ROC curve.

(4) Join Stage: In the DGA Detection Stage, we collect the DGA-like NXDomains.

In this stage we look up the raw data of DNS log and find the clients which had queried

these domains. Since the log size is huge, we use Hadoop technique to find all pairs of

(B, d), where B is a client and d is a DGA-like NXdomain. The pseudo code is shown in

Fig. 2.9.

(5) Spectral Clustering Stage: The victims infected by the same malware will

attempt to connect the same NXDomains. This is an unusual event. Two domains with

higher similarity means that they have more common clients trying to connect to them.

In this stage, we try to group DGA-like NXDomains into groups from Join Stage, which

15

collects all the (B, d) pairs from DNS log. We compute the similarity by Ochiai[27]

coefficient between domains.

Definition 1 Ochiai coefficient : Let B1 and B2 be the set of clients IP and D1 and D2

be the two domains, which B1 and B2 connect with, respectively. The Ochiai coefficient

of D1 and D2 is:

Ochiai(D1, D2) =
|B1 ∩B2|√
|B1| × |B2|

.

In this stage, we first build the similarity matrix M . Let M be the n×n matrix, where

n is the number of domains. Mij is the Ochiai coefficient of domain i and domain j. We

apply spectral clustering algorithm to group domains. Spectral clustering is a popular

clustering approach for graph partition. We use the approach proposed in [12]. Given

a similarity matrix M and two parameters α = 0.95 and β = 2, the spectral clustering

works as follow:

1. Let D be the diagonal matrix, and Dii = ΣjMij.

2. Compute the matrix L = D−1/2MD−1/2.

3. Find all eigenvectors and corresponding eigenvalues λ0 ≥ λ1 ≥ λ2 ≥ ... ≥ λn from

L.

4. Find the maximum λk where Σi≤kλi ≥ α×Σi≤nλi and (λk−1−λk) > β×(λk−λk−1).

5. Construct the matrix X = [u1u2...uk] where ui is the corresponding eigenvector of

eigenvalue λi.

6. Construct the normalized matrix Y , where Yij = (ΣjX
2
ij)

2.

7. The i-th row of Y represents data point i, clustering rows with k-means, where the

number of clusters k is already found at step 4.

In this stage, we find NX groups NX = {nx1, nx2, ...nxm}, where nx = {d1, d2, ..., dn}.

Each NX group consists of DGA-like NXDomains which were connected by common

clients. This is an unusual event for general users. These groups of domains are called

NX group. We collect all of the NX groups and send them to Victim Group Detector,

which will be given later.

16

(6) Connected Component Stage: DGA-based virus generates domains every

day, and the botmaster only registers a subset of these domains. The victims will try to

connect to these registered domains to reach C&C server. Because of the limited number

of IP, we assume IPs used by one malicious domain could be also used by some other

malicious domains. In this stage we group the active domains from Active Domain List.

Domains in the same group means these domains belong to the same network. Recalling

DNS Query Process, Active Domain List consists of a list of tuple (d, P), where d is an

active domain and P is the corresponding IP list. To illustrate how to group the domains,

we build a bipartite graph G = (D,P), where D is a set of active domains and P is a set

of IPs. For one domain d ∈ D and one IP p ∈ P , there exists an edge iff IP address p is

returned when we query domain d to the world wide domain name server in DNS Query

Process. Because there are many active domains in the network, finding all connected

components in G by a single machine is impractical. We use Hadoop cluster and the

algorithm proposed by [7] to find connected components. Given a graph G, we first

assign a unique index id for each node d. In the map phase, every node sends it’s index i

to its neighbors. In reduce phase, every node receives an index list I = {i1, i2, ..., in} sent

from it’s neighbors, and updates it’s index by i
(new)
d = min{id, i1, i2, ..., in}. We repeat

the map phase and reduce phase until no node can be updated. Nodes with the same

index means they are in the same connected component. Fig. 2.8 shows how to find the

connected components. We define the component as acti = {d1, d2, d3, .., dn} called active

group, where i is the unique active group ID. Finally, we collect all of the active groups

and send them to Victim Group Detector.

(7) Victim Group Detector: Recall that, in Spectral Clustering Stage, client in-

fected by the same malware using the same DGA would attempt to connect the same

DGA-like NXDomains. On the other hand, they might connect to the same active group

which are extracted in Connected Component Stage. Consider the victims infected by one

DGA-based malware, when the victims try to connect to C&C server. Victims attempt

to connect the common NXDomains (in the same nx), and finally connect to the same act

(active domains might share the same IPs). We compute the Jaccard [26, 28] similarity

between each pair of (act, nx).

Definition 2 Jaccard similarity : Let Bacti be the set of client IPs which had queried to

domains in acti , and Bnxj
be the set of client IPs which had queried to domains in nxj.

17

(a) (b)

(c) (d) (e)

Figure 2.8: Finding connected components: (a) initial step. (b) send index to neighbors.

(c) update index. (d)(e) repeat until no node can be updated

18

The Jaccard similarity of acti and nxj is:

Jaccard(acti, nxj) =
|Bacti ∩Bnxj

|
|Bacti ∪Bnxj

|
.

For filtering noise, we filter out the NX group with size smaller than five (|nx| < 5),

because the size of NXdomains generated by DGA-based malware is usually more than

100 in one day. We also filter out the act group if the number of clients which have queried

to this act is less than four. The reason is if we do not set this threshold, we might classify

benign domains as domains of C&C server. Consider there are two compromised machines

in the network and they all connect to benign.com every day. Our detection system would

find that they all connect to the same NX group which is generated by a malware. In

this situation, similarity between the NX group and benign.com is high, and our system

would report such pair. It simply generates noise record with benign act and we will filter

out such act group.

By the above filtering approach, now we show that it is an abnormal event if there

exist nx, and act such that Jaccard(nx, act) ≥ θ, where we choose θ = 0.7 empirically.

Note that the θ depends on the network. Different networks might use different θ. We

show how we choose the suitable θ to detect victims behavior better. We performed an

experiment on DNS log which was collected on 2013/09/07. We extracted 152125 active

groups and 458 NX groups. We measured Jaccard similarity for all possible (act, nx) pair

and collect the (act, nx) pair if Jaccard(nx, act) ≥ θ. The relation between θ and the

number of collected pairs is shown in Fig. 2.11. It can be observed that it’s rare to find

the act and nx with high Jaccard similarity. However, recall the observation mentioned in

Section 1. Victims infected by the same malware attempt to connect to the NX groups and

active group, which other clients never connect. We can find the (nx, act) pair with high

similarity if clients in our network have been infected. We simulate behaviors of victims

infected by the well-known DGA-based malware to show that victims’ group connection

behavior would generate (act, nx) with relative high Jaccard similarity. We will discuss

it later. We consider actmal as malicious domain group (domains direct to C&C server)

if there exists nxmal ∈ NX such that Jaccard(nxmal, actmal) ≥ θ, and we consider clients

which had connected to actmal as victim group because these clients attempted to connect

to C&C server. We store the victims group and corresponding actmal, nxmal to victim

group database.

To show that this detection mechanism works, we simulate victims’ DNS activities and

19

Input : DNS Log DNS , Set o f DGA NXDomains NX = {d1, d2, .., dn}

Output : A s e t o f tup l e C = {t1, t2, ..., tm} . t = (d, c) ,

where d i s one o f domain in NXDomains Lis t , c i s one c l i e n t IP .

Join (DNS ,NX)

C = ∅

for each r ∈ DNS

i f r.d ∈ NX

C = C ∪ {(r.d, r.c)}

end i f

end for

return C

Figure 2.9: Pseudo code for Join Stage

simulate the DNS records when they try to connect to C&C server. We set up several

connection parameters as follows:

1. Maximum try: Conficker C generate 50000 domains per day and victims randomly

choose 500 domains to connect to C&C server. If fail to connect to C&C server,

these victims will sleep one day. On the other hand, some of victims infected by

other malwares (i.e. Bobax) would try to connect until connect to C&C server or all

of candidate domains have been tried. In our experiment, Maximum try parameter

is set to “retry until connect” or “up to five hundred times trial”.

2. Register Rate: Botmaster needs to register a subset of domains generated by DGA-

based malware. This parameter specifies the ratio of domains that are generated

and registered. Victims would connect with more NXDomains, if the register rate

is low.

3. Number of victims: It is the number of victims in our network. The more victims are

infected by the same malware, the easier we could get more complete NX groups.

4. IP configuration: In active domains side, these domains might be resolved to one

single IP (single IP) or to multiple IPs. Botmaster might construct the botnet by

applying IP fast-flux technique. Domain name server might return different IPs

in each query for one domain. IP fast-flux brings fragment when we construct the

Active Domains Groups. The parameter IP configuration can be set to “single IP” or

20

Input : Set o f a c t i v e group ACT = {act1, act2, ..., actn} ,

Set o f NX group NX = {nx1, nx2, ..., nxm} ,

DNS Log DNS

Output : Victim Group G = {g1, g2, ..., gk} , g = (act, nx,C = {c1, c2, ..cl}) ,

where C i s a s e t o f c l i e n t IPs , which had connected to domain d ∈ act

VICTIM_GROUP(ACT ,NX ,DNS)

Let NXContain = {nxcon1, nxcon2, ..., nxconm}, nxconi = ∅, i ≤ m

Let ActContain = {actcon1, actcon2, ..., actconn}, actconi = ∅, i ≤ n

G = ∅

// I n i t i a l i z a t i o n

for each r in DNS

i f r.d ∈ acti

actconi = actconi ∪ {r.c}

end i f

i f r.d ∈ nxi

nxconi = nxconi ∪ {r.c}

end i f

end for

θ = 0.7

for actconi ∈ ActContain

for nxconj ∈ NXContain

i f Jaccard (actconi, nxconj) > θ

Let g be a tup l e (acti , nxj , actconi)

G = G ∪ {g}

end i f

end for

end for

return G

Figure 2.10: Pseudo code for Victim Group Detector

21

Figure 2.11: Theta measurement

“IP flux”. To simulate IP fast-flux, we choose 50 IPs from one “5.2.10.1~5.2.10.50”.

With a specific set of DNS log, we make sure that there is no domain queried by

clients from our campus resolved to these 50 IPs. When one DGA domain is marked

as active domain and “IP-flux”, we randomly choose 5 of 50 IPs as the answers in

DNS Query Stage.

We first randomly choose clients on campus as fake victims, and simulate DNS log as if

these clients are compromised by the same DGA-based malware. Second, we add these

DNS log into original DNS query log and feed these log into our detection system to find

these fake victims. We measure with two DGA (Conficker C, Zbot) bots with different

parameters setting as mentioned above. We implement the DGA algorithm for each

malware by online malware reports or malware analysis paper [1, 23]. The simulation

result is shown in Table 2.2. Capture number is the number of fake victims reported

from our system. However, we can not detect fake victims infected by Conficker C, which

generates 50000 domains in one day and the similarity between NXdomains are relative

low if there are very few victims in our network. With low similarity of NXdomains, our

system cannot generate the complete nx, which most of victims have queried. This is a

limitation of our system. We leave the improvement as future works.

22

Maximum try Number of victims Register Rate IP configuration capture number

Retry Until Connect 10 0.01 Single 10

Try 500 times at most 10 0.01 Single 9

Retry Until Connect 25 0.01 Single 25

Try 500 times at most 25 0.01 Single 22

Retry Until Connect 10 0.002 Single 10

Try 500 times at most 10 0.002 Single 7

Retry Until Connect 25 0.002 Single 25

Try 500 times at most 25 0.002 Single 19

Retry Until Connect 10 0.01 Fast-Flux 10

Try 500 times at most 10 0.01 Fast-Flux 8

Retry Until Connect 25 0.01 Fast-Flux 25

Try 500 times at most 25 0.01 Fast-Flux 23

Table 2.2: Simulation on Zbot

23

Chapter 3

Traffic analysis

In DNS log analysis, we propose the methodology for detecting victims group. Because

of false positive, machine learning approach might recommend innocent client IPs as

victims. Furthermore, these victims may not attack any other machines directly. It’s

difficult to block victims directly in practice. In this section, we use a system to monitor

victims’ network behaviors on packet level, and extract the information for admistrator to

mitigate botnet attacks. Once the information of infected groups is available, we analyze

the packet traffic in order to capture group activity. We use only four features, (srcIP,

dstIP, srcPort, disPort), for similarity analysis. For this we adopt the approach by [12] to

cluster network behaviors by using spectral clustering method. For one network segment

we track the similarity of end-hosts’ connections. If two end-hosts’ destination IPs are

similar during a period of time, then they will be assigned to the same cluster. Jaccard

similarity measurement is applied to this part of analysis. Fig. 3.1a shows one cluster

result in one prefix. We can see Fig. 3.1a is a similarity matrix and the deeper the color

of (i, j) in the matrix, the higher the similarity of client i and client j. As we mentioned

in the introduction, clusters are sensitive with group activity such as DDoS attack or

scan activity. Fig. 3.1 shows the original cluster result and clusters when scan activity

occurred. Fig. 3.1 is one cluster result. After three minutes, scan activity started.

An IP 212.xx.xx.xx scanned on the campus network at port 80, and campus network

received packets and sent back to the scanner in a short time. The clusters become

larger because many clients responded accordingly. The cluster summary is shown in

Fig. 3.1c. Network administrator can observe the common dstIP they sent (212.xx.xx.xx)

and the corresponding port. We apply this method to capture group activity and report

24

the information about the IPs that these victims want to connect and the corresponding

ports. In our system, network administrator can build access control rules by monitoring

the group dstIP or dstPort to block malware behavior before all victims are discovered.

25

(a)

(b)

cluster 0

src:

140.xx.xx.xx

140.xx.xx.xx

140.xx.xx.xx

...

used Ports set([80]) to connect

dst IP 212.xx.xx.xx

dstPorts set([59073, 38466, 57955, 57311, 54289, 33833, 40398, 45936, 50865, 34324,

46869, 48479, 55485, 52894, 49973])
(c)

Figure 3.1: Scan Activity: (a)The ordinary clusters. (b) The clusters when scan happened

(c) The summary of one cluster

26

We collect data from PA, a commercial security package [14], which stores traffic

records of each IP. We apply Hadoop technique to handle the huge log. There are nearly

190GB traffic log in one day. We write Hadoop job which is responsible to collect the

data in traffic log and build Json files to describe the clients connections behavior in each

period. An example of Json file is shown in Fig. 3.2, where it can be observed that

there are two active clients (srcIP1, srcIP2) in this period, and srcIP1 connect to dstIP1

and dstIP2. We can compress the traffic data and speed up the cluster procedure, when

constructing the similarity matrix.

27

o b j e c t : {

srcIP1 : {

dstIP1 : {

srcPort : [1 2 3]

dstPort : [1 2 3]

}

dstIP2 : {

srcPort : [5 1 4]

dstPort : [5 1 4]

}

}

srcIP2 : {45578

dstIP2 : {

srcPort : [5 1 4]

dstPort : [5 1 4]

}

dstIP3 : {

srcPort : [4 5 5 7 8]

dstPort : [8 0]

}

dstIP4 : {

srcPort : [5 7 8 6 9]

dstPort : [5 3]

}

}

}

Figure 3.2: Json file to specify the connections behavior in one period

In the Section 2 , we extract active connected components in Connected Component

Stage, and some of active components would be reported as suspicious domains in Victim

Group Detector. Note that we just query each domain one time, and we might get all of

28

Figure 3.3: Fragments of connected component

IPs poll for one domain. It brings fragment effect that is shown in Fig. 3.3, where five

victims, on the right hand side, connect to C&C server with five domains (d1, d2, ..., d5),

and the connection records are stored in DNS log. When we analyze the log, we get

the mapping of domains and corresponding IPs (i.e. d1 to IP1, IP2) and build active

components list. As shown in Fig. 3.3, we might obtain two victim groups even if they

actually belong to the same botnet. So Instead of treating one victim group as one network

segment, we put all the victims reported from Victim Group Detector as one network

segment and analyze the network connection behavior in the segment. The procedure is

as follows:

1. For one time period (i.e. 5 minutes), collect the records with srcIP marked as victim.

2. Build the similarity matrix M with these records. For each pair of victims (i,j), we

compute the Jaccard similarity Jaccard(i, j) = |Ai∩Aj |
|Ai∪Aj | , where Ai is a set of dstIP

with which client i connects in the period.

3. Apply the spectral clustering, which is the same one used in Spectral Clustering

Stage.

4. For each cluster we build a summary that specifies the dstIP, srcPort, disPort as

shown in Fig. 3.1c.

5. After clustering, use Data-Driven Documents [29] and Jquery [30] to present the

results, such that network administrator can review on the web.

29

Chapter 4

Conclusion

We propose a new method to determine the domains generated by DGA-based malware,

victims infected by the same DGA-based malware and active domains which direct to

C&C server. Along the way, we use Hadoop technique and tools from machine learning

for clustering. After finding the victim groups, we apply network behavior clustering tech-

nique to monitor the victim’s group activity. Our works provide network administrators

valuable information to construct access control rules. Our system still cannot detect

victims infected by Conficker C with the log within 24 hours. It is possible to collect

long term DNS log data for detecting. However, it will need more computing power for

analyzing. We leave it as a future work.

30

Bibliography

[1] P. Porras, H. Saidi and V. Yegneswaran, Conficker analysis, SRI International, 2009.

[2] M. Antonakakis, R. Perdisci, Y. Nadji, N. Vasiloglou, S. Abu-Nimeh, W. Lee, D.

Dagon. From throw-away traffic to bots: detecting the rise of dga-based malware. In

Proceedings of the 21st USENIX Security Symposium, 2012.

[3] U. Fiore, F. Palmieri, A. Castiglione and A. De Santis, Network anomaly detection

with the restricted Boltzmann machine, Neurocomputing, Vol. 122, pp. 13-23, 2013.

[4] F. Palmieri and U. Fiore, A nonlinear, recurrence-based approach to traffic classifi-

cation, Computer Networks, Vol. 53, pp. 761–773, 2009.

[5] S. Yadav, A. Reddy and S. Ranjan, Detecting algorithmically generated malicious

domain names, Proceedings of the 10th ACM SIGCOMM conference on Internet

measurement, pp 48–61, 2010.

[6] B. Stone-Gross, M. Cova, Lorenzo Cavallaro, B. Gilbert, M.Szydlowski, R. Kem-

merer, C. Kruegel and G. Vigna, Your botnet is my botnet: analysis of a botnet

takeover, Proceedings of the 16th ACM conference on Computer and Communica-

tion security, pp 635–647, ACM, 2009.

[7] U Kang, C. E. Tsourakakis, Christos F, PEGASUS: A Peta-Scale Graph Mining

System - Implementation and Observations, IEEE ICDM 2009, pp 229–238, 2009.

[8] M. Antonakakis, R. Perdisci, D. Dagon, W. Lee and N. Feamster, Building a dynamic

reputation system for DNS, in USENIX Security Symposium, pp 273–290, 2010.

[9] H. Choi and H. Lee, Identifying botnets by capturing group activities in DNS traffic,

in Computer Networks , pp 20–33, 2012.

31

[10] C. Dietrich, C. Rossow, F. Freiling, H. Bos, M. van Steen and N. Pohlmann, On

botnets taht use DNS for command and control, European Conference on Computer

Network Defense (EC2ND), pp 9–16, 2011.

[11] U. V. Luxburg. A tutorial on spectral clustering. Statistics and computing,

Statistics and computing, Vol. 17, pp 395-–416, 2007.

[12] K. Xu, F. Wang and L. Gu, Network-aware behavior clustering of internet end hosts,

IEEE INFOCOM 2011, pp 2078–2086, 2011.

[13] Apache Hadoop. http://hadoop.apache.org.

[14] Palo Alto Networks. https://www.paloaltonetworks.com.

[15] MongoDB. http://www.mongodb.org.

[16] OpenDNS. http://www.opendns.com.

[17] http://f.00f.net/PubDNS/redirecting.txt.

[18] Y Freund, L Mason, The alternating decision tree learning algorithm. In ICML,

volume 99, pp 124-–133, 1999.

[19] L. Bilge, E. Kirda, C. Kruegel, and M. Balduzzi. Exposure: Finding malicious do-

mains using passive dns analysis. In NDSS, 2011.

[20] E. Horowitz, S. Sahni, D. P. Mehta. Fundamentals of Data Structures in C++, 2nd

ed, Silicon Press.

[21] I. Lutkebohle, English letter Frequency Counts: Mayzner Revisited or ETAOIN

SRHLDCU. http:// norvig.com.mayzner.html. English letter Frequency Counts:

Mayzner Revisited. http://norvig.com.mayzner.html.

[22] Threat Expert. http://www.threatexpert.com.

[23] File-Patching ZBOT Variants ZeuS 2.0 Levels Up. http://www.trendmicro.com/

cloud-content/us/pdfs/security-intelligence/white-papers/wp__file-partching-zbot-

varians-zeus-2-9.pdf.

32

[24] Technical details of Srizbi’s domain generation algorithm. http: //www.fireeye.com/

blog/ technical/ botnet-activities-research/ 2008/11/ technical-details-of-srizbis-

domain-generation-algorithm.html.

[25] Alexa. http://www.alexa.com.

[26] J. Han, M. Kamber and J. Pei, Data Mining, Concepts and Techniques, 3rd ed, Mor-

gan Kaufmann, 2012.

[27] Cheetham, A. H., & Hazel, J. E. (1969). Binary (presence-absence) similarity coeffi-

cients. Journal of Paleontology, pp 1130–1136.

[28] S. Kiyomoto, K. Fukushima, Y. Miyake, ”Design of Catego-

rization Mechanism for Disaster-Information-Gathering System”,

Journal of Wireless Mobile Networks, Ubiquitous Computing, and Dependable Applications,

Vol.3, No.4, pp 21–34, 2012.

[29] Data-Driven Documents. http://d3js.org.

[30] Jquery. http://jquery.com.

33

