1) HBGE A J7 i b

Network Security-Management with Traffic Pattern

Clustering

g

|

\‘i\
=
Pt

T

v—';%'f\/f A 3T e R %25 ¥
Network Security Management with Traffic

Pattern Clustering

Foyo4 D mRagly Student : Tao-Wei Chiou
hERER D EE S Advisor : Shi-Chun Tsai
B i

o

FAFLE B sty A

L

A Thesis

Submitted to Institute of Computer Science and Engineering
College of Computer Science

National Chiao Tung University

in partial Fulfillment of the Requirements
for the Degree of
Master
in
Computer Science and Engineering
November 2013

Hsinchu, Taiwan, Republic of China

PEAR- O &L

A

¥ £
ARz Ed BRRRY CHRRG L BEA b R S EE S RFeRN E
Y Lm0 £ 48 %00 2 d Domain Generating Algorithm(DGA) A 2 chE& & 32 -
A a4t 2 g B et (NXdomains)#& &) 7 - B A 5%- e 2 d DCAA 4 R e
B endF e @Popular 2gram(@ B Fehm < H3) I ¥ BEERE L LD
|2 2B B AP ARRLTIBROGMNP LT 22 EEF - L
TWERMAP AR ZFELEP T - AFHRFDELZHE o 57 AT

=

ﬁ,;W@wthmﬁmi¢ﬁ<~ PREB o AmT R ID T KR S
s ® FAE BRAOPRBUZIPHOFTALERFRAR > RERFRA AR

l

ML 7 b Rl B R AL FE G HERGE CPEEY A et E VB E

Abstract

Profiling network traffic pattern is an important approach for tackling net-
work security problem. Based on campus network infrastructure, we propose
a new method based on connection behavior of botnet to identify randomly
generated malicious domain names and pinpoint the potential victim groups.
We characterize normal domain names with the so called popular 2gram (2 con-
secutive characters in a word) to distinguish between active and nonexistent
domain names and classify the clients as victims or not with the spectral
clustering method. We also track the destination IPs of sources IPs and
analyze their similarity of connection pattern to uncover potential anomalous
group network behaviors. We apply the Hadoop technique to deal with the big
data of network traffic. Our approach can give information about connection
pattern of victims, malicious domains and ‘malicious IPs, which is can help
network administrators to mitigate the effect of botnet

Keywords: Botnet, Domain Generating Algorithm; Clustering, Machine learning,

Denial of service, Big data, Domain Name Systenm.

i

Acknowledgments

FAMER MEFYREE BT ARG E EF LA REIIREARE G D
é%’jjiﬂpfiﬁﬁwuygﬁﬁmﬁéoﬁJ@@wﬁﬁ%ﬁﬁ?ﬁ’ﬂﬁ
I m?EF;EMf THARGF T guEikz > 4 F Hadoop Clusterﬁﬂﬁglﬁ—l& il

% Hadoop Clustersffenpiz 2™ s £ ¥ e 17 > ﬁ*{a EAS - B
%?%’imm&ﬁw’5“4@%ﬁﬁiﬁwiﬁwﬁﬁ?ﬂm@nﬁfiﬁﬁﬁ
R RPN HETSED A P F LS YA FABHRPrERL R KE
FE L - KEADNS logfrPAshlogaamit » a8 8 %5 KE £ LA 5 5DNS logiig
o ARz Pwm2 s A RRHRE B F 2 R T HF Y

2RI Y st (RIS REmE R R g R o B (S A & R

)
;Ta
.
¢
¥

=

FICA IR A AR U § Rl B o e - A A, g AR

A

- o AR igp o @ AR LR

1ii

Contents

1 Introduction 1
2 Analysis of DNS log 7
2.1 Notations s 7
2.2 Workflowo 7
3 Traffic analysis 24
4 Conclusion 30

iv

List of Tables

2.1 Comparsion of different popular 2gram sizes

2.2 Simulation on Zbot

List of Figures

—_

0 -1 o Ol s W N —

.9

The infect stage and attack stage of command-and-control server.

Victims infected by DGA-based malware connect to C&C server

System overview

DGA detection workflow .

Unique stage pseudo code .

Domain extraction stage pseudo code

Pseudo code for computing popular 2gram ratio

Pseudo code for building Trie

Longest meaningful rsubstring

The ROC curve for our approach and approach from [2] . .

Finding connected components: (a) initial step. (b) send index
to neighbors. (c) update index. (d)(e) repeat until no node can
be updated . .

Pseudo code for Join Stage .

.10 Pseudo code for Victim Group Detector

.11 Theta measurement

Scan Activity: (a)The ordinary clusters. (b) The clusters when
scan happened (c) The summary of one cluster .
Json file to specify the connections behavior in one period

Fragments of connected component .

vi

11
12
13
14
15

18
20
21
22

26
28
29

Chapter 1

Introduction

There are many malware flooding in the Internet today. It’s an important and difficult task
for network administrator to know which client has been infected by malware. Botnet is a
collection of compromised machines, called victims and controlled by a botmaster, which
controls the compromised computers by command-and-control (C&C) server. Botnet
causes many security problems, such as DDoS attacks, Spam mail, phishing, click fraud,
information leakage, etc. With therapid growth rate of the network complexity and traffic
size, it is important to build a system to detect victims infected by malware and provide
stable IT service. However, it ista challenge to build such a system, because of the huge
traffic size and diversity of end-hosts: Even.the infected victims are identified, we may not
be able to defuse the problem in time, because of the shortage of network facility crew. In
this paper, we show a network alarm system, that can detect the potential victim group

and monitor group activity when the botnet launches a massive attack.

DNS server Binary server

C&C server

Download
binary

Connect to C&C
server

Compromised machine

Infection stage

(a)

‘: Target
machine
C&C server
Send ‘ Attack
command
—
Compromised
machines
Attack stage

(b)

Figure 1.1: The infect stage and attack stage of command-and-control server.

The behavior of C&C server consists of infection stage and attack stage as shown in Fig.
1.1. During the infection stage, when a system is infected and becomes a victim, it will try
to find the C&C server by querying the DNS server with some specific domain names. The
infected computer will download and execute malicious codes for identity theft, backdoor
codes, etc. The victims connect to C&C server via randomly generated domain names
to avoid detection, such as the notorious bot Conficker [1], whose infected victims will
randomly generate tens of thousands domain names with the domain generation algorithm

(DGA) [1, 2, 5, 6]. While only very few of the domains are registered and can be used

to connect to C&C server. DGA could evade the blacklist and counter measurement,
since the botmaster could change the active domains rapidly. The procedure that victims
connect to C&C server is shown in Fig. 1.2. We can split the procedure into two stages:
try stage and connect stage. In try stage, victims generate a set of domains and the
botmaster already has registered a subset of these domains. Victims do not know which
domains are registered, and thus select domains from the list randomly and try to connect
to C&C server one by one. Note that when these victims try to find the registered
domains, they might query the same unregistered domains (NXdomains). We extract
from the NXdomains which look like DGA domains by using 2 features: popular 2gram
and longest meaning substring, and group these domains into a number of clusters called
NX group. NXDomains in the same NX group indicate that these domains look like
random string and are queried by common clients. After these victims find the active
domains, domain name server would return one or multiple IPs which can connect to
C&C server. Because these domains belong to the same botmaster, they might share
some resolve IPs, because of the limit-of available IPs. We consider the domains and
IPs as a bipartite graph G = (D, P) where D is‘a set. of domains and P is a set of IPs.
If there is a query on domaintd € D for it’s IP and“thereturned IP address is p € P,
then we construct an edge for (d,p). We perform a Hadoop job proposed by [7] on G
to find connected components to group-active domains called active group. The domains
in the same active group indicate that these domains belong to the same network. The
detecting intuition is that only victims infected by the same malware connect to the same
NXdomains (NXdomains queried by infected clients), and most of these victims would
connect to the same active component which others clients never connect with. In other
words, it can be observed that one NX group and one active group serve the same clients,
which is an unusual event. We build a detection system to analyze DNS log, find DGA-
based domains and discover victims infected by the malware based on this observation.
We will discuss the details in Section II.

Many malicious malwares, such as botnet, spyware, spammer etc., abuse DNS to carry
out their misconduct. For example, the botmaster, such as Conficker [1] and Torpig [6],
usually registers some domains and the compromised computer systems will connect to
the C&C server through these domains and start a joint massive attack later. Many

researchers [2, 3, 4, 5, 8, 9, 10] have applied machine learning techniques to identify these

3
—8Y
A

(b) Connect stage

Figure 1.2: Victims infected-by DGA-based malware connect to C&C server

domains. Choi and Lee[9] found that botuet generally acts as a group and they developed a
system to identify malicious domains by capturing botnet’s group activities. Antonakakis
et al. [8] proposed a dynamic reputation system for DNS by providing a reputation score
from 35 features for each new domain. Yadav et al. [5] determined malicious domains by
domain’s zone features. Some of the domain names are generated by DGA. Yadav et al.
also leveraged the fact that the alphanumeric distribution of algorithmically generated
domain is very different from those generated by human.

After we got the victims, we consider botnet group activity during the attack stage,
the infected computers will execute the instructions downloaded from C&C server and
usually target at certain systems to block normal service, conduct click fraud, send spam
mails, etc. It means that connection behaviors of these victims are similar because vic-
tims connect to the same destination. We build the Traffic log monitor system to capture
the group activity and report the destinations where they want to connect and the cor-
responding source and destination ports. Then Network administrator could build the

access control rules with the obtained information and block the botnet attack.

Xu et al. [12] extracted source and destination IPs from backbone network traffic, and
explored the behavior similarity of end-hosts with the same prefix and grouped together
the end-hosts with high similarity by the spectral clustering method [11]. The end-hosts
in the same cluster means that these clients have similar connection behavior in the time
window. Particularly, the cluster is very sensitive to massive activity, such as DDoS attack
and scanning. Once we obtain the victim group after inspecting the DNS logs, we use
spectral clustering method to analyze the relation between source and destination IPs.
As in the work by Xu et al.[12], we can model the relation as a bipartite graph, where
the analysis unit is the IPs of victim groups. Then we can identify effectively the security
related problems, such as DDoS, scan activity. We will discuss it in Section III.

Since the size of DNS logs and traffic data is huge, it is already a challenge to move
the big data around efficiently, let alone processing the data. To this end, we use Hadoop
[13] technique to handle the humongous data size. Hadoop is a Java-based platform,
which supports big data computation and storage. The MapReduce computation model
is adopted in Hadoop, which precesses-a.job in two phases, i.e., Map phase and Reduce
phase. While in Map phase it splits-input data into chunks'and processes them in parallel,
and in Reduce phase it collectsroutputs from Map phase and combines them into the final
answer.

Our system overview is as shown in.Fig. 1.3.-We consider clients in campus network
and network traffics pass through the firewall PA [14] and the router, then directed to two
collectors, i.e., DNS log collector and PA-Traffic collector. DNS log collector collects the
log if a client requests to the domain name server on campus. DNS log collector records the
client, queried domains and the corresponding timestamp. PA-Traffic collector collects
packet information about source IP, destination IP, source port, and destination port,
but PA-Traffic collector does not collect the payload. We apply the DNS Log Analyzer to
detect victim group and malicious domains, and store them into Victim Group Database
with MongoDB[15]. Finally we use network traffic log to monitor botnet group activity.
Network administrator can leverage the information about victims’ malicious domains
and results of victim behavior to construct control access rules or simply block the botnet
activity.

We summarize our contributions as follows.

o We propose a new feature, popular two gram, to detect DGA domains.

(1)

Campus

Network
PA
e Ol
-
Log Collector DNS Router
%ﬂ[ﬂ:ﬁ PA Traffic Log
(5)
Traffic Log

PA-Traffic
(4) Collector

Victim (6) 1
Group Victim Group
, , Network Behavior
Victim Group (7) P .
Victims Behavior

Database

DNS Log Analyzer

Figure 1.3: :System overview

« We propose a system fordetecting (1) DGA-based malicious domains, (2) corre-

sponding IPs, which cansconnect to C&C server, (3) the victims infected by these

malwares, and (4) the vietim behavior when acting together.

The rest of the paper is organized as follows. In section I, we show the details of capturing

the victims, DGA-based domain names‘and victim groups from the DNS log. In section

11, we show the network behavior analysis with spectral clustering method. We conclude

the paper in section IV.

Chapter 2

Analysis of DNS log

In this section we introduce our DNS log analysis workflow.

2.1 Notations

First we introduce some notation. Forja DNS record r, we define r.c as the client’s
IP which was queried to DNS server by the domain.r.d. Note that we only focus on
A type query. For example, a DNS record r is as in the following form 29-Oct-2013
15:14:53.722 queries: info: client 140.118.xz.2x#61974: query: ssl.gststic.com IN A +.
It means client 140.113.zz.xx queries for. domain ssl. gststic.com with port 61974, i.e.,
r.c = 140.113.zz.xx and r.d = ssl.gstatic.com.

A domain d can be separated into several parts by dot. The right most part of a
domain is called top-level domain (TLD(d)), and the second part is called second-level
domain (2LD(d)), and so on. For example, the top-level domain of mail.google.com is

com, the second-level domain is google, and the third level domain is mal.

2.2 Workflow

Our DNS log analysis workflow is shown in Fig. 2.1. There are seven stages: Unique
Stage, DNS Query Stage, DGA domain detection Stage, Join Stage, Spectral Clustering
Stage, Connected Component Stage, and Victim Group Detector. We now describe how
they work.

(1) Unique Stage: This stage extracts the set of domains which have been queried

(1 (2 NX Domains

. Unique
DNS Unique Domains
LOG Stage list
Active
L7 L7 Domains
()
)

Active DGA

domai Connected

omain

groups Component
Stage

Victim Victim I 4
Groups Group (6)
Detector
NX DGA Tents
Connection Join Stage
Log g

domains
(5) (4) 3)

DGA domain
detection
Stage

Spectral
Clustering
Stage

DGA
NXDomains

groups

Figure 2.1: DGA detection workflow

in one day. The input of Unique Stage is-the/raw:data of DNS log and white list domains.
For each record r in DNS log, thisprocess removes duplicate records and records with r.d
in the white list, then output a list of-distinct: domains queried in a day. The algorithm
is shown in Fig. 2.2. In practice, we confront the problem of the huge size of DNS log.
Therefore, we adopt Hadoop [13] technique to parallelize this process. Mappers extract
r.d from DNS log and send the (7.d;. null) key/valuée to the Reducers. Reducers receive
the domains list from Mappers, filter out the domains in white list and output the unique

domain list.

Input: The DNS log DNS ={ri,rs,...,7}, white list domains W ={d;,ds,...,dn}
Output: The unique domain list D
Unique (DNS)
D=9
for each re€ DNS
if rd¢ D and rd¢W
D =Du{rd}
end if
end for

return D

Figure 2.2: Unique stage pseudo code

(2) DNS Query Stage: In this stage, we categorize the domains from Unique

Stage into two classes: active domains and NX domains. For each domain d, we query
world-wide domain name servers to resolve the domain. If we receive the IP list P =
{p1,p2,...pn} from world-wide domain name servers, it means that this domain is active
domain, and we add this domain and the corresponding IPs into Active Domains List. On
the other hand, if the domain is a failure domain or expired domain, then we add these
domains into NX Domains List. Note that when we query to some domain name servers
with NXDomains, the domain servers would return a specific IP. For example, OpenDNS
[16] would return 67.215.65.132 if the domain is NXDomain. We prepare an IP list that
represents the NXDomain from the report on the internet [17]. If domain name server
returns an IP appearing in the list, then we add the domain into NX Domains List.

(3) DGA Detection Stage: In NX Domains List, there are some type error domains
like yqhoo.com or expired domains or DGA domains queried by victims. This stage is
responsible for classifying the domains from DGA and other NX domains. To classify
these domains, we choose six features and adopt the Alternating Decision Tree (ADT)
[18] to classify domains. Antonakakis et-al- [2] used a similar approach to classify domains
from DGA and benign domains. Intuitively, legitimate domain names are usually easy to
memorize or spell. While the names generated by botnet; such as Conficker, are usually
hard to pronounce. To quantify this observation, we use two features, popular 2-gram (two
consecutive alphanumeric characters) and longestameaningful substring (longest substring
which can be found in dictionary). For example, the longest meaningful substring of
getsomeinformation is information. To determine the longest meaningful substring, we
define that a string is meaningful if the string appears in English dictionary. Benign
domains tend to have longer LMS than DGA domains. The idea of longest meaningful
substring was proposed by Bilge et al. [19]. They query strings on google search engine,
and define a string to be meaningful, if the number of results returned by google is larger
than a threshold. We use the English dictionary from Debian GNU/Linux 6.0.4 (/usr/
share/dict/american-english). We build a trie data struct [20] to store and match words.
Trie is a prefix tree which can be used to store a set of strings and can be looked up
efficiently.

Google scanned over two trillions of English words and computed the frequency of
each pair of consecutive letters [21]. The frequency list of 2gram is shown on the webpage:

http://norvig.com/mayzner.html. We choose the top 250 most frequent 2gram as the so

called popular 2grams. We will argue why 250 is a reasonable choice later. The popular
2grams help us pinpoint the random domains generated by algorithms. For example,
consider a well known domain name wordpress, whose 2gram set is: { wo, or, rd, dp, pr,
re, es, ss} and popular 2gram set is { wo, or, rd, pr, re, es, ss}, i.e., over 80% of the
2grams are popular. While the domain name jsgjeyzsko, generated by Conficker, has the
popular 2gram set {je, ey, sk, ko}, which is less than 50% of its 2gram set.

Note that there are 2grams not popular in English but may be popular in other
countries. We include three non-popular 2grams: ku, ko, ao, which are common in
Chinese and Japanese domain names.

For each domain d, we extract the following features for classification.
1. Length of 2L.D(d)

2. Length of 3LD(d)

3. Ratio of popular 2gram in 2LD(d)

4. Ratio of popular 2gram in 3LD(d)

5. Longest meaningful substring in 2LD(d)

6. Longest meaningful substring in.3LD(d)

We collect many DGA-based domains from Threat Expert [22], and other malware reports
[1, 23, 24]. We got domains from Conficker, Zbot, Srizbis, Bobax, Kraken. We randomly
choose 4/5 of these domains as training DGA domains, and collect the top 10000 domains
from Alexa [25] website http://www.alexa.com/ as training benign domains, and build an
ADT by these training data. To verify the classifier, we use Receiver operating charac-
teristic (ROC) curves [26] to measure the accuracy of a model. We used top 10000 ~
12000 domains from alexa.com and the remaining 1/5 DGA domains as testing data. We
measure the ROC curve for different popular 2gram definitions (used top 100, 150, 200,
250, 300 as popular 2gram). With the result shown in Table 2.1, we choose the top 250
most frequent 2gram as our popular 2gram. The domain features extraction procedure is
shown in Fig. 2.3.

Recently, [2] Antonakakis et al. proposed a method to classify a group of domains

whose size is equal to v as DGA domain group or benign group by ADT. We focus on

10

Input: a domain d, pop2gram is a set of popular gram, W is a set of dictionary words.
Output: an array of double represent the features of domain d
DOMAIN_EXTRACT(d , pop2gram ,W')

Let features[0..5] be a new array .

missing = —1

Let sy be 2Ld(d)

s3 = NIL

if 3LD(d) exist

s3 = 3Ld(d)

end if

Let S = {s2,s3}

//length features

index = 0

for i = 2 to 3

if s; =— NIL
features[index] = missing
else
features[index] = s;.length
end if

index = index + 1
end for
//compute ratio of popular 2gram

for ¢ = 2 to 3

if s; =— NIL

featuresfindex] = missing
else

features[index] = POP2GRAM RATIO(s;)
end if

index = index + 1
end for
//compute LMS
t = BuildTrie (W)
for i = 2 to 3

if s;, = NIL
featuresfindex] = missing
else

maxString = LMS(s; ,t)
features[index] = maxString.length
end if
index = index + 1
end for 11

return

Size | ROC curve %
0 94.2%
50 95.6%
100 96.1%
150 96.2%
200 95.9%
250 96.3%
300 95.9%
Use All 94.5%

Table 2.1: Comparsion of different popular 2gram sizes

Input: an array of characters label
Output: an array of 2gram list gram
GET_2GRAM(label)
Let gram|0...label.length — 2] be ‘a new array
for ¢ = 0 to label.length — 2

Let onegram[0,1] be new characters array

onegram|[0] = label[i]

onegram(l] = labeli + 1]

gram[i] = onegram
end for

return gram

Input: an array of characters s
Output: the ratio of popular 2gram
POP2GRAM._RATIO(s):
popcount = 0 //counter popular 2gram
grams = GET_2GRAM(s)
for i = 0 to gram.length —1
if gram[j] € pop2gran
popcount = popcount + 1
end if
end for

return popcount/gram.length

Figure 2.4: Pseudo code for computing popular 2gram ratio

12

Input: W is set of words
Output: Root of trie r
BuildTrie (W)
Let r be a tree node
for each weW
trace = r
for i = 0 to w.length—1
if trace.c,;;) = NIL // Located new child
Let trace.c,;) be a new tree mnode
trace.cyp).accept = false
end if
trace = trace.cyp;
end for
trace.accept = true
end for

return root

Figure 2:5: Pseudo code for building Trie

v = 1, because we want victims infected by the same malware to be grouped into the
same cluster in the following Spectral Clustering Stage. Antonakakis et al. split a list of
NXDomains into k groups with size 4-and classify each group by 33 features. They allowed
some of DGA domains to be classified as benign domains (i.e., four from benign domains
and one from DGA domains in one group and classify them as benign domain group),
because they used the Hidden Markov Model (HMM) to find the C&C server based on the
domain text string. In this work, we find the C&C server domains by victims’ connection
behaviors. The DGA domains, which are connected by different clients, are extremely
important (most of the DGA NXDomains are just queried by one client). If we used
~v > 1, the extremely important NXDomains might be dropped. So we use v = 1.
Results of our experiments show that our features are better than [2] when v = 1. We
give the ROC curves of our approach and the one by [2] as shown in Fig. 2.7. Note that
several features from [2] are not considered, such as the variance of length, variance of

entropy etc, when v = 1. The 18 active features used in [2] are as follows:

1. Ngram features: measure the frequency distribution of ngrams for the domain name

strings, with n = 1,..,4 and use median, average and standard deivation as features

13

Input: String s, root of trie t.
Output: Longest meaningful substring of s
LMS(s,t)
trace = t
Let maxzLenString be an empty string
for i = 0 to s.length—1
for j=1i to s.dength—1
if trace.accept = true and j —i+ 1> maxlenString.length
maxLenString = sli...j]
end if
if trace.cy;) = NIL
break
else
trace = trace.cg;)
end if
if trace.accept =— true and j —i+ 1> maxzLenString.length
maxLenString = sli...j]
end if
end for

return maxLenString

Figure 2.6: Longest meaningful substring

14

—+— Cur approach
—&— M. Antonakakis's approach with y = 1
I T T T T

!
01 02 03 04 0s 0e 07 08 09 1
False Positive Rate

01 ‘

Figure 2.7: The ROC curve for our approach and approach from [2]

(3x4=12 features).
2. Meansure entropy of character distribution from 2LD(d).
3. Meansure entropy of character distribution from 3LD(d).
4. Number of distinct characters
5. TLD(d) is .com or not
6. Length of domains
7. Number of levels.

Comparing with the area under ROC curve, Antonakakis [2] has 0.918. and our approach
has 0.963. We get a larger area, which is better under the measure of ROC curve.

(4) Join Stage: In the DGA Detection Stage, we collect the DGA-like NXDomains.
In this stage we look up the raw data of DNS log and find the clients which had queried
these domains. Since the log size is huge, we use Hadoop technique to find all pairs of
(B, d), where B is a client and d is a DGA-like NXdomain. The pseudo code is shown in
Fig. 2.9.

(5) Spectral Clustering Stage: The victims infected by the same malware will
attempt to connect the same NXDomains. This is an unusual event. Two domains with
higher similarity means that they have more common clients trying to connect to them.

In this stage, we try to group DGA-like NXDomains into groups from Join Stage, which

15

collects all the (B,d) pairs from DNS log. We compute the similarity by Ochiai[27]

coefficient between domains.

Definition 1 Ochiai coefficient : Let By and By be the set of clients IP and D, and Do
be the two domains, which By and By connect with, respectively. The Ochiai coefficient

of D1 and Dy is:
|B1 N Bs|

JIBi| % |Bs|

In this stage, we first build the similarity matrix M. Let M be the n x n matrix, where

Ochiai(Dl, DQ) =

n is the number of domains. M;; is the Ochiai coefficient of domain 7 and domain j. We
apply spectral clustering algorithm to group domains. Spectral clustering is a popular
clustering approach for graph partition. We use the approach proposed in [12]. Given
a similarity matrix M and two parameters a = 0.95 and § = 2, the spectral clustering

works as follow:
1. Let D be the diagonal matrix, and [0 1= X;V];;.
2. Compute the matrix L =D 2MD~/2.

3. Find all eigenvectors and corresponding eigenvalues \g > A > Ay > ... >)\, from

L.
4. Find the maximum A\, where ¥;<xA; > ax X<, A\ and (Agk—1— M) > BX (Mg —Ae_1).

5. Construct the matrix X = [ujug...ux] where w; is the corresponding eigenvector of

eigenvalue \;.
6. Construct the normalized matrix Y, where Y;; = (3;X7)*.

7. The i-th row of Y represents data point 7, clustering rows with k-means, where the

number of clusters k is already found at step 4.

In this stage, we find NX groups NX = {nxy,nxs,..nx,}, where nx = {dy,ds, ..., d,}.
Each NX group consists of DGA-like NXDomains which were connected by common
clients. This is an unusual event for general users. These groups of domains are called
NX group. We collect all of the NX groups and send them to Victim Group Detector,

which will be given later.

16

(6) Connected Component Stage: DGA-based virus generates domains every
day, and the botmaster only registers a subset of these domains. The victims will try to
connect to these registered domains to reach C&C server. Because of the limited number
of 1P, we assume IPs used by one malicious domain could be also used by some other
malicious domains. In this stage we group the active domains from Active Domain List.
Domains in the same group means these domains belong to the same network. Recalling
DNS Query Process, Active Domain List consists of a list of tuple (d, P), where d is an
active domain and P is the corresponding IP list. To illustrate how to group the domains,
we build a bipartite graph G' = (D, P), where D is a set of active domains and P is a set
of IPs. For one domain d € D and one IP p € P, there exists an edge iff [P address p is
returned when we query domain d to the world wide domain name server in DNS Query
Process. Because there are many active domains in the network, finding all connected
components in G by a single machine is impractical. We use Hadoop cluster and the
algorithm proposed by [7] to find eonnected components. Given a graph G, we first
assign a unique index ¢4 for eachsnode-d.-In the map phase, every node sends it’s index ¢
to its neighbors. In reduce phase, every node receives an index list I = {iy, g, ...,4,} sent
from it’s neighbors, and updates it’s index by z'gww) = min{iq, i1,102,...,7,}. We repeat
the map phase and reduce phase until no node can be updated. Nodes with the same
index means they are in the same connected component. Fig. 2.8 shows how to find the
connected components. We define the component as act; = {d,ds, ds, .., d, } called active
group, where i is the unique active group ID. Finally, we collect all of the active groups
and send them to Victim Group Detector.

(7) Victim Group Detector: Recall that, in Spectral Clustering Stage, client in-
fected by the same malware using the same DGA would attempt to connect the same
DGA-like NXDomains. On the other hand, they might connect to the same active group
which are extracted in Connected Component Stage. Consider the victims infected by one
DGA-based malware, when the victims try to connect to C&C server. Victims attempt
to connect the common NXDomains (in the same nx), and finally connect to the same act
(active domains might share the same IPs). We compute the Jaccard [26, 28] similarity

between each pair of (act, nx).

Definition 2 Jaccard similarity : Let By, be the set of client IPs which had queried to

domains in act; , and B,,, be the set of client IPs which had queried to domains in nx;.

17

Qv [5,6] Qve (1,2]
(2) (6) 1 (2) (6)
3]
(3) @ [7,9] 9
() (8)
‘ [89] ‘
© (5) (o) 134l
(a) (b)
© Ol (1) (1)

o e o)
® ® ®
=2 T2 T2

Figure 2.8: Finding connected components: (a) initial step. (b) send index to neighbors.

(¢c) update index. (d)(e) repeat until no node can be updated

18

The Jaccard similarity of act; and nx; is:

o |Bacti N Bn:(:j|
|Bacti U Bna:j | ‘

Jaccard(act;, nx;)

For filtering noise, we filter out the NX group with size smaller than five (|nz| < 5),
because the size of NXdomains generated by DGA-based malware is usually more than
100 in one day. We also filter out the act group if the number of clients which have queried
to this act is less than four. The reason is if we do not set this threshold, we might classify
benign domains as domains of C&C server. Consider there are two compromised machines
in the network and they all connect to benign.com every day. Our detection system would
find that they all connect to the same NX group which is generated by a malware. In
this situation, similarity between the NX group and benign.com is high, and our system
would report such pair. It simply generates noise record with benign act and we will filter
out such act group.

By the above filtering approach, now we show .that it is an abnormal event if there
exist nx, and act such that Jaccard(nz, act) >0, where we choose § = 0.7 empirically.
Note that the 6 depends on the network. Different networks might use different 6. We
show how we choose the suitable 6 to detect victims behavior better. We performed an
experiment on DNS log which was collected on 2013/09/07. We extracted 152125 active
groups and 458 NX groups. We measured Jaccard similarity for all possible (act, nx) pair
and collect the (act,nz) pair if Jaccard(na,act) > 6. The relation between 6 and the
number of collected pairs is shown in Fig. 2.11. It can be observed that it’s rare to find
the act and nx with high Jaccard similarity. However, recall the observation mentioned in
Section 1. Victims infected by the same malware attempt to connect to the NX groups and
active group, which other clients never connect. We can find the (nz, act) pair with high
similarity if clients in our network have been infected. We simulate behaviors of victims
infected by the well-known DGA-based malware to show that victims’ group connection
behavior would generate (act,nz) with relative high Jaccard similarity. We will discuss
it later. We consider act,,, as malicious domain group (domains direct to C&C server)
if there exists nx,,, € NX such that Jaccard(nmqa, acty,q) > 0, and we consider clients
which had connected to act,,, as victim group because these clients attempted to connect
to C&C server. We store the victims group and corresponding act,,., NTmq to victim
group database.

To show that this detection mechanism works, we simulate victims’ DNS activities and

19

Input: DNS Log DNS, Set of DGA NXDomains NX = {d,da,..,d,}
Output: A set of tuple C={t1,ta,...tm}. t=(d,c),
where d is one of domain in NXDomains List , ¢ is one client IP.
Join (DNS,NX)
c=0
for each r€ DNS
if rde NX
C = Cu{(rd,r.c)}
end if
end for

return C

Figure 2.9: Pseudo code for Join Stage

simulate the DNS records when they try to connect to C&C server. We set up several

connection parameters as follows:

1. Maximum try: Conficker C generate H0000 domains per day and victims randomly
choose 500 domains to connect to C&C server. If fail to connect to C&C server,
these victims will sleep one day. On the other hand, some of victims infected by
other malwares (i.e. Bobax) would try toconnect until connect to C&C server or all
of candidate domains have been tried. In-our experiment, Maximum try parameter

is set to “retry until connect” or “up to five hundred times trial”.

2. Register Rate: Botmaster needs to register a subset of domains generated by DGA-
based malware. This parameter specifies the ratio of domains that are generated
and registered. Victims would connect with more NXDomains, if the register rate

is low.

3. Number of victims: It is the number of victims in our network. The more victims are

infected by the same malware, the easier we could get more complete NX groups.

4. IP configuration: In active domains side, these domains might be resolved to one
single IP (single IP) or to multiple IPs. Botmaster might construct the botnet by
applying IP fast-flux technique. Domain name server might return different IPs
in each query for one domain. IP fast-flux brings fragment when we construct the

Active Domains Groups. The parameter IP configuration can be set to “single IP” or

20

Input: Set of active group ACT = {acty,acts,...,act,},
Set of NX group NX = {nzi,nzo,...,nTm},
DNS Log DNS
Output: Victim Group G = {g1,92,..,9k}, 9= (act,nz,C ={c1,ca,..c;}),
where C' is a set of client IPs, which had connected to domain d € act
VICTIM_GROUP(ACT ,NX ,DNS)
Let NXContain = {nzcony,nxcons, ...,nxcon, },nrcon; = 0,i <m
Let ActContain = {actcony, actcons, ..., actcon, }, actcon; = 0,1 <
G=10
// Initialization
for each r in DNS
if r.de€act
actcon; = actcon; U {r.c}
end if
if r.denx;
nxcon; = nxcon; U {r.c}
end if
end for
6 =0.7
for actcon; € ActContain
for nzcon; € NXContain
if Jaccard (actcon;, nxcon;) > 6
Let g be a tuple (act;, nz;, actcon;)
G = GU{g}
end if
end for
end for

return G

Figure 2.10: Pseudo code for Victim Group Detector

21

#Pairs

12000

10000
8000

6000 \
4000 \

oo\
S~

0.1 0.2 030405 06 0.7 0.8 08

0

Fal
v

Figure 2.11: Theta measurement

“IP flux”. To simulate IP fast-flux, we choose 50 IPs from one “5.2.10.1~5.2.10.50".
With a specific set of DNS log, we make sure that there is no domain queried by
clients from our campus resolved to these 50 IPs. When one DGA domain is marked

as active domain and “IP-flux”, we randomly choose 5 of 50 IPs as the answers in

DNS Query Stage.

We first randomly choose clients on campus as fake victims, and simulate DNS log as if
these clients are compromised by the same DGA-based malware. Second, we add these
DNS log into original DNS query log and feed-these log into our detection system to find
these fake victims. We measure with two DGA (Conficker C, Zbot) bots with different
parameters setting as mentioned above. We implement the DGA algorithm for each
malware by online malware reports or malware analysis paper [1, 23]. The simulation
result is shown in Table 2.2. Capture number is the number of fake victims reported
from our system. However, we can not detect fake victims infected by Conficker C, which
generates 50000 domains in one day and the similarity between NXdomains are relative
low if there are very few victims in our network. With low similarity of NXdomains, our
system cannot generate the complete nx, which most of victims have queried. This is a

limitation of our system. We leave the improvement as future works.

22

Maximum try

Number of victims

Register Rate

IP configuration

capture number

Retry Until Connect 10 0.01 Single 10
Try 500 times at most 10 0.01 Single 9
Retry Until Connect 25 0.01 Single 25
Try 500 times at most 25 0.01 Single 22
Retry Until Connect 10 0.002 Single 10
Try 500 times at most 10 0.002 Single 7
Retry Until Connect 25 0.002 Single 25
Try 500 times at most V0 0.002 Single 19
Retry Until Connect 10 0.01 Fast-Flux 10
Try 500 times at most 10 0.01 Fast-Flux 8
Retry Until Connect 25 0.01 Fast-Flux 25
Try 500 times at most 25 0.01 Fast-Flux 23

Table 2.2: Simulation on Zbot

23

Chapter 3

Traffic analysis

In DNS log analysis, we propose the methodology for detecting victims group. Because
of false positive, machine learning approach might recommend innocent client IPs as
victims. Furthermore, these victims may not attack any other machines directly. It’s
difficult to block victims directly in.practice. In this section, we use a system to monitor
victims’ network behaviors on packet level, and extract the information for admistrator to
mitigate botnet attacks. Once theinformation of infected groups is available, we analyze
the packet traffic in order to capture group activity. We.use only four features, (srclP,
dstIP, srcPort, disPort), for similarity analysis: For this we adopt the approach by [12] to
cluster network behaviors by using spectral clustering method. For one network segment
we track the similarity of end-hosts’ connections. If two end-hosts’ destination IPs are
similar during a period of time, then they will be assigned to the same cluster. Jaccard
similarity measurement is applied to this part of analysis. Fig. 3.1a shows one cluster
result in one prefix. We can see Fig. 3.1a is a similarity matrix and the deeper the color
of (i,7) in the matrix, the higher the similarity of client ¢ and client j. As we mentioned
in the introduction, clusters are sensitive with group activity such as DDoS attack or
scan activity. Fig. 3.1 shows the original cluster result and clusters when scan activity
occurred. Fig. 3.1 is one cluster result. After three minutes, scan activity started.
An IP 212.zx.xx.xx scanned on the campus network at port 80, and campus network
received packets and sent back to the scanner in a short time. The clusters become
larger because many clients responded accordingly. The cluster summary is shown in
Fig. 3.1c. Network administrator can observe the common dstIP they sent (212.zx.xz.21)

and the corresponding port. We apply this method to capture group activity and report

24

the information about the IPs that these victims want to connect and the corresponding
ports. In our system, network administrator can build access control rules by monitoring

the group dstIP or dstPort to block malware behavior before all victims are discovered.

25

n. L] EEE Em
[[L] nEEn
mon
| L]
E,
[..] L]
.
l. L}
L]
L]
I f W B
a
B n
.-
! us En
i is ELN -
= = [11}
B R
.l
.-
| | B] -III EEEEEEEE
u EnEn EEE EECOEEEE
| | L L] lll.-lﬂl..l.
H) LT T
H | B !IE !!=ll==l
L |17 .

N\ 7590

cluster 0

sre:
140.xx.xx. 07
140.zz.2%.070

140.xx.xx. 00

used Ports set([80]) to connect
dst IP 212.xx.x1.2%
dstPorts set([59073, 38466, 57955, 57311, 54289, 33833, 40398, 45936, 50865, 34324,
46869, 48479, 55485, 52894, 49973])
(c)

Figure 3.1: Scan Activity: (a)The ordinary clusters. (b) The clusters when scan happened

(¢) The summary of one cluster

26

We collect data from PA, a commercial security package [14], which stores traffic
records of each IP. We apply Hadoop technique to handle the huge log. There are nearly
190GB traffic log in one day. We write Hadoop job which is responsible to collect the
data in traffic log and build Json files to describe the clients connections behavior in each
period. An example of Json file is shown in Fig. 3.2, where it can be observed that
there are two active clients (srcl Py, srcl Py) in this period, and srel Py connect to dstl Py
and dstlI P,. We can compress the traffic data and speed up the cluster procedure, when

constructing the similarity matrix.

27

object :{
srclPy :{

dstlP;:{
srcPort :[123]
dstPort :[123]

}

dstlP;:{
srcPort :[514]
dstPort :[514]

}
srclPy: {45578

dstIPy:{
srcPort :[514]
dstPort :[514]

}

dstlPs:{
srcPort :[45578]
dstPort :[80]

}

dSt[P4Z{
srcPort :[57869]
dstPort :[53]

Figure 3.2: Json file to specify the connections behavior in one period
In the Section 2 , we extract active connected components in Connected Component

Stage, and some of active components would be reported as suspicious domains in Victim

Group Detector. Note that we just query each domain one time, and we might get all of

28

Active

Componetl @
IP Flux /([8
S8

@)

@)
/%\(EY

Active

Componet2 @

o &

Victims

Figure 3.3: Fragments of connected component

IPs poll for one domain. It brings fragment effect that is shown in Fig. 3.3, where five
victims, on the right hand side, connect to C&C server with five domains (dy, ds, ..., ds),
and the connection records are stored in DNS-dog.” When we analyze the log, we get
the mapping of domains and corresponding IPs(i.e. dy to I Py, IP,) and build active
components list. As shown in Fig. 3.3, we might obtain two victim groups even if they
actually belong to the same botnet.. So Instead of treating one victim group as one network
segment, we put all the victims reported from Vietim Group Detector as one network
segment and analyze the network connection behavior in the segment. The procedure is

as follows:

1. For one time period (i.e. 5 minutes), collect the records with srcIP marked as victim.

2. Build the similarity matrix M with these records. For each pair of victims (i,j), we

_ JAina,|
[A;UA;|

compute the Jaccard similarity Jaccard(i, j) where A; is a set of dstIP

with which client ¢ connects in the period.

3. Apply the spectral clustering, which is the same one used in Spectral Clustering

Stage.

4. For each cluster we build a summary that specifies the dstIP, srcPort, disPort as

shown in Fig. 3.1c.

5. After clustering, use Data-Driven Documents [29] and Jquery [30] to present the

results, such that network administrator can review on the web.

29

Chapter 4

Conclusion

We propose a new method to determine the domains generated by DGA-based malware,
victims infected by the same DGA-based malware and active domains which direct to
C&C server. Along the way, we use Hadoop technique and tools from machine learning
for clustering. After finding the victim groups, we apply network behavior clustering tech-
nique to monitor the victim’s group activity. Our works provide network administrators
valuable information to construct access control rules. Our system still cannot detect
victims infected by Conficker € with the log within 24 hours. It is possible to collect
long term DNS log data for detecting. However, it will need more computing power for

analyzing. We leave it as a future work.

30

Bibliography

[1]
2]

P. Porras, H. Saidi and V. Yegneswaran, Conficker analysis, SRI International, 2009.

M. Antonakakis, R. Perdisci, Y. Nadji, N. Vasiloglou, S. Abu-Nimeh, W. Lee, D.
Dagon. From throw-away traffic to bots: detecting the rise of dga-based malware. In

Proceedings of the 21st USENIX Security Symposium, 2012.

U. Fiore, F. Palmieri, A. Castiglione and A. De Santis, Network anomaly detection
with the restricted Boltzmann.machine, Neurocomputing, Vol. 122, pp. 13-23, 2013.

F. Palmieri and U. Fiore, A nonlinear, recurrence-based approach to traffic classifi-

cation, Computer Networks, Vol. 53, pp. 761-773, 2009.

S. Yadav, A. Reddy and S. Ranjan, Detecting algorithmically generated malicious
domain names, Proceedings of the.10th ACM SIGCOMM conference on Internet

measurement, pp 48-61, 2010.

B. Stone-Gross, M. Cova, Lorenzo Cavallaro, B. Gilbert, M.Szydlowski, R. Kem-
merer, C. Kruegel and G. Vigna, Your botnet is my botnet: analysis of a botnet
takeover, Proceedings of the 16th ACM conference on Computer and Communica-

tion security, pp 635-647, ACM, 2009.

U Kang, C. E. Tsourakakis, Christos F, PEGASUS: A Peta-Scale Graph Mining
System - Implementation and Observations, IEEE ICDM 2009, pp 229-238, 2009.

M. Antonakakis, R. Perdisci, D. Dagon, W. Lee and N. Feamster, Building a dynamic
reputation system for DNS, in USENIX Security Symposium, pp 273-290, 2010.

H. Choi and H. Lee, Identifying botnets by capturing group activities in DNS traffic,
in Computer Networks , pp 20-33, 2012.

31

[10]

[11]

[12]

[19]

[20]

[21]

[22]

23]

C. Dietrich, C. Rossow, F. Freiling, H. Bos, M. van Steen and N. Pohlmann, On
botnets taht use DNS for command and control, Furopean Conference on Computer

Network Defense (EC2ND), pp 9-16, 2011.

U. V. Luxburg. A tutorial on spectral clustering. Statistics and computing,

Statistics and computing, Vol. 17, pp 395-—416, 2007.

K. Xu, F. Wang and L. Gu, Network-aware behavior clustering of internet end hosts,

[EEE INFOCOM 2011, pp 2078-2086, 2011.

Apache Hadoop. http://hadoop.apache.org.

Palo Alto Networks. https://www.paloaltonetworks.com.
MongoDB. http://www.mongodb.org.

OpenDNS. http://www.opendns.com.
http://£.00f.net/PubDNS /redirecting. txt.

Y Freund, L Mason, The alternating decision tree-learning algorithm. In ICML,
volume 99, pp 124--133, 1999.

L. Bilge, E. Kirda, C. Kruegel,; and-M. Balduzzi. Exposure: Finding malicious do-

mains using passive dns analysis. In NDSS, 2011.

E. Horowitz, S. Sahni, D. P. Mehta. Fundamentals of Data Structures in C++, 2nd

ed, Silicon Press.

I. Lutkebohle, English letter Frequency Counts: Mayzner Revisited or ETAOIN
SRHLDCU. http:// norvig.com.mayzner.html. English letter Frequency Counts:

Mayzner Revisited. http://norvig.com.mayzner.html.
Threat Expert. http://www.threatexpert.com.

File-Patching ZBOT Variants ZeuS 2.0 Levels Up. http://www.trendmicro.com/
cloud-content/us/pdfs/security-intelligence /white-papers/wp___file-partching-zbot-

varians-zeus-2-9.pdf.

32

[24] Technical details of Srizbi’s domain generation algorithm. http: //www.fireeye.com/
blog/ technical/ botnet-activities-research/ 2008/11/ technical-details-of-srizbis-

domain-generation-algorithm.html.
[25] Alexa. http://www.alexa.com.

[26] J. Han, M. Kamber and J. Pei, Data Mining, Concepts and Techniques, 3rd ed, Mor-

gan Kaufmann, 2012.

[27] Cheetham, A. H., & Hazel, J. E. (1969). Binary (presence-absence) similarity coeffi-

cients. Journal of Paleontology, pp 1130-1136.

[28] S. Kiyomoto, K. Fukushima, Y. Miyake, "Design of Catego-
rization Mechanism for Disaster-Information-Gathering System”,
Journal of Wireless Mobile Networks, Ubiquitous Computing, and Dependable Applications,
Vol.3, No.4, pp 21-34, 2012.

[29] Data-Driven Documents. http://d3js.org.

[30] Jquery. http://jquery.com.

33

