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ABSTRACT

Compressive sensing (CS) is an emerging technique for signal processing or image

processing. The advantage of compressive sensing is that we can sample a signal of interest
below the Nyquist rate and perfectly reconstruct from £, norm minimization. In this

thesis, we apply compressive sensing into wireless sensor network for M2M
communications in. complex environments. Our proposed methodology is named clustered
compressive sensing. Our goal is to recover the signal of unreceived sensor nodes from
the signal of received sensor. nodes, and furthermore, reduce the reconstruction error by
clustering those sensors into clusters according to their data distribution and positions.
Next, each clusters use principal component analysis (PCA) to obtain the linear projection

matrices which transform the original signal into a sparse representation. Then, choosing
active nodes randomly to transmit its data. And finally, recovering the original by £,

norm minimization.



LR WE R el AR AT R 0 B N 3T PR - B
Fﬁﬁﬁ&’fﬁfﬁ‘mﬁﬁi?iiﬁv%& ’%Q%}i ”}; [N ,FB va J"’%ﬁjw” ELE\/@_"@}}?&J&

W R W R o

"F’I‘ * ‘}\Q}E“;&T#F:I %?”t%i ae%;& E’FF > ?Tjﬁrﬁg ‘5"311 il B g ?fr"@—\. > ,3“ ffuﬁ'—
VI 0 AR R ALART LA 4 Y I A P end il 4 o R et
g HE PR R R AT SEARY FIHTE  LE X o R

I RS IEE W S

e | ¥ A2 = 8 Y 4% // o . L ‘
ARFIF AR AAFE S AREFEE R J TSR Y RA TR

=
)

4

RMANRURL $8 55 BB BHLAAL T &R -

i

G WP EEH I RE RGO KL EP RS T ADS R a R o
[ ORLAES ST B

PP

2013 # 12 % > W= 2 < H 5 i35 0 L



CONTENTS

i OSSP ST TSP PP ST PRPRO [
ABSTRACT ettt b et ae e b et aee e I
ERY = PRI i
CONTENTS ettt sttt s b e et e e be e et e e nae e e nbeesneas Y
LIST OF FIGURES ... .ottt v
LIST OF SYMBOLS ...t i bt e e b i bttt ettt ennee s Vi
Chapter 1 INTrOQUCTION ......... oo sttt S b et -1-
Chapter 2 COMPreSSIVE SENSING Luveuververrtatsuemuesseesuenses rassesseataseeseabastionmesseneessessesesnes -5-
2.1 Overview Of COMPIESSIVE SENSHIG wi.r.iuiiiies it eattaseibasseeseeseesshbessiie e eeseesseenes -5-
2.2 MEASUrEMENT MBEIIX.........c..iiiiteiuestesressessaihn s aibannesneeeeneeseeas b enebees et seeseeseeens -6-
2.3 Reconstruction AIgOrithm.....c.... et s -8-
Chapter 3 Clustered COMPreSSIVE SENSING......iueiiiueiiiieaiians e ibeadenne st aresiesiesiesiens -12 -
3.1 System Model and ASSUMIPTIONS v ...veveveieeeieeneesnsiie e nesbesaineeeeeesee e sre e sieens -12 -
3.2J0INEPCA AN CS ... e ettt -15-
3.3 Clustered COMPIreSSIVE SENSING ....cververuirieieeieieieesie ettt seeens -18 -
Chapter 4 Performance Evaluation.............ccocoiiiiiiiiincee e -21-
Chapter 5 CONCIUSTON ..o -33-
REFERENCE ...ttt s -35-



LIST OF FIGURES

Figure 1 Architecture of M2M COMMUNICATIONS .....ccveiviiirriiiiesieseeie et -1-

Figure 2 Visualization of solving the ; and {, norm minimization problem in R?...- 10 -

Figure 3 the wireless sensor Network model. ... -12 -
Figure 4 the data gathering scheme through multi-hop transmission............c.cc.cceeveivenennen. -18 -
Figure 5 the temperature distributions MOdel...............ccocoviiiiiiiiiiice -23-
Figure 6 the simulated temperature model for one distribution ................cccooeviinincnnnn, -25-
Figure 7 reconstruction error versus the number of active nodes (Scenario 1).................. - 26 -
Figure 8 the sparsity level versus the number.of clusters (Scenario 1) cc.....c.ccoovvvrvenennnn. -27 -
Figure 9 Reconstruction error versus the number of active nodes (Scenario2) .................. -28 -
Figure 10 The sparsity level versus the number of clusters (Scenario 2)............c.ccccveuvneee. -29 -
Figure 11 Reconstruction error versus the number of active nodes (N'=400) .................. -30-
Figure 12 the sparsity level versus the number of clusters (N =400)...........ccccocvrivenennnn. -31-


file:///C:/Users/Chungwei/Dropbox/Neon/new_thesis_1202_2.docx%23_Toc373834108
file:///C:/Users/Chungwei/Dropbox/Neon/new_thesis_1202_2.docx%23_Toc373834109
file:///C:/Users/Chungwei/Dropbox/Neon/new_thesis_1202_2.docx%23_Toc373834110
file:///C:/Users/Chungwei/Dropbox/Neon/new_thesis_1202_2.docx%23_Toc373834111
file:///C:/Users/Chungwei/Dropbox/Neon/new_thesis_1202_2.docx%23_Toc373834112
file:///C:/Users/Chungwei/Dropbox/Neon/new_thesis_1202_2.docx%23_Toc373834113
file:///C:/Users/Chungwei/Dropbox/Neon/new_thesis_1202_2.docx%23_Toc373834114
file:///C:/Users/Chungwei/Dropbox/Neon/new_thesis_1202_2.docx%23_Toc373834115

LIST OF SYMBOLS

Symbol Definition

T The number of samples of each sensor nodes

K The sparsity level

N The number of all sensor nodes

M The number of active sensor nodes

p The transmission rate

E The energy consumption of each sensor node

E, The reconstruction error

0 The combination of @ and ¥

()] The measurement matrix

b 4 The transformation matrix

U The orthonormal matrix composed of the eigenvectors of =
U The transformation matrix of i-th cluster

Ug The diagonal matrix composed of U

b The sample covariance matrix of X,

A The i-th eigenvalue of ==
X The sample mean of X;

X< The sample mean of X'

Y, The known dataset at given time t

Xt The received signal of active sensor nodes at given time {
X, The original signal of all sensor nodes at given time t

Vi



C The original signal of sensor nodes in i-th cluster at given time

X' t
S, The principal component of X, at given time t
Sfi The principal component of x“ at given time t

vii



Chapter 1 Introduction

Machine-to-machine (M2M) [1], [2] communications are getting more and more popular
in recent years. M2M communications provide the more and more convenient and highly
efficient applications of life by lots of devices which connect to the network. The enormous
network is composed of many machines such as computers, sensors, actuators, mobile
devices, home appliances, vehicles, and etc. Thus, machine-to-machine communications
is also called Internet of Things (loT). The technology are designed for many kinds of
applications such as environment monitoring, smart house, human body healthcare,
vehicle safety and so on. There are four major layers in M2M communications architecture
such as smart sensors collect data, transmission of select data through communication

networks, compute and analysis the information, and response to the available information.

Application and e Intelligent agent
service layer ¢ Situation awareness

¢ Cloud computing
¢ Data mining
e Data clustering

Management
layer

* Mobile communication technologies

Communication .
¢ Wireless sensor network

layer
e Body area network
e Sensor
Sensing layer e Actuator
e RFID

P

Figure 1 Architecture of M2M Communications



In the near future, hundreds of thousands of wireless sensors will be deployed in our living
world and provide various services and applications for us. The cost of maintaining these
huge amount of sensors will be a major concern about the sensor network. One of sensor
maintain cost is energy consumption. It is almost impossible to replace all batteries of
those wireless sensors which are deployed in a big area. Therefore, the issue could be
solved by designing a more advanced low power consumption wireless sensor, or
improving the data transmission scheme to prolong the battery lifetime of the wireless

Sensors.

The Shannon-Nyquist sampling theorem indicates that to capture a signal of interest
without missing important information, we must sample the signal at the Nyquist rate
which is equal to twice the bandwidth of the signal. However, an alternative theorem which
is called compressive sensing (CS) [3], [4], [5], [6] could exactly recover the original
signal below the Nyquist rate. Compressive sensing is proposed by Donoho, Candes, and
Tao in 2006. The innovative methodology establishes an efficient reconstruction algorithm

for a small number of random linear projections of a compressible signal.

In this thesis, we focus on how to improve the data transmission scheme in the wireless
sensor network. To save the energy consumption of the wireless sensor network by
decreasing the transmission rate but preserving the information accuracy. In other words,
consider a wireless sensor network which consists of lots of sensor nodes and a server. The
sensor nodes in the wireless sensor network have two types of status, one is active mode,
and the other is idle mode. When a sensor node is in active mode, it obtains the readings
from the physical environment and transmits the data to the data processing center through

the wireless interface. Conversely, when a sensor node is in idle mode, it just turns off



most of the functions for power saving and waits the control system call. The server
receives all data packets of the active sensor nodes and reconstructs the data of the idle
sensor node through compressive sensing technique. The reconstruction error of the
recovered data must satisfy the minimum precision requirement. Thus, we could save
energy by decreasing the number of the active sensor nodes, but the reconstruction error
of the recovered data might raise relatively. There is a fundamental trade-off between the
number of active sensor nodes and the reconstruction error.

In [12], the authors propose that compressive sensing is applied in a decentralized wireless
sensor network. The actual networked data might be not sparse, but could be represented
with s small number of diffusion wavelet coefficients. In [13], the authors proposed an
efficient cluster-sparse reconstruction algorithm for data compression in a wireless sensor
network aiming .to more accurate data reconstruction and lower network energy
consumption. In:[14], the authors propose two algorithm-which is called Universal
algorithm and Gaussian algorithm respectively of finding transformation of signal to be
sparse. In [15], the authors propose a compressive sensing based data gathering scheme in
home area network for smart gridto demonstrate a low power data gathering design. In
[16], the authors propose a clustering method that uses hybrid compressive sensing for
sensor networks. The sensor nodes are organized into clusters and each clusters has a
cluster head. Within a cluster, all sensor nodes transmit their data to cluster head without
using compressive sensing. Then, each cluster heads use compressive sensing to transmit
data to sink. The goal is to reduce the number of transmissions in the network. In [17], the
authors use principal component analysis to find linear transformation that let the signal
be sparse and further joint principal component analysis with compressive sensing to

recover the original signal from a small number of samples. In [18], the author propose an



enhancement to a Bayesian estimation approach and isotonic regression approach. In [19],
the authors present a complete design to apply compressive sensing for a large scale
wireless sensor network. The proposed method is able to reduce global scale
communication cost without introducing intensive computation or complicated

transmission control.

The rest of this thesis is organized as follows. First of all, in Chapter 2, the theorem of
compressive sensing is briefly introduced. Next, our proposed clustered compressive
sensing scheme and the system architecture assumptions will be presented in detail in
Chapter 3. Then, in Chapter 4, we evaluate the performance of our proposed methodology.

Finally, this thesis makes conclusions in Chapter 5.



Chapter 2 Compressive Sensing

In this chapter, the theorem of compressive sensing will be briefly introduced.
Compressive sensing is being believed that a sparse signal could be completely
reconstructed from an underdetermined measurement. Meanwhile, the algorithm of
reconstruction a sparse signal is quite simple. There are two main fundamental premises
of compressive sensing, the first one is sparsity and the other one is incoherence [11]. In
the following sections, we first give a quick concept of compressive sensing. Then, we
explain how to design a measurement matrix for satisfying restricted isometry property.

Finally, we introduce the theory of reconstruction algorithm for compressive sensing.

2.1 Overview of Compressive Sensing

The key concepts of compressive sensing is that we could perfectly reconstruct the original
signal from an underdetermined measurement. Consider a real-valued, finite length, one-

dimensional, discrete time signal xeR", which could be regardasan N x1 vector with
entries X, N=12--N.Let {]i=12 N} beasetof Nx1 orthonormal basis
vector for the space R". And let ¥ e R™" be an orthonormal matrix where the i-th
column is the i-th basis vector @;. Any given signal could be expressed as a linear

combination of these basis by

N
X=Ys@¢, or x=Ws (2.1)
i=1



, where § is an Nx1 vector of S =(X,@;). Both the two vectors x and S are

equivalent representations of the signal. Typically, we say that x is the signal in the time
domain or spatial domain and S is the signal inthe ¥ domain.
In general, we assume that S is sparse, that is, it is a linear combination of only K basis

vectors.

We measure the signal x by sampling the measurement matrix @ <R"™ . Then, by

substituting x=¥s into Equation (2.1) we get
y = ®x = OY¥s = Os, (2.2)

where @ =®Y¥ isan M x N -matrix . The process of measurement is not adaptive, that
is, the measurement matrix @ is fixed and not depend on the signal x. The objective of
compressive sensing is to design a stable measurement matrix @ to ensure that the
information in a sparse or compressible signal won’t be damaged by dimensionality
deduction and a reconstruction algorithm to perfectly recover the original signal from M

measurements.

2.2 Measurement Matrix

In this section, we present how to design a proper measurement matrix for compressive
sensing. Our goal is that to capture the most significant coefficient of the original signal
and discard all the others without losing too much information. Since the measurement
matrix ® <R"™™ and M <N, directly solving x from Equation (2.2) is completely

impossible and it is an ill-posed problem. However, suppose the original signal x isa K



-sparse signal and the positions of the K nonzero coefficients of S which denotes as
A:{i|si #0,1 =1,2,...,N} are known, we could use an M xK matrix ©®, where

M > K for the purpose of restricting the positions of the nonzero coefficients of S. A
necessary and sufficient condition for this simplified problem to be well conditioned is
that, for any given K -sparse vector veRM™ which the positions of the nonzero

coefficient is the same as S, we have

2

1—53MSl+5, (2.3)
VI

for some ¢ >0, that isto say the matrix @ ;have to preserve the lengths of these K -

sparse vectors. However, generally speaking, the positions of the K- nonzero coefficient
are unknown. Candes et al. have shown that a sufficient condition for a stable inverse for
K -sparse vectors is that © satisfies the Equation (2.3) for any arbitrary 3K -sparse
vectors. The sufficient condition is referred to as the restricted isometry property (RIP) [7],

[8], [9]. The restricted isometry property is defined as follows

(18 )M =l = @+ 50 Ix];. (2.4)

for each integer 1<K < N, exist a restricted isometry constant 0, =0 of a matrix ®

as a smallest number. When the restricted isometry property holds for all K -sparse vector

x, we could say that a matrix @ has the K -restricted isometry property with the
restricted isometry constant 0, if 0, is not too close to one.

To design a measurement matrix @ so that @ =®Y satisfies the restricted isometry

N
property requires verifying all [Kj submatrices with K columns of ® . However, one

-7-



approach to design a measurement matrix @ which could simply achieve the restricted
isometry property and incoherence is to choose the measurement matrix @ as a random

matrix. The M xN random matrix could be obtained according the following way: 1)

by sampling N i.i.d. entries from normal distribution with mean 0 and variance ﬁ ,

and 2) by sampling N i.i.d entries form symmetric Bernoulli distribution
LP(% =ﬁj=%} All the matrices obey the restricted isometry property provided
that
N
M>C-K IOQ(RJ (2.5)

where C is asmall constant.

2.3 Reconstruction Algorithm

The most impressive thing is that the algorithm-for signal reconstruction of compressive
sensing could be easily obtained by convex optimization. To recover the original signal,
we must take the M measurements in the received signal Y, the measurement matrix
@, and the transformation matrix ¥ and reconstruct the N -dimensional original
signal x or, equivalently, its sparse representation s. Since the number of measurements
is much smaller than the dimension of the original signal, recovering x from Y isanill-
posed problem. There might be hundreds of thousands of s that satisfy Equation (2.2),

hence we might have to further restrict s in a small region where the uniqueness of s



could be guaranteed. Fortunately, we already know that s is sparse, we could restrict the

number of nonzero entries in vector §, that is

min|g||,, subjectto y=@s. (2.6)

The above optimization problem could be solved by greedy algorithms such as orthogonal

matching pursuit (OMP) [20] or compressive sampling matching pursuit (CoSaMP) [21].

In greedy algorithm, set x=0 and the residual r(X) in the beginning. Next, in each

iteration, the atom that most correlated to the residual r (X) is added into the support set

and then x is updated by solving the least-squares problem by using the support set.
Finally, the iteration stop when the number of select atoms. is equal to K.

However, minl|[3]|;. is not convex and thus the convergence to the global optimum is hard

to be ensured for greedy algorithms. Candés et al. has proven that when the restricted
isometry property of the measurement matrix @ satisfies certain conditions or the

measurement matrix “@_is.incoherent to the transformation matrix ¥, the original

signal S could be recovered by ¢, “norm minimization as follows

min|3|, subjectto y =03 (2.7)

Obviously, the above optimization problem is convex and have the global optimum, which
could exactly recover a sparse or compressible signal with high probability. Many
algorithms have been proposed to solve the convex optimization problem, including basis

pursuit (BP) and linear programming (LP) [10].
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Figure 2 Visualization of solving the fl and 52 norm minimization problem in R’.

Consider a two-dimensional case, we could understand that solving the {; norm

minimization problem is more likely to return a sparse solution than solving the {, norm

minimization problem. Suppose ‘N =2 ‘and -M'=1, we have a set of solutions to y = Ax
as a red skew line as shown in Figure 2. Our goal is to find the sparsest solution «, and

apparently, « is 1-sparse in this case. Each blue region represents the minimum value of
x|, and |[x|, as ¢;ball and ¢, ball respectively. The minimizing |X], subject to

y = A% returns the solution that closest to the origin but the solution is not a sparse
solution. The only way of the solution to be a sparse solution is that if the line of solutions

is parallel with one of the axes, which happens if and only if one of the entries of A is

zeros. However, the minimizing ||)A(||1 subject to y= A% gives a sparse solution when

-10 -



the line of solutions touch at the corner of the {; ball. The line of solutions might overlap

with the one of the edges of the (; ball, which happens if A=[t1 +A]eR™.

Furthermore, we could intuitively extend this kind of problem into higher dimensions.

-11 -



Chapter 3 Clustered Compressive Sensing

In this chapter, we first introduce the system architecture of the wireless sensor network
and related assumptions. Next, we introduce a technique which joint principal component
analysis (PCA) and compressive sensing, which is published by Masiero et al. in 2009
[17]. Finally, we propose a methodology of combining clustering and compressive sensing.

We call the method as clustered compressive sensing.

3.1 System Model and Assumptions

Figure 3 the wireless sensor network model.

-12 -



In our scenarios, the wireless sensor network system consists of one server for computing
and storing information and N autonomous sensor nodes for collecting data of physical
environment. Meanwhile, we assume all of the N sensor nodes are uniformly and
independently distributed in a region of various terrains. And we also assume that all of
the N sensor nodes collect data by following the same transmission rate in a
synchronized time slot. Once a sensor node obtains its reading of physical environment in
a time slot, the sensor node immediately transmits the data packet to the server through
the wireless interface in the same time slot. Each of the N sensor nodes has two types
of status, one is active mode and the other one is idle made. In active mode, a sensor node
takes the actions of sensing the physical environment and transmitting the data packets to
the server through the wireless interface, on the other hand, a sensor node in idle mode
turns off most of functions to reduce energy consumption. Supposed that a sensor node in
active mode consumes most of energy and the energy consumption:in idle mode is too
small to ignore, the energy consumption of a sensor node is viewed as E . The maximum
energy consumption of the wireless sensor network is N'x E, while all of the N sensor
nodes are in active mode and the energy consumption of the server and the wireless base
station is not include. Therefore, we can decrease the number of active sensor nodes by
adjusting the transmission rate to reduce the energy consumption. Let only M active

sensor nodes in each time slot, and the energy consumption could be represented as

M x E . Also, the transmission rate could be viewed as p:% .Of course, the other

N —M sensor nodes are in idle mode and their data could be recovered by the
reconstruction algorithm of compressive sensing. The reconstruction error must meet the

system minimum precision requirement. As the result, there is a trade-off between energy

-13 -



consumption and reconstruction error. In the following section 3.2, we will briefly

introduce how to recover the missing data from known information.

Furthermore, generally speaking, the physical environment is various in many places. For
example, the quality of groundwater of Hsinchu City, the quality is the best in mountain
area, good in downtown and the worst in industrial districts. Suppose we would like to
monitor the quality of groundwater of the whole city by installing numerous of sensors
underground and gathering those readings of sensors. Since the data of a specific area has
its characteristic and distribution, we- could -assign the sensors which have similar
characteristics or follow the same distribution into a cluster. Then, we could look for a
sparsest representation of each clusters. It seems easier to find a sparse representation of

each clusters than that of all the data. Therefore, suppose that to observe a region of various

. 4 L
environment by a wireless sensor network. Let x=[x,X,, -, X,] s xeR" denotes a

vector of original data collected from all of the -N.-sensor nodes and' X,,N=12,--'N s

the readings of physical environment of each sensor nodes. Assume that x is comprised
of several distributions and the sensor nodes. whose readings belong to the same
distribution are close to each other.Our major target is that to find out the sparsest
representation of signal x, therefore, we come up with an idea that to divided those sensor
nodes into clusters according to their readings and geographic positions, in this way, we

might obtain the more sparse representation of the subset of signal «x.

-14 -



3.2 Joint PCA and CS

Suppose that to collect all readings from a wireless sensor network with N sensor nodes,
according to a fixed sampling rate at a discrete time t=1,2,---, T. Let X eR" pe a
vector of the readings collected from all sensor node at a given time t. In geometric point

of view, X, could be viewed as a single point in R" surface and we are looking for

vector § in K -dimensional plane (K << N) which provides the best fit of X, in

terms of minimum the Euclidean distance. The projection of X; into st(K) could be

defined as

def
s = U (x, -X), (3.1)

where U, isan""N xK orthonormal matrix whose the column vectors consists of K
eigenvectors which is corresponding to the K" largest eigenvalues of covariance matrix
of X, and X is the mean of X;. The mean vector and the covariance matrix could be
replaced by the sample mean vector X and the sample covariance matrix = as

Y=%i&, (3.2)

t=1

- 1 - AT
Z—T—_lt:l(xt—x)(xt—x) _ (3.3)

Therefore, the best K -dimensional approximation of any given X, is given as follows

-15 -



% =X+U,s, =X+U, Ug (X, —X). (3.4)

Furthermore, we apply the principal component analysis methodology to compressive
sensing. In compressive sensing, we would like to reconstruct a given signal x from
receiving a small number of measurements M, which is much smaller then N . In a
wireless sensor network with N sensor nodes, suppose we only collect the packets of

the M active nodes at each time t, the set of the M packets could be represented as a

vector form X;. The M active nodes are chosen randomly from the N sensor nodes

by an M xN routing matrix @'. Thus, the relationship between X, and X;n could be

written as
X = ®X,. (3.5)

According to the principal component-analysis scheme, we could represent the sparse

vector S, =s") at each time t as

s, = Uy (x, —X) (3.6)

Suppose that X; could be completely obtained from SﬁK) by applying Equation (3.4),

we could say that § isa K -sparse vector as

. -
S0 '

-16 -



where Oy_ is a (N—K)x1 vector with all zero entries. Because Uy is an

orthonormal matrix, we have I, =U Uy, where |, is an NxN identity matrix.

Thus, the Equation (3.6) could be rewritten as

X, —X=U,s, ="¥s, (3.8)

where the transformation matrix ¥ is totally equal to U, . By combining Equation
(3.5) and Equation (3.8) we could write

X =X = ®(x, —X)=D¥s, = Os, . (3.9)

Since the form of Equation (3.9)-is-similar to that of Equation (2.2), we could easily apply

the compressive sensing reconstruction algorithm to recover a good estimate of $,, denoted

as §1.Once §t is obtained, X; would be recovered from §t according to Equation (3.4),

as

X =¥s, +X (3.10)

where X, is approximation of X, .

-17 -



3.3 Clustered Compressive Sensing

Server

Figure 4 the data gathering scheme through multi-hop transmission

In this section, we propose a methodology of clustering and combining compressive
sensing. Our goal is to recover the length- N original signal from M active nodes. To
achieve this goal, we must collect some prior knowledge of this network. We use k-means
clustering methodology to divide those sensor nodes into clusters according to the readings
of those sensor nodes. In each cluster, the data might be more similar to each other, thus
we could use principal component analysis for each of clusters. In this way, we could get
the more sparse representation s of x, that is to say, we could collect less data of those

sensor nodes, but we still could recover the whole data of x. We could consider this

-18 -



methodology as a two-step reduction of signal dimensions. The first step is that the similar
information into the same group, and further use principal component analysis of each of
the clusters.

For example, suppose all sensor node are divided into three clusters as follows

X, =| x> (3.11)

The next step, we apply principal component analysis to each of the clusters. That is

X% = X4 4 U9sE,
X=X =l 32, (3.12)

x5 =% 4 U*ss%,
Then, by combining (3.11) and (3.12), we have

X% + USsS
X =X £U%s%
X 3 UG5
%@ [ GsG
=| X% |+] U%s® (3.13)
X% | | USsSs
'xa1 [us o0 o0 |[s&
+ 0 U% 0 ||s&
X 0 0 US| s™

Furthermore, we define u_ is adiagonal matrix which the diagonal entries is composed

of U%, U%,and U%.We could rewrite Equation (3.13) as

X, =X+UgS, (3.14)

-19 -



Thus, we need to ensure that u_ is still an orthonormal matrix by

T

us o 0 ||[U" 0 0
UUJ=| 0 U= 0| 0 U= 0
0 0 U%|l0 0 U>
us o0 0 JJueT o 0
=l 0 U% 0 0 UuU% o0

(3.15)

and the sameto Ug

-20-



Chapter 4 Performance Evaluation

In this chapter, we study the effectiveness of our proposed clustered compressive sensing
and evaluate the performance by calculating the reconstruction error between the original
signal and the recovered signal. We consider a wireless sensor network with N sensor
nodes is employed in a square region of side D units, which is evenly divided into N
small square grids. All of the N sensor nodes are uniformly distributed in this region so
that each grids has only exactly one sensor node. Each of the N sensor nodes could only
communicate with all other.sensor nodes in a circular range of radius R units. Since
R< D, each of the. N sensor nodes transmits its data packets through multi-hop
connections. All of the data packets will be concentrated to the processing server
eventually. The wireless base station is placed in the center of this region and connects
with the server through cable connection. The server is in charge of data storing and

processing including data clustering and principal component analysis.

The input signal is a simulated temperature distribution in a square region which is
separated into four sub-regions. The simulated temperature distribution in each sub-
regions is different to each other. In each sub-regions, the simulated temperature is a

D2
%x% square matrix T;,9=1234 with e elements, where elements

D . D . :
o J=1,2,---.E are the value of simulated temperature and spatially

{ti’j|i=1,2,---,

correlated. The simulated temperature generation procedure is executed as the following

steps:
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DZ
1) we start from a %x% matrix H,,9=12,3/4 with e entries, where entries

{h;li+j<{w|5<w<15 VweN}| are generated from continuous uniform

distribution;
2) T, isobtained from Hg by inversing discrete cosine transformation;

3) sampling the data correspond to the positionsofall N sensor nodes, thus we simulated

temperature signal X ;
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4) finally, in order to verify the robustness of our proposed methodology, we add an i.i.d.
random Gaussian noise we /l/(O,az) into all entries of signal X .

The simulated temperature model is shown in Figure 5.

To implement our proposed clustered compressive sensing methodology, we alternate two

phases as below. One is training phase and the other one is monitoring phase. In training

phase, first of all, T samples of each sensor nodes are collected into the server. Next, all
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Figure 5 the temperature distributions model
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ofthe N sensor nodes are divided into G clusters according to their positions because
we consider that the readings of those adjacent sensor nodes are similar substantially. We
allocate the collected data into clusters according to their cluster indices. Then, each cluster
apply the principal component analysis to obtain its sample mean and sample covariance.
And finally, merge those sample mean into a longer vector and form those sample

covariance into a diagonal matrix.

Subsequently, in monitoring phase, we randomly select M active sensor nodes from N
sensor nodes. The data of the other N —M- sensor nades is reconstructed from the subset
of input signal by using the sample mean and sample covariance which is calculated in
training phase.

To evaluate the performance of proposed methodology, we consider an indicator such as

the reconstruction error.
1 N
Ef ZNZ(X‘ — %) (4.1)
where X is the original signal, and % “is the-approximated recovered signal. All of the

simulations have been performed under the following platform: MATLAB R2011b on a

computer with Intel Core i5 661 3.33GHz CPU, 8GB RAM, and Windows 7.
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€ Scenario 1

In Scenario 1, we consider that there is only one distribution of the input signal and
the number of sensor nodes N =100 in the wireless sensor network. The simulated
temperature model is shown in Figure 6. Figure 7 shows that the relationship between
reconstruction error and the number of active nodes. Since only one distribution in
this region, choose one cluster is the best idea. When choose more than one cluster,
the sparsity level is getting higher. Thus, for higher the sparsity level, we must need

more measurements of active sensor nodes. Therefore, supposed the number of active
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Figure 6 the simulated temperature model for one distribution
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Figure 7 reconstruction error versus the number of active nodes (Scenario 1)

sensor nodes is the same, choose four clusters has the highest reconstruction error, on
the other hand, choose one cluster has the lower reconstruction error. As the result, it
is not necessary that allocating those sensor into clusters when the environment is

follow simple distributions.
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Figure 8 the sparsity level versus the number of clusters (Scenario 1)

€ Scenario 2

In scenario 2, we consider that there are four distributions of the input signal. The
input signal is shown in Figure 5, and the number of sensor nodes N =100. In Figure
9, we can clearly understand that for using four clusters, each of the distribution might

have the best fit. Obviously, the reconstruction error for four clusters is the smallest.
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Thus, the sparsity must be the smallest as shown in Figure 10 and when the number

of cluster decrease, the higher the sparsity level need.
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Figure 9 Reconstruction error versus the number of active nodes (Scenario2)
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Figure 10 The sparsity level versus the number of clusters (Scenario 2)

However, according to Equation (2.5) and the restricted isometry property, we must
need at least 3K measurements, thus the signal could be recovered perfectly. In
K~44 case, the necessarily measurement M >132, therefore, using N =100 is
not enough to completely reconstruct the original signal. Furthermore, we employ
N =400 sensor nodes into this region. The result is shown in Figure 11 and the

sparsity level is shown in Figure 12. As we can see that the sparsity level become
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Figure 11 Reconstruction error versus the number of active nodes (N =400)

K =160, according to the restricted isometry property, N =400 is still not high
enough to perfectly recover the original signal. but the total reconstruction error is
lower than N =100, as the result, supposed that we could endure the temperature

has the mean square error is equal to 0.1, we could choose four clusters for only need
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Figure 12 the sparsity level versus the number of clusters (N =400)

about 350 active sensor nodes, on the contract side, if we choose one cluster, we need

near 370 active nodes.
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Finally, for a multi-environment region, it is hard to find the sparsest representation
of the original by using principal component analysis, but in a monotonous
environment, it is quiet easier than multi-environment. Although, we could not
perfectly recover the original signal, we still could regard the approximation signal
as a reference when the reconstruction error is satisfied the minimum precision

requirement.
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Chapter 5 Conclusion

In this thesis, we present a joint design of clustering and compressive sensing for a wireless
sensor network which is deployed in a wide region with a variety of environments. This
proposed methodology is aim to recover the data of the unreceived sensor nodes from that
of the received sensor nodes. By clustering those sensor nodes, we could reduce the
complexity of the input signal, and we could further find out the more sparse representation
of the input signal. The less the sparsity level the original signal has, the less number of
active sensor nodes need and the less energy of idle sensor nodes consume. As the result,

we could make a trade-off between reconstruction error and energy consumption.

From the performance simulation, we evaluate the differences between uni-environment
region and multi-environment region. In the uni-environment region, we could easily find
out the sparsest representation of the original signal, and it is not necessary that to divided
all sensor nodes into clusters. On the other hand, in multi-environment region, separating
those sensor nodes into clusters could efficient reduce the reconstruction error, thus we
could assign less active sensor nodes to.transmit-its readings of physical environment to
save more energy. However, the sparsity level in multi-environment region is
unsatisfactory. Since we increase the total number of sensor nodes, it is still not able to

recover the original signal perfectly.
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Therefore, in future work, we must have to find out a more efficient method to let the
original signal has the sparsest representation in various environments area. Maybe we can
not only use principal component analysis to find the sparsest representation but also apply
another approach into compressive sensing. We can use different approaches for each
clusters according to the characteristics or distributions of the data of each clusters.
Furthermore, we can improve our clustering methodology, because in this thesis we just
use k-means clustering according to the geographic position of the sensor nodes. Thus,

how to cluster those sensor nodes intelligently and efficiently can be the next major issue.
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