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摘 要 

壓縮感知對於通訊傳輸是一個十分新穎的技術，其技術的特點在於利用大部分的資

訊都存在一種稀疏的表示式，經由隨機量測此訊號，即可透過簡單的線性規劃或貪

婪式演算法還原此訊號。在新興的物聯網中，如何從眾多的裝置之中迅速且有效率

地獲得所需要的資訊為其中之一大課題，本論文著重於針對物聯網內之無線感測網

路應用於複雜的物理環境時，提出了一個群集化的壓縮感知技術用於將所收集到部

分感測器的資料重建出所有未收集到的感測器的資料以及降低其重建誤差的方法，

此方法依據各個感測器所收集的資料以及所在的位置，將其相似性高的資料並且所

在位置相互鄰近的感測器分配至同一群集內，再針對各群內的資料進行主成分分析，

資料經分析之後可獲得線性轉換矩陣，再配合隨機測量矩陣取得部分感測器的資料，

即可完全的重建出全部感測器的資料，除此之外，由於只需要部分感測器傳輸資料，

因此群集壓縮感知技術也能夠節省下許多不必要的能量消耗。 
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ABSTRACT 

Compressive sensing (CS) is an emerging technique for signal processing or image 

processing. The advantage of compressive sensing is that we can sample a signal of interest 

below the Nyquist rate and perfectly reconstruct from 1  norm minimization. In this 

thesis, we apply compressive sensing into wireless sensor network for M2M 

communications in complex environments. Our proposed methodology is named clustered 

compressive sensing. Our goal is to recover the signal of unreceived sensor nodes from 

the signal of received sensor nodes, and furthermore, reduce the reconstruction error by 

clustering those sensors into clusters according to their data distribution and positions. 

Next, each clusters use principal component analysis (PCA) to obtain the linear projection 

matrices which transform the original signal into a sparse representation. Then, choosing 

active nodes randomly to transmit its data. And finally, recovering the original by  1  

norm minimization.  
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Chapter 1 Introduction 

Machine-to-machine (M2M) [1], [2] communications are getting more and more popular 

in recent years. M2M communications provide the more and more convenient and highly 

efficient applications of life by lots of devices which connect to the network. The enormous 

network is composed of many machines such as computers, sensors, actuators, mobile 

devices, home appliances, vehicles, and etc. Thus, machine-to-machine communications 

is also called Internet of Things (IoT). The technology are designed for many kinds of 

applications such as environment monitoring, smart house, human body healthcare, 

vehicle safety and so on. There are four major layers in M2M communications architecture 

such as smart sensors collect data, transmission of select data through communication 

networks, compute and analysis the information, and response to the available information.  

 

Figure 1 Architecture of M2M Communications 
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In the near future, hundreds of thousands of wireless sensors will be deployed in our living 

world and provide various services and applications for us. The cost of maintaining these 

huge amount of sensors will be a major concern about the sensor network. One of sensor 

maintain cost is energy consumption. It is almost impossible to replace all batteries of 

those wireless sensors which are deployed in a big area. Therefore, the issue could be 

solved by designing a more advanced low power consumption wireless sensor, or 

improving the data transmission scheme to prolong the battery lifetime of the wireless 

sensors.  

The Shannon-Nyquist sampling theorem indicates that to capture a signal of interest 

without missing important information, we must sample the signal at the Nyquist rate 

which is equal to twice the bandwidth of the signal. However, an alternative theorem which 

is called compressive sensing (CS) [3], [4], [5], [6] could exactly recover the original 

signal below the Nyquist rate. Compressive sensing is proposed by Donoho, Candes, and 

Tao in 2006. The innovative methodology establishes an efficient reconstruction algorithm 

for a small number of random linear projections of a compressible signal.  

In this thesis, we focus on how to improve the data transmission scheme in the wireless 

sensor network. To save the energy consumption of the wireless sensor network by 

decreasing the transmission rate but preserving the information accuracy. In other words, 

consider a wireless sensor network which consists of lots of sensor nodes and a server. The 

sensor nodes in the wireless sensor network have two types of status, one is active mode, 

and the other is idle mode. When a sensor node is in active mode, it obtains the readings 

from the physical environment and transmits the data to the data processing center through 

the wireless interface. Conversely, when a sensor node is in idle mode, it just turns off 



 

- 3 - 

 

most of the functions for power saving and waits the control system call. The server 

receives all data packets of the active sensor nodes and reconstructs the data of the idle 

sensor node through compressive sensing technique. The reconstruction error of the 

recovered data must satisfy the minimum precision requirement. Thus, we could save 

energy by decreasing the number of the active sensor nodes, but the reconstruction error 

of the recovered data might raise relatively. There is a fundamental trade-off between the 

number of active sensor nodes and the reconstruction error. 

In [12], the authors propose that compressive sensing is applied in a decentralized wireless 

sensor network. The actual networked data might be not sparse, but could be represented 

with s small number of diffusion wavelet coefficients. In [13], the authors proposed an 

efficient cluster-sparse reconstruction algorithm for data compression in a wireless sensor 

network aiming to more accurate data reconstruction and lower network energy 

consumption. In [14], the authors propose two algorithm which is called Universal 

algorithm and Gaussian algorithm respectively of finding transformation of signal to be 

sparse. In [15], the authors propose a compressive sensing based data gathering scheme in 

home area network for smart grid to demonstrate a low power data gathering design. In 

[16], the authors propose a clustering method that uses hybrid compressive sensing for 

sensor networks. The sensor nodes are organized into clusters and each clusters has a 

cluster head. Within a cluster, all sensor nodes transmit their data to cluster head without 

using compressive sensing. Then, each cluster heads use compressive sensing to transmit 

data to sink. The goal is to reduce the number of transmissions in the network. In [17], the 

authors use principal component analysis to find linear transformation that let the signal 

be sparse and further joint principal component analysis with compressive sensing to 

recover the original signal from a small number of samples. In [18], the author propose an 



 

- 4 - 

 

enhancement to a Bayesian estimation approach and isotonic regression approach. In [19], 

the authors present a complete design to apply compressive sensing for a large scale 

wireless sensor network. The proposed method is able to reduce global scale 

communication cost without introducing intensive computation or complicated 

transmission control. 

The rest of this thesis is organized as follows. First of all, in Chapter 2, the theorem of 

compressive sensing is briefly introduced. Next, our proposed clustered compressive 

sensing scheme and the system architecture assumptions will be presented in detail in 

Chapter 3. Then, in Chapter 4, we evaluate the performance of our proposed methodology. 

Finally, this thesis makes conclusions in Chapter 5. 
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Chapter 2 Compressive Sensing 

In this chapter, the theorem of compressive sensing will be briefly introduced. 

Compressive sensing is being believed that a sparse signal could be completely 

reconstructed from an underdetermined measurement. Meanwhile, the algorithm of 

reconstruction a sparse signal is quite simple. There are two main fundamental premises 

of compressive sensing, the first one is sparsity and the other one is incoherence [11]. In 

the following sections, we first give a quick concept of compressive sensing. Then, we 

explain how to design a measurement matrix for satisfying restricted isometry property. 

Finally, we introduce the theory of reconstruction algorithm for compressive sensing. 

 

2.1 Overview of Compressive Sensing 

The key concepts of compressive sensing is that we could perfectly reconstruct the original 

signal from an underdetermined measurement. Consider a real-valued, finite length, one-

dimensional, discrete time signal Nx , which could be regard as an 1N   vector with 

entries , 1,2, ,nx n N . Let  | 1,2, ,i i Nφ  be a set of 1N   orthonormal basis 

vector for the space N . And let N NΨ  be an orthonormal matrix where the i-th 

column is the i-th basis vector iφ . Any given signal could be expressed as a linear 

combination of these basis by  

 
1

or
N

i i

i

s


x φ x = Ψs   (2.1) 
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, where s  is an 1N   vector of ,i is x φ . Both the two vectors x  and s  are 

equivalent representations of the signal. Typically, we say that x  is the signal in the time 

domain or spatial domain and s  is the signal in the Ψ  domain. 

In general, we assume that s  is sparse, that is, it is a linear combination of only K  basis 

vectors.  

We measure the signal x  by sampling the measurement matrix M NΦ . Then, by 

substituting x = Ψs  into Equation (2.1) we get  

 y =Φx =ΦΨs =Θs ,  (2.2) 

where Θ=ΦΨ  is an M N  matrix . The process of measurement is not adaptive, that 

is, the measurement matrix Φ  is fixed and not depend on the signal x . The objective of 

compressive sensing is to design a stable measurement matrix Φ  to ensure that the 

information in a sparse or compressible signal won’t be damaged by dimensionality 

deduction and a reconstruction algorithm to perfectly recover the original signal from M  

measurements.  

 

2.2 Measurement Matrix 

In this section, we present how to design a proper measurement matrix for compressive 

sensing. Our goal is that to capture the most significant coefficient of the original signal 

and discard all the others without losing too much information. Since the measurement 

matrix M NΦ  and M N , directly solving x  from Equation (2.2) is completely 

impossible and it is an ill-posed problem. However, suppose the original signal x  is a K
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-sparse signal and the positions of the K  nonzero coefficients of s  which denotes as 

 | 0, 1,2, ,ii s i N      are known, we could use an M K  matrix Θ  where 

M K  for the purpose of restricting the positions of the nonzero coefficients of s . A 

necessary and sufficient condition for this simplified problem to be well conditioned is 

that, for any given K -sparse vector Nv  which the positions of the nonzero 

coefficient is the same as s , we have 

 

2

2

2

2

1 1 , 


   
Θ v

v
  (2.3) 

for some 0  , that is to say the matrix Θ  have to preserve the lengths of these K -

sparse vectors. However, generally speaking, the positions of the K  nonzero coefficient 

are unknown. Candès et al. have shown that a sufficient condition for a stable inverse for 

K -sparse vectors is that   satisfies the Equation (2.3) for any arbitrary 3K -sparse 

vectors. The sufficient condition is referred to as the restricted isometry property (RIP) [7], 

[8], [9]. The restricted isometry property is defined as follows 

    
2 2 2

2 2 2
1 1 ,K K    x Φx x   (2.4) 

for each integer 1 K N  , exist a restricted isometry constant 0K   of a matrix Φ  

as a smallest number. When the restricted isometry property holds for all K -sparse vector 

x , we could say that a matrix Φ  has the K -restricted isometry property with the 

restricted isometry constant K  if K  is not too close to one. 

To design a measurement matrix Φ  so that Θ=ΦΨ  satisfies the restricted isometry 

property requires verifying all 
N

K

 
 
 

 submatrices with K  columns of Θ . However, one 
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approach to design a measurement matrix Φ  which could simply achieve the restricted 

isometry property and incoherence is to choose the measurement matrix Φ  as a random 

matrix. The M N  random matrix could be obtained according the following way: 1) 

by sampling N  i.i.d. entries from normal distribution with mean 0 and variance 
1

M
, 

and 2) by sampling N  i.i.d entries form symmetric Bernoulli distribution 

,

1 1

2
i jP

M


  
   

  
. All the matrices obey the restricted isometry property provided 

that  

 log
N

M C K
K

 
   

 
  (2.5) 

where C  is a small constant. 

 

2.3 Reconstruction Algorithm 

The most impressive thing is that the algorithm for signal reconstruction of compressive 

sensing could be easily obtained by convex optimization. To recover the original signal, 

we must take the M  measurements in the received signal y , the measurement matrix 

Φ , and the transformation matrix Ψ  and reconstruct the N -dimensional original 

signal x  or, equivalently, its sparse representation s . Since the number of measurements 

is much smaller than the dimension of the original signal, recovering x  from y  is an ill-

posed problem. There might be hundreds of thousands of s  that satisfy Equation (2.2), 

hence we might have to further restrict s  in a small region where the uniqueness of s  
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could be guaranteed. Fortunately, we already know that s  is sparse, we could restrict the 

number of nonzero entries in vector s , that is  

 
0

min , subject to
s

s y =Θs .  (2.6) 

The above optimization problem could be solved by greedy algorithms such as orthogonal 

matching pursuit (OMP) [20] or compressive sampling matching pursuit (CoSaMP) [21]. 

In greedy algorithm, set 0x   and the residual  r x  in the beginning. Next, in each 

iteration, the atom that most correlated to the residual  r x  is added into the support set 

and then x  is updated by solving the least-squares problem by using the support set. 

Finally, the iteration stop when the number of select atoms is equal to K . 

However, 
0

min
s

s  is not convex and thus the convergence to the global optimum is hard 

to be ensured for greedy algorithms. Candès et al. has proven that when the restricted 

isometry property of the measurement matrix Φ  satisfies certain conditions or the 

measurement matrix Φ  is incoherent to the transformation matrix Ψ , the original 

signal s  could be recovered by 
1
 norm minimization as follows  

 
1

min subject to
s

s y =Θs    (2.7) 

Obviously, the above optimization problem is convex and have the global optimum, which 

could exactly recover a sparse or compressible signal with high probability. Many 

algorithms have been proposed to solve the convex optimization problem, including basis 

pursuit (BP) and linear programming (LP) [10]. 
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Figure 2 Visualization of solving the 1  and 2  norm minimization problem in 2 . 

 

Consider a two-dimensional case, we could understand that solving the 1  norm 

minimization problem is more likely to return a sparse solution than solving the 2  norm 

minimization problem. Suppose 2N   and 1M  , we have a set of solutions to y Ax  

as a red skew line as shown in Figure 2. Our goal is to find the sparsest solution x , and 

apparently, x  is 1-sparse in this case. Each blue region represents the minimum value of 

1
x  and 

2
x  as 1 ball and 2  ball respectively. The minimizing 

2
x̂  subject to 

ˆy Ax  returns the solution that closest to the origin but the solution is not a sparse 

solution. The only way of the solution to be a sparse solution is that if the line of solutions 

is parallel with one of the axes, which happens if and only if one of the entries of A  is 

zeros. However, the minimizing 
1

x̂  subject to ˆy Ax  gives a sparse solution when 
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the line of solutions touch at the corner of the 1  ball. The line of solutions might overlap 

with the one of the edges of the 1  ball, which happens if   1 2A       . 

Furthermore, we could intuitively extend this kind of problem into higher dimensions.  
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Chapter 3 Clustered Compressive Sensing 

In this chapter, we first introduce the system architecture of the wireless sensor network 

and related assumptions. Next, we introduce a technique which joint principal component 

analysis (PCA) and compressive sensing, which is published by Masiero et al. in 2009 

[17]. Finally, we propose a methodology of combining clustering and compressive sensing. 

We call the method as clustered compressive sensing.  

 

3.1 System Model and Assumptions 

 

Figure 3 the wireless sensor network model. 

 

Server 

Wireless base station 

Wireless sensor node 



 

- 13 - 

 

In our scenarios, the wireless sensor network system consists of one server for computing 

and storing information and N  autonomous sensor nodes for collecting data of physical 

environment. Meanwhile, we assume all of the N  sensor nodes are uniformly and 

independently distributed in a region of various terrains. And we also assume that all of 

the N  sensor nodes collect data by following the same transmission rate in a 

synchronized time slot. Once a sensor node obtains its reading of physical environment in 

a time slot, the sensor node immediately transmits the data packet to the server through 

the wireless interface in the same time slot. Each of the N  sensor nodes has two types 

of status, one is active mode and the other one is idle mode. In active mode, a sensor node 

takes the actions of sensing the physical environment and transmitting the data packets to 

the server through the wireless interface, on the other hand, a sensor node in idle mode 

turns off most of functions to reduce energy consumption. Supposed that a sensor node in 

active mode consumes most of energy and the energy consumption in idle mode is too 

small to ignore, the energy consumption of a sensor node is viewed as E . The maximum 

energy consumption of the wireless sensor network is N E , while all of the N  sensor 

nodes are in active mode and the energy consumption of the server and the wireless base 

station is not include. Therefore, we can decrease the number of active sensor nodes by 

adjusting the transmission rate to reduce the energy consumption. Let only M  active 

sensor nodes in each time slot, and the energy consumption could be represented as 

M E . Also, the transmission rate could be viewed as 
M

p
N

  .Of course, the other 

N M  sensor nodes are in idle mode and their data could be recovered by the 

reconstruction algorithm of compressive sensing. The reconstruction error must meet the 

system minimum precision requirement. As the result, there is a trade-off between energy 
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consumption and reconstruction error. In the following section 3.2, we will briefly 

introduce how to recover the missing data from known information.  

Furthermore, generally speaking, the physical environment is various in many places. For 

example, the quality of groundwater of Hsinchu City, the quality is the best in mountain 

area, good in downtown and the worst in industrial districts. Suppose we would like to 

monitor the quality of groundwater of the whole city by installing numerous of sensors 

underground and gathering those readings of sensors. Since the data of a specific area has 

its characteristic and distribution, we could assign the sensors which have similar 

characteristics or follow the same distribution into a cluster. Then, we could look for a 

sparsest representation of each clusters. It seems easier to find a sparse representation of 

each clusters than that of all the data. Therefore, suppose that to observe a region of various 

environment by a wireless sensor network. Let  1 2, , , ,
T N

Nx x x x x  denotes a 

vector of original data collected from all of the N  sensor nodes and , 1,2, ,nx n N  is 

the readings of physical environment of each sensor nodes. Assume that x  is comprised 

of several distributions and the sensor nodes whose readings belong to the same 

distribution are close to each other. Our major target is that to find out the sparsest 

representation of signal x , therefore, we come up with an idea that to divided those sensor 

nodes into clusters according to their readings and geographic positions, in this way, we 

might obtain the more sparse representation of the subset of signal x .  
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3.2 Joint PCA and CS 

Suppose that to collect all readings from a wireless sensor network with N  sensor nodes, 

according to a fixed sampling rate at a discrete time 1,2, ,t T . Let 
N

t x  be a 

vector of the readings collected from all sensor node at a given time t . In geometric point 

of view, tx  could be viewed as a single point in N  surface and we are looking for 

vector ts  in K -dimensional plane  K N  which provides the best fit of tx  in 

terms of minimum the Euclidean distance. The projection of tx  into 
 K

ts  could be 

defined as  

 
   

def
K T

t K t s U x x ,  (3.1) 

where KU  is an N K  orthonormal matrix whose the column vectors consists of K  

eigenvectors which is corresponding to the K  largest eigenvalues of covariance matrix 

of tx  and x  is the mean of tx . The mean vector and the covariance matrix could be 

replaced by the sample mean vector x  and the sample covariance matrix Σ̂  as  

 
1

1 T

t

tT 

 x x ,  (3.2) 

   
1

1ˆ
1

T
T

t t

tT 

  

Σ x x x x .  (3.3) 

Therefore, the best K -dimensional approximation of any given tx  is given as follows  
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  ˆ T

t K t K K t    x x U s x U U x x .  (3.4) 

Furthermore, we apply the principal component analysis methodology to compressive 

sensing. In compressive sensing, we would like to reconstruct a given signal x  from 

receiving a small number of measurements M , which is much smaller then N . In a 

wireless sensor network with N  sensor nodes, suppose we only collect the packets of 

the M  active nodes at each time t , the set of the M  packets could be represented as a 

vector form t
x . The M  active nodes are chosen randomly from the N  sensor nodes 

by an M N  routing matrix  . Thus, the relationship between mx  and m
x  could be 

written as  

 t t
x =Φx .  (3.5) 

According to the principal component analysis scheme, we could represent the sparse 

vector 
( )N

t ts s  at each time t  as  

  T

t N t s U x x   (3.6) 

Suppose that tx  could be completely obtained from 
 K

ts  by applying Equation (3.4), 

we could say that ts  is a K -sparse vector as  

 

 

0

K

t
t

N K

 
  
 

s
s ,  (3.7) 
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where 0N K  is a   1N K   vector with all zero entries. Because NU  is an 

orthonormal matrix, we have 
T

N N NI U U , where NI  is an N N  identity matrix. 

Thus, the Equation (3.6) could be rewritten as  

 t N t t  x x U s Ψs   (3.8) 

where the transformation matrix Ψ  is totally equal to NU . By combining Equation 

(3.5) and Equation (3.8) we could write  

  t t t t
    x Φx Φ x x ΦΨs =Θs .  (3.9) 

Since the form of Equation (3.9) is similar to that of Equation (2.2), we could easily apply 

the compressive sensing reconstruction algorithm to recover a good estimate of ts , denoted 

as ˆ
ts . Once ˆ

ts  is obtained, tx  would be recovered from ˆ
ts  according to Equation (3.4), 

as  

 ˆˆ
t t x Ψs x   (3.10) 

where ˆ
tx  is approximation of tx . 
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3.3 Clustered Compressive Sensing 

 

Figure 4 the data gathering scheme through multi-hop transmission 

 

In this section, we propose a methodology of clustering and combining compressive 

sensing. Our goal is to recover the length- N original signal from M  active nodes. To 

achieve this goal, we must collect some prior knowledge of this network. We use k-means 

clustering methodology to divide those sensor nodes into clusters according to the readings 

of those sensor nodes. In each cluster, the data might be more similar to each other, thus 

we could use principal component analysis for each of clusters. In this way, we could get 

the more sparse representation s  of x , that is to say, we could collect less data of those 

sensor nodes, but we still could recover the whole data of x . We could consider this 

Server 

Wireless base station 

Wireless sensor node 
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methodology as a two-step reduction of signal dimensions. The first step is that the similar 

information into the same group, and further use principal component analysis of each of 

the clusters.  

For example, suppose all sensor node are divided into three clusters as follows 

 

1

2

3

C

t

C

t t

C

t

 
 

  
 
 

x

x x

x

  (3.11) 

The next step, we apply principal component analysis to each of the clusters. That is  

 

1 1 1 1

2 2 2 2

3 3 3 3

,

,

.

t t

t t

t t

C C C C

C C C C

C C C C

 

 

 

x x U s

x x U s

x x U s

  (3.12) 

Then, by combining (3.11) and (3.12), we have  

 

1 1 1

2 2 2

3 3 3

1 1 1

2 2 2

3 3 3

1 1 1

2 2 2

3 3 3

0 0

0 0

0 0

t

t

t

t

t

t

t

t

t

C C C

C C C

t

C C C

C C C

C C C

C C C

C C C

C C C

C C C

 
 

  
  

   
   

    
   
   

     
     

      
     
     

x U s

x x U s

x U s

x U s

x U s

x U s

x U s

x U s

x U s

  (3.13) 

Furthermore, we define 
GU  is a diagonal matrix which the diagonal entries is composed 

of 1C
U , 2C

U , and 3C
U . We could rewrite Equation (3.13) as  

 t G t x x U s   (3.14) 
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Thus, we need to ensure that 
GU  is still an orthonormal matrix by  

 

1 1

2 2

3 3

1 1

2 2

3 3

1 1

2 2

3 3

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0

0 0

0 0

0 0

0 0

0 0

T
C C

C CT

G G

C C

C C T

C C T

C C T

C C T

C C T

C C T

   
   

    
   
   

   
   

    
   
   

 
 

  
 
 

 
 


 
  



U U

U U U U

U U

U U

U U

U U

U U

U U

U U

I

I

I

I

  (3.15) 

and the same to 
T

G G U U I . 
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Chapter 4 Performance Evaluation 

In this chapter, we study the effectiveness of our proposed clustered compressive sensing 

and evaluate the performance by calculating the reconstruction error between the original 

signal and the recovered signal. We consider a wireless sensor network with N  sensor 

nodes is employed in a square region of side D  units, which is evenly divided into N  

small square grids. All of the N  sensor nodes are uniformly distributed in this region so 

that each grids has only exactly one sensor node. Each of the N  sensor nodes could only 

communicate with all other sensor nodes in a circular range of radius R  units. Since 

R D , each of the N  sensor nodes transmits its data packets through multi-hop 

connections. All of the data packets will be concentrated to the processing server 

eventually. The wireless base station is placed in the center of this region and connects 

with the server through cable connection. The server is in charge of data storing and 

processing including data clustering and principal component analysis.  

The input signal is a simulated temperature distribution in a square region which is 

separated into four sub-regions. The simulated temperature distribution in each sub-

regions is different to each other. In each sub-regions, the simulated temperature is a 

2 2

D D
  square matrix , 1,2,3,4g g T  with 

2

4

D
 elements, where elements

, | 1,2, , , 1,2, ,
2 2

i j

D D
t i j
 

  
 

 are the value of simulated temperature and spatially 

correlated. The simulated temperature generation procedure is executed as the following 

steps:  
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1) we start from a 
2 2

D D
  matrix , g 1,2,3,4g H  with 

2

4

D
 entries, where entries 

  , | | 5 15,i jh i j          are generated from continuous uniform 

distribution;  

2) GT  is obtained from GH  by inversing discrete cosine transformation;  

3) sampling the data correspond to the positions of all N  sensor nodes, thus we simulated 

temperature signal tx ;  
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4) finally, in order to verify the robustness of our proposed methodology, we add an i.i.d. 

random Gaussian noise  20,w   into all entries of signal tx . 

The simulated temperature model is shown in Figure 5.  

To implement our proposed clustered compressive sensing methodology, we alternate two 

phases as below. One is training phase and the other one is monitoring phase. In training 

phase, first of all, T  samples of each sensor nodes are collected into the server. Next, all 

 

 

 Figure 5 the temperature distributions model 
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of the N  sensor nodes are divided into G  clusters according to their positions because 

we consider that the readings of those adjacent sensor nodes are similar substantially. We 

allocate the collected data into clusters according to their cluster indices. Then, each cluster 

apply the principal component analysis to obtain its sample mean and sample covariance. 

And finally, merge those sample mean into a longer vector and form those sample 

covariance into a diagonal matrix.  

Subsequently, in monitoring phase, we randomly select M  active sensor nodes from N  

sensor nodes. The data of the other N M  sensor nodes is reconstructed from the subset 

of input signal by using the sample mean and sample covariance which is calculated in 

training phase. 

To evaluate the performance of proposed methodology, we consider an indicator such as 

the reconstruction error.  

  
1

1
ˆ

N

R i i

i

E x x
N 

    (4.1) 

where x  is the original signal, and x̂  is the approximated recovered signal. All of the 

simulations have been performed under the following platform: MATLAB R2011b on a 

computer with Intel Core i5 661 3.33GHz CPU, 8GB RAM, and Windows 7.  
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 Scenario 1 

In Scenario 1, we consider that there is only one distribution of the input signal and 

the number of sensor nodes 100N   in the wireless sensor network. The simulated 

temperature model is shown in Figure 6. Figure 7 shows that the relationship between 

reconstruction error and the number of active nodes. Since only one distribution in 

this region, choose one cluster is the best idea. When choose more than one cluster, 

the sparsity level is getting higher. Thus, for higher the sparsity level, we must need 

more measurements of active sensor nodes. Therefore, supposed the number of active 

 

Figure 6 the simulated temperature model for one distribution 
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sensor nodes is the same, choose four clusters has the highest reconstruction error, on 

the other hand, choose one cluster has the lower reconstruction error. As the result, it 

is not necessary that allocating those sensor into clusters when the environment is 

follow simple distributions. 

  

 

 Figure 7 reconstruction error versus the number of active nodes (Scenario 1) 
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 Scenario 2 

In scenario 2, we consider that there are four distributions of the input signal. The 

input signal is shown in Figure 5, and the number of sensor nodes 100N  . In Figure 

9, we can clearly understand that for using four clusters, each of the distribution might 

have the best fit. Obviously, the reconstruction error for four clusters is the smallest. 

 

 Figure 8 the sparsity level versus the number of clusters (Scenario 1) 
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Thus, the sparsity must be the smallest as shown in Figure 10 and when the number 

of cluster decrease, the higher the sparsity level need.  

 

 Figure 9 Reconstruction error versus the number of active nodes (Scenario2) 
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However, according to Equation (2.5) and the restricted isometry property, we must 

need at least 3K  measurements, thus the signal could be recovered perfectly. In 

44K   case, the necessarily measurement 132M  , therefore, using 100N   is 

not enough to completely reconstruct the original signal. Furthermore, we employ 

400N   sensor nodes into this region. The result is shown in Figure 11 and the 

sparsity level is shown in Figure 12. As we can see that the sparsity level become 

 

 

 Figure 10 The sparsity level versus the number of clusters (Scenario 2) 
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160K  , according to the restricted isometry property, 400N   is still not high 

enough to perfectly recover the original signal. but the total reconstruction error is 

lower than 100N  , as the result, supposed that we could endure the temperature 

has the mean square error is equal to 0.1, we could choose four clusters for only need 

 

 

 Figure 11 Reconstruction error versus the number of active nodes ( 400N  ) 
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about 350 active sensor nodes, on the contract side, if we choose one cluster, we need 

near 370 active nodes.  

  

 

 Figure 12 the sparsity level versus the number of clusters ( 400N  ) 
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Finally, for a multi-environment region, it is hard to find the sparsest representation 

of the original by using principal component analysis, but in a monotonous 

environment, it is quiet easier than multi-environment. Although, we could not 

perfectly recover the original signal, we still could regard the approximation signal 

as a reference when the reconstruction error is satisfied the minimum precision 

requirement.  
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Chapter 5 Conclusion 

In this thesis, we present a joint design of clustering and compressive sensing for a wireless 

sensor network which is deployed in a wide region with a variety of environments. This 

proposed methodology is aim to recover the data of the unreceived sensor nodes from that 

of the received sensor nodes. By clustering those sensor nodes, we could reduce the 

complexity of the input signal, and we could further find out the more sparse representation 

of the input signal. The less the sparsity level the original signal has, the less number of 

active sensor nodes need and the less energy of idle sensor nodes consume. As the result, 

we could make a trade-off between reconstruction error and energy consumption. 

From the performance simulation, we evaluate the differences between uni-environment 

region and multi-environment region. In the uni-environment region, we could easily find 

out the sparsest representation of the original signal, and it is not necessary that to divided 

all sensor nodes into clusters. On the other hand, in multi-environment region, separating 

those sensor nodes into clusters could efficient reduce the reconstruction error, thus we 

could assign less active sensor nodes to transmit its readings of physical environment to 

save more energy. However, the sparsity level in multi-environment region is 

unsatisfactory. Since we increase the total number of sensor nodes, it is still not able to 

recover the original signal perfectly.  
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Therefore, in future work, we must have to find out a more efficient method to let the 

original signal has the sparsest representation in various environments area. Maybe we can 

not only use principal component analysis to find the sparsest representation but also apply 

another approach into compressive sensing. We can use different approaches for each 

clusters according to the characteristics or distributions of the data of each clusters. 

Furthermore, we can improve our clustering methodology, because in this thesis we just 

use k-means clustering according to the geographic position of the sensor nodes. Thus, 

how to cluster those sensor nodes intelligently and efficiently can be the next major issue. 
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