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摘 要      E 

由於其在頻譜使用上的彈性，自組式網路被視為滿足不斷增加的行動通訊流

量需求的一個重要方案。在自組式網路中，共享頻譜的節點是分散的，必須由個

別的節點進行無線資源管理。此外，各個節點的無線資源管理決定會影響彼此的

效能，因此我們需要能考慮節點的相互作用的分散式無線資源管理方法。為達此

目的，本論文將包括博弈論，信息論，隨機學習在內的多元數學工具，用於無線

資源管理問題的建模與解決方案。雖然自組式網路中的當紅議題，如異構網絡和

無線感知網路等，已有了深入的研究，我們的工作的新穎性在於基於分散式學習

演算法，各節點在資訊有限的條件下，仍具有自組與調整的能力。 

本論文首先介紹相關的數學工具，包括賽局理論的基礎知識與隨機學習演算

法的簡介。接著是關於無線感知網路的一份文獻探討。隨後，我們提供了四個應

用實例。在每個例子中，我們針對一個在分散式網路中可能會遇到的無線資源管

理問題，建構賽局理論模型。網絡中的節點被視為具備自主學習能力的自動機，

並能藉由個別行為-回報歷史，習得適當的資源管理策略。我們亦透過數值模擬，

評估學習過程的收斂性及其性能。 

關鍵詞：自組式網路、無線資源管理、賽局理論、隨機學習演算法
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ABSTRACT 

Self-organized network (SoN) has been considered as an important solution to the increasing 

demand of mobile traffics, due to its flexibility in spectrum access. In SoNs, the nodes sharing the 

spectrum are located in a distributed manner, and the radio resource management (RRM) must be 

performed by individual nodes. Moreover, since the RRM decisions of the nodes affect the 

performance of each other, distributed RRM methods considering the interactions of nodes are 

desirable for SoNs. To this aim, a diversified class of mathematical tools including game theory, 

information theory, and stochastic learning are involved in this thesis, for the problem formulation 

and solution of the RRM in SoNs. While the rising topics of SoNs such as heterogeneous networks 

and cognitive radio networks (CRNs) have been intensively studied, the novelty of our work lies in 

the capability of self-organization and adjustment under limited information, based on distributed 

learning methods. 

We start our presentation with the underlying mathematics, including game theory fundamentals 

and an introduction to the stochastic learning algorithm. A survey on CRNs follows. Four 

application examples are provided afterwards. In each example, game theoretical framework is 

adopted to formulate an RRM problem we may encounter in distributed networks. The nodes in 

networks are modeled as self-organized learning automata, which learn proper RRM strategies 

through individual action-reward history. The convergence of the learning procedure and its 

performance are evaluated via numerical simulations. 

Keywords: Self-organized Networks, Radio Resource Management, Game Theory, Stochastic 

Learning Algorithm 
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Chapter 1

Introduction

The continuous evolution of wireless networking technology in the last decade has sig-

nificantly changed the way of communication, information acquisition, and entertainment.

Through the mobile Internet, today’s personal communication devices provide more and

more services, like social networking, video streaming, etc. As a consequence, there has

been an increasing demand in the wireless resource. To better utilize the shared wireless

medium, new network topology and resource management scheme are important. This

constitutes the goal of this thesis: the improvement of spectrum efficiency in wireless sys-

tems through cooperative communications and self-organized, distributed radio resource

management.

1.1 Background and Motivations

Achieving reliable and high data rate communications over wireless links remains

a challenging problem. In fact, the inherent nature of the wireless medium has

created a number of new research topics. Compared to the wire-line communications, the

wireless medium is a ubiquitous resource which is accessible simultaneously by multiple

transmissions. The sharing of the medium by multiple links results in a mutually interfered

environment, and gives rise to challenges in resource management. In conventional cellular
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networks consisting of multiple base stations, frequency planning is adopted. However,

we have to consider universal frequency reuse. The reasons are two-fold. First, frequency

reuse factor larger than one limits the spectrum efficiency in that only a fraction of

spectrum is utilized by each cell regardless of the actual interference condition. Second,

in newly developed network topology, the base stations can be deployed in a distributed

manner, which makes cell planning hard. Obviously, universal frequency reuse among

nearby cells results in inter-cell interference (ICI) and degrades the performance. This

statement, though straightforward, lies at the basis of many research topics within wireless

communications. Let us mention two examples as follows.

� Cooperative communications.

The broadcast nature of wireless communications suggests that a receiver node can

overhear the source signal transmitted towards a neighboring nodes. Instead of

treating the overheard information as interference and trying to mitigate the neg-

ative effect, cooperative communication takes advantage of the proximity of nodes

to create spatial diversity, thereby to improve the spectrum efficiency and reliab-

ility. In practice, the cooperation can be implemented in different ways. In the

relay (multi-hop) networks, the signal is received and processed at the surround-

ing nodes, then re-transmitted towards the destination. On the other hand, when

multi-antenna system is considered, signal processing techniques can be applied to

transmit the signal simultaneously from multiple nodes. In this case, the signal to

be transmitted is pre-processed to suppress the ICI and obtain the diversity gain.

Assuming perfect back-haul connection, the network consisting of multiple cells can

be viewed, and we end up with a virtual MIMO system. The two scenarios are

shown in Figure 1.1.

� Self-organized resource management.

The limitations on coordination of distributed networks gives rise to new challenges

for resource management. On top of that, self-organized network (SoN) capability

has received much attention because, unlike the negotiation-based approaches, it

does not suffer from the information exchange overhead. SoN has been considered
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Figure 1.1: Two scenarios in cooperative communications.

in different examples. From the spectrum utilization perspective, dynamic spectrum

access (DSA) suggests a distributed decision-making mechanism with consideration

on a possibly varying environment. Another example is the heterogeneous networks,

in which the spectrum is owned by multiple service providers, and users need proper

network selection. Two fundamental mathematical tools frequently involved in SoN

are the game theory and the reinforcement learning (RL). Game theory investigates

the interaction among self-acting agents, in either cooperative or non-cooperative

ways. Game theoretic formulation defines possible solution concept of equilibrium

at which unilateral deviation from an equilibrium point brings no better results.

On the other hand, RL algorithms helps individual agents learn a better strategy

based on their own action-reward history. Interestingly, the two tools may be com-

bined; several reinforcement learning techniques have been proved to achieve the

equilibrium point.

This thesis aims at investigating the distributed resource management in wireless

communications. Specifically, we study the use of reinforcement learning under game-

theoretic formulations. The motivation behind is that, while the problem structures can

be quite different, we would like to propose a unifying scheme which is suitable for various

applications. A general guideline of the proposed scheme is described as follows. First,

some components (e.g., base stations or users) in the network are identified as the agents

(players) of the game. Second, the utility function is defined in order to reflect the agents’
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interests, either individual or common ones. Finally, assuming they are rational and

selfish devices, agents act as learning automata to learn their strategies that maximize

their individual payoffs. Notice that in addition to the interaction among players, the

time-varying external state is also considered in the learning procedure.

Starting with the seminal contributions of Von Neumann, Morgenstern [1] and Nash

[2], game theory has been extensively investigated in the previous century. While early

works focused on the studies of economy, game theory has become a popular choice for the

researchers in wireless networks. Comprehensive surveys on the game-theoretic studies for

different wireless network applications can be found in [3,4]. On the other hand, we also see

rapid development of RL algorithms over the past few decades. Q-learning [5] is a simple

way for agents to learn how to act optimally in controlled Markovian domains. It works

by successively improving its evaluations of the quality (Q-value) of particular actions at

particular states. Another learning method, referred to as the stochastic learning (SL), is

based on the update of probability. Using the techniques in stochastic approximation [6],

the SL process tracks the ODE of different dynamics. The resulting state depends on the

learning rule adopted. The hybrid learning was discussed [7], where the agents may adopt

different learning rules to obtain the strategy. SL has been applied to several areas in

wireless networks, for example, precoder selection [8], network selection [9], and cognitive

radio [10]. The connection between learning and game has been investigated by Sastry

et al. [11]. The authors have proposed an SL algorithm and pointed out that NE can

be achieved when the algorithm is applied to common-payoff games. In this thesis we

will further show that the same algorithm achieves NE for potential games, of which the

common-payoff game is a special case.

1.2 Thesis Outline and Contributions

The main content of the thesis is divided into three parts. In Part I (Chapter 2 and

3) we review the fundamental mathematical tools and provide a survey on cognitive radio

networks. Part II (Chapter 4 and 5) provide two application examples of fully distributed
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learning in distributed resource management. Part III (Chapter 6 and 7) studies the case

of distributed learning with partial cooperation. The following is an overview of each

chapter.

Chapter 2. This chapter introduces the different concepts that will be used throughout

the thesis, together with the fundamental mathematics. The basic ideas in game theory is

first reviewed. This problem is formulated as a non-cooperative game. The existence and

multiplicity of the Nash equilibrium (NE) solution will be investigated for two different

network models. In the second part of this chapter, the stochastic learning algorithm is

explained in detail. We give the structure of SLA, and present several update rules. At

the end, we show that under certain conditions, the SLA converges to NE.

Chapter 3. The first three examples in this thesis are all related to the spectrum access

behaviors of cognitive radio networks (CRNs). Therefore, before entering the examples,

we open up one chapter to review the previous works on CRNs. The spectrum access in

CRNs is classified as different models according to the way the spectrum is granted to the

secondary users. Then the representative works of each model are summarized.

Chapter 4. This chapter presents the first application: the network selection problem

in cognitive heterogeneous networks (HetNets) where multiple radio access technologies

(RATs) coexist. We formulate the network selection problem as a non-cooperative game

where the secondary users (SUs) are the players. In particular, under a cognitive access

scenario, the availability of channels for SUs depends on the traffic demands of PUs,

and is considered as the time-varying external state. With a reasonably designed utility

function, we prove that the game is an OPG. SLA is adopted and each SU’s strategy

progressively evolves toward the Nash equilibrium (NE) based on its own action-reward

history, without the need to know actions in other SUs. The convergence property and the

performance in terms of throughput and fairness are again shown through simulations.

Chapter 5. As the second application example of SLA, this chapter studies the spectrum

trading in CRNs. Different from the first example, now the licensed spectrum opportun-

ities are sold to multiple unlicensed secondary users by multiple service providers. The

spectrum trading is modeled as a multi-leader multi-follower Stackelberg game with two
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levels of competition. In the lower-level competition, each secondary user selects a ser-

vice provider with time-varying channel availability. The service selection is determined

by the prices and the quality of service, which depends on the number of residual chan-

nels and the behavior of other secondary users. In the upper-level competition, service

providers adjust their pricing strategies to maximize their individual revenues. We fur-

ther propose decentralized, stochastic learning-based algorithms for both levels, where

a player’s strategy progressively evolves toward the Nash equilibrium (NE) based on its

own action-reward history without information of other players’ actions. The convergence

properties of the proposed algorithms toward NE points are theoretically and numerically

verified. The proposed method demonstrates good utility and fairness performances for

the secondary users as compared to other service selection schemes.

Chapter 6. The third example considers channel assignment in OFDMA-based two-tier

distributed networks. The secondary users are formulated as the players, and the strategy

is the channel assignment. There are two major difference from the previous examples.

Firstly, unlike the previous examples where a resource unit is granted by the owner to a

specific user, here we consider the case that all users access the same spectrum. On top

of that, an interference mitigation game is formed. Secondly, each player is allowed to

know the action of its neighbors. In this way, a proper utility function can be defined,

and the channel assignment problem is formulated as an ordinal potential game which has

at least one pure-strategy Nash equilibrium (NE). Then the stochastic learning algorithm

discussed in Chapter 2 is applied. The convergence property toward pure strategy NE

points is verified through system-level simulations. In addition, performance evaluation

is carried out by comparing the proposed algorithm with other methods.

Chapter 7. The last example addresses the joint processing and distributed channel

assignment in network MIMO systems. The cooperative frequency reuse among base

stations (BSs) can improve the system spectral efficiency by reducing the intercell in-

terference (ICI) through channel selection and precoding. We presents a game-theoretic

study of channel selection for realizing network MIMO operation under time-varying wire-

less channel. We propose a new joint precoding scheme that carries enhanced interference
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mitigation and capacity improvement abilities for network MIMO systems. We formulate

the channel selection problem as a noncooperative game with BSs as the players, and show

that our game is an exact potential game (EPG) given the proposed utility function. A de-

centralized, stochastic learning-based algorithm is proposed where each BS progressively

moves toward the Nash equilibrium (NE) strategy based on its action-reward history

and not actions taken by others. The convergence properties of the proposed learning

algorithm toward a pure-strategy NE point are theoretically shown and numerically veri-

fied for different network topologies. The proposed learning algorithm also demonstrates

a fine capacity and fairness performance as compared to other schemes through extensive

link-level simulations.

1.3 Publications

The research work conducted during the three years of the thesis has led to several

publications.
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• L.-C. Tseng, F.-T. Chien, D. Zhang, R. Y. Chang, W.-H. Chung, and C.-Y. Huang,

“Network Selection in Cognitive Heterogeneous Networks Using Stochastic Learn-

ing,” to appear in IEEE Communications Letters.

International Conference Proceedings

• C.-H. Lin, L.-C. Tseng, C.-Y. Huang “Cognitive Radio Networks: Game Modeling

and Self-organization Using Stochastic Learning,” in Proc. IEEE PIMRC 2013,

Sept. 2013, pp.3006-3010.

• L.-C. Tseng, X. Jin, A. Marzouki, and C.-Y. Huang, “Downlink Scheduling in

Network MIMO Using Two-Stage Channel State Feedback,” in Proc. IEEE VTC

Fall ’12, Sept. 2012, pp.1-5.
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• L.-C. Tseng, C.-Y. Huang and A. F. Hanif, “Dynamic resource management for

OFDMA-based Femtocells in the Uplink,” in Proc. IEEE IWCMC ’11, July 2011,

pp. 528-533.

Submitted Articles

• L.-C. Tseng, F.-T. Chien, C.-Y. Huang, R. Y. Chang, W.-H. Chung and A. Mar-

zouki, “Self-Organized Cognitive Sensor Networks: Distributed Channel Assignment

for Pervasive Sensing” (Submitted).

• L.-C. Tseng, F.-T. Chien, C.-Y. Huang, R. Y. Chang, W.-H. Chung and A. Mar-

zouki, “Distributed Channel Allocation for Network MIMO: Game-Theoretic For-

mulation and Stochastic Learning,” (Submitted).
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Chapter 2

Stochastic Learning in Games

This chapter aims at introducing the stochastic learning algorithm which is used in

game models.

2.1 Introduction

There has been much interest in designing learning algorithms toward NE in non-

cooperative games. However, the external state (CSI) is unknown and the action

is selected by each player simultaneously and independently in each play. Therefore,

previous algorithms requiring complete information and implicit ordering of acting players

(e.g., those based on better response dynamics (BRD) [12] and fictitious play (FP) [13])

may not be feasible in our self-organized multicell resource allocation problem. In this

chapter, we develop a decentralized SL-based algorithm where the BSs move toward the

equilibrium strategy based on their individual action-reward history.

2.2 Non-cooperative Game Theoretical Concepts

In this section, we briefly review some game-theoretical concepts which can be seen as

the basis throughout the manuscript. We consider the rational and selfish game players
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in the sense that a player chooses its best strategy to maximize its own benefit [12].

2.2.1 Game with External State

The four basic components of a non-cooperative game G with external state are:

• The external state space X . The state is represented by an independent random

variable, and the transitions between the states are independent of the chosen ac-

tions.

• The set of players, N = {1, . . . , N}, where N is the total number of players

• The action spaces A = {A1, . . . ,AN}, where Ai is the set of actions that player i

can take. These nonempty sets can be discrete or continuous, finite or infinite.

• The preference structure of the players. {ui}i∈N is the utility function of player i

that depends on its own action as well as the actions of other players.

The strategic form (also called normal-form) of a game G is represented by a 4-tuple:

G = (X ,N , {Ai}i∈N , {ui}i∈N ) (2.1)

For a game with external state, the utility is defined as the expectation of the random

reward, i.e.,

ui(ai, a−i) = EX[ri|(ai, a−i)],

where E[·] denotes the mathematical expectation operator.

In the case of non-cooperative games, in which the players act in a selfish and inde-

pendent manner, the Nash equilibrium (NE) introduced in [2] provides a solution concept

of the game. It represents an operating point which is both predictable and robust to

unilateral deviations (which is realistic considering the fact that the players are assumed

to be non-cooperative and act in an isolated manner). This means that once the system
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is operating in this state, no player has any incentive to deviate because it will lose in

terms of its own benefit. The mathematical definition of the NE is as follows:

Definition 2.2.1 (Nash equilibrium). A strategy profile a∗ = (a∗1, . . . , a
∗
N) is a (pure-

strategy) Nash equilibrium if

ui(a
∗
i , a

∗
−i) ≥ ui(a

′
i, a

∗
−i), ∀i ∈ N , a′i ∈ Ai (2.2)

where a∗−i = (a∗1, . . . , a
∗
i−1, a

∗
i+1 . . . , a

∗
N) denotes the set of the other players’ actions.

2.2.2 Mixed Strategy Extension

We can easily extend the non-cooperative game into a mixed strategy form as in [11].

Let pi,si be the probability that player i selects strategy si ∈ Ai, and pi = [pi,1, . . . , pi,K ]
T

be the mixed strategy of player i, ∀i ∈ N . Let Pi be the set of probability distribution

over the action space of player i, i.e.,

Pi :=

{
pi | pi,si ∈ [0, 1],

∑
si∈Ai

pi,si = 1

}
(2.3)

Then, the mixed extension of utility function ψi : ×i∈NPi 7→ R is defined as

ψi(pi,P−i):=Ep1,...,pN
[ui]

=
∑

a1,...,aN

ui(a1, . . . , aN)

(
N∏
j=1

pj,aj

)
. (2.4)

where p−i is the mixed strategy of players other than i. We have the definition of NE in

mixed strategy as follows.

Definition 2.2.2 (mixed-strategy NE). A strategy profile P∗ is a mixed-strategy Nash

equilibrium (NE) point of the non-cooperative game G if and only if

ψi(p∗
i ,p∗

−i) ≥ ψi(pi,p∗
−i), ∀i ∈ N ,∀pi ∈ Pi \ {p∗

i }. (2.5)
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2.2.3 Potential Games

While the concept of NE describes a possible steady state for a non-cooperative game,

NE points do not always exist. An important class of games for which the existence of

NE is guaranteed is the potential game introduced in [12]. We first define different kinds

of potential games:

Definition 2.2.3. A strategic form game G = (N , {Ai}i∈N , {ui}i∈N ) is an exact potential

game (EPG) if there exists a potential function Φ : A 7→ R+ such that

ui(a
′
i, a−i)− ui(ai, a−i) = Φ(a′i, a−i)− Φ(ai, a−i), ∀i ∈ N . (2.6)

Definition 2.2.4. A strategic form game G = (N , {Ai}i∈N , {ui}i∈N ) is a weighted po-

tential game (WPG) if there exists a potential function Φ : A 7→ R+ and a weight vector

w = [w1, . . . , wN ] ∈ R+ such that

ui(a
′
i, a−i)− ui(ai, a−i) = wi[Φ(a

′
i, a−i)− Φ(ai, a−i)],∀i ∈ N . (2.7)

Definition 2.2.5. A strategic form game G = (N , {Ai}i∈N , {ui}i∈N ) is an ordinal poten-

tial game (OPG) if there exists a potential function Φ : A 7→ R+ such that

ui(a
′
i, a−i) ≥ ui(ai, a−i)⇔ Φ(a′i, a−i) ≥ Φ(ai, a−i), ∀i ∈ N . (2.8)

An important property of potential games is that the objectives of all players align to

a common objective, that is, the maximization of potential function Φ. Following [12], the

local maxima of the potential function are NE points of the game. Thus, every potential

game has at least one pure strategy NE.
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2.2.4 Achieving NE: Previous Methods

We briefly discuss two previously developed methods to achieve NE.

• Fictitious Play

Introduced by G.W. Brown [13], in fictitious play, each player presumes that the

opponents are playing stationary (possibly mixed) strategies. At each round, each

player thus best responds to the empirical frequency of play of his opponent. Such a

method is of course adequate if the opponent indeed uses a stationary strategy, while

it is flawed if the opponent’s strategy is nonstationary. The opponent’s strategy may

for example be conditioned on the fictitious player’s last move.

• Best response dynamics

Each of the players select actions sequentially. In each time slot, a player selects the

action that is best response to the action chosen by the other players in the previous

time slot. A best response BR(.) is a correspondence (multi-valued mapping) from∏
Ai 7→ 2|Ai|:

ai = BR(a1, . . . , ai−1, ai+1, . . . aN). (2.9)

Furthermore, in finite games, the iterative best-response type algorithms converge

to one of the NE states depending on the initial point.

2.3 Evolutionary Game and Replicator Dynamics

Evolutionary game theory studies the behaviors of large populations of agents who

repeatedly engage in strategic interactions. Here we review the replicator dynamics, an

important part of evolutionary games [14]. When considering the replicator dynamics,

it is useful to think of a large population of agents who play a pre-programmed pure

strategies and are randomly matched to play against each other. The growth rate of the

proportion of players using a certain pure strategy is the difference between the expected
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payoff of that pure strategy, given the proportions of players using every pure strategy,

and the average expected payoff in that population. The strategy is inherited.

2.3.1 Replicator Dynamics

Consider a population of players. Suppose that there is some evolutionary game (two-

player and symmetric) that these critters play with each other. This game has a set

of pure strategies S, and a payoff function π(s, s′) being the payoff to an agent playing

strategy s against another agent playing s′.

Let ϕs(t) be the measures of the set of players using pure strategy s at time t, and

θs(t) = ϕs(t)∑
s′ ϕs′ (t)

be the fraction of players. Then the expected payoff to using pure

strategy s at time t is us(t) ,
∑
θs′(t)π(s, s

′), and the average utility of the whole popu-

lation is ū(t) ,
∑

s θs(t)us(t). Suppose that each individual is genetically programmed to

play some pure strategy, and that this programming is inherited1. Suppose that the net

reproduction rate of each individual is proportional to its score in the stage game, i.e.,

ϕ̇s(t) = ϕs(t)us(t). (2.10)

Then a continuous time dynamics of the portion can be found as

θ̇s(t) =
ϕ̇s(t)

∑
s′ ϕs′(t)− ϕs(t)

∑
s′ ϕ̇s′(t)(∑

s′ ϕ̇s′(t)
)2

= θs(t)[us(t)− ū(t)]. (2.11)

Equation (2.11) says that strategies with negative scores have negative net growth rates.

The population size is varying; if all payoffs are negative, the entire population is shrinking.

This is reasonable with the biological interpretation; in economic applications we tend to

think of the number of agents playing the game as being constant. But note that even

if the rewards are negative, the sum of the population shares is always unity. Note also
1Indeed, mutation is also considered in the studies of evolutionary game theory, however it is out of

the scope of this manuscript.
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that if the initial share of strategy s is positive, then its share remains positive: the share

can shrink towards zero, but zero is not reached in finite time. Notice that the population

share of strategies that are not the best responses to other players current action can

grow, as long as these strategies perform better than the population average. This is a

key property that distinguishes the replicator dynamic from best-response dynamic and

fictitious play.

2.3.2 Stochastic Game

Now we change the population concept into a stochastic form of standard game. Form-

ally, we may write the ODE:

dpi,si(t)

dt
= pi,si(t)

ψi(esi ,p−i)−
∑
s′i∈Ai

ψi(es′i
,P)pi,s′i(t)

 . (2.12)

Although the game setting looks quite different, the concepts in replicator dynamics can

be applied. The two interpretations are shown in Figure 2.1. Figure 2.1(a) shows an

evolutionary game with two types of players. The population of players taking each

strategy changes. On the other hand, the strategic game in Figure 2.1(b), the number

of players is fixed, and the weighting of each strategy changes. A detailed comparison is

given in Table 2.1.

Table 2.1: Comparison

Property Evolutionary Game Stochastic Game
Player rationality not rational rational
Strategy adopted by
each player same strategy as inherited mixed-strategy with vary-

ing weight
Variables in replicator
equations population share probability of each strategy

Strategy with higher
reward population growth higher probability
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(a) Evolutionary Game
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Figure 2.1: Replicator dynamics in evolutionary game and stochastic game.

2.4 Stochastic Learning Algorithm

In this section, we present the structure of the stochastic learning algorithm (SLA),

which will be used in later section. When the learning is applied, it has two major ad-

vantages over conventional methods. First, the SLA is robust against external states: the

learned strategy for each player. Second, Learning under limited information. According

to the available information for individual players, the learning is classified as follows.

1. Fully-distributed learning: The available information is restricted to action-

reward history of each individual player. A player knows nothing about its oppon-

ents. Fully distributed learning is usually applied when the payoff is given by an

outsider which is not a member of the player set.

2. Distributed learning with partial cooperation: Sometimes, the reward is cal-

culated by individual player instead of obtained from the environment. In this

case, the players may own partial knowledge of other players including their past
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actions and the observation on external states. However, each player keeps its own

learning process, and the decision making is uncoupled. Notice that the major dif-

ference between uncoupled learning and BRD is that the former allows simultaneous

strategy updates of players, while the latter requires an implicit ordering of strategy

updates.

In this thesis, the examples considered include both cases. Table 2.2 summarizes the

information available to the players.

Table 2.2: Information Available to the Players

Information Fully-distributed
Learning

Distributed learning with
partial cooperation

Awareness of being in a game No Yes
Existence of opponents No Partial
Observation of external state No Partial
Action spaces of the others No No
Joint strategy No No
Current action of others No No
Last action of the opponents No Partial
Last own-action Yes Yes
Observation of own reward Yes Yes
Own reward function form No Yes
Reward function form of the others No No

Table 2.3: Summary of Notations in Game-theoretic Formulation

Symbol Meaning
X external state space
X random matrix for the external state
N set of players
Ai set of actions of player i
si ∈ Ai an element of Ai

ai(n) ∈ Ai action of player i at iteration n
a−i(n) ∈ Ai actions of players except for i at iteration n
Pi := ∆(Ai) set of probability distribution over Ai

pi(n) ∈ Pi mixed strategy of player i at slot n
ri(n) ∈ R instantaneous reward of player i at slot n
ûi(n) ∈ R|Ai| estimated utility vector of player i at slot n
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2.4.1 Generic SLA Structure

Under the SLA, the players can learn their expected payoffs and their optimal strategies

by using some simple iterative techniques based on their action-reward history. The ac-

tions that give good performance are reinforced and new actions are explored. Therefore,

such an approach belongs to the reinforcement learning.

Dynamic Environment

- current action profile
- current reward profile
- external state

Player 1
Strategy updates

Player N
Strategy updates

Play strategy a1(t)

Play strategy aN(t)

r1(t)

rN(t)

Negotiation?

Figure 2.2: Generic SLA structure.

The generic stochastic learning algorithm is described in Algorithm 2.1. In each

Algorithm 2.1 Generic Stochastic Learning
1: Initially, set n = 0, and the action probability vector as
pi,si(0) = 1/|Ai|, ûi,si(−1) = 0, ∀i ∈ N , si ∈ Ai.

2: At the beginning of the nth iteration, each player selects an action ai(n) according to
the current action probability vector (i.e., mixed strategy) pi(n).

3: At the completion of the nth iteration, each player calculates or receives the instant-
aneous reward ri(n).

4: All players update their utility estimation and action probability vector according to
the update rules.

iteration, the action is selected based on the probability distribution over the strategy
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set of each player. After each iteration, a player obtains the instantaneous reward from

the outsider or through calculation. It updates the action probability vector (i.e., mixed

strategy) pi(n) as well as the utility estimation vector ûi(n). The utility estimation serves

as a reinforcement signal so that higher utility (lower cost) leads to higher probability in

the next play. Notably, the proposed learning algorithm is distributed: the strategy selec-

tion is based on individual observations instead of the guide from a centralized controller.

The update rules for action probability vector and utility estimation are investigated in

the next section.

2.5 Update Rules

The general form of an update rule can be expressed as:


ûi(n+ 1) = fi(λi(n), ai(n), ri(n), ûi(n),pi(n))

pi(n+ 1) = gi(νi(n), ai(n), ri(n), ûi(n),pi(n))

(2.13)

where λ(n), ν(n) are the learning rates for the utility estimation and action probability,

respectively. There values are carefully chosen so that

λi(t) ≥ 0,
∑
t

λi(t) = +∞,
∑
t

λ2i (t) <∞,

νi(t) ≥ 0,
∑
t

νi(t) = +∞,
∑
t

ν2i (t) <∞. (2.14)

In this section, we introduce two probability update rules, namely, the Bush-Mosteller

update rule and the multiplicative-weight update rule. We investigate their ODE approx-

imations.
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2.5.1 Bush-Mosteller (BM) Update Rule

With BM update rule, the mixed strategies are updated as follows:


pi,si(n+ 1) = pi,si(n) + br̃i(n)(1− pi,si(n)), si = ai(n)

pi,si(n+ 1) = pi,si(n)− br̃i(n)pi,si(n), si ̸= ai(n)

(2.15)

where r̃i(n) ∈ [0, 1] is the normalized instantaneous reward, i.e.,

r̃i(t) =
ri(t)− rmin

rmax − rmin

, (2.16)

where rmax and rmin proposition.

Proposition 2.5.1. With sufficiently small b, the probability matrix sequence {P(n)}

converges to P∗ which is the solution of the following ODE:

dpi,si(t)

dt
= pi,si(t) [ψi(esi ,P−i)− ψi(P)] (2.17)

The boundary condition is given by P(0) = P0, where P0 is the initial action probability

matrix.

Although the SL-based algorithm with BM rule converges to NE points for poten-

tial games, it requires the normalization of the instant reward. This requirement makes

the algorithm inapplicable when the extreme values of reward functions are unavailable.

Therefore, another update rule is also considered in our works.
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2.5.2 Multiplicative-weight Update Rule

The multiplicative-weight update rule consists of the iterative updates for utility es-

timations and mixed strategies. The rule is described as follows:


ûi,si(n+ 1)− ûi,si(n) = ηi1l{ai(n)=si} (ri(n)− ûi,si(n))

pi,si(n+ 1) =
pi,si (n)(1+ϵi)

ûi,si
(n)

∑
s′
i
∈Ai

pi,s′
i
(n)(1+ϵi)

û
i,s′

i
(n)

(2.18)

where ηi and ϵi are the learning rates for utility estimation and action probability, re-

spectively.

It’s ODE approximation is discussed in the following proposition. First, by using

the ordinary differential equation (ODE) approximation we characterize the long-term

behavior of the sequence {P(n)}. Second, we establish a sufficient condition for the

arrival at NE points for the proposed learning algorithm and prove that the game G

satisfies this condition.

Proposition 2.5.2. With sufficiently small learning rates η and ϵ:

1. The estimated utility converges to

ûi,si → ψi(esi ,P−i). (2.19)

2. Asymptotically, the probability matrix sequence {P(k)} can be approximated by the

trajectory of the following ODE:

dpi,si(t)

dt
= pi,si(t) [ψi(esi ,P−i)− ψi(P)] (2.20)

where pm,si(t) is the continuous-time version of pi,si(n), and the boundary condition

is given by P(0) = P0, where P0 is the initial mixed strategy matrix.

Proof: For better understanding, we reproduce the proof from [7, Section 4.3].

From the theory of stochastic approximation, the update of the estimated utility in (2.18)
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can be given as

ûi,si → ψi(si,P), if ηi → 0, (2.21)

and the tracked ODE can be given as [7, Section 4.3], [11, Theorem 3.1]

dpi,si(t)

dt
= lim

ϵi→0

pi,si(n+ 1)− pi,si(n)
ϵi

. (2.22)

Next we will show the RHS of the above is exactly that of (2.20).

Let S =
∑

s′i∈Ai

pi,s′i(t)(1− ϵi)
−ûi,s′

i . Then we have

pi,si(t+ 1)− pi,si(t)
ϵi

=
pi,si(t)

ϵi

[
(1− ϵi)−ûi,si

S
− 1

]
=
pi,si(t)

S

[
(1− ϵi)−ûi,si − 1 + 1− S

ϵi

]
=
pi,si(t)

S

(1− ϵi)−ûi,si − 1

ϵi
−
∑
s′i∈Ai

pi,s′i

(
(1− ϵi)

−ûi,s′
i − 1

ϵi

) ,

where we have employed the update rule for pi,si(t+1) in (12) of the manuscript to obtain

the first equality.

With the result of (2.21) and limϵ→0
(1−ϵ)−u−1

ϵ
= u, it follows that

lim
ϵi→0

pi,si(t+ 1)− pi,si(t)
ϵi

= pi,si(t)

ψi(esi ,P)−
∑
s′i∈Ai

ψi(es′i
,P)pi,s′i(t)


= pi,si(t) [ψi(esi ,P−i)− ψi(P)] , (2.23)

where we have used the fact that limϵ→0 S = 1. Combining (2.22) and (2.23) above we

complete the proof.

Notice that ψi(esi ,P−i) is the utility of player m if it employs pure strategy sm while
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other player m′, ∀m′ ∈M,m′ ̸= m employs a mixed strategy pm′ , and its value is learned

by player m as the estimated utility ûm,sm , as shown in (2.19). On the other hand, the

ODE for mixed-strategy in (2.20) is the replicator equation [14] in which the probability

of taking one strategy increases if the current estimated utility of this strategy is larger

than the average utility over all strategies and decreases otherwise. Compared to the

best response dynamics [12] where a player changes its strategy in the next iteration

to the best action according to other players’ actions (i.e., the best response), with the

replicator dynamics, a player selects an action according to a probability distribution over

the strategy set, and adjusts the weighting for each possible action in each iteration based

on the utility estimation.

2.6 Convergence of the Proposed Algorithm

Convergence toward pure strategy NE points is an important feature of the proposed

learning algorithm. Similar to the discussions in [11] and [10], here we theoretically

demonstrate the convergence properties of the proposed SL-based algorithm. First, by

using the ordinary differential equation (ODE) approximation we characterize the long-

term behavior of the sequence {P(n)}. Second, we establish a sufficient condition for

the arrival at NE points for the proposed learning algorithm and prove that the game G

satisfies this condition.

Note that the ODE in (2.20) is the replicator equation [14] in which the probability

of taking one strategy grows if this strategy’s current estimated utility is larger than the

average utility over all strategies and declines otherwise. Compared to the best response

dynamics where a player changes its strategy in the next iteration to the best action

according to other players’ action, a player adjusts the weighting for each possible action

in each iteration with the replicator dynamics.

Proposition 2.6.1 (Folk theorems). The proposed learning algorithm has the following

properties:
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1. All Nash equilibria are stationary points of (2.20);

2. All stationary points of (2.20) are Nash equilibria.

Proposition 2.6.1 is an instance of the Folk theorems in evolutionary game theory [14],

and these properties follow directly from the replicator equation in (2.20). For an intuitive

explanation, observe that ψi(esi ,P−i) is the expected reward function of player i if it

employs pure strategy si while other player j, ∀j ∈ N , j ̸= i employs a mixed strategy pj.

From the definition of Nash equilibrium, the condition

ψi(es∗i
,P∗

−i) = ψi(P∗), ∀i ∈ N , si ∈ Ai with p∗i,si > 0 (2.24)

must hold for an NE strategy profile P∗. Therefore any Nash equilibrium must lead the

right-hand side of (2.20) to zero, and thus constitutes a stationary point of (2.20). It

is worth noting that, for a mixed-strategy NE, all survived pure strategies (i.e. si with

pi,si > 0) of player i perform equally well when other players follow the mixed strategy

P∗
−i.

From the ODE approximation, we find a way to describe the asymptotic behavior of

the discrete updates of the mixed strategies for different update rules. In the following,

we investigate the convergence property.

2.6.1 Potential Games

We first consider the case that the game is a potential game.

Proposition 2.6.2. Suppose that there exists a bounded differentiable function Ψ : R|A| →

R such that

Ψ(esi ,P−i) =
∂Ψ(P)

∂pi,si
(2.25)

is an increasing function of ψi(esi ,P−i). Then, the SL-based algorithm converges to an

NE point of a noncooperative game.
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Proof. First, we rewrite the ODE in (2.20) as follows:

dpi,si(t)

dt
= pi,si(t)

∑
s′i∈Ai

pi,s′i(t)
[
ψi(esi ,P−i)− ψi(es′i

,P−i)
]
. (2.26)

Given that Ψ(esi ,P−i) = ∂Ψ(P)/∂pi,si is an increasing function of ψi(esi ,P−i), and let

Di,si,s′i
= ψi(esi ,P−i)− ψi(es′i

,P−i), Ei,si,s′i
= Ψ(esi ,P−i)−Ψ(es′i

,P−i), we may write

Di,si,s′i
> 0⇔ Ei,si,s′i

> 0. (2.27)

By applying (2.26) and (2.27), the derivation of Ψ(P) with respect to t is given by

dΨ(P)

dt
=
∑
i∈N

∑
si∈Ai

∂Ψ(P)

∂pi,si

dpi,si
dt

=
∑
i∈N

∑
si,s′i∈Ai

pi,sipi,s′iΨ(esi ,P−i) ·Di,si,s′i

=
1

2

∑
i∈N

∑
si,s

′
i∈Ai

si<s′i

pi,sipi,s′iEi,si,s′i
·Di,si,s′i

≥ 0 (2.28)

where the last inequality holds since given the condition in (2.27), Di,si,s′i
and Ei,si,s′i

always have the same sign.

Thus Ψ(·) is non-decreasing along the trajectories of the ODE, and asymptotically

all the trajectories will be in the set {P ∈ P : dΨ(P)
dt

= 0}. From (2.26) and (2.28), the

following is known:

dΨ(P)

dt
= 0

⇒ pi,sipi,s′i
[
ψi(esi ,P−i)− ψi(es′i

,P−i)
]2

= 0, ∀i, si, s′i

⇒ dpi,si
dt

= 0, ∀i, si, s′i

⇒ P is a stationary point of the ODE (2.20). (2.29)

In other words, when starting from an interior point of the simplex of the mixed strategy
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space P , the sequence P(n) converges to a stationary point of the ODE in (2.26). By

Proposition 2.6.2, we complete the proof.

Proposition 2.6.2 establishes a sufficient condition that guarantees the convergence

toward NE. In what follows, we prove that an ordinal potential game G satisfies this

condition and hence it converges to a pure-strategy NE point by using the SL-based

algorithm.

Proposition 2.6.3. When applied to OPGs, the proposed SLA with both update rules

converges to a (possible mixed-strategy) NE point.

Proof. For OPGs, let Ψ(P) be the mixed extension of the potential function,

Ψ(P) =
∑
al,l ̸=i

Φ(a1, . . . , aN)
∏
j ̸=i

pj,aj . (2.30)

By extending the definition of OPG into mixed-strategy, we have that for OPGs

Ψ(es′i
,P)−Ψ(si,P) > 0⇔ ψi(s

′
i,P)− ψi(si,P) > 0 (2.31)

∀si, s′i ∈ Ai, ∀i ∈ N . By Proposition 2.6.2, we complete the proof.

Corollary 2.6.1. When applied to WPGs and EPGs, the proposed SLA with both update

rules converges to a (possible mixed-strategy) NE point.

Note that the learning rates (ϵi, ηi) play an important role in the convergence behavior

of the proposed SL-based learning algorithm. In particular, smaller learning rates lead

to a slower convergence. The choice of learning rates poses a trade-off between accuracy

and speed, and may be determined by training in practice.

Remark 2.6.1. Propositions 2.6.2 and 2.6.3 do not guarantee the convergence toward a

pure-strategy NE. However, our simulation shows that a pure-strategy NE rather than a

mixed-strategy NE is usually achieved.
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2.6.2 Non-potential Games

While the OPG already relaxes the constraints of problem formulation, there are cases

that a potential game cannot be formed. When trying to apply the SLA, we encounter

two major questions:

(1) Does the SLA still converge?

(2) If the SLA converges, what are the properties of the resulting strategy profile (e.g.,

is it NE point)?

Similar to MAQL, the convergence is not theoretically guaranteed but usually observed in

practical applications. We may also set the limitation of maximum number of rounds to

avoid an infinite loop. Furthermore, due to the stochastic approximation to the trajectory

of replicator dynamics, the remaining mixed strategy is a kind of good strategy against the

opponents, though may not be NE point. Therefore, while the proposed SLA possesses

some good properties when applied to potential games, we believe that it is still suitable

for other problem formulations in which learning is required.

Proposition 2.6.4. If the proposed algorithm converges to a stationary point of (2.20),

the limiting point must be a (possibly mixed-strategy) NE point.

2.7 Applications: Game Theoretic Modeling

The last section of this chapter is devoted to an overview of how to establish a game

theoretic formulation for a radio resource management (RRM) problem in wireless com-

munication systems. A mapping of game theory components to RRM problem is given in

Table 2.4.

The players in the game are the mobile users and/or the networks. Players seeking to

maximize their payoffs can choose between different strategies, such as: available band-

width, subscription plan, or available service providers. The payoffs can be estimated
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Table 2.4: Summary of Symbols for Game-theoretic Formulation

Game Component Network Selection Environment Correspondent

Players The agents who are playing the game: users or/and
networks

Strategies
A plan of actions to be taken by the player during the
game: available/requested bandwidth, subscription
plan, offered prices, available service providers, etc.

Payoffs

The motivation of players represented by profit and
estimated using utility functions based on various
parameters: monetary cost, quality, network load, QoS,
etc.

Resources The resources for which the players involved in the
game are competing: bandwidth, power, etc.

External State
The external state for the game that is not controlled
by the players: channel availability, channel
coefficients, etc.

using utility functions based on various decision criteria: monetary cost, energy conserva-

tion, network load, availability, etc. The games can be formulated so that they can target

different objectives, such as maximizing or minimizing different resources - bandwidth,

power, etc.

Appendix 2.A Assumptions for Stochastic Approx-

imation

In this appendix, we summarize the basic assumptions for stochastic approximation.

Please refer to [6] for more details.

Consider the difference equation p(n+ 1) = p(n) + λ(n)(f(x(n)) +M(n+ 1) in R|A|

and assume that

(A1.) f is Lipschitz.

(A2.) λ(n) ≥ 0,
∑

n≥0 λ(n) = +∞,
∑

n≥0 λ
2(n) < +∞.
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(A3.) M(n + 1) is a martingale difference sequence with respect to the increasing family

of sigma-fields F(n) = σ(x(n′), û(n′),M(n′), n′ ≤ n), i.e., E[M(n+ 1)|F(n)] = 0.

(A4.) M(n) is square integratable and there is a constant c > 0 such that

E[M(n+ 1)|F(n)] ≤ c(1 + ∥x(n)∥2) (2.32)

almost surely, for all t ≥ 0.

(A5.) supn ∥p(n)∥ <∞ almost surely.

Then, the asymptotic pseudo-trajectory of the difference equation is given by the ordinary

differential equation (ODE), ṗ(n) = f(p(n)), with p(0) fixed.
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Chapter 3

A Survey on the Spectrum Access of

Cognitive Radio Networks

Before showing the application examples, we provide a survey on cognitive radio net-

works in this chapter. An overview on different access scenarios in cognitive radio networks

is given first. Then the examples are given in brief, with the pros and cons.

3.1 Cognitive Spectrum Access

In cognitive radio networks (CRNs), the cognitive radio (CR) users obtain the spectrum

access rights in different ways. By extending the work of Akyildiz et al. [15] with

investigations afterwards, we categorized the spectrum access scenario of CRNs into four

different types. The four spectrum access scenarios of CRNs are depicted in Fig. 3.1 and

also briefly introduced as follows.

Opportunistic spectrum access. Nodes in CRNs communicate with each other in

an ad-hoc manner on both licensed and unlicensed spectrum bands. Each connection

opportunistically access the spectrum with consideration on the co-tier and cross-tier

interference.

31



Primary BS

Cognitive BS

PU

SU

PU
SU

SU

SU

Opportunistic 
Spectrum Access

Primary BS
Spectrum Broker

Cognitive BS

SU

Other CRNs

SU

SU

SU

SU

SU

Primary network

CR Primary 
Access

Spectrum Trading 
with Single Seller

Spectrum Trading 
with Multiple Sellers

Figure 3.1: Cognitive radio network architecture.

Spectrum trading with single seller. CR users communicate via their own CR base

stations (CRBSs), on both licensed and unlicensed spectrum bands. The CRBS determ-

ines the amount of resources (i.e., bandwidth) to request from the spectrum seller. When

the spectrum is granted by the seller, since all interactions occur inside the CR cluster,

the spectrum sharing policy can be independent of that of the primary network.

Spectrum trading with multiple sellers. The CRBS may choose to request the

spectrum from different sellers. Therefore, it has to determine the best seller as well as

the amount of requested spectrum. Then the CR users access the spectrum through their

own CRBSs.

CR primary access. CR users can access the primary base station through the licensed

band. CR users require a re-configurable medium access control (MAC) protocol, which

enables roaming over multiple primary networks with different access technologies.
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3.2 Opportunistic Spectrum Access

Opportunistic spectrum access (OSA) is a promising technique for tackling the spec-

trum scarcity problem by exploiting the temporally unutilized spectrum bands [16, 17].

In the CR ad hoc access model, the CR links access the spectrum based on sensing and

contention. We provide four examples.

Learning-Based OSA with adaptive hopping. Derakhshani and Le-Ngoc [18] presen-

ted an adaptive hopping transmission strategy for secondary users (SUs) to access tem-

porarily idle frequency-slots of a licensed frequency band in consideration of the random

return of primary users (PUs), aiming to maximize the overall SU throughput.

Learning the hidden Markov model. The work of Choi et al. [19] is based on learning

consider the hidden Markov model (HMM) and partially observable Markov decision

process (POMDP).

Learning under unknown environments. Xu et al. [10] considered opportunistic

spectrum access in which the CR links contend for the spectrum. The strategy is the

channel selection. A CR can access a channel if it wins the contention and the PU is

not using this channel. Under the unknown dynamic environment, stochastic learning

algorithm is applied to learn the equilibrium of the expected game.

Adaptive channel recommendation. Chen et al. [20] proposed a dynamic spectrum

access scheme where secondary users cooperatively recommend “good" channels to each

other and access accordingly. The spectrum access problem was formulated as an average

reward-based Markov decision process (MDP).

OSA for mobile CR. While most existing work focuses on enabling OSA for stationary

CRs, Min et al. [21] considered mobility of secondary users (SUs). In this work, the chan-

nel availability experienced by a mobile SU was modeled as a two-state continuous-time

Markov chain (CTMC). To protect PU communications from SU interference, the authors

introduce guard distance in the space domain and derive the optimal guard distance that
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maximizes the spatio-temporal spectrum opportunities available to mobile CRs. To fa-

cilitate efficient spectrum sharing, the secondary network throughput maximization was

formulated as a convex optimization problem, and an optimal, distributed channel selec-

tion strategy was derived.

3.3 Spectrum Trading with Single Seller

Spectrum trading with single seller has been studied in [22–25]. In the simplest spec-

trum market, the seller can be interpreted as the only SP or a spectrum broker who

collects the residual spectrum from several SPs. The strategy of the seller is the spectrum

price.

Cournot game. Niyato et al. [22] formulated the bandwidth demand of SUs as a Cournot

competition. The unit spectrum price increases with the total demand. Cournot equilib-

rium is achieved.

Monopolist in spectrum market. Gao et al. [23] considered the single SP as the

monopolist in a spectrum market.

Auction under imperfect spectrum sensing. Tehrani and Uysal [24] consider the

shared used model in cognitive radio networks and design a spectrum trading method to

maximize the total satisfaction of the Secondary Users (SUs) and revenue of the Wireless

Service Provider (WSP). Specifically, this work considered the risk of imperfect spectrum

sensing in spectrum auction.

Random access. Pricing-based spectrum management with random access was con-

sidered in [25], where the SUs contend for spectrum access.

3.4 Spectrum Trading with Multiple Seller

When multiple spectrum seller exists, a multi-level framework considering both the

behaviors of SPs and SUs is established [26–34]. The spectrum trading mechanism can
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be classified according to the way the rights of spectrum access are granted.

We consider a problem of dynamic spectrum leasing in a spectrum secondary market of

cognitive radio networks where secondary service providers lease spectrum from spectrum

brokers to provide service to secondary users. We first consider the intuitive case in

which the spectrum access is determined through iterative negotiations, either between

PO and SU or among SUs. In such a spectrum leasing scenario, market mechanism is

involved in the spectrum there exists one or more spectrum owner, and the secondary

users pay to obtain the right of channel utilization. In the following, we use several

example applications of stochastic game theory to cognitive radio networking to illustrate

how to formulate a stochastic game for different problems and how to solve the game.

3.4.1 Exclusive Access

In the exclusive access model [26–31], the SPs set the per-channel prices, and a channel

is exclusively assigned to an SU when it pays the announced price. Under such setting,

the game is limited to the competition among SPs on the spectrum price. Xing et al. [26]

considered discrete price levels and applied stochastic learning algorithm to help the SPs

select proper pricing strategies. In [27,28], auction-based spectrum trading was conducted.

Bargaining-based approach was considered in [29], which allows the short-term spectrum

trading among SUs after the long-term spectrum leasing from SPs. Three-stage trading

model was adopted in [30,31], where agents profit from buying the spectrum opportunities

from the owners and selling them to the SUs. The major drawback of the exclusive access

model is that a negotiation process among sellers and buyers is required before the SUs

can start transmission.

Multi-auctioneer Problem (MAP). Gao et al. [27] proposed an auction-based mech-

anism with multiple autioneers. In the system model, each PO has a number of unoccupied

channels for SUs to lease. The POs are considered as auctioneers trying to sell its channels

to SUs. On the other hand, the SUs select the preferred PO based on the value to itself

and the price announced. The auction is run repeatedly, in which each auctioneer starts
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from a lower reserved price, and increase the price if the bid is more than its quota. Equi-

librium (defined in the paper) was observed if the the price adjustment step size is small

enough. The equilibrium may not be NE, but at least the resulting state is tractable.

Repeated Auction with Bayesian Learning The work of Han et al. [35] models the

spectrum access in CRN as a repeated auction game subject to sensing costs and the cost

of transmission (upon successful bidding for a channel). The formulation is a dynamic

game with incomplete information, as the information about other SUs’ action is limited.

A Bayesian non-parametric belief update scheme is constructed based on the Dirichlet

process. In the proposed bidding learning algorithms, SUs can decide whether or not to

participate in the bidding according to the belief update.

3.4.2 Shared Access

On the other hand, in the shared access model [32–34], the SPs set the subscription

prices, and the exact bandwidth assigned depends on the number of SUs sharing the

spectrum opportunity of the same SP. Although the bandwidth of each SU is no longer

guaranteed, this model avoids the overhead for negotiation. The interaction of SUs is

often modeled as a population game [36] due to their distributed nature.

Game-thoeretic modeling with multiple sellers and buyers. Niyato et al. [32]

proposed a game-theoretic framework for the spectrum trading with multiple primary

users selling spectrum opportunities to multiple secondary users. The secondary users

can adapt the spectrum buying behavior (i.e., evolve) by observing the variations in

price and quality of spectrum offered by the different primary users or primary service

providers. On the other hand, The primary users adjust their behavior in terms of size of

offered spectrum to the secondary users and spectrum price to achieve the highest utility.

Evolutionary game theory was considered for the dynamic behavior of secondary users.

For the PUs, an iterative algorithm for strategy adaptation was presented.

Dynamic spectrum leasing in secondary market. Zhu et al. [33] considered a hier-

archical spectrum leasing scenario and developed a two-level dynamic game framework. In
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a scenario, secondary service providers lease spectrum from spectrum brokers to provide

service to secondary users who are also choosing the service providers. At the lower

layer, the dynamic service selection is modeled as an evolutionary game, and the replic-

ator dynamics is applied to model the service selection adaptation and the evolutionary

equilibrium is considered to be the solution. At the upper layer, With dynamic service

selection, competitive secondary providers dynamically lease spectrum to provide service

to secondary users. A spectrum leasing differential game was formulated to model this

competition at the upper level. [33] adopted evolutionary equilibrium in the lower-level,

while the upper-level competition is modeled as a differential game.

Queueing-based model. Elias et al. [34] addressed the joint pricing and network selec-

tion problem in cognitive radio networks. This paper studied the steady-state performance

of SUs, focusing on delay as the quality of service (QoS) metric.

These methods, however, require the knowledge of the opponents’ actions and are

difficult to be implemented in distributed systems. Therefore, it is desirable to find self-

organized spectrum trading in which the nodes (viz. service providers and secondary

users) act independently.

3.5 CR Primary Access

While most approaches involve negotiations, fully-distributed learning algorithm is

newly introduced.

Hybrid Learning in 4G heterogeneous networks. Khan et al. [9] proposed a fully

distributed method, namely, the hybrid learning, for network selection in 4G heterogen-

eous networks. The users, as learning automata, are embedded with different learning

rules. The convergence towards a pure strategy profile was demonstrated without indic-

ating whether or not the achieved strategy profile is an equilibrium point.

To realize spectrum trading between independent nodes with unknown dynamic spec-

trum opportunities, our work tackles with fully distributed operations based on stochastic
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learning. In addition to the spectrum trading (with price competition only) in [26],

stochastic learning has been adopted in different areas of wireless communications. Ex-

amples include the precoding strategy in multi-antenna systems [8], network selection in

4G heterogeneous networks [9], and opportunistic spectrum access in CRNs [10]. However,

to the best of our knowledge, the fully-distributed operation in self-organized spectrum

trading with two-level competitions has yet been extensively investigated, whether based

on stochastic learning or not.
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Part II

Examples of Fully Distributed

Learning
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Chapter 4

Network Selection in Cognitive

Heterogeneous Networks

Coexistence of multiple radio access technologies (RATs) is a promising paradigm

to improve spectrum efficiency. This chapter presents a game-theoretic study of

network selection in a cognitive heterogeneous networking environment with time-varying

channels. We formulate the network selection problem as a non-cooperative game with

secondary users (SUs) as the players, and show that the game is an ordinal potential game

(OPG). A decentralized, stochastic learning-based algorithm is proposed where each SU

progressively moves toward the Nash equilibrium (NE) based on its action-reward history

and not actions taken by others. The convergence properties of the proposed algorithm

toward a pure-strategy NE point are theoretically and numerically verified. The proposed

algorithm demonstrates a fine throughput and fairness performance in different network

scenarios.

4.1 Introduction

The ever increasing traffic demands have rendered a single-network wireless system

insufficient to meet the demands due to inefficient spectrum usage. A heterogeneous
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network, where multiple radio access technologies (RATs) coexist, has emerged as a viable

alternative solution. In a heterogeneous network, users are allowed to access the spectrum

licensed to different spectrum owners, which are called service providers (SPs), and as a

result a more efficient spectrum utilization can potentially be achieved. In heterogeneous

networks, one significant issue to address is network selection where each user determines

which network to associate with.

In this work, we consider the problem of network selection in a heterogeneous network

featuring cognitive radio (CR). Specifically, we consider the primary network access scen-

ario [15] where both primary users (PUs) and secondary users (SUs) are served by the

primary networks. We model the network selection by SUs as a noncooperative game.

With our proposed utility function, the game is shown to be an ordinal potential game

(OPG) [12]. A stochastic learning algorithm (SLA) is proposed to perform network selec-

tion independently at each SU based on its action-reward history and not on other SUs’

actions. The convergence property of the algorithm to a pure-strategy Nash equilibrium

(NE) point is verified theoretically and numerically. To the best of our knowledge, this

work presents the first application of SLA to OPGs in wireless networks. Notably, unlike

the consideration of exact potential game (EPG) in [10], our formulation of OPG poses

fewer constraints on the design of utility functions and thus facilitates mapping prac-

tical resource management problems in distributed networks into proper game-theoretic

formulations.

4.1.1 Game-theoretic Problem Mapping

The mapping of network selection problem to game-theoretic formulation is summar-

ized in Table 4.1.
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Table 4.1: Mapping to game-theoretic formulation.

Elements in game Characters in network selection problem
Players Secondary users
Strategies Selection of service providers
Reward Individual user throughput
External state Number of available channels

Channels allocated to PUs

SU2

Channels for SUs

Licensed 

band of 

SP1

PU2

PU1

SP1

SU1

SP2

PU3

SU4

SU3

Licensed 

band of 

SP2

Figure 4.1: An exemplary heterogeneous network with 2 SPs, 3 PUs, and 4 SUs. The
filled and blank blocks in the licensed band of each SP denote the busy channels currently
used by the PUs and the residual channels available for serving the SUs, respectively.

4.2 System Model

We consider a cognitive heterogeneous network with M SPs and N SUs. The sets of

SPs and SUs are denoted by M and N , respectively. SPm owns Km channels. At time

instant j, after resource allocation for PUs, SPm has Cm(j) residual channels that can be

used to serve the SUs. Fig. 1 presents an exemplary heterogeneous network where two

RATs coexist.

To reflect a practical wireless heterogeneous network, our system model incorporates

the following considerations:

1. Due to hardware and protocol limitations, each SU can subscribe to only one SP at

a given time.
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2. Each SU selects the SP independently. There is neither central control nor negoti-

ation among SUs.

3. The statistics of the number of residual channels owned by each SP are fixed but

unknown to the SUs.

4. The number of SUs in the system, N , is unknown.

Notably, the only information available for decision making is the action-reward history

of individual players (SUs).

Let Nm(j) = {i ∈ N|ai(j) = m} be the set of SUs associated with SPm at time j,

where ai(j) is the action (i.e., network selection) of SUi at time j. Here, we consider

the case where the SUs are of the same priority class, and thus the residual channels are

equally divided (can be in both frequency and time domain) to them. Then, if ai(j) = m,

the throughput of SUi at time j is given by

ri(j) =
Cm(j)

nm(j)
Rm,i, ∀i ∈ Nm (4.1)

where nm(j) , |Nm(j)| and Rm,i is the per-channel throughput of SUi when SUi is the

only user associated with SPm. The value of Rm,i is determined by the modulation order

(e.g., Rm,i = 4 when 16-QAM is adopted). For notational brevity, we hereafter discard

the timing dependence in occasions without ambiguity.

4.3 Self-Organized Network Selection

In this section, we present the game-theoretic formulation of the self-organized network

selection problem. The notations used in the formulation are summarized in Table 4.2.
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Table 4.2: Summary of Symbols for Game-theoretic Formulation

Symbol Meaning
N the set of SUs
M the set of SPs
C external state space (channel availability)
Cm(j) number of available channels of SPm at time j
Ai ⊆M the set of actions of player i
si ∈ Ai an element of Ai

ai(j) ∈ Ai the action (SP selection) of player i at time j
a−i(j) ∈ Ai actions of players except for i at time j
Pi := ∆(Ai) the set of probability distribution over Ai

pi(j) ∈ Pi mixed strategy of player i at time j
ri(j) ∈ R instantaneous reward of player i at time j

4.3.1 Game Model

We model the network selection problem as a noncooperative game where the SUs are

the players, and the number of residual channels (after the resource allocation of PUs) is

considered as the external state. The game is represented as:

G =

(
C,N , {Ai}i∈N , {ui}i∈N

)

where C is the space of external states, N is the set of players, {Ai}i∈N is the set of

actions (network selection) that player i can take, and {ui}i∈N is the utility function of

player i that depends on the actions of itself as well as other players.

The SUs are selfish and rational players with the objective of maximizing their indi-

vidual throughput. Thus, we define the instantaneous reward of player i at time j as the

throughput specified in (4.1). The reward function captures the dynamics of the behavior

of PUs as well as the joint behaviors of multiple SUs. Then, we define the utility function
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as the expected reward of player i over the channel availability1, i.e.,

ui(ai, a−i) , ECai

[
ri|(ai, a−i)

]
=
Rai,i

nai

Kai∑
k=1

xai,k · k (4.2)

where xai,k is the probability of Cai = k with
∑Kai

k=1 xai,k = 1, and nai is the number of

players taking action ai, which depends on the action of player i (ai) as well as other

players’ actions (a−i). Formally, the game can be expressed as

(G) : max
ai∈Ai

ui(ai, a−i), ∀i ∈ N . (4.3)

4.3.2 Analysis of Nash Equilibrium

With the utility function in (4.2), we show the existence of an NE point for the

considered game here.

Proposition 4.3.1. The game G is an OPG.

Proof: Consider the function Φ : ×i∈NAi → R+:

Φ(a1, . . . , aN) =
M∏

m=1

nm∏
l=1

νm(l) ·
N∏
i=1

Rai,i (4.4)

where

νm(l) ,
1

l

Km∑
k=1

xm,k · k (4.5)

is the average number of channels allocated by SPm to each of its SUs when there are

l SUs associated with SPm. Now, consider that player i changes its action unilaterally

from ai to ăi. Let nai and năi be the number of SUs associated with SPai and SPăi before

the change, respectively. If this change improves the ui, from the definitions in (4.2) and
1The same formulation can be applied under fading channels, where the time-varying Rm,i is considered

as part of the external state and its average value is adopted in ui. A longer learning period may be
required in this case.
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(4.5), we have

ui(ăi, a−i) > ui(ai, a−i)⇔ νăi(năi + 1) ·Răi,i > νai(nai) ·Rai,i. (4.6)

Meanwhile, since player i’s change merely affects the resource allocations in SPai and

SPăi , the change in Φ caused by player i’s unilateral deviation is given by

Φ(ăi, a−i)

Φ(ai, a−i)
=
νăi(năi + 1) ·Răi,i

νai(nai) ·Rai,i

> 1. (4.7)

From (4.6) and (4.7) we find that the variations in ui and Φ due to player i’s unilateral

deviation have the same sign, i.e.,

ui(ăi, a−i)− ui(ai, a−i) > 0⇔ Φ(ăi, a−i)− Φ(ai, a−i) > 0. (4.8)

Therefore, G is an OPG with potential function Φ [12].

The existence of a pure-strategy NE is always guaranteed and it coincides with a local

maximum of the potential function [12]. Note that an EPG formulation [8] requires

ui(ăi, a−i)− ui(ai, a−i) = Φ(ăi, a−i)− Φ(ai, a−i). (4.9)

Comparing (4.8) and (4.9), it is observed that the constraint on the utility function is

relaxed in OPG, which facilitates game-theoretic developments.

4.3.3 Stochastic Learning Procedure

Here, we discuss obtaining the NE via stochastic learning. As the channel availability

is time-varying and the action is selected by each player simultaneously and independently

in each play, previously developed algorithms requiring complete information (e.g., better

response dynamics [12]) may not be applicable. To this end, we propose a decentralized

algorithm based on stochastic learning (SL) [11], by which the SUs learn toward the

equilibrium strategy profile from their individual action-reward history.
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To facilitate the development of the SL-based algorithm, let the mixed strategy pi(j) =[
pi,1(j), . . . , pi,M(j)

]T
be the network selection probability vector for player i, where

pi,si(j) is the probability that player i selects strategy si ∈ Ai at time j. The proposed

self-organized network selection (SoNS) algorithm is described in Algorithm 4.1.

Algorithm 4.1 Self-organized Network Selection (SoNS)
1: Initially, set j = 0, and the network selection probability vector as pi,si(j) =

1/|Ai|, ∀i ∈ N , si ∈ Ai.
2: At every time j, each player selects an action ai(j) as the outcome of a probabilistic

experiment based on pi(j).
3: The SUs receive the instantaneous reward ri(j) specified by (4.1) from the SPs.
4: Each SU updates its network selection probability vectors according to the following

rules:
pi,si(j + 1) = pi,si(j) + b · r̃i(j)(1l{si=ai(j)} − pi,si(j)) (4.10)

where 0 < b < 1 is the learning rate, 1l{·} is the indicator function, and r̃i(j) is the
normalized reward.

The instantaneous reward (throughput) serves as a reinforcement signal so that a high

reward brings a high probability in the next strategy update (Step 4). Also note that

network selection based on a probabilistic experiment (Step 2) might result in handover

between different networks in the beginning of the learning procedure. However, a stable

long-term network selection strategy will be yielded after the learning period (Proposition

2) and the time required for convergence is a small fraction of the total operation time.

Proposition 4.3.2. The SoNS Algorithm converges to NE when the learning rate b is

sufficiently small.

While the convergence to an NE is guaranteed as b→ 0, a smaller value of b leads to a

slower convergence rate. A proper value of b can be numerically determined to strike the

desired tradeoff between the accuracy and rate of convergence for practical operations of

the algorithm.
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Figure 4.2: Evolution of the mixed strategies (choice probability of actions) of some
players, using different learning rates.

4.4 Numerical Results

In order to evaluate the performance of the proposed scheme, we conduct a series of

simulations. We consider a heterogeneous network in which there are 2 SPs each owning

3 channels. There are 10 SUs in the network, and the per-channel throughput is set to

Rm,i = {2, 4, 6} to reflect the modulation orders adopted under different RSS conditions.

Fig. 4.2 shows the evolution of the choice probabilities of the actions (i.e., mixed strategy)

for network selection using the proposed stochastic learning algorithm. With equal ini-

tial probabilities, it is observed that the network selection probabilities converge to pure

strategies in around 300 and 100 cycles for b = 0.2 and b = 0.5, respectively. Note that

SU #10 takes different strategies in the two cases. In Fig. 3, we test the deviation of the

network selection of each of the 10 players. It is shown in Fig. 4.3(a) that when b = 0.2,

unilateral deviation results in lower throughputs for all players, suggesting an NE point

is reached by the learning algorithm. On the other hand, when b = 0.5, as shown in

Fig. 4.3(b), SU #10 achieves a higher throughput by unilateral deviation, and thus the

resulting strategy is not an NE point.
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Figure 4.3: Test of unilateral deviation from the resulting strategy profile of each of the
10 players, using different learning rates.

In Table 4.3, we compare the performance of the proposed network selection scheme

with two other approaches, namely, best RSS and (centralized) exhaustive search, which

are described as follows:

• In the best RSS scheme, each SU chooses the SP with the best per-channel through-

put (i.e., ai = arg maxmRm,i). If there are more than one best SP, choose arbitrarily.

• In the exhaustive search, the channel availability statistics and the number of SUs

are known to a centralized controller, and the action profile is selected so as to

maximize the system throughput usum =
∑N

i=1 ui.

The performance of different network selection schemes are evaluated by the system

throughput usum and the fairness among SUs, measured by the Jain’s fairness index (JFI),

J = u2sum/(N
∑N

i=1 u
2
i ). We consider two scenarios for the simulation. In scenario 1, the

SUs are randomly distributed. An SU may have better RSS from SP1 (R1,i > R2,i), from

SP2 (R1,i < R2,i), or similar RSS from both SPs (R1,i = R2,i). In scenario 2, we set

R1,i = 6 and R2,i = {2, 4}, ∀i ∈ N . This describes a two-tier network where SP1 is a
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Table 4.3: Comparison of the achievable expected system throughput of three network
selection schemes

Proposed Best RSS Exhaustive
Scenario 1, usum 24.9662 24.4521 27.0621
Scenario 1, JFI 0.8974 0.7759 0.3822
Scenario 2, usum 25.9379 14.8554 25.9379
Scenario 2, JFI 0.9986 1.0000 0.8894

small-cell serving indoor SUs, while SP2 is a macro-cell located far apart. We observe

that the efficiency of the learned NE strategy (ratio between usum of the proposed and

exhaustive search methods) is above 90% for both scenarios. In addition, the exhaustive

search method results in best usum, but suffers from poor fairness in scenario 1. This is

due to the winners-first property of exhaustive search: If m can be found so that Rm,i = 6,

SUi is usually assigned to SPm; on the other hand, those SUs with lower Rm,i in both

networks may be assigned to a less crowded SP instead of their own preference. The best

RSS scheme has good system throughput in scenario 1 but not in scenario 2, since in

this extreme case, all SUs are crowded in SP1 and the resources of SP2 are wasted. In

contrast, the proposed method performs well in terms of both throughput and fairness

under both scenarios. The results show the advantage of the proposed method: through

the learning procedure towards equilibrium, the throughput of each SU is considered and

the fairness can be maintained.

4.5 Concluding Remarks

In this chapter, we have studied the problem of self-organized network selection in

heterogeneous networks with time-varying channel availability and unknown number of

secondary users. We formulated the network selection problem by an ordinal potential

game. A decentralized stochastic learning-based algorithm has been proposed. Simula-

tion results have demonstrated the convergence of the algorithm towards a pure strategy

Nash equilibrium point. The proposed method outperforms the best RSS scheme in terms

of average throughput, while the performance loss compared to the centralized exhaust-
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ive search is limited. Moreover, the proposed method achieves good fairness in various

network scenarios.
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Chapter 5

Spectrum Trading in Multiple-Seller

Cognitive Radio Networks

This chapter studies spectrum trading in cognitive radio networks in which multiple

service providers (SPs) sell licensed spectrum opportunities to multiple unlicensed second-

ary users (SUs). Spectrum trading is modeled as a multi-leader multi-follower Stackelberg

game with two levels of competition. The SPs as leaders compete in offering spectrum

prices first (upper-level subgame) and then the SUs as followers compete in selecting SPs

to associate with (lower-level subgame). In the upper-level competition, SPs adjust their

pricing strategies to maximize their individual revenues. In the lower-level competition,

SUs select SPs based on the offered spectrum prices as well as the number of residual

channels and the behavior of other SUs associated with each SP. The lower-level game in-

corporates the time-varying channel availability as the external state so that the proposed

scheme is robust against dynamic channel availability. To achieve self-organized opera-

tion, we propose decentralized, stochastic learning-based algorithms for the Stackelberg

game. The convergence properties of the proposed algorithms toward the Nash equilib-

rium (NE) are theoretically and numerically verified. The proposed scheme demonstrates

good utility and fairness performances for the SUs as compared to other service selection

schemes.
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5.1 Introduction

Cognitive radio network (CRN) [37] has been considered as a promising solution

to the problem of spectrum scarcity. In CRNs, owners of the licensed spectrum

are referred to as service providers (SPs). Since the licensed spectrum is not always fully

utilized, spectrum holes exist and cause inefficiency. To improve spectrum utilization, the

SP may allow secondary users (SUs) to access its licensed spectrum. The SUs pay a fee to

compensate for their access to the spectrum owned by an SP, and the payments become

the revenue of the SP. When there are multiple SPs, their subscription prices affect the

choices of SUs as well as the revenues of SPs. Spectrum trading in this multiple-seller

spectrum market is the focus of this work.

We study the spectrum trading problem from a game-theoretic perspective. Game

theory [38] models the interaction of distributed players and has been an effective tool

for studying resource management problems in distributed networks such as CRNs [39]

and heterogeneous networks [40]. A game-theoretic approach to spectrum trading was

proposed in [32]. The methods in [32, 39, 40] are effective when the resource allocation

for PUs is static, but may not be applicable in scenarios where PUs have time-varying

behaviors, because of the assumption that either 1) the quality of service (QoS) require-

ments of PUs are not flexible and the number of residual channels is fixed; or 2) the QoS

requirements of PUs are flexible but the preferences of PUs are fixed. When the PUs’

traffic demands change, the channel availability may change accordingly and therefore

the spectrum trading procedure may need to be executed again, resulting in significant

overhead in practical CRN operations.

In this work, spectrum trading is formulated as a two-level Stackelberg game [38]. The

SPs as leaders set their spectrum prices first (upper level) and then the SUs as followers

select the service based on the offered prices (lower level). Our goal is to find proper

service selection (for SUs) and spectrum pricing (for SPs) strategies, with the following

considerations. First, players at the same level are unaware of the presence of one another

and there is no information exchange among them. This avoids impractical information
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exchange requirements. Second, the chosen strategies are robust to the time-varying

channel availability, as the demands are unknown in the decision-making stage. Due to

the lack of information of the opponents and the randomness of the environment, the

subgame perfect Nash equilibrium (SPNE) of the Stackelberg game cannot be achieved

through the traditional backward induction method [38]. Therefore, fully distributed

methods for strategy selection in both levels are needed.

To achieve the equilibrium in a CRN with unknown and dynamic spectrum oppor-

tunities, we propose fully distributed algorithms based on stochastic learning (SL) [7].

With the proposed algorithms, the SPs and SUs learn from their individual action-reward

history and adjust their strategies towards the equilibrium. The main contributions of

this work are as follows:

• We formulate spectrum trading in a CRN as a two-level Stackelberg game where

the upper- and lower-level subgames model the price competition of the SPs and

service selection of the SUs, respectively. A unique feature of our considered game is

that we formulate an expected game by incorporating time-varying channel availab-

ility as the external state. Selection strategies robust against time-varying channel

availability can therefore be developed for the proposed game.

• We propose fully distributed SL-based algorithms for the robust Stackelberg game.

The algorithms enable self-organized decision making for SPs and SUs and yield

strategies that are robust against unknown dynamic channel availability. In our

proposed algorithms the only information required for decision making is the action-

reward history of individual SUs (SPs) in the lower (upper) level game. The conver-

gence properties of the proposed algorithms toward the equilibrium are theoretically

and numerically verified.

The rest of the chapter is organized as follows. In Section 5.2, the system model con-

sidered in this work is presented. The game-theoretic formulation of the service selection

problem and the SL-based solutions are presented in Section 5.3. The price competition
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Figure 5.1: An exemplary cognitive radio network with 2 SPs, 3 PUs, and 4 SUs. The
filled and blank blocks in the licensed band of each SP denote the busy channels currently
used by the PUs and the residual channels available for serving the SUs, respectively.

among SPs is presented in Section 5.4. Numerical results are provided in Section 5.5.

Conclusion is drawn in Section 5.6.

5.2 System Model

We consider a cognitive radio network with M SPs and N SUs, where SPm owns Km

channels in total. The sets of SPs and SUs are denoted by M and N , respectively. Fig.

5.1 presents an exemplary cognitive radio network with two coexisting SPs.

5.2.1 Spectrum Trading Mechanism

In cognitive radio networks, after resource allocation to PUs, an SP may possess

remaining spectrum (i.e., residual channels) which can be sold to the SUs. We adopt a

shared access model in which the SPs set and announce the subscription prices. An SU

sends a request message and pays the price if it wants to buy the spectrum opportunities

from an SP. SUs have the freedom to dynamically select the SP that will provide the

best reward determined by multiple factors (e.g., bandwidth, delay, and price). The

procedure is referred to as service selection. On the other hand, the SPs may adjust their
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pricing strategies iteratively in order to improve their own revenues. The information

exchanges including price announcement and spectrum request go through a dedicated

control channel. This way, a multiple-seller, multiple-buyer spectrum trading market is

formed, where the sellers and buyers correspond to the SPs and SUs, respectively.

When complete information of other SPs is available, the SPs may determine their

pricing strategies by anticipating the service selections of SUs (i.e., through backward

induction [31, 34]). In our scenario, however, the SPs are independent decision makers

who can simply learn the pricing strategy through iterative updates. The reward is

collected when the behaviors of SUs converge, as in [32]. Therefore, the strategy update

interval of SPs is longer than that of the SUs, so as to wait for the convergence of the

choices of the SUs. The number of iterations that the SPs wait for the SUs’ strategies to

converge is denoted as Tconv.

5.2.2 Two-level Competition as a Stackelberg Game

The spectrum trading mechanism described above shows a leader-follower structure

in that the SPs (leaders) set the prices first, and then the SUs (followers) perform service

selection according to the prices. Such a hierarchical feature suggests the formulation of

a Stackelberg game with two levels of competitions. The upper-level competition exists

among SPs to sell the residual channels (i.e., spectrum opportunities) to the SUs. For

an SP, a higher subscription price means more revenue that will be received from one

SU, but also means a possible reduction in the number of subscriptions since other SPs

may offer more spectrum opportunities or better prices. An SP must therefore carefully

set the price so that its total revenue is maximized. The lower-level competition exists

in the service selection of SUs. To buy spectrum opportunities, an SU chooses an SP

with larger payoff and lower perceived cost, and its strategy depends on the strategies of

other SUs. The elements in lower- and upper-level subgames of a Stackelberg game are

summarized in Table 5.1, and the detailed game formulations will be discussed in Section

5.3 and Section 5.4, respectively.
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Table 5.1: Elements in a Stackelberg game

Element Lower-level sub-
game

Upper-level sub-
game

Player set The set of SUs, N The set of SPs, M
Strategy
set

The set of SPs, M The set of candidate
price levels, Am

Utility The expected reward
(payoff minus price) of
an SU

The revenue obtained
by selling spectrum
opportunities

External
state

The number of avail-
able channels of SPm,
cm(j)

-

To reflect a practical distributed CRN, our system model incorporates the following

considerations:

1. Due to hardware and protocol limitations, each SU can buy and access the spectrum

opportunity of only one SP at a given time.

2. Service selection is done by each SU independently and simultaneously. There is

neither negotiation nor sequential updates among SUs.

3. The statistics of the spectrum opportunities offered by the SPs are fixed but un-

known to the SUs.

4. The number of SUs in the system is unknown to any SP and SU; the number of SPs

is unknown to any SP.

5.3 Service Selection of Secondary Users

In this section, we present the game-theoretic formulation and self-organized learning

procedure for service selection of SUs. As the lower-level subgame of our Stackelberg game

formulation, the SUs perform service selection under given spectrum prices announced by

the SPs. Our objective is to devise for the SUs a fully-distributed strategy that takes into
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Table 5.2: Summary of Notations for Game-theoretic Formulation

Symbol Meaning
N the set of SUs
M the set of SPs
C the space of external states (channel availability)
cm(j) number of available channels of SPm at time j
Ai the set of actions of player i
si ∈ Ai the pure strategy of player i
ai(j) ∈ Ai the action (SP selection) of player i at time j
a−i(j) ∈ Ai actions of players except for i at time j
Pi := ∆(Ai) the set of probability distribution over Ai

pi(j) ∈ Pi mixed strategy of player i at time j
ri(j) ∈ R instantaneous reward of player i at time j

account the effect of congestion, offered spectrum opportunities, and the subscription

price. The notations used in the formulation are summarized in Table 5.2.

5.3.1 Game Model

We model the service selection problem as a non-cooperative game where the SUs are

the players, and the number of residual channels (after the resource allocation of PUs) is

considered as the external state. The game is represented as:

G1 =

(
C,N , {Ai}i∈N , {ui}i∈N

)

where C is the space of external states, N is the set of players, {Ai}i∈N is the set of

actions (service selection) that player i can take, and {ui}i∈N is the utility of player i. In

the service selection game, the utility is defined as the expected reward over the external

state.

As a player in the lower-level subgame, an SU receives its instantaneous reward in

each play. The reward of an SU is defined as the payoff offered by the SP minus the price

paid by the SU. The payoff function is designed to quantify satisfaction levels of SUs, and

its value depends on the number of residual channels as well as the number of SUs sharing

the same SP. In this work, we assume the SUs are of the same priority class, and thus
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the residual channels are equally divided (can be in both frequency and time domains)

between them. Let cm(j) ∈ {0, 1, . . . , Km} be the number of residual channels of SPm

at time j, and qm be the spectrum subscription price paid by each SU that is attached

to SPm (i.e., purchasing spectrum opportunities from SPm). The price qm is assumed to

take possible values on a pre-defined and finite pricing strategy set of SPm. Let Bm be

the channel bandwidth of SPm, Nm(j) be the set of SUs attached to SPm at time j, and

nm(j) , |Nm(j)|. The bandwidth allocated to an SU attached to SPm at time j is given

by Bmcm(j)/nm(j), and the instantaneous reward received by SUi can be given as

ri(j) = κBmcm(j)/nm(j)− qm, ∀i ∈ Nm (5.1)

where the constant κ is interpreted as the monetary value of unit bandwidth seen by

an SU. Without loss of generality, we set κ = 1 in this work. The reward function in

(5.1) captures the dynamics of the joint behaviors of multiple SPs as well as SUs. For

notational brevity, we hereafter discard the timing dependence (j) in occasions without

ambiguity. With the reward function in (5.1), the utility (i.e., expected reward) becomes

ui(ai, a−i) , Ecai

[
ri|(ai, a−i)

]
= Bai c̄ai/nai − qai (5.2)

where c̄ai , E[cai ] is the expected number of residual channels of SPai . The utility of

player i depends on the action of player i (ai) and of other players (a−i).

5.3.2 Analysis of Nash Equilibrium

We assume that the SUs are selfish and rational players with the objective of maxim-

izing their individual utility. Formally,

(G1) : max
ai∈Ai

ui(ai, a−i), ∀i ∈ N . (5.3)

The Nash equilibrium of G1 is studied as follows.

Definition 5.3.1 (Nash equilibrium). An action profile a∗ = (a∗1, . . . , a
∗
N) is a pure
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strategy Nash equilibrium (NE) point of the non-cooperative game G if and only if no

player can improve its utility by deviating unilaterally, i.e.,

ui(a
∗
i , a

∗
−i) ≥ ui(ai, a

∗
−i), ∀i ∈ N ,∀ai ∈ Ai \ {a∗i }. (5.4)

With the utility function in (5.2), we show the existence of a pure strategy NE point

for the lower-level subgame.

Proposition 5.3.1. The game G1 is an exact potential game (EPG).

Proof: Define the function Φ : ×i∈NAi → R+ as

Φ(a) =
M∑

m=1

(
nm∑
l=1

νm(l)− nmqm

)
(5.5)

where νm(l) = Bmc̄m/l. Now, consider that player i changes its action unilaterally from ai

to ăi. Let nai and năi be the load of (i.e., number of SUs attached to) SPai and SPăi before

the change, respectively. Note that player i’s change merely affects the SUs subscribing

to SPai and SPăi , and the change in Φ(·) caused by its unilateral deviation is given by

Φ(ăi, a−i)− Φ(ai, a−i)

=

năi
+1∑

l=1

νăi(l)− (năi + 1)qăi

+

nai−1∑
l=1

νai(l)− (nai − 1)qai


−

[ năi∑
l=1

νăi(l)− năiqăi +

nai∑
l=1

νai(l)− naiqai

]
= [νăi(năi + 1)− qăi ]− [νai(nai)− qai ]

= ui(ăi, a−i)− ui(ai, a−i). (5.6)

That is, the changes in ui(·) and Φ(·) due to player i’s unilateral deviation are identical.

Therefore, G1 is an EPG with potential function Φ(·) [12].
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For EPGs, the existence of a pure-strategy NE is always guaranteed and the NE points

coincide with the local maximum of the potential function [12].

5.3.3 Stochastic Learning Procedure for Service Selection

Here, we propose a decentralized algorithm by which the SUs learn toward the NE

strategy profile from their individual action-reward history. The algorithm is based on

stochastic learning (SL) [11]. To facilitate the development of the SL-based algorithm,

let the mixed strategy pi(j) =
[
pi,1(j), . . . , pi,M(j)

]T
be the service selection probability

vector for player i, where pi,si(j) is the probability that player i selects strategy si ∈ Ai

at time j. Let P(j) =
[
p1(j), . . . ,pM(j)

]
be the mixed strategy profile of G1. We denote

the mixed extension of utility ui by ψi(P), i.e.,

ψi(P) =
∑

a1,...,aN

ui(a1, . . . , aN)
N∏

i′=1

pi′,ai′ . (5.7)

Letting P−i be the mixed strategy of players except for player i, we have the definition

of NE in mixed strategy as follows.

Definition 5.3.2. A strategy profile P∗ is a mixed-strategy Nash equilibrium (NE) point

of the non-cooperative game G if and only if

ψi(p∗
i ,P∗

−i) ≥ ψi(pi,P∗
−i), ∀i ∈ N ,∀pi ∈ Pi \ {p∗

i }. (5.8)

A stochastic learning algorithm is characterized by its rule of updating the mixed

strategies (based on the action-reward observation), which is usually referred to as the

learning rule. Different learning rules may result in different convergence behaviors. For

example, the learning rule proposed in [11] which is widely adopted in the literature

has been later proved to converge to NE point when applied to potential games [41].

Since the service selection game is a potential game (Proposition 5.3.1), it benefits from
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this nice convergence property if the same learning rule is adopted. The learning rule

requires the instantaneous reward to be normalized. In our case, the lower bound of

the reward is given by rinf = −qmax, where qmax = maxm qm is the highest subscription

price. On the other hand, the maximum reward obtainable from an SP is achieved when

all channels are allocated to one SU and the lowest price is charged. The upper bound

of the reward is given by the maximum possible reward from all SPs; in other words,

rsup = maxm(κBmKm − qm). Then, the normalized reward r̃i(j) ∈ [0, 1] can be obtained

as

r̃i(j) =
ri(j)− rinf

rsup − rinf
. (5.9)

The proposed self-organized service selection (SoSS) algorithm is described in Algorithm

5.1.

Algorithm 5.1 Self-organized Service Selection (SoSS)
1: Initially, set j = 0, and the spectrum request probability vector as pi,si(j) =

1/|Ai|, ∀i ∈ N , si ∈ Ai.
2: At every time instant j, each SU selects an action (i.e., SP) ai(j) according to pi(j).
3: The SUs receive the instantaneous reward ri(j) specified by (5.1).
4: Each SU updates its service selection probability vectors according to the following

rule:
pi,si(j + 1) = pi,si(j) + b · r̃i(j)(1l{si=ai(j)} − pi,si(j)) (5.10)

where 0 < b < 1 is the learning rate, and 1l{·} is the indicator function.

Notably, the instantaneous reward serves as a reinforcement signal so that a high

reward brings a high probability in the next play (Step 4). Moreover, the proposed

learning algorithm is fully distributed: the selection of SP is solely based on the individual

action-reward history without knowledge of other players’ actions.

Proposition 5.3.2. The SoSS Algorithm converges to a (possibly mixed-strategy) NE

point when the learning rate b is sufficiently small.

Proof: This follows from the fact that the SLA converges to a (possibly mixed-

strategy) NE point when applied to an ordinal potential game (OPG) [41], and the fact

that EPG belongs to OPG.
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We emphasize that the proposed game and the convergence proof are not restricted

to the model described above with the specific reward function in (5.1), but is applicable

to reward functions that take into account other QoS parameters. The logarithm reward

function in [32,33] and the delay-related reward function in [34] are both possible choices.

5.3.4 Social Welfare and Price of Anarchy

While NE marks a steady state of mixed strategies of players, its efficiency needs

further justification. The efficiency of equilibrium is typically determined by the price

of anarchy (PoA) [42], which is defined as the ratio between the social welfare (SW) of

the worst NE and that of the optimal strategy profile. Similar to [34], in our proposed

spectrum trading markets, the social welfare is defined as the sum of the utilities of all

SUs and SPs. Considering the utility function in (5.2) and after simple manipulations we

have

SW =
∑

m:nm>0

Bmc̄m. (5.11)

Notice that the price qm does not appear in (5.11), since the price paid by the SUs becomes

the utility (i.e., revenue) of the SPs. Considering the case with two SPs, the social welfare

is maximized when the spectrum opportunities of both SPs are utilized, i.e.,

SWmax = B1c̄1 +B2c̄2.

Then, the PoA is given by

PoA =



B1c̄1
B1c̄1+B2c̄2

, if B2c̄2 − q2 ≤ B1c̄1
N
− q1;

B2c̄2
B1c̄1+B2c̄2

, if B1c̄1 − q1 ≤ B2c̄2
N
− q2;

1, otherwise.

(5.12)

As can be seen from (5.12), the PoA is usually good unless the condition of one of the

SPs is so poor (e.g., high subscription price or narrow spectrum opportunity) that all SUs
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would rather crowd in another SP.

The social welfare is not the only metric for performance evaluation. Specifically,

a globally optimal solution that maximizes the social welfare does not guarantee a fair

resource allocation in terms of the individual utilities of SUs [43]. The fairness issue will

be discussed in Sec. 5.5 through numerical experiments.

5.4 Price Competition among Service Providers

In the upper-level subgame of the proposed Stackelberg game formulation, the SPs

compete with each other in determining the subscription price with the objective of max-

imizing the revenue. In this section, we present the game model and the fully distributed

learning in the upper-level price competition game.

5.4.1 Game Model

The upper-level price competition game is modeled as a game played by the SPs. The

game is represented as a 3-tuple:

G2 =

(
M, {Am}m∈M, {um}m∈M

)

where M is the set of players (SPs), {Am}m∈M is the set of actions (candidate price

levels) that player m,m ∈M can take, and {um}m∈M is the utility defined as the revenue

of SPm. The revenue that an SP receives depends on its user load at the equilibrium.

Given the pricing vector q = [q1, . . . , qm, . . . , qM ] and letting n∗
m(q) be the number of SUs

attached to SPm under Nash equilibrium and q−m be the price of SPs except for SPm, the

utility of SPm is given by

um(qm, q−m) = qm · n∗
m(q). (5.13)

As in the lower-level game, we adopt learning algorithm for the SPs to adapt to proper
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pricing strategies. In the upper-level competition, as can be seen from (5.13), the revenues

received by the SPs depend on the user loads at the convergence point of the lower-level

game. If the user loads (and therefore the revenues) vary under a fixed pricing strategy

profile, it could be difficult for the SPs to evaluate each strategy and find proper ones.

Fortunately, while there may be multiple NE points, the user loads at NE are unique

with a fixed subscription price vector. Following the discussions in [32,34], it is known that

for a given subscription price vector, the unique steady-state user loads are characterized

by the Wardrop equilibrium [44]. At the equilibrium, the per-SU utilities offered by

subscribing to the SPs that have at least one attached SU are equal, and are larger than

that experienced by a single SU attached to any unused SP. In other words, ∀m,m′ ∈M

with n∗
m > 0, we have


νm(n

∗
m)− qm = νm′(n∗

m′)− qm′ , if n∗
m′ > 0,

νm(n
∗
m)− qm > νm′(1)− qm′ , otherwise.

(5.14)

Remark. The unique user load profile under Wardrop equilibrium is based on the as-

sumption that the game is non-atomic; that is, the number of SUs is big compared to

the number of SPs. When the number of SUs is finite, solving (5.14) may result in non-

integer n∗
m’s which do not constitute feasible user loads, and there may be multiple NEs.

However, the user load profile under NE is unique when additional constraint is applied.

Definition 5.4.1 (Strict Nash Equilibrium). An action profile a∗ = (a∗1, . . . , a
∗
N) is a

pure strategy strict Nash equilibrium point of the non-cooperative game G if and only if

unilateral deviation results in decreased utility for all players, i.e.,

ui(a
∗
i , a

∗
−i) > ui(ai, a

∗
−i), ∀i ∈ N , ∀ai ∈ Ai \ {a∗i }. (5.15)

Proposition 5.4.1. The user load profile is unique if the lower-level NE is strict.

Proof: The proof relies on an important property of potential games: an NE always
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coincides with a local maximum of the potential function. For a network with M SPs, let

(n̂1, . . . , n̂M) be a user load profile that maximizes the potential function Φ in (5.5), and

denote for a user load nm the drift as dm = nm − n̂m. We show that any user load profile

(n1, . . . , nM) in which there exists m ∈ M such that |dm| > 0 cannot be a maximizer of

the potential function, and therefore the user load profile is unique.

For better understanding, we consider first the case with M = 2 SPs, and a drift in

user loads so that (n1, n2) = (n̂1 + 1, n̂2 − 1). Denote by Φn1,n2 the value of the potential

function under user loads (n1, n2). Define ∆1 = Φn̂1+1,n̂2−1 − Φn̂1,n̂2 , we have

∆1 =
B1c̄1
n̂1 + 1

− q1 −
B2c̄2
n̂2

+ q2 < 0. (5.16)

Moving one step further in the same direction of the drift and define ∆2 = Φn̂1+2,n̂2−2 −

Φn̂1+1,n̂2−1, we have

∆2 =
B1c̄1
n̂1 + 2

− q1 −
B2c̄2
n̂2 − 1

+ q2 < ∆1 < 0. (5.17)

By moving further, it can be shown that the potential function is monotonically decreasing

and there is no other local maximum of Φ in the same direction. The same observation

can be made for the movement in another direction.

When there are M SPs, consider a user load profile (n1, . . . , nM) = (n̂1+d1, . . . , n̂M +

dM), where dm ̸= 0, ∀m. Define ∆1 = Φn̂1+d1,...,n̂M+dM − Φn̂1,...,n̂M
, we have ∆1 < 0. For a

further drifted user load profile (n1, . . . , nM) = (n̂1+d
′
1, . . . , n̂M +d′M) such that d′m ≥ dm

if dm > 0 and d′m ≤ dm otherwise, define ∆2 = Φn̂1+d′1,...,n̂M+d′M
− Φn̂1+d1,...,n̂M+dM . Again

we have ∆2 < ∆1 < 0 and show that Φ is monotonically decreasing. Therefore the user

load profile (n̂1, . . . , n̂M) is unique under NE and the proof is completed.

5.4.2 Stochastic Learning Procedure for Price Competition

In the upper-level game, learning-based algorithms help the SPs gradually adjust their

pricing strategies based on the service selections of the SUs at the equilibrium of the lower-
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Algorithm 5.2 Self-organized Pricing (SoP)
1: Initially, set k = 0. Set the pricing probability vector and utility estimation as

pm,sm(0) = 1/|Am|,
ûm,sm(−1) = 0, ∀m ∈M, sm ∈ Am.

2: At the beginning of the kth iteration, each seller selects an action am(k) according to
the current pricing strategy pm(k).

3: When the service selection of SUs converges, each seller m receives the utility um(k)
specified by (5.2) depending on the user load.

4: All SPs update their utility estimation and pricing probability vector in iteration k
according to the rules:

ûm,sm(k)− ûm,sm(k − 1)

= η1l{am(k)=sm} (um(k)− ûm,sm(k − 1))

pm,sm(k + 1) =
pm,sm(k)(1 + ϵ)ûm,sm (k)∑

s′m∈Am
pm,s′m(k)(1 + ϵ)ûm,s′m

(k)

(5.18)

where η and ϵ are the learning rates for utility estimation and pricing probability,
respectively.

level game. A seller’s pricing strategy is defined over a probability space of its candidate

price levels.

As in the lower-level game, two main issues are considered when designing the learn-

ing algorithm for the upper-level game, namely, the learning rule and the convergence

property. First, since the total number of SUs is unknown to the SPs, it is difficult

to obtain the upper bound and normalize the revenue. Therefore, a probability update

rule different from (5.10) is needed. In this work, we consider the multiplicative-weight

rule for mixed-strategy update. The learning procedure in the self-organized price (SoP)

competition is described in Algorithm 5.2. The multiplicative-weight update rule in

(5.18) belongs to the combined fully distributed payoff and strategy reinforcement learn-

ing (CODIPAS-RL) [7], in which learning applies to both the expected payoff and the

strategies.

The second issue is the convergence behavior when the SL algorithm is applied in the

price competition game. Unlike the lower-level game, the upper-level competition with
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the utility in (5.14) is a potential game. Thus, we are unable to provide a theoretical

proof to guarantee the convergence toward an NE for the price competition game. How-

ever, the algorithm still has some nice properties when applied to general strategic games.

We investigate first the approximation of (continuous-time) ordinary differential equation

(ODE) by the discrete-time mixed strategy update rule, and then the theoretical per-

spectives of convergence behaviors. The notations of pm,P−m,P, and ψm(P) are defined

similarly as in Section 5.3, and esm is a unit probability vector (of appropriate dimension)

with the sm-th component being one and all other components being zero.

Proposition 5.4.2. With sufficiently small learning rates η and ϵ:

1. The estimated utility converges to

ûm,sm → ψm(esm ,P−m). (5.19)

2. Asymptotically, the probability matrix sequence {P(k)} can be approximated by the

trajectory of the following ODE:

dpm,sm(t)

dt
= pm,sm(t) [ψm(esm ,P−m)− ψm(P)] (5.20)

where pm,sm(t) is the continuous-time version of pm,sm(k), and the boundary condi-

tion is given by P(0) = P0, where P0 is the initial mixed strategy matrix.

Proof: See [7, Section 4.3].

Notice that ψm(esm ,P−m) is the utility of player m if it employs pure strategy sm

while other player m′, ∀m′ ∈ M,m′ ̸= m employs a mixed strategy pm′ , and its value

is learned by player m as the estimated utility ûm,sm , as shown in (5.19). On the other

hand, the ODE for mixed-strategy in (5.20) is the replicator equation [14] in which the

probability of taking one strategy increases if the current estimated utility of this strategy

is larger than the average utility over all strategies and decreases otherwise. Compared to

the best response dynamics [12] where a player changes its strategy in the next iteration
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to the best action according to other players’ actions (i.e., the best response), with the

replicator dynamics, a player selects an action according to a probability distribution over

the strategy set, and adjusts the weighting for each possible action in each iteration based

on the utility estimation.

Proposition 5.4.3. The proposed learning algorithm has the following properties:

1. All Nash equilibria are stationary points of (5.20);

2. All stationary points of (5.20) are Nash equilibria.

Proof: Proposition 5.4.3 is an instance of the Folk theorems in the evolutionary

game theory [14, Chapter 3], and these properties follow directly from the replicator

equation in (5.20). Please also refer to [7, Section 4.3].

For an intuitive explanation, observe that for a mixed-strategy NE profile P∗, all

survived pure strategies (i.e., sm with p∗m,sm > 0) of player m perform equally well when

other players follow the mixed strategy P∗
−m. That is, the condition

ψm(esm ,P∗
−m) = ψm(P∗),

∀m ∈M, sm ∈ Am with p∗m,sm > 0 (5.21)

must hold. Therefore, any NE must lead the right-hand-side of (5.20) to zero and thus con-

stitutes a stationary point of (5.20). In other words, if the proposed algorithm converges

to a stationary point of (5.20), the limiting point must be a (possibly mixed-strategy) NE

point. Although there is no theoretical proof as in the lower-level game (since G2 is not

an EPG), the convergence toward NE in the upper-level game is still observed through

numerical simulations.

5.5 Numerical Results

In order to evaluate the performance of the proposed scheme and algorithms, we con-

duct a series of simulations. The distribution of the number of residual channels (i.e., spec-
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Table 5.3: Simulation Parameters

Parameter Value
Number of SPs M = 2
Max. number of channels Km = 3
Ch. availability of SP1 x1 = [0, 0.1, 0.3, 0.6]
Ch. availability of SP2 x2 = [0, 0.4, 0.3, 0.3]
Pricing strategies Am = [1, 1.5, 2, 2.5],∀m
Learning rate (η, ϵ) = (0.1, 0.05)
Number of SUs N = 6
Learning rate of SUs b = 0.3
Waiting time for obtaining NE Tconv = 400

trum opportunities) offered by SPm is described by a vector xm = [xm,0, . . . , xm,c, . . . , xm,Km ],

where xm,c denotes the probability that SPm possesses c residual channels. The default

values of simulation parameters are given in Table 5.3, and these values are adopted in

the simulations unless otherwise specified.

We first study the lower-level game under a given price vector (q1, q2) = (1, 1.5). The

purpose is to observe the convergence behavior and the performance of the proposed

algorithm. Then, the upper-level game is involved to observe the price competition.

5.5.1 Convergence Behavior of the Lower-level Game

Fig. 5.2 shows the evolutions of the choice probabilities of the actions (i.e., mixed

strategies) for service selection using the proposed SL algorithm. With equal initial prob-

abilities, it is observed that the service selections converge to pure strategies in 350 and

250 iterations for b = 0.3 and b = 0.5, respectively. We observe that the final user loads

of SUs are different: (n1, n2) = (3, 3) for b = 0.3 and (n1, n2) = (4, 2) for b = 0.5. As the

convergence toward pure strategies is observed in both cases, an intuitive question to ask

is whether the learned strategy constitutes an NE point.

To verify the NE property, we test the unilateral deviation from the learned service

selection strategies of each of the N = 6 players. The comparison in terms of (normalized)

utilities is given in Fig. 5.3.
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Figure 5.2: Evolution of the mixed strategies (probability of taking different actions) of
all players. Each pair of pi,1(j) and pi,2(j) shows the behavior of a player i ∈ N .

It is shown that when b = 0.3, unilateral deviation from the learned strategy results

in a lower utility for all players. This confirms that the outcome of the learning algorithm

is an NE point. However, when b = 0.5, four SUs (#1, #2, #5, and #6) gain higher

utility by unilateral deviation, which implies that the resulting strategy is not an NE

point. Combined with the results in Fig. 5.2, we observe that the user load under NE is

(n1, n2) = (3, 3). Since the learning algorithm converges to (n1, n2) = (4, 2) when b = 0.5,

any of the SUs subscribing to SP1 can improve its utility by unilaterally deviating to SP2.

During the learning procedure, the decisions of service selection are made based on

probabilistic experiments. When the service selection changes in the next iteration, the

switching between different spectrum bands induces some overheads since the SUs need

to be re-configured. The evolutions of actions for selected players are shown in Fig.

5.4. While Fig. 5.2 shows that when b = 0.3 it takes around 350 iterations for all

players to converge to pure strategies, frequent service switching happens only before 250

iterations in the learning procedure. This observation reveals that service switching, if at

all happens, usually happens only in the beginning of the entire learning procedure. We
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Figure 5.3: Test of unilateral deviation from the learned strategy profile of each of the
N = 6 players, with learning rates b = 0.3 and b = 0.5.

also note that our proposed algorithm aims at learning the equilibrium strategy in the long

run. The service switching and the incurred reconfiguration are manageable overheads in

the early stage of the learning procedure compared to the long operation time.

5.5.2 Performance Comparison in the Lower-level Game

We further compare the performance of the proposed service selection scheme with two

other approaches, namely, random selection and exhaustive search, described as follows:

• In the random selection scheme, each SU randomly subscribes to a network in

each iteration. Neither learning algorithm nor centralized controller is implemen-

ted. Since the SUs possess very little knowledge on the environments, the random

selection scheme is an intuitive heuristic leveraging the randomness of the external

states.

• In the exhaustive search scheme, it is assumed that there exists a centralized con-

troller which knows all system information including the numbers of SUs and SPs,
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Figure 5.4: Evolution of the actions ai(j) for selected players.

and the channel availability statistics. The service selection profile is determined

by maximizing the expected sum utility, i.e., finding the optimal action profile

aopt = (a1, . . . , aN) such that

aopt = argmax
a

N∑
i=1

ui(ai, a−i). (5.22)

The performance of different service selection schemes is first evaluated by the average

normalized utility per SU. The simulation results are shown in Fig. 5.5. It is shown that

the average utility of the learning method is around 87% of that of the exhaustive search.

Also, the learning method outperforms the random selection method by about 20%.

As mentioned in Sec. 5.3.4, the second performance metric is the fairness among SUs.

Fairness of resource allocation is usually quantified by the Jain’s fairness index (JFI) [45],

which is defined as

J =
(
∑N

i=1 ui)
2

N
∑N

i=1 u
2
i

. (5.23)
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The value of JFI falls in the interval of [1/N, 1], and a higher JFI value indicates better

fairness. The JFI of the three service selection schemes are shown in Fig. 5.6. It is
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observed that the random selection and the proposed learning algorithm achieves perfect

fairness (J ≈ 1). The exhaustive search approach performs poorly in terms of fairness, as

explained as follows. Notice that when n1, n2 > 0, the summed utility of the lower-level

game is given by

usum,l = B1c̄1 − n1q1 +B2c̄2 − n2q2. (5.24)

Since q1 < q2 in the current setting, the summed utility is maximized when the user load

is (n1, n2) = (N − 1, 1). That is, the spectrum opportunity of SP2 is still utilized while

the total payment is minimized. However, the individual utility becomes

ui =


B1c̄1/(N − 1)− q1, if i ∈ N1,

B2c̄2 − q2, otherwise.
(5.25)

Apparently, this results in poor JFI. Individual SUs would therefore prefer a more balanced

user load.

From the results in Fig. 5.5 and Fig. 5.6, we show that with the proposed game-

theoretic formulation, the distributed learning performs well in terms of both the total

utility and fairness, under time-varying channel availability.

5.5.3 Convergence Behavior of the Upper-level Game

For the upper-level game, again we first study the convergence behaviors of the pricing

strategies. Fig. 5.7 shows the evolution of the choice probabilities of the pricing strategies

using Algorithm 5.2. With equal initial probabilities, it is observed that the pricing

probabilities converge to pure strategies in around 80 and 120 cycles for seller 1 and

seller 2, respectively. When the competition converges to the equilibrium, seller 1 sets

subscription price level 2 (q1 = 1.5) and seller 2 sets subscription price level 3 (q2 = 2).

The evolutions of chosen prices and revenues are shown in Fig. 5.8. From the price

dynamics in Fig. 5.8(a), it can be observed that while the prices do not change after

110 iterations, the revenues do change several times. This means that, although it rarely
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Figure 5.8: Price and revenue dynamics of the M = 2 sellers.

happens, the learning in the lower-level game may not converge to the NE distribution. A

simple solution is to adopt smaller learning rate b in the lower-level game. However, this
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results in slower convergence. Since the occasionally wrong convergence behavior does

not affect the learned pricing strategy, a more “aggressive” learning rate is adopted in

practice.

The performance of the learned strategy profile is studied in Fig. 5.9. For each of

the two sellers, we fix the opponent’s strategy as what it learned through Algorithm

5.2, while the seller itself tests four different pricing strategies and the performances are

evaluated. The first performance metric is the individual revenue which can be used for

the verification of NE, and the results are provided in Fig. 5.9(a). It is shown that when

SP2 sticks to the NE strategy (i.e. q2 = 1.5), SP1 gets best utility by also taking the NE

strategy (q2 = 2). Similarly, SP2 must follow its NE strategy when SP1 does so. On the

other hand, as the second performance metric, the results of total revenue (defined as the

sum of the revenues of the two SPs) are shown in Fig. 5.9(b). While unilateral deviation

from the learned strategy does improve the total revenue in some cases, the seller who

benefits (i.e., obtains higher revenue) is the opponent instead of the deviating seller.
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Our final note is on the revenue of spectrum sellers under competition. Apparently,

the summed revenue is maximized when both sellers set the highest price level (i.e.,

q1 = q2 = 2.5). In this case the summed revenue (i.e., the total utility in the upper-

level competition) would be U opt
sum,u = 15. Compared to the summed revenue obtained

by using NE pricing strategy, UNE
sum,u = 10.5, the efficiency of NE is only 70%. From

the sellers’ point of view, this is interpreted as an efficiency loss as a consequence of the

game-theoretic formulation and price competition. While the efficiency loss is usually

considered as a drawback of NE in traditional game-theoretic studies, the SUs do pay less

when attached to either seller. This observation indicates the essence of the spectrum

market; that is, the non-cooperative nature prevents the collusion among sellers, and

buyers benefit from the price competition of sellers.

5.5.4 Non-unique User Loads

As mentioned before, when the number of SUs is finite, the user load profiles under

lower-level NE may be different. To study the influence of nonunique user load profiles,

we now consider a manipulated scenario with N = 3 SUs and identical parameters for the

two sellers. Fig. 5.10 shows the dynamics of prices, utilities, and estimated utilities for

both sellers. It is observed that the pricing strategies converge to the third price level (i.e.,

q1 = q2 = 2) for both sellers after around 200 iterations. On the other hand, the revenue

(utility) oscillates between um(k) = 2 and um(k) = 4 for both sellers, which means the user

loads oscillate between (n1, n2) = (4, 2) and (n1, n2) = (2, 4). With simply inspection we

know that both user load profiles lead to NE in lower-level game. The estimated revenues

(utilities) roughly converge to ûm ≈ 3 for m = {1, 2}. Assume that the probabilities of

two user load profiles are equal (i.e., Pr{(n1, n2) = (2, 4)} = Pr{(n1, n2) = (2, 4)} = 0.5),

the expected utilities are ûm = 3 for m = {1, 2}. Though there may not be a rigorous

proof of the distributions of the user load profiles, such an interpretation complies with the

property that the estimated utilities converges toward the expected utilities, as discussed

in Proposition 5.4.2.
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û1,3(k)

0 100 200 300 400
0

2

4

Iteration (k)

E
s
t.

 R
e

v
e

n
u

e
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Figure 5.10: Drift in user loads. For each seller, the dynamics of prices, revenues, and
estimated revenues are shown.

5.6 Conclusion and and Open Issues

In this chapter we studied the problem of spectrum trading with multiple sellers and

time-varying spectrum opportunities. We formulated the spectrum trading as a two-level

Stackelberg game whose upper and lower level subgames model the service selection of SUs

and the price competition of SPs, respectively. Decentralized stochastic learning-based

algorithms were proposed for the strategic learning in both levels. Simulation results

demonstrated the convergence of the algorithm towards a pure strategy Nash equilibrium

point in both levels. In the lower level game, the proposed method outperforms the best

random selection scheme in terms of average utility, while the performance loss compared

to the centralized exhaustive search is limited. Moreover, the proposed method achieves

significantly improved fairness compared to the exhaustive search method. On the other

hand, the price competition among spectrum sellers decreases their summed revenue, but

brings benefit to the secondary users.

The major direction of extending this work is the consideration on more realistic model
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that takes QoS parameters into account.
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Chapter 6

Self-organized Channel Assignment

in Two-tier Distributed Networks

In this chapter, we study the channel assignment strategy in orthogonal frequency

division multiple access (OFDMA) based two-tier distributed networks where macrocells

and distributed cognitive radio networks (CRNs) are overlaid. We formulate the channel

selection problem as a potential game which has at least one pure-strategy Nash equilib-

rium (NE). To achieve the NE we propose a stochastic learning-based algorithm which

does not require the information of other players’ actions and the time-varying channel.

The cognitive radio base stations or cluster heads are considered as players in the game,

and act as self-organized learning automata and adjust selection strategies based only

on their own action-reward history. The convergence property of the proposed algorithm

toward pure strategy NE points is shown theoretically and verified numerically. Simula-

tion results demonstrate that the learning algorithm yields a 26% sensor node capacity

improvement as compared to the random selection, and incurs less than 10% capacity loss

compared to the exhaustive search.
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6.1 Introduction

Spectrum utilization can be improved with two-tier networks. Efficient interference

mitigation is the key to maintain the performance of two-tier networks. We start

our presentation with two examples of two-tier distributed networks.

6.1.1 Examples of Two-tier Distributed Networks

Femtocell Networks

Femtocell technology [46] has been extensively considered in next-generation wireless

standards such as 3GPP-LTE [47] as a means to enhance cell coverage and user capacity.

In femtocell networks, the low-power and low-cost indoor base stations (referred to as

home base stations, HBSs) utilize the wired broadband connection as backhaul and are

planned to be easily installed by consumers. By utilizing femtocells, the indoor femtocell

user equipment (FUE) is able to attain high data rate due to the short distance from

HBS, and operators can reduce the cost in deploying macro base stations (MBSs) with

the aid of HBS to serve the FUEs in the coverage holes.

In the absence of a central controller, resource allocation in femtocell networks is

implemented in a distributed manner. Resource allocation with interference mitigation

can be achieved by assigning different spectrum to adjacent femtocells. These methods

can be viewed as variations of frequency planning, and usually require negotiations among

HBSs.

Co-channel implementation brings the advantage of efficient spectrum usage. However,

it also results in CCI between the femtocell(s) and the macrocell in various ways. In Fig.

6.1, different CCI possibilities are listed according to their sources, their victims, and

whether they occur in the DL or the UL. Interference scenarios #1 and #2 involve the

CCI between the femtocell user equipment (FUE) and the macrocell network, scenarios #3

and #4 involve the CCI between the macrocell user equipment (MUE) and the femtocell

network, while scenarios #5 and #6 involve the CCI scenarios between close-by femtocell
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Figure 6.1: Possible interference scenarios related to femtocell communications.

networks. All these interference scenarios can be considered for both time division duplex

(TDD) and frequency division duplex (FDD) systems. It should be noted that these

scenarios are based on the assumption that femtocell is not allowed to be in DL mode

while macrocell is in UL subframe (in TDD systems), or femtocell cannot use the UL

frequency band of the macrocell for DL (in FDD systems).

Distributed Sensor Networks

In wireless sensor networks [48], spatially distributed, low-power and low-cost sensor

nodes are deployed in a geographical area to monitor the environment. The sensor nodes

usually form clusters, and in each cluster there is a energy-rich sensor node acting as the

cluster head, while other sensor nodes are referred to as cluster members. A cluster head

is a special sensor node with better cognitive radio functionality, and is responsible for

the spectrum sensing and the channel assignment among its cluster members.

To enable the various kinds of services [33,49,50] provided by a pervasive sensing sys-

tem, proper radio resource management [51] is important. Due to the spectrum scarcity
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and the ad-hoc nature of sensor network deployment, it could be hard to assign licensed

bands to sensor networks. Therefore, the cognitive radio [39] technology has been con-

sidered as a promising solution to the channel assignment problem of sensor networks.

Cognitive radio technology enables dynamic spectrum access (DSA) and allows the unli-

censed users by sensing the usage information of the spectrum from the radio environment.

Akan et al. [52] provided a survey on cognitive radio sensor networks. By utilizing the

CR technology, the sensor networks are able to attain high data rate due to the spectrum

holes. In addition, dynamic spectrum access helps mitigate the interference incurred by

dense deployment of sensor nodes.

Despite the promising features of cognitive sensor networks, the deployment of such

heterogeneous networks with sensor clusters underlying the same spectrum as macrocells

and in the same geographical area brings new technical challenges. In particular, we

are interested in the case of densely populated sensor networks where, due to extensive

frequency reuse, the co-channel interference (CCI) among sensor nodes and the cross-tier

interference (between the macrocell and sensor networks) affect the system performance.

6.1.2 Contributions

In this chapter, we consider a two-tier distributed network, and address the self-

organized channel assignment problem. The main contributions of this work are summar-

ized as follows.

• We model the distributed channel assignment problem as an ordinal potential game

(OPG). The game considers time-varying channel availability (as a result of the

resource allocation to MUEs) as its external state.

• We propose a fully decentralized channel assignment algorithm in which the chan-

nel is selected by each link independently based on its action-reward history. The

strategy update of all links are simultaneous, without any coordination. The conver-

gence property of the algorithm to a pure strategy NE point is verified numerically.
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Through numerical simulations, we also show that the proposed method performs

quite close to the exhaustive search.

6.1.3 Game-theoretic Problem Mapping

The mapping of distributed channel assignment problem to game-theoretic formulation

is summarized in Table 6.1.

Table 6.1: Mapping to game-theoretic formulation.

Elements in game Characters in channel assignment problem
Players Femtocell BSs or sensor cluster heads
Strategies Channel assignments
Reward gSINR (to be defined)
External state Channel availability

This chapter is organized as follows. In Section 6.2, we review the previous works. In

Section 6.3, the system model for two-tier distributed network is presented. Section 6.4

describes the game-theoretic model of the channel selection problem. Section 6.5 presents

the stochastic learning procedure carried out by HBSs. Finally, numerical results are

given in Section 6.6, and the conclusion is drawn in Section 6.7.

Notations: Normal letters represent scalar quantities; uppercase and lowercase bold-

face letters denote matrices and vectors, respectively. Given a finite set A, ∆(A) repres-

ents the set of all probability distributions over the elements of A. 1l{cond} is the indicator

function which equals one if the condition cond is satisfied, and zero otherwise.

6.2 Related Works

In this section, we present the previous works on the spectrum sharing in distributed

networks.
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6.2.1 Variations of Frequency Planning

When multi-carrier techniques (e.g. OFDMA) is considered, interference mitigation

can be done by allocating different channels to neighboring femtocells, like the cell plan-

ning and frequency reuse in traditional cellular systems. However, since we usually assume

that there is no centralized controller, this spectrum assignment has to be done in a dis-

tributed manner. Examples include distributed random access [46], dynamic frequency

planning [53], and clustering (FCRA) [54]. While the FP-like methods guarantees the in-

terference avoidance among nearby femtocells, it does not consider the location of FUEs.

6.2.2 Learning-based Methods

To further improve the spectrum efficiency, machine learning can be implemented.

In contrast, self-organized resource allocation in femtocell networks based upon reinforce-

ment learning (RL) mechanisms has been shown effective in the literature. The stochastic

learning (SL), in contrast, updates the actions of users based on their individual action-

reward history. SL was applied to the spectrum access in cognitive radio networks [10] to

achieve the Nash equilibrium (NE) strategy. However, fully distributed SL-based resource

allocation in femtocell networks has not been extensively investigated.

We hereby review some representative works on femtocell networks based on learning.

Multi-agent Q-learning (MAQL)

Multi-agent Q-learning (MAQL) could be the most widely applied reinforcement learn-

ing method in distributed spectrum access. MAQL was applied to femtocell networks

in [55–57]. MAQL involves the actions of other agents as the external state and thus

requires the sharing of the knowledge of all agents’ actions. The form of Q-learning is

usually represented as

Q(s, a)← Q(s, a) + α×
[
r(s, a) + γmax

a′
(Q(s′, a′))−Q(s, a)

]
, (6.1)
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where r(s, a) is the immediate reward, α is the learning rate, 0 < γ < 1 is the relative

value of delayed versus immediate rewards, s′ is the new state after action a. Then the

selected action becomes:

π(a) = arg max
a
Q(s, a) (6.2)

When applied to a system with multiple agents, the external state of one agent involves

the actions of other agents. MAQL suffers from the curse of dimensionality: When the

number of state-action pairs is large or the input variables are continuous, the memory

requirements may become infeasible. In addition, the selection of discrete sets for state

and action definitions may highly affect the system performance.

In this work, Q-learning is used as the self-organization technique to manage interfer-

ence in two-tier femtocell networks. While the Q-learning does achieve some kind of final

stage, the property of the result is untraceable.

Regret matching and correlated equilibrium

Correlated equilibrium (CE) is a solution concept that is more general than the well

known Nash equilibrium.

Definition 6.2.1. a probability distribution ϕ(a) on the set S of action is a correlated

equilibrium of the game G if, for every player i ∈ N and every two actions s, s′ ∈ Si of i,

we have ∑
a∈A:ai=s

ϕ(a) (ui(ai, a−i)− ϕ(s)ui(s)) ≤ 0, (6.3)

where a−i ∈ A−i denotes the action combination of all players except i (thus a =

(ai, a−i). The inequality means that when the recommendation to player i is to choose

action s, then choosing s′ instead of s cannot yield a higher expected payoff to i. In

other words, ϕ is a correlated equilibrium if no player can improve his expected utility

via a strategy modification. Hart and Mas-Colell [58] proposed a regret-matching (RM)

method and proved the convergence toward CE. With respect to the last action chosen,
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the player calculates his or her regret from not having used other actions, when those

actions replace the last action each time it was used in the m periods that the player

recalls.

Hunag et al. [59] considered downlink spectrum allocation in a long term evolution

(LTE) system macrocell which contains multiple femtocells. The competition amongst

cognitive HBS for spectrum resources was formulated as a non-cooperative game-theoretic

learning problem where each agent (HBS) seeks to adapt its strategy in real time. A

distributed spectrum access algorithm based on the regret-matching method in [58] was

proposed to compute the correlated equilibrium RB allocation policy. However, with the

regret-matching method, each FBS needs to evaluate all possible actions. This hinges on

two implicit assumptions: (1) each FBS knows the form of its own utility function, and

(2) each FBS observes the actions of all the other FBSs (players) at each time t. Clearly,

these assumptions are unrealistic in practice due to the distributed nature of femtocell

networks.

Stochastic learning for Coarse Correlated Equilibrium

To solve the impracticality in [59], Bennis et al. [60] further relax the constraints on

equilibrium by considering the coarse correlated equilibrium (CCE).

Definition 6.2.2. Consider similar setting to definition 6.2.1, ϕ(a) is an ϵ-CCE if

∑
a∈A,ai=s

ϕ(a) (ui(ai, a−i)− ϕ(s)ui(s)) ≥ ϵ. (6.4)

A regret-based SL algorithm was proposed whereby cognitive femtocells mitigate their

interference toward the MUEs, on the downlink. Based on these local observations from

SINR feedback, FBSs learn the probability distribution of their transmission strategies

(power levels and frequency band) by minimizing their regrets for using certain strategies,

while adhering to the cross-tier interference constraint. The proposed algorithm is fully

decentralized, and is shown to converge to ϵ-CCE point.
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Our work in this chapter is also based on SL, but the problem formulation is quite

different from [60]. The details will be given in next section.

6.3 System Model

We consider a cognitive two-tier distributed network consisting of one MBS and N

clusters under the coverage of the MBS. Our model can be applied to different scenarios:

both femtocell network and sensor networks are possible applications. For ease of modeling

and explanation, we refer to the considered network as a distributed sensor network. In

this case, the method of sensor node clustering and cluster head selection [61] are also

interesting topics but are out of the scope of this work. Also we consider only the single-

hop transmission and omit the multi-hop routing issue for ad-hoc networks [62]. The

sensors are deployed in an apartment block with a dual-stripe room layout, as shown in

Fig. 6.2.

In our considered system, the medium access control (MAC) function in a cluster as-

sembles that of cellular systems. The time domain is divided into frames, and a frame

is further divided into time slots. In each frame, a cluster head allocate its cluster mem-

bers (i.e., sensor nodes) in different time slots, following a time division multiple access

(TDMA) rule. For simplicity, we assume that in each slot each cluster head allocates one

sensor node over one of the available channels. We emphasize that the proposed method

can be easily generalized to the cases with multiple sensor nodes per slot. A sensor node

is in idle mode unless the current time slot is allocated for it. A cluster head is idle if

one of its sensor nodes is transmitting data, and idle otherwise. We therefore introduce

an active ratio, which is defined as the percentage of active clusters in a time slot. An

exemplary time slot allocation is depicted in Fig. 6.3.

The spectrum is divided into C channels, and the channels may be licensed to different

macrocells (a.k.a spectrum owners). By utilizing CR, the sensor nodes access the same

frequency band as the macrocell does. Since the sensor nodes are in an energy-tight

situation and operate with ultra-low power, we assume that the transmission power of a
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Figure 6.2: Dual-stripe deployment of sensor clusters.

macrocell user equipment (MUE) is much higher than that of the sensors. Thus, the uplink

transmission of an MUE will block the nearby sensor nodes using the same spectrum. For

cross-tier interference mitigation, we define an avoiding region for each MUE. A channel

is available to a cluster only if the channel is not assigned to an MUE whose avoiding

region covers the cluster head. The channel availability for sensor clusters is expressed

as a binary matrix X ∈ {0, 1}N×C , in which the element xi,c equals one if channel c is

available to link i, and zero otherwise. The elements of X follow the Bernoulli distribution,

and can be described by a probability matrix � ∈ [0, 1]N×C , where the element θi,c is the

probability that xi,c = 1.

Assuming perfect synchronization in time and frequency, let Pi denote the power of

sensor node i, and |hi,j|2 indicate the link gain between cluster head i and sensor node j.
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Figure 6.3: Exemplary time slot allocation in a frame. In the first slot, cluster head A
and C assign channels for sensor node A1 and C1, respectively.

The interference received by cluster head i from sensor node j is given by

Ij→i = 1l{ai(n)=aj(n)}Pj|hi,j|2, ∀i, j ∈ N , (6.5)

where ai(n) is the action (channel selection) of cluster head i in frame n. For notational

brevity, we will hereafter discard the timing dependence of the action ai(n) in occasions

without ambiguity. Then, the signal-to-interference-and-noise ratio (SINR) at cluster

head i can be expressed as

γi =
Pi|hi,i|2∑N

j=1,j ̸=i Ij→i + σ2
. (6.6)

Consequently, the expected capacity for link i in bits/s/Hz is given by

Ri = θi,ai log2 (1 + γi) . (6.7)

Let a = (a1, · · · , aN) be the channel assignment profile of all active clusters. The global
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objective of the system is to find the optimal channel selection profile aopt that maximizes

the sum capacity. Formally,

aopt = argmax
a

N∑
i=1

θi,ai log2(1 + γi). (6.8)

To reflect a practical distributed network, our system model incorporates the following

considerations:

1. The uplink resource allocation for MUEs is time-varying during the learning period,

and the channel availability statistics (i.e., �) is fixed but unknown to any secondary

users.

2. There is no centralized controller and the channel selection is performed independ-

ently by each cluster head.

3. The number of clusters in the system, N , is unknown.

With these considerations, solving (6.8) is a challenging task, since the only available

information for decision making at each individual player is its own action-reward history.

Thus, a fully distributed channel selection scheme is proposed.

6.4 Game-theoretic Model

In this section, we present the game-theoretic formulation of the self-organized channel

selection problem. Our objective is to devise for each cluster head a distributed channel

assignment strategy that takes into account the effect of both the second-tier and cross-

tier interference. We summarize our notations related to the game formulation in Table

6.2.
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Table 6.2: Summary of Notations in Game-theoretic Formulation

Symbol Meaning
X external state (channel availability)
X a realization of external state (channel availability)
N set of players
Ai set of actions of player i
si ∈ Ai an element of Ai

ai(n) ∈ Ai action (channel selection) of player i at slot n
a−i(n) ∈ Ai actions of players except for i at slot n
Pi := ∆(Ai) set of probability distribution over Ai

pi(n) ∈ Pi mixed strategy of player i at slot n
ri(n) ∈ R observed utility of player i at slot n
ûi(n) ∈ R|Ai| estimated utility vector of player i at slot n
(ϵi, λi) learning rates of player i

6.4.1 Problem Formulation and Game Model

The channel selection problem described in the previous section can be modeled by a

normal-form game with external state, expressed as a 4-tuple:

G = (X ,N , {Ai}i∈N , {ui}i∈N )

where X is the external state (channel availability) space, N is the set of players (cluster

heads), Ai is the set of actions (selections of channels) that player i can take, and {ui}i∈N
is the utility function of player i that depends on his own action as well as the actions of

other players.

Inspired by [63], the reward function is designed to consider the interference received

(inward) and generated (outward) by each link. In this way, the cluster heads implicitly

cooperate to reduce the interference generated toward other secondary users. We define

the generalized SINR (gSINR) for player i as

γ̃i =
Pi|hi,i|2∑N

j=1,j ̸=i(Ij→i + Ii→j) + σ2
. (6.9)
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Then the instantaneous reward function of cluster head i is designed as

ri =


log2(1 + γ̃i), if xi,ai = 1;

0, otherwise.
(6.10)

By the definition in (6.10), when the channel is available, the reward is given by

Shannon’s capacity formula where both inward and outward interference are accounted

for. When the channel is not available, the reward is zero. Notice that the calculation

of the reward function in (6.10) relies on the knowledge of other players’ action. This

leads to overhead due to the required information. The implementation is possible, and

discussion on such protocol design can be found in [63]. The self-organization claimed

in this work is based on the fact that the action in each time instant is selected by each

player independently and simultaneously.

For systems with the channel availability as the external state, the utility function is

defined as the expected reward of player i over the external state (i.e., channel availability

X), i.e.,

ui(ai, a−i) = θi,ai log2(1 + γ̃i). (6.11)

Furthermore, if the cluster heads are assumed to be selfish and rational players, they will

compete to maximize their own individual utility. In fact, a selfish cluster head will not

only maximize the capacity of its own user but also reduce the interference. Formally, the

game G is expressed as:

(G) : max
ai∈Ai

ui(ai, a−i), ∀i ∈ N . (6.12)

Notice that the calculation of gSINR requires the knowledge of the interference each

HBS causes to FUEs served by other HBSs, which can be obtained via proper protocol

design in distributed systems [63]. While additional signaling is brings higher complexity,

the utility function design induces self-acting coordination of HBSs. When competing

to maximize the individual utility, a selfish and rational HBS will not only maximize its

own capacity but also reduce the interference toward the FUEs served by other HBSs.
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Moreover, the formulation can be easily generalized to the cases with multiple FUEs per

slot (e.g., following the way that [64] generalizes [63]).

6.4.2 Analysis of Nash Equilibrium

With the utility function defined in (6.11), we show the existence of an NE point for

the proposed game in the following proposition.

Proposition 6.4.1. The game G is an ordinal potential game (OPG) which possesses at

least one pure strategy NE.

Proof: Consider the function Φ : ×i∈NAi → R+:

Φ(a) = log2

1 +

N∑
k=1

Pk|hk,k|2

N∑
k=1

N∑
j=1,j ̸=k

Ik→j

 . (6.13)

Now consider an improvement step made by cluster head i that changes its action

unilaterally from ai to ăi, so that ui(ăi, a−i) > ui(ai, a−i). Defining Iĭ→j , 1l{ăi=aj}Pi|hj,i|2,

and Ij→ĭ , 1l{ăi=aj}Pj|hi,j|2, we have

ui(ăi, a−i) > ui(ai, a−i)

⇔
N∑

j=1,j ̸=i

[Iĭ→j + Ij→ĭ] <
N∑

j=1,j ̸=i

[Ii→j + Ij→i]

⇔
N∑

j=1,j ̸=i

[Iĭ→j + Ij→ĭ] +
N∑

j=1,j ̸=i

N∑
k=1,k ̸=i,j

Ij→k

<

N∑
j=1,j ̸=i

[Ii→j + Ij→i] +
N∑

j=1,j ̸=i

N∑
k=1,k ̸=i,j

Ij→k. (6.14)

Here we have used the fact that when cluster head i changes its action, the effects are only

on the interference that it receives (Ij→i) and generates (Ii→j). From (6.13) and (6.14),

we obtain

ui(ăi, a−i)− ui(ai, a−i) > 0⇔ Φ(ăi, a−i)− Φ(ai, a−i) > 0. (6.15)
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Therefore, G is an OPG with potential function Φ, and the existence of a pure strategy

NE is always guaranteed [12] since it coincides with the local maxima of the potential

function. This completes the proof.

Notice that the term
∑N

k=1

∑N
j=1,j ̸=k Ik→j in the potential function Φ denotes the

summation of all mutual interference in the sensor network. Therefore, every NE point is

the strategy profile that is a local maximum of the summed interference.

6.5 Stochastic Learning Procedure

Here, we discuss obtaining the NE via stochastic learning. As the channel state is

time-varying and the action is selected by each player simultaneously and independently

in each play, previous algorithms that require complete information (e.g., better response

dynamics [12]) may not be applicable here. Thus, we propose a decentralized stochastic

learning (SL)-based algorithm by which the BSs learn toward the equilibrium strategy

profile from their individual action-reward history.

The proposed distributed channel assignment (DCA) algorithm for cognitive sensor

networks is described in Algorithm 6.1.

In each play, the channel selection is based on a probability distribution over the

set of channels. After each play, cluster head i obtains the instantaneous reward and

updates the mixed strategy (i.e. channel selection vector) pi(n) and utility estimation

ûi(n). Notably, the utility estimation serves as a reinforcement signal so that higher utility

induces higher probability in the next play. Furthermore, the proposed learning algorithm

is fully distributed, and the channel selection is solely based on individual action-reward

experience without a centralized controller. In fact, the proposed algorithm belongs to

the combined fully-distributed payoff strategy reinforcement learning (CODIPAS-RL) [9].

The evolution of the mixed strategies is described as follows.

Proposition 6.5.1. The DCA Algorithm converges to a pure strategy NE for OPGs if

the learning rates are sufficiently small.
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Algorithm 6.1 Distributed Channel Assignment (DCA)
1: Initially, set n = 0. Set the channel assignment probability vector and utility estima-

tion as
pi,si(0) = 1/|Ai|, ûi,si(−1) = 0, ∀i ∈ N , si ∈ Ai.

2: At the beginning of the nth slot, each player selects an action ai(n) according to the
current channel assignment probability pi(n).

3: In each slot, each BS transmits data. At the end of each slot, each BS receives the
instantaneous reward ri(n) specified by (15) depending on the precoding scheme.

4: All players update their channel assignment probability vector and utility estimation
according to the rules:

ûi,si(n)− ûi,si(n− 1)

= ηi1l{ai(n)=si} (ri(n)− ûi,si(n− 1))

pi,si(n+ 1) =
pi,si (n)(1+ϵi)

ûi,si
(n)

∑
s′
i
∈Ai

pi,s′
i
(n)(1+ϵi)

û
i,s′

i
(n)

(6.16)

where ϵi and ηi are the learning rates for action probability and utility estimation,
respectively.

6.6 Numerical Results

For system-level simulations, we consider a cognitive sensor network deployed within

the coverage of a cellular network. As in Fig. 1, the simulation environment includes

one macrocell covering one dual-stripe apartment block. The apartment block contains

40 single-floor apartments. There is one sensor cluster in each apartment. When a sensor

cluster is active, its cluster head assigns one channel to cluster members randomly located

in the same apartment. Without loss of generality, we consider the channel assignment in

the first slot of each frame, in which for each active cluster there is one cluster member.

The simulation parameters are listed in Table 6.3.

6.6.1 Convergence of the proposed SL-based learning algorithm

We first study the time-evolving behaviors of the proposed stochastic learning method.
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Table 6.3: Simulation Parameters

Parameter Value
Min. distance between nodes 3 m
Carrier Frequency 2 GHz
Number of Channels 2
Transmission Bandwidth of Each Channel 180 kHz
Path Loss and Shadowing Table A.2.1.1.2-8 [47]
Penetration loss Table A.2.1.1.2-8 [47]
Sensor Transmission Power 1mW
Thermal Noise −174 dBm/Hz
Learning Rates (default) (λi, ϵi) = (0.1, 0.1)

Evolution of mixed-strategies

Fig. 6.4 shows the evolutions of the channel assignment probabilities (i.e., mixed

strategy) using the proposed SL-based algorithm. We consider different learning rates

and study the convergence behaviors. It is observed that, with equal initial probability,

the channel assignment probability converges to a pure strategy (i.e., the probability of

choosing one strategy approaches one) in around 80 and 20 iterations for ϵ = 0.1 and

ϵ = 0.5, respectively. As expected, larger learning rate results in faster convergence.

Verification of NE

As shown in Fig. 6.4, the convergence toward pure strategy is observed for both ϵ = 0.1

and ϵ = 0.5. An intuitive question to ask is: Does the resulting strategy profile achieve

the Nash equilibrium? In Fig. 6.5, we verify the NE property by testing the unilateral

deviation with a 25% active ratio and different learning rates. As can be seen from Fig.

6.5(a), when ϵ = 0.1, a unilateral deviation results in lower utility for all players. In

other words, the outcome of the learning algorithm is an NE point. On the other hand,

when ϵ = 0.5, as shown in Fig. 6.5(b), link #4 and #8 both achieve higher throughput

by unilateral deviation, and thus the resulting strategy is no longer an NE point. These

results reflect the trade-off between accuracy and convergence speed we mentioned before.
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Figure 6.4: Evolution of the mixed strategies (probability of taking different actions) of
all players. Each pair of pi,1(t) and pi,2(t) shows the behavior of player i.
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Figure 6.5: Test of unilateral deviation from the resulting strategy profile of each of the
10 players.
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Figure 6.6: Evolution of the actions ai(j) for some players.

Evolution of Actions

During the learning procedure, the channel assignment is based on probabilistic exper-

iments. When the channel assignment changes in the next frame, the switching between

different channels brings overhead since the sensor node needs to be re-configured. The

evolution of actions for selected players are shown in Fig. 6.6. As can be seen, while

Fig. 6.4(a) reveals that it takes around 80 iterations for all players to converge to pure

strategies, the actions seldom change after about 60 iterations in the learning procedure.

This suggests that channel switching, if at all happens, usually happens only in the begin-

ning of the entire learning procedure. Actually, our proposed learning algorithm aims at

learning the equilibrium strategy in the long run. The channel switching and the incurred

sensor node reconfiguration are manageable overheads compared to the long operation

time.
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Figure 6.7: Evolution of the mixed strategies (probability of taking different actions) of
all players with active ratios of 50% and 75%. Each pair of pi,1(t) and pi,2(t) shows the
behavior of a player i ∈ N .

Different active ratios

We further consider different active ratios, and investigate the convergence behaviors

under different levels of mutual interference. The results for active ratio of 50% and 75%

are shown in Fig. 6.7. We observe that the convergence toward pure strategy takes around

100 and 150 iterations for active ratio of 50% and 75%, respectively. Comparing the case

of 25% active ratio in Fig. 6.4(a), we see that it takes fewer iterations for densely active

networks to converge than for sparsely active sensor networks.

6.6.2 Capacity performance

Capacity under unilateral deviation

In Fig. 6.5 we have shown that unilateral deviation leads to decreased utility. While

the altruistic utility function design reduces the mutual interference, we are also interest
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Figure 6.8: Test of unilateral deviation from the resulting strategy profile of each of the
10 players.

in the performance of Nash equilibrium strategy in terms of the throughput of each cluster

as well as the whole system. Therefore, in Fig. 6.8 we test the change on capacity under

unilateral deviation from the NE strategy for all players. As depicted in Fig. 6.8(a), there

is no significant change on the average capacity per sensor link when only one player

unilaterally deviates from its NE strategy. From Fig. 6.8(b) we observe that for all

players, deviation from NE strategy decreases their own capacity.

Comparison with Other Methods

We further compare the performance of the proposed channel selection scheme with

two other approaches, namely, random allocation and exhaustive search, described as

follows:

• In the random allocation scheme, each cluster head randomly selects a channel for

its sensor node in each frame. Neither learning algorithm nor centralized controller

is implemented.
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Table 6.4: Comparison of the capacity and fairness for different channel assignment
schemes

Number of SUs Proposed Exhaustive Random
active ratio = 25%, Ravg 6.0426 6.2433 4.7912
active ratio = 25%, J 0.9370 0.8512 0.9516
active ratio = 50%, Ravg 4.8375 4.9454 4.0955
active ratio = 50%, J 0.8855 0.8235 0.9056

• In the exhaustive search scheme, it is assumed that there exists a centralized con-

troller which knows all system information including the channel gains, the channel

availability statistics, and the number of clusters. The channel assignment profile is

determined by maximizing the expected sum capacity (i.e., solving (6.8)).

The performance of different channel selection schemes are evaluated by the average

capacity per sensor node, Ravg =
1
N

∑N
i=1Ri and the fairness among sensor nodes. In the

literature, fairness of resource allocation is usually quantified by the Jain’s fairness index

(JFI) [45], which is defined as

J =
(
∑N

i=1Ri)
2

N
∑N

i=1R
2
i

. (6.17)

The value of JFI falls in the interval of [1/N, 1], and a higher JFI value indicates better

fairness.

The simulation results of average capacity and JFI for different active ratios are sum-

marized in Table 6.4. We observe that the exhaustive search method results in the best

average capacity with worst fairness. The random selection scheme, in contrast, has the

lowest average capacity but good fairness due to its randomness nature. The proposed

method performs well balanced in terms of both average capacity and fairness. The res-

ults show the advantages of the proposed method: through the learning procedure toward

equilibrium, the capacity of each player is considered and fewer players are sacrificed.

If we examine the final channel selection profile, it is observed that in the progress of

convergence toward the NE point, the proposed learning algorithm allocates the mutually

interfered users on different channels.
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6.7 Concluding Remarks

In this work, we studied the problem of self-organized channel assignment in dis-

tributed two-tier networks with unknown channel and unknown number of clusters. We

presented a game-theoretic approach to distributively manage interference and enable the

coexistence of sensor and macrocell operations in a scenario where secondary nodes oper-

ate in the same spectrum as a cellular system. We modeled channel assignment problem

by means of an ordinal potential game. A decentralized stochastic learning algorithm has

been proposed. Simulation results have demonstrated the convergence of the algorithm

toward a pure strategy Nash equilibrium with sufficiently small learning rates. The pro-

posed method outperforms the random selection scheme in terms of average capacity,

while the performance loss compared to the exhaustive search is limited. In addition, its

fairness level is comparable to that of the random selection, and surpasses the exhaustive

search scheme.
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Chapter 7

Distributed Channel Allocation in

Network MIMO

The cooperative frequency reuse among base stations (BSs) can improve the system

spectral efficiency by reducing the intercell interference (ICI) through channel selection

and precoding. This chapter presents a game-theoretic study of channel selection for

realizing network multiple-input multiple-output (MIMO) operation under time-varying

wireless channel. We propose a new joint precoding scheme that carries enhanced inter-

ference mitigation and capacity improvement abilities for network MIMO systems. We

formulate the channel selection problem as a non-cooperative game with BSs as the play-

ers, and show that our game is an exact potential game (EPG) given the proposed utility

function. A decentralized, stochastic learning-based algorithm is proposed where each BS

progressively moves toward the Nash equilibrium (NE) strategy based on its action-reward

history and not actions taken by others. The convergence properties of the proposed learn-

ing algorithm toward a pure-strategy NE point are theoretically shown and numerically

verified for different network topologies. The proposed learning algorithm also demon-

strates a fine capacity and fairness performance as compared to other schemes through

extensive link-level simulations.
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7.1 Introduction

Universal frequency reuse is a key technique to improve the throughput of broad-

band wireless networks. However, frequency reuse among neighboring cells in-

evitably results in intercell interference (ICI) and degrades the achievable throughput

performance. To overcome this problem, ICI management techniques such as ICI co-

ordination (ICIC) and base-station cooperation (BSC) have been proposed [65,66]. BSC,

also known as network multiple-input multiple-output (MIMO), is a multi-antenna signal

processing technique that enables several nearby BSs to jointly serve multiple mobile sta-

tions (MSs). The implementation of network MIMO may require a partial or full sharing

of channel state information (CSI) and data among the BSs.

Much of the research on network MIMO and multicell cooperation has focused on sig-

nal processing techniques in an orthogonal frequency-division multiple access (OFDMA)

system. The channel assignment for each MS is generally assumed determined or treated

separately from the network MIMO mechanism. Efficient channel allocation (particularly

in a distributed manner) for network MIMO in a multi-antenna multicell environment has

not yet been extensively studied. The aim of this work is therefore to study the distrib-

uted channel allocation problem in network MIMO systems. We adopt a game-theoretic

approach and incorporate reinforcement learning procedures into the proposed channel

selection game where each player (i.e., the BS) can act (i.e., perform channel selection)

without explicitly knowing other players’ actions and the forms of utility functions. The

main contributions of this work are as follows:

• We propose a novel joint processing scheme where an MS is jointly served by a set

of selected BSs. The capacity advantages of the proposed scheme over conventional

precoding methods are numerically demonstrated.

• We formulate the channel allocation problem as a non-cooperative game and show

the existence of Nash equilibrium (NE). A stochastic learning (SL)-based algorithm

is developed to achieve self-organized channel allocation. The convergence beha-
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viors of the proposed algorithm toward an NE point are theoretically proven and

numerically verified for different network topologies.

The rest of the chapter is organized as follows. In Section 7.2, we review related

works on precoding in multicell multi-antenna networks as well as those on distributed

resource allocation. In Section 7.3, the system model and the proposed joint processing are

described. The game-theoretic formulation of the channel allocation problem is presented

in Section 7.4 and the SL-based solutions are presented in Section 7.5. Numerical results

are provided in Section 7.6. Conclusion is given in Section 7.7.

7.2 Related Works

7.2.1 Precoding with BS Cooperation

Under the concept of network MIMO, the actual implementation may vary depending

on the degrees of CSI and data sharing that are needed.

Static Clustering

In the static clustering scheme, a fixed set of nearby BSs cooperate in jointly serving

the users where precoding techniques for single-cell multiuser MIMO systems (e.g., block-

diagonalization (BD) [67]) are applied to mitigate the multiuser interference. One dis-

advantage of static clustering is its requirement of a full sharing of data and CSI within

a cluster, which creates a significant overhead on the system operation [68]. [69] con-

sidered the BD scheme. The overhead will be even greater if inter-cluster interference is

considered [70].

Partial Data

To reduce the information exchange overhead, partial cooperation has been proposed

which does not require a full sharing of CSI and/or data. Kaviani et al. [71] proposed a
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precoding scheme according to the minimum mean square error (MMSE) criterion and

Kerret and Gesbert [72] developed a sparse precoding method which determines the most

efficient data sharing patterns, both assuming partial data sharing among the BSs.

partial CSI

Distributed MIMO precoding was introduced by Kerret and Gesbert [73] assuming

partial CSI sharing but full data sharing. Zakhour et al. [74, 75] proposed a distrib-

uted precoding scheme by maximizing the virtual signal-to-interference-and-noise ratio

(VSINR) with local CSI. Bjornson et al. [76] developed a network MIMO scheme for large

cellular networks, where the precoding vectors are computed in centralized (by a central

controller) or fully distributed (by each BS independently) fashion with partial CSI and

data.

7.2.2 Spectrum Sharing

The realization of network MIMO in an OFDMA system involves an important is-

sue: channel allocation. Traditionally, frequency planning with spatial reuse was con-

sidered [46, 53, 54] to mitigate the ICI among adjacent cells. Dynamic channel allocation

schemes were proposed for cognitive radio networks (CRNs) [77] and network MIMO [76],

which however requires the presence of a central station or negotiations among BSs. The

development of self-organized, fully-distributed resource allocation schemes can be facil-

itated by the application of game theory. Self-organized resource allocation in wireless

networks based on reinforcement learning (RL) has been studied [8, 10, 11, 56, 57, 63, 78].

Within the RL framework, multiagent Q-learning (MAQL) was applied to CRNs [56] and

femtocell networks [57]. MAQL involves the actions of other agents as the external state

and thus requires the sharing of the knowledge of all agents’ actions. The stochastic learn-

ing (SL), in contrast, updates the actions of users based on their individual action-reward

history. SL has been applied to the game-theoretic study of dynamic spectrum access in
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CRNs [10, 63] and precoder selection in multiple access channels [8] to learn the equilib-

rium strategy profile [11]. An application of SL on both strategy and payoff, referred to

as the combined fully-distributed payoff strategy reinforcement learning (CODIPAS-RL),

was found for MIMO power loading [78]. Hybrid CODIPAS-RL was applied to hetero-

geneous 4G networks and the convergence of users’ network selection was observed [9].

While SL algorithms have shown promise for wireless applications in the literature, their

applications in fully distributed resource allocation for multiantenna multicell networks

as well as distributed networks of random geometry have not been well studied.

Notations: Normal letters represent scalar quantities; upper-case and lower-case boldface

letters denote matrices and vectors, respectively. (·)T and (·)H stands for the transpose

and the conjugate transpose, respectively. I and 0 represent the identity matrix and zero

vector with proper size, respectively. 1l{cond} is the indicator function which equals one if

the condition cond is satisfied, and zero otherwise.

7.3 System Model

7.3.1 The Network MIMO System

We consider the downlink of an N -cell network MIMO OFDMA system where in each

cell there is one BS equipped with Nt antennas serving several single antenna MSs. The set

of BSs is denoted as N . The time domain is divided into slots, while the licensed spectrum

is divided into K available orthogonal subchannels, each having the same bandwidth. In

each time slot, each BS serves one MS over one of the available subchannels following the

time division multiple access (TDMA) policy. A subchannel may be reused by multiple

BSs.

In the considered multicell network, an MS may be served cooperatively by multiple

BSs in a network MIMO setting. Since BSs and MSs distant apart cause negligible

interference to each other, we consider joint transmission only among nearby BSs to
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reduce the overhead of data sharing and CSI exchange on the backhual. For ease of

exposition, we make the following definitions:

• Each MSi estimates and feedbacks the CSI to a set of BSs in its coordination set,

which is defined as

Ci =
{
b ∈ N | ρ2ib ≥ αthρ

2
ii

}
(7.1)

where ρ2ib is the large-scale channel gain between BSb and MSi, which can be obtained

by averaging over the estimated channel gain at the receiver, and the threshold

0 < αth ≤ 1 is a system design parameter.

• Each MSi receives the data from its service set, which is defined as

Di =
{
b ∈ N | ρ2ib ≥ βthρ

2
ii

}
(7.2)

where βth ≥ αth and Di ⊆ Ci.

In the network MIMO system, a BSb (b ∈ Ci) can mitigate the interference to the MSs in

the coverage area of the other BSs in Ci through proper precoder designs. An illustrative

example of the network MIMO system with joint processing is given in Fig. 7.1.

To reflect a practical wireless network, our system model incorporates the following

considerations:

1. The channel state is time-varying. Its statistical characteristics (e.g., Rayleigh fad-

ing) are fixed but unknown at the BSs during the learning period. Only several

adjacent subchannels in the OFDMA system are used for operation in network

MIMO model. Their total bandwidth is wider than the coherence bandwidth and

the MSs move slowly so that the slot length is longer than the coherence time. Thus,

the channel undergoes frequency-flat block fading.

2. The number of cells, N , is unknown.

3. Each BS selects the channel independently without having to consider the actions

taken by other BSs.

111



MS 2

Data & CSI 
Feedback

CSI Feedback

BS 2

BS 1

BS 3
MS 3
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Figure 7.1: Illustration of distributed channel selection with joint precoding in multicell
networks. For MS1, C1 = {1, 3} and D1 = {1}, where BS1 and BS3 both receive CSI
feedback from MS1 and perform interference mitigation but only BS1 serves MS1. For
MS2, C2 = {1, 2, 3} and D2 = {2, 3}, where BS2 and BS3 jointly serve MS2 while all three
BSs perform interference mitigation. For MS3, C3 = {3} and D3 = {3}, where only BS3

serves MS3.

Notably, the only available information for the proposed channel selection game is the

history of each individual player’s channel selection strategies and rewards.

7.3.2 Transmitter Precoding

In the network MIMO system considered in [75], only data are shared among the

BSs and the precoding vector is calculated separately at each BS. Here, we propose a

joint processing method in which the BSs in the serving set of each user exchange their

knowledge of CSI and determine the precoding vector jointly. Similar to [75], a power

splitting procedure is considered which allows each BS to split its transmission power

among the MSs that it needs to serve. Let Pb be the transmission power of BSb on one

subchannel. We adopt a simple equal-power splitting method so that the power allocated
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to MSi by BSb is given by

Pib =
Pb∑N

i=1 1l{Di∋b}
, ∀i s.t. Di ∋ b. (7.3)

Signal transmission in the multicell network MIMO system is modeled as follows. Let

hib ∈ CNt×1 represent the channel from BSb to MSi. The symbol xi denotes the data

intended for MSi, where E[|xi|2] = 1 and E[x∗ixj] = 0, ∀i ̸= j. The data symbol xi is

precoded by precoders wib ∈ CNt×1,∀b ∈ Di. Let Dj = |Dj| be the cardinality of the

serving set of MSj. Then, the channels from the BSs in Dj to MSi can be expressed as

hi,Dj
=

[√
Pjb1hT

ib1
, . . . ,

√
PjbDj

hT
ibDj

]T
(7.4)

and the collective precoding vector for MSi as

wi =

[
wT

ib1
, . . . ,wT

ibDi

]T
. (7.5)

Let ai(n) be the selected channel for MSi (i.e., the action taken by BSi) at slot n. For

notational brevity, we will hereafter discard the timing dependence of the action ai(n) in

occasions without ambiguity. The discrete-time baseband signal received by MSi is given

by

yi = hT
i,Di

wixi +
N∑

j=1,j ̸=i

1l{ai=aj}hT
i,Dj

wjxj + zi (7.6)

where the first term is the desired signal, the second term represents the ICI, and zi is

additive complex Gaussian noise with variance σ2. Therefore, the signal-to-interference-

and-noise ratio (SINR) at MSi can be formulated as

γi =
∥hT

i,Di
wi∥2∑N

j=1,j ̸=i 1l{ai=aj}∥hT
i,Dj

wj∥2 + σ2
. (7.7)
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The achievable capacity for MSi in bits/s/Hz is given by

Ri = log2

(
1 +

γi
Γ

)
(7.8)

where Γ = − ln(5BER)/1.5 is a function of the required bit error rate (BER), often known

as the SINR gap [79].

We denote the precoding vector wi for MSi by wi = µiŵi, where µi is an adjustment

factor to maintain the per-BS power constraint and ŵi is the unit-norm vector that

maximizes the modified signal-to-leakage-and-noise ratio (mSLNR). Different from the

SLNR in [80], we consider the mSLNR to reflect a practical network MIMO operation,

which is defined in terms of the signal power received by MSi and the available information

about the interference caused to other MSs (produced by the signals from Di intended for

MSi) plus the noise power. The distinction on the interference part is made to reflect the

fact that not all CSI can be acquired by the BSs in Di and thus the interference powers

imposed on other users may not be available. Specifically, in our consideration a BS in

Di can only acquire the CSI to MSj (i ̸= j) if this BS is also in Cj. Mathematically, ŵi is

given by

ŵi = argmax
∥w∥=1

∥∥hT
i,Di

w
∥∥2

σ2 +
∑N

j=1,j ̸=i 1l{ai=aj}

∥∥∥h̃T
j,Di

w
∥∥∥2︸ ︷︷ ︸

mSLNR of MSi

(7.9)

where

h̃j,Di
=

[√
Pib1h̆T

jb1
, . . . ,

√
PibDi

h̆T
jbDi

]T
(7.10)

with

h̆jb =


hjb, if b ∈ Ci ∩ Cj

0, otherwise
. (7.11)

The vector h̆jb reflects our mSLNR consideration; that is, it is equal to the CSI when

this information can be collected (via feedbacks or backhaul communications), and zero

otherwise.
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The solution to (7.9) is given by

ŵi =
K−1

i hi,Di∥∥K−1
i hi,Di

∥∥ (7.12)

where Ki = σ2I +
∑

j ̸=i 1l{ai=aj}h̃j,Di
h̃H
j,Di

. We then employ a heuristic approach similar

to [70] to obtain the adjustment factor µi as

µi =
1

max{∥wib1∥, ∥wib2∥, . . . , ∥wibDi
∥}
. (7.13)

Note that the multicell precoding scenario considered in [74] is a special case of our

proposed method. In this local precoding scheme, each BS’s knowledge of CSI is limited

to the channel between itself and the MSs under its coverage. Each BS’s CSI is obtained

through a feedback mechanism and maintained locally. By setting βth > 1 in our system,

the serving set of each MS will consist of its home BS only and thus the system reduces to

local precoding. The performance of local precoding may be limited since the neighboring

BSs of an MS act only as a source of interference without providing any useful data

streams. The performance comparison of local precoding and joint processing is presented

in Section 7.6.

7.4 Channel Selection for Network MIMO

In this section, we present the game-theoretic formulation of the self-organized channel

selection to realize the network MIMO scheme described in Sec. 7.3. Our objective is to

devise a distributed channel selection strategy that takes into account the effect of ICI.

We summarize our notations related to the game formulation in Table I.

115



Table 7.1: Summary of Notations in Game-theoretic Formulation

Symbol Meaning
H external state (channel state) space
H random matrix for the channel state
N set of players
Ai set of actions of player i
si ∈ Ai an element of Ai

ai(n) ∈ Ai action (channel selection) of player i at slot n
a−i(n) ∈ Ai actions of players except for i at slot n
Pi := ∆(Ai) set of probability distribution over Ai

pi(n) ∈ Pi mixed strategy of player i at slot n
ri(n) ∈ R instantaneous reward of player i at slot n
ûi(n) ∈ R|Ai| estimated utility vector of player i at slot n
(ϵi, ηi) learning rates of player i

7.4.1 Game-Theoretic Formulation

We model the channel selection as a non-cooperative game with external state, ex-

pressed as a 4-tuple:

G =
(
H,N , {Ai}i∈N , {ui}i∈N

)
where H is the external state (channel state) space, N = {1, . . . , N} is the set of players

(BSs), Ai = {1, . . . , K} is the set of actions (selections of channels) that player i can take,

and ui is the ergodic utility function of player i defined as the expected reward over the

time-varying channel state, i.e.,

ui(ai, a−i) , EH

[
ri(ai, a−i;H)

]
(7.14)

where a−i represents the actions of other players except for i, and ri : ×i∈NAi 7→ R

represents the instantaneous reward function for player i under a given channel state H.

By intuition, the achievable capacity in (7.8) may be considered as the reward function.

However, we notice that in [63] the interference terms related to the action of player i

are treated as the cost of player i, and the negation of summed cost is defined as the

reward. The advantage of this reward function design lies in that, during the learning

procedure, in addition to maximizing its own rate, a player now also tends to minimize the
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interference generated to other players due to its action. Therefore, implicit coordination

can be achieved even with a noncooperative game formulation. In this work, with the

joint processing scenario and inspiration by [63], we propose to design the reward function

as

ri(ai, a−i;H) , −

 N∑
j=1,j ̸=i

Ij→i +
N∑

j=1,
Dj∩Ci ̸=∅

N∑
m=1,
m̸=i,j

Ij→m

 (7.15)

where

Ij→i , 1l{ai=aj}

∥∥∥h̃T
i,Dj

wj

∥∥∥2∥∥∥h̃T
j,Dj

wj

∥∥∥2 (7.16)

is the interference caused at MSi by the signal intended for MSj normalized by the received

signal power of MSj. The considered reward function is composed of the I-values that

may vary when player i changes its action. The first term in (7.15) accounts for the total

interference caused at MSi as a result of external BSs. This selfish part reflects similar

interest to (7.8): lower interference means higher achievable capacity. On the other hand,

the second term in (7.15) is the altruistic part of the reward function, which accounts for

the interference imposed on other MSs by the signal intended for MSj when Dj ∩ Ci ̸= ∅.

Effectively, the reward function in (7.15) considers both the suppression of the interference

that each BS causes to out-of-cell MSs and the optimization of the desired received signal

power in each cell.

7.4.2 Existence of Nash Equilibrium

We assume that the players (i.e., the BSs) in the proposed game are selfish and rational.

In other words, they will compete to maximize their individual utilities, i.e., maximizing

their own throughput while reducing the interference generated to others.

Definition 7.4.1. An action profile a∗ = (a∗1, . . . , a
∗
N) is a pure strategy Nash equilibrium

(NE) point of the noncooperative game G if and only if no player can improve its utility
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by deviating unilaterally, i.e.,

ui(a
∗
i , a

∗
−i) ≥ ui(ai, a

∗
−i), ∀i ∈ N ,∀ai ∈ Ai \ {a∗i }. (7.17)

With the reward function defined in (7.15), we show the existence of an NE point for

the proposed game in the following proposition.

Proposition 7.4.1. The proposed channel selection game G is an exact potential game

(EPG) with at least one pure strategy NE point.

Proof: For a channel selection profile (ai, a−i), consider the following function

Φ : ×i∈NAi 7→ R for the game G:

Φ(ai, a−i) = EH

[
−

N∑
j=1

N∑
m=1,m̸=j

Ij→m

]
. (7.18)

Observing that player i’s change does not affect the precoder of MSj if Dj ∩ Ci = ∅, we

define

r−i(a−i;H) , −
N∑

j=1,
Dj∩Ci=∅

N∑
m=1,
m̸=i,j

Ij→m. (7.19)

Considering a unilateral strategy for player i that changes its action unilaterally from ai

to ăi, we have

ui(ăi, a−i)− ui(ai, a−i)

= EH[ri(ăi, a−i;H)]− EH[ri(ai, a−i;H)]

= EH[ri(ăi, a−i;H) + r−i(a−i;H)]− EH[ri(ai, a−i;H) + r−i(a−i;H)]

= Φ(ăi, a−i)− Φ(ai, a−i). (7.20)

According to the definition in [12], G is an EPG with Φ as its potential function, and the

existence of a pure strategy NE point is guaranteed. This completes the proof.

One important property of a potential game is that the interests of players align to a

global objective: maximization of the potential function. For example, with (7.18), the
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players in G actually minimize the total cost in the system. This property suggests the

possibility of distributed learning toward the equilibrium.

7.4.3 Acquisition of the Interference Information

Obtaining the exact interference information for the reward function in (7.15) may be

difficult in a practical protocol design. However, if we combine the two terms in (7.15)

and approximate

Ij→i ≈ 0, ∀j ∈ N s.t. Dj ∩ Ci = ∅, (7.21)

the instantaneous reward function in (7.15) can be approximated by

ri ≈ −
N∑

j=1,Dj∩Ci ̸=∅

Ioutj (7.22)

where

Ioutj =
N∑

j=1,j ̸=m

Ij→m (7.23)

which defines the outward interference of player j. In other words, the reward function

of player i takes into account the players whose interference set overlaps with the serving

set of player i. A two-step protocol can therefore be established:

1. Each player calculates its own Ioutj based on the CSI feedback, and

2. Each player exchanges the information with other players.

7.5 Stochastic Learning-based Channel Selection Al-

gorithm

There has been much interest in designing learning algorithms toward NE in non-

cooperative games. However, the external state (CSI) is unknown and the action is
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selected by each player simultaneously and independently in each play. Therefore, pre-

vious algorithms requiring complete information and implicit ordering of acting players

(e.g., those based on better response dynamics (BRD) [12] and fictitious play (FP) [13])

may not be feasible in our self-organized multicell resource allocation problem. In this

section, we develop a decentralized SL-based algorithm where the BSs move toward the

equilibrium strategy based on their individual action-reward history.

7.5.1 Algorithm Description

The proposed SL-based channel selection algorithm is described in Algorithm 7.1.

In each play, the channel is selected based on the probability distribution over the set

of channels. After each play, a player obtains the instantaneous reward and updates

the channel selection probability vector as well as the utility estimation vector ûi(n).

The utility estimation serves as a reinforcement signal so that higher utility (lower cost)

leads to higher probability in the next play. Notably, the proposed learning algorithm

is fully distributed: the channel selection is solely based on individual action-reward

experience without a centralized controller. Moreover, although the SL-based algorithm

proposed in [11] also converges to NE points for potential games, its probability update

rule requires the normalization of the instant reward such that its value will lie in [0, 1].

This requirement of normalization makes the algorithm inapplicable when the extreme

values of reward functions are unavailable. This restriction however does not apply to the

proposed algorithm due to a different probability update rule.

7.5.2 Convergence Properties of the Proposed Algorithm

Convergence toward pure strategy NE points is an important feature of the proposed

learning algorithm. Similar to the discussions in [11] and [10], here we theoretically

demonstrate the convergence properties of the proposed SL-based algorithm. First, by

using the ordinary differential equation (ODE) approximation we characterize the long-

term behavior of the sequence {P(n)}. Second, we establish a sufficient condition for
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Algorithm 7.1 Stochastic Learning toward NE
1: Initially, set n = 0, and the channel selection probability vector as pi,si(n) =

1/|Ai|, ∀i ∈ N , si ∈ Ai.
2: At the beginning of the nth slot, each player selects an action ai(n) according to the

current channel selection probability pi(n).
3: In each slot, each BS transmits data. At the end of each slot, each BS receives the

instantaneous reward ri(n) specified by (7.16) depending on the precoding scheme.
4: All BSs update their channel selection probability vector and utility estimation ac-

cording to the rules:
pi,si(n+ 1) =

pi,si (n)(1−ϵi)
−ûi,si

(n)

∑
s′
i
∈Ai

pi,s′
i
(n)(1−ϵi)

−û
i,s′

i
(n)

ûi,si(n+ 1)− ûi,si(n) = ηi1l{ai(n)=si} (ri(n)− ûi,si(n))
(7.24)

where ϵi and ηi are the learning rates for action probability and utility estimation,
respectively.

the arrival at NE points for the proposed learning algorithm and prove that the game G

satisfies this condition.

Proposition 7.5.1. With sufficiently small ϵi and ηi, the probability matrix sequence

{P(n)} converges to P∗ which is the solution of the following ODE:

dpi,si(t)

dt
= pi,si(t)

ψi(si,P)−
∑
s′i∈Ai

ψi(s
′
i,P)pi,s′i(t)

 . (7.25)

The boundary condition is given by P(0) = P0, where P0 is the initial channel selection

probability matrix. The estimated utility converges to

ûi,si(n)→ ψi(si,P). (7.26)

Proof: See [7, Section 4.3].

Note that the ODE in (7.25) is the replicator equation [14] in which the probability

of taking one strategy grows if this strategy’s current estimated utility is larger than the

average utility over all strategies and declines otherwise. Compared to the best response

dynamics where a player changes its strategy in the next iteration to the best action
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according to other players’ action, a player adjusts the weighting for each possible action

in each iteration with the replicator dynamics.

Proposition 7.5.2. The proposed learning algorithm has the following properties:

1. All Nash equilibria are stationary points;

2. All stationary points that are not Nash equilibria are unstable.

These properties follow directly from the replicator equation in (7.25). For an intuitive

explanation, we first define

ψ̄i ,
∑
s′i∈Ai

ψi(s
′
i,P)pi,s′i(t) (7.27)

which can be interpreted as the expected utility over current action probabilities. Then,

by definition, achieving NE implies

ψi(si,P) = ψ̄i, ∀si ∈ Ai. (7.28)

This also constitutes a stationary point of the ODE in (7.25).

Proposition 7.5.3. Suppose that there exists a nonnegative function Ψ : R|A| → R such

that

ψi(si,P) =
∂Ψ(P)

∂pi,si
. (7.29)

Then, the SL-based algorithm converges to a pure strategy NE point of a noncooperative

game.

Proposition 7.5.3 establishes a sufficient condition that guarantees the convergence

toward NE. In what follows, we prove that the proposed channel selection game G satisfies

this condition and hence it converges to a pure-strategy NE point by using the SL-based

channel selection algorithm.

Proposition 7.5.4. When applied to EPGs, the proposed SL-based channel selection

algorithm converges to an NE point.
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Note that the learning rates (ϵi, ηi) play an important role in the convergence behavior

of the proposed SL-based learning algorithm. In particular, smaller learning rates lead

to a slower convergence. The choice of learning rates poses a trade-off between accuracy

and speed, and may be determined by training in practice.

7.6 Numerical Results and Discussions

In this section, our theoretical developments are numerically verified in hexagonal

cellular networks as well as distributed networks of random geometry. Universal frequency

reuse is adopted in our link-level simulations. The simulation setup follows the 3GPP

model [81] and is summarized in Table 7.2.

7.6.1 Convergence Behaviors of the Proposed Learning Algorithm

We plot the evolution of the channel selection probability (i.e., the mixed strategies)

of the proposed stochastic learning algorithm for four arbitrarily selected players in Fig.

7.2. It is observed that, with equal initial probabilities, the channel selection probabilities

converge to a pure strategy in around 700 cycles. For other players in the game which are

not shown, a similar convergence result is also observed.

Fig. 7.3 shows the evolution of the estimated cost vector (i.e., −ûi) of two selected

players. As can be seen, the BSs tend to select the channel with lower estimated cost (solid

lines). Fig. 7.2 and Fig. 7.3 demonstrate that, with high probability, mutually interfering

cells can coordinate their transmissions on different channels even without negotiations.

We verify the (mean-field) NE property by testing the deviation of the channel selection

of each of the 19 players. The results shown in Fig. 7.4 are time-averaged values starting

from the slot where the pure strategy can be identified until the end of simulation. It

is shown in Fig. 7.4(a) that for all players a unilateral deviation produces higher (time-

averaged) cost; in other words, the learning algorithm converges to an NE point. In

addition, we test the change of (time-averaged) capacities under unilateral deviation. As
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Table 7.2: The Simulation Setup

Cellular Parameters
Number of Cells, N 19 (wrap-around)
Cell Radius, RBS 500 m
Min. MS to home BS distance 0.7RBS

Number of Tx Antennas, Nt 2
OFDMA Parameters
FFT Size 128
Carrier Frequency 2 GHz
Subcarrier Spacing 15 kHz
Number of Subchannels 6
Number of Subcarriers per Subch. 12
Subch. for network MIMO mode subch. 1 & 2 (K = 2)
Channel Model Parameters
PathLoss (dB) 34.5 + 35 log10 d (d in m)
Shadowing Std. Dev. 8 dB
Speed of MSs 3 km/h
Fast Fading Ray-based model (Sec. 5 of [81])
Power Control Parameters
Trans. Power 46 dBm
Thermal Noise Power −174 dBm/Hz
Other Parameters
Thresholds for Coordination αth = 0.1, βth = 0.3 (default)
Learning Rates ϵi = ηi = 0.1, ∀i ∈ N

can be seen from Fig. 7.4(b), for most MSs a deviation from the NE strategy reduces

their own capacity. Finally, as depicted in Fig. 7.4(c), there is no significant change on

the average capacity when only one player unilaterally deviates from the NE strategy.

7.6.2 Capacity Performance for Different Channel Selection Strategies

Here, we compare the capacity performance of the proposed channel selection strategy

with two other methods, namely, the random allocation and exhaustive search, which are

described as follows:

• In the random allocation scheme, each BS randomly selects a channel for its MS in
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Figure 7.2: Evolution of the mixed strategies (probability of taking different actions) of
four selected players when joint processing is adopted.

each frame. No learning algorithm is implemented.

• In the exhaustive search scheme, it is assumed that there exists a centralized con-

troller which knows all system information including the channel gains, the channel

availability statistics, and the number of BSs. The channel selection profile is de-

termined by minimizing the total number of mutually interfering links, i.e.,

aexh = argmin
a∈A

N∑
i=1

N∑
j∈Ci,j ̸=i

1l{ai=aj}. (7.30)

Fig. 7.5 compares the cumulative distribution function (CDF) of the average cell

capacity in each time slot for different channel selection strategies.

As can be seen, the proposed learning algorithm significantly outperforms the random

selection approach and performs close to the exhaustive search approach. This demon-

strates the proposed learning algorithm’s ability to allocate mutually interfered players

on different channels in its convergence toward the NE point.
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Figure 7.3: Evolution of the estimated cost of taking different actions for two selected
players (marked by blue and red colors, respectively) when joint processing is adopted.

7.6.3 Capacity Performance and Fairness for Different Precod-

ing Schemes

As mentioned in Section 7.3.2, local precoding is a special case of joint processing.

Here, we investigate the impact of different precoding schemes on the performance of the

proposed learning algorithm. The average per-MS capacities for different combinations of

channel selection and precoding schemes are summarized in Table 7.3. For the proposed

learning algorithm, it is shown that joint processing yields 10%–30% improvement over

local precoding across different channel selection strategies. The results also suggest that

a lower threshold βth will lead to a higher average cell capacity, since when joint processing

is adopted nearby cells serve the MS instead of simply mitigating its interference. Besides,

we observe an increased capacity gap between the random selection and the exhaustive

search when joint processing is applied. This is because in joint processing a neighboring

BS becomes a serving BS, and when adjacent cells are using the same subchannel the

signal for another MS becomes a strong interference source.
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Figure 7.4: Cost and capacity for each player for the NE strategy and unilateral deviation
from the NE strategy.

Table 7.3: Capacity per MS (bps/Hz) for Different Combinations of Channel Selection
and Precoding Schemes

Precoding Learning Random Exhaustive
Local Precoding 1.6476 1.5246 1.7006
Joint Processing, βth = 0.5 1.8406 1.6924 1.8993
Joint Processing, βth = 0.3 2.1052 1.8835 2.1811

In addition to the average per-MS capacity, the fairness among players is examined.

Fairness of resource allocation is usually measured by the Jain’s fairness index (JFI) [45]

which is defined as

J =

(
N∑
i=1

R̄i

)2

N
N∑
i=1

R̄2
i

(7.31)

where R̄i is the time-averaged capacity of player i over the whole simulation. The value

of JFI falls in [1/N, 1], and a higher JFI value represents better fairness. The JFI of

the three channel selection strategies are summarized in Table 7.4. As can be seen, the
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Figure 7.5: Comparison of the achievable capacity for three channel selection strategies
when joint processing is adopted.

Table 7.4: JFI (7.31) for Different Combinations of Channel Selection and Precoding
Schemes

Precoding Learning Random Exhaustive
Local Precoding 0.8507 0.9034 0.8530
Joint Processing, βth = 0.5 0.8847 0.9280 0.8809
Joint Processing, βth = 0.3 0.8903 0.9371 0.9034

random selection scheme, due to its fully randomized nature, achieves the best fairness in

terms of the time-averaged cell capacity while the other two channel selection strategies

are also reasonably fair.

7.6.4 Performance Results for Distributed Networks with Ran-

dom Geometry

The proposed learning algorithm can be implemented in any network with universal

frequency reuse. Here, we consider the scenario where the transmission links are randomly

placed, which reflects the typical network topology of distributed networks (e.g., cognitive
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radio and femtocell networks). We generate a topology of 10 links, with the transmitters

randomly distributed inside a 1 km by 1 km square area and each receiver located at

a distance of 120–150 m away from its transmitter. The transmission power is set to

P0 = 23 dBm, with pathloss and shadowing given by the line-of-sight (LOS) urban-micro

model [81]. Other simulation parameters follow those in Table 7.2. A snapshot of the

network topology is shown in Fig. 7.6. Only local precoding is considered in this scenario,

since joint processing requires backhual communications among transmitters, making its

implementation difficult in distributed networks.
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Figure 7.6: A snapshot of the nodes’ positions and network topology. The link ID is
shown in parenthesis next to the link.

The evolution of the mixed strategies is depicted in Fig. 7.7. The convergence toward

the pure strategy is clearly observed. In addition, a comparison of different players shows

that the convergence behavior is highly related to the interference condition of individual

links. For relatively isolated players (e.g., link 9), it takes longer time to converge. In

contrast, for players in crowed regions (e.g., links 2, 5, and 6), the convergence is generally

faster but with large variation. This can be explained through the proposed reward

function. Observe that in the definition in (7.15), higher interference means higher cost.
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Thus, the difference between the cost of choosing channels is smaller for isolated links

than for links in crowded region. The multiplicative-weights update rule makes a larger

probability adjustment in each step in the latter case, resulting in a faster convergence.
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Figure 7.7: Evolution of the mixed strategies of four selected players when local precoding
is applied to the distributed network.

The performance of the proposed learning algorithm is shown in Fig. 7.8. Fig. 7.8(a)

compares different channel selection strategies and shows that the learning algorithm

outperforms the random selection. Specifically, for highly interfered users, the proposed

algorithm significantly improves the capacity compared to the random selection. The test

of deviation from the NE property is conducted and the NE property is again verified

in Fig. 7.8(b). The increase of cost due to unilateral deviation from NE is significant

for highly interfered (crowded) players and slight for isolated players. These observations

show that the proposed learning algorithm is effective in networks with random geometry

for all kinds of interference conditions.
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7.7 Concluding Remarks and Open Issues

In this chapter, we have studied the problem of distributed channel selection in mul-

ticell network MIMO systems with time-varying channel and unknown number of BSs

through a game-theoretic approach. We have proposed a practical joint processing scheme

where each MS is jointly served by a set of nearby BSs. We have formulated the chan-

nel selection problem as a noncooperative game where the reward function was properly

defined so that the game was shown to be an exact potential game. To achieve the

Nash equilibrium strategy, we have proposed a stochastic learning-based decentralized

algorithm by which each cell adjusts its channel selection strategy according to its in-

dividual action-reward history without knowing the actions taken by other BSs. The

convergence property of the proposed algorithm in achieving a pure-strategy NE point
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was theoretically proven and numerically verified for different network scenarios. The

performance of the proposed algorithm in terms of the achievable capacity and fairness

was also examined.
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Chapter 8

Conclusion and Perspectives

In this thesis, we have addressed the resource allocation problems in decentralized wire-

less networks. Compared to the conventional cellular systems, recent topics in wireless

networks, such as femtocell networks, cooperative communications, and cognitive radio

networks, are usually flavored with self-organized resource management due to the distrib-

uted nature. Moreover, although the applications look different, they indeed bear some

resemblances. Therefore, our primary objective devise a common guideline to decentral-

ized resource management and strategy selection. To this aim, we have studied related

mathematical tools including game theory and machine learning. Then the application

has been demonstrated through some example application.

From the previously literature, we have seen that game theory, which studies the

interaction of multiple players, was a commonly adopted mathematical tool. Based on

game theory, each player selects the best strategy and pursuit equilibrium. However,

the problem lies in the method to achieve equilibrium strategy profile. Among the pro-

posed methods, best-response dynamics (BRD) is the most well-known one as it promises

to achieve Nash equilibrium through the so-called finite improvement path (FIP). BRD

suffers from an implementation complexity issue as it actually requires a coordinator to

control the order of sequential strategy updates. Reinforcement learning (RL), on the

other hand, is a self-organization technique by which each player treats the behaviors of
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other players as the nature, and learns toward a final strategy through its own action-

reward history. Coordinator is not required in RL, and most important of all, the update

is simultaneous.

Before the discussion on practical applications, we presented the details of the math-

ematical tools. The general ideas and important definitions of game theory were reviewed

first. Based on game-theoretic formulation, a math tool, named stochastic learning, has

been introduced. We have proposed to use stochastic learning as the basis of self-organized

resource management. Under this structure, the players in the game are assumed to be

autonomous and capable of learning proper strategies based on the action-reward history.

A non-cooperative game theoretical framework was used to investigate the solution to this

problem , though defined quite differently in different applications. Iterative algorithms

based on the best-response functions were implemented to compute the Nash equilibrium

solutions. Three different applications were considered in the chapters afterwards.

The first application that we introduced in this thesis is the network selection in

cognitive heterogeneous networks. In wireless networks where different RATs coexist,

finding a proper network to subscribe to for each secondary user turned out to be a

challenging issue, as the strategies of all users affect each other. We formulated the

network selection problem as an ordinal potential game, and fully-distributed decision

making is performed by individual users.

The second application considered the spectrum trading in cognitive radio networks. A

two-level Stackelberg game is formulated where the service providers act as leaders and set

the spectrum price first, and the secondary users, as followers, perform service selections

accordingly. Learning algorithm can be implemented in both levels, with which the service

providers and secondary users find their proper pricing and service selection strategies.

An important extension of our work would be the study considering heterogeneous users

(i.e., the users have different priority and QoS requirements) using either SLA or other

mathematical tools.

As the third application, we considered the channel assignment in two-tier distributed

networks. In such a scenario, even secondary users accessing the same spectrum interfere
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with each other, the spectrum efficiency can be maintained as long as the interference

is manipulated properly. The interference mitigation includes the cross-tier and co-tier

problem. Stochastic learning was used to learn the Nash equilibrium point. An interesting

point of our design is the consideration of implicit cooperation. Instead of maximizing

its own throughput, our setting implicitly force each player to consider the interference

toward other users. This work can be extended from two aspects: (i) multiple user, (ii)

the detailed protocol.

When the mutually interfering scenario is extended to multi-antenna systems, more

sophisticated designs, on both the physical and MAC layers should be involved. In the

last example of the thesis, we have addressed the channel assignment problem of designing

multi-user MIMO processing techniques. From the physical layer perspective, interference

mitigation can be achieved by utilizing the spatial diversity. Furthermore, channel alloc-

ation was approach from a game-theoretic perspective. There are some interesting open

issues, for example, we may consider the case with multiple receiving antenna.

System level simulations are applied to all applications. We have seen that as expected,

NE is achieved through the proposed algorithm. Also, the SLA usually retains fairness as

compared to the globally optimal solution. The biggest problem could be the acquisition

of instantaneous reward. A straightforward way to maintain the distributed property in

real-world implementation is to design proper protocols.

Finally, we may conclude that the proposed distributed learning method is capable of

achieving NE and thus will be an important tool for the self-organized wireless systems.

However, the most significant barrier is the game formulation: the convergence property

is not guaranteed if the game is a potential function cannot be found. We have discovered

the OPG. Although there are still steps to be taken in order to make our studies relevant

from a real-world point of view, the importance of our work lies in the fact that they

represent the limits of performance that can be achieved in practice.

135



Bibliography

[1] J. Von Neumann and O. Morgenstern, Theory of games and economic behavior. Prin-
ceton university press, 1947.

[2] J. Nash, “Non-cooperative games,” The Annals of Mathematics, vol. 54, no. 2, pp.
286–295, 1951.

[3] Z. Han, D. Niyato, W. Saad, and A. Hjørungnes, Game theory in wireless and com-
munication networks: theory, models, and applications. Cambridge University Press,
2011.

[4] K. R. Liu and B. Wang, Cognitive radio networking and security: A game-theoretic
view. Cambridge University Press, 2010.

[5] C. J. Watkins and P. Dayan, “Q-learning,” Machine learning, vol. 8, no. 3-4, pp.
279–292, 1992.

[6] V. Borkar, Stochastic approximation: a dynamical systems viewpoint. Cambridge
University Press Cambridge, 2008.

[7] H. Tembine, Distributed Strategic Learning for Wireless Engineers. CRC Press,
2012.

[8] W. Zhong, Y. Xu, M. Tao, and Y. Cai, “Game theoretic multimode precoding
strategy selection for MIMO multiple access channels,” IEEE Signal Processing Lett.,
vol. 17, no. 6, pp. 563 –566, Jun. 2010.

[9] M. Khan, H. Tembine, and A. Vasilakos, “Game dynamics and cost of learning in
heterogeneous 4G networks,” IEEE J. Select. Areas Commun., vol. 30, no. 1, pp. 198
–213, Jan. 2012.

[10] Y. Xu, J. Wang, Q. Wu, A. Anpalagan, and Y.-D. Yao, “Opportunistic spectrum
access in unknown dynamic environment: A game-theoretic stochastic learning solu-
tion,” IEEE Trans. Wireless Commun., vol. 11, no. 4, pp. 1380 –1391, Apr. 2012.

[11] P. Sastry, V. Phansalkar, and M. Thathachar, “Decentralized learning of Nash equi-
libria in multi-person stochastic games with incomplete information,” IEEE Trans.
Syst., Man, Cybern., vol. 24, no. 5, pp. 769 –777, May 1994.

136



[12] D. Monderer and L. Shapley, “Potential games,” Games and Economic Behavior,
vol. 14, pp. 124–143, 1996.

[13] G. Brown, “Iterative solution of games by fictitious play,” Activity analysis of pro-
duction and allocation, vol. 13, no. 1, pp. 374–376, 1951.

[14] D. Fudenberg and D. Levine, The Theory of Learning in Games. MIT press, 1998,
vol. 2.

[15] I. Akyildiz, W.-Y. Lee, M. C. Vuran, and S. Mohanty, “A survey on spectrum man-
agement in cognitive radio networks,” IEEE Commun. Mag., vol. 46, no. 4, pp. 40–48,
Apr. 2008.

[16] S. Huang, X. Liu, and Z. Ding, “Opportunistic spectrum access in cognitive radio
networks,” in Proc. IEEE INFOCOM ’08. IEEE, 2008, pp. 1427–1435.

[17] I. F. Akyildiz, W.-Y. Lee, and K. R. Chowdhury, “Crahns: Cognitive radio ad hoc
networks,” Ad Hoc Networks, vol. 7, no. 5, pp. 810–836, 2009.

[18] M. Derakhshani and T. Le-Ngoc, “Learning-based opportunistic spectrum access
with adaptive hopping transmission strategy,” IEEE Trans. Wireless Commun.,
vol. 11, no. 11, pp. 3957–3967, 2012.

[19] K. W. Choi and E. Hossain, “Opportunistic access to spectrum holes between packet
bursts: A learning-based approach,” Wireless Communications, IEEE Transactions
on, vol. 10, no. 8, pp. 2497–2509, 2011.

[20] X. Chen, J. Huang, and H. Li, “Adaptive channel recommendation for opportunistic
spectrum access,” vol. 12, no. 9, pp. 1788–1800, 2013.

[21] A. Min, K.-H. Kim, J. Singh, and K. Shin, “Opportunistic spectrum access for mobile
cognitive radios,” in Proc. IEEE INFOCOM, ’11, 2011, pp. 2993–3001.

[22] D. Niyato and E. Hossain, “Competitive pricing for spectrum sharing in cognitive
radio networks: Dynamic game, inefficiency of nash equilibrium, and collusion,”
Selected Areas in Communications, IEEE Journal on, vol. 26, no. 1, pp. 192 –202,
jan. 2008.

[23] L. Gao, X. Wang, Y. Xu, and Q. Zhang, “Spectrum trading in cognitive radio net-
works: A contract-theoretic modeling approach,” IEEE J. Select. Areas Commun.,
vol. 29, no. 4, pp. 843–855, 2011.

[24] M. N. Tehrani and M. Uysal, “Auction based spectrum trading for cognitive radio
networks,” IEEE Commun. Lett., vol. 17, no. 6, pp. 1168–1171, 2013.

[25] L. Yang, H. Kim, J. Zhang, M. Chiang, and C. W. Tan, “Pricing-based decentralized
spectrum access control in cognitive radio networks,” IEEE/ACM Trans. Networking,
vol. 21, no. 2, pp. 522–535, 2013.

137



[26] Y. Xing, R. Chandramouli, and C. Cordeiro, “Price dynamics in competitive agile
spectrum access markets,” IEEE J. Select. Areas Commun., vol. 25, no. 3, pp. 613–
621, 2007.

[27] L. Gao, Y. Xu, and X. Wang, “MAP: Multiauctioneer progressive auction for dynamic
spectrum access,” vol. 10, no. 8, pp. 1144 –1161, Aug. 2010.

[28] S. H. Chun and R. La, IEEE/ACM Trans. Networking, no. 1, pp. 176–189.

[29] D. Xu, X. Liu, and Z. Han, “Decentralized bargain: A two-tier market for efficient
and flexible dynamic spectrum access,” vol. 12, no. 9, pp. 1697–1711, Sep. 2013.

[30] L. Qian, F. Ye, L. Gao, X. Gan, T. Chu, X. Tian, X. Wang, and M. Guizani,
“Spectrum trading in cognitive radio networks: An agent-based model under demand
uncertainty,” IEEE Trans. Commun., vol. 59, no. 11, pp. 3192–3203, 2011.

[31] L. Duan, J. Huang, and B. Shou, “Duopoly competition in dynamic spectrum leasing
and pricing,” vol. 11, no. 11, pp. 1706–1719, 2012.

[32] D. Niyato, E. Hossain, and Z. Han, “Dynamics of multiple-seller and multiple-buyer
spectrum trading in cognitive radio networks: A game-theoretic modeling approach,”
vol. 8, no. 8, pp. 1009–1022, 2009.

[33] K. Zhu, D. Niyato, P. Wang, and Z. Han, “Dynamic spectrum leasing and service
selection in spectrum secondary market of cognitive radio networks,” IEEE Trans.
Wireless Commun., vol. 11, no. 3, pp. 1136–1145, Mar. 2012.

[34] J. Elias, F. Martignon, L. Chen, and E. Altman, “Joint operator pricing and network
selection game in cognitive radio networks: Equilibrium, system dynamics and price
of anarchy,” IEEE Trans. Veh. Technol., vol. PP, no. 99, pp. 1–1, 2013.

[35] Z. Han, R. Zheng, and H. Poor, “Repeated auctions with bayesian nonparametric
learning for spectrum access in cognitive radio networks,” Wireless Communications,
IEEE Transactions on, vol. 10, no. 3, pp. 890–900, 2011.

[36] W. H. Sandholm, Population Games and Evolutionary Dynamics. MIT press Cam-
bridge, 2010, vol. 88.

[37] J. Mitola III and G. Q. Maguire Jr, “Cognitive radio: making software radios more
personal,” IEEE Personal Commun. Mag., vol. 6, no. 4, pp. 13–18, 1999.

[38] D. Fudenberg and J. Tirole, Game Theory. MIT Press, 1991.

[39] B. Wang, Y. Wu, and K. Liu, “Game theory for cognitive radio networks: An over-
view,” Computer Netw., vol. 54, no. 14, pp. 2537–2561, 2010.

[40] R. Trestian, O. Ormond, and G.-M. Muntean, “Game theory-based network selection:
Solutions and challenges,” IEEE Trans. Contr. Syst. Technol., vol. 14, no. 4, pp.
1212–1231, 2012.

138



[41] L.-C. Tseng, F.-T. Chien, D. Zhang, R. Y. Chang, W.-H. Chung, and C.-Y. Huang,
“Network selection in cognitive heterogeneous networks using stochastic learning.”

[42] T. Roughgarden and E. Tardos, “Introduction to the inefficiency of equilibria,” Al-
gorithmic Game Theory.

[43] J.-Y. Le Boudec, “Rate adaptation, congestion control and fairness: A tutorial,”
Nov. 2012.

[44] J. G. Wardrop, “Some theoretical aspects of road traffic research.” in ICE Proceedings:
Engineering Divisions, vol. 1, no. 3. Thomas Telford, 1952, pp. 325–362.

[45] R. Jain, D. Chiu, and W. Hawe, “A quantitative measure of fairness and discrim-
ination for resource allocation in shared computer systems,” DEC Research Report
TR-301, 1984.

[46] K. Sundaresan and S. Rangarajan, “Efficient resource management in OFDMA
femtocells,” in Proc. ACM Mobihoc ’09. ACM, 2009, pp. 33–42.

[47] 3GPP, “E-UTRA: Further advancements for E-UTRA physical layer aspects,” 3GPP
Technical report (TR 36.814) v9.0.0, March, 2010.

[48] I. F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci, “A survey on sensor
networks,” IEEE Commun. Mag., vol. 40, no. 8, pp. 102–114, 2002.

[49] J. Ng, “Ubiquitous healthcare: healthcare systems and application enabled by mobile
and wireless technologies,” Journal of Convergence, vol. 3, no. 2, pp. 31–36, 2012.

[50] S. Silas, K. Ezra, and E. Blessing Rajsingh, “A novel fault tolerant service
selection framework for pervasive computing,” Human-centric Computing and
Information Sciences, vol. 2, no. 1, pp. 1–14, 2012. [Online]. Available:
http://dx.doi.org/10.1186/2192-1962-2-5

[51] G. H. Carvalho, A. Anpalagan, I. Woungang, and S. K. Dhurandher, “Energy-efficient
radio resource management scheme for heterogeneous wireless networks: a queueing
theory perspective,” Energy, vol. 3, no. 4, 2012.

[52] O. Akan, O. Karli, and O. Ergul, “Cognitive radio sensor networks,” Network, IEEE,
vol. 23, no. 4, pp. 34–40, 2009.

[53] D. Lopez-Perez, A. Valcarce, G. de la Roche, and J. Zhang, “OFDMA femtocells:
A roadmap on interference avoidance,” IEEE Commun. Mag., vol. 47, no. 9, pp. 41
–48, september 2009.

[54] A. Hatoum, N. Aitsaadi, R. Langar, R. Boutaba, and G. Pujolle, “FCRA: Femto-
cell cluster-based resource allocation scheme for OFDMA networks,” in Proc. IEEE
ICC’11, Jun. 2011, pp. 1 –6.

139



[55] M. Bennis and D. Niyato, “A Q-learning based approach to interference avoidance
in self-organized femtocell networks,” in Proc. IEEE GLOBECOM Workshops ’10.
IEEE, 2010, pp. 706–710.

[56] H. Li, “Multiagent Q-learning for aloha-like spectrum access in cognitive radio sys-
tems,” EURASIP J. Wireless Commun. Netw., 2010.

[57] A. Galindo-Serrano and L. Giupponi, “Femtocell systems with self organization cap-
abilities,” in Proc. NetGCooP ’11, Oct. 2011, pp. 1 –7.

[58] S. Hart and A. Mas-Colell, “A reinforcement procedure leading to correlated equi-
librium,” Economic Essays, pp. 181–200, 2001.

[59] J. Huang and V. Krishnamurthy, “Cognitive base stations in lte/3gpp femtocells: A
correlated equilibrium game-theoretic approach,” Communications, IEEE Transac-
tions on, vol. 59, no. 12, pp. 3485 –3493, december 2011.

[60] M. Bennis, S. M. Perlaza, and M. Debbah, “Learning coarse correlated equilibria in
two-tier wireless networks,” in Proc. IEEE ICC ’12, Jun. 2012, pp. 1592–1596.

[61] B. Singh and D. Lobiyal, “A novel energy-aware cluster head selection based
on particle swarm optimization for wireless sensor networks,” Human-centric
Computing and Information Sciences, vol. 2, no. 1, pp. 1–18, 2012. [Online].
Available: http://dx.doi.org/10.1186/2192-1962-2-13

[62] X. Li, N. Mitton, A. Nayak, and I. Stojmenovic, “Achieving load awareness in
position-based wireless ad hoc routing,” Journal of Convergence, vol. 3, no. 3, 2012.

[63] N. Nie and C. Comaniciu, “Adaptive channel allocation spectrum etiquette for cog-
nitive radio networks,” in Proc. IEEE DySPAN ’05, Nov. 2005, pp. 269 –278.

[64] Q. D. La, Y. H. Chew, and B. H. Soong, “Performance analysis of downlink multi-cell
OFDMA systems based on potential game,” vol. 11, no. 9, pp. 3358–3367, 2012.

[65] H. Zhang, H. Dai, and Q. Zhou, “Base station cooperation for multiuser MIMO:
Joint transmission and BS selection,” in Proc. IEEE CISS ’04, 2004.

[66] R. Y. Chang, Z. Tao, J. Zhang, and C.-C. J. Kuo, “Multicell OFDMA downlink
resource allocation using a graphic framework,” IEEE Trans. Veh. Technol., vol. 58,
no. 7, pp. 3494 –3507, Sep. 2009.

[67] Q. Spencer, A. Swindlehurst, and M. Haardt, “Zero-forcing methods for downlink
spatial multiplexing in multiuser MIMO channels,” IEEE Trans. Signal Processing,
vol. 52, no. 2, pp. 461–471, 2004.

[68] G. Caire, S. A. Ramprashad, and H. C. Papadopoulos, “Rethinking network MIMO:
Cost of CSIT, performance analysis, and architecture comparisons,” in Proc. ITA
’10, 2010, pp. 1–10.

140



[69] Y. Hadisusanto, L. Thiele, and V. Jungnickel, “Distributed base station cooperation
via block-diagonalization and dual-decomposition,” in Proc. IEEE GLOBECOM ’08,
2008, pp. 1–5.

[70] J. Zhang, R. Chen, J. Andrews, A. Ghosh, and R. Heath, “Networked MIMO with
clustered linear precoding,” IEEE Trans. Wireless Commun., vol. 8, no. 4, pp. 1910–
1921, 2009.

[71] S. Kaviani, O. Simeone, W. Krzymien, and S. Shamai, “Linear MMSE precoding and
equalization for network MIMO with partial cooperation,” in Proc. IEEE GLOBE-
COM ’11, Dec. 2011, pp. 1 –6.

[72] P. de Kerret and D. Gesbert, “Sparse precoding in multicell MIMO systems,” in
Proc. IEEE WCNC ’12, Apr. 2012, pp. 958 –962.

[73] ——, “The multiplexing gain of a two-cell MIMO channel with unequal CSI,” in
Proc. IEEE ISIT ’11, Aug. 2011, pp. 558 –562.

[74] R. Zakhour and D. Gesbert, “A two-stage approach to feedback design in multi-user
MIMO channels with limited channel state information,” in Proc. IEEE PIMRC ’07,
pp. 1–5.

[75] R. Zakhour, Z. Ho, and D. Gesbert, “Distributed beamforming coordination in mul-
ticell MIMO channels,” in Proc. IEEE VTC Spring ’09, Apr. 2009, pp. 1 –5.

[76] E. Bjornson, N. Jalden, M. Bengtsson, and B. Ottersten, “Optimality properties,
distributed strategies, and measurement-based evaluation of coordinated multicell
OFDMA transmission,” IEEE Trans. Signal Processing, vol. 59, no. 12, pp. 6086
–6101, Dec. 2011.

[77] M. Bloem, T. Alpcan, and T. Başar, “A stackelberg game for power control and
channel allocation in cognitive radio networks,” in Proc. ICST VALUETOOLS ’07,
2007, p. 4.

[78] H. Tembine, “Dynamic robust games in MIMO systems,” IEEE Trans. Syst., Man,
Cybern. B, vol. 41, no. 4, pp. 990 –1002, Aug. 2011.

[79] A. Goldsmith and S.-G. Chua, “Variable-rate variable-power MQAM for fading chan-
nels,” IEEE Trans. Commun., vol. 45, no. 10, pp. 1218 –1230, Oct. 1997.

[80] M. Sadek, A. Tarighat, and A. Sayed, “A leakage-based precoding scheme for down-
link multi-user MIMO channels,” IEEE Trans. Wireless Commun., vol. 6, no. 5, pp.
1711 –1721, May 2007.

[81] 3GPP, “Spatial channel model for multiple input multiple output (MIMO) simula-
tions (release 10),” 3GPP Technical report (TR 25.996) v10.0.0, Mar. 2011.

141


	論文封面
	front_matter
	thesis

