

國 立 交 通 大 學

資訊科學與工程研究所

碩 士 論 文

以內容為中心的網路動態調整快取系統

Dynamic Age-Adjusted Cooperative Caching in Content Centric

Networks

 研 究 生：楊文翔

 指導教授：陳 健 教授

中 華 民 國 一 百 零 二 年 十 二 月

ii

以內容為中心的網路動態調整快取系統

Dynamic Age-Adjusted Cooperative Caching in Content

Centric Networks

研 究 生：楊文翔 Student：Wen-Xiang Yang

指導教授：陳 健 Advisor：Chien Chen

國 立 交 通 大 學

資 訊 科 學 與 工 程 研 究 所

碩 士 論 文

A Thesis

Submitted to Institute of Computer Science and Engineering

College of Computer Science

National Chiao Tung University

in partial Fulfillment of the Requirements

for the Degree of

Master

in

Computer Science

December 2013

Hsinchu, Taiwan, Republic of China

中華民國一百零二年十二月

iii

以內容為中心的網路動態調整快取系統

研究生：楊文翔 指導教授：陳 健

國 立 交 通 大 學 資 訊 科 學 與 工 程 研 究 所

中文摘要

新一代的網路架構以內容為中心的網路架構已成為近年來最熱門的網路研究主題，

以資料名稱取代傳統 IP 的方式尋找資料，並且在每個路由器上裝備快取記憶體以儲存

轉發的資料，使得資料可以再次讓使用者就近存取，但是快取記憶體空間是有限的，所

以有效利用有限的快取記憶體空間是很重要的一個議題。Age-based cooperative caching

的方法中提到利用資料的熱門程度以及快取設備的地點來決定資料的存活時間

(time-to-live)，利用此方法可有效減少頻寬消耗。而我們延伸這個想法，利用動態的調

整資料的存活時間來進一步的改善網路效能。當在短時間內多數的使用者針對同一筆資

料進行存取時，我們利用延長資料的存活時間來改善快取命中率的問題，使得客戶端的

使用者可以持續在快取記憶體中取得熱門的資料。另外，為了減少不同快取記憶體中儲

存同一筆資料的問題，當下層路由器的快取記憶體儲存同一筆資料時，即通知上層路由

器將快取記憶體中的資料存活時間減低，使得上層的資料可以提早過期而被其它資料替

換。除此之外，當快取記憶體中的資料異動時，我們利用有限廣播的方式來達到互相傳

遞快取資訊的位置，以達最短距離繞徑的目的。而模擬的結果顯示，我們的方法可以有

效的增加資料命中率以及減少頻寬消耗、減低伺服器負載。另外，我們利用軟體自定網

路(Software Defined Networks)的方法，將以內容為中心的網路架構以及我們的演算法實

作出來，並以軟體自定網路 Mininet 擬真器進行效能測試，其效能數據和模擬的結果非

常接近，皆顯示出我們的方法能有效的改進以內容為中心的網路效能。

關鍵字：以內容為中心網路、網路快取系統、最近最少使用替換演算法、軟體自定網路、

最短距離繞徑

iv

Dynamic Age-Adjusted Cooperative Caching in Content

Centric Networks

Student: Wen-Xiang Yang Advisor: Dr. Chien Chen

Institute of Computer Science and Engineering

National Chiao Tung University

Abstract

Content-Centric Networking (CCN) is a novel networking paradigm. It changes the

host-centric model to a content-centric model and allows each CCN router to cache content.

Since the cache size of a router is limited, design of a cooperative caching scheme is an

important issue in CCN. Among them is the Age-Based Cooperative caching scheme (ABC)

which gives an age (i.e., time-to-live) to each piece of content in the cache based on the

content popularity and the location of the cached node to reduce the bandwidth consumption

and server loading. In this thesis, we focus on extending the idea of ABC by adding a

dynamic age adjustment scheme. To handle short-term burst requests to the same content, our

age adjustment scheme increases the content’s age value when the cache is hit. To reduce

redundant data, our age scheme decreases the age value of an upstream node when the

downstream node has cached the same content. Besides, we also propose a simple cache

information update scheme to further enhance the routing performance. Simulation results

show that our scheme can further enhance cache hit ratio and reduce server loading and

bandwidth consumption. Furthermore, we realized the CCN architecture with our caching and

routing schemes using Software Defined Networks (SDN). We use SDN emulator Mininet to

verify the performance. The emulation results show that they are very close to the simulation

results.

Keywords: Content Centric Networks, Cooperative Caching, Least Recently Used, SDN,

Shortest Path Routing

v

誌謝

 本篇論文的完成，我要感謝這兩年給予我支持與鼓勵的人。首先要感謝我的指導教

授 陳健博士，雖然在研究上常常遇到挫折，但陳老師常常鼓勵我要不屈不撓，勇往直

前，除此之外也給了我許多的指導和啟發，都讓我在遇到困境時能找到解決的方法，也

因為老師在實驗上以及論文寫作的細心指導，我才能順利完成此篇論文。除了在科學上

的知識，老師也常鼓勵我們要好好的規劃未來的人生，並且要把握當下不要虛度光陰，

在此表達最誠摯的感謝。同時也感謝我的口試委員，簡榮宏教授、王國禎教授、朱煜煌

博士，在口試時提出了許多寶貴意見，讓我受益良多。

 感謝我的同學劉郁鈞、黃健忠、曾國郡、林俊宇陪我渡過這豐富又充實的碩士生涯，

在修課時大家總是會互相幫助，互相切磋。研究時若遇到瓶頸，他們就像是我的智囊團

一樣，常常能幫忙想出一些好主意。特別感謝張哲偉以及陳盈羽兩位博班學長，對我的

論文給予許多寶貴和實用的建議，還有同學黃俊憲，在我實作 SDN擬真實驗的過程中，

幫了我許多忙，讓我可以排除萬難，順利的完成實驗。

 最後，我要感謝家人對我的支持，有了他們我才能無後顧之憂的專心於研究所的課

程，在此要向他們致上最高的感謝。

vi

本文目錄

中文摘要 .. iii

Abstract ... iv

誌謝 ... v

本文目錄 .. vi

圖目錄 ... vii

表目錄 .. ix

Chapter 1 Introduction ... 1

Chapter 2 Related Works ... 5

Chapter 3 Age Adjustment Scheme ... 8

3.1 Dynamic Age-Adjusted Cooperative Caching .. 8

3.2 Caching Information Update Scheme ... 9

Chapter 4 Implement CCN using SDN ... 10

Chapter 5 Performance Evaluation ... 17

5.1 Simulation ... 17

5.2 Emulation .. 29

Chapter 6 Conclusion ... 37

vii

圖目錄

Figure 1-1 SDN Architecture ... 4

Figure 1-2 Nox Controller .. 4

Figure 4-1 Open-CCN Architecture ... 10

Figure 4-2 Architecture of Flowvisor ... 11

Figure 4-3 Local Nox and Global Nox ... 11

Figure 4-4 Nox Network OS and Components .. 11

Figure 4-5 Data structure of Cache Info Table ... 12

Figure 4-6 CCN-Client send interest .. 14

Figure 4-7 Retrieve routing information from Global Nox .. 14

Figure 4-8 Server send content back .. 15

Figure 4-9 Send cache information to Global Nox in CIU scheme ... 15

Figure 4-10 Send content back to downstream router .. 16

Figure 4-11 Downstream router send ACK back ... 16

Figure 5-1 GEANT Topology .. 19

Figure 5-2 3-ary Tree Topology ... 19

Figure 5-3 Abilene Topology ... 20

Figure 5-4 Hit ratio of GEANT Topology (0.9 ) ... 20

Figure 5-5 Hit ratio of GEANT Topology (1 ) .. 20

Figure 5-6 Hit ratio of GEANT Topology (1.1 ) ... 21

Figure 5-7 Server loading of GEANT Topology (0.9 ) ... 22

Figure 5-8 Server loading of GEANT Topology (1 ) .. 22

Figure 5-9 Server loading of GEANT Topology (1.1 ) ... 22

Figure 5-10 Average hop count of GEANT Topology (0.9 ) .. 23

Figure 5-11 Average hop count of GEANT Topology (1 ) ... 23

Figure 5-12 Average hop count of GENAT Topology (1.1 ) .. 24

Figure 5-13 Average hop count of Broadcast Distance ... 24

Figure 5-14 Broadcast overhead ... 25

Figure 5-15 Hit ratio of 3-ary Tree Topology (0.9 ).. 25

Figure 5-16 Hit ratio of 3-ary Tree Topology (1 ) ... 26

Figure 5-17 Hit ratio of 3-ary Tree Topology (1.1 ) .. 26

Figure 5-18 Server loading of 3-ary Tree Topology (0.9 ) .. 26

Figure 5-19 Server loading of 3-ary Tree Topology (1 ) ... 27

Figure 5-20 Server loading of 3-ary Tree Topology (1.1 ) .. 27

Figure 5-21 Average hop count of 3-ary Tree Topology (0.9 ) ... 28

Figure 5-22 Average hop count of 3-ary Tree Topology (1 ) .. 28

Figure 5-23 Average hop count of 3-ary Tree Topology (1.1 ) ... 28

file:///H:/交通大學(完稿)-final-1206.1100.docx%23_Toc374094437
file:///H:/交通大學(完稿)-final-1206.1100.docx%23_Toc374094438
file:///H:/交通大學(完稿)-final-1206.1100.docx%23_Toc374094439
file:///H:/交通大學(完稿)-final-1206.1100.docx%23_Toc374094440
file:///H:/交通大學(完稿)-final-1206.1100.docx%23_Toc374094441
file:///H:/交通大學(完稿)-final-1206.1100.docx%23_Toc374094442
file:///H:/交通大學(完稿)-final-1206.1100.docx%23_Toc374094443
file:///H:/交通大學(完稿)-final-1206.1100.docx%23_Toc374094444
file:///H:/交通大學(完稿)-final-1206.1100.docx%23_Toc374094445
file:///H:/交通大學(完稿)-final-1206.1100.docx%23_Toc374094446
file:///H:/交通大學(完稿)-final-1206.1100.docx%23_Toc374094447
file:///H:/交通大學(完稿)-final-1206.1100.docx%23_Toc374094448
file:///H:/交通大學(完稿)-final-1206.1100.docx%23_Toc374094449
file:///H:/交通大學(完稿)-final-1206.1100.docx%23_Toc374094450
file:///H:/交通大學(完稿)-final-1206.1100.docx%23_Toc374094451
file:///H:/交通大學(完稿)-final-1206.1100.docx%23_Toc374094452
file:///H:/交通大學(完稿)-final-1206.1100.docx%23_Toc374094453
file:///H:/交通大學(完稿)-final-1206.1100.docx%23_Toc374094454
file:///H:/交通大學(完稿)-final-1206.1100.docx%23_Toc374094455
file:///H:/交通大學(完稿)-final-1206.1100.docx%23_Toc374094456
file:///H:/交通大學(完稿)-final-1206.1100.docx%23_Toc374094457
file:///H:/交通大學(完稿)-final-1206.1100.docx%23_Toc374094458
file:///H:/交通大學(完稿)-final-1206.1100.docx%23_Toc374094459
file:///H:/交通大學(完稿)-final-1206.1100.docx%23_Toc374094460
file:///H:/交通大學(完稿)-final-1206.1100.docx%23_Toc374094461
file:///H:/交通大學(完稿)-final-1206.1100.docx%23_Toc374094462
file:///H:/交通大學(完稿)-final-1206.1100.docx%23_Toc374094463
file:///H:/交通大學(完稿)-final-1206.1100.docx%23_Toc374094464
file:///H:/交通大學(完稿)-final-1206.1100.docx%23_Toc374094465
file:///H:/交通大學(完稿)-final-1206.1100.docx%23_Toc374094466
file:///H:/交通大學(完稿)-final-1206.1100.docx%23_Toc374094467
file:///H:/交通大學(完稿)-final-1206.1100.docx%23_Toc374094468
file:///H:/交通大學(完稿)-final-1206.1100.docx%23_Toc374094469
file:///H:/交通大學(完稿)-final-1206.1100.docx%23_Toc374094470
file:///H:/交通大學(完稿)-final-1206.1100.docx%23_Toc374094471
file:///H:/交通大學(完稿)-final-1206.1100.docx%23_Toc374094472

viii

Figure 5-24 Abilene Topology in Emulation ... 30

Figure 5-25 Hit ratio of Abilene Topology (0.9 ) .. 30

Figure 5-26 Server loading of Abilene Topology (0.9 ) .. 31

Figure 5-27 Average hop count of Abilene Topology (0.9 ) ... 31

Figure 5-28 Hit ratio of Abilene Topology (1 ) ... 32

Figure 5-29 Server loading of Abilene Topology (1 ) ... 32

Figure 5-30 Average hop count of Abilene Topology (1 ) .. 33

Figure 5-31 Hit ratio of Abilene Topology (1.1 ) .. 33

Figure 5-32 Server loading of Abilene Topology (1.1 ) .. 34

Figure 5-33 Average hop count of Abilene Topology (1.1 ) ... 35

Figure 5-34 Average response time of Abilene Topology (0.9 ) 35

Figure 5-35 Average response time of Abilene Topology (1 ) .. 36

Figure 5-36 Average response time of Abilene Topology (1.1 ) 36

file:///H:/交通大學(完稿)-final-1206.1100.docx%23_Toc374094473
file:///H:/交通大學(完稿)-final-1206.1100.docx%23_Toc374094474
file:///H:/交通大學(完稿)-final-1206.1100.docx%23_Toc374094475
file:///H:/交通大學(完稿)-final-1206.1100.docx%23_Toc374094476
file:///H:/交通大學(完稿)-final-1206.1100.docx%23_Toc374094477
file:///H:/交通大學(完稿)-final-1206.1100.docx%23_Toc374094478
file:///H:/交通大學(完稿)-final-1206.1100.docx%23_Toc374094479
file:///H:/交通大學(完稿)-final-1206.1100.docx%23_Toc374094480
file:///H:/交通大學(完稿)-final-1206.1100.docx%23_Toc374094481
file:///H:/交通大學(完稿)-final-1206.1100.docx%23_Toc374094482
file:///H:/交通大學(完稿)-final-1206.1100.docx%23_Toc374094483
file:///H:/交通大學(完稿)-final-1206.1100.docx%23_Toc374094484
file:///H:/交通大學(完稿)-final-1206.1100.docx%23_Toc374094485

ix

表目錄

Table 1 Type of packet & Action of Switch .. 13

Table 2 Action of Flowvisor .. 13

Table 3 Simulation Parameters ... 18

Table 4 Emulation Parameters ... 29

1

Chapter 1 Introduction

Many content delivery services have been developed in the Internet such as Youtube,

Hulu, Netflix, etc. Saving the network bandwidth consumption and the server load are the

important issues of this kind of services. Content Centric Networking (CCN) or Information

Centric Network (ICN) [1-10] is a new type of Internet architecture developed to solve this

issue. The basic idea of CCN is to replace the narrow waist at the network layer from the

physical network location (i.e., Internet Protocol (IP)) to the content name itself. Each CCN

router is equipped with the storage to temporally cache contents. If one of the CCN routers on

the routing path has stored the corresponding content that a user requested, then it

immediately sends it back to the user. Since the user can obtain its requested content from an

intermediate router not necessarily from server, then CCN can save server load and bandwidth

consumption in the Internet.

In CCN [1], a content consumer sends out an interest packet, which carries a name that

identifies the requested content. Once the interest reaches a router that has the requested

content, a data packet is sent back. There are three data structures in router to support such

routing process as follows: (1) Content Store (CS), (2) Forwarding Information base (FIB), (3)

Pending Interest Table (PIT). CS is used to store content when data packets pass through.

However, the caching policy is managed by caching algorithm, such as FIFO, LRU, etc. FIB

is like a routing table in IP. Instead of IP address, the content name in the interest is

compared with the entries in FIB to decide which face (port) to forward the Interest packets.

When an Interest arrived, PIT table will record the arrival face of that interest if there is no

corresponding content in CS. Then, the content can be send back reversely to the content

consumer according to the PIT information.

Efficient caching algorithms profoundly influence the performance of CCN. Least

Recently Used (LRU) is a common caching strategy, where a node always replaces data with

a least recently used when the cache overflows. Since LRU lacks of the coordination between

nodes and cache contents, thus a lot of cooperative caching schemes have been

2

proposed[2-12].[8] considers a hierarchical cache. Each cache computes an average maximum

document access interval without a cache miss to decide whether the content should be

cached or not. In [9], each node collects the miss rate, miss penalty, cost loss of evicting

objects, and access frequency to decide which content to be cached and the optimal caching

locations. In [2], the upstream node adds a flag in the content to suggest that the downstream

node to cache this content based on the popularity of this content.

Age-based Cooperative Caching(ABC) [10] is a simple and effective cooperative

caching scheme in CCN. ABC computes an age of content (i.e., the time-to-live of the content

in the cache) based on the popularity of that content and the location of the cached node. To

pass the age information to the downstream node, ABC adds an age field to the content. When

the cache overflows, ABC replaces one of the out-of-date contents in its cache. The benefits

of ABC are as follows: (1) ABC gives the popular content to a larger age to stay in the

network. (2) ABC gives a cache near the network edge a larger age to achieve a better

response time, and (3) the content near the server has a smaller age such that the less popular

content has a better chance of being cached.

However, some issues still need to be solved in ABC. In most content-centric services

have the burst requests to the same content within a short period of the time due to a new

lease of video or a block buster movie. Although ABC has considered content popularity (i.e.,

the long- term statistical information) to give the age of the content in the cache, it does not

adjust the age taking this temporal-locality factor into consideration. Besides, there are still

some redundant contents among CCN routers because ABC cached content in each router on

the routing path even though each router gives a different age to content.

On the other hand, the process of getting the content-location information (i.e., the cache

information of other node) is another important factor to achieve a better performance in CCN.

When a node knows the content-location information, it can help that node to redirect its

request to the content caching node which is closer than content server. Complete broadcast is

a naive way to disseminate the cache information among routers, but this way may cause a lot

of extra overhead. Therefore, this study further designs a restricted broadcast scheme to

reduce the overhead of the content location information dissemination.

3

This study extends the ABC protocol by adding a dynamic age adjustment scheme. To

overcome the short-term burst request to the same content issue in CCN, an age-refresh

scheme is added in ABC. When a cache hits, it will refresh that content’s age to its original

assignment. Since the cache hits will continue to refresh the age of the content and prolong

the survival time of the content in CCN, the age-refresh scheme can handle the

temporal-locality. To solve the redundant contents in ABC, an age-decrease scheme is

proposed. When a downstream node decides to cache content in its local cache, it will send an

acknowledgement (ACK) to the upstream node. When the upstream node receives the ACK, it

will immediately decrease the age of that content exponentially. When more downstream

nodes store redundant contents, upstream node will decrease the age of that content more such

that that content will edge out from the upstream nodes earlier. In this way, the cache space

can be used more efficiently. This study further designs a cache information update scheme to

inform the near-by routers. The cache information update scheme is a restricted broadcast

scheme. When a node caches content, it will broadcast this information within k hops, where k

is the average length of shortest paths between nodes and content server. When a node

receives this information, it will update its routing table if the content cached node is closer

than original content server. We evaluate our scheme under GEANT topology and 3-ary tree

topology. The simulation results show that our age adjustment scheme has an improvement of

31% and 20% in bandwidth consumption compared to LRU scheme and ABC scheme,

respectively.

Considering implementing the CCN architecture on the other hand, it is difficult to

substitute all the traditional switches in the whole world with CCN switches. One of the best

ideas is using Software Defined Networks (SDN) [13] , as shown in Figure 1-1. The main

idea of SDN is to separate the network into the control plane and the data plane. The ISP can

develop its own application to control the network operation. Hence, the CCN mechanism can

be implemented over IP architecture using SDN without too many costs. OpenFlow is a

communication interface between the control and forwarding layers of SDN architecture. In

the control plane, the controller can manage the network flow through OpenFlow protocol.

In our emulation, we use Mininet [14] with Open-vSwitch and implement the three

4

tables (CS, PIT, FIB) of CCN in nox controller [15] as shown in Figure 1-2. We evaluate our

scheme under Abilene topology. The emulation results show that our age adjustment scheme

has an improvement of 26% and 13% in bandwidth consumption compared to LRU scheme

and ABC scheme, respectively. Besides, the simulation results in Abilene topology are almost

match the emulation results.

The rest of this thesis is organized as follows. Chapter 2 introduces the related works.

Chapter 3 presents details of our dynamic age adjustment scheme. Chapter 4 shows how to

realize CCN using SDN. Chapter 5 discusses simulation and emulation results, and Chapter 6

concludes this thesis.

Figure 1-2 Nox Controller

Linux

CS PIT

Local NOX

Soft Open-CCN

FIB

Figure 1-1 SDN Architecture

5

Chapter 2 Related Works

CCN is different from Content Distribution Network (CDN) where cache space is

distributed to each router. The idea does not only reduce the cost in hardware equipment

(compared to the equipment at the server level) but also saves the bandwidth consumption and

server loading of the network. Designing efficient cooperative caching schemes is an

important issue in CCN. Leave Copy Down (LCD) [17] stores another data in l-1 level node

only when a cache hit in l level node. Move Copy Down (MCD) [17] is similar to LCD. The

difference is that MCD only caches the data in the l-1 level node and deletes the data in the l

level node. In this way, the cache space in MCD strategy is more efficiently utilized, but it

may cause some requests to traverse more hops to reach their corresponding contents, and

result in more bandwidth consumption in comparison to LCD. WAVE [2] deals with a

chunk-level caching strategy also similar to LCD. The difference is that WAVE uses

piggyback suggestion bit to inform the downstream node, and a downstream node can ignore

or accept the suggestion from the upstream node. Another difference is that the suggestion

from upstream is based on the popularity of content. The research of [8] and [9] are designed

for a hierarchical cache. However, [8] maintains a characteristic time which is the average

time between two replacements in the cache. According to the access frequency and the

characteristic time, a low-pass filter algorithm is designed to decide which one of the nodes

upon the routing path from the request node to the content server should cache the data. The

authors of [9] on the other hand collect miss rate, miss penalty, cost loss of evicting objects

and access frequency from the routing path. Based on this information, the optimization

problem is formulated to decide the best locations of contents. The idea of [11] is calculating

the distance between client and server and cache size to decide the cache probability. The data

closer to client, the higher probability the data will be cached. [18] use the Shield function to

keep track the request rate of Interest. The primary purpose of the Shield function is to

discourage unpopular data being cached. Hence, the data will be cached when the Interest is

requested over a threshold.

6

ABC [10] adds an ‘age’ field to each content packet representing the content age of the

upstream node. ABC dynamically configures content’s age based on (a) distance (i.e., the

number of hops) of cached router toward the server, and (b) popularity of content. When

content reaches a router, the router first checks cache space for the content. If there is no

available space, the router removes the most expired content in its local cache, and gives the

new-arrival content an age as follows. If the router is the first router next to the content server,

then the age for the content is given as:

_ * (1)age BASE AGE weight

where BASE_AGE is the initial value of the age and weight is the ratio of access

frequency of the cached content. Otherwise, the router extracts the age of incoming content

(Cu) and calculates the new age as:

   min * 1 , _ (2)uage C weight MAX AGE 

where MAX_AGE value is used to avoid the age growth infinitely. Based on Equations (1)

and (2), ABC has the following two features: 1) The more hops away from server, the more

age it has. 2) The more popular the content is, the longer age it has.

On the other hand, the routing protocol is also an important aspect of this scheme.

Breadcrumbs [19] leaves routing message (breadcrumb) when a router forwards content. The

routing message includes where the data is from, where the data is forwarded to, and when the

arrival time of the content is. If a request matches the index of breadcrumb, the request is

forwarded to the caching router according to breadcrumb information. Potential Based

Routing (PBR) [20] uses the capacity and the traffic load of caching node to define the quality

of the content, and broadcast the quality of content to its neighbor node. The node calculates

the potential value according to the value of content quality and hop count. The lower the

potential value it has, the more chances interest will be routed to that node. INFORM [21]

uses 2 phases to make the routing decision. First phase is “Exploration phase” which is

7

calculating the Q value to keep track efficiency of routing path. Second phase is

“Exploitation phase” which is to decide the routing path using different interface according

to the Q value. The lower Q value, the higher priority will be used to forward packet. The idea

of Stateful Forwarding Plane[22] is that use color to track the state of interface. If the data

come back overtime, then router will try alternative interfaces to send the packet and mark the

interface is yellow state. Otherwise, the interface will be mark green state when data come

back within time limit. Hash routing [23] is using hash function to designate the router to

cache the data. Edge router is responsible for forward data to designated core router. There are

different ways to forward data when data sent back from server. The Symmetric is using the

same routing path and Asymmetric is using shortest path when send packet out. The Multicast

is sending one copy of data to original routing path to cache in designated core router and

another copy of data is sending to client by shortest path.

8

Chapter 3 Age Adjustment Scheme

Even though ABC has taken the popularity into consideration, and achieves better

performance than LRU, it cannot handle the short-term burst requests to the same content.

Besides, ABC still suffers from redundant data problem because ABC cached content in each

router on the routing path. This section introduces the principle of our age adjustment scheme

which is aimed at further improving the performance of ABC, and solves the problems of

routing information dissemination. Subsection 3.1 introduces the detail of our age adjustment

scheme. Subsection 3.2 is a cache information update scheme.

3.1 Dynamic Age-Adjusted Cooperative Caching

ABC is an efficient cooperative caching scheme, which outperforms the LRU and FIFO.

This study extends the ABC scheme by adding a dynamic age-adjusted scheme, named

Dynamic Age-Adjusted Cooperative Caching (DAAC). DAAC has two parts: (1)

age-decrease scheme and (2) age-refresh scheme. DAAC uses an acknowledgement-based

scheme to decrease the age of the content on the upstream routers in order to reduce the

redundant data. When cache hits, age-refresh scheme refreshes the content’s age to its original

assignment to overcome the temporal-locality.

1) Age-decrease scheme: When content is forwarded to a downstream router, if the

downstream router has free space for data caching, then the downstream router sends an

acknowledgement back to the upstream router. When the upstream router receives the ACK, it

decreases the age of content using equation (3).

1
 *(1) (3)Number of ACKage age

f
 

where 1f K  and K is the node degree of the upstream router. According to Eq(3), the

redundant data can be dropped sooner due to exponential age decrease.

2) Age-refresh scheme: Our scheme refreshes the age of its original assignment when

9

content hit to overcome the short-term burst requests. It’s very common in content services

that the same content getting lots of hits in a short period of time such as a new release of TV

series, sport broadcasts, news events, etc. Since a burst of request will be sent within a small

period of time to the content servers, it may cause a lot of traffic and bandwidth consumption

to the networks. Therefore, the age-refresh scheme can keep the content in cache to serve this

kind of burst requests without content servers involving.

3.2 Caching Information Update Scheme

We design a caching information update scheme to redirect the request to the near-by

router which caches the content. When a router has stored content in its cache, that router

sends content caching information to other routers using limited broadcast. The broadcast

distance (i.e., the number of hops of rebroadcast) is the average number of the hops from the

routers to the content server. It can be defined as in equation (4):

 \

#

 1 (4)
n U S

hops from n to S

Broadcast Distance
U


 



where U is the set of all routers in the network and S is the content server. Since broadcast

distance is the average number of the hops from the routers to the content server, most of the

routers in the network can redirect the request to the closest router hold the content within its

neighborhood. When a router receives cache information, it will check if the distance to the

location of the cache replica is less than the distance to the content server. If so, it will modify

the routing table to the cached router. The caching information update scheme can redirect the

interest to the near-by caching router, even though the caching router is not on the original

routing path.

10

Chapter 4 Implement CCN using SDN

The CCN network is an efficient way to solve the current IP network traffic problem.

Several methods to implement CCN have been published. These are detailed below:

1. Clean-slate approach：This approach follows the CCN mechanism instead of TCP/IP

and uses CCN routers in place of traditional IP routers. But this method is too difficult to

realize.

2. Overlay approach：This approach uses software to develop the CCN mechanism such

as CCNx. The CCNx can be used for current IP network. However, the CCNx cannot be

ported to routers and it does not support QoS or load balancing functions.

In order to implement CCN in current IP architecture, the OpenFlow is used to design the

CCN architecture. The Open-CCN architecture is shown in Figure 4-1. Mininet is used to

emulate the OpenFlow network and Flowvisor [16] is used to forward the packet to the

corresponding nox controller. In Mininet, each Open-vSwitch connects to one host and two

nox controllers: one controller is the corresponding Local Nox, and the other is the Global

Nox. All hosts are running a ccn-client program, except the node that is chosen as the server

which is running a ccn-server program.

Figure 4-1 Open-CCN Architecture

11

However, there is a problem that OpenFlow switch cannot connect to multiple controllers.

Figure 4-2 Architecture of Flowvisor

Figure 4-4 Nox Network OS and Components

Figure 4-3 Local Nox and Global Nox

Linux

Global NOX

Soft Open-CCN

FIB
Cache

Info

Linu

x

 CS PIT

Local NOX

Soft Open-CCN

12

Therefore, we use the Flowvisor software to forward packets to the corresponding nox

controller. Flowvisor is configured between Mininet and Nox as shown in Figure 4-1. There

are two main components in Flowvisor: one is Flowspace and the other is Slice. The

Flowspace is a rule which is consisted of different setting of IP header. A different Flowspace

can be set to send the packet to different Slice. Each slice corresponds to a Nox controller.

The architecture of Flowvisor is shown in Figure 4-2. In our emulation, each Open-vSwitch

corresponds to a Local Nox controller and every Open-vSwitch connects to the Global Nox

controller.

For implementing our DAAC_CIU scheme, the three tables are separated into two parts.

The CS table and PIT table are implemented in “Local Nox”, and the FIB table is

implemented in “Global Nox” as shown in Figure 4-3. In the Nox network operating system,

there are 2 components which can be used to establish the topology information as shown in

Figure 4-4. First, the “Discovery” component sends LLDP messages to every OpenvSwitch to

test the link between each OpenvSwitch and the message is stored in a data structure. The

next step is that “Topology” component will read the data structure to establish the topology

information. The Global Nox uses Dijkstra’s algorithm to calculate the shortest path between

each node when topology is changed. The out port of shortest path and the hop count between

each node will be stored in the FIB table. Furthermore, a Cache Info Table is also maintained

in Global Nox. The data structure of the Cache Info Table is shown in Figure 4-5. The Cache

Info Table will maintain all the cache information of the router. Therefore, the same chunk

may be stored in two or more routers. The Global Nox will compare the FIB table and Cache

Figure 4-5 Data structure of Cache Info Table

13

Info Table to find the closest Local Nox which stored the content in the cache when a request

of Interest is received.

The CRC-64 is used to encode the file name into a unique interest name and store the

interest name in IP header. For the sake of implementing easily, UDP protocol is used to send

the packet, and raw socket is used to receive the content back. The message list in Table 1

will be installed in Open-vSwitch when Nox controller starts up and all the rules as shown in

Table 2 will install in Flowvisor.

The step of sending interest is that ccn-client sends a packet with interest name as shown

in Figure 4-6. The Open-vSwitch will send the packet to Flowvisor when match the rule of

Interest that is installed early and then Flowvisor sends the packet to corresponding nox

according to DPID (mac address) of Open-vSwitch. The corresponding Local Nox follows

CCN rules to check the CS table. The content will be sent back to the client when cache hit in

Table 1 Type of packet & Action of Switch

Type Message(rule) Action of Switch

general rule Interest send to flowvisor

general rule Content send to flowvisor

general rule Content(last packet) send to flowvisor

general rule ACK send to flowvisor

modify rule CIU_routing modify packet header of Interest

and then sent to flowvisor

modify rule CIU_caching modify packet header of Interest

and then send to flowvisor

Message Action of Flowvisor

Interest send to corresponding Local Nox

Content send to corresponding Local Nox

Content(last packet) send to corresponding Local Nox

ACK send to corresponding Local Nox

CIU caching send to Global Nox

CIU routing send to Global Nox

Table 2 Action of Flowvisor

14

PIT table and then send the interest to next router according to the routing information in FIB

table when cache miss in CS table. In our CIU scheme, the Local Nox will send the packet to

Global Nox instead of searching FIB table in Local Nox as shown in Figure 4-7. The

Open-vSwitch modifies the Interest message to CIU_routing message and then sends to

Global Nox through Flowvisor. If there is caching information within K hops in FIB table of

Global Nox, then Global Nox ask Open-vSwitch modifies the CIU_routing message to

Interest message and sends to corresponding output port. The K hops is calculated by equation

(4). Otherwise, the interest packet will be sent to the output port towards the content server.

The server send the content back when receives request as shown in Figure 4-8. The

Figure 4-6 CCN-Client send interest

Figure 4-7 Retrieve routing information from Global Nox

15

Open-vSwitch sends the content to Flowvisor, and then Flowvisor forward the content to

corresponding Local Nox. In our CIU scheme, if data is stored in CS Table in Local Nox, the

Local Nox will send a cache information packet to Global Nox as shown in Figure 4-9. If the

CS table is full and the replacement occurs, the name of the removed data will be store in the

payload of the packet of cache information. When Global Nox receives the cache information

packet, it will store the cached name and DPID of Open-vSwitch in FIB table. If there is the

name of the removed data in payload, the cached name will be removed in FIB table. Besides,

The Local Nox will store the data in CS table and then send data back according to the output

port of PIT table as shown in Figure 4-10. Furthermore, our DAAC scheme will send an ACK

Figure 4-9 Send cache information to Global Nox in CIU scheme

Figure 4-8 Server send content back

16

back to upstream router to reduce the age of content when downstream router caches the same

content as shown in Figure 4-11.

Figure 4-10 Send content back to downstream router

Figure 4-11 Downstream router send ACK back

17

Chapter 5 Performance Evaluation

 We conduct a series of simulations under different network scenarios to evaluate DAAC

with other caching schemes in CCN. Subsection 5.1 introduces the simulation settings and

results. Subsection 5.2 show the Emulation scenario and results.

5.1 Simulation

 We evaluate the performance of our scheme using ccnSim [24]. CcnSim is a Content

Centric Networks simulator in the OMNet++ framework. The implementation of ccnSim is

based on the architecture of CCN in [1], and the routing path based on a default routing path

which calculate by Dijkstra’s algorithm.

We evaluate our dynamic age-adjusted scheme with two other caching schemes: ABC

and LRU. We also implement two kinds of dynamic age-adjusted schemes, DAAC and

DAAC_CIU, where DAAC_CIU is the DAAC scheme with cache information update scheme

(CIU). The parameters of ABC and DAAC are as follows: BASE_AGE is set to be 50

second and MAX_AGE set to 60 second. To enlarge the effect of ABC method, we multiple 5

times age when pass a hop. There are a total of 1000 files in CCN and the number of the

chunks for a file follows the geometric distribution with an average of 10. The chunk size is

6.4Kbytes and the cache size of each node is from 50 to 250 chunks (5 files to 25 files). Each

router generates request interests according to Poisson process with intensity  = 50 requests

per second. Each request selects a file according to Zipf-Mandelbrot distribution [25].

Zipf-Mandelbrot distribution can be used to imitate the data access pattern in the content

distributed services such as video on demand, IPTV, web caching, etc. The distribution

equation is shown as follows.

() (5)
()

K
Zipf

i q 
 



where  is the distribution parameter, q is the shift parameter, i is the rank of data and K is

18

the normalizing constant. Zipf-Mandelbrot distribution can reflect the different skew of the

data access pattern in the network. When  is going higher, the distribution of the content

access requests becomes steeper, and vice versa. Our simulations set 0.9  、 1  and

1.1  . All parameters can be summarized as Table 3.

There are three performance metrics: hit ratio, server loading and average hop count.

 Hit Ratio: the ratio of the number of interest served by caches to the total number of

interest arrived at caches.

 Server loading: the number of the interests served by content server.

 Average hop count: the average number of hops that content takes to reach the

requester

We use three different network topologies in our simulation: GEANT as in Figure 5-1

and 3-ary tree structure as in Figure 5-2, Abilene as in Figure 5-3. GEANT is a realistic

pan-European topology and tree structure is a synthetic 3-ary tree. In GEANT topology, there

are 22 nodes and node 12 is chosen as the content server. All of the other nodes can send

requests except the content server. In 3-ary tree topology, there are 40 nodes and only leaf

nodes send request (i.e., nodes 13-39). The root of the tree (i.e., node 0) is chosen as the

content server. In Abilene topology, there are 11 nodes and node 2 is chosen as the content

Parameters Value

Number of File Request 1000 per node

Poisson Intensity 50 request/s

Distribution Zipf’s law

Skew(α) 0.9,1,1.1

Number of File 1000

File Size 10 chunks

Chunk Size 6.4kB

Cache Size 50~250 chunks per node

Base Age 50s

Max Age 60s

Table 3 Simulation Parameters

19

server. The simulation result of Abilene topology is shown in subsection 5.2 with emulation

result.

Figure 5-1 GEANT Topology

Figure 5-2 3-ary Tree Topology

20

Figure 5-3 Abilene Topology

Figure 5-4 Hit ratio of GEANT Topology (0.9 )

Figure 5-5 Hit ratio of GEANT Topology (1 )

21

Figure 5-4、Figure 5-5 and Figure 5-6 shows the simulation results under the GEANT

topology with 3 different distribution parameters 0.9  、 1  and 1.1  respectively

and which also show the cache hit ratio of all the caching schemes under different cache sizes.

DAAC achieves a hit-ratio difference of 0.7%-1.0% (0.9 )、1.1%-1.3% (1 ) and

1.5%-1.7% (1.1 ) compared to ABC. DAAC_CIU achieves a hit-ratio difference of

5.5%-9.6% (0.9 )、6%-10% (1 ) and 7.3%-10.4% (1.1 ) compared to ABC. Since

both DAAC and DAAC_CIU use the age-refresh scheme to increase the age of a cache being

recently hit, they have a higher probability to have a cache. Since DAAC_CIU provides the

content’s lately caching location information, it performs best in cache hit ratio. Moreover, hit

ratio in 1.1  is one order of magnitude better than when 1  and 0.9  for our

schemes. Since our algorithm relay on the temporal locality, the content requests distribute in

steeper, the hit-ratio improvement is much higher.

Figure 5-7、Figure 5-8 and Figure 5-9 show the server loadings of all the caching

schemes under different cache sizes. DAAC reduces server loading by about 1.0-2.8%

(0.9 )、2%-3.4% (1 ) and 2.6%-4.0% (1.1 ) compared to ABC, and DAAC_CIU

also reduces server loading by about 18.1%-30.5% (0.9 )、20%-33% (1 ) and

25%-35.1% (1.1 ) compared to ABC. Since most of the requests are redirected to the

near-by routers rather than to the content server, DAAC_CIU can reduce server loading much

better than other schemes.

Figure 5-6 Hit ratio of GEANT Topology (1.1 )

0%

10%

20%

30%

40%

50%

50 100 150 200 250

Hit ratio

LRU

ABC

DAAC

DAAC_CIU

Cache size

22

Figure 5-7 Server loading of GEANT Topology (0.9 )

Figure 5-8 Server loading of GEANT Topology (1 )

Figure 5-9 Server loading of GEANT Topology (1.1 )

23

Figure 5-10、Figure 5-11 and Figure 5-12 show the average hop count of all the caching

schemes under different cache sizes. DAAC reduce about 3%-3.9% (0.9 )、4.2%-4.9%

(1 ) and 5.2%-6.2% (1.1 ) in average hop count compared to ABC. DAAC_CIU

reduce about 10.5%-18.4% (0.9 )、11.9%-19.9% (1 ) and 14%-21.5% (1.1 ) in

average hop count with comparison to ABC. Since DAAC and DAAC_CIU increase the

average hit ratio, it has a more chance to obtain contents from the intermediate routers rather

from the content server. Thus, DAAC and DAAC_CIU have less average hop count. Since

average hop count can also reflect bandwidth consumption per request, DAAC_CIU can

enjoy the least bandwidth consumption in the network. The results in the figures show that

Figure 5-10 Average hop count of GEANT Topology (0.9 )

Figure 5-11 Average hop count of GEANT Topology (1 )

24

there are significant gains through using DAAC and CIU. The content consumers will benefit

from lower download latency. On the other hand, content providers will be able to greatly

reduce server loading as well as network bandwidth consumption.

We also evaluate the broadcast overhead and average hop distance of CIU mechanism

with the other two information update mechanisms: ALL and 1-hop, where ALL is to

broadcast the cache update information to all nodes and 1-hop is to broadcast the cache update

information within 1-hop. As shown in Figure 5-13, the average hop count in ALL is almost

same as the CIU scheme. However, in Figure 5-14, the broadcast overhead (i.e., the total

number of the messages of the cache update information) in ALL is 1.4-17 times higher than

Figure 5-12 Average hop count of GENAT Topology (1.1 )

Figure 5-13 Average hop count of Broadcast Distance

25

the CIU scheme. The CIU can achieve a lower average hop count than 1-hop with price on

moderate increase of broadcast overhead. According to Figure 5-13 and Figure 5-14, the CIU

scheme can achieve a balance between the average hop count and the broadcast overhead.

Figure 5-15、Figure 5-16 and Figure 5-17 shows the simulation results under the 3-ary

tree topology. We can observe that the performance of DAAC and DAAC_CIU are

performing better in all performance metrics. The hit ratio of DAAC_CIU is the highest. The

difference of the hit ratio between DAAC and ABC is about 0.8%-1.1%、1.1%-1.4% and

1.7%-2% for 0.9  、 1  and 1.1  respectively. On the other hand the difference of

the hit ratio between DAAC_CIU and ABC is about 2.6%-4.6%、3.1%-4.8% and 3.4%-5.3%

for 0.9  、 1  and 1.1  respectively.

Figure 5-14 Broadcast overhead

Figure 5-15 Hit ratio of 3-ary Tree Topology (0.9 )

26

Figure 5-16 Hit ratio of 3-ary Tree Topology (1 )

Figure 5-17 Hit ratio of 3-ary Tree Topology (1.1 )

Figure 5-18 Server loading of 3-ary Tree Topology (0.9 )

27

In Figure 5-18、Figure 5-19 and Figure 5-20, DAAC_CIU can reduce the server loading

by about 8%-13.4% (0.9 )、10.1%-14% (1 ) and 11.8%-15.7% (1.1 ) in

comparison to ABC.

Figure 5-19 Server loading of 3-ary Tree Topology (1 )

Figure 5-20 Server loading of 3-ary Tree Topology (1.1 )

28

Figure 5-21 Average hop count of 3-ary Tree Topology (0.9 )

Figure 5-22 Average hop count of 3-ary Tree Topology (1 )

Figure 5-23 Average hop count of 3-ary Tree Topology (1.1 )

29

DAAC_CIU scheme can reduce the hop count approximately 4.6%-12.8% compared to

ABC. Finally DAAC also gained 2.9%-6% reduction of the average hop count as shown in

Figure 5-21、Figure 5-22 and Figure 5-23.

5.2 Emulation

In our scenario of emulation is similar with simulation, the parameters of ABC and DAAC

are as follows: BASE_AGE is set to be 50 second and MAX_AGE set to 60 second. The age

is multiple 5 times age when pass a hop same as simulation. There are a total of 1000 files in

CCN and the number of the chunks for a file follows the geometric distribution with an

average of 10. The chunk size is 6.4Kbytes and each chunk contains 10 packets. The cache

size of each node is from 50 to 250 chunks (5 files to 25 files). Each router generates request

interests according to Poisson process with intensity  = 50 requests per second. Each

request selects a file according to Zipf-Mandelbrot distribution and the 0.9  、 1  and

1.1  . All parameters can be summarized as Table 4. The Abilene topology in our

Emulation is shown in Figure 5-24.

Parameters Value

Number of File Request 1000 per node

Poisson Intensity 50 request/s

Distribution Zipf’s law

Skew(α) 0.9,1,1.1

Number of File 1000

File Size 10 chunks

Chunk Size 6.4kB

Cache Size 50~250 chunks per node

Base Age 50s

Max Age 60s

Table 4 Emulation Parameters

30

 In Figure 5-25 shows the simulation and emulation results under the Abilene

topology and also show the cache hit ratio of all the caching schemes under different cache

sizes. The simulation result is shown in dot line and emulation result is shown in solid line.

0%

5%

10%

15%

20%

25%

30%

50 100 150 200 250

Hit rate(α=0.9)

S-LRU

S-ABC

S-DAAC

S-DAAC_CIU

E-LRU

E-ABC

E-DAAC

E-DAAC_CIU

Cache size

Figure 5-25 Hit ratio of Abilene Topology (0.9 )

Figure 5-24 Abilene Topology in Emulation

31

DAAC achieves a hit-ratio difference of 4.2-6.1% and 0.5-1.6% compared to LRU and ABC

respectively. DAAC_CIU achieves a hit-ratio difference of 9.5%-11.7% and 4.6%-9.2%

compared to LRU and ABC.

Figure 5-26 show the server loadings of all the caching schemes under different cache

sizes. DAAC reduces server loading by about 10%-15.6% and 0.7%-2.4% compared to LRU

and ABC, and DAAC_CIU also reduces server loading by about 25.4%-31.2% and

14%-24.7% compared to LRU and ABC. The server loading in emulation is a little higher

5

5.5

6

6.5

7

7.5

8

8.5

9

9.5

50 100 150 200 250

x
1

0
0

0
0

Server loading(α=0.9)
S-LRU

S-ABC

S-DAAC

S-DAAC_CIU

E-LRU

E-ABC

E-DAAC

E-DAAC_CIU

Cache size

Figure 5-27 Average hop count of Abilene Topology (0.9 )

1.5

1.7

1.9

2.1

2.3

2.5

2.7

2.9

50 100 150 200 250

Average hops(α=0.9)

S-LRU

S-ABC

S-DAAC

S-DAAC_CIU

E-LRU

E-ABC

E-DAAC

E-DAAC_CIU

Cache size

Figure 5-26 Server loading of Abilene Topology (0.9 )

32

than simulation is because the emulation is sent the real packet data.

Figure 5-27 show the average hop count of all the caching schemes under different cache

sizes. DAAC reduce about 11.7%-15.2% and 2.4%-3.4% in average hop count compared to

LRU and ABC. DAAC_CIU reduce about 18.1%-22.8% and 8.1%-14.8% in average hop

count with comparison to LRU and ABC.

In Figure 5-28 shows show the cache hit ratio of all the caching schemes under different

3

4

5

6

7

8

9

50 100 150 200 250

x
1

0
0

0
0

Server loading(α=1)

S-LRU

S-ABC

S-DAAC

S-DAAC_CIU

E-LRU

E-ABC

E-DAAC

E-DAAC_CIU

Cache size

0%

5%

10%

15%

20%

25%

30%

35%

50 100 150 200 250

Hit rate(α=1)

S-LRU

S-ABC

S-DAAC

S-DAAC_CIU

E-LRU

E-ABC

E-DAAC

E-DAAC_CIU

Cache size

Figure 5-29 Server loading of Abilene Topology (1 )

Figure 5-28 Hit ratio of Abilene Topology (1 )

33

cache sizes. DAAC achieves a hit-ratio difference of 5.2-7.7% and 1.1-1.4% compared to

LRU and ABC respectively. DAAC_CIU achieves a hit-ratio difference of 11.3%-13.2% and

4.9%-9.5% compared to LRU and ABC.

Figure 5-29 show the server loadings of all the caching schemes under different cache

sizes. DAAC reduces server loading by about 11.7%-19.7% and 2.4%-3.1% compared to

LRU and ABC, and DAAC_CIU also reduces server loading by about 30%-35.5% and

15.7%-29.1% compared to LRU and ABC.

1.2

1.4

1.6

1.8

2.0

2.2

2.4

2.6

2.8

50 100 150 200 250

Average hops(α=1)

S-LRU

S-ABC

S-DAAC

S-DAAC_CIU

E-LRU

E-ABC

E-DAAC

E-DAAC_CIU

Cache size

Figure 5-30 Average hop count of Abilene Topology (1 )

0%

5%

10%

15%

20%

25%

30%

35%

40%

50 100 150 200 250

Hit rate(α=1.1)

S-LRU

S-ABC

S-DAAC

S-DAAC_CIU

E-LRU

E-ABC

E-DAAC

E-DAAC_CIU

Cache size

Figure 5-31 Hit ratio of Abilene Topology (1.1 )

34

Figure 5-30 show the average hop count of all the caching schemes under different cache

sizes. DAAC reduce about 14.5%-18.5% and 3.7%-4.4% in average hop count compared to

LRU and ABC. DAAC_CIU reduce about 21.1%-26.3% and 8.5%-17.6% in average hop

count with comparison to LRU and ABC.

In Figure 5-31 shows show the cache hit ratio of all the caching schemes under different

cache sizes. DAAC achieves a hit-ratio difference of 5.5-9.6% and 1.2-1.5% compared to

LRU and ABC respectively. DAAC_CIU achieves a hit-ratio difference of 13.3%-13.9% and

5.3%-8.9% compared to LRU and ABC.

Figure 5-32 show the server loadings of all the caching schemes under different cache

sizes. DAAC reduces server loading by about 12%-24.2% and 2.2%-3.9% compared to LRU

and ABC, and DAAC_CIU also reduces server loading by about 35%-36.7% and

17.5%-28.3% compared to LRU and ABC.

Figure 5-33 show the average hop count of all the caching schemes under different cache

sizes. DAAC reduce about 14.9%-22.2% and 3.8%-4.9% in average hop count compared to

LRU and ABC. DAAC_CIU reduce about 25.3%-27.9% and 9.3%-17.9% in average hop

count with comparison to LRU and ABC.

3

4

5

6

7

8

9

50 100 150 200 250

x
1

0
0

0
0

Server loading(α=1.1)
S-LRU

S-ABC

S-DAAC

S-DAAC_CIU

E-LRU

E-ABC

E-DAAC

E-DAAC_CIU

Cache size

Figure 5-32 Server loading of Abilene Topology (1.1 )

35

Figure 5-34、Figure 5-35 and Figure 5-36 shows the average response time in simulation

and emulation. The response time in simulation only take the link delay into consideration.

On the other hand, in emulation, the response time higher than simulation because interests

and contents are sent to Local Nox or Global Nox to check the CS table, PIT table and FIB

table.

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

2.6

50 100 150 200 250

Average hops(α=1.1)

S-LRU

S-ABC

S-DAAC

S-DAAC_CIU

E-LRU

E-ABC

E-DAAC

E-DAAC_CIU

Cache size

Figure 5-33 Average hop count of Abilene Topology (1.1 )

0.0

10.0

20.0

30.0

40.0

50.0

60.0

50 100 150 200 250

ms Average response time(α=0.9)
S-LRU

S-ABC

S-DAAC

S-DAAC_CIU

E-LRU

E-ABC

E-DAAC

E-DAAC_CIU

Cache size

Figure 5-34 Average response time of Abilene Topology (0.9 )

36

0.0

10.0

20.0

30.0

40.0

50.0

60.0

50 100 150 200 250

ms Average response time(α=1)
S-LRU

S-ABC

S-DAAC

S-DAAC_CIU

E-LRU

E-ABC

E-DAAC

E-DAAC_CIU

Cache size

0.0

10.0

20.0

30.0

40.0

50.0

50 100 150 200 250

ms Average response time(α=1.1)
S-LRU

S-ABC

S-DAAC

S-DAAC_CIU

E-LRU

E-ABC

E-DAAC

E-DAAC_CIU

Cache size

Figure 5-35 Average response time of Abilene Topology (1 )

Figure 5-36 Average response time of Abilene Topology (1.1 )

37

Chapter 6 Conclusion
We propose a Dynamic Age-Adjusted Cooperative caching scheme (DAAC), which is

an extension of Aging-Based Cooperative caching scheme. DAAC has an age-refresh scheme

to solve the temporal-locality problem in the content delivery services. It also proposes an

age-decrease scheme to reduce the redundant data problem. The age-refresh scheme operates

as follows. When a cache hits on a router, that router will reassign the age of that cache to its

original assignment. Since each cache hit can prolong the life time of the cache being replaced,

the age-refresh can help to resolve the temporal-locality problem. The age-decrease scheme

works as follows. A downstream node sends an ACK back to the upstream node. If the

upstream receives the ACK, it will decay the age of that content exponentially. In addition,

the Caching Information Update scheme is proposed to provide the caching information for

the router to obtain the routing efficiently. When a router stores a new content in its local

cache, it disseminates this information using limited broadcast. The broadcast distance is the

average hop distance of all shortest paths between the routers and the content server. When a

router receives this information, it will check if the distance to the new caching router is

smaller to the current one. If so, that router will update its routing table to modify the routing

path to the new caching router. Simulation results show that DAAC_CIU can reduce the

bandwidth consumption by at least 11% and server loading by 16% compared to ABC.

Furthermore, we use the Software Defined Networks (SDN) to realize the CCN network. The

simulation and emulation result show that there are almost the same, the difference only

3~4% at most. Hence, we can further prove our cache strategy not just a theory but also can

be used to improve the network efficiency.

38

References

[1] V. Jacobson, et al., "Networking named content," in Proc. ACM CoNEXT, 2009.

[2] K. Cho, et al., "WAVE: Popularity-based and collaborative in-network caching for

content-oriented networks," in INFOCOM Workshop, 2012.

[3] M. Gritter and D. R. Cheriton. (2000, Jul.). TRIAD: A new next-generation Internet

architecture. Available: http://gregorio.stanford.edu/triad/index.html

[4] T. Koponen, et al., "A data-oriented (and beyond) network architecture," ACM

SIGCOMM Computer Communication Review, vol. 37, pp. 181-192, 2007.

[5] L. Zhang, et al. (2010, Oct.). Named data networking (ndn) project. Available:

http://www.named-data.net/techreport/TR001ndn-proj.pdf

[6] V. Jacobson, et al., "VoCCN: voice-over content-centric networks," in Proc. of the

2009 workshop on Re-architecting the internet, 2009.

[7] M. Caesar, et al., "ROFL: routing on flat labels," ACM SIGCOMM Computer

Communication Review, vol. 36, pp. 363-374, 2006.

[8] H. Che, et al., "Analysis and design of hierarchical web caching systems," Proc. IEEE

INFOCOM'01, vol. 3, pp. 1416-1424, 2001.

[9] X. Tang and S. T. Chanson, "Coordinated en-route web caching," IEEE Transactions

on Computers, vol. 51, pp. 595-607, 2002.

[10] Z. Ming, et al., "Age-based cooperative caching in information-centric networks," in

Workshop on Emerging Design Choices in Name-Oriented Networking, 2012.

[11] I. Psaras, et al., "Probabilistic in-network caching for information-centric networks,"

in Proceedings of the second edition of the ICN workshop on Information-centric

networking, 2012, pp. 55-60.

[12] I. Psaras, et al., "Modelling and evaluation of CCN-caching trees," in NETWORKING

2011, ed: Springer, 2011, pp. 78-91.

[13] N. McKeown, et al., "OpenFlow: enabling innovation in campus networks," ACM

SIGCOMM Computer Communication Review, vol. 38, pp. 69-74, 2008.

[14] B. Lantz, et al., "A network in a laptop: rapid prototyping for software-defined

networks," in Proceedings of the 9th ACM SIGCOMM Workshop on Hot Topics in

Networks, 2010, p. 19.

[15] N. Gude, et al., "NOX: towards an operating system for networks," ACM SIGCOMM

Computer Communication Review, vol. 38, pp. 105-110, 2008.

[16] R. Sherwood, et al., "Flowvisor: A network virtualization layer," OpenFlow Switch

Consortium, Tech. Rep, 2009.

[17] N. Laoutaris, et al., "The LCD interconnection of LRU caches and its analysis,"

Performance Evaluation, vol. 63, pp. 609-634, 2006.

[18] M. Xie, et al., "Enhancing cache robustness for content-centric networking," in

http://gregorio.stanford.edu/triad/index.html
http://www.named-data.net/techreport/TR001ndn-proj.pdf

39

INFOCOM, 2012 Proceedings IEEE, 2012, pp. 2426-2434.

[19] E. J. Rosensweig and J. Kurose, "Breadcrumbs: efficient, best-effort content location

in cache networks," in IEEE INFOCOM, 2009.

[20] S. Eum, et al., "Potential based routing for ICN," in Proc. of the 7th Asian Internet

Engineering Conference, 2011.

[21] R. Chiocchetti, et al., "INFORM: a dynamic INterest FORwarding Mechanism for

Information Centric Networking."

[22] C. Yi, et al., "A case for stateful forwarding plane," Computer Communications, 2013.

[23] L. Saino, et al., "Hash-routing Schemes for Information Centric Networking," 2013.

[24] D. Rossi and G. Rossini, "Caching performance of content centric networks under

multi-path routing (and more)," Technical report, Telecom ParisTech, 2011.

[25] L. Breslau, et al., "Web caching and Zipf-like distributions: Evidence and

implications," in Proc. IEEE INFOCOM, vol. 1, pp. 126-134, 1999.

