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以內容為中心的網路動態調整快取系統 

 

 

研究生：楊文翔        指導教授：陳 健  

 

 

 

國 立 交 通 大 學 資 訊 科 學 與 工 程 研 究 所  

中文摘要 

新一代的網路架構以內容為中心的網路架構已成為近年來最熱門的網路研究主題，

以資料名稱取代傳統 IP 的方式尋找資料，並且在每個路由器上裝備快取記憶體以儲存

轉發的資料，使得資料可以再次讓使用者就近存取，但是快取記憶體空間是有限的，所

以有效利用有限的快取記憶體空間是很重要的一個議題。Age-based cooperative caching

的方法中提到利用資料的熱門程度以及快取設備的地點來決定資料的存活時間

(time-to-live)，利用此方法可有效減少頻寬消耗。而我們延伸這個想法，利用動態的調

整資料的存活時間來進一步的改善網路效能。當在短時間內多數的使用者針對同一筆資

料進行存取時，我們利用延長資料的存活時間來改善快取命中率的問題，使得客戶端的

使用者可以持續在快取記憶體中取得熱門的資料。另外，為了減少不同快取記憶體中儲

存同一筆資料的問題，當下層路由器的快取記憶體儲存同一筆資料時，即通知上層路由

器將快取記憶體中的資料存活時間減低，使得上層的資料可以提早過期而被其它資料替

換。除此之外，當快取記憶體中的資料異動時，我們利用有限廣播的方式來達到互相傳

遞快取資訊的位置，以達最短距離繞徑的目的。而模擬的結果顯示，我們的方法可以有

效的增加資料命中率以及減少頻寬消耗、減低伺服器負載。另外，我們利用軟體自定網

路(Software Defined Networks)的方法，將以內容為中心的網路架構以及我們的演算法實

作出來，並以軟體自定網路 Mininet 擬真器進行效能測試，其效能數據和模擬的結果非

常接近，皆顯示出我們的方法能有效的改進以內容為中心的網路效能。 

 

關鍵字：以內容為中心網路、網路快取系統、最近最少使用替換演算法、軟體自定網路、

最短距離繞徑 
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Abstract 

Content-Centric Networking (CCN) is a novel networking paradigm. It changes the 

host-centric model to a content-centric model and allows each CCN router to cache content. 

Since the cache size of a router is limited, design of a cooperative caching scheme is an 

important issue in CCN. Among them is the Age-Based Cooperative caching scheme (ABC) 

which gives an age (i.e., time-to-live) to each piece of content in the cache based on the 

content popularity and the location of the cached node to reduce the bandwidth consumption 

and server loading. In this thesis, we focus on extending the idea of ABC by adding a 

dynamic age adjustment scheme. To handle short-term burst requests to the same content, our 

age adjustment scheme increases the content’s age value when the cache is hit. To reduce 

redundant data, our age scheme decreases the age value of an upstream node when the 

downstream node has cached the same content. Besides, we also propose a simple cache 

information update scheme to further enhance the routing performance. Simulation results 

show that our scheme can further enhance cache hit ratio and reduce server loading and 

bandwidth consumption. Furthermore, we realized the CCN architecture with our caching and 

routing schemes using Software Defined Networks (SDN). We use SDN emulator Mininet to 

verify the performance. The emulation results show that they are very close to the simulation 

results. 

 

Keywords: Content Centric Networks, Cooperative Caching, Least Recently Used, SDN, 

Shortest Path Routing 
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Chapter 1 Introduction 

 

Many content delivery services have been developed in the Internet such as Youtube, 

Hulu, Netflix, etc. Saving the network bandwidth consumption and the server load are the 

important issues of this kind of services. Content Centric Networking (CCN) or Information 

Centric Network (ICN) [1-10] is a new type of Internet architecture developed to solve this 

issue. The basic idea of CCN is to replace the narrow waist at the network layer from the 

physical network location (i.e., Internet Protocol (IP)) to the content name itself. Each CCN 

router is equipped with the storage to temporally cache contents. If one of the CCN routers on 

the routing path has stored the corresponding content that a user requested, then it 

immediately sends it back to the user. Since the user can obtain its requested content from an 

intermediate router not necessarily from server, then CCN can save server load and bandwidth 

consumption in the Internet. 

In CCN [1], a content consumer sends out an interest packet, which carries a name that 

identifies the requested content. Once the interest reaches a router that has the requested 

content, a data packet is sent back. There are three data structures in router to support such 

routing process as follows: (1) Content Store (CS), (2) Forwarding Information base (FIB), (3) 

Pending Interest Table (PIT). CS is used to store content when data packets pass through. 

However, the caching policy is managed by caching algorithm, such as FIFO, LRU, etc. FIB 

is like a routing table in IP.  Instead of IP address, the content name in the interest is 

compared with the entries in FIB to decide which face (port) to forward the Interest packets. 

When an Interest arrived, PIT table will record the arrival face of that interest if there is no 

corresponding content in CS. Then, the content can be send back reversely to the content 

consumer according to the PIT information. 

Efficient caching algorithms profoundly influence the performance of CCN. Least 

Recently Used (LRU) is a common caching strategy, where a node always replaces data with 

a least recently used when the cache overflows. Since LRU lacks of the coordination between 

nodes and cache contents, thus a lot of cooperative caching schemes have been 
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proposed[2-12].[8] considers a hierarchical cache. Each cache computes an average maximum 

document access interval without a cache miss to decide whether the content should be 

cached or not.  In [9], each node collects the miss rate, miss penalty, cost loss of evicting 

objects, and access frequency to decide which content to be cached and the optimal caching 

locations. In [2], the upstream node adds a flag in the content to suggest that the downstream 

node to cache this content based on the popularity of this content. 

Age-based Cooperative Caching(ABC) [10] is a simple and effective cooperative 

caching scheme in CCN. ABC computes an age of content (i.e., the time-to-live of the content 

in the cache) based on the popularity of that content and the location of the cached node. To 

pass the age information to the downstream node, ABC adds an age field to the content. When 

the cache overflows, ABC replaces one of the out-of-date contents in its cache. The benefits 

of ABC are as follows: (1) ABC gives the popular content to a larger age to stay in the 

network. (2) ABC gives a cache near the network edge a larger age to achieve a better 

response time, and (3) the content near the server has a smaller age such that the less popular 

content has a better chance of being cached. 

However, some issues still need to be solved in ABC. In most content-centric services 

have the burst requests to the same content within a short period of the time due to a new 

lease of video or a block buster movie. Although ABC has considered content popularity (i.e., 

the long- term statistical information) to give the age of the content in the cache, it does not 

adjust the age taking this temporal-locality factor into consideration. Besides, there are still 

some redundant contents among CCN routers because ABC cached content in each router on 

the routing path even though each router gives a different age to content.  

On the other hand, the process of getting the content-location information (i.e., the cache 

information of other node) is another important factor to achieve a better performance in CCN. 

When a node knows the content-location information, it can help that node to redirect its 

request to the content caching node which is closer than content server. Complete broadcast is 

a naive way to disseminate the cache information among routers, but this way may cause a lot 

of extra overhead. Therefore, this study further designs a restricted broadcast scheme to 

reduce the overhead of the content location information dissemination. 
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This study extends the ABC protocol by adding a dynamic age adjustment scheme. To 

overcome the short-term burst request to the same content issue in CCN, an age-refresh 

scheme is added in ABC. When a cache hits, it will refresh that content’s age to its original 

assignment. Since the cache hits will continue to refresh the age of the content and prolong 

the survival time of the content in CCN, the age-refresh scheme can handle the 

temporal-locality. To solve the redundant contents in ABC, an age-decrease scheme is 

proposed. When a downstream node decides to cache content in its local cache, it will send an 

acknowledgement (ACK) to the upstream node. When the upstream node receives the ACK, it 

will immediately decrease the age of that content exponentially. When more downstream 

nodes store redundant contents, upstream node will decrease the age of that content more such 

that that content will edge out from the upstream nodes earlier. In this way, the cache space 

can be used more efficiently. This study further designs a cache information update scheme to 

inform the near-by routers. The cache information update scheme is a restricted broadcast 

scheme. When a node caches content, it will broadcast this information within k hops, where k 

is the average length of shortest paths between nodes and content server. When a node 

receives this information, it will update its routing table if the content cached node is closer 

than original content server. We evaluate our scheme under GEANT topology and 3-ary tree 

topology. The simulation results show that our age adjustment scheme has an improvement of 

31% and 20% in bandwidth consumption compared to LRU scheme and ABC scheme, 

respectively.  

Considering implementing the CCN architecture on the other hand, it is difficult to 

substitute all the traditional switches in the whole world with CCN switches. One of the best 

ideas is using Software Defined Networks (SDN) [13] , as shown in Figure 1-1. The main 

idea of SDN is to separate the network into the control plane and the data plane. The ISP can 

develop its own application to control the network operation. Hence, the CCN mechanism can 

be implemented over IP architecture using SDN without too many costs. OpenFlow is a 

communication interface between the control and forwarding layers of SDN architecture. In 

the control plane, the controller can manage the network flow through OpenFlow protocol.  

In our emulation, we use Mininet [14] with Open-vSwitch and implement the three 
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tables (CS, PIT, FIB) of CCN in nox controller [15] as shown in Figure 1-2. We evaluate our 

scheme under Abilene topology. The emulation results show that our age adjustment scheme 

has an improvement of 26% and 13% in bandwidth consumption compared to LRU scheme 

and ABC scheme, respectively. Besides, the simulation results in Abilene topology are almost 

match the emulation results. 

The rest of this thesis is organized as follows. Chapter 2 introduces the related works. 

Chapter 3 presents details of our dynamic age adjustment scheme. Chapter 4 shows how to 

realize CCN using SDN. Chapter 5 discusses simulation and emulation results, and Chapter 6 

concludes this thesis. 

 

 

 

 

 

 

 

Figure 1-2 Nox Controller 

  

Linux 
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Local NOX 

Soft Open-CCN 
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Figure 1-1 SDN Architecture 
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Chapter 2 Related Works 

 

CCN is different from Content Distribution Network (CDN) where cache space is 

distributed to each router. The idea does not only reduce the cost in hardware equipment 

(compared to the equipment at the server level) but also saves the bandwidth consumption and 

server loading of the network. Designing efficient cooperative caching schemes is an 

important issue in CCN. Leave Copy Down (LCD) [17] stores another data in l-1 level node 

only when a cache hit in l level node. Move Copy Down (MCD) [17] is similar to LCD. The 

difference is that MCD only caches the data in the l-1 level node and deletes the data in the l 

level node. In this way, the cache space in MCD strategy is more efficiently utilized, but it 

may cause some requests to traverse more hops to reach their corresponding contents, and 

result in more bandwidth consumption in comparison to LCD. WAVE [2] deals with a 

chunk-level caching strategy also similar to LCD. The difference is that WAVE uses 

piggyback suggestion bit to inform the downstream node, and a downstream node can ignore 

or accept the suggestion from the upstream node. Another difference is that the suggestion 

from upstream is based on the popularity of content. The research of [8] and [9] are designed 

for a hierarchical cache. However, [8] maintains a characteristic time which is the average 

time between two replacements in the cache. According to the access frequency and the 

characteristic time, a low-pass filter algorithm is designed to decide which one of the nodes 

upon the routing path from the request node to the content server should cache the data. The 

authors of [9] on the other hand collect miss rate, miss penalty, cost loss of evicting objects 

and access frequency from the routing path. Based on this information, the optimization 

problem is formulated to decide the best locations of contents. The idea of [11] is calculating 

the distance between client and server and cache size to decide the cache probability. The data 

closer to client, the higher probability the data will be cached. [18] use the Shield function to 

keep track the request rate of Interest. The primary purpose of the Shield function is to 

discourage unpopular data being cached. Hence, the data will be cached when the Interest is 

requested over a threshold. 
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ABC [10] adds an ‘age’ field to each content packet representing the content age of the 

upstream node. ABC dynamically configures content’s age based on (a) distance (i.e., the 

number of hops) of cached router toward the server, and (b) popularity of content. When 

content reaches a router, the router first checks cache space for the content. If there is no 

available space, the router removes the most expired content in its local cache, and gives the 

new-arrival content an age as follows. If the router is the first router next to the content server, 

then the age for the content is given as: 

 

_ * (1)age BASE AGE weight  

 

where BASE_AGE  is the initial value of the  age and weight  is the ratio of access 

frequency of the cached content. Otherwise, the router extracts the age of incoming content 

(Cu) and calculates the new age as: 

 

   min * 1 , _ (2)uage C weight MAX AGE   

 

where MAX_AGE value is used to avoid the age growth infinitely. Based on Equations (1) 

and (2), ABC has the following two features: 1) The more hops away from server, the more 

age it has. 2) The more popular the content is, the longer age it has. 

On the other hand, the routing protocol is also an important aspect of this scheme. 

Breadcrumbs [19] leaves routing message (breadcrumb) when a router forwards content. The 

routing message includes where the data is from, where the data is forwarded to, and when the 

arrival time of the content is. If a request matches the index of breadcrumb, the request is 

forwarded to the caching router according to breadcrumb information. Potential Based 

Routing (PBR) [20] uses the capacity and the traffic load of caching node to define the quality 

of the content, and broadcast the quality of content to its neighbor node. The node calculates 

the potential value according to the value of content quality and hop count. The lower the 

potential value it has, the more chances interest will be routed to that node. INFORM [21] 

uses 2 phases to make the routing decision. First phase is “Exploration phase” which is 
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calculating the Q value to keep track efficiency of routing path. Second phase is 

“Exploitation phase” which is to decide the routing path using different interface according 

to the Q value. The lower Q value, the higher priority will be used to forward packet. The idea 

of Stateful Forwarding Plane[22] is that use color to track the state of interface. If the data 

come back overtime, then router will try alternative interfaces to send the packet and mark the 

interface is yellow state. Otherwise, the interface will be mark green state when data come 

back within time limit. Hash routing [23] is using hash function to designate the router to 

cache the data. Edge router is responsible for forward data to designated core router. There are 

different ways to forward data when data sent back from server. The Symmetric is using the 

same routing path and Asymmetric is using shortest path when send packet out. The Multicast 

is sending one copy of data to original routing path to cache in designated core router and 

another copy of data is sending to client by shortest path. 
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Chapter 3 Age Adjustment Scheme 

 

Even though ABC has taken the popularity into consideration, and achieves better 

performance than LRU, it cannot handle the short-term burst requests to the same content. 

Besides, ABC still suffers from redundant data problem because ABC cached content in each 

router on the routing path. This section introduces the principle of our age adjustment scheme 

which is aimed at further improving the performance of ABC, and solves the problems of 

routing information dissemination. Subsection 3.1 introduces the detail of our age adjustment 

scheme. Subsection 3.2 is a cache information update scheme. 

 

3.1 Dynamic Age-Adjusted Cooperative Caching 

ABC is an efficient cooperative caching scheme, which outperforms the LRU and FIFO. 

This study extends the ABC scheme by adding a dynamic age-adjusted scheme, named 

Dynamic Age-Adjusted Cooperative Caching (DAAC).  DAAC has two parts: (1) 

age-decrease scheme and (2) age-refresh scheme. DAAC uses an acknowledgement-based 

scheme to decrease the age of the content on the upstream routers in order to reduce the 

redundant data. When cache hits, age-refresh scheme refreshes the content’s age to its original 

assignment to overcome the temporal-locality. 

1) Age-decrease scheme: When content is forwarded to a downstream router, if the 

downstream router has free space for data caching, then the downstream router sends an 

acknowledgement back to the upstream router. When the upstream router receives the ACK, it 

decreases the age of content using equation (3). 

 

1
 *(1 ) (3)Number of ACKage age

f
 

 

 

where 1f K   and K is the node degree of the upstream router. According to Eq(3), the 

redundant data can be dropped sooner due to exponential age decrease. 

2) Age-refresh scheme: Our scheme refreshes the age of its original assignment when 
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content hit to overcome the short-term burst requests. It’s very common in content services 

that the same content getting lots of hits in a short period of time such as a new release of TV 

series, sport broadcasts, news events, etc. Since a burst of request will be sent within a small 

period of time to the content servers, it may cause a lot of traffic and bandwidth consumption 

to the networks. Therefore, the age-refresh scheme can keep the content in cache to serve this 

kind of burst requests without content servers involving. 

 

3.2 Caching Information Update Scheme 

We design a caching information update scheme to redirect the request to the near-by 

router which caches the content. When a router has stored content in its cache, that router 

sends content caching information to other routers using limited broadcast. The broadcast 

distance (i.e., the number of hops of rebroadcast) is the average number of the hops from the 

routers to the content server. It can be defined as in equation (4): 

 

 \

#

  1 (4)
n U S

hops from n to S

Broadcast Distance
U


 


 

 

where U is the set of all routers in the network and S is the content server. Since broadcast 

distance is the average number of the hops from the routers to the content server, most of the 

routers in the network can redirect the request to the closest router hold the content within its 

neighborhood. When a router receives cache information, it will check if the distance to the 

location of the cache replica is less than the distance to the content server. If so, it will modify 

the routing table to the cached router. The caching information update scheme can redirect the 

interest to the near-by caching router, even though the caching router is not on the original 

routing path. 
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Chapter 4 Implement CCN using SDN 

 

The CCN network is an efficient way to solve the current IP network traffic problem. 

Several methods to implement CCN have been published. These are detailed below: 

1. Clean-slate approach：This approach follows the CCN mechanism instead of TCP/IP 

and uses CCN routers in place of traditional IP routers. But this method is too difficult to 

realize.  

2. Overlay approach：This approach uses software to develop the CCN mechanism such 

as CCNx. The CCNx can be used for current IP network. However, the CCNx cannot be 

ported to routers and it does not support QoS or load balancing functions.  

In order to implement CCN in current IP architecture, the OpenFlow is used to design the 

CCN architecture. The Open-CCN architecture is shown in Figure 4-1. Mininet is used to 

emulate the OpenFlow network and Flowvisor [16] is used to forward the packet to the 

corresponding nox controller. In Mininet, each Open-vSwitch connects to one host and two 

nox controllers: one controller is the corresponding Local Nox, and the other is the Global 

Nox. All hosts are running a ccn-client program, except the node that is chosen as the server 

which is running a ccn-server program.  

Figure 4-1 Open-CCN Architecture 
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However, there is a problem that OpenFlow switch cannot connect to multiple controllers. 

Figure 4-2 Architecture of Flowvisor 

Figure 4-4 Nox Network OS and Components 

Figure 4-3 Local Nox and Global Nox 
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Therefore, we use the Flowvisor software to forward packets to the corresponding nox 

controller. Flowvisor is configured between Mininet and Nox as shown in Figure 4-1. There 

are two main components in Flowvisor: one is Flowspace and the other is Slice. The 

Flowspace is a rule which is consisted of different setting of IP header. A different Flowspace 

can be set to send the packet to different Slice. Each slice corresponds to a Nox controller. 

The architecture of Flowvisor is shown in Figure 4-2. In our emulation, each Open-vSwitch 

corresponds to a Local Nox controller and every Open-vSwitch connects to the Global Nox 

controller. 

For implementing our DAAC_CIU scheme, the three tables are separated into two parts. 

The CS table and PIT table are implemented in “Local Nox”, and the FIB table is 

implemented in “Global Nox” as shown in Figure 4-3. In the Nox network operating system, 

there are 2 components which can be used to establish the topology information as shown in 

Figure 4-4. First, the “Discovery” component sends LLDP messages to every OpenvSwitch to 

test the link between each OpenvSwitch and the message is stored in a data structure. The 

next step is that “Topology” component will read the data structure to establish the topology 

information. The Global Nox uses Dijkstra’s algorithm to calculate the shortest path between 

each node when topology is changed. The out port of shortest path and the hop count between 

each node will be stored in the FIB table. Furthermore, a Cache Info Table is also maintained 

in Global Nox. The data structure of the Cache Info Table is shown in Figure 4-5. The Cache 

Info Table will maintain all the cache information of the router. Therefore, the same chunk 

may be stored in two or more routers. The Global Nox will compare the FIB table and Cache 

Figure 4-5 Data structure of Cache Info Table 
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Info Table to find the closest Local Nox which stored the content in the cache when a request 

of Interest is received. 

The CRC-64 is used to encode the file name into a unique interest name and store the 

interest name in IP header. For the sake of implementing easily, UDP protocol is used to send 

the packet, and raw socket is used to receive the content back. The message list in Table 1 

will be installed in Open-vSwitch when Nox controller starts up and all the rules as shown in 

Table 2 will install in Flowvisor. 

 

 

 

 

 

 

 

 

The step of sending interest is that ccn-client sends a packet with interest name as shown 

in Figure 4-6. The Open-vSwitch will send the packet to Flowvisor when match the rule of 

Interest that is installed early and then Flowvisor sends the packet to corresponding nox 

according to DPID (mac address) of Open-vSwitch. The corresponding Local Nox follows 

CCN rules to check the CS table. The content will be sent back to the client when cache hit in 

Table 1 Type of packet & Action of Switch 

Type Message(rule) Action of Switch 

general rule Interest send to flowvisor 

general rule Content send to flowvisor 

general rule Content(last packet) send to flowvisor 

general rule ACK send to flowvisor 

modify rule CIU_routing modify packet header of Interest 

and then sent to flowvisor 

modify rule CIU_caching modify packet header of Interest 

and then send to flowvisor 

Message Action of Flowvisor 

Interest send to corresponding Local Nox 

Content send to corresponding Local Nox 

Content(last packet) send to corresponding Local Nox 

ACK send to corresponding Local Nox 

CIU caching send to Global Nox 

CIU routing send to Global Nox 

Table 2 Action of Flowvisor 
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PIT table and then send the interest to next router according to the routing information in FIB 

table when cache miss in CS table. In our CIU scheme, the Local Nox will send the packet to 

Global Nox instead of searching FIB table in Local Nox as shown in Figure 4-7. The 

Open-vSwitch modifies the Interest message to CIU_routing message and then sends to 

Global Nox through Flowvisor. If there is caching information within K hops in FIB table of 

Global Nox, then Global Nox ask Open-vSwitch modifies the CIU_routing message to 

Interest message and sends to corresponding output port. The K hops is calculated by equation 

(4). Otherwise, the interest packet will be sent to the output port towards the content server. 

 

The server send the content back when receives request as shown in Figure 4-8. The 

Figure 4-6 CCN-Client send interest 

Figure 4-7 Retrieve routing information from Global Nox 
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Open-vSwitch sends the content to Flowvisor, and then Flowvisor forward the content to 

corresponding Local Nox. In our CIU scheme, if data is stored in CS Table in Local Nox, the 

Local Nox will send a cache information packet to Global Nox as shown in Figure 4-9. If the 

CS table is full and the replacement occurs, the name of the removed data will be store in the 

payload of the packet of cache information. When Global Nox receives the cache information 

packet, it will store the cached name and DPID of Open-vSwitch in FIB table. If there is the 

name of the removed data in payload, the cached name will be removed in FIB table. Besides, 

The Local Nox will store the data in CS table and then send data back according to the output 

port of PIT table as shown in Figure 4-10. Furthermore, our DAAC scheme will send an ACK 

Figure 4-9 Send cache information to Global Nox in CIU scheme 

Figure 4-8 Server send content back 
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back to upstream router to reduce the age of content when downstream router caches the same 

content as shown in Figure 4-11.  

 

 

 

 

 

 

 

Figure 4-10 Send content back to downstream router 

Figure 4-11 Downstream router send ACK back 
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Chapter 5 Performance Evaluation 

 

 We conduct a series of simulations under different network scenarios to evaluate DAAC 

with other caching schemes in CCN. Subsection 5.1 introduces the simulation settings and 

results. Subsection 5.2 show the Emulation scenario and results. 

 

5.1 Simulation 

  We evaluate the performance of our scheme using ccnSim [24]. CcnSim is a Content 

Centric Networks simulator in the OMNet++ framework. The implementation of ccnSim is 

based on the architecture of CCN in [1], and the routing path based on a default routing path 

which calculate by Dijkstra’s algorithm.  

We evaluate our dynamic age-adjusted scheme with two other caching schemes: ABC 

and LRU. We also implement two kinds of dynamic age-adjusted schemes, DAAC and 

DAAC_CIU, where DAAC_CIU is the DAAC scheme with cache information update scheme 

(CIU). The parameters of ABC and DAAC are as follows:  BASE_AGE is set to be 50 

second and MAX_AGE set to 60 second. To enlarge the effect of ABC method, we multiple 5 

times age when pass a hop. There are a total of 1000 files in CCN and the number of the 

chunks for a file follows the geometric distribution with an average of 10. The chunk size is 

6.4Kbytes and the cache size of each node is from 50 to 250 chunks (5 files to 25 files). Each 

router generates request interests according to Poisson process with intensity  = 50 requests 

per second. Each request selects a file according to Zipf-Mandelbrot distribution [25]. 

Zipf-Mandelbrot distribution can be used to imitate the data access pattern in the content 

distributed services such as video on demand, IPTV, web caching, etc. The distribution 

equation is shown as follows. 

 

( ) (5)
( )

K
Zipf

i q 
 


 

 

where   is the distribution parameter, q is the shift parameter, i is the rank of data and K is 
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the normalizing constant. Zipf-Mandelbrot distribution can reflect the different skew of the 

data access pattern in the network. When   is going higher, the distribution of the content 

access requests becomes steeper, and vice versa. Our simulations set 0.9  、 1   and 

1.1  . All parameters can be summarized as Table 3.  

 

 

 

 

 

 

 

 

 

 

 

There are three performance metrics: hit ratio, server loading and average hop count.  

 Hit Ratio: the ratio of the number of interest served by caches to the total number of 

interest arrived at caches. 

 Server loading: the number of the interests served by content server. 

 Average hop count: the average number of hops that content takes to reach the 

requester 

We use three different network topologies in our simulation: GEANT as in Figure 5-1 

and 3-ary tree structure as in Figure 5-2, Abilene as in Figure 5-3. GEANT is a realistic 

pan-European topology and tree structure is a synthetic 3-ary tree. In GEANT topology, there 

are 22 nodes and node 12 is chosen as the content server. All of the other nodes can send 

requests except the content server. In 3-ary tree topology, there are 40 nodes and only leaf 

nodes send request (i.e., nodes 13-39).  The root of the tree (i.e., node 0) is chosen as the 

content server. In Abilene topology, there are 11 nodes and node 2 is chosen as the content 

Parameters Value 

Number of File Request 1000 per node 

Poisson Intensity 50 request/s 

Distribution Zipf’s law 

Skew(α ) 0.9,1,1.1 

Number of File 1000 

File Size 10 chunks 

Chunk Size 6.4kB 

Cache Size 50~250 chunks per node 

Base Age 50s 

Max Age 60s 

Table 3 Simulation Parameters 
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server. The simulation result of Abilene topology is shown in subsection 5.2 with emulation 

result. 

 

 

 

 

 

 

 

Figure 5-1 GEANT Topology 

Figure 5-2 3-ary Tree Topology 



 

20 

 

Figure 5-3 Abilene Topology  

Figure 5-4 Hit ratio of GEANT Topology ( 0.9  ) 

Figure 5-5 Hit ratio of GEANT Topology ( 1  ) 



 

21 

Figure 5-4、Figure 5-5 and Figure 5-6 shows the simulation results under the GEANT 

topology with 3 different distribution parameters 0.9  、 1   and 1.1   respectively 

and which also show the cache hit ratio of all the caching schemes under different cache sizes. 

DAAC achieves a hit-ratio difference of 0.7%-1.0% ( 0.9  )、1.1%-1.3% ( 1  ) and 

1.5%-1.7% ( 1.1  ) compared to ABC. DAAC_CIU achieves a hit-ratio difference of 

5.5%-9.6% ( 0.9  )、6%-10% ( 1  ) and 7.3%-10.4% ( 1.1  ) compared to ABC. Since 

both DAAC and DAAC_CIU use the age-refresh scheme to increase the age of a cache being 

recently hit, they have a higher probability to have a cache. Since DAAC_CIU provides the 

content’s lately caching location information, it performs best in cache hit ratio. Moreover, hit 

ratio in 1.1   is one order of magnitude better than when 1   and 0.9   for our 

schemes. Since our algorithm relay on the temporal locality, the content requests distribute in 

steeper, the hit-ratio improvement is much higher. 

Figure 5-7、Figure 5-8 and Figure 5-9 show the server loadings of all the caching 

schemes under different cache sizes. DAAC reduces server loading by about 1.0-2.8% 

( 0.9  )、2%-3.4% ( 1  ) and 2.6%-4.0% ( 1.1  ) compared to ABC, and DAAC_CIU 

also reduces server loading by about 18.1%-30.5% ( 0.9  )、20%-33% ( 1  ) and 

25%-35.1% ( 1.1  ) compared to ABC. Since most of the requests are redirected to the 

near-by routers rather than to the content server, DAAC_CIU can reduce server loading much 

better than other schemes. 

Figure 5-6 Hit ratio of GEANT Topology ( 1.1  ) 
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Figure 5-7 Server loading of GEANT Topology ( 0.9  ) 

Figure 5-8 Server loading of GEANT Topology ( 1  ) 

Figure 5-9 Server loading of GEANT Topology ( 1.1  ) 
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Figure 5-10、Figure 5-11 and Figure 5-12 show the average hop count of all the caching 

schemes under different cache sizes. DAAC reduce about 3%-3.9% ( 0.9  )、4.2%-4.9% 

( 1  ) and 5.2%-6.2% ( 1.1  ) in average hop count compared to ABC. DAAC_CIU 

reduce about 10.5%-18.4% ( 0.9  )、11.9%-19.9% ( 1  ) and 14%-21.5% ( 1.1  ) in 

average hop count with comparison to ABC. Since DAAC and DAAC_CIU increase the 

average hit ratio, it has a more chance to obtain contents from the intermediate routers rather 

from the content server. Thus, DAAC and DAAC_CIU have less average hop count. Since 

average hop count can also reflect bandwidth consumption per request, DAAC_CIU can 

enjoy the least bandwidth consumption in the network. The results in the figures show that 

Figure 5-10 Average hop count of GEANT Topology ( 0.9  ) 

Figure 5-11 Average hop count of GEANT Topology ( 1  ) 
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there are significant gains through using DAAC and CIU. The content consumers will benefit 

from lower download latency. On the other hand, content providers will be able to greatly 

reduce server loading as well as network bandwidth consumption. 

We also evaluate the broadcast overhead and average hop distance of CIU mechanism 

with the other two information update mechanisms: ALL and 1-hop, where ALL is to 

broadcast the cache update information to all nodes and 1-hop is to broadcast the cache update 

information within 1-hop. As shown in Figure 5-13, the average hop count in ALL is almost 

same as the CIU scheme. However, in Figure 5-14, the broadcast overhead (i.e., the total 

number of the messages of the cache update information) in ALL is 1.4-17 times higher than 

Figure 5-12 Average hop count of GENAT Topology ( 1.1  ) 

Figure 5-13 Average hop count of Broadcast Distance 
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the CIU scheme. The CIU can achieve a lower average hop count than 1-hop with price on 

moderate increase of broadcast overhead. According to Figure 5-13 and Figure 5-14, the CIU 

scheme can achieve a balance between the average hop count and the broadcast overhead. 

Figure 5-15、Figure 5-16 and Figure 5-17 shows the simulation results under the 3-ary 

tree topology. We can observe that the performance of DAAC and DAAC_CIU are 

performing better in all performance metrics. The hit ratio of DAAC_CIU is the highest. The 

difference of the hit ratio between DAAC and ABC is about 0.8%-1.1%、1.1%-1.4% and 

1.7%-2% for 0.9  、 1   and 1.1   respectively. On the other hand the difference of 

the hit ratio between DAAC_CIU and ABC is about 2.6%-4.6%、3.1%-4.8% and 3.4%-5.3% 

for 0.9  、 1   and 1.1   respectively. 

Figure 5-14 Broadcast overhead 

Figure 5-15 Hit ratio of 3-ary Tree Topology ( 0.9  ) 
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Figure 5-16 Hit ratio of 3-ary Tree Topology ( 1  ) 

Figure 5-17 Hit ratio of 3-ary Tree Topology ( 1.1  ) 

Figure 5-18 Server loading of 3-ary Tree Topology ( 0.9  ) 
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In Figure 5-18、Figure 5-19 and Figure 5-20, DAAC_CIU can reduce the server loading 

by about 8%-13.4% ( 0.9  )、10.1%-14% ( 1  ) and 11.8%-15.7% ( 1.1  ) in 

comparison to ABC. 

 

 

 

 

 

 

 

Figure 5-19 Server loading of 3-ary Tree Topology ( 1  ) 

Figure 5-20 Server loading of 3-ary Tree Topology ( 1.1  ) 
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Figure 5-21 Average hop count of 3-ary Tree Topology ( 0.9  ) 

Figure 5-22 Average hop count of 3-ary Tree Topology ( 1  ) 

Figure 5-23 Average hop count of 3-ary Tree Topology ( 1.1  ) 
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DAAC_CIU scheme can reduce the hop count approximately 4.6%-12.8% compared to 

ABC. Finally DAAC also gained 2.9%-6% reduction of the average hop count as shown in 

Figure 5-21、Figure 5-22 and Figure 5-23. 

 

5.2 Emulation 

In our scenario of emulation is similar with simulation, the parameters of ABC and DAAC 

are as follows:  BASE_AGE is set to be 50 second and MAX_AGE set to 60 second. The age 

is multiple 5 times age when pass a hop same as simulation. There are a total of 1000 files in 

CCN and the number of the chunks for a file follows the geometric distribution with an 

average of 10. The chunk size is 6.4Kbytes and each chunk contains 10 packets. The cache 

size of each node is from 50 to 250 chunks (5 files to 25 files). Each router generates request 

interests according to Poisson process with intensity  = 50 requests per second. Each 

request selects a file according to Zipf-Mandelbrot distribution and the 0.9  、 1   and 

1.1  . All parameters can be summarized as Table 4. The Abilene topology in our 

Emulation is shown in Figure 5-24. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Parameters Value 

Number of File Request 1000 per node 

Poisson Intensity 50 request/s 

Distribution Zipf’s law 

Skew(α ) 0.9,1,1.1 

Number of File 1000 

File Size 10 chunks 

Chunk Size 6.4kB 

Cache Size 50~250 chunks per node 

Base Age 50s 

Max Age 60s 

Table 4 Emulation Parameters 
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 In Figure 5-25 shows the simulation and emulation results under the Abilene 

topology and also show the cache hit ratio of all the caching schemes under different cache 

sizes. The simulation result is shown in dot line and emulation result is shown in solid line. 
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Figure 5-25 Hit ratio of Abilene Topology ( 0.9  ) 

Figure 5-24 Abilene Topology in Emulation 
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DAAC achieves a hit-ratio difference of 4.2-6.1% and 0.5-1.6% compared to LRU and ABC 

respectively. DAAC_CIU achieves a hit-ratio difference of 9.5%-11.7% and 4.6%-9.2% 

compared to LRU and ABC. 

Figure 5-26 show the server loadings of all the caching schemes under different cache 

sizes. DAAC reduces server loading by about 10%-15.6% and 0.7%-2.4% compared to LRU 

and ABC, and DAAC_CIU also reduces server loading by about 25.4%-31.2% and 

14%-24.7% compared to LRU and ABC. The server loading in emulation is a little higher 
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than simulation is because the emulation is sent the real packet data. 

Figure 5-27 show the average hop count of all the caching schemes under different cache 

sizes. DAAC reduce about 11.7%-15.2% and 2.4%-3.4% in average hop count compared to 

LRU and ABC. DAAC_CIU reduce about 18.1%-22.8% and 8.1%-14.8% in average hop 

count with comparison to LRU and ABC. 

 

 

In Figure 5-28 shows show the cache hit ratio of all the caching schemes under different 
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Figure 5-28 Hit ratio of Abilene Topology ( 1  ) 
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cache sizes. DAAC achieves a hit-ratio difference of 5.2-7.7% and 1.1-1.4% compared to 

LRU and ABC respectively. DAAC_CIU achieves a hit-ratio difference of 11.3%-13.2% and 

4.9%-9.5% compared to LRU and ABC. 

 

Figure 5-29 show the server loadings of all the caching schemes under different cache 

sizes. DAAC reduces server loading by about 11.7%-19.7% and 2.4%-3.1% compared to 

LRU and ABC, and DAAC_CIU also reduces server loading by about 30%-35.5% and 

15.7%-29.1% compared to LRU and ABC. 
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Figure 5-30 show the average hop count of all the caching schemes under different cache 

sizes. DAAC reduce about 14.5%-18.5% and 3.7%-4.4% in average hop count compared to 

LRU and ABC. DAAC_CIU reduce about 21.1%-26.3% and 8.5%-17.6% in average hop 

count with comparison to LRU and ABC. 

In Figure 5-31 shows show the cache hit ratio of all the caching schemes under different 

cache sizes. DAAC achieves a hit-ratio difference of 5.5-9.6% and 1.2-1.5% compared to 

LRU and ABC respectively. DAAC_CIU achieves a hit-ratio difference of 13.3%-13.9% and 

5.3%-8.9% compared to LRU and ABC. 

Figure 5-32 show the server loadings of all the caching schemes under different cache 

sizes. DAAC reduces server loading by about 12%-24.2% and 2.2%-3.9% compared to LRU 

and ABC, and DAAC_CIU also reduces server loading by about 35%-36.7% and 

17.5%-28.3% compared to LRU and ABC. 

 

Figure 5-33 show the average hop count of all the caching schemes under different cache 

sizes. DAAC reduce about 14.9%-22.2% and 3.8%-4.9% in average hop count compared to 

LRU and ABC. DAAC_CIU reduce about 25.3%-27.9% and 9.3%-17.9% in average hop 

count with comparison to LRU and ABC. 
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Figure 5-34、Figure 5-35 and Figure 5-36 shows the average response time in simulation 

and emulation. The response time in simulation only take the link delay into consideration. 

On the other hand, in emulation, the response time higher than simulation because interests 

and contents are sent to Local Nox or Global Nox to check the CS table, PIT table and FIB 

table. 
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Chapter 6 Conclusion 
We propose a Dynamic Age-Adjusted Cooperative caching scheme (DAAC), which is 

an extension of Aging-Based Cooperative caching scheme. DAAC has an age-refresh scheme 

to solve the temporal-locality problem in the content delivery services. It also proposes an 

age-decrease scheme to reduce the redundant data problem. The age-refresh scheme operates 

as follows. When a cache hits on a router, that router will reassign the age of that cache to its 

original assignment. Since each cache hit can prolong the life time of the cache being replaced, 

the age-refresh can help to resolve the temporal-locality problem. The age-decrease scheme 

works as follows. A downstream node sends an ACK back to the upstream node. If the 

upstream receives the ACK, it will decay the age of that content exponentially. In addition, 

the Caching Information Update scheme is proposed to provide the caching information for 

the router to obtain the routing efficiently. When a router stores a new content in its local 

cache, it disseminates this information using limited broadcast. The broadcast distance is the 

average hop distance of all shortest paths between the routers and the content server. When a 

router receives this information, it will check if the distance to the new caching router is 

smaller to the current one. If so, that router will update its routing table to modify the routing 

path to the new caching router. Simulation results show that DAAC_CIU can reduce the 

bandwidth consumption by at least 11% and server loading by 16% compared to ABC. 

Furthermore, we use the Software Defined Networks (SDN) to realize the CCN network. The 

simulation and emulation result show that there are almost the same, the difference only 

3~4% at most. Hence, we can further prove our cache strategy not just a theory but also can 

be used to improve the network efficiency.  
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