Dynamic Age-Adjusted Cooperative Caching in Content Centric

Networks

FoyoA e mw

—

RERE R R

IR N R <8 o8 1= 5 - S
Dynamic Age-Adjusted Cooperative Caching in Content

Centric Networks

e AR Student : Wen-Xiang Yang
hERR M Advisor : Chien Chen
B = =i < F

A Thesis
Submitted to Institute of Computer Science and Engineering
College of Computer Science
National Chiao Tung University
in partial Fulfillment of the Requirements
for the Degree of
Master

in

Computer Science

December 2013

Hsinchu, Taiwan, Republic of China
PEAR-F R L0

S A R i

B o2 2w +~ F F o F & 1 &£ F o7 ¥

A= MR BN G LY e RS A LT E RBRT PR 14T

DT AR B P S REL TR L0 AE RR B LR BRI
ﬁ%ﬁ?ﬁ’%@?ﬂ?”ﬁﬂi@“%#*?%’@{V%*%@ At e s
PRl r R epeBece Rl 5 B 2L B ehe B 3R AT - Age-based cooperative caching

SRR S IR U S RN E 0 MV S TS N0 N NP N R e e e
(time-to-live) » 1% o4 = 7 4 SRS R AE m NI S B RE 0 1Y B
BEF R SRR k- A e AR o L EER N SR Y S B HE - EF
ALE T PP AP £ FTADG R Rl BB h Y F R R B 2 e

i Fl'_‘u#f‘g‘*'}g"%]%.'Eﬁﬂ 17 ,%l“Fm‘:’h?/‘}—,—o L I f;. 3 ;‘);‘*1"/‘1 Fg»:}z‘_ﬁ»;g;,h%@gﬁ f\’%l

l- EFALORAL T AR Bl IR e - L TR T e R
FApre R TR G EER R RE DT T RSN AR T T

Heotpet 2 ot FEPERAL Y PR LR EpE s A R NS N hE DT AR
BT ey > B CEEER ST P e A BRI R BT
P b TR Y R GRS S R MRPRE L e T b AP g e
B (Software Defined Networks) = i » #-r2 b % 5 ¢ oo cnie B 28 HE 0L 2 A P ey B 2
fEdy k> & goRl p R R Mininet S22 B8 (7 oka R B2k Bk o & 2L

FEAT o R AT NN 20 R IIN F R P L T o

4

L e 2 "};

BAEF D10 p F 3 B BB B BT R AR B LR
I ABFEAR T

Dynamic Age-Adjusted Cooperative Caching in Content
Centric Networks

Student: Wen-Xiang Yang Advisor: Dr. Chien Chen

Institute of Computer Science and Engineering
National Chiao Tung University

Abstract

Content-Centric Networking (CCN) is a novel networking paradigm. It changes the
host-centric model to a content-centric model and allows each CCN router to cache content.
Since the cache size of a router is limited, design of a cooperative caching scheme is an
important issue in CCN. Among them.is the-Age-Based Cooperative caching scheme (ABC)
which gives an age (i.e., time-to-live) to each. piece of content in the cache based on the
content popularity and the location of the cached node to reduce the bandwidth consumption
and server loading. In this thesis, we focus on:extending the idea of ABC by adding a
dynamic age adjustment scheme. To handle short-term burst requests to the same content, our
age adjustment scheme increases the content’s age value when the cache is hit. To reduce
redundant data, our age scheme decreases the age value of an upstream node when the
downstream node has cached the same content. Besides, we also propose a simple cache
information update scheme to further enhance the routing performance. Simulation results
show that our scheme can further enhance cache hit ratio and reduce server loading and
bandwidth consumption. Furthermore, we realized the CCN architecture with our caching and
routing schemes using Software Defined Networks (SDN). We use SDN emulator Mininet to
verify the performance. The emulation results show that they are very close to the simulation

results.

Keywords: Content Centric Networks, Cooperative Caching, Least Recently Used, SDN,

Shortest Path Routing

& pa

Kithe cha s AR B PEEA &85 AL FH DL o F LR B IR Pl B K
B BGEE L BAAET L FF GBI LA F AR BB F LS
a0 SE G ehdy R & ,—jgrsggu 4G T FIB PE A 45 PR e o o
GEET S EFRNES S LCERE L SRR L SIERTY TR RS L N
EF Y EBPA PR BRI A RS L o B R EE TR AR R

BN A BER R B P R T R R 0 2

L ar @RI FIFELL EALE LS o

ci 2 RA R AR

EHADEFENH 5 L TR HREFRAARECE R 27 DAL L R
iR FRALE T ARl 3 Ap Ak e B PR INRE 0 B PRGN TR W
—HEo T TR F RS- B EA R o FRRBEE M PAA R ITE L > A
WA FSFRAT kR T g K& T (T SDN#E F &Rz y o
F0 A5 2k T g i e S R o

B ABRBRAHANAFELC G LA AR SR B N T Ak

o AN E DB PR BF R e

> P&

B2 B iii
AADSTIACT ... b ettt b b r s \Y
7t OO PRPPOPURRIRt \Y;
E ISR vi
B B 4 it e e e e e —e i —e e e e —e e e —ee e heee i —esaahteeaheresbeee s beesbee e e eeeerreeeaaneins vii
B B bR AR ettt iX
(O gF=T o) (= gl A T # T {1 Ty o] o SRS 1
Chapter 2 RelAted WOTKS........cviiiiie ettt ettt st e te e s beeraesbesneenee e 5
Chapter 3 Age AdJUSIMENT SCHEME.ccviii e e 8

3.1 Dynamic Age-Adjusted Cooperative CaChing i . oiiiiiieiiiieie e 8

3.2 Caching Information Update SChEME ... i it 9
Chapter 4 Implement CCN USING SN i it i sttt inre ettt 10
Chapter 5 Performance EVAlUATION.t i essssssne e dab it sne s s e eesessesnens 17

5.1 SIMUIALION ..o btttk b ettt n e e e 17

LT =440 o oSSR 29
Chapter 6 CONCIUSTONc.ciuiiiiiiiiti ettt bbb ene b 37

Vi

WP &

Figure 1-1 SDN AICHITECTUIEeoiiiiieieie et sre e 4
FIQUIE 1-2 NOX CONIOIIEEevii ettt sreene s 4
Figure 4-1 Open-CCN AICHITECTUIEoiiiiieieie e 10
Figure 4-2 ArchiteCture Of FIOWWVISOIcooiiiiiiiiiie e 11
Figure 4-3 Local NoX and GIoDal NOX........cccuuiiiiiiiiece e 11
Figure 4-4 Nox Network OS and COMPONENTSccvriiiriiieienie e 11
Figure 4-5 Data structure of Cache Info Table..........oooiiiiiiii e 12
Figure 4-6 CCN-ClEent SN INTEIEST.......ccviiiiieiieieeie et 14
Figure 4-7 Retrieve routing information from Global NOX..........ccccoovivieriininninnine e 14
Figure 4-8 Server send CONTENE DACKocveiiiiiiiiiiie e 15
Figure 4-9 Send cache information to Global Nox in CIU schemeccocoiviiniicincne, 15
Figure 4-10 Send content back to dOWNSIream FOULETccooverireiiiisceeeee e 16
Figure 4-11 Downstream router sSend ACK DaCKcooieiiiiiiiiiiie e 16
Figure 5-1 GEANT TOPOIOGYcveviies e it 19
Figure 5-2 3-ary Tree TOPOIOGYoftiiiii e snns suess e iashesseeseeseeseestessestessessesseeeensessesseseessesseees 19
Figure 5-3 ADIIENE TOPOIOGY ..ottt o st e ettt b 20
Figure 5-4 Hit ratio of GEANT Topology (@ =0.9).....c..ciiiii e 20
Figure 5-5 Hit ratio of GEANT TOPOIOGY ('=1)ciiomniiiiieie s 20
Figure 5-6 Hit ratio of GEANT Topology (@ =1.1) .. 21
Figure 5-7 Server loading of GEANT Topology- (@ =0.9) ..o 22
Figure 5-8 Server loading of GEANT Topology (& =1) .cecoveieiiieiiiieeeeee e 22
Figure 5-9 Server loading of GEANT Topology (@ =1.1) .cccoceoeiiiiiiiiieeeiee e 22
Figure 5-10 Average hop count of GEANT Topology (¢ =0.9)....cccccvviiiininiiiiieieceeee, 23
Figure 5-11 Average hop count of GEANT Topology (& =1) .cccccvvviiiininieeee e 23
Figure 5-12 Average hop count of GENAT Topology (& =1.1) .ccccviiiiniinieiieiece e, 24
Figure 5-13 Average hop count of Broadcast DIStanceccccceveriiinienienene e 24
Figure 5-14 Broadcast OVErNEAd...........ccuviiiiiiie i 25
Figure 5-15 Hit ratio of 3-ary Tree Topology (@ =0.9)..cccoeieiiiiiiiiiee e 25
Figure 5-16 Hit ratio of 3-ary Tree Topology (@ =1) ...cccerereieniieiisiseeeeee e 26
Figure 5-17 Hit ratio of 3-ary Tree Topology (@ =1.1) v 26
Figure 5-18 Server loading of 3-ary Tree Topology (& =0.9)....ccccooiiiiiniiiiiieee 26
Figure 5-19 Server loading of 3-ary Tree Topology (& =1) ...ccccovviiiiiniiieiieee e 27
Figure 5-20 Server loading of 3-ary Tree Topology (o =1.1) ..cccceeiiiiiiiieiieee e 27
Figure 5-21 Average hop count of 3-ary Tree Topology (@ =0.9).....cccovriiiiiininiieiee 28
Figure 5-22 Average hop count of 3-ary Tree Topology (@ =1) ..cccccvvviiiiiiieiiieiiecee 28
Figure 5-23 Average hop count of 3-ary Tree Topology (@ =1.1) ..ccccceviiiiiiiiiniiiee 28

vii

file:///H:/交通大學(完稿)-final-1206.1100.docx%23_Toc374094437
file:///H:/交通大學(完稿)-final-1206.1100.docx%23_Toc374094438
file:///H:/交通大學(完稿)-final-1206.1100.docx%23_Toc374094439
file:///H:/交通大學(完稿)-final-1206.1100.docx%23_Toc374094440
file:///H:/交通大學(完稿)-final-1206.1100.docx%23_Toc374094441
file:///H:/交通大學(完稿)-final-1206.1100.docx%23_Toc374094442
file:///H:/交通大學(完稿)-final-1206.1100.docx%23_Toc374094443
file:///H:/交通大學(完稿)-final-1206.1100.docx%23_Toc374094444
file:///H:/交通大學(完稿)-final-1206.1100.docx%23_Toc374094445
file:///H:/交通大學(完稿)-final-1206.1100.docx%23_Toc374094446
file:///H:/交通大學(完稿)-final-1206.1100.docx%23_Toc374094447
file:///H:/交通大學(完稿)-final-1206.1100.docx%23_Toc374094448
file:///H:/交通大學(完稿)-final-1206.1100.docx%23_Toc374094449
file:///H:/交通大學(完稿)-final-1206.1100.docx%23_Toc374094450
file:///H:/交通大學(完稿)-final-1206.1100.docx%23_Toc374094451
file:///H:/交通大學(完稿)-final-1206.1100.docx%23_Toc374094452
file:///H:/交通大學(完稿)-final-1206.1100.docx%23_Toc374094453
file:///H:/交通大學(完稿)-final-1206.1100.docx%23_Toc374094454
file:///H:/交通大學(完稿)-final-1206.1100.docx%23_Toc374094455
file:///H:/交通大學(完稿)-final-1206.1100.docx%23_Toc374094456
file:///H:/交通大學(完稿)-final-1206.1100.docx%23_Toc374094457
file:///H:/交通大學(完稿)-final-1206.1100.docx%23_Toc374094458
file:///H:/交通大學(完稿)-final-1206.1100.docx%23_Toc374094459
file:///H:/交通大學(完稿)-final-1206.1100.docx%23_Toc374094460
file:///H:/交通大學(完稿)-final-1206.1100.docx%23_Toc374094461
file:///H:/交通大學(完稿)-final-1206.1100.docx%23_Toc374094462
file:///H:/交通大學(完稿)-final-1206.1100.docx%23_Toc374094463
file:///H:/交通大學(完稿)-final-1206.1100.docx%23_Toc374094464
file:///H:/交通大學(完稿)-final-1206.1100.docx%23_Toc374094465
file:///H:/交通大學(完稿)-final-1206.1100.docx%23_Toc374094466
file:///H:/交通大學(完稿)-final-1206.1100.docx%23_Toc374094467
file:///H:/交通大學(完稿)-final-1206.1100.docx%23_Toc374094468
file:///H:/交通大學(完稿)-final-1206.1100.docx%23_Toc374094469
file:///H:/交通大學(完稿)-final-1206.1100.docx%23_Toc374094470
file:///H:/交通大學(完稿)-final-1206.1100.docx%23_Toc374094471
file:///H:/交通大學(完稿)-final-1206.1100.docx%23_Toc374094472

Figure 5-24 Abilene Topology in EMUIALIONcceiieiieiicc e 30

Figure 5-25 Hit ratio of Abilene Topology (& =0.9).....ccccieiiiiiiiiic e 30
Figure 5-26 Server loading of Abilene Topology (@ =0.9).....cccociiiiiiiiiiic e 31
Figure 5-27 Average hop count of Abilene Topology (@ =0.9).....ccceviriiiiiiiiniinee e 31
Figure 5-28 Hit ratio of Abilene Topology (@ =1)ccceciiiciiiiiiiiiie e 32
Figure 5-29 Server loading of Abilene Topology (& =1) ..cccccviiiiiiiiiiciee 32
Figure 5-30 Average hop count of Abilene Topology (& =1) ..ccccoevvvieiiiieiieree e 33
Figure 5-31 Hit ratio of Abilene Topology (@ =1.1) ...ccccviieiiiiiiiiie e 33
Figure 5-32 Server loading of Abilene Topology (& =1.1) ..ccccooeiiiiiiiiniicce e 34
Figure 5-33 Average hop count of Abilene Topology (@ =1.1) ..ccccccviiriiiiiniienine e 35
Figure 5-34 Average response time of Abilene Topology (¢ =0.9) ...ccccceevviiiiiiiniiieiee 35
Figure 5-35 Average response time of Abilene Topology (@ =1)....ccccvvviviiiniencienine, 36
Figure 5-36 Average response time of Abilene Topology (@ =1.1)ccecvieiiiineniiininnen 36

viii

file:///H:/交通大學(完稿)-final-1206.1100.docx%23_Toc374094473
file:///H:/交通大學(完稿)-final-1206.1100.docx%23_Toc374094474
file:///H:/交通大學(完稿)-final-1206.1100.docx%23_Toc374094475
file:///H:/交通大學(完稿)-final-1206.1100.docx%23_Toc374094476
file:///H:/交通大學(完稿)-final-1206.1100.docx%23_Toc374094477
file:///H:/交通大學(完稿)-final-1206.1100.docx%23_Toc374094478
file:///H:/交通大學(完稿)-final-1206.1100.docx%23_Toc374094479
file:///H:/交通大學(完稿)-final-1206.1100.docx%23_Toc374094480
file:///H:/交通大學(完稿)-final-1206.1100.docx%23_Toc374094481
file:///H:/交通大學(完稿)-final-1206.1100.docx%23_Toc374094482
file:///H:/交通大學(完稿)-final-1206.1100.docx%23_Toc374094483
file:///H:/交通大學(完稿)-final-1206.1100.docx%23_Toc374094484
file:///H:/交通大學(完稿)-final-1206.1100.docx%23_Toc374094485

% P&

Table 1 Type of packet & Action of SWITCHccoiiiiiiii e 13
Table 2 ACtion OF FIOWVISOKc.oiiiiiiii et e 13
Table 3 SIMUIAtION ParameEterS........c.cciiiiiiiiiie ettt e 18
Table 4 EMUlation PArametersc.cooiioiieiie ettt st 29

Chapter 1 Introduction

Many content delivery services have been developed in the Internet such as Youtube,
Hulu, Netflix, etc. Saving the network bandwidth consumption and the server load are the
important issues of this kind of services. Content Centric Networking (CCN) or Information
Centric Network (ICN) [1-10] is a new type of Internet architecture developed to solve this
issue. The basic idea of CCN is to replace the narrow waist at the network layer from the
physical network location (i.e., Internet Protocol (IP)) to the content name itself. Each CCN
router is equipped with the storage to temporally cache contents. If one of the CCN routers on
the routing path has stored the corresponding content that a user requested, then it
immediately sends it back to the user. Since the user can obtain its requested content from an
intermediate router not necessarily from server, then'CCN can save server load and bandwidth

consumption in the Internet.

In CCN [1], a content consumer sends out an interest packet, which carries a name that
identifies the requested content. Once: the interest reaches a router that has the requested
content, a data packet is sent back. There are-three data structures in router to support such
routing process as follows: (1) Content Store (CS), (2) Forwarding Information base (FIB), (3)
Pending Interest Table (PIT). CS is used to store content when data packets pass through.
However, the caching policy is managed by caching algorithm, such as FIFO, LRU, etc. FIB
is like a routing table in IP. Instead of IP address, the content name in the interest is
compared with the entries in FIB to decide which face (port) to forward the Interest packets.
When an Interest arrived, PIT table will record the arrival face of that interest if there is no
corresponding content in CS. Then, the content can be send back reversely to the content
consumer according to the PIT information.

Efficient caching algorithms profoundly influence the performance of CCN. Least
Recently Used (LRU) is a common caching strategy, where a node always replaces data with
a least recently used when the cache overflows. Since LRU lacks of the coordination between

nodes and cache contents, thus a lot of cooperative caching schemes have been

1

proposed[2-12].[8] considers a hierarchical cache. Each cache computes an average maximum
document access interval without a cache miss to decide whether the content should be
cached or not. In [9], each node collects the miss rate, miss penalty, cost loss of evicting
objects, and access frequency to decide which content to be cached and the optimal caching
locations. In [2], the upstream node adds a flag in the content to suggest that the downstream
node to cache this content based on the popularity of this content.

Age-based Cooperative Caching(ABC) [10] is a simple and effective cooperative
caching scheme in CCN. ABC computes an age of content (i.e., the time-to-live of the content
in the cache) based on the popularity of that content and the location of the cached node. To
pass the age information to the downstream node, ABC adds an age field to the content. When
the cache overflows, ABC replaces one of the out-of-date contents in its cache. The benefits
of ABC are as follows: (1) ABC gives the popular content to a larger age to stay in the
network. (2) ABC gives a cache near the network edge a larger age to achieve a better
response time, and (3) the content.near the server has a smaller age such that the less popular
content has a better chance of being cached.

However, some issues still need. to be solved in ABC. In most content-centric services
have the burst requests to the same content-within a short period of the time due to a new
lease of video or a block buster movie. Although ABC has considered content popularity (i.e.,
the long- term statistical information) to give the age of the content in the cache, it does not
adjust the age taking this temporal-locality factor into consideration. Besides, there are still
some redundant contents among CCN routers because ABC cached content in each router on
the routing path even though each router gives a different age to content.

On the other hand, the process of getting the content-location information (i.e., the cache
information of other node) is another important factor to achieve a better performance in CCN.
When a node knows the content-location information, it can help that node to redirect its
request to the content caching node which is closer than content server. Complete broadcast is
a naive way to disseminate the cache information among routers, but this way may cause a lot
of extra overhead. Therefore, this study further designs a restricted broadcast scheme to

reduce the overhead of the content location information dissemination.

This study extends the ABC protocol by adding a dynamic age adjustment scheme. To
overcome the short-term burst request to the same content issue in CCN, an age-refresh
scheme is added in ABC. When a cache hits, it will refresh that content’s age to its original
assignment. Since the cache hits will continue to refresh the age of the content and prolong
the survival time of the content in CCN, the age-refresh scheme can handle the
temporal-locality. To solve the redundant contents in ABC, an age-decrease scheme is
proposed. When a downstream node decides to cache content in its local cache, it will send an
acknowledgement (ACK) to the upstream node. When the upstream node receives the ACK, it
will immediately decrease the age of that content exponentially. When more downstream
nodes store redundant contents, upstream node will decrease the age of that content more such
that that content will edge out from the upstream nodes earlier. In this way, the cache space
can be used more efficiently. This study further designs a cache information update scheme to
inform the near-by routers. The cache information update scheme is a restricted broadcast
scheme. When a node caches content, it will broadcast this-information within k hops, where k
is the average length of shortest paths between nodes and content server. When a node
receives this information, it will update its routing table if the content cached node is closer
than original content server. We evaluate our-scheme under GEANT topology and 3-ary tree
topology. The simulation results show that our age adjustment scheme has an improvement of
31% and 20% in bandwidth consumption compared to LRU scheme and ABC scheme,
respectively.

Considering implementing the CCN architecture on the other hand, it is difficult to
substitute all the traditional switches in the whole world with CCN switches. One of the best
ideas is using Software Defined Networks (SDN) [13] , as shown in Figure 1-1. The main
idea of SDN is to separate the network into the control plane and the data plane. The ISP can
develop its own application to control the network operation. Hence, the CCN mechanism can
be implemented over IP architecture using SDN without too many costs. OpenFlow is a
communication interface between the control and forwarding layers of SDN architecture. In
the control plane, the controller can manage the network flow through OpenFlow protocol.

In our emulation, we use Mininet [14] with Open-vSwitch and implement the three

3

control :
e cs || PIT 3| FiB

OpenFlow

Soft Open-CCN
Protocol

Local NOX

data

)

plane | L~ | Linux

Figure 1-2 Nox Controller
Figure 1-1 SDN Architecture

tables (CS, PIT, FIB) of CCN in nox controller;[15] as shown in Figure 1-2. We evaluate our
scheme under Abilene topology. The emulation results show that our age adjustment scheme
has an improvement of 26% and.13% in bandWidth consumption compared to LRU scheme
and ABC scheme, respectively. Besides, the simulation:'results in Abilene topology are almost
match the emulation results.

The rest of this thesis is organized‘as follows. Chapter 2 introduces the related works.
Chapter 3 presents details of our dynamic age adjustment scheme. Chapter 4 shows how to
realize CCN using SDN. Chapter 5 discusses simulation and emulation results, and Chapter 6

concludes this thesis.

Chapter 2 Related Works

CCN is different from Content Distribution Network (CDN) where cache space is
distributed to each router. The idea does not only reduce the cost in hardware equipment
(compared to the equipment at the server level) but also saves the bandwidth consumption and
server loading of the network. Designing efficient cooperative caching schemes is an
important issue in CCN. Leave Copy Down (LCD) [17] stores another data in I-1 level node
only when a cache hit in | level node. Move Copy Down (MCD) [17] is similar to LCD. The
difference is that MCD only caches the data in the I-1 level node and deletes the data in the |
level node. In this way, the cache space in MCD strategy is more efficiently utilized, but it
may cause some requests to traverse more hops to reach their corresponding contents, and
result in more bandwidth consumption in comparison to LCD. WAVE [2] deals with a
chunk-level caching strategy also similar to LCD. The difference is that WAVE uses
piggyback suggestion bit to inform the downstream node, and a downstream node can ignore
or accept the suggestion from the upstream node. Another difference is that the suggestion
from upstream is based on the popularity of content. The research of [8] and [9] are designed
for a hierarchical cache. However, [8] maintains a characteristic time which is the average
time between two replacements in the cache. According to the access frequency and the
characteristic time, a low-pass filter algorithm is designed to decide which one of the nodes
upon the routing path from the request node to the content server should cache the data. The
authors of [9] on the other hand collect miss rate, miss penalty, cost loss of evicting objects
and access frequency from the routing path. Based on this information, the optimization
problem is formulated to decide the best locations of contents. The idea of [11] is calculating
the distance between client and server and cache size to decide the cache probability. The data
closer to client, the higher probability the data will be cached. [18] use the Shield function to
keep track the request rate of Interest. The primary purpose of the Shield function is to
discourage unpopular data being cached. Hence, the data will be cached when the Interest is

requested over a threshold.

ABC [10] adds an ‘age’ field to each content packet representing the content age of the
upstream node. ABC dynamically configures content’s age based on (a) distance (i.e., the
number of hops) of cached router toward the server, and (b) popularity of content. When
content reaches a router, the router first checks cache space for the content. If there is no
available space, the router removes the most expired content in its local cache, and gives the
new-arrival content an age as follows. If the router is the first router next to the content server,

then the age for the content is given as:
age = BASE _ AGE *weight @®

where BASE_AGE s the initial value of the age and weight is the ratio of access
frequency of the cached content. Otherwise, the router extracts the age of incoming content

(Cy) and calculates the new age as:
age =min(C,*(1+weight), MAX _ AGE) (2)

where MAX_AGE value is used to avoid-the age growth infinitely. Based on Equations (1)
and (2), ABC has the following two features: 1) The more hops away from server, the more
age it has. 2) The more popular the content is, the longer age it has.

On the other hand, the routing protocol is also an important aspect of this scheme.
Breadcrumbs [19] leaves routing message (breadcrumb) when a router forwards content. The
routing message includes where the data is from, where the data is forwarded to, and when the
arrival time of the content is. If a request matches the index of breadcrumb, the request is
forwarded to the caching router according to breadcrumb information. Potential Based
Routing (PBR) [20] uses the capacity and the traffic load of caching node to define the quality
of the content, and broadcast the quality of content to its neighbor node. The node calculates
the potential value according to the value of content quality and hop count. The lower the
potential value it has, the more chances interest will be routed to that node. INFORM [21]

uses 2 phases to make the routing decision. First phase is “Exploration phase” which is

6

calculating the Q value to keep track efficiency of routing path. Second phase is

“Exploitation phase” which is to decide the routing path using different interface according
to the Q value. The lower Q value, the higher priority will be used to forward packet. The idea
of Stateful Forwarding Plane[22] is that use color to track the state of interface. If the data
come back overtime, then router will try alternative interfaces to send the packet and mark the
interface is yellow state. Otherwise, the interface will be mark green state when data come
back within time limit. Hash routing [23] is using hash function to designate the router to
cache the data. Edge router is responsible for forward data to designated core router. There are
different ways to forward data when data sent back from server. The Symmetric is using the
same routing path and Asymmetric is using shortest path when send packet out. The Multicast
is sending one copy of data to original routing path to cache in designated core router and

another copy of data is sending to client by shortest path.

Chapter 3 Age Adjustment Scheme

Even though ABC has taken the popularity into consideration, and achieves better
performance than LRU, it cannot handle the short-term burst requests to the same content.
Besides, ABC still suffers from redundant data problem because ABC cached content in each
router on the routing path. This section introduces the principle of our age adjustment scheme
which is aimed at further improving the performance of ABC, and solves the problems of
routing information dissemination. Subsection 3.1 introduces the detail of our age adjustment

scheme. Subsection 3.2 is a cache information update scheme.

3.1 Dynamic Age-Adjusted Cooperative Caching

ABC is an efficient cooperative caching scheme, which outperforms the LRU and FIFO.
This study extends the ABC scheme byradding a dynamic age-adjusted scheme, named
Dynamic Age-Adjusted Cooperative Caching (DAAC). DAAC has two parts: (1)
age-decrease scheme and (2) age-refresh scheme, DAAC uses an acknowledgement-based
scheme to decrease the age of the Content on the-upstream routers in order to reduce the
redundant data. When cache hits, age-refresh scheme refreshes the content’s age to its original
assignment to overcome the temporal-locality.

1) Age-decrease scheme: When content is forwarded to a downstream router, if the
downstream router has free space for data caching, then the downstream router sends an
acknowledgement back to the upstream router. When the upstream router receives the ACK, it
decreases the age of content using equation (3).

Number of ACK (3)

age = age*(l—%)

where f=K-1 and K is the node degree of the upstream router. According to Eq(3), the
redundant data can be dropped sooner due to exponential age decrease.

2) Age-refresh scheme: Our scheme refreshes the age of its original assignment when

content hit to overcome the short-term burst requests. It’s very common in content services
that the same content getting lots of hits in a short period of time such as a new release of TV
series, sport broadcasts, news events, etc. Since a burst of request will be sent within a small
period of time to the content servers, it may cause a lot of traffic and bandwidth consumption
to the networks. Therefore, the age-refresh scheme can keep the content in cache to serve this

kind of burst requests without content servers involving.

3.2 Caching Information Update Scheme

We design a caching information update scheme to redirect the request to the near-by
router which caches the content. When a router has stored content in its cache, that router
sends content caching information to other routers using limited broadcast. The broadcast
distance (i.e., the number of hops of rebroadcast) is the average number of the hops from the

routers to the content server. It can be defined as in equation (4):

> #hops fromnto S

Broadcast Distance = 122

-1 (@)
=

where U is the set of all routers in the network and S is the content server. Since broadcast
distance is the average number of the hops from the routers to the content server, most of the
routers in the network can redirect the request to the closest router hold the content within its
neighborhood. When a router receives cache information, it will check if the distance to the
location of the cache replica is less than the distance to the content server. If so, it will modify
the routing table to the cached router. The caching information update scheme can redirect the
interest to the near-by caching router, even though the caching router is not on the original

routing path.

Chapter 4 Implement CCN using SDN

The CCN network is an efficient way to solve the current IP network traffic problem.
Several methods to implement CCN have been published. These are detailed below:

1. Clean-slate approach : This approach follows the CCN mechanism instead of TCP/IP
and uses CCN routers in place of traditional IP routers. But this method is too difficult to
realize.

2. Overlay approach : This approach uses software to develop the CCN mechanism such
as CCNx. The CCNx can be used for current IP network. However, the CCNx cannot be

ported to routers and it does not support QoS or load balancing functions.

Local Nox Global Nox

i .
: T

! _________‘_-C_Jp_en vSwitch
1

i / -
i

i . Open vSwitch
] Client

\ Open VSW‘ Client

Figure 4-1 Open-CCN Architecture

In order to implement CCN in current IP architecture, the OpenFlow is used to design the
CCN architecture. The Open-CCN architecture is shown in Figure 4-1. Mininet is used to
emulate the OpenFlow network and Flowvisor [16] is used to forward the packet to the
corresponding nox controller. In Mininet, each Open-vSwitch connects to one host and two
nox controllers: one controller is the corresponding Local Nox, and the other is the Global
Nox. All hosts are running a ccn-client program, except the node that is chosen as the server

which is running a ccn-server program.

10

s N

Slicel Slice2 Slice3

N——/

FlowSpacel FlowSpace2

. penFlow = y

Figure 4-2 Architecture of Flowvisor

h

cs PIT : FIB Cache
v Info

Soft Open-CCN : ' Soft Open-CCN

Local NOX 39 Global NOX

Linux

Figure 4-3 Local Nox and Global Nox

Info

Discovery

Global nox

component
nox network os

Figure 4-4 Nox Network OS and Components
However, there is a problem that OpenFlow switch cannot connect to multiple controllers.
11

chunkname

DPIDDPID .. DPID

DPIDDPID .. DPID

Figure 4-5 Data structure of Cache Info Table

Therefore, we use the Flowvisor software to forward packets to the corresponding nox
controller. Flowvisor is configured between Mininet and Nox as shown in Figure 4-1. There
are two main components in Flowvisor: one is Flowspace and the other is Slice. The
Flowspace is a rule which is consisted of different setting of IP header. A different Flowspace
can be set to send the packet to different Slice. Each slice corresponds to a Nox controller.
The architecture of Flowvisor is shown in Figure 4-2.In our emulation, each Open-vSwitch
corresponds to a Local Nox controller and every Open-vSwitch connects to the Global Nox
controller.

For implementing our DAAC_“CIU scheme, the three tables are separated into two parts.
The CS table and PIT table are implemented in “Local Nox”, and the FIB table is
implemented in “Global Nox” as shown in Figure 4-3. In the Nox network operating system,
there are 2 components which can be used to establish the topology information as shown in
Figure 4-4. First, the “Discovery” component sends LLDP messages to every OpenvSwitch to
test the link between each OpenvSwitch and the message is stored in a data structure. The
next step is that “Topology” component will read the data structure to establish the topology
information. The Global Nox uses Dijkstra’s algorithm to calculate the shortest path between
each node when topology is changed. The out port of shortest path and the hop count between
each node will be stored in the FIB table. Furthermore, a Cache Info Table is also maintained
in Global Nox. The data structure of the Cache Info Table is shown in Figure 4-5. The Cache
Info Table will maintain all the cache information of the router. Therefore, the same chunk

may be stored in two or more routers. The Global Nox will compare the FIB table and Cache

12

Info Table to find the closest Local Nox which stored the content in the cache when a request

of Interest is received.

Type ‘ Message(rule) Action of Switch

general rule Interest send to flowvisor

general rule Content send to flowvisor

general rule Content(last packet) send to flowvisor

general rule ACK send to flowvisor

modify rule CIU_routing modify packet header of Interest
and then sent to flowvisor

modify rule CIU_caching modify packet header of Interest
and then send to flowvisor

Table 1 Type of packet & Action of Switch
The CRC-64 is used to encode the file name into a unique interest name and store the
interest name in IP header. For the sake of implementing easily, UDP protocol is used to send
the packet, and raw socket is used to receive the content back. The message list in Table 1
will be installed in Open-vSwitch-when Nox controller starts up and all the rules as shown in

Table 2 will install in Flowvisor.

Message Action of Flowvisor

Interest send to corresponding Local Nox
Content send to corresponding Local Nox
Content(last packet) | send to corresponding Local Nox
ACK send to corresponding Local Nox
CIU caching send to Global Nox
CIU routing send to Global Nox

Table 2 Action of Flowvisor

The step of sending interest is that ccn-client sends a packet with interest name as shown
in Figure 4-6. The Open-vSwitch will send the packet to Flowvisor when match the rule of
Interest that is installed early and then Flowvisor sends the packet to corresponding nox
according to DPID (mac address) of Open-vSwitch. The corresponding Local Nox follows

CCN rules to check the CS table. The content will be sent back to the client when cache hit in

13

Local nox Global nox Local nox

t // Open-vSwitch Open-vSwitch\;

client client

Figure 4-6 CCN-Client send interest

PIT table and then send the interest to next router according to the routing information in FIB
table when cache miss in CS table. In our CIU scheme, the Local Nox will send the packet to
Global Nox instead of searching FIB. table in Local Nox as shown in Figure 4-7. The
Open-vSwitch modifies the Interest message to CIU_routing message and then sends to
Global Nox through Flowvisor. If-there is caching information within K hops in FIB table of
Global Nox, then Global Nox ask Open-vSwitch. modifies the CIU_routing message to
Interest message and sends to corresponding output port. The K hops is calculated by equation

(4). Otherwise, the interest packet will be sent to the output port towards the content server.

Local nox Global nox Local nox
= check =
Ei ; FIB Table & il

: Cache Info. Sl
Table

| !
1

- ™,

t yd Open-vSwitch Open-vSwitch\t

Modify rule: CIU routing

client client

Figure 4-7 Retrieve routing information from Global Nox

The server send the content back when receives request as shown in Figure 4-8. The

14

Local nox Global nox Local nox

S B storedatain
CS table

t

- -,

; J Open-vSwitch Open-vSwitch \

client server

Figure 4-8 Server send content back

Open-vSwitch sends the content to Flowvisor, and then Flowvisor forward the content to
corresponding Local Nox. In our CIU scheme, if data is stored in CS Table in Local Nox, the
Local Nox will send a cache information.packet to Global Nox as shown in Figure 4-9. If the
CS table is full and the replacement occurs, the name of the removed data will be store in the
payload of the packet of cache information. When Global Nox receives the cache information
packet, it will store the cached name and DPID of Open-vSwitch in FIB table. If there is the
name of the removed data in payload, the cached name will be removed in FIB table. Besides,
The Local Nox will store the data in CS table and then send data back according to the output

port of PIT table as shown in Figure 4-10. Furthermore, our DAAC scheme will send an ACK

Local nox Global nox Local nox
=i | update =il
m 2 Cache Info. m !

& Table

T

., e,

t e Open-vSwitch Open-vSwitch \

Modify rule: CIU caching
client server

Figure 4-9 Send cache information to Global Nox in CIU scheme

15

Local nox Global nox Local nox

A

t |

o~

. .
Y
t J Open-vSwitch

Open-vSwitch

client

server

Figure 4-10 Send content back to downstream router

Local nox Global nox Local nox
=

& Il reduce the age
EH ‘ of content

| t

—

- w
ACK - \
t Open-vSwitch

Open-vSwitch

client

server

Figure 4-11 Downstream router send ACK back

back to upstream router to reduce the age of content when downstream router caches the same
content as shown in Figure 4-11.

16

Chapter 5 Performance Evaluation

We conduct a series of simulations under different network scenarios to evaluate DAAC
with other caching schemes in CCN. Subsection 5.1 introduces the simulation settings and

results. Subsection 5.2 show the Emulation scenario and results.

5.1 Simulation

We evaluate the performance of our scheme using ccnSim [24]. CcnSim is a Content
Centric Networks simulator in the OMNet++ framework. The implementation of ccnSim is
based on the architecture of CCN in [1], and the routing path based on a default routing path
which calculate by Dijkstra’s algorithm.

We evaluate our dynamic age-adjusted scheme with two other caching schemes: ABC
and LRU. We also implement two kinds of dynamicage-adjusted schemes, DAAC and
DAAC_CIU, where DAAC_CIU s the DAAC scheme with cache information update scheme
(CIU). The parameters of ABC and DAAC are-as follows: BASE_AGE is set to be 50
second and MAX_AGE set to 60 second.-To enlarge-the effect of ABC method, we multiple 5
times age when pass a hop. There are a total of 1000 files in CCN and the number of the
chunks for a file follows the geometric distribution with an average of 10. The chunk size is
6.4Kbytes and the cache size of each node is from 50 to 250 chunks (5 files to 25 files). Each
router generates request interests according to Poisson process with intensity A = 50 requests
per second. Each request selects a file according to Zipf-Mandelbrot distribution [25].
Zipf-Mandelbrot distribution can be used to imitate the data access pattern in the content
distributed services such as video on demand, IPTV, web caching, etc. The distribution

equation is shown as follows.

2ipf () = +Kq)a 5)

where « is the distribution parameter, q is the shift parameter, i is the rank of data and K is

17

the normalizing constant. Zipf-Mandelbrot distribution can reflect the different skew of the
data access pattern in the network. When « is going higher, the distribution of the content
access requests becomes steeper, and vice versa. Our simulations set «=0.9 ~ =1 and

a =1.1. All parameters can be summarized as Table 3.

Parameters Value

Number of File Request 1000 per node
Poisson Intensity 50 request/s
Distribution Zipf’s law
Skew(a) 09,11.1
Number of File 1000
File Size 10 chunks
Chunk Size 6.4kB
Cache Size 50~250 chunks per node
Base Age 50s
Max Age 60s

Table-3 Simulation-Parameters

There are three performance metrics: hit ratio, server loading and average hop count.
® Hit Ratio: the ratio of the number.of-interest served by caches to the total number of

interest arrived at caches.
® Server loading: the number of the interests served by content server.

® Average hop count: the average number of hops that content takes to reach the
requester
We use three different network topologies in our simulation: GEANT as in Figure 5-1
and 3-ary tree structure as in Figure 5-2, Abilene as in Figure 5-3. GEANT is a realistic
pan-European topology and tree structure is a synthetic 3-ary tree. In GEANT topology, there
are 22 nodes and node 12 is chosen as the content server. All of the other nodes can send
requests except the content server. In 3-ary tree topology, there are 40 nodes and only leaf
nodes send request (i.e., nodes 13-39). The root of the tree (i.e., node 0) is chosen as the

content server. In Abilene topology, there are 11 nodes and node 2 is chosen as the content

18

server. The simulation result of Abilene topology is shown in subsection 5.2 with emulation

result.

Figure 5-2 3-ary Tree Topology

19

Figure 5-3 Abilene Topology

Hit ratio

30% C
25%
E —=—LRU
20% -+
g —e—ABC
15% —+
10% = —+—DAAC
(C
sop f ——DAAC_CIU
0% - .
50 100 150 200 250 Cache size
Figure 5-4 Hit ratio of GEANT Topology (a=0.9)
Hit ratio
35% ¢
30%
25%
20%
15% -+
10% - /
59 - —8— DAAC_CIU
0% :

50 100 150 200 250 Cache size

Figure 5-5 Hit ratio of GEANT Topology (« =1)

20

Hit ratio
50%

40% : / —@—LRU
30% + / o—ABC

10% -+ —8—DAAC_CIU

[

0% - T T T T 1
50 100 150 200 250 Cache size

Figure 5-6 Hit ratio of GEANT Topology (a=1.1)
Figure 5-4 ~ Figure 5-5 and Figure 5-6 shows the simulation results under the GEANT

topology with 3 different distribution parameters «=0.9 - =1 and a=1.1 respectively
and which also show the cache hit ratio of all.the caching schemes under different cache sizes.
DAAC achieves a hit-ratio difference of 0.7%-1.0% (a=0.9) ~ 1.1%-1.3% («=1) and
1.5%-1.7% (a=1.1) compared.to ABC. DAAC CIU achieves a hit-ratio difference of
5.5%-9.6% (¢ =0.9) ~ 6%-10% (e« =1) and 7.3%-10.4% (« =1.1) compared to ABC. Since
both DAAC and DAAC_CIU use the age-refresh scheme to increase the age of a cache being
recently hit, they have a higher probability to have a cache. Since DAAC_CIU provides the
content’s lately caching location information, it performs best in cache hit ratio. Moreover, hit
ratio in a=1.1 is one order of magnitude better than when a=1 and a«=0.9 for our
schemes. Since our algorithm relay on the temporal locality, the content requests distribute in
steeper, the hit-ratio improvement is much higher.

Figure 5-7 ~ Figure 5-8 and Figure 5-9 show the server loadings of all the caching
schemes under different cache sizes. DAAC reduces server loading by about 1.0-2.8%
(x=0.9) ~ 2%-3.4% (ax =1) and 2.6%-4.0% (« =1.1) compared to ABC, and DAAC_CIU
also reduces server loading by about 18.1%-30.5% (a=0.9) ~ 20%-33% (o =1) and
25%-35.1% (a =1.1) compared to ABC. Since most of the requests are redirected to the
near-by routers rather than to the content server, DAAC_CIU can reduce server loading much

better than other schemes.

21

Server loading

o 20
(=) E
S 18 + .\\ —=—LRU
- c
< =
14
C == DAAC
12 -
10 - —e—DAAC_CIU
8 - .
50 100 150 200 250 Cache size
Figure 5-7 Server loading of GEANT Topology (a=0.9)
Server loading
3 20 =
818 — —8—LRU
<16
14 _ —+—ABC
12 —#—DAAC
10
c —e—DAAC_CIU
- 1
50 100 150 200 250 Cache size
Figure 5-8 Server loading of GEANT Topology (a =1)
Server loading
3 18 =
816 —=—RU
<14
12 —+—ABC
10 —#—DAAC
B —e—DAAC_CIU
- 1
50 100 150 200 250 Cache size

Figure 5-9 Server loading of GEANT Topology (a =1.1)

22

Average hops

35 ¢
3.0 +

- —@—RU
2.5 —N

C —4—ABC
2.0 \\Q\‘\' DAAC

1.5 —+ —e—DAAC_CIU

1.0

50 100 150 200 250 Cache size

Figure 5-10 Average hop count of GEANT Topology (a=0.9)

Average hops
3.5

3.0

\ —&—RU
25 +

. - .\k \\.. ——ABC
1.5 —+ —e—DAAC_CIU

1.0

50 100 150 200 250 Cache size

Figure 5-11 Average hop count of GEANT Topology (a =1)
Figure 5-10 ~ Figure 5-11 and Figure 5-12 show the average hop count of all the caching

schemes under different cache sizes. DAAC reduce about 3%-3.9% (a=0.9) ~ 4.2%-4.9%
(x=1) and 5.2%-6.2% (a=1.1) in average hop count compared to ABC. DAAC_CIU
reduce about 10.5%-18.4% (a=0.9) ~ 11.9%-19.9% (a =1) and 14%-21.5% (a=1.1) in
average hop count with comparison to ABC. Since DAAC and DAAC_CIU increase the
average hit ratio, it has a more chance to obtain contents from the intermediate routers rather
from the content server. Thus, DAAC and DAAC_CIU have less average hop count. Since
average hop count can also reflect bandwidth consumption per request, DAAC_CIU can

enjoy the least bandwidth consumption in the network. The results in the figures show that

23

Average hops
3.0

25 -+ ™~ —=—(RU
20 I "\\.\ —o—ABC
i \\\\\‘\.:: DAAC
1> 1 \0\.\. —e—DAAC_CIU

1.0 + : : .
50 100 150 200 250 Cache size

Figure 5-12 Average hop count of GENAT Topology (a=1.1)

there are significant gains through using DAAC and CIU. The content consumers will benefit
from lower download latency. On the other hand, content providers will be able to greatly
reduce server loading as well as network bandwidth consumption.

We also evaluate the broadcast overhead and average hop distance of CIU mechanism
with the other two information-update mechanisms: ALL and 1-hop, where ALL is to
broadcast the cache update information to all nodes.and 1-hop is to broadcast the cache update
information within 1-hop. As shown in Figure 5-13; the average hop count in ALL is almost
same as the CIU scheme. However, in Figure 5-14, the broadcast overhead (i.e., the total

number of the messages of the cache update information) in ALL is 1.4-17 times higher than

Average hops

2.4
2.2 &
20 - —=—1 hop
18 F =4—2hop
16

. e —

I ALL
1.4
1.2

50 100 150 200 250 Cache size

Figure 5-13 Average hop count of Broadcast Distance

24

Broadcast overhead

35
30

x 100000

25 - —=—1 hop
20 — —

15
B ALL
5 +

50 100 150 200 250 Cache size

Figure 5-14 Broadcast overhead

the CIU scheme. The CIU can achieve a lower average hop count than 1-hop with price on
moderate increase of broadcast overhead. According to Figure 5-13 and Figure 5-14, the CIU
scheme can achieve a balance between the.average hop count and the broadcast overhead.
Figure 5-15 ~ Figure 5-16 and-Figure 5-17 shows the simulation results under the 3-ary
tree topology. We can observe- that the performance of DAAC and DAAC _CIU are
performing better in all performance metrics. The hit ratio-of DAAC_CIU is the highest. The
difference of the hit ratio between'DAAC and ABC is about 0.8%-1.1% ~ 1.1%-1.4% and
1.7%-2% for ¢ =0.9 ~ =1 and « =1.1 respectively. On the other hand the difference of
the hit ratio between DAAC_CIU and ABC is about 2.6%-4.6% ~ 3.1%-4.8% and 3.4%-5.3%

for =09 ~ =1 and a=1.1 respectively.

Hit ratio

20% — —=—LRU

15% //// —4—ABC

10% r/ //. DAAC

5% / —e—DAAC_CIU

V‘

25%

0% - |
50 100 150 200 250 Cache size

Figure 5-15 Hit ratio of 3-ary Tree Topology (a=0.9)

25

Hit ratio

30% C
E —=—LRU
20%
- / ——ABC
E ~#—DAAC
10% —+
5% — —e—DAAC_CIU
0% — .
50 100 150 200 250 Cache size
Figure 5-16 Hit ratio of 3-ary Tree Topology (a =1)
Hit ratio
40%
30% / —=—[RU
- /. ——ABC
20% -+
- / —#—DAAC
10% - —8—DAAC_CIU
0% -+ .
50 100 150 200 250 Cache size
Figure 5-17 Hit ratio of 3-ary Tree Topology (a=1.1)
Server loading
o 30 |
o .
8 C —=—LRU
L |
=
—+—ABC
== DAAC
—e—DAAC_CIU
50 100 150 200 250 Cache size

Figure 5-18 Server loading of 3-ary Tree Topology (a=0.9)

26

Server loading
3 24 =
822 —=—RU
<20
18 —+—ABC
16 —#—DAAC
14
c —e—DAAC_CIU
12
10 -+ .
50 100 150 200 250 Cache size
Figure 5-19 Server loading of 3-ary Tree Topology (a =1)
Server loading
o 25 T
S C
S L a —=—LRU
=
—+—ABC
== DAAC
—e—DAAC_CIU
50 100 150 200 250 Cache size

Figure 5-20 Server loading of 3-ary Tree Topology (a =1.1)
In Figure 5-18 ~ Figure 5-19 and Figure 5-20, DAAC_CIU can reduce the server loading

by about 8%-13.4% (@ =0.9) - 10.1%-14% (a=1) and 11.8%-15.7% (& =1.1) in

comparison to ABC.

27

Average hops

3.0

‘\-_\

2.5

~——

2.0

1.5

1.0

50 100 150 200 250

—&—LRU
—4—ABC
== DAAC

—8—DAAC_CIU

Cache size

Figure 5-21 Average hop count of 3-ary Tree Topology (a =0.9)

Average hops

30 T

25 T~

20 \\\%
15 -

10

50 100 150 200 250

—&—LRU
—4—ABC
== DAAC

—8—DAAC_CIU

Cache size

Figure 5-22 Average hop count of 3-ary Tree Topology (a =1)

2.5

Average hops

2.0

.

1.5 -

\\‘\.

1.0

50 100 150 200 250

—&—LRU
—4—ABC
== DAAC

—8—DAAC_CIU

Cache size

Figure 5-23 Average hop count of 3-ary Tree Topology (« =1.1)

28

DAAC_CIU scheme can reduce the hop count approximately 4.6%-12.8% compared to
ABC. Finally DAAC also gained 2.9%-6% reduction of the average hop count as shown in
Figure 5-21 ~ Figure 5-22 and Figure 5-23.

5.2 Emulation

In our scenario of emulation is similar with simulation, the parameters of ABC and DAAC
are as follows: BASE_AGE is set to be 50 second and MAX_AGE set to 60 second. The age
is multiple 5 times age when pass a hop same as simulation. There are a total of 1000 files in
CCN and the number of the chunks for a file follows the geometric distribution with an
average of 10. The chunk size is 6.4Kbytes and each chunk contains 10 packets. The cache
size of each node is from 50 to 250 chunks (5 files to 25 files). Each router generates request
interests according to Poisson process with intensity A= 50 requests per second. Each
request selects a file according to Zipf-Mandelbrot distribution and the «¢=0.9 + =1 and
a=11. All parameters can be.summarized as Table 4. The Abilene topology in our

Emulation is shown in Figure 5-24.

Parameters Value

Number of File Request 1000 per node
Poisson Intensity 50 request/s
Distribution Zipf’s law
Skew(a) 0.9,1,1.1
Number of File 1000
File Size 10 chunks
Chunk Size 6.4kB
Cache Size 50~250 chunks per node
Base Age 50s
Max Age 60s

Table 4 Emulation Parameters

29

— ————
——— ~——
- ~
- ~—
- ~
- ~
- ~
- ~
-
-

~*" nox global nox ~

\\

nox i

{ \
Fd W \
I Server / \

! \

, e ﬁ ﬁ‘ %

~N
N
_——%/ | | ¢
<\
4 i - 5
\\\ %ﬂ_ ‘ ”,,’

- -
Se—— ——

-

Y
~, 7’
“ oL L
N ‘ nox /
hivy nox ‘/ N el
~ 78 S
~ -
~. i / -
So -
‘.I "
“"

Swa
-~
~- -
- -
~— —-
—_—— ——
—————— ——
e i e

Figure 5-24.Abilene Topology in Emulation

Hit rate(a=0.9)

30% —

' - S-LRU
25% -+ «+«9-+ S-ABC
20% r cocfee S_DAAC

. -+ @-+ S-DAAC_CIU
15% —+

g —@— E-LRU
10% -+ o— E-ABC
5% C == E-DAAC

- —8—E-DAAC_CIU
0% - T T T T 1

50 100 150 200 250 Cache size

Figure 5-25 Hit ratio of Abilene Topology (a=0.9)

In Figure 5-25 shows the simulation and emulation results under the Abilene
topology and also show the cache hit ratio of all the caching schemes under different cache

sizes. The simulation result is shown in dot line and emulation result is shown in solid line.

30

DAAC achieves a hit-ratio difference of 4.2-6.1% and 0.5-1.6% compared to LRU and ABC
respectively. DAAC_CIU achieves a hit-ratio difference of 9.5%-11.7% and 4.6%-9.2%
compared to LRU and ABC.

Server loading(a=0.9)

+ S-LRU

« S-ABC

x 10000
IR

- S-DAAC

.- @+ S-DAAC_CIU

=== E-LRU

=== E-ABC

== E-DAAC

—#— E-DAAC_CIU
50 100 150 200 250 Cache size

Figure 5-26 Server loading of Abilene Topology (a =0.9)

Figure 5-26 show the server-loadings of all the caching schemes under different cache
sizes. DAAC reduces server loading by about 10%-15.6% and 0.7%-2.4% compared to LRU
and ABC, and DAAC_CIU also reduces server loading by about 25.4%-31.2% and

14%-24.7% compared to LRU and ABC. The server loading in emulation is a little higher

Average hops(a=0.9)

- S-LRU

- S-ABC

- S-DAAC
--@-+ S-DAAC_CIU

=== E-LRU

> 4 &

== E-ABC

e E-DAAC
—@— E-DAAC_CIU

1.5 : T T T T 1
50 100 150 200 250 Cache size

Figure 5-27 Average hop count of Abilene Topology (a=0.9)

31

than simulation is because the emulation is sent the real packet data.

Figure 5-27 show the average hop count of all the caching schemes under different cache
sizes. DAAC reduce about 11.7%-15.2% and 2.4%-3.4% in average hop count compared to
LRU and ABC. DAAC_CIU reduce about 18.1%-22.8% and 8.1%-14.8% in average hop

count with comparison to LRU and ABC.

Hit rate(a=1)
35%
- a@- S-LRU
30%
-+ ¢+ S-ABC
0,
25% -<:A-+ S-DAAC
20% + --@-- S-DAAC_CIU
15% + —=—E-LRU
10% +— E-ABC
5% —a— E-DAAC
: —e—E-DAAC_CIU
0% T T T T 1
50 100 150 200 250 Cache size
Figure 5-28 Hit ratio of Abilene Topology (a =1)
Server loading(a=1)
§ 9 : e .-+ SLRU
S 8 + -«#-- S-ABC
Al
; -<-A-+ S-DAAC
--@-+ S-DAAC_CIU
6
—#—E-LRU
5 —4—E-ABC
4 —— E-DAAC
3 | | | | —e— E-DAAC_CIU
50 100 150 200 250 Cache size

Figure 5-29 Server loading of Abilene Topology (a =1)

In Figure 5-28 shows show the cache hit ratio of all the caching schemes under different

32

cache sizes. DAAC achieves a hit-ratio difference of 5.2-7.7% and 1.1-1.4% compared to
LRU and ABC respectively. DAAC_CIU achieves a hit-ratio difference of 11.3%-13.2% and
4.9%-9.5% compared to LRU and ABC.

Average hops(a=1)

+ S-LRU

+ S-ABC

- S-DAAC
--@-- S-DAAC_CIU

> 4 &

=== E-LRU
=== E-ABC

—4— E-DAAC
—e— E-DAAC_CIU

50 100 150 200 250 Cache size

Figure 5-30 Average hop-count of Abilene Topology (o =1)

Figure 5-29 show the server-loadings of all the caching schemes under different cache
sizes. DAAC reduces server loading by about 11.7%-19.7% and 2.4%-3.1% compared to
LRU and ABC, and DAAC_CIU also. reduces server loading by about 30%-35.5% and
15.7%-29.1% compared to LRU and ABC.

Hit rate(a=1.1)
40%
355 <-m-+ S-LRU
30% <« #-+ S-ABC
- <+<As+ S-DAAC

<@+ S-DAAC_CIU

20% -+

I e et tny
0 -

10% a el E-ABC
0 -

=== E-DAAC
== E-DAAC_CIU

5% +
0% -+ . . . : .
50 100 150 200 250 Cache size

Figure 5-31 Hit ratio of Abilene Topology (o =1.1)

33

Figure 5-30 show the average hop count of all the caching schemes under different cache
sizes. DAAC reduce about 14.5%-18.5% and 3.7%-4.4% in average hop count compared to
LRU and ABC. DAAC_CIU reduce about 21.1%-26.3% and 8.5%-17.6% in average hop
count with comparison to LRU and ABC.

In Figure 5-31 shows show the cache hit ratio of all the caching schemes under different
cache sizes. DAAC achieves a hit-ratio difference of 5.5-9.6% and 1.2-1.5% compared to
LRU and ABC respectively. DAAC_CIU achieves a hit-ratio difference of 13.3%-13.9% and
5.3%-8.9% compared to LRU and ABC.

Figure 5-32 show the server loadings of all the caching schemes under different cache
sizes. DAAC reduces server loading by about 12%-24.2% and 2.2%-3.9% compared to LRU
and ABC, and DAAC_CIU also reduces server loading by about 35%-36.7% and
17.5%-28.3% compared to LRU and ABC.

Server loading(a=1.1)

o’ | .- S-LRU
8 L
S 8 + -+ S-ABC
H -
e -\ -<:A++ S-DAAC
.- @+ S-DAAC_CIU
6 &

- 2 === E-LRU
. e A
5 - \\ A.OO. A A —— E'ABC

C -
4 -+ M}_\ e=j F-DAAC
C @

T8 —e—E-DAAC_CIU
50 100 150 200 250 Cache size

Figure 5-32 Server loading of Abilene Topology (a=1.1)
Figure 5-33 show the average hop count of all the caching schemes under different cache
sizes. DAAC reduce about 14.9%-22.2% and 3.8%-4.9% in average hop count compared to
LRU and ABC. DAAC_CIU reduce about 25.3%-27.9% and 9.3%-17.9% in average hop

count with comparison to LRU and ABC.

34

Average hops(a=1.1)

+ S-LRU

+ S-ABC

- S-DAAC
<@+ S-DAAC_CIU

e=fll=— E-LRU

> ¢ &

== E-ABC
=== E-DAAC
—®-— E-DAAC_CIU

1.0 : : : : .
50 100 150 200 250 Cache size

Figure 5-33 Average hop count of Abilene Topology (a =1.1)

Figure 5-34 ~ Figure 5-35 and Figure 5-36 shows the average response time in simulation
and emulation. The response time in.simulation only take the link delay into consideration.
On the other hand, in emulation, the response time higher than simulation because interests
and contents are sent to Local Nox or Global Nox to check the CS table, PIT table and FIB
table.

ms Average response time(a=0.9)

60.0 F codllee S-LRU

50.0 _ﬂﬁ ««®++ S-ABC

40.0 5 <-As+ S-DAAC
c+@-- S-DAAC_CIU

30.0
=—fl— E-LRU

20.0 =g E-ABC

10.0 e F-DAAC

0.0 : : : : |_._ E-DAAC_CIU

50 100 150 200 250 Cache size

Figure 5-34 Average response time of Abilene Topology (a=0.9)

35

ms
60.0

50.0

40.0

30.0

20.0

10.0

0.0

Average response time(a=1)

--m-- S-LRU
\
.-+ S-ABC
"
° ce<A-+ S-DAAC

«+@-- S-DAAC_CIU

—@— E-LRU

== E-ABC

g THHHHT | *— E-DAAC
—8— E-DAAC_CIU
1

50 100 150 200 250 Cache size

Figure 5-35 Average response time of Abilene Topology (a =1)

ms
50.0

40.0

30.0

20.0

10.0

0.0

Average response time(a=1.1)

«+ S-LRU
-+ S-ABC

-+ S-DAAC

f/

<@+ S-DAAC_CIU

—s—E-LRU
—— E-ABC
FommmFnnnn@ i @uunnng | — —EDAAC
| | | | —e— E-DAAC_CIU
50 100 150 200 250 Cache size

Figure 5-36 Average response time of Abilene Topology (a =1.1)

36

Chapter 6 Conclusion

We propose a Dynamic Age-Adjusted Cooperative caching scheme (DAAC), which is
an extension of Aging-Based Cooperative caching scheme. DAAC has an age-refresh scheme
to solve the temporal-locality problem in the content delivery services. It also proposes an
age-decrease scheme to reduce the redundant data problem. The age-refresh scheme operates
as follows. When a cache hits on a router, that router will reassign the age of that cache to its
original assignment. Since each cache hit can prolong the life time of the cache being replaced,
the age-refresh can help to resolve the temporal-locality problem. The age-decrease scheme
works as follows. A downstream node sends an ACK back to the upstream node. If the
upstream receives the ACK, it will decay the age of that content exponentially. In addition,
the Caching Information Update scheme is proposed to provide the caching information for
the router to obtain the routing efficiently."When-a router stores a new content in its local
cache, it disseminates this information using limited broadcast. The broadcast distance is the
average hop distance of all shortest paths between the routers and the content server. When a
router receives this information, it will check if the distance to the new caching router is
smaller to the current one. If so, that router-will update its routing table to modify the routing
path to the new caching router. Simulation results show that DAAC_CIU can reduce the
bandwidth consumption by at least 11% and server loading by 16% compared to ABC.
Furthermore, we use the Software Defined Networks (SDN) to realize the CCN network. The
simulation and emulation result show that there are almost the same, the difference only
3~4% at most. Hence, we can further prove our cache strategy not just a theory but also can

be used to improve the network efficiency.

37

References

[1]
[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

V. Jacobson, et al., "Networking named content,” in Proc. ACM CoNEXT, 2009.

K. Cho, et al., "WAVE: Popularity-based and collaborative in-network caching for
content-oriented networks,” in INFOCOM Workshop, 2012.

M. Gritter and D. R. Cheriton. (2000, Jul.). TRIAD: A new next-generation Internet
architecture. Available: http://gregorio.stanford.edu/triad/index.html

T. Koponen, et al., "A data-oriented (and beyond) network architecture,” ACM
SIGCOMM Computer Communication Review, vol. 37, pp. 181-192, 2007.

L. Zhang, et al. (2010, Oct.). Named data networking (ndn) project. Available:
http://www.named-data.net/techreport/TRO01ndn-proj.pdf

V. Jacobson, et al., "VoCCN: voice-over content-centric networks,” in Proc. of the
2009 workshop on Re-architecting the internet, 2009.

M. Caesar, et al., "ROFL: routing on flat labels,” ACM SIGCOMM Computer
Communication Review, vol. 36, pp. 363-374, 2006.

H. Che, et al., "Analysis and design of hierarchical web caching systems,"” Proc. IEEE
INFOCOM'01, vol. 3, pp. 1416-1424, 2001.

X. Tang and S. T. Chanson, "Coordinated en-route web caching,”" IEEE Transactions
on Computers, vol. 51, pp.-595-607, 2002.

Z. Ming, et al., "Age-based cooperative caching in information-centric networks,"” in
Workshop on Emerging Design.Choices in'Name-Oriented Networking, 2012.

I. Psaras, et al., "Probabilistic in-network caching for information-centric networks,"

in Proceedings of the second edition of the ICN workshop on Information-centric
networking, 2012, pp. 55-60.

I. Psaras, et al., "Modelling and evaluation of CCN-caching trees," in NETWORKING
2011, ed: Springer, 2011, pp. 78-91.

N. McKeown, et al., "OpenFlow: enabling innovation in campus networks," ACM
SIGCOMM Computer Communication Review, vol. 38, pp. 69-74, 2008.

B. Lantz, et al., "A network in a laptop: rapid prototyping for software-defined
networks," in Proceedings of the 9th ACM SIGCOMM Workshop on Hot Topics in
Networks, 2010, p. 19.

N. Gude, et al., "NOX: towards an operating system for networks," ACM SIGCOMM
Computer Communication Review, vol. 38, pp. 105-110, 2008.

R. Sherwood, et al., "Flowvisor: A network virtualization layer,” OpenFlow Switch
Consortium, Tech. Rep, 2009.

N. Laoutaris, et al.,, "The LCD interconnection of LRU caches and its analysis,"
Performance Evaluation, vol. 63, pp. 609-634, 2006.

M. Xie, et al., "Enhancing cache robustness for content-centric networking," in

38

http://gregorio.stanford.edu/triad/index.html
http://www.named-data.net/techreport/TR001ndn-proj.pdf

[19]
[20]
[21]
[22]
[23]

[24]

[25]

INFOCOM, 2012 Proceedings IEEE, 2012, pp. 2426-2434.

E. J. Rosensweig and J. Kurose, "Breadcrumbs: efficient, best-effort content location
in cache networks," in IEEE INFOCOM, 2009.

S. Eum, et al., "Potential based routing for ICN," in Proc. of the 7th Asian Internet
Engineering Conference, 2011.

R. Chiocchetti, et al., "INFORM: a dynamic INterest FORwarding Mechanism for
Information Centric Networking."

C. Yi,etal., "A case for stateful forwarding plane,” Computer Communications, 2013.
L. Saino, et al., "Hash-routing Schemes for Information Centric Networking," 2013.

D. Rossi and G. Rossini, "Caching performance of content centric networks under
multi-path routing (and more)," Technical report, Telecom ParisTech, 2011.

L. Breslau, et al.,, "Web caching and Zipf-like distributions: Evidence and
implications,” in Proc. IEEE INFOCOM, vol. 1, pp. 126-134, 1999.

39

