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摘要 

 
資料在工作流程設計中扮演一個重要角色。雖然主導流程設計是以控制為

主，但對於資料操作的相對關係，仍可造成工作流程執行錯誤或遺漏資訊等等。

對於工作流程中資料的相關研究，總是遠遠少於對於工作流程結構正確性的研

究；更甚者，資料常被視為資源的一部份，只對著墨於如何分配於各工作上或透

過介面化的存取等，對於操作的正確性與相對於控制流的一致性，卻鮮少被提

及。本篇論文著眼於驗證資料的正確性，並提供一設計方法便於擷取資料操作資

訊，同時此方法也適用於工作流程再用與再設計。針對資料的驗證，我們提出六

大資料錯誤與偵測演算法。未來，將在把資源分析與權限認證研究導入本設計方

法。 

 

 

關鍵字: 工作流程、資料、驗證、狀態圖 

 i



Using State Diagrams to Validate Artifact 

Specifications on Primitive Workflow Schema 
 

Student: Hsun-Jen Hsu   Advisor: Dr. Feng-Jian Wang 

Institute of Computer Science and Information Engineering 

National Chiao Tung University 

1001 Ta Hsueh Road, Hsinchu, Taiwan, ROC 

 

Abstract 

 
Structural correctness and resource allocation are two major topics of workflow 

researches, but few researchers are interested in artifact analysis. A workflow 

execution may fail because of incorrect structures or resource conflict. On the other 

hand, inaccurate artifact manipulation will bring some problems during workflow 

execution too, e.g., inconsistency between data flow and control flow, contradictions 

between artifact operations…, etc. The thesis studies a model, compatible with most 

models for specifications, and thus a simple methodology for validating the use of 

artifacts. In the model, we also present a bottom-up workflow design method based on 

artifact operations. The concept of state transitions for artifacts is adopted to construct 

six types of artifact inaccuracy impacting on workflow execution, and inaccuracy 

detection algorithms in order to validate artifact usages in workflow specifications. 

 

 

Keywords: workflow, artifact, validation, state transition, state diagram. 
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Chapter 1.  Introduction 

Workflow is the computerized facilitation or automation of a business process, in 

whole or part [1]. In other words, workflow is a set of works which are systematized 

to achieve certain business goal by completing each work in particular order under 

automatic control. And the execution order of these works, equivalent to control flow 

or control logic, is under some constrains and conditions according to workflow 

specification. On the other hand, resources are necessary for workflow 

implementation, and they support process execution. A resource might be any type of 

entity required in a work. Sample resources include participants, software components, 

hardware machines, documents, electronic data, and tables in database. Resource 

allocation [2] and resource constrain analysis [3] are popular topics of workflow 

research. But few works [4] deeply consider about data flow within workflow. 

Artifact is an abstraction of all data instances within workflow. Introducing 

artifact validation into control-oriented workflow designs will help keeping 

consistency between execution order and date transition, and avoid the exceptions 

caused by contradiction between data flow and control flow. Whether a workflow 

schema is executable depends on its own structural correctness. In contrast to 

structural correctness, accuracy in artifact manipulation can help determine whether 

the execution result of workflow is meaningful and desirable. The majority of 

experiences in validation and verification indicate that the knowledge of a domain 

expert on business rules, process logic and environment constrains is necessary [4]. 

Misarrangement of artifacts has impact on correctness of workflow execution. In 

terms of data validation in workflows, there is very little reported in literature [4]. 

Designers usually drew a set of data flow diagrams ad hoc to examine consistency 
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between control flow and date flow. Sahzia Sadiq identified three implementation 

models for process data requirements and data flow: explicit data flow, implicit data 

flow through control flow, and implicit data flow through process data store [4]. 

Those models are not much different from traditional method, and they need to be 

constructed by designers with experiences. In addition, workflow data patterns [21] 

were introduced to capture various ways in which data are represented and utilized in 

workflows. But no data validation/verification issues are introduced. Researches on 

verification of workflow schema [22] [23] focus on the modeling and analysis of 

workflow schema but not on artifact operations precisely. 

In this thesis, we provide an editing model for designing a workflow and address 

six types of artifact inaccuracy. Associated with the model, an artifact validation 

technique is applied before deploying the workflow schema. This model is based on 

component-based design technique and control flow design. It facilitates workflow 

design reusing, has compatibility with other control-oriented workflow design models, 

and provides an easier way to extract knowledge of artifact operations in workflow. 

Our artifact validation algorithm brings lots of advantages during workflow design 

phase. When designers edit or adjust workflow specification, reports of consistency 

checking between data flow and control flow and information of manipulating 

artifacts are automatically provided to designers. 

The rest of this thesis are organized as follows. Research background and 

literature review are presented in Chapter 2. Chapter 3 describes our system 

architecture including workflow design methods and design criteria. Chapter 4 defines 

certain properties of artifacts, introduces a technique of artifact state diagram to 

describe artifact-state transition, and discusses six types of artifact inaccuracy. In 

Chapter 5, a set of algorithms are presented to validate artifact accuracy for each 
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workflow schema constructed. Chapter 6 demonstrates our artifact validation 

algorithm and reduction algorithms using an example workflow schema. Chapter 7 

concludes our research in this thesis, and future works. 
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Chapter 2.  Background 

The tools can help designers to maintain correctness of the developed workflow. 

There are many topics about correctness of workflow. For example, structural 

correctness focuses on soundness of control logic [7], process model analysis, 

workflow patterns [8] [9], and automatic control of workflow process [10]. Resource 

management contains resource allocation constrains [2] [3], resource availability [11], 

resource management [12], resource modeling [13], etc. 

2.1 Related Work 

Shazia Sadiq [4] presented data flow validation issues in workflow modeling, 

including identifying requirements of data modeling and seven basic data validation 

problems. She suggested that type, source, and structure of data are essential 

requirements of data modeling. These requirements and data validation problems are 

sensible and reasonable. However, there was no discussion about any implementation 

or formal method to demonstrate how to apply their researches and which types of 

workflow model are compatible with their activity-based data model. 

Chengfei Liu proposed a three level bottom-up workflow design method to 

effectively incorporate confirmation and compensation in case of failure [11]. This 

model is expected to incorporate both compensation and confirmation into a 

workflow management environment. In the model, data resources are modeled as 

resource classes, and the only interface to a data resource is via a set of operations 

together with their compensations and conformations. And the work facilitates 

wrapping legacy systems and developing compensations and conformations in some 

workflows with invoking legacy systems. Indeed, it may be extended with artifact 
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constrains etc. for validation topics of artifact. 

Pinar Senkul [2] presented an architecture to model and schedule workflow with 

resource allocation constrains and traditional temporal/causality constrains. In his 

architecture, the workflow specification language can model resource information and 

resource allocation constrain, and the scheduler model can incorporate a constrain 

solver to find proper resource assignment. On the other hand, Hongchen Li [3] 

claimed a correct workflow specification should have resource consistence. His 

algorithms can verify resource consistency and detect the potential resource conflicts 

for workflow specifications. Both Pinar and Hongchen extended workflow 

specifications with certain constraint descriptions for their researches. In fact, 

workflow specifications can also be extended with data constrains for more precise 

validation and verification of data resource consistence.  

Duk-Ho Chang [14] and Jin Hyun Son [15] identified and extracted the 

workflow critical path from context of the workflow schema. They presented 

extraction procedures from various non-sequential control structures to sequential 

paths so that appropriate sub-critical paths in non-sequential control structures are 

obtained. The concept of structure extraction can be utilized not only in resource or 

time management, but also in validating causal relationship between data operations 

in workflow. Specially, Jin Hyun Son [15] defined a well-formed workflow based on 

the concepts of closure and control block. He claimed the well-formed workflow is 

free from structural errors and complex control flows can be made by nested control 

blocks. 

Wasim Sadiq and Maria E. Orlowska [16] presented a visual verification 

approach and algorithm with a set of graph reduction rules to identify structural 
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conflicts in process models for the given workflow modeling languages. The 

structural conflicts in the complex workflow structures are easily identifiable by the 

incremental reduction. The concept of incremental reduction can be utilized in data 

validation, too. 

John Thangarajah, Lin Padgham and Michael Winikoff [19] [20] proposed 

Iteration Tree to maintain summary information about definite/potential conditional 

requirement and resulting effects of goals and their associated plans for detecting and 

avoiding interference between goals in intelligent agents. The classification of definite 

and potential conditional requirement and summary calculations can be adapted for 

propagating state requirements of artifact operations in artifact validation. 

2.2 Motivation and Goal to Achieve 

A workflow application with well structure and sufficient resource still has 

possibility to fail or to get an unexpected execution result in execution. One of the 

factors to impact the workflow execution result is artifact manipulation. For example, 

artifact operations might be out of order, or inconsistency with control flow. However, 

research topics on artifacts are little concerned with verification and validation on 

workflow schema. Within their approach, artifacts are usually treated as one type of 

resource accessed by activities in workflow execution. Few researchers are interested 

in or working on artifact-relevant topics, and there is no validation algorithm provided 

to validate or check accuracy of artifact during workflow design.  

It is possible to abstract artifact operations for analysis without considering 

semantic problems. Correspondingly, it might be valid to analyze artifact-state 

transition and provide useful information about artifact operations within workflow 

specification. A systematic artifact state diagram, generated automatically, seems 
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helpful to keep track of artifact operations distributed in workflow specification. A 

multiple layer designed methodology is another topic we are interested in. Also, it is 

expected that workflow reuse and redesign are easier by abstracting artifact operations 

and separating workflow design and activity design. 

In summary, it is interesting to construct a tool which can automatically provide 

critical analysis for artifact validation and check out artifact consistency to encourage 

designers during workflow design. 
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Chapter 3.  System Architecture 

3.1 Three Layer Workflow Model 

To validate artifact accuracy on workflow specifications, we propose a simple 

type of workflow schema. This primitive workflow schema is reduced form 

well-formed workflow schema [15] and it can satisfy four primitive types of 

workflow structure defined in [1], which are "sequential", "parallel", "conditional 

branch", and "iterative structure". Besides, it is consider with: 1) the technique in [11] 

2) representing artifacts the state transition diagrams with object-oriented techniques 

as in UML, 3) state joining for propagating artifact operations, 4) and state mapping 

for detecting artifact accuracy. Our model, on the view point of design, is named 

Three Layer Workflow Model (TLWM), as in Figure 3.1. TLWM represents workflow 

with three layers. A sample approach to designing methods applied in each layer is 

composed of workflow design, activity design and artifact design distinctly: 

1. Workflow Design Layer: Describing the logistical control or execution 

order between activities, such as the sequence, choice, synchronization, and 

iteration… etc. 

2. Activity Design Layer: Arranging artifact operations to be executed in an 

activity and conditions at the initialization and completion of the activity. 

3. Artifact Design Layer: Defining the classes of artifacts, and all valid 

methods/operations of each artifact class. 

 8



 

Figure 3.1 Three Layer Workflow Model 

 

.2 Workflow Design Layer 

In Workflow Design Layer, a workflow model is used to describe a workflow 

sche

3

ma as the product of workflow design layer, based on the concept of well-formed 

workflow [15] to describe workflow schemas. The product of this layer is a workflow 

specification, and it is designed to describe the dependence between activities, i.e. the 

execution order of activities in a workflow. Control structures of a workflow form the 

execution order of the activities in the workflow. The four primitive control structures 

defined in [1] are "sequential", "parallel", "conditional branch", and "iterative 

structure". 
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In this thesis, a workflow specification is specified in a primitive workflow 

schema in Definition 3.2, which is constructed with control and activity nodes 

according to certain syntax rules. The basic unit of works is an activity, and it has 

pre-condition (entry criteria), post-condition (exit criteria), and activities with artifact 

operations, resource manipulations…, etc. An activity is usually called an activity 

node in contrast to a control node. Control nodes are used for constructing the 

control structures, and there are four types of primitive control nodes in our thesis: 

AND-SPLIT (AS), AND-JOINT (AJ), XOR-SPLIT (XS), XOR-JOINT (XJ) and 

LOOP. The connection between two nodes is flow, which indicates a transition from 

one node to another.  

  

Figure 3.2 Notations in Workflow Diagram 

Figure 3.2 shows the corresponding notations of control nodes, activity node, and 

flow. In addition, LOOP control node has two subtypes, LOOP-START and 

LOOP-END. The former indicates the start point of iteration, and the latter indicates 

the termination. The notation of a flow is a line with one arrow. The direction of an 

arrow implies the execution order. An activity node has only one inflow and one 

outflow, and a control node might have multiple inflows or outflows. Finally Start 
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node and End node take responsibility for initializing and finalizing a whole 

workflow. 

Our workflow schema is represented with a set of nodes and directed edges, 

standing for the flow between nodes. It begins from Start node and terminates with 

End node. The intermediary nodes are arranged with workflow control structures. We 

define a primitive workflow model for discussing in this thesis. 

Definition 3.1 Control Block 
Any subflow in a workflow schema that satisfies the following conditions 

is called a control block. 
1. A subflow begins from one control node and terminates at another 

corresponding control node. 
2. There are only one inflow (entrance) and outflow (exit) for this subflow. 
3. A subflow is either completely contained in another subflow or not 

contained in any other subflow. 
 

 In Definition 3.1, condition 1 constrains that leading control node and ending 

control node of a control block are paired, such as AND-SPLIT and AND-JOINT, 

XOR-SPLIT and XOR-JOINT, LOOP-START and LOOP-END. Condition 2 localizes 

a control block as a closed subflow. Condition 3 eliminates the possibility of subflow 

interleavings. For example, there are two control blocks A and B. Control block A 

contains a set of nodes denoted by α , and control block B contains a set of nodes 

denoted by β . In our model, there are exactly four possible relations between α  

and β . 

1. αβ ⊂ : A completely contains B, and A is super-block of B. 

2. βα   ⊂ : B completely contains A, and A is sub-block of B. 

3. φβα =I : Control block A and B do not overlap with each other. 
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4. βα   = : Control block A and B are identical. 

If a control block does not contain any other control block, it is called an atomic 

control block. Otherwise, it is called a nested control block. If an activity node is 

not contained in any control block, it is called an un-blocked activity. A control block 

is called a top-level control block if it is not contained in any other control block.  

Definition 3.2 Primitive Workflow Schema 
A workflow schema built by a set of un-blocked activities nodes and 

top-level control blocks is called a primitive workflow schema. 
 

According to definitions mentioned above, we conclude four types of workflow 

construction in our primitive workflow schema as follows. 

1. Sequential Block: The activities in this block are executed in sequence under a 

single thread of executions. There is no control node or conditional branch 

between these activities. The main characteristic is that the target activity will 

execute after its preceding activity completes. In other words, the completion of 

a target activity triggers the execution of its succeeding activity. 

2. Iteration Control Block: The activities within the control block grouped by loop 

control nodes will be executed repetitively until certain conditions are met.  

3. AND Control Block: All outflows of an AND-SPLIT node are executed parallel 

and converge synchronously into an AND-JOIN node. An AND-JOIN node takes 

charge of synchronizing all threads from parallel inflows into the thread. 

4. XOR (eXclusive OR) Control Block: An XOR-SPLIT node makes a decision 

upon which branches to take from multiple alternative outflows (workflow 

branches). And these branches converge to a single XOR-JOIN node. There is no 
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synchronization required because of no parallel thread executed. 

 

Figure 3.3 Four Types of Workflow Construction in a Primitive Workflow Schema 

Figure 3.3 shows four types of workflow construction, and these workflow 

constructions can contribute to construct a primitive workflow schema. In addition, 

we use the notation (leading node, ending node) to indicate a block, starting from the 

leading node and terminating at ending node, in following sections. 

3.3 Activity Design Layer 

Activity specifications are anticipative products of this layer. Each activity has 

its own activity specification, which describes the operations associated with artifacts 

to perform to achieve the goal. Besides the manipulations of artifacts, there are also 

pre-condition and post-condition (optional) to be defined. The format of activity 

specifications are shown in Figure 3.4. 

An activity is the smallest unit of work in workflow, and it performs a set of 

operations on certain artifacts to achieve its designed goal. All operations of an 

artifact which performs must be specified in the corresponding artifact specifications. 

Besides, each activity may be designed with pre-condition and post-condition if 
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necessary. Artifact(s) acted on and/or concerned in pre-condition/post-condition in 

this activity will be retrieved to contribute to artifact analysis and validation. 

 

ACTIVITY_NAME{ 
PRE-CONDITION: 
 //A logical expression evaluated by a workflow engine 

//to decide if this activity instance may be started or not. 
//It may refer to certain artifact to check the current state of artifact. 

ACTION: 
 //A sequence of operations performed on artifacts to achieve a goal. 
 ARTIFACT_NAME.OPERATION_NAME(PARAMETER_LIST); 
POST_CONDITION: 
 //A logical expression evaluated by a workflow engine 

//to decide if this activity instance is completed or terminated by failure. 
//It may refer to certain artifact or external events etc. 

} 

Figure 3.4 Script of Activity Specification 

3.4 Artifact Design layer 

Artifact design layer is the bottom layer, and its contents are artifact 

specifications. All artifacts participating in a workflow execution must be pre-defined 

in artifact specifications. For each artifact, its specification contains a set of operations 

for legally manipulating on its internal data. An activity designed to manipulate a 

certain artifact can only performs these operations to interact with this artifact. 

The main concept of artifact design layer is to make the internal design of 

artifacts independent from the workflow application. That brings following profits: 

 An artifact has a set of interfaces, representing the operations on the artifact. 

Modifications on implementing these operations will not impact the upper layer 

design if the format to invoke these operations keeps steady. 
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 The artifact manipulations in activities or workflows are bound in these 

(designed) specifications. Illegal or invalid operation on artifacts is not allowed. 

It can also provide an implementation platform for authentication, and that is our 

future work. 

 Independent designing of artifact operations facilitates classifying and grouping 

types of artifact operations. And it also provides an easier way to extract useful 

information of artifact operations in workflow execution. 

Figure 3.5 shows format of an artifact specification. 

 

 

 

ARTIFACT "ARTIFACT_NAME" 
 INTERNAL: 
    //Declare internal data, data source or destination 
 OPERATION: 
 RETURN_TYPE OPERATIPON_NAME (ARTUMENT_LIST) { 
 //Code for artifact manipulations 
 } 
Figure 3.5 Script of Artifact Specification 
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Chapter 4.  Artifacts 

In this chapter, we will discuss the concept of artifact, artifact state diagram, state 

transition, and artifact inaccuracy and the corresponding outcomes. 

4.1 Overview of Artifacts 

An artifact describes any the data participating in workflow execution no matter 

its type is input, output, temporal or permanent. Moreover, it can be extended by 

combining some processing logic if necessary, such as e-form in AgentFlow [17]. An 

artifact can represent workflow control data, workflow relevant data, application data 

[18], electronic document, manual data, and every data item participating in workflow 

execution. In this thesis, we reduce the description power of artifacts, and focus on the 

artifacts visible in workflow specification (schema) by TLWM introduced in chapter 

3. 

Artifacts can be divided into five types: 

1. Reference (Ri): A reference artifact in workflow is like the static variable or 

constant in programming language. It is rarely modified after initializing, and acts 

as an index of a certain instance or case. For example, the serial number of an 

official document, the number of identification card, etc.  

2. Manipulation (Mi): A manipulation artifact acts as the processing target 

in/among activities. It can be an input, output, or processing results of an activity. 

For example, the name of last editor, the total amount of goods, the population 

statistic…, etc.  

3. Deterministic (Di): A deterministic artifact acts as the key condition result 

evaluated. It participates in the branch of control nodes (parallel, choice, 
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Iteration…, etc.), and conditional constrains in activity (pre-condition, 

post-condition, processing logic…, etc.). For example, the credit gained (if the 

credit gained is less then 24, the student is not allowed to apply for graduation.), 

department, or major…, etc. 

4. Composite (Ci): A composite artifact is a composition of sub-artifacts. For 

example, an application form, an official document, a business contract…, etc.  

5. Property (Pi): A property artifact is used to control process or the workflow 

execution and not accessible during application design. For example, state 

information about each workflow instance, dynamic state of workflow system, 

execution duration, or resource constrains, etc. 

The classification of artifacts in type is neither absolute nor exclusive. Some 

artifacts are Mi and also are Di. In this thesis, we would not emphasize the type of 

artifacts discussed. The behavior and effect of artifact operations is the key interested. 

Although the types of artifacts are not mentioned clearly here, the range of artifacts 

approximately contains Ri∪Mi∪Di∪Ci. 

In general, the whole workflow is the scope of artifacts, including workflow 

engine, workflow instance, invoked application…, etc. However, in this thesis, we 

diminish the scope and only focus on artifact appearing in activities and workflow 

specification. 

We group common operations of artifact into five types, which are Specify, 

Read, Write, Revise and Destroy. 

1. Specify: an initialization activity of artifact, such as "fill in", "create", "define"…, 

etc. 

2. Read: a reference to artifact, such as "use", "fetch", "select", "retrieve"…, etc. 
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3. Write: an artifact modification, such as "write", "change", "update"…, etc. 

4. Revise: addition/deletion of a sub-artifact, such as merge, combine, divide…, etc. 

5. Destroy: deletion of artifact, such as remove, erase, cancel, discard, etc. 

4.2 Artifact State Diagrams 

Generally, process design and flow design settle major part of workflow design, 

but the artifact design does not usually. Here we define a method based on state 

transition technique to model both behavior changes and state transitions of an artifact 

during workflow execution. There are five primitive operations, introduced in Section 

4.1 for triggering artifact-state transition. 

Start Specified.
A1

A1.Specify A2.Read

Written.
A3A3.Write

Revised.
A5

A5.Revise

End

A7.Destroy
A6.Read

A4.Read

 

Figure 4.1 An Example of an Artifact State Diagram 

There is an example demonstrated in Figure 4.1; it shows the life cycle of an 

artifact during workflow execution. During its life time, the artifact is specified by 

activity A1, read by A2, written by A3, read by A4, revised by A5, read by A6 and 

finally destroyed by A7. Furthermore, this artifact state diagram implies one 
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reasonable execution order of these activities. 

Definition 4.1 shows definition of artifact state diagram discussed in this thesis. 

Definition 4.1 Artifact State Diagram 
Artifact state diagram is 5-tuple ＜Q, O, T, q0, F＞ 

 Q: a finite set of states s1, s2… si, for i ≧1 
 O: an input operation of artifact. O = [Specify | Read | Write | Revise | 

Destroy]. 
 T: transition function Q × O  Q 
 q0: start state or initial state 
 F: a set of final states, F⊆Q 

 

The artifact state diagram is constructed by two components, state (circle) and 

transition (arc with arrow). The first transition starts from initial state q0 by default. 

There are some criteria for drawing artifact state diagram as follows.  

1. i
i

jjii spstsQsandOpQs ⎯→⎯∈∈∃∈∀  .. ,   ,  

2.  i
i

iiii spspandOpQs ⎯→⎯⇒=∈∈∃   Read    ,

3.       , ,,,  jik
j

j
i

ijikji ppspspsandOppQsss p⇒⎯→⎯⎯→⎯∈∈∃

Criterion 1 tells that every state has at least one input operation to trigger 

transition from itself to next state. Criterion 2 emphasizes that a transition transfers 

from one state to the same state if the type of input operation is Read. Criterion 3 

indicates the input order of operations. There are two transitions among si, sj, and sk. 

And pi and pj are input operations for these transitions. We can conclude that 

operation pi is performed before pj in workflow execution order, and notation  

indicates a temporal relation between operations. 

p
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We will use artifact state diagram mentioned in this chapter to trace the artifact 

transition between activities within workflow schema and to validate artifact 

accuracy. 

4.3 Artifact Inaccuracy 

Inappropriate operations on artifact might lead the workflow (execution) into 

failure or cause illegal side effects. In this section, we point out the abnormal 

situations of artifact operations and discuss the potential problems they may bring.  

We infer six types of artifact inaccuracy from cases observed. They are No 

Producer, No Consumer, Redundant Specify, Contradiction, Parallel Hazard and 

Branch Hazard. 

4.3.1 No Producer 

In general, the first operation on an artifact in workflow is Specify, acting as 

initialization. No Producer problem indicates that an artifact has a different operation 

earlier than Specify. It indicates that this workflow might fail due to retrieval error or 

an exception of missing target artifact. Figure 4.2 describes the five state transitions; 

four of them causing No Producer problem and the one reasonable. The exception 

case is that this artifact is created by invoked application / outer system or is an 

existing artifact before this workflow execute. No Producer problem is a warning for 

potential error but not absolute one. 
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Start Written

Write

Start

Destroy

Start Revised

Revise

END

(B) (C)

(D)

Start Specified

Specify

(E)

Start

Read

(A)

 

Figure 4.2 No Producer Problem (part A, B, C, D) and Expectant (part E) 

4.3.2 No Consumer 

No Consumer problem means that there is no activity requesting the artifact after 

last modification, which might be Specify, Write or Revise. There are two situations 

which this problem occurs in. First, this artifact is designed to be manipulated in this 

workflow and packed as a result artifact for access of external system. Second, this 

artifact is redundant and no succeeding activity (control node) for the access it. How 

to solve this problem depends on designers' desire or is according to system 

requirement. 

4.3.3 Redundant Specify 

 Redundant Specify problem indicates that there is another specified state 

following the first specified state. In other words, the artifact specified in current 

activity is specified by succeeding activity again. It will cause the confusion in 

maintaining artifacts and make exceptions in execution.  

4.3.4 Contradiction 

Contradiction problem describes a situation that current artifact state does not 

conform to the in-state specified in the pre-condition of a succeeding activity. Figure 
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4.3 shows a simple example of Contradiction problem. Figure 4.3(A) is a workflow 

schema shows the execution order of activities A1, A2, A3 and A4. Figure 4.3(B) is a 

set of activity specifications with pre-condition and post-condition. There is a 

Contradiction problem between A3 and A4.  

 

Figure 4.3 Contradiction Problem 

In an activity specification, the pre-condition and post-condition provide a 

mechanism to specify the in-state before and out-state after the execution of an 
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activity. More state constrains specified in pre-condition and in post-condition will 

make state-matching more precisely. 

4.3.5 Parallel Hazard 

Parallel Hazard problem happens because of conflict interleaving of concurrent 

artifact operations in activities. When more than one concurrent subflow manipulates 

an artifact in parallel, and the activities in different subflows on the artifact are not in 

a deterministic execution order expect the concurrency constrains are defined. 

The main characteristic patterns of artifact-state transition are concurrent 

operations and competition of state-mapping. Parallel Hazard problem will be 

recognized if there are multiple concurrent subflows operating the same artifact. 

Besides, multiple state choices of incoming flow to an AND control block and 

multiple produced states of an AND control block are two symptoms of state-mapping 

competition. And state-mapping competition is prerequisite for potential Parallel 

Hazard. In Section 5.4, multiple produced states of out-states and multiple concurrent 

subflows operating the same artifact are two major patterns of Parallel Hazard 

detection. 

Figure 4.4 illustrates two simple examples of Parallel Hazard problem. In Figure 

4.4(A1), Activity A1 and A2 are concurrent activities which are not in a strict 

execution order. Figure 4.4(A2) shows four situations that A1 and A2 have 

dependence of artifact manipulation. If the execution order conforms to dependence 

of artifact operations, there is no problem. Otherwise, Parallel Hazard will occur. 

Figure 4.4(B) shows an example of state-mapping competition in a composite state 

extracted from a AND control block. 

 23



Regarding below five types of operation, only concurrent operations of Read will 

not cause Parallel Hazard. Other combinations of operations on the same artifact will 

bring Parallel Hazard potentially or absolutely. More explicit state and transition 

describing artifact (constrains of in-state or conditions of out-state) will make Parallel 

Hazard detection more precisely. 

 

Figure 4.4 Parallel Hazard 

4.3.6 Branch Hazard 

Branch Hazard may be produced from an XOR control block because of the 

possibility of selecting branch subflows, which contain operations on artifacts. For 

example, the result of artifact operations within a branch subflow, not selected for 

execution, can contribute to succeeding artifact operations outside of current XOR 

control block. Branch Hazard problem will occur at this case. 

Another Branch Hazard is that there is no artifact state consistency between the 
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condition testing in XOR-SPLIT node and branch subflows. If a condition testing in 

XOR-SPLIT node is relative to the state of some artifacts, the state-mapping will be 

performed to detect Branch Hazard. If artifact state constrains on XOR-SPLIT are not 

totally compatible to in-state sets of branch subflows, there is a Branch Hazard 

detected inside the control block. The last situation of Branch Hazard is that there is 

losing out-state or insufficient in-state occurring between this XOR control block and 

outside of it. 

 There are three types of Branch Hazard as shown in Figure 4.5, which are 

hidden effect, condition mismatch, and insufficient in-state/losing out-state. Figure 

4.5(A) is a partial workflow schema, containing a XOR control block and two 

activities A7, A9. Figure 4.5(B) is Branch Hazard of hidden effect. Figure 4.5(C) is 

Branch Hazard of condition mismatch. And Figure 4.5(D) is Branch Hazard of 

insufficient in-state/losing out-state. 

These Six types or artifact inaccuracy mentioned above might impact on 

workflow execution potentially or absolutely. Following chapter will introduce how to 

extract information of artifact manipulations and detect these artifact inaccuracies to 

achieve artifact validation on workflow schema. 
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Figure 4.5 Branch Hazard 
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Chapter 5.  Artifact Validation for Primitive Workflow 

Artifact state diagrams and state transition criteria assist our work in tracing and 

validating manipulation of artifacts in workflow. TLWM and characteristics of 

primitive workflow schema reduce the complexity of artifact validation. Artifact 

inaccuracy mentioned in Chapter 4 makes a set of cases that might impact on the 

correctness of artifact manipulation. Our approach to validate the use of artifacts is 

based on workflow reduction and the state tracing on artifacts. 

There are three steps during validation. The first is to extract state transitions 

from artifact manipulation within activities. The second is to perform the state 

mapping of artifacts within sequential blocks. At the same time, an artifact state 

diagram is constructed and artifact inaccuracy detection is achieved. The last is to 

perform the state combinations of artifacts in each control block according to its 

characteristic. Parallel Hazard and Branch Hazard are two noticeable artifact 

inaccuracy problems with control block; their detections are performed during 

combination of sub artifact-state transitions. 

Extracting artifact-state transition here is a bottom-up style. It finds artifact-state 

transitions of each local block, and combines these artifact-state transitions according 

to their relative positions during workflow execution. The corresponding algorithms 

are presented one bye one where each algorithm handles a distinct workflow structure 

and inside the algorithm one artifact is considered only to prevent reciprocal effect 

between multiple artifacts. 
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5.1 A General Reduction Algorithm 

Our artifact extraction algorithm constructs an artifact state diagram for each 

artifact to search the artifact inaccuracy in a primitive workflow schema. Due to the 

characteristics of primitive workflow schema, the input workflow schema is a 

sequence combination of un-blocked activities and top-level control blocks. Each 

atomic control block and each sequential block are reduced to corresponding 

composite activity nodes, and the reduction procedure can repeat bottom-up until 

there is no block left. During the reduction, artifact state tracing and validations both 

proceed. The bottom-up approach is done in a primitive workflow schema. 

Algorithm 1. Validate a Primitive Workflow Schema – validate a primitive 
workflow schema by reducing it to one composite activity node and extracting 
the artifact-state transition to validate artifact accuracy. 
 
StartNode = starting node of the input workflow schema; 
EndNode = ending node of the input workflow schema; 
ArtifactStateDiagram ASD = initializing artifact-state diagram; 
TargetNode = Reduce_SequentialBlock(StartNode.next, EndNode.previous); 
ASD = ExtractAST(TargetNode); 
Trace ASD to search for No Producer, No Consumer, and Redundant Specify; 
Output the artifact state diagram and artifact validation result; 

 

Algorithm 1 processes the input primitive workflow schema, starting from Start 

Node and ending at End Node defined in Section 3.2, and output the produced 

artifact-state diagram and validation result. The input workflow schema is considered 

as a sequential block and proceeded by sub routine Reduce_SequentialBlock, 

describing in Algorithm 2 of Section 5.2. The output artifact-state diagram is the 

record of one artifact manipulating life cycle and meaningful for artifact analysis. 
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5.2 Reduction Algorithm for Sequential Block 

In a sequential block, all activity nodes in this block are in sequential order. If the 

input schema contains a control block, this control block will be reduced as a 

composite activity node before reduction of the outer sequential block. Algorithm 2 

describes algorithm Reduce_SequentialBlock. Reduce_SequentialBlock extracts 

artifact-state transitions from the nodes in the input block, connects them, create a 

composite activity node with the artifact-state transition, and replace the input block 

by this new created node. 

Algorithm 2. Reduce_SequentialBlock(Node Ni, Node Nj) – reduce a 
sequential block, starting from Ni and ending at Nj, into a composite activity 
node and return it. 
 
CurrentNode = Ni; 
ArtifactStateTransition CurrentAST = initializing artifact-state transition; 
WHILE ( CurrentNode is in the block (Ni, Nj) ) { 
  IF ( CurrentNode.type == ActivityNode ) THEN 
    // connect artifact-state transitions by sequential order 
    CurrentAST = Sequential_Join(CurrentAST, ExtractAST(CurrentNode)); 
    CurrentNode = CurrentNode.next(); 
  ELSE IF ( CurrentNode.type == LOOP-START ) THEN 
    CurrentNode = Reduce_IterationControlBlock(CurrentNode); 
  ELSE IF ( CurrentNode.type == AND-SPLIT ) THEN 
    CurrentNode = Reduce_ANDControlBlock(CurrentNode); 
  ELSE IF ( CurrentNode.type == XOR-SPLIT ) THEN 
    CurrentNode = Reduce_XORControlBlock(CurrentNode); 
} 
Create a composite activity node Nij with CurrentAST; 
Nij.previous = Ni.previous; 
Nij.next = Nj.next; 
RETURN Nij; 
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Extract_AST extracts artifact-state transition from an activity node and is defined 

in Algorithm 3. Sequential_Join called by Reduce_SequentialBlock is in charge of 

connecting two artifact-state transitions in sequential order, and its detail is described 

in Algorithm 4. Reduce_IterationControlBlock, Reduce_ANDControlBlock and 

Reduce_XORControlBlock reduce control blocks in the input block, and they will be 

introduced in following sections. 

Algorithm 3. Extract_AST(ActivityNode Ni) – extract artifact-state 
transition from an activity node Ni 
 
// a composite activity with an artifact-state diagram 
IF (Ni has an artifact-state transition bound in it) THEN 
  RETURN the artifact-state transition; 
// no artifact operation 
IF (Ni has no operation on the artifact) THEN 
  RETURN a null artifact-state transition; 
// Read artifact operation 
IF (the artifact operation of Ni is Read type) THEN 
  Create a pseudo in-state Si according to pre-condition of Ni; 
  Create a transition arc from Si to itself labeled as Read; 
  RETURN this artifact-state transition; 
// other types of artifact operation 
Create a pseudo in-state Si according to pre-condition of Ni; 
Create an out-state Sj according to post-condition of Ni; 
Connect Si and Sj with a transition arc labeled as the type of operation; 
RETURE this artifact-state transition; 

 

In Algorithm 3, there are four cases when Extract_AST is performed on the input 

activity node Ni: 

1. Ni is a composite activity node reduced from a certain block and is 

associated with an artifact-state transition computed from reduction 
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algorithms. The artifact-state transition is returned directly. 

2. Ni is an activity node with no operations on the artifact, and a null 

artifact-state transition is returned. 

3. Ni is an activity node with Read operation on the artifact, and a transition of 

Read type is generated and returned. 

4. Ni is an activity node with a not-Read operation, and an artifact-state 

transition is generated according to Pre-condition, Action, and 

Post-condition in the activity specification. 

In case 1, the artifact-state transition might have multiple in-states (out-states) 

because it might be a combination of multiple artifact-state transitions of subflows 

inside the block. For an artifact-state transition with multiple in-states (out-states), 

each state of in-states (out-states) will be classified into four types: 

1. Definite: this state is extracted from a composite activity node reduced from 

an XOR control block. Each Definite state might have Branch Hazard with 

other Definite state. 

2. Potential: this state is extracted from a composite activity node reduced 

from an AND control block. Each Potential state might have Parallel 

Hazard with other Potential state. 

3. Both of Definite and Potential: this state is propagated from AND and XOR 

control blocks. It might have Branch Hazard with other Definite state and 

Parallel Hazard with other Potential state. 

4. Transparent: a transparent state is computed from an XOR control block to 

stand for a branch subflow which has no artifact state constrains or artifact 

operations. 
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These four classes of artifact state are useful in artifact-state joining and 

validation. More will be expressed in Algorithm 4 ,sections 5.4 and 5.5. 

In Algorithm 4, Sequential_Join connects two artifact-state transitions in 

sequential order, and detects Artifact Inaccuracy. In this stage, Contradiction and 

Branch Hazard tests will be performed. 
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Algorithm 4. Sequential_Join(ArtifactStateTransition STi, 
ArtifactStateTransition STj) – join two state transitions STi and STj. 
 
IF ( STi == NULL ) THEN RETURN STj; 
IF ( STj == NULL ) THEN RETURN STi; 
Si := STi.out-state; Sj := STj.in-state; 
SWITCH ( (|Si|,|Sj|) ) 
  CASE (1,1): 
    IF ( si ) THEN compatible are  and ,, sjsiSjsjSi ∈∈

∈∀∈

∈∃∈

∈∀∈

∈∃∈

∈∃∈

      Combine si and sj; 
    ELSE 
      Alarm Contradiction between STi and STj; 
  CASE (>1,1): 
    IF ( sj ) THEN compatiblenot  are  and ,, sjsiSisiSj
      Alarm Contradiction; 
    IF (∃ ) THEN compatiblenot  are  and ,,. sjsiSjsjDefiniteSisi ∈∈

      Alarm Branch Hazard; // losing out-state 
    IF ( sj ) THEN compatible are  and  ,, sisjSisiSj
      Combine si and sj; 
  CASE (1,>1): 
    IF ( si ) THEN compatiblenot  are  and ,, sjsiSjsjSi
      Alarm Contradiction; 
    IF ( si ) THEN compatiblenot  are  and ,., sisjDefiniteSjsjSi
      Alarm Branch Hazard; // insufficient in-state 
    IF ( si ) THEN compatible are  and  ,, sjsiSjsjSi
      Combine si and sj;  
  CASE (>1,>1): 
    IF (∀ ) THEN compatiblenot  are  and ,, sjsiSjsjSisi ∈∀∈

      Alarm Contradiction; 
    IF ( si and sj are not compatible WHERE 

ORSjsjDefiniteSisi ∈∀∈∀ ,. DefiniteSjsjSisi ., ∈∀∈∀ ) THEN 
      Alarm Branch Hazard // losing in-state or insufficient out-state 
    IF (∃ ) THEN compatible are  and  ,, sjsiSjsjSisi ∈∃∈

      Combine si and sj; 
END SWITCH 
RETURN the joined artifact-state transition;  
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5.3 Reduction Algorithm for Iteration Control Block 

An iteration control block is a block of nodes beginning from a Loop-Start and 

ending in a Loop-End. The procedure to transform an iteration control block into a 

composite activity node is listed in Algorithm 5. A new sequential block, created by 

unrolling the loop body twice, substitutes for the original iteration control block and 

then is processed by Reduce_SequentialBlock. The produced composite activity node 

is returned. 

Algorithm 5. Reduce_IterationControlBlock(Node Ni) – reduce an iteration 
control block starting from Ni into a composite activity node and return it. 
 
// locate the input iteration control block (Ni,Nj) 
CurrentNode = Ni.next(); 
Stack CNstack; // a stack to contain control nodes 
WHILE (1) { 
  IF ( CurrentNode.type == LOOP-START ) THEN 
    stack.push(CurrentNode); // nested iteration control block 
  ELSE IF ( CurrentNode.type == LOOP-END ) THEN { 
    IF ( stack.size() >= 1 ) THEN stack.pop(); 
    ELSE BREAK; 
  } 

CurrentNode = CurrentNode.next(); 
} 
Nj = CurrentNode; 
// for simulating iteration behavior 
Unroll loop body of (Ni,Nj) twice into a new sequential block (ni',nj'); 
ni'.previous = Ni.previous; 
nj'.next = Nj.next; 
// perform sequential block reduction on (ni',nj') 
ActivityNode nij = Reduce_SequentialBlock(ni', nj') 
RETURN nij; 
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5.4 Reduction Algorithm for AND Control Block 

AND control block is a workflow construction which starts from an AND-SPLIT, 

ends on an AND-JOIN, and has multiple concurrent subflows (paths). The most 

difference between AND control block and Sequential block is concurrent 

contradiction, which causes Parallel Hazard defined in Section 4.3.5. To validate each 

concurrent subflow and to merge these subflows into a composite activity are the 

major work in this stage. 

Algorithm 6. Reduce_ANDControlBlock(Node Ni) – reduce an AND 
control block starting from Ni into a composite activity node and return it 
 
// locate the input AND control block (Ni,Nj) 
CurrentNode = Ni.next(); 
WHILE (1) { 
  IF ( CurrentNode.type == AND-SPLIT ) THEN 
    stack.push(CurrentNode); // nested AND control block 
  ELSE IF ( CurrentNode.type == AND-JOIN ) THEN { 
    IF ( stack.size() >= 1 ) THEN stack.pop(); 
    ELSE BREAK; 
  } 

CurrentNode = CurrentNode.next(); 
} 
Nj = CurrentNode; 
// reduce these concurrent subflows, and join these concurrent state transitions 
ArtifactStateTransition CurrentAST = NULL; 
FOR (each concurrent subflow (nk,nl) within block (Ni,Nj)) { 
  ActivityNode SubNode = Reduce_SequentialBlock(nk, nl); 
 ArtifactStateTransition SubAST = ExtractAST(SubNode); 

  IF ( (SubAST != NULL ) THEN 
CurrentAST = AND_Join(CurrentAST, SubAST); 

} 
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// Continue above … 
 
// check Parallel Hazard 
IF ( ( | CurrentAST.out-state.Potential| > 1 ) ||  

( | CurrentAST.in-state.Potential| > 1 ) || 
( multiple concurrent artifact operations exist) ) THEN 

Alarm Parallel Hazard; 
// transform this AND control block into a composite activity 
Create a composite activity node Nij with CurrentAST; 
Nij.previous = Ni.previous; 
Nij.next = Nj.next; 
RETURN Nij; 

 

In Algorithm 6, there are four steps to reduce an AND control block: locating the 

input AND control block, reducing concurrent subflows, checking Parallel Hazard, 

and producing a composite activity node to substitute for the block. During reducing 

concurrent subflows, algorithm AND_Join is called for joining these concurrent 

artifact-state transitions. 

Algorithm 7. AND_Join(STi,STj) – join two state transitions STi and STj, 
where STj is not null 
 
// NULL Join 
IF (STi == NULL) THEN RETURN STj; 
// indicate in-state set and out-state set 
Si = STi.in-state; Ei = STi.out-state; 
Sj = STj.in-state; Ej = STj.out-state; 
// perform AND join calculation on STi and STj 
CurrentAST.in-state = Si☉Sj; 
CurrentAST.out-state = Ei☉Ej; 
// return the new state transition 
RETURN CurrentAST; 
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Algorithm 7 describes the AND_Join, which joins two input state transitions 

according to the characteristic of AND control block. The joining calculation function 

☉ for AND_Join is defined in Definition 5.1. 

For AND join calculation, the two input concurrent artifact-state transitions STi 

and STj are non-null. If there is only one state of in-state (out-state) of the input 

artifact-state transition, the state will be labeled as Potential state by default.  

Definition 5.1 AND Join Calculation Function 
For artifact-state transitions STi and STj, let α  and β  be the 

corresponding sets of in-states, and let γ and δ be sets the corresponding 
sets of out-states. To simplify the representation, we define AND join 
calculation with ☉ as follows. 
α☉β= ＜α.D,α.P＞☉＜β.D,β.P＞ 

= ＜(α.D∪β.D), (α.P∪β.P∪α.D∪β.D)＞ 
γ☉δ= ＜γ.D,γ.P＞☉＜δ.D,δ.P＞ 

= ＜(γ.D∪δ.D), (γ.P∪δ.P∪γ.D∪δ.D)＞ 
where D is sets of Definite states and P is sets of Potential states. 

Si∪Sj = Si + Sj – Si∩Sj 
where compatoble are  and  ,such that ,, , sjsisSjsjSisiSjSis ∈∈∃∈∀  I

 

One special case is that the types of all concurrent operations are Read, and this 

control block will be considered as a composite activity with a Read operation. On the 

other hand, if there are multiple concurrent artifact-state transitions distributed in 

concurrent subflows, a Parallel Hazard might occur between these subflows. 
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5.5 Reduction Algorithm for XOR Control Block 

An XOR control block is a workflow construction which starts from an 

XOR-SPLIT, ends at an XOR-JOIN, and it has multiple branch subflows. The major 

difference between XOR control block and AND control block is that the former has 

only one subflow will be selected to execute according to conditions of branch. It 

might lead to Branch Hazard defined in section 4.3.6. How to detect Branch Hazard 

and how to figure out in-state(s) and out-state(s) of the new composite activity are the 

major work in this section. 

In Algorithm 8, there are four steps to reduce an XOR control block: locating the 

input XOR control block, reducing branch subflows, checking Branch Hazard, and 

producing a composite activity node to substitute for the block. During reducing 

Branch subflows, there are two parts different from algorithm 

Reduce_ANDControlBlock: inserting Transparent state to the current artifact-state 

transition if there is a NULL artifact-state transition and calling procedure XOR_Join 

to join these branch artifact-state transitions. The reason to insert a Transparent state, 

which is universally compatible to any artifact states outer of the current block, is to 

represent a branch path which will not impact the artifact-state transition. 

Algorithm 9 describes procedure XOR_Join, which joins two input state 

transitions according to the characteristic of XOR control block. The joining 

calculation function for XOR_Join is defined in Definition 5.2. 

In addition, all activity nodes with the XOR control block have no operation of 

the artifact, and this control block will be considered as a composite activity with no 

artifact operation. 
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Algorithm 8. Reduce_XORControlBlock(Node Ni) – reduce an XOR 
control block starting from Ni into a composite activity node and return it 
 
// locate the input XOR control block (Ni,Nj) 
CurrentNode = Ni.next(); 
WHILE (1) { 
  IF ( CurrentNode.type == XOR-SPLIT ) THEN 
    stack.push(CurrentNode); // nested XOR control block 
  ELSE IF ( CurrentNode.type == XOR-JOIN ) THEN { 
    IF ( stack.size() >= 1 ) THEN stack.pop(); 
    ELSE BREAK; 
  } 

CurrentNode = CurrentNode.next(); 
} 
Nj = CurrentNode; 
// reduce these branch subflows, and join these branch state transitions 
ArtifactStateTransition CurrentAST = NULL; 
FOR (each branch subflow (nk,nl) within block (Ni,Nj)) { 
  ActivityNode SubNode = Reduce_SequentialBlock(nk, nl); 
 ArtifactStateTransition SubAST = ExtractAST(SubNode); 
 IF ( (SubAST == NULL) ) THEN 

CurrentAST.addState(TransparentState); 
  ELSE 
    CurrentAST = XOR_Join(CurrentAST, SubAST); 
} 
// check Branch Hazard 
IF ( condition testing in the XOR-SPLIT node is not consistency with 

CurrentAST.in-states ) THEN 
  Alarm Branch Hazard; 
// transform this XOR control block into a composite activity 
Create a composite activity node Nij with CurrentAST; 
Nij.previous = Ni.previous; 
Nij.next = Nj.next; 
RETURN Nij;  
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Algorithm 9. XOR_Join(STi,STj) – join two state transitions STi and STj, 
where STj is non-null 

 
// NULL Join 
IF (STi == NULL) THEN RETURN STj; 
// indicate in-state set and out-state set 
Si = STi.in-state; Ei = STi.out-state; 
Sj = STj.in-state; Ej = STj.out-state; 
// perform XOR join calculation on STi and STj 
CurrentAST.in-state = Si♁Sj; 
CurrentAST.out-state = Ei♁Ej; 
// return the new state transition 
RETURN CurrentAST; 

 

For XOR join calculation, the two input concurrent artifact-state transitions STi 

and STj are non-null. If there is only one state of in-state (out-state) of the input 

artifact-state transition, the state will be labeled as Definite state by default.  

Definition 5.2 XOR Join Calculation Function 
For artifact-state transitions STi and STj, let α  and β  be the 

corresponding sets of in-states, and let γ and δ be sets the corresponding 
sets of out-states. To simplify the representation, we define XOR join 
calculation with ♁ as follows. 
α♁β= ＜α.D,α.P＞♁＜β.D,β.P＞ 

= ＜(α.D∪β.D∪α.P∪β.P),(α.P∪β.P)＞ 
γ♁δ= ＜γ.D,γ.P＞♁＜δ.D,δ.P＞ 

 = ＜(γ.D∪δ.D∪γ.P∪δ.P),(γ.P∪δ.P)＞ 
where D is sets of Definite states and P is sets of Potential states. 

Si∪Sj = Si + Sj – Si∩Sj 
where compatoble are  and  ,such that ,, , sjsisSjsjSisiSjSis ∈∈∃∈∀  I
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Chapter 6.  Examples for Artifact Validation on Primitive 

Workflow Schema 

For illustrating and demonstrating our validation algorithms, an example of 

primitive workflow schema and the procedure of artifact validation are presented in 

this chapter. Figure 6.1 shows an example of primitive workflow schema. 

 

Figure 6.1 An example of Primitive Workflow Schema 

In Figure 6.1, there are three un-blocked activity nodes {A1, A2 and A14} and 

two top-level control blocks {AND-1 (AS1,AJ1) and XOR-2 (XS2,XJ2)}. The first 

top-level control block AND-1 contains iteration control block LOOP1 

(LOOP1_Start,LOOP1_End), control block AND-2 (AS2,AJ2), XOR-1(XS1,XJ1), 

and activity node A9. The second top-level control block XOR-2 contains control 

block AND-3 (AS3,AJ3) and XOR-3 (XS3,XJ3). Figure 6.2 is a table of artifact 

information extracted from activity specifications of these activity nodes. The blank 

field means "don't care" or no artifact operation. Next, this workflow schema example 

is evaluated by our Artifact Validation algorithms as follows.  
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In Figure 6.3, activity nodes A1 and A2 are validated and constructed an 

artifact-state transition, but the next node is an AND control block needing procedure 

Reduce_ANDControlBlock to reduce to a composite activity node. In Figure 6.4, 

Reduce_ANDControlBlock is performed on AND1 control block, and each 

concurrent subflows are evaluated by Reduce_SequentialBlock. The inner control 

blocks are evaluated by corresponding reduction procedures. In the third concurrent 

subflow, a Branch Hazard is detected because of losing out-state. 

In Figure 6.5, a Parallel Hazard is detected during joining concurrent 

artifact-state transitions. In Figure 6.6, the AND1 control block is reduced to a 

composite activity node, and the next node is another control block. In Figure 6.7, the 

succeeding control block XOR2 is proceeded by Reduce_XORControlBlock, and its 

branch subflows are proceed by Reduce_SequentialBlock. 

In Figure 6.8, the branch subflows of XOR2 are reduced to node AND3 and node 

XOR3. Control block XOR2 is reduced to node XOR2 in Figure 6.9. And, in Figure 

6.10, a Branch Hazard is detected because of losing out-state during sequential joining 

with activity node A14. Figure 6.11 is the result of artifact validation on this input 

workflow schema. In addition, three instances of Artifact Inaccuracy are addressed in 

the final artifact-state diagram. 

The Branch Hazard, detected between control block XOR1 and activity node A9, 

indicates that one Definite state of out-states in XOR1 is lost. In the actual execution, 

the execution thread selecting the branch subflow (A8,A8) may halt by contradiction 

between the current artifact state and Pre-condition of activity A9. The Branch Hazard 

between control block XOR2 and activity node A14 is the same as above. 

The Parallel Hazard, detected inside control block AND1, indicates a 
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competition between these three concurrent subflows, (LOOP1_Start,LOOP1_End), 

(AS2,AJ2) and (XS1,A9). The interleaving between the concurrent subflows may 

produce contradiction problems inside the control block. 

Activity Node In-state Operation Type Out-state 
A1  Specify  
A2 Specified Write Written 
A3 Written Revise Revised 
A4 Revised Write Written 
A5 Written Revise Revised 
A6    
A7 Written Write Written 
A8 Written Revise Revised 
A9 Written Revise Revised 
A10    
A11 Revised Write Written 
A12 Revised Write Written 
A13 Revised Read  
A14 Written Revise Revised 

 

Figure 6.2 A Table of Activity Specifications 
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Figure 6.3 Phase 1 
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Figure 6.4 Phase 2 
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Figure 6.5 Phase 3 
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Figure 6.6 Phase 4 

 

Figure 6.7 Phase 5 
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Figure 6.8 Phase 6 

 

 

Figure 6.9 Phase 7 
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Figure 6.10 Phase 8 

 

 

Figure 6.11 Phase 9 
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Chapter 7.  Conclusion & Future Work 

The main contribution of this thesis is to introduce a concept of automatic 

artifact validation during workflow design phase. To achieve this goal, Three Layer 

Workflow Model is introduced, where artifacts are defined with a set of operations 

and activities are define with artifact constrains. Then, a sequence of artifact 

validation algorithms is presented to validate a Primitive Workflow Schema. Besides, 

six types of Artifact Inaccuracy, which may impact workflow execution result, are 

addressed. The realistic implementation of our system architecture is beyond the 

scope of this thesis. 

We sketched a control-oriented workflow system, which is based on our TLWM, 

with a visual artifact analysis tool binding to the workflow specification. Besides, the 

workflow application processes can be modeled as Figure 7.1.  

 

Figure 7.1 Procedure of Workflow System Development 

In the future, an implementation of our algorithm is implemented first. The 

methodology based on Figure 7.1 will be constructed to put our research into practice. 

In addition, we will continue our research in composite artifact which has more 

complex behaviors from Revise operations, such as interaction and interference 
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between artifacts, and introduce more state descriptions/constrains for more precise 

validation. Besides, resource constrains analysis and role authentication will be 

introduced in our workflow design method to integrate related research topic of our 

laboratory. 
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