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Abstract

This research reduces power consumption of branch target buffer (BTB) — a commonly used

dynamic branch prediction component. Conventional BTB is looked up while instruction

fetcher is fetching an instruction. The result returned from BTB tells instruction fetcher the

address of the next instruction. Since branch instructions occupy a small portion of total

executed instructions, most BTB look-up operations are only waste power. We can reduce

its power consumption by reducing useless BTB look-up counts. By recording the positions

of branch instructions during run time, we can determine what time should instruction

fetcher perform BTB look-up operation. This design is evaluated by two metrics: energy

consumption and performance loss. The experimental result shows this design effectively

saves energy consumption with only a little performance loss.
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Chapter 1

Introduction

Low power becomes an important issue for processor design. On the other hand, branch

target buffer (BTB) consumes a significant ratio of total power consumption in processor.

It is effective to lower processor power consumption by reducing BTB power consumption.

There are many factors influence BTB power consumption. This thesis focuses on reducing

BTB look-up counts to reduce BTB power consumption. Three approaches are proposed to

reduce BTB power consumption, they are easy to implement and suitable for most processors.

The evaluation result shows this mechanism is effectual with only a little performance loss.

1.1 Importance of Low Power Design

Power consumption becomes more and more important factor of IC design. Most consumed

power is transferred to heat, and results in unstable and low speed IC. Low power design

reduces the heat produced from high performance equipments and increases the life time of

battery-powered equipments. For high performance devices, hardware complexity and high

working voltage introduce enormous heat, and higher operating temperature will result in

many problems, including electron-migration diffusion, enlarged clock skew, ... etc. Low
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power technique reduces power consumption and lower the heat. Most portable devices

are powered by battery, and the life time is vitally restricted by the battery technology.

Designing for low power is another solution to increase the life time under current battery

technology. While the two problems become more and more serious, low power design hence

becomes a very important research topic.

1.2 What is Branch Target Buffer

Almost all processors are highly pipelined today. For a processor with deep pipeline, control

hazard becomes a major harm to system performance. And a good dynamic branch handling

is vital to the performance of such processors.

Branch target buffer (BTB) is a very commonly used dynamic branch predictor [1]. The

major task of branch target buffer is to predict addresses of next instructions. Comparing

with static branch prediction mechanism, since static branch prediction can only be per-

formed after instruction is decoded, BTB performs branch prediction at the first pipeline

stage, thus further reduces branch penalty. Comparing with other dynamic branch prediction

mechanism such as branch history table, branch target buffer reduced the branch penalty

to zero if it is correctly predicted. In other words, if all branch instructions are correctly

predicted, the pipeline will be kept full, exert the benefits of pipelining.

The major information stored in branch target buffer includes 1) address of the branch

instruction (tag), 2) target address of the branch instruction, and 3) direction prediction

data, which is used to predict whether this branch instruction will taken or not-taken. Every

entry of branch target buffer stores the previous information of a certain branch instruction.

Branch target buffer is usually organized as content addressable memory (CAM), every entry

is addressed by branch instruction address. If the look-up operation is hit, branch target

buffer returns the predicted direction (taken or not) and the target address of this branch
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Figure 1.1: Branch target buffer overview

instruction.

Figure 1.1 is the system overview of branch target buffer. To keep pipeline full, branch

target buffer is looked up in the first pipeline stage. When instruction fetcher fetches an

instruction, it sends the address of that instruction to look-up branch target buffer, and

retrieve the information about predicted direction and the target address. If the look-up is

not hit or the predicted direction is not-taken, instruction fetcher sets program counter (PC)

to current PC plus a word size. If the look-up is hit and the instruction is predicted taken,

instruction fetcher sets PC to the target address which is retrieved from branch target buffer.

If the address is correctly predicted, no extra penalty cycle is introduced for this branch and

the pipeline keeps full.

All information in branch target buffer is gathered during run time. A branch instruction

can get into branch target buffer only after it is executed, and may be swept out when a

conflict happened. After a branch instruction is executed in EX stage, its target address is

computed out and its direction is determined. Then this branch instruction can be stored

into branch target buffer, if this branch instruction is already exists in branch target buffer,

it still need to update the history of its direction. The history of direction is used to predict

its direction next time it is executed.
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1.2.1 Branch Target Buffer Power Consumption

BTB is usually organized as content addressable memory (CAM). The organization of content

addressable memory is usually composed in two part, the first is tag and the second is data

[2]. To access a specific entry of content addressable memory, all tags are compared with

the address, and one or none of them match to the address. Then the data entry in SRAM

is enabled to be accessible. The major power consumption is caused from tag comparison.

Since BTB contains a large and complex storage, plus this storage is accessed in every

instruction cycle, it becomes a significant source of power consumption in processor. In [3]

and [4], the power consumed by BTB is about 7%˜10% of whole processor power.

1.3 Motivation and Objective

Branch target buffer look-up operation can gain performance benefit only when it is looked

up while instruction fetcher is fetching a branch instruction, because branch target buffer

only stores information of branch instructions. If branch target buffer is looked up while

instruction fetcher is fetching a non-branch instruction, it always returns predicted not-taken

and results in no performance benefit but waste power.

In conventional design, BTB is looked up in every instruction cycle. In other words,

instruction fetcher always performs BTB look-up operations when it fetches instructions.

According to figure 1.1, branch instructions constitute small portion of total executed in-

structions, ranging from 8% to 19%, 14.3% in average. The data in [5] also shows similar

result.

Since branch instructions do not appear very frequently, most BTB accesses are useless

and only waste power. Thus we should only perform BTB look-up operations on branch

instruction. To achieve this goal, we have to precisely predict the position of branch instruc-

tions and look-up BTB only on branch instructions.
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Table 1.1: Ratio of branch instructions to total executed instructions

number of branch number of total
benchmark instruction executed instruction ratio (%)

adpcm - rawcaudio 695813 7634937 9.1135
adpcm - rawdaudio 695178 5570597 12.4794
epic - epic 42835301 278394207 15.3866
epic - unepic 2891862 26283864 11.0024
g721 - decode 86691707 473587671 18.3053
g721 - encode 46985665 250676208 18.7436
gsm - toast 9177545 144978438 6.3303
gsm - untoast 6015400 61421333 9.7937
jpeg - cjpeg 1857815 13726918 13.5341
jpeg - djpeg 230531 3467162 6.6490

average 12.1337

Since we want to reduce total power consumption, the mechanism applied should not

consume too much power, it must be a very simple and power efficient mechanism. On the

other hand, the processor performance should not be affected too much, or the total energy

consumption will be increased even the BTB energy consumption is reduced.

1.4 Related Works on Reducing BTB Look-up Counts

The problem of skipping useless BTB look-up can be translated into the problem of iden-

tifying whether an instruction is a branch instruction. There are two sets of state of the

art approaches to solve such a problem. The first approach is to identify branch instruction

by compiler analysis, and the second is by pre-decoding. In compiler analysis approach,

compiler analyzes control flow to retrieve branch information, and stores the information in

a special hardware or by inserting hint instructions. Then processor skips unnecessary BTB

look-up according to the branch information during run time. [6] and [4] is classfied into

this approach. In pre-decoding approach, instruction is pre-decoded and is identified if it is
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a branch instruction during run time. According to the pre-decoded information, processor

decide whether to look-up BTB. [3] is classfied into this approach. The detailed information

about these three papers are introduced now.

Petrov and Orailoglu [6] analyze the control flow of programs at compilation time, and

load the branch instruction information into a special hardware at run time. The BTB look-

ups are then performed only on branch instructions, since the control flow is already known.

Monchiero et al. [3] insert special instructions in code to inform the processor of the next

branch instruction’s arrival. If any no-operation instruction exists in a VLIW word, then the

special instruction can be insert into this VLIW word to replace the no-operation. Parikh

and Skadron [4] use a pre-decoder to identify if an instruction is a branch instruction at run

time, the fetcher accesses BTB for all instructions in this cache line if any branch instruction

exists in the cache line.

1.4.1 Application-Customizable Branch Target Buffer

In [6], a mixed hardware/software low-power branch identification approach is proposed. The

required components include a profiler, a compiler, and a special hardware called ACBTB

(Application-Customizable Branch Target Buffer). On the other hand, a conventional BTB

is still required because ACBTB is only be activated inside hot spots of program. Branch

prediction of the rest code is handled by conventional BTB.

The profiler identifies the hot spots of a program, and only the hot spots are analyzed

by compiler because of the amount of information of total program is too large to store in

ACBTB. The compiler analyzes the control flow to retrieve the branch instruction infor-

mation in these hot spots. The information includes the positions of branch instructions

and the distance to the next branch instruction under taken and not-taken conditions. The

information is loaded into ACBTB at run time. When the control flow enters the hot spots,

the conventional BTB is reposed and the ACBTB is activated. ACBTB stores all the infor-
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mation in BTB, with extra information of the distance of the next branch instruction, and

the index of the entry that stores the information of the next branch instruction.

The fetcher reads the distance of the next branch instruction from ACBTB and reposes

it until the next branch instruction arrives. The fetcher then reads the new information from

the next entry of ACBTB.

1.4.2 Hint Instruction

In [3], compiler retrieves the information of branch instructions, and inserts hint instructions

to tell the fetcher when to look-up BTB. The fetcher does not look-up BTB unless it is told

to. When the hint instruction is executed, it tells the fetcher the distance of the next branch

instruction, sometimes with the extra information including the branch target address or so.

A problem of this approach is the hint instruction increases code size and need extra

execution time. To reduce the effect, this [3] applied this approach only on VLIW machine.

If a no-operation slot is found before a branch instruction and they are in the same basic

block, the no-operation slot is replaced by hint instruction, thus the extra execution time

can be overlapped.

1.4.3 Prediction Probe Detector

In [4], instructions are pre-decoded to identify any branch instructions. When the instruc-

tions are loaded to instruction cache from memory, they are decoded to identify if there

any branch instruction in a certain cache line. The results are stored in a hardware called

PPD (Probe Prediction Detector). The instruction fetcher look-up PPD while it is fetching

instructions from instruction cache. If the PPD indicates that the current cache line contains

branch instructions, the instruction fetcher looks up BTB for all instructions in this cache

line. If the PPD indicates that the current cache line does not contains branch instructions,
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the instruction fetcher reposes BTB for all instructions in this cache line.

Because PPD entry maps to instruction cache line one-by-one, PPD is also organized

the same as instruction cache. If instruction cache is N-way set associative, PPD is also

N-way set associative. This means PPD look-up operations also wastes a lot of power. This

approach reduces the number of BTB look-up but PPD is still looked up every instruction

cycle, total power consumption is not reduced a lot.

1.4.4 Summary and Discussion

The approaches proposed in [6] and [3] reduce the BTB accesses with the aids of compiler.

This restricts the binary compatibility of the program, and the hardware can not gain any

power reduction for unmodified programs. In fact, hardware even can not work if the software

is not modified.

The approach proposed in [4] is a pure hardware-based approach, but the problem is that

since BTB look-up is not performed every instruction cycle, PPD has to be looked up every

instruction. To reduce PPD look-up count, all instructions in a cache line is treated equally,

this restricts the performance of power reduction.

In contrast, my proposal requires only a little simple control logic and some extra space

to record branch instruction information. And every instruction is treated individually to

increase power reduction on non-branch instruction. For multimedia/DSP applications in

which simple loops dominate, these proposed methods yield good power reduction.

1.5 Organization of this Thesis

The rest of this thesis is organized as follow. Chapter 2 explains my designs. The evaluation

methodology and experimental results are discussed in chapter 3. Finally, chapter 4 is

conclusion and future works.
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Chapter 2

Design

To reduce useless BTB look-up count, a mechanism is proposed to predict what time the

next upcoming branch instruction would be encountered. In more detail, the distance to the

next branch instruction is predicted. BTB look-up is only performed when the predicted

distance reached. If BTB misses, it is kept looked-up until it hits. The next distance is

predicted when BTB hits.

2.1 Overview

Generally, branch instructions do not appear consecutively. In other words, there are usually

several non-branch instructions follow a branch instruction. Figure 2.1 shows the distance

between two branch instructions profile: The X-axis is the distance of two branch instruc-

tions, and the Y-axis is the accumulated ratio of branch instructions. For example, this

figure shows that about 60% of the distances between two branch instructions are more than

4. According to figure 2.1, it is expected that reposing BTB for a few instructions after a

branch instruction will not harm performance too much.

When a branch instruction is encountered, I predict the non-branch instruction count

9



Figure 2.1: Distance between two adjacent branch instructions

(NBIC). Then BTB is reposed for the next NBIC instruction since they are non-branch

instructions. Figure 2.2 shows the overview of my design. A repose counter is added into

instruction fetcher. The value of repose counter is decremented when instruction fetcher

fetches an instruction. The counter will be decremented until it is zero. Depending on

whether the repose counter is zero or not, instruction fetcher looks up BTB or not. In other

words, instruction fetcher only perform BTB look-up operations when the repose counter is

zero. If BTB look-up hits, the repose counter has to be updated to a new NBIC value. The

new NBIC value to update repose counter can be determined in several methods, and will

be introduced later.

Figure 2.3 is an example of my design. The first column is the executed code sequence,

branch instructions are highlighted. The second column represents whether instruction

fetcher performs BTB look-up operations. The third column is the value of repose counter.

At first, repose counter is zero and instruction fetcher performs BTB look-up while fetching

10



Figure 2.2: Overview of my design

instruction. When a branch instruction (the third instruction) is encountered, we update

the value of repose counter. If the repose counter is updated as 4, then the following 4

instructions will be fetched without BTB look-up. When the repose counter reaches zero,

it performs BTB look-up and BTB will hit because this is a branch instruction (we assume

that this branch instruction is already recorded in BTB). Since BTB is hit, we update the

repose counter again. The detail of how we decide the new NBIC will be introduced later.

2.2 Effect of NBIC Precision

The precision of predicted NBIC affect the result enormously. If a non-branch instruction is

fetched with BTB look-up, it consume power but do not gain performance benefit. If a taken

branch instruction is fetched without BTB look-up, it introduces performance loss because

branch is not predicted and causes branch prediction miss penalty.

If the predicted NBIC is exactly match the number of non-branch instructions after a

branch instruction, all unnecessary BTB look-up will be skipped without performance loss.
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Figure 2.3: Example of my design

Figure 2.4 is an example of a perfect predicted NBIC. BTB look-up operations are performed

on all branch instructions, and all non-branch instructions are not fetched with BTB look-up.

This results in most power reduction without any performance loss.

If the predicted NBIC is longer than the number of non-branch instructions after a branch

instruction, the next branch instruction will be fetched without BTB look-up. This will cause

performance loss if this branch instruction is a taken branch instruction. Figure 2.5 is an

example of a longer predicted NBIC. Instruction fetcher does not perform BTB look-up on

the second branch instruction. If this branch instruction is taken, it causes performance

loss. On the other hand, the non-branch instructions after the second branch instruction are

fetched with BTB look-up, causes unnecessary power consumption.

If the predicted NBIC is shorter than the number of non-branch instructions after a

branch instruction, BTB look-up operations will be performed on non-branch instructions

and waste power. Figure 2.6 is an example of a shorter predicted NBIC.
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Figure 2.4: Example of exactly matched NBIC

Figure 2.5: Example of longer NBIC
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Figure 2.6: Example of shorter NBIC

2.3 NBIC Determination

The new NBIC value to update repose counter can be determined in several methods. I

proposed three approaches to determine the NBIC value to update repose counter. The first

approach is always predict NBIC as a fixed number. The second is to predict NBIC is the

same as the latest NBIC. The third approach records every branch instruction’s own NBIC.

2.3.1 Fixed NBIC Approach

The simple method to determine NBIC is always assigning a fixed NBIC. The value of NBIC

can be determined arbitrarily or by off line profiling. In most cases, an arbitrarily determined

NBIC about 3 is enough. But if we want to improve the precision of NBIC, we can determine

the NBIC value by off line profiling.

Figure 2.7 is the design of this approach. The NBIC value is determined arbitrarily or

determined by profiling. After the NBIC is determined, it will not change during run time.

Whenever a NBIC is needed for updating repose counter, it simple sends the pre-determined

value to repose counter.
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Figure 2.7: Design of the first approach

2.3.2 Last NBIC Approach

In the previous approach, NBIC is a fixed value. Actually, the distance between two branch

instructions will varies during run time. The first approach can not react the variation. To

improve the precision of NBIC prediction, dynamically adaptive approach is necessary.

A intuitive run time adaptive approach is to predict NBIC is the same as the distance

between previous two branch instructions, i.e. last NBIC. For a program with simple loops,

which contains only one branch instruction in the loop, the NBIC value in these simple loops

are always the same. In such a case, if the predicted NBIC can be dynamically adapted to

previous NBIC value, the precision will be enormously increased.

Figure 2.8 is the concept of this approach. When the program is executed to the second

branch, the distance between the first branch and the second branch , last NBIC, is known

to be 2. And then we predict the distance from the second branch to the next upcoming

branch instruction is likely to be the same as last NBIC, 2.

Figure 2.9 shows the implementation of this approach. Note that this figure only shows

the last NBIC counting logic, the BTB reposing logic is not shown in this figure. A NBIC

counter is added to count the number of non-branch instructions between the previous two
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Figure 2.8: Concept of the second approach

branch instructions. A LD register stores the last NBIC which is counted by distance counter.

Every time a non-branch instruction is encountered, the distance counter increments. When

a branch instruction is encountered, the value of distance counter is written into LD register,

and the distance counter is reset. When we want to predict NBIC, we predict the NBIC will

be the same as the value stored in LD register.

In this approach, we count the distance between two branch instructions. Since an

instruction can be identified as branch instruction after arriving instruction decode stage,

the distance counter is implemented in instruction decode stage. This introduces a little

difference from my original notion. Refer to figure 2.8, the predicted NBIC of the second

branch should be the distance between the first branch and the second branch. But if the

distance is counted in instruction decode stage, the distance can be used as predicted NBIC

of the second branch. Because the NBIC of the second branch is predicted in instruction

fetch stage of the second branch, but the distance is counted in instruction decode stage of

the second branch, which is one cycle later. So, the distance is used as predicted NBIC of

the third branch. Although it is a little different from my original notion, it does not affect

the system to much, the mechanism still works.
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Figure 2.9: Implementation of the second approach

Figure 2.10: Issue of the second approach in pipelining
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Figure 2.11: Concept of the third approach

2.3.3 NBIC Fields in BTB Approach

The third approach further improve the precision of NBIC prediction by recording every

branch instruction’s own NBIC value individually. Besides, since the NBIC under taken and

not-taken branch are different, the NBIC is separated into NBIC T and NBIC NT which

represent the NBIC under taken and not-taken conditions. Figure 2.11 is the concept of

the third approach. Refer to this figure, after the code is executed, the NBIC information

is gathered. Next time when the branch instruction branch2 is encountered, instruction

fetcher looks up BTB, BTB will predict whether this branch will taken or not. According

to the information, NBIC is updated from NBIC T or NBIC NT of branch2.

On the other hand, it is inefficient to record NBIC of all branch instructions because

this results in a lot of need of storage. The solution is to record the several least recently

executed branch instructions. Take the advantage of temporal locality, the storage needed to

store the information is enormously reduced but the prediction precision is still kept pretty

good. Since BTB already stores the several least recently executed branch instructions, we

can simply add NBIC T and NBIC NT fields into BTB. Every branch instruction recorded

in BTB has its own NBIC T and NBIC NT fields.
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Figure 2.12: Design overview of the third approach

Figure 2.12 shows the design overview of the third approach. The information of NBIC T

and NBIC NT fields is gathered after the code is executed. Refer to figure 2.2, whenever

BTB is hit, the new NBIC value is loaded from NBIC T or NBIC NT fields to repose counter.

Since BTB also predicts the direction of branch, the new NBIC value is loaded from the two

fields depends the predicted direction. If BTB predicts this is a taken branch, new NBIC is

loaded from NBIC T, or it is loaded from NBIC NT.

The contents of NBIC T and NBIC NT fields in BTB is gathered during run time. At

first, the initial value of the two fields is set to zero in my design, but actually it can be set to

other value such as two or three. Figure 2.13 shows the mechanism of gathering the contents.

The first component is the NBIC counter. It counts the number of non-branch instructions

between the previous two branch instructions, just as what it does in the second approach.

When a branch instruction is encountered, the value of distance counter is stored to the

NBIC T or NBIC NT fields of the previous branch instruction. If the previous branch is a

taken branch instruction, the value of distance counter is stored in NBIC T field, otherwise

it is stored in NBIC NT field.
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Figure 2.13: Information gathering of the third approach

2.4 Comparing My Design with Related Works

Comparing my design with related works, the advantages of my design include the following

three ingredients:

Processable scope covers all executed code

Since all needed information is collected during run time and no pre-processing is required,

the scope that my mechanism can apply covers all executed code. Comparing with the two

compiler analysis approaches, because the information collected in static time is too much to

store, these two approaches are usually applied apart of code, not all. But by my approach,

information of all executed code will be collected, when the size of information is too large,

old information would be swept out, but the swept information is likely not to be used. Next

time it is needed, it would be collected again.

Pure hardware implementation

Any approach that want to reduce useless BTB look-up must modify the hardware to add

some mechanism to repose BTB. But some approaches also have to modify compiler, ISA,

source code, etc. My design is a pure hardware implementation, we can apply my design on
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an existed system by only changing the processor core.

No every-cycle-accessed table

In [4], although BTB is not looked up every cycle, but PPD is. Since PPD is correlated

to instruction cache, it is organized in CAM, and consumes a lot of power consumption.

In my design, only the counter works every cycle. Even NBIC table is only accessed when

necessary.
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Chapter 3

Evaluation

My design is evaluated by trace-driven simulators. The benchmark suite I selected is a

subset of MediaBench [7], which is a benchmark suite for multimedia and communication

applications. The results are evaluated by five metrics: branch instruction look-up precision,

non-branch instruction look-up precision, overall instruction look-up precision, energy saving,

and performance loss.

3.1 Method

It is very difficult and time-consuming to re-design a processor and implement my designs

into it. Another practical approach is to develop a simulator for experiment. Behavioral

simulation is a very commonly-used approach in architecture domain, because it is efficient

than re-design a processor, and its result is still accurate.

I evaluate my designs by a trace-driven simulator. My simulator analysis the trace and

simulate the result. When a branch is encountered, I simulate the result of branch prediction,

if my predicted direction is different from the trace, I plus several cycles of penalty to executed

cycle count.
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3.2 Environment

I collected the trace of my benchmark programs on ARM emulator. The benchmark pro-

grams selected are subset of MediaBench, which is a benchmark suite for multimedia and

communication applications. ARM is a popular processor family designed for embedded

systems. Although my design is not only for embedded processor, ARM is still a rather good

platform for evaluation because of its integrated development environment.

MediaBench is a benchmark suite for multimedia and communication applications [7]. It

is designed to captures the essential elements of modern embedded multimedia and commu-

nication applications. MediaBench includes 11 applications, but some of them are difficult

to run on ARM emulator. Due to this problem, only 6 of them are selected for evaluating

my designs. The applications of MediaBench are listed below. The first six applications are

selected to evaluate my design:

1. JPEG, a still image compression method.

2. MPEG2, a moving picture compression method, used in high quality digital video

transmission.

3. GSM, European GSM 06.10 is a standard of full-rate speech transcoding.

4. G.721 Voice Compression, G.711, G.721 and G.731 voice compressions.

5. EPIC, an image compression utility which allows fast decoding without floating-point

computations.

6. ADPCM, a standard of audio coding.

7. PGP, a standard of digital signatures.

8. PEGWIT, a public key encryption and authentication utility.
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9. Ghostscript, interprets the PostScript language.

10. Mesa, a clone of OpenGL (a 3-D graphics library).

11. RASTA, a speech recognition program.

My approaches are designed for any processor with BTB. ARM is selected because its

integrated development environment, which is suitable for evaluation. The ARM emulator

I used is armsd, a powerful utility for emulating ARM processor, plus tracer funcionalities

that generates trace files of these benchmark programs.

3.3 Evaluation Metrics

In this research, I use the following metrics to evaluate my design:

• Branch instruction look-up precision

• Non-branch instruction look-up precision

• Overall instruction look-up precision

• Energy saving

• Performance loss

The previous three look-up precision are raw data to evaluate my design. Energy saving

and performance loss are computed from the look-up precision and are more meaningful for

end user.
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3.3.1 Branch Instruction Look-up Precision

Branch instruction look-up precision is to evaluate how many branch instructions are fetched

with BTB look-up operation. The higher precision means the less performance loss. Branch

instruction look-up precision is defined as:

BLP =
B

BIC

BLP is branch instruction look-up precision. B is the number of branch instructions fetched

with BTB look-up. BIC is total branch instruction count.

3.3.2 Non-branch Instruction Look-up Precision

Non-branch instruction look-up precision is to evaluate how many non-branch instructions

are fetched without BTB look-up operation. The higher precision means the less useless

BTB look-up operation. Non-branch instruction look-up precision is defined as:

NLP =
N

NIC

NLP is non-branch instruction look-up precision. B is the number of non-branch instructions

fetched without BTB look-up. BIC is total non-branch instruction count.

3.3.3 Overall Instruction Look-up Precision

Overall instruction look-up precision is take the previous two into account. It is used to

evaluate the precision of overall instruction. Overall instruction look-up precision is defined

as:

LP =
B + N

IC
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B and N is the same as defined in BLP and NLP . IC is instruction count.

3.3.4 Energy Saving

Precisely speaking, the purpose of my design is to save “energy consumption”, not only power

consumption. To evaluate the energy saving, power consumption and execution time must

be taken into consideration. Refer to figure 3.1, Y-axis is execution cycle count, X-axis is

power consumption on a certain time point. The area under the power consumption line

is the total energy consumption of the application. According to figure 3.1, there are two

directions to reduce energy consumption. One is to reduce power consumption, the other is

to reduce execution time. In my designs, power consumption will be reduced, but execution

time will be increased.

In figure 3.1, PO is the original power consumption (power consumption before applying

my design). After applying my design, PL represent the power consumption when BTB is

looked up. In my third approach, two fields (NBIC T and NBIC NT) are added into BTB,

and increases BTB look-up power. PR is the power consumption when BTB is reposed.

For whole processor, if BTB consumes b% of total processor power consumption, PR will

be (100 − b)%. CO is the original execution cycle count. After applying my design, the

execution cycle count may be increased because some taken branch instruction is fetched

without BTB look-up and branch prediction is not performed. The execution cycle count

after applying my design is represented as CM . The CLi is the cycle count of performing

BTB look-up operation. Thus the total energy consumption before applying my design is:

EO = PO × CO
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Figure 3.1: Energy consumption of a program

and the total energy consumption after applying my design is:

EM = PR × CM +

N∑

i=0

CLi × (PL − PR)

3.3.5 Performance Loss

Performance loss here mainly means the increment of execution cycle count. In conventional

design, BTB is accessed every instruction cycle, no branch instruction will be fetched without

BTB look-up. In my design, BTB will be reposed under some situation, results in some

branch instructions that are fetched without branch prediction. If a branch instruction is

taken but is not fetched with branch prediction, branch penalty would be introduced because

the branch instruction is identified as taken in execution pipeline stage, but at the moment,

instruction fetcher already fetched several instructions that will be flushed. The number of

instructions to flush depends on number of pipeline stages between instruction fetching and
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branch taken identification.

In my experiments, number of taken branch instructions that are fetched without BTB

look-up is counted and is represented as BN in experimental results. The number of penalty

cycle is represented as PC. Thus the total performance loss is:

BN

IC
× PC

, in which IC represents instruction count. In my experiments, BN and IC are calculated

by my simulator, and PC is assumed to be 2 cycles.

3.4 Experimental Results

Figure 3.2 is the branch instruction look-up precision, non-branch instruction look-up pre-

cision, and overall look-up precision. Figure 3.3 is the energy saving and performance loss.

The Y-axes in the two figures are the ratio in %. The X-axes are the NBIC size in bit.

3.5 Discussion

According to my experiments, it can be identified that whether my design can save overall

processor energy consumption depends on the portion of BTB power consumption to pro-

cessor power consumption. On the other hand, comparing with static branch prediction, my

design also saves energy consumption because it reduces execution time.

3.5.1 Beneficial Threshold

The previous experimental result is produced under the assumption that the original BTB

consumes 10% of total processor power. But does my design is practicable when the original

BTB consumes less portion of processor power, and what is the threshold value that my
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Figure 3.2: Look-up precision

Figure 3.3: Energy saving and performance loss
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Table 3.1: Energy saving, performance loss, and beneficial threshold

energy performance beneficial
approach saving loss threshold

First (NBIC=16) -5.067% 10.689% 19.1%
Second (8-bit NBIC) -1.128% 5.124% 12.9%
Third (8-bit NBIC) 5.535% 1.097% 1.7%

design can gain benefit. Beneficial threshold is defined as the threshold of the ratio of

BTB power consumption to whole processor power consumption that can gain benefit after

applying my design. For example, beneficial threshold x indicates that if the original BTB

consumes more than x% of whole processor power, then my design can be applied to reduce

the total energy consumption. On the other hand, if the original BTB consumes less than

x% of whole processor power, my design will introduce more energy consumption if it is

applied.

Table 3.1 is the energy saving, performance loss, and beneficial threshold of the three

design. The experimental results show that the performance loss enormously affects energy

saving and beneficial threshold. The first and the second approach even can not save total

processor energy consumption because they introduce too much performance loss. But the

third approach introduces only a little performance loss and finally saves overall processor

energy.

3.5.2 Comparing with Static Branch Prediction

Comparing with a processor only with static branch prediction, applying dynamic branch

prediction reduces execution time but increases power consumption. Can my design reduces

overall energy consumption on a processor originally without dynamic branch prediction?

Table 3.2 is the energy consumption of a processor with 1) static branch prediction, 2)

conventional BTB, and 3) low power BTB I proposed (my third approach). The first column
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Table 3.2: Performance and energy consumption of static branch prediction, conventional
BTB, and low power BTB

System Energy Energy
Machine Performance Consumption Consumption

(x = 0.1)

Static branch prediction 100.000% 1 100.000%

Conventional BTB 109.468% (1 + x) × 1

1.09468
101.499%

Low power BTB 108.276% (1 + 0.268x) × 1

1.08276
95.108%

is the three machine. The second column is the performance which is normalized to first

machine. The third column is the energy consumption which is normalized to first machine.

The parameter x indicates the ratio of conventional BTB power to overall processor power.

The last column is the energy consumption that computed from the third column, assuming

x is 0.1. According to this result, it can be identified that the low power BTB not only

increase system performance but also reduces overall energy consumption.
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Chapter 4

Conclusion and Future Works

I proposed an effective approach to reduce BTB power consumption of branch target buffer

by skipping useless BTB look-up counts. On the other hand, BTB power consumption can

be further reduced by other mechanism such as reducing the static power consumption, this

is a direction for future works.

4.1 Conclusion

Since most BTB look-up operations are not necessary, they can be skipped. My proposal

is to predict the position of the following non-branch instruction count (NBIC) and then

reposes BTB for these instructions. If NBIC is precisely predicted, BTB power consumption

can be reduced without performance loss. But imprecise predicted NBIC may introduce

more energy consumption. Three NBIC prediction mechanism are proposed. The first is

always predict NBIC is a constant number during run time. The second predict NBIC is the

same as the previous executed NBIC. The third records every executed branch instruction’s

own NBIC value in BTB. According to my experiments, the third approach is very precise

and is effective to reduce overall energy consumption with only a little performance loss.
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On the other hand, my proposal is very practicable because it can be easily applied on

existing processor, no any modification of ISA, compiler or software is needed.

4.2 Future Works

In this thesis, BTB power consumption is reduced by skipping unnecessary BTB look-up

counts, but there are several other directions to further reduce BTB power consumption.

4.2.1 Hierarchical Branch Target Buffer

Although the size of BTB is usually not small, only a part of total BTB entries are used in

a period of time. Accessing a smaller number of BTB entry will reduce the access power

consumption. A hierarchical BTB save access power consumption in most cases, and is

expected to save total power consumption in average.

4.2.2 Saving Static Power Consumption

As the process technology improves, static power consumption occupies more and more

portion of total power consumption. In this research, dynamic power consumption is focused

and is effectively saved. Since the position of branch instruction can be predicted by my

design, the entry that would be used can be known. We can activate the target BTB entry

only, but switch other entries into drowsy mode to save static power consumption.

4.2.3 Instruction Cache Line plus Branch Target Buffer Entry

Cache and BTB are both organized as CAM. Most of CAM access power is consumed by

tag comparison. This proposal skip the tag comparison of BTB look-up by appending BTB

entry to instruction cache line.
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Figure 1.1 shows that branch instruction occupies about 12.3% of total instructions.

According to the statistics, it is expected that there would be one branch instruction per

eight instructions. If a instruction cache line contains eight instructions, one of them would

be branch instruction. If one BTB entry is appended into a instruction cache line, it can be

used to store the branch prediction information of the branch instruction in this cache line.
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