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摘要 
 

快閃記憶體在支援磁碟使用的檔案系統時，需要在快閃記憶體上增加一

個快閃記憶體轉換層，提供區塊裝置式介面。因為快閃記憶體有寫入前需

抹除的特性，快閃記憶體轉換層使用異地更新及清除流程去回收含廢棄資

料的區塊。這些回收的成本是快閃記憶體轉換層效能的關鍵，因為清除流

程使用的動作，例如複製頁、抹除區塊等等，都非常耗時。為達高效能的

目的，快閃記憶體轉換層應該要最小化清除成本。 

為了索引邏輯頁的實體頁位置，快閃記憶體轉換層負責維護兩者之間的

對映表格。混合式位置轉換快閃記憶體轉換層將快閃記憶體區分為兩個區

域，大的資料區域使用邏輯區塊對應實體區塊的管理；小的日誌區域使用

邏輯頁對實體頁管理。藉此控制對映資訊的數量，並且達到良好的效能。 

本論文提出了兩個混合式位置轉換快閃記憶體轉換層。第一個名為

ROSE，其中包含了三項用來降低清除成本的新技術。首先，它透過避免連

續寫入整個區塊的頁落入不同的區塊，藉此降低回收的成本；同時，不會

將隨機寫入、不完全連續寫入，誤判為連續寫入，避免因誤判隨之而來的

代價。其次，採用針對混合式位置轉換快閃記憶體轉換層來設計、同時考
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量區塊的新舊與合併成本的清除方針，藉此提高清除的效率。最後，藉由

延遲抹除尚有空白頁的廢棄區塊，並回收使用這些空白頁。 

第二個快閃記憶體轉換層名為HybridLog。透過有效率的使用備用區域，

HybridLog 在所有的區塊進行日誌式的寫入，有效率的支援新型的 NAND

快閃記憶體。日誌式寫入能夠避免寫入無謂的空白資料進入頁，以及降低

因為資料區域目標頁已經被寫過、而寫入日誌區域的機率。 

我們透過模擬評估上述兩個我們所提出的快閃記憶體轉換層的效能。我

們使用三個知名的混合式位置轉換快閃記憶體轉換層作為效能比較對象。

評估結果顯示，我們所提出的快閃記憶體轉換層的表現優於比較對象。 
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ABSTRACT 

 A Flash Translation Layer (FTL) provides a block device interface on top of 

flash memory to support disk-based file systems. Due to the erase-before-write 

feature of flash memory, an FTL usually performs out-of-place updates and uses 

a cleaning procedure to reclaim blocks with stale data. The cost of cleaning is a 

key factor to the performance of an FTL since cleaning involves 

time-consuming operations such as live page copying and block erasure. To 

achieve high performance, an FTL should minimize the cleaning cost. 

To locate each logical page, an FTL manages the mapping (i.e., address 

translation) between logical page numbers (LPNs) and physical page numbers 

(PPNs). By dividing the flash memory into two areas, a large data area managed 

by coarse-grained address translation and a small area managed by fine-grained 

address translation, a hybrid address translation (HAT)-based FTL can achieve 

good performance while keeping the size of the mapping information small. 
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 In this thesis, two novel HAT-based FTLs are proposed. The first FTL, 

called ROSE, includes three novel techniques for reducing the cleaning cost. 

First, it reduces high-cost reclamation by preventing data in an entire-block 

sequential write from being placed into multiple physical blocks while 

eliminating the cleaning cost resulting from mispredicting random or 

semi-sequential writes as sequential ones. Second, it uses a novel cleaning 

policy that considers both the block age and the cleaning cost in a HAT-based 

FTL for improving the cleaning efficiency. Third, it delays the erasure of 

obsolete blocks and reuses their free pages for buffering more writes. 

 The second FTL, called HybridLog, supports modern NAND flash 

memories by enabling log-style write in all the blocks and efficient use of spare 

area. The use of log-style write also achieves low cleaning cost by eliminating 

writes of dummy pages to the data blocks and by reducing the write traffic to the 

small-sized log area. 

 The performance of the two proposed FTLs is evaluated through simulation. 

Three well-known HAT-based FTLs are used for performance comparison. The 

evaluation results show that the two proposed FTLs outperform the HAT-based 

FTLs. 
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Chapter 1 

Introduction 

 NAND flash memory is widely applied in computer and consumer 

electronic devices due to its small size, shock resistance, non-volatility and low 

power consumption. A NAND flash module is composed of a number of blocks, 

each of which is in turn composed of a number of pages. Typically, a NAND 

flash block contains 32 to 128 pages, and read/write operations are performed in 

units of a single page. In addition, a software component called Flash 

Translation Layer (FTL) is usually used to emulate a block device on top of the 

flash memory to support traditional disk-based file systems. 

 In contrast to RAM and disk, a page in the flash memory cannot be 

overwritten before being erased, and erase operations are performed in units of a 

whole block. Compared to the other flash operations, the erase operation is 

time-consuming. Moreover, the number of erase operations that can be done on 

a specific block is limited, usually between ten thousand and hundred thousand. 

To avoid erasing an entire block for each logical page overwrite, therefore, an 

FTL usually directs each page collision to a free physical page. The page 

containing the stale data is then reclaimed by a cleaning procedure. The cost of 

cleaning is a key factor to the performance of an FTL since cleaning involves 

time-consuming operations such as live page copying and block erasure. To 
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achieve high performance, an FTL should minimize the cleaning cost. 

 To locate each logical page, an FTL manages the mapping (i.e., address 

translation) between logical page numbers (LPNs) and physical page numbers 

(PPNs). Typically, the mapping can be done at two different granularities: 

page-level and block-level. Page level address translation (PAT) scheme maps 

each logical page to an individual physical page. Pages belonging to the same 

logical block can be mapped to different physical blocks. For a large NAND 

flash memory, such a fine-grained address translation scheme requires a large 

memory space to maintain the mapping table since each logical page has a 

corresponding entry in the table. In order to reduce the space requirement of the 

mapping table, block level address translation (BAT) scheme uses a more 

coarse-grained address translation approach that translates each logical block 

number (LBN) to a physical block number (PBN). Therefore, the number of 

entries in the mapping table can be greatly reduced. However, due to the block 

level address translation, BAT requires each logical page to be written only to its 

corresponding offset in a physical block, resulting in poor performance. 

  To combine the benefits of PAT and BAT, several FTLs based on the 

hybrid level address translation (HAT) scheme have been proposed [7, 18, 49, 

51, 55, 57, 58, 59, 61, 74, 80, 84, 87, 88, 90]. In this scheme, most of the data 

are stored in data blocks managed via the BAT scheme. However, by storing hot 

pages (i.e., frequently-updated pages) in a limited number of log blocks, which 
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is managed by the PAT scheme, the HAT scheme can delay the erasure of some 

data blocks that are not fully occupied, increasing the space utilization. 

Moreover, the memory requirement is comparable to that of the BAT scheme 

since the pages managed via the PAT scheme are limited to a small number. 

Cleaning in HAT-based FTLs is done by reclaiming log blocks. When a log 

block needs to be reclaimed, it is merged with its corresponding data blocks. 

 In this thesis, we propose two HAT-based FTLs, ROSE and HybridLog. 

ROSE incorporates three novel techniques for reducing the cleaning cost. Firstly, 

it utilizes a technique called Entire-Block Writing (EBW) to prevent pages of an 

entire-block sequential write from being placed into multiple physical blocks, 

reducing the possibility of high-cost reclamation. Previous HAT-based FTLs 

achieve this by predicting sequentiality. However, mispredicting random or 

less-than-a-block writes as sequential writes leads to increased cleaning cost. 

EBW eliminates such misprediction, resulting in a lower cleaning cost. Secondly, 

ROSE uses a novel policy called Merge-Aware Round rObin (MARO) to select 

a victim log block for reclamation when the log area has run out of its free space. 

In contrast to the previous cleaning policies that consider only the state of the 

candidates, MARO considers not only the state of the candidates (i.e., log blocks) 

but also the state of the data blocks that correspond to those candidates. 

Moreover, different from previous HAT-based FTLs, both the ages and the 

merge costs of the log blocks are considered at the same time in MARO. As 
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shown in the section 5.1, such consideration reduces the cleaning cost. Thirdly, 

ROSE utilizes a technique called Free Page Reuse (FPR) to increase the space 

utilization. FPR delays the erasure of a low-utilized data block and allows the 

free pages in that block to buffer further page overwrites, resulting in a lower 

cleaning cost. 

 HybridLog supports modern NAND flash memory by following the 

consecutive programming restriction in all the blocks and efficient using the 

spare area. With the development of flash memory, new restrictions are imposed 

on flash memory chips, and an FTL should follow these new restrictions so as to 

be applied on these modern chips. Specifically, a new programming (i.e., write) 

restriction called consecutive programming is imposed on most modern flash 

memories [13, 63], whereby pages have to be programmed in consecutive order 

(i.e., from lower-numbered pages towards higher-numbered pages) within a 

block. Moreover, Multiple Level Cell (MLC) NAND achieves lower cost by 

allowing multiple bits to be stored in a single cell. However, compared to Single 

Level Cell (SLC), MLC has a higher bit error rate and thus requires stronger 

ECC [17], which consumes more spare area space, preventing FTLs requiring 

large space of the spare area from being applied on it. To allow consecutive 

programming, HybridLog enables log-style writes to all the blocks (including 

the data blocks) in the flash memory. The log-style writes also helps to reduce 

the cleaning cost, improving the performance of the FTL. To support log-style 
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writes to all blocks, intra-block mapping information is stored in the spare area 

of each written page. Since only a small space is required in the spare area for 

the mapping information, many modern SLC/MLC flash memories can be 

supported. 

 Through simulation, we show the performance improvements of each of the 

three proposed techniques in ROSE. We also compare the performance of ROSE 

with FAST and LAST, two well-known and efficient HAT-based FTLs, under a 

variety of benchmarking and realistic workloads. The results show that ROSE 

outperforms the existing HAT-based FTLs by up to 47 times in terms of the 

cleaning cost. Due to the reduction on the cleaning cost, the flash write time is 

reduced by up to 1.6 times. The performance of HybridLog and two well-known 

FTLs are also compared. The performance results show that, HybridLog 

outperforms these two HAT-based FTLs by up to 17.8 times in terms of 

cleaning cost. 

 The rest of this thesis is organized as follows. The related efforts are 

described in Chapter 2. In Chapters 3 and 4, we describe the design and 

implementation of ROSE and HybridLog, respectively. The performance results 

are presented in Chapter 5. Finally, conclusions and future work are given in 

Chapter 6. 
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Chapter 2 

Background and Related Work 

2.1 Background and Terminology 

 An FTL maintains the state of all the pages in a flash storage. A page is free 

if the page has not been written after its last erasure. Free pages can be used to 

accommodate page writes. A free page becomes live after it has been written with 

user data. Since a live page cannot be overwritten before being erased, updating 

data in place is inefficient because each update should be preceded by a 

time-consuming erase operation. Thus, most FTLs handle page overwrites by 

adopting the out-of-place update mechanism, in which the new data are written to 

another free page and the live page that contains the old data becomes dead. Dead 

pages should be reclaimed by a cleaning procedure, which works as follows. First, 

one or more victim blocks are selected to be reclaimed according to a cleaning 

policy. Second, the live pages in the victim blocks are copied to free pages of 

other blocks. Finally, the victim blocks are erased. After the cleaning, all the 

pages in the selected blocks become free and can be used to satisfy future data 

writes. Cleaning is time consuming since it involves live page copying and block 

erasure. Therefore, the cost of cleaning is a key factor to the performance of an 

FTL. In this thesis, two metrics related to the cost of cleaning are used to measure 
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the performance of an FTL. The first one is the cleaning cost, which is defined as 

the time spent on the cleaning procedure resulting from the execution of a given 

workload. The second one is the Write Amplification Ratio (WAR) [29], which is 

defined as 

                  (1) 

where W and C represent the total request write time and the cleaning cost of the 

workload, respectively. The ratio 1.5 means that the time spent on cleaning is half 

of the total request write time of the given workload. 

 An FTL may erase a block that still contains free pages, which wastes the 

free pages. The free pages could have been used to buffer more writes and this 

waste could increase the cleaning cost. We define space utilization as the ratio of 

the number of occupied (i.e., nonfree) pages in a block to the total number of 

pages per block when the block is going to be erased. The value is 100% if a 

to-be-erased block contains no free pages. Increasing space utilization usually 

leads to reduction of the cleaning cost. 

With the development of flash memory, new restrictions are imposed on 

flash memory chips, and an FTL should follow these new restrictions so as to be 

applied on these modern chips. Specifically, a new programming (i.e., write) 

restriction called consecutive programming is imposed on most modern flash 

memories [13, 63], whereby pages have to be programmed in consecutive order 

(i.e., from lower-numbered pages towards higher-numbered pages) within a block. 
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Moreover, Multiple Level Cell (MLC) NAND achieves lower cost by allowing 

multiple bits to be stored in a single cell. However, compared to Single Level 

Cell (SLC), MLC has a higher bit error rate and thus requires stronger ECC, 

which consumes more spare area space, preventing FTLs requiring large space of 

the spare area from being applied on it. 

2.2 Flash Translation Layers 

 An FTL emulates a block device on top of flash memory to support 

traditional disk-based file systems. Typically, a request issued from a file system 

consists of a single or multiple adjacent sectors. In a flash storage system, the 

sector numbers are translated into logical page numbers and the translation is 

usually independent of the FTLs. In this thesis, the sizes of a sector and a page 

are 512 bytes and 2 Kbytes, respectively, and therefore, LPNs can be obtained by 

dividing the sector numbers by 4. Such translation can be regarded as a 

preprocessing task before the invocation of an FTL. An FTL hence treats each 

request as a number of adjacent logical pages and focuses on the address 

translation between LPNs and PPNs. 

 The address translation can be done at page level (i.e., the PAT scheme) or 

block level (i.e., the BAT scheme). PAT-based FTLs [4, 6, 9, 10, 13, 27, 30, 31, 

32, 36, 47, 54, 60, 65, 66, 67, 75, 89] directly translate each LPN to a PPN and 

use the out-of-place update mechanism to handle page overwrites. In this scheme, 
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a logical page can be written to any physical page and cleaning is needed only 

when there are almost no free pages in the storage. Therefore, the cleaning cost is 

relatively small. However, this scheme requires a large memory space for a 

large-sized flash memory. For example, for an 8-Gbyte flash memory with page 

size 2 Kbytes, four million entries (i.e., 16 Mbytes if the size of each entry is 4 

bytes) are needed in the mapping table. 

 Recently, several RAM-space-efficient PAT-based FTLs address this 

problem by storing the mapping information in the flash memory and caching the 

recently used information in RAM [25]. Cleaning in PAT-based FTLs is done by 

reclaiming blocks (i.e., copying live pages in victim blocks to blocks with free 

pages and then erasing victim blocks). After the reclamation, the erased blocks 

can be used to accommodate future writes. 

After a PAT-based FTL has selected a victim block for cleaning, it has to 

identify the live pages of the victim block. Querying/updating the mapping 

information of the live pages is needed during cleaning. If the FTL stores the 

page state and mapping information of each page in RAM, query/update of the 

mapping information can just be done in RAM. However, as mentioned above, a 

large RAM space would be required for a large sized flash memory. In 

memory-constrained consumer storages such as SDs or UFDs, mapping 

information of a PAT-based FTL can only be stored in the flash memory (and 

cached in RAM). Thus, after a victim block has been selected, extra flash 

memory read/write operations need to be performed to identify the live pages in 
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the victim block and to locate the physical locations of the mapping information 

of the live pages. Note that, victim blocks are cold blocks and thus their 

information is seldom cached in RAM. If there are many live pages in the victim 

block (i.e., high storage utilization) and the mapping information of the live pages 

are stored in many different mapping pages, many flash memory reads/writes are 

required for querying and updating the mapping information. 

BAT-based FTLs achieve lower RAM consumption for the mapping 

information by using coarse-grained mapping [3, 19, 50, 70, 71, 72]. In the BAT 

scheme, each logical block has a corresponding data block to accommodate page 

writes to that logical block. The LPN is divided by the number of pages in a 

block to get the logical block number (i.e., the quotient) and the page offset (i.e., 

the remainder). The former is used to index the mapping table to get the physical 

address of the data block, and the latter is used to locate the target page in the 

data block. If the target page is live (i.e., page collision), in-place update is used. 

That is, the data block, say D, is reclaimed by copying all the up-to-date data of 

the logical block from D and the write request to a free block F and then erasing 

D. After the reclamation, F is used as the new data block. This reclamation is 

needed due to the limitation that each logical page can be written only to a fixed 

offset of a physical block. Such limitation usually leads to low space utilization 

since a significant amount of free pages might exist in the to-be-erased blocks 

(i.e., the block D mentioned above). For example, frequently updating a small 

number of pages in a logical block could easily lead to low space utilization of 
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the corresponding data block. Erasing these free pages, instead of using them to 

buffer page writes, increases the frequency of block reclamation. Moreover, in 

modern flash memory the consecutive programming restriction, if the target page 

is not consecutive to the last written page of the data block, dummy pages has to 

be written between the last written page and the target page (i.e., page padding). 

 Several hybrid-mapped FTLs have been proposed to achieve performance 

superior to block-mapped FTLs, while retaining the small size of the mapping 

information. In these FTLs, most of the blocks (i.e., data blocks) are managed via 

the BAT scheme. However, by managing a small number of log blocks via the 

PAT scheme to accommodate frequently updated pages, the space utilization is 

increased. HAT also utilizes the out-of-place update mechanism. Page writes that 

cannot be accommodated by the data blocks are satisfied by the log blocks, and 

the pages containing the old data become dead. Since the blocks managed by 

PAT are limited to a small number, the memory requirement of HAT is 

comparable to that of BAT. Cleaning in HAT-based FTLs is done by reclaiming 

log blocks. When a log block needs to be reclaimed, it is merged with its 

corresponding data blocks. After the merge, a free log block is obtained to 

accommodate future writes.  
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Figure 2.1: Three types of merge operations 

 

 As shown in Figure 2.1, three types of merge could occur depending on the 

status of the data and the log blocks. In Figure 2.1(a), a full merge can be done by 

copying the live pages either from the data block or the log block to a free block 

F, erasing both the data and log blocks, and then using F as the new data block. 

In Figure 2.1(b), a partial merge can be done by copying the live pages in the 

data block to the free space of the log block, erasing the data block, and then 

prompting the log block as the new data block. In Figure 2.1(c), all the up-to-date 

data were written in the log block sequentially and thus the merge operation can 

be done simply by switching the roles of the log and data blocks and erasing the 

original data block, which is called switch merge. Of the three types of merge 

operations, the switch merge has the lowest cost while the full merge results in 

the highest cost. Note, in some HAT-based FTLs, a log block might correspond 
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to multiple data blocks (i.e., the log block accommodates page overwrites 

belonging to multiple logical blocks) and thus reclaiming the log block requires 

multiple merges, each of which corresponds to a data block. In this thesis, we 

define the page density of a log block as the number of data blocks corresponding 

to it. In the following, several well-known HAT-based FTLs are described. 

 

2.2.1 BAST 

 BAST [45] allows each data block to have at most one dynamically allocated 

log block accommodating overwrites of that data block. When an allocated log 

block cannot accommodate the current write, it is reclaimed by merging with its 

data block. Moreover, if all the log blocks have been allocated, a further log 

block allocation would cause one of the allocated log block to be reclaimed. This 

FTL suffers from the log block thrashing problem [53] (i.e., frequent erasure of 

log blocks with low utilization) if the number of frequently updated blocks 

accommodating small random writes is larger than the number of log blocks. 

2.2.2 FAST 

 FAST [53] eliminates the above problem of BAST by using fully associative 

log blocks. That is, a log block can accommodate page overwrites of any data 

blocks. In FAST, one special log block called the SW log block is reserved for 

sequential overwrites and the other log blocks called RW log blocks are for 
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random overwrites. The SW log block corresponds to a single data block. If a 

sequential overwrite cannot be satisfied by the current SW log block, the SW log 

block is merged with its corresponding data block to get a free SW log block. A 

RW log block can correspond to multiple data blocks. If a random overwrite 

cannot be satisfied by the RW log blocks because all the RW log blocks are fully 

occupied, FAST selects a victim RW log block in a round-robin (RR) fashion and 

merges the victim with its corresponding data blocks. FAST may still erase 

low-utilized blocks. For example, a victim log block may be merged with 

multiple low-utilized data blocks. 

2.2.3 AFTL 

 AFTL [83] allows each data block to have at most one log block for 

satisfying overwrites of that data block. When a log block becomes full, its live 

pages are regarded as hot and the mapping information corresponding to these 

live pages is inserted into a page-level mapping table, which may cause the 

eviction of the mapping information of some other hot pages due to the limited 

memory space reserved for the mapping table. The eviction is based on LRU and 

each selected victim hot page will be migrated back to the corresponding data 

block or log block. Since each log block corresponds to a single data block, 

AFTL also has the block thrashing problem.  
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2.2.4 Superblock 

 Superblock [35, 37] allows a group of adjacent logical blocks to share a 

number of log blocks so as to increase the space utilization while keeping the 

page density of the log blocks low. The limitation of Superblock is that it stores 

the page-level mapping information of a block group in the spare area, which 

reduces the space for Error Correction Code (ECC). For example, Superblock 

requires 44 bytes of each per-page spare area, whose typical size is 64 bytes, on 

flash memory modules with 64 pages per block. As a consequence, only a 

20-byte space is left for ECC, reducing the quality of the ECC. This problem gets 

worse for NAND flash modules with even more pages per block (e.g., 128) [78]. 

Based on the block grouping concept of Superblock, Park et al. proposed an 

offline method [64] to determine the values of the block group size and the 

maximum number of log blocks allocated for a block group, which can be 

applied on systems with fixed workloads. 

2.2.5 LAST 

 Similar to FAST, the LAST FTL [52] serves sequential and random 

overwrites by using different log blocks. In LAST, multiple SW log blocks are 

used to satisfy concurrent write streams, and the set of the RW log blocks is 

divided into hot and cold blocks to reduce the merge cost. Although multiple SW 

log blocks are utilized, LAST may still erase low-utilized blocks when 
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less-than-a-block sequential writes corresponding to a significant number of 

logical blocks are presented.  

2.3 Cleaning Policies 

 A number of cleaning policies [8, 9, 11, 16, 21, 23] that consider reclamation 

efficiency, such as greedy [77], cost-benefit [47], Cost-Age-Time (CAT) [15], 

and CICL [43], have been proposed. The greedy policy selects the block with the 

minimum number of live pages as the victim in order to minimize the cost of 

page copying. The cost-benefit policy selects the block with the maximum value 

of the following formula as the victim:  

         

  
 

where u represents the ratio of number of live pages to the total number of pages 

in the candidate block, and age denotes the time since the last modification of the 

block. In the formula, (1 - u) and 2u represent the benefit and cost of the 

reclamation, respectively. The age is considered to avoid reclaiming young 

blocks, whose pages are likely to be invalidated in the near future. 

 The CAT and CICL policies consider both reclamation efficiency and wear 

leveling [8, 12, 34, 68, 81, 82]. CAT selects the block with the minimum value of 

the following formula as the victim: 
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where e and age represent the number of times the candidate block has been 

erased and the elapsed time since the last reclamation of candidate block, 

respectively. CICL selects the block with the minimum value of the following 

formula as the victim:  

λ  * e / ( 1 + emax ) + ( 1 - λ  ) * v, 

where 0 < λ  < 1. In this formula, emax denotes the maximum value of e among 

all the candidate blocks, and v represents the ratio of number of live pages to the 

total number of non-free pages in the candidate block. As shown in the formula, 

CICL selects the victim based mainly on wear leveling whenλ  is close to 1, 

which happens when the difference between the maximum and the minimum 

numbers of e among the candidates is large. On the contrary, it selects the victim 

mainly based on the reclamation efficiency when λ  is close to 0, which 

happens when the difference between the maximum and the minimum numbers 

of e among the candidates is small.  

 Basically, these policies are used in PAT-based FTLs. They select a victim 

block for reclamation based on the condition of the candidate block, which is not 

sufficient for log block reclamation in HAT-based FTLs. Specifically, log block 

reclamation involves merging the victim log block with its corresponding data 

blocks, which was not considered in these policies. 
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Chapter 3 

The ROSE FTL 

 In this Chapter, we describe the ROSE FTL. ROSE incorporates three novel 

techniques to reduce the cleaning cost, namely, entire-block writing, merge-aware 

round robin cleaning policy, and free page reuse. In the following, the 

architecture of ROSE is first described, which is followed by the description of 

the techniques used in ROSE. 

3.1 Architecture of ROSE 
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Figure 3.1: Architecture of ROSE 

 As shown in Figure 3.1, ROSE utilizes the HAT scheme, which divides the 

flash memory into two areas, a large data area managed by BAT and a small log 

area managed by PAT. The former contains a set of data blocks while the latter 

contains a set of log blocks. Each logical block has a corresponding data block 
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for accommodating the writes to that logical block. For each write to a logical 

page, ROSE writes the data to the target physical page in the data block if the 

physical page is free. If the write cannot be accommodated by the data block (i.e., 

the target page is not free), the data are written to the log area in the log order. In 

contrast to FAST and LAST, ROSE does not have special log blocks for storing 

sequential (over)writes. Instead, it relies on the entire-block writing technique 

mentioned in Section 3.2 to handle sequential writes. When the log area has run 

out of free pages, a victim log block is selected to be merged with its 

corresponding data blocks. That is, for each live page p in the victim log block, 

the live pages belonging to the same logical block as p are copied from the 

corresponding data block and log blocks (including the victim log block) to a new 

block, which serves as the new data block for the logical block. After the page 

copying, the victim log block and the corresponding data blocks become obsolete 

and can be erased. 

3.2 Entire-Block Writing 

 In some HAT-based FTLs, a log block may correspond to multiple logical 

blocks. This leads to a higher cleaning cost for reclaiming the log block since 

merging the block with all its corresponding data blocks is required. To reduce 

the possibility of such high-cost reclamation, several HAT-based FTLs such as 

FAST and LAST reserve one or more log blocks to accommodate sequential 
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overwrites. Each of such log blocks, called a sequential write log block, 

corresponds to a single logical block. In an SW log block, each logical page is 

written to its corresponding offset (i.e., the data in ith logical page of a logical 

block are written to the ith physical page of the SW log block), hoping that the 

log block can be promoted as a new data block later in a switch merge. 

 Under the SW log block approach, with a given overwrite request R that 

contains pages belonging to a logical block B, the FTLs have to predict whether 

or not the other pages belonging to B will be overwritten in the near future. If 

they will, all the pages belonging to B should be placed in the same log block so 

that the reclamation of this log block can be done in a switch merge (i.e., erasing 

the data block corresponding to B and promoting the log block as the new data 

block). Therefore, if the other pages are predicted to be overwritten in the near 

future, R would be served by an SW log block. 

 The main problem of the SW log block approach is that frequent 

misprediction would cause frequent block erasure. Specifically, FAST uses a 

single SW log block and serves an overwrite to a logical page by the SW log 

block if the page is the first page of a logical block or the page corresponds to the 

first free page of the SW log block. That is, FAST predicts that an overwrite to 

the first page of a logical block will be followed by overwrites to the other pages 

in that block. As a consequence, in FAST, a workload that repeatedly overwrites 

the first page of a logical block may cause the (partially full) SW log block to be 

repeatedly merged with its corresponding data block. LAST uses a small number 
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of SW log blocks and serves a write request via an SW log block if the size of the 

request is equal to or larger than a predefined threshold (e.g., 4 Kbytes). As a 

consequence, semisequential write requests (i.e., requests with sizes smaller than 

the block size but larger than or equal to the threshold) corresponding to a large 

number of logical blocks could lead to a large number of merges between 

partially full SW log blocks and their corresponding data blocks. 

 ROSE utilizes a fundamentally different approach for handling sequential 

overwrites. Specifically, it adopts a technique called Entire-Block Writing (EBW), 

which detects sequentiality in the current write request instead of predicting 

sequentiality. Therefore, misprediction would never occur. EBW detects 

entire-block overwrites and utilizes free blocks, instead of SW log blocks, to 

serve those writes. With EBW, each write request is divided into a number of 

page-level subrequests and block-level ones. For example, on a NAND flash 

module with 64-page blocks, a write request with 130 pages starting from LPN 0 

will be divided into two block-level subrequests (i.e., for LPNs 0 to 63 and LPNs 

64 to 127) and two page-level subrequests (i.e., for LPNs 128 and 129). For each 

page-level subrequest, the data are written to the log area in the log order if the 

subrequest is an overwrite. However, each block-level subrequest is served by a 

free block. Specifically, given a block-level subrequest that corresponds to 

logical block B, the data are written to the data block corresponding to B if the 

data block is originally free. Otherwise, the subrequest overwrites one or more 

logical pages belonging to B and thus EBW uses another free block, say F, to 
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serve this subrequest. After the subrequest has been served, F becomes the new 

data block corresponding to B, and the original data block (which contains no live 

pages) can be erased if cleaning is needed. Note that, such a free block is always 

available since HAT-based FTLs always reserve at least one free block for 

buffering the result of a full merge. With the FPR technique mentioned in Section 

3.3, the erasure of the original data block can be delayed and the free pages in it 

can be used to buffer further writes. 
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Figure 3.2: Write handling under FAST (a) and EBW (b) 
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 Figure 3.2 illustrates an example showing the difference between EBW and 

the SW log block approach in FAST. Assume that the flash memory consists of 

three data blocks and two log blocks, with each block containing four pages, and 

initially blocks A, B, and C are the data blocks of logical blocks 0, 1, and 2, 

respectively. Figures 3.2(a) and 3.2(b) illustrate the handling of the page write 

sequence (0, 1, 2, 3, 5, 9, 4, 8) under the SW log block approach in FAST and the 

EBW approach, respectively. In Figure 3.2(a), pages 0, 1, and 2 are written to the 

SW log block L since page 0 is the first page of a logical block and pages 1 and 2 

correspond to the first two free pages of the SW log block after the write of page 

0. Page 3 can be served by the data block A, and pages 5 and 9 are served by the 

RW log block M. The same as page 0, page 4 also needs to be written to the SW 

log block since it is the first page of a logical block. This requires merging L with 

A. After the merge, L becomes the new data block. The old data block A is erased 

and becomes the new SW log block to accommodate page 4. Similarly, serving 

page 8 requires another merge. After the merge, A becomes the new data block. 

The old data block B is erased and becomes the new SW log block to 

accommodate page 8. Therefore, the cleaning cost under FAST involves erasing 

two blocks and copying three pages. In Figure 3.2(b), pages 0, 1, 2, 3 are served 

by a free block, say L, which then becomes the new data block of logical block 0 

via a switch merge. The old data block A is erased. Since writes to pages 5, 9, 4, 8 

are not entire-block overwrites, these pages are written to a log block, say A. 
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Therefore, the cleaning cost under EBW is only the erasure of one block. 

 As a result, EBW prevents the pages of an entire-block write from being 

placed into multiple log blocks, reducing the possibility of high-cost reclamation 

and achieving the goal of SW log blocks without using them. Moreover, since 

there is no need to predict whether or not a request should be served by an SW 

log block, log block reclamation resulting from misprediction is eliminated. 

 The effectiveness of EBW depends on the frequency of entire-block writes. 

Using MLC flash memory and multi-channel architectures in SSDs might lead to 

increased block size and reduced frequency of entire-block writes. Nevertheless, 

modern operating systems such as Windows 8 and new versions of Linux tend to 

issue very large write requests (e.g., larger than 2 Mbytes). Moreover, several 

flash-aware cache management techniques [1, 26, 28, 38, 41] such as FAB [33], 

BPLRU [42], and CFLRU [69] tend to produce entire-block writes. These help 

EBW to remain effective in modern computing systems. 

3.3 Merge-Aware Cleaning Policy 

 As described in Section 2.3, many cleaning policies such as greedy, 

cost-benefit, and CAT, select a victim block based on the condition of the 

candidate blocks. For example, the greedy policy selects the block with the 

minimum number of live pages as the victim in order to minimize the cost of 

page copying. Although these policies perform well in PAT-based FTLs, they are 
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not suitable for HAT-based FTLs since log block reclamation in a HAT-based 

FTL is different from block reclamation in a PAT-based FTL. Specifically, the 

former involves merging with data blocks, which was not considered in the above 

policies. For example, the cost of reclaiming a log block with three live pages is 

not necessarily lower than that of reclaiming another log block with six live pages 

since the former may involve copying more pages from the corresponding data 

blocks and erasing more blocks. 

 In this thesis, we propose a new cleaning policy called MARO for a 

HAT-based FTL. Similar to round robin, which is used in FAST, MARO 

prevents reclaiming young blocks. According to temporal locality, live pages in 

the young blocks might be invalidated in the near future. Therefore, delaying the 

reclamation of a young block will likely lead to less page copying and block 

erasing overhead. Moreover, when reclaiming a log block, MARO considers the 

merge cost, which is related not only to the state of the log blocks but also to the 

state of the data blocks corresponding to those log blocks. 

 In MARO, dead blocks will first be selected as the victims. If no such blocks 

are available, MARO selects an old block that has a low merge cost as the victim. 

Specifically, it selects the log block with the maximum value of score, where the 

score of a log block Li can be expressed as 

                                 (2) 

 In (2), age(i) represents the elapsed time since the last reclamation of log 
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block Li, W age denotes the weight of the block age, and cost(i) denotes the 

merge cost of Li. As mentioned before, a log block Li may correspond to multiple 

data blocks and thus reclaiming Li involves merging it with all its corresponding 

data blocks. For ease of computation, we assume a full merge is performed 

between Li and each of its data blocks. For each data block Dj, two sets of live 

pages should be copied to a new data block Dj’, which replaces the role of Dj 

after the merge. The first set is the live pages of Dj, and the second set is the live 

pages that correspond to the dead pages of Dj. The second set of live pages is 

stored in the log area (including the victim log block Li). After merging with all 

the corresponding data blocks, the victim log block and the data blocks are erased. 

Therefore, the merge cost can be expressed as 

 
n

erasepcjj CnCdpclpcicost
1

*)1(*)()(  (3) 

 In (3), n denotes the number of data blocks corresponding to Li. The lpcj and 

dpcj denote the numbers of live pages and dead pages in data block Dj, where 1 

<= j <= n, respectively. Finally, Cpc and Cerase denote the cost of copying a page 

and erasing a block, respectively. Note that in (3), the first part represents the cost 

of page copying and the second part represents the cost of block erasure. Since 

both page copying and block erasure can be done in either the foreground or the 

background, we consider the overall cost instead of dividing the cost into 

foreground and background parts. 
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 From (3), the merge cost is related to the page density of the log block (i.e., 

the value of n). Higher page density tends to result in higher merge cost. 

Moreover, the cost is also related to the state (i.e., number of live/dead pages) of 

data blocks corresponding to the log block. A larger number of live pages in the 

data blocks lead to higher merge cost. Similarly, since each dead page in the data 

block has a corresponding live page in the log area, which also needs be copied to 

the new data block, a larger number of dead pages also lead to higher merge cost. 

In summary, the merge cost is related to the state of the log block and the 

corresponding data blocks, and the cost of block erasure and page copying. As 

shown in Figure 5.3, considering the merge cost in a cleaning policy results in 

more efficient reclamation than the previous policies that consider only the state 

of the log blocks such as CAT. 

 Although a dead page in the data block also results in the copying of a page, 

the net cost of a dead page is lower than that of a live page. This is because page 

copying corresponding to a dead page does have some benefits. Specifically, it 

causes the invalidation of a log page, say p, and hence reduces the cost of 

reclaiming the log block that contains p in the future. For example, it might 

reduce the page density of that log block so that the reclamation of that log block 

in the future will involve less erase operations. Therefore, (3) is modified as 

 
n

erasepcjj
CnCdpclpcicost

1

,*)1(*)*()( 
  (4) 
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where  < 1 and it denotes the ratio of the net cost of a dead page, when 

compared with the net cost of a live page. Traditional merge cost evaluation 

approach, in which  is always equal to 1, completely ignores the benefit of the 

dead pages. On the contrary, MARO respects the benefit and hence always 

setting  as smaller than 1. Substituting (4) to (2) yields 

   

    ,1
1

 



n

erasepcjj

age

CnCdpclpc

Wiageiscore

      (5) 

where  < 1. In (5), W age and  are controlled by the system designers. A large 

value of Wage leads to a policy similar to round robin, and a zero value of Wage 

leads to a purely cost-driven policy. The parameter  determines whether the 

benefit of the dead pages is regarded as significant. Other variables in (5) can be 

obtained from the runtime information or the datasheet of the flash device. 

 The differences between MARO and previous log block reclamation policies 

in HAT-based FTLs are as follows. First, MARO considers the age and the merge 

cost of a log block at the same time. FAST considers only the block age and thus 

could reclaim high-cost log blocks. LAST considers the merge cost. However, 

the block age is not considered when selecting a victim according to the merge 

cost. As mentioned above, live pages in the young blocks might be invalidated in 

the near future and thus delaying the reclamation of these blocks, as the MARO 

does, will likely lead to lower cleaning cost. In Section 5.1, we demonstrate that 
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lower cleaning cost can be achieved by considering both factors at the same time. 

Second, MARO uses a different merge cost evaluation approach that treats the 

net cost of copying a page corresponding to a dead page in a data block as lower 

than that of copying a page corresponding to a live page in a data block, and it 

uses the parameter  to control the ratio of the former to the latter. In the previous 

approach such as that used in LAST, the two types of cost are treated as equal 

since the benefit of copying a page corresponding to a dead page in a data block 

is totally ignored. In Figure 5.6, we show that respecting the benefit and setting  

smaller than 1 could result in the reduction of the cleaning cost. 

 Although MARO tends to select an old block as the victim, which is helpful 

in wearing the log blocks evenly, global wear leveling that considers both the log 

blocks and the data blocks is beyond the scope of MARO. To achieve global 

wear leveling, an erased block is not used to serve the incoming write directly. 

Instead, it is returned to the free block pool of the storage, and the free block with 

the minimum erase count in the pool is used to serve the write. The erase count of 

a block represents the number of times the block has been erased. Moreover, a 

simple wear-leveling technique proposed in eNvy [84] is utilized. Assume that 

the blocks with the minimum and maximum erase counts are C and H, 

respectively. If the difference between the erase counts of C and H is larger than a 

threshold Thc, , the data of C and H are swapped. 

 Note that, the computation overhead needs to be addressed for the 

implementation of MARO. Instead of recomputing scores for all the log blocks 
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every time when cleaning is required, we amortize the score computation and the 

search of the maximum score over multiple flash memory operations. We 

maintain Sdata(j), the sub-score of each data block Dj, expressed as 

,*)*()( pcjjdata CdpclpcjS            (6) 

which is a part of (5) related to the state of a data block. When a page write 

causes the association between a data block D and a log block L (i.e., the write 

causes L to correspond to D), the sub-score of D is added to the score of L. Each 

time when a page write changes the state of D, the sub-score of D is updated and 

the scores of the log blocks corresponding to D are also updated. Finally, when a 

page write causes the disassociation between D and L, the sub-score of D is 

subtracted from the score of L. Similarly, according to (5), the score of a log 

block L is added/subtracted by (-1* Cerase) each time when the page density of L 

is increased/decreased by 1. 

 Upon the first page write to a log block, the score of the log block is 

initialized as H minus Cerase, where H represents the initial block age multiplied 

by Wage and Cerase reflects the cost of erasing the log block. As mentioned before, 

the block age represents the elapsed time since the last reclamation of a log block, 

which can be implemented by using 0 as the initial block age and adding the ages 

of all the log blocks other than the erased log block by 1 when a log block is 

erased. However, this requires updating a large number of scores upon block 

erasure. Therefore, when a log block is erased, we keep the ages of the other log 
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blocks intact and subtract the initial block age by 1. Consequently, H is decreased 

by Wage each time when a log block is erased. 

 Searching the maximum scores efficiently is also an implementation issue. 

To reduce the search time during the cleaning procedure, the log area is divided 

into multiple clusters, each of which is in turn divided into multiple 8-block 

segments. Each time the score of a log block is updated, the maximum score in 

the corresponding cluster is searched and recorded. Therefore, during the 

cleaning procedure, only the maximum scores of the clusters need to be 

compared. To speed up the search time further, hardware circuits were 

implemented for the search of the intra-cluster maximum scores and the 

maximum score among the clusters. 

 From the above description, amortizing the score computation eliminates the 

multiplication operations. In addition, although  is a floating point value, 

floating point operations can be avoided by multiplying (5) by a constant so that 

all the terms in (5) become integers. The multiplication can be done offline. As a 

result, the implementation of MARO does not require the SSD controller to 

perform multiplications or floating-point operations, suitable for current 

integer-processor based SSD controllers. 

 With the above amortization method, the worst case execution time of a page 

write occurs when the write changes the state of a data block associated with K 

log blocks, where K is equal to the number of pages per block. In this case, K 

scores need to be updated and the maximum scores in the corresponding clusters 
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need to be searched and recorded, which take O(K*NSC) time where NSC is the 

number of segments in a cluster. Since K and NSC are both constants, the time 

complexity of a page write is O(1). The time complexity of the cleaning 

procedure is O(NL), where NL is the number of log blocks in the storage. Such 

complexity is the same as LAST. In addition, the space complexity of ROSE is 

O(ND+NL), where ND is the number of data blocks in the storage, the same as 

many HAT-based FTLs such as FAST and LAST. 

3.4 Free Page Reuse 

 As mentioned above, low space utilization can lead to high cleaning cost. In 

ROSE, we propose the Free Page Reuse (FPR) technique to increase the space 

utilization. FPR reuses free pages of obsolete blocks, which are to-be-erased 

blocks whose live pages have already been copied out. Therefore, an obsolete 

block contains only dead or free pages and FPR tries to reuse these free pages to 

buffer more page writes.  

 In ROSE, log blocks become obsolete only after they are full. However, 

obsolete data blocks could still contain free pages since they are managed by 

BAT [83]. Thus, FPR considers reusing free pages of obsolete data blocks. 

Instead of erasing an obsolete block O, FPR tries to select a full log block, say L, 

and swaps the roles of O and L. The procedure of the swap operation is as follows. 

First, the live pages of L are copied to O. Second, O is migrated to the log area 
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(i.e., become a new log block) and L is erased. Note, L is not migrated to the data 

area since it is not swapped with a valid data block. Instead, it is swapped with an 

obsolete block that originally needs to be erased. 

 The cost and benefit of the swap operation depends highly on both the 

number of free pages in the obsolete block, say f, and the number of live pages in 

the full log block selected for swap, say l. Specifically, l page copy operations are 

required and (f – l) free pages can be obtained to buffer further page overwrites 

after the swap. For effectiveness of the swap, FPR selects the full log block with 

the minimum number of live pages to swap. Note that a swap is performed only 

when the value of (f – l) is larger than zero. Otherwise, no swap is performed and 

ROSE just erases the obsolete block. 
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Figure 3.3: An example of the swap operation 

 Figure 3.3 illustrates an example of the swap procedure. Assume that the 

flash memory consists of three data blocks (A, B, C) and three log blocks (L, M, 

N) (and an extra free block F for buffering the result of a full merge), with each 

block contains four pages. We also assume that data blocks A, B, and C 

correspond to logical blocks 0, 1, and 2, respectively. The top of Figure 3.3 

illustrates the state of the blocks after the page write sequence (0, 1, 0, 1, 4, 5, 8, 

4, 5, 0, 1, 0, 8, 0, 1, 4, 4, 6). When a further write to logical page 6 arrives, the log 

area is full and thus a log block, say M, is reclaimed by merging the block with its 

corresponding data block (i.e., data block C). The merge involves not only live 

page copying but also erasure of the two blocks. Specifically, without swapping, 

M and C are erased after the merge. FPR tries to avoid erasing C since it still has 

plenty of free pages. To avoid erasing C, FPR swaps log block L with C since the 

former is the full log block with the minimum number of live pages. As a result, 

page 5 is copied to C, which replaces the role of log block L, and L is erased.  

Therefore, with swapping, M and L are erased. Two more free pages are obtained 

due to the swap operation, and the cost is the copying of one page. 

 The above example illustrates the reclamation of a log block with page 

density of 1. In general, reclaiming a log block with page density of n may trigger 

m swap operations, where 0 <= m <= n, and the benefit Bswap and extra cost Cswap 

of these swap operations can be expressed as 
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,),(  
m

iswap

m

iiswap lClfB             (7) 

where fi denotes the number of free pages in obsolete (data) block i that is 

involved in swap, and li denotes the number of live pages in the full log block 

swapped with block i. From (7), a swap is beneficial if there are a large number 

of free pages in the obsolete blocks and a small number of live pages in the log 

blocks selected for swap. Generally, small random write dominated workloads 

can lead to a large number of free pages in the obsolete data blocks. Moreover, in 

a flash storage system with moderate number of log blocks, FPR can usually 

select a full log block with a very small number of live pages to swap. 

 Note that, the effectiveness of FPR might drop with the growth of the number 

of logical pages utilized by the file system. Traditionally, there is no way to allow 

a file system to notify the storage that a specific logical page is no longer utilized. 

Therefore, with the aging of the flash storage, the number of utilized logical 

pages grows and the expected value of the number of free pages in each obsolete 

data block might decrease. With the support of TRIM [76] and similar commands 

[20], the logical pages no longer been utilized by the file system can be released. 

Therefore, the drop in the effectiveness of FPR due to the aging of the flash 

storage can be avoided. 
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3.5 Metadata Management in ROSE 

 In this section, we describe the overhead of metadata management in ROSE. 

An FTL maintains metadata such as LPN-to-PPN mapping, page state, etc. 

Typically, the metadata are stored in RAM to allow fast updating. However, 

some information should be stored in the flash memory to allow the 

reconstruction of the metadata during power-on initialization. 

 To allow the reconstruction of the page state (i.e., live/dead/free) and the 

LPN-to-PPN mapping, most FTLs store the LPN and a sequence number, which 

is a monotonically increasing number associated with each write, in the spare 

area of each written page. By scanning all the pages in the flash memory during 

the power-on initialization, the states of all the pages can be determined. A page 

is free if the spare area is empty (i.e., containing all 1s), live if it has the newest 

sequence number among all the pages with the same LPN, and dead otherwise. 

The mapping information can be reconstructed from the LPNs of the live pages. 

In addition, erase counts can be stored in extra flash pages to handle the 

wear-leveling issue. 

 Besides the above information, HAT-based FTLs such as FAST, LAST and 

ROSE generally also store a 1-bit flag in the spare area to tell if a given block is 

a data or a log block (i.e., 0 for data block and 1 for log block). Traditionally, 

examining the flag in one of the written pages in a given block is sufficient to 

determine if the block is a data or log block. However, since FPR may change 
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the role of a data block to a log block, the flags in all the written pages in a block 

may need to be examined in ROSE. If a given block has any written page(s) 

with the flag set as 1, the block is a log block. Compared to traditional 

HAT-based FTLs, ROSE maintains two more types of metadata, the age and 

score of each log block. According to Section 3.2, the age can be stored in the 

spare area upon the first page write to a log block, allowing it to be 

reconstructed easily upon power-on initialization. With the presence of the page 

state and block age information, the scores can be reconstructed.  

 From the above description, all the metadata of ROSE can be constructed by 

scanning the spare areas and extra flash pages of the storage during initialization, 

which is O(N) in time complexity where N is the number of pages in the storage, 

the same as those in FAST and LAST. Note that, it is also possible to maintain 

all the metadata in extra flash pages so as to reducing the frequency of page 

scanning. In that approach, the time to construct the metadata would be 

proportional to the size of the metadata. Compared to FAST, the additional time 

for constructing the metadata in ROSE is the loading of the (age, score) pair for 

each log block, which is O(NL) in time complexity where NL is the number of 

log blocks in the storage.
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Chapter 4 

The HybridLog FTL 

 With the development of flash memory, new restrictions are imposed on 

modern flash memory chips, and an FTL should follow these new restrictions so 

it can be applied on these modern chips. Specifically, consecutive programming 

and higher space requirement of ECC are two typically restrictions of modern 

flash memory chips.  

Many HAT-based FTLs cannot support consecutive programming 

efficiently since the constraint of the block-level mapping (i.e., each logical page 

can only be written to its corresponding offset in a physical block) is still valid 

for the data blocks. In these HAT-based FTLs, therefore, dummy page writes 

may still be required during workload execution. Although FTLs such as 

Superblock [35, 37] avoid this problem, they either have limited support to 

large-block MLC flash memory, due to the storing of a large amount of 

information in the spare area and thus prohibiting the use of strong ECC, or 

suffer from inferior performance. 

 We propose a HAT-based FTL called HybridLog to support modern NAND 

flash memory and achieve performance superior to existing HAT-based FTLs. 

In the following, the design of HybridLog is described. 
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4.1 Architecture of HybridLog 

 The same as traditional HAT-based FTLs, HybridLog divides the flash 

memory into two areas, a large data area containing data blocks managed by 

block-level mapping and a small log area containing log blocks managed by 

page-level mapping. Each logical block has an associated data block to 

accommodate writes to that logical block, and thus the user perceived storage 

size is the data area size. However, HybridLog adopts a novel architecture to 

allow consecutive programming and to reduce cleaning cost.  
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architecture 

 Different from traditional HAT architecture, the HybridLog architecture 

enables log-style writes to all the blocks in the flash memory, especially the data 

blocks, allowing consecutive programming. Since data blocks are written in a 

log order, log blocks are used only after a data block is full. The log-style writes 
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keep 100% utilization of the data blocks even under the random-write 

workloads.  

Figure 4.1 illustrates an example showing the difference between 

HybridLog and the traditional HAT architecture. Assume that the flash memory 

consists two data blocks and one log block, with each block containing four 

pages. Figure 4.1(a) and Figure 4.1(b) illustrate the result of the page write 

sequence (0, 0, 3, 4, 3, 4, 0) under the traditional HAT and HybridLog 

architectures, respectively. In Figure 4.1(a), although the first write to (logical) 

page 0 can be served by D0, the second write to the page 0 has to be served by 

the log block due to page collision. Moreover, the first write to page 3 has to be 

served by the last physical page of D0 due to the use of block mapping in the 

data area, and two dummy pages have to be written to the second and third 

pages of D0 before the write of page 3 to follow consecutive programming. 

Such dummy page writes increase not only the write response time but also the 

WAR. The second writes to logical pages 3 and 4 also incur page collisions in 

D0 and D1, respectively, and therefore these two page writes have to be satisfied 

by the log block. After the third write to page 0, the log block is full and cannot 

accommodate further page writes. In Figure 4.1(b), except the last page write to 

page 0, all page writes are proceeded in log-style in the corresponding data 

blocks D0 and D1. The last write to page 0 is satisfied by the log block because 

the corresponding data block D0 is full. After the last logical page is written, the 

log block still has three free pages to accommodate further page writes. 
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 As a result, HybridLog not only eliminates unnecessary dummy page writes 

but also reduces the write traffic to the small-sized log area. Therefore, cleaning 

cost and WAR can be reduced. In the following, the technique to enable 

log-style writes in all blocks is described. 

4.2 Log-Style Writes 
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Figure 4.2: Two-level intra-block mapping 

 

 HybridLog uses the BAT approach to manage the data blocks. If the target 

page that needs to be written is not consecutive to the last written page in the 

data block, traditional BAT and HAT approaches fill dummy content to satisfy 
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the consecutive programming restriction of modern NAND flash memory. This 

causes overhead in both time and flash memory space, and the space overhead 

could be large for small random writes. 

 Although log-style writes in a data block can be achieved by using PAT for 

data blocks. This causes large RAM space for the mapping information. To 

enable log-style writes in a data block while preventing increasing the RAM size 

for the total mapping information, HybridLog stores the intra-block mapping 

information (i.e., the physical page offset of each logical page in a data block) in 

the spare area of each written page. The information is organized as a two-level 

mapping table. As shown in Figure 4.2, which assumes 64-page blocks, the 

first-level mapping is called the Mapping Directory (MD). Each entry in the MD 

refers to a Mapping Table (MT), and each entry in the MT records the physical 

page offset for the corresponding logical page. It can be regarded as each logical 

block being divided into a number of groups, with each group containing a fixed 

number of contiguous logical pages. Each MT records the mapping information 

of a group and the MD keeps track of the location of all the MTs in the logical 

block. In Figure 4.2, the block is divided into 2 groups with each group 

containing 32 contiguous logical pages. For each page write to a data block, the 

up-to-date MD and MT, derived from the information in the spare area of the last 

written page in that data block and the information of the to-be-written page, are 

stored in the spare area of the to-be-written page. 

 Figure 4.3 illustrates the spare area format of each written page, which is 
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divided into 3 sections: data information (DI), MD and MT. The DI contains bad 

block indicator, LPN and ECC, while the other sections are used for recording 

the mapping information. Assume B and G denote the number of pages per 

block and the number of pages per group, respectively, a B/G-entry MD and a 

G-entry MT are included in each spare area. Each entry has a size of log2B bits 

since it is used to locate a page in the physical block. The size requirement of 

the spare area space will be analyzed later. 
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Figure 4.3: The spare area format of each written page 

 Figure 4.4 shows the steps of writing a page with LPN 874 to the 

corresponding data block, assuming 64-page blocks and 32-page groups. First, 

the LPN is divided into logical block number (LBN) 13 and page offset 42, and 

the latter is in turn divided into MD index 1 and MT index 10, meaning the page 

offset is stored in entry 10 of MT1. Second, the LBN is used to index the 

block-level mapping table to obtain the physical block number 7. In that 

physical block, the first free page will be used to accommodate the write. From 

the old state of physical block 7 shown in the top right of Figure 4.4, page 3 is 
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the first free page of physical block 7, and thus it is used to accommodate the 

write. Third, the location of the MT1 is obtained by indexing the MD of page 2, 

the last written page in the physical block. From the figure, the entry 1 of MD 

refers to page 1, indicating that MT1 is stored in the spare area of page 1. 

Moreover, the entry 10 of MT1 also refers to page 1, meaning the old data of 

logical page 874 is stored in page 1. Fourth, entry 1 of MD and entry 10 of MT1 

are both updated to refer to page 3, and the data together with the latest mapping 

information are written to that page. Finally, the page 1, which stores the old 

data of the logical page, is marked as dead, and page 3 is marked as live. 
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Figure 4.4: Steps of writing a page 
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 From this example, the content of the new MD and MT (i.e., the MD and 

MT in page 3) are obtained from the old MD and the old MT, respectively. 

Specifically, assuming logical page l is to be written to physical page p of the 

target data block, and MD(i) and MD’(i) denote the ith entry of the old and the 

new MDs, respectively, the MD and MD’ can be obtained by (8) and (9), 

respectively. 

 

    
                                                                                       
                                                   

  (8) 

        

                                                    

             
 

 
             

                                                 

      (9) 

 From (8), the old MD is stored in the last written page (i.e., page p-1) of the 

target block. Generally, all the entries of the new MD except from the one that 

refers to the MT containing the logical page l are copied from the corresponding 

entries of the old MD. However, in the case of a first-page write to a physical 

block (i.e., p = 0), the old MD does not exist. In that case, all the entries of the 

new MD are set as NULL, except from the entry that refers to the MT containing 

the logical page l. Similarly, assuming MT(i) and MT’(i) denote the ith entry of 

the old and the new MTs, respectively, the MT and MT’ can be obtained by (10) 

and (11), respectively. 
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 From the above description, it can be seen that page read/write requires 

additional spare area reads to lookup the intra-block mapping. To reduce the 

spare area reads, recently used intra-block mapping is cached in RAM. Each 

cache entry stores the mapping of a data block (i.e., the up-to-date MD and the 

associated MTs). Due to the temporal and spatial locality of page access, few 

cache entries are adequate for achieving a high cache hit ratio. 

4.3 Spare Area Requirement of HybridLog 

 In the following, the spare area space requirement is analyzed. According to 

Figure 4.3, the space required by the intra-block mapping Mspare_area can be 

expressed in (12). To allow the mapping to be fitted into the spare area, (13) 

should hold, given S and D denoting the sizes of the spare area and DI, 

respectively. 
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 From (13), a set of possible values of G (i.e., pages per group) can be 

obtained for given values of B, S and D. Table 4.1 shows the common modern 

flash memory configurations and the corresponding possible values of G. 

Typically, the values of B (i.e., pages per block) are 64 and 128 for SLC and 

MLC, respectively. The value of S (i.e., spare area sizes) is typically 64 bytes for 

both SLC and MLC. The value of D is equal to the size of ECC plus the sizes of 

LPN (typically 4 bytes) and bad block indicator (typically 1 byte). In general, 

the number of bits required by the ECC depends on the flash type and the error 

correction algorithm. Most SLC and MLC modules require correcting 1-bit and 

4-bit errors for each 512 bytes of data, respectively, and ECC sizes in this table 

are calculated based on satisfying that requirement by using the BCH algorithm 

[17], the most widely-used error correction algorithm in flash storages. 

 TABLE 4.1: COMMON FLASH MEMORY CONFIGURATION AND 

THE CORRESPONDING GROUP SIZES  

FLASH TYPE SLC MLC 

PAGE PER BLOCK 64 128 

MAIN/SPARE AREA SIZE 2048/64 BYTES 2048/64 BYTES 

ECC SIZE 7 BYTES 26 BYTES 

PAGE PER GROUP 1, 2, 4, 8, 16, 32, 64 8, 16 

 

Although the Superblock FTL also stores the mapping information in the 
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spare area, it tightly limits the maximum number of physical blocks allocated to 

a logical block (i.e., 8 blocks). This could lead to high cleaning cost due to the 

use of small buffers to accommodate page updates of frequently-updated logical 

blocks. Moreover, Superblock consumes a larger amount of spare area space due 

to the recording of multiple physical block numbers, prohibiting its use on some 

types of MLC flash. For example, in Table 4.1, for the MLC NAND flash with 

main/spare area size as 2048/64 bytes, Superblock leaves only 8 bytes in the 

spare area for the ECC and thus it cannot be used on that type of flash memory. 

Decreasing the maximum number of physical blocks allocated to a logical block 

allows the support of more types of MLC flash with the cost of degraded 

performance. Although Superblock FTL can adopt an alternative approach, 

which stores the mapping information in the user area of dedicated pages called 

map pages, it incurs extra programming overhead for these map pages. In 

contrast, HybridLog uses the PAT approach in the log area and thus the entire 

log area can be used to buffer page updates of any logical blocks. In addition, it 

supports more MLC flash memories since only page offset information is stored 

in the spare areas. 

4.4 Reconstruction of Metadata 

 In this section, we describe the reconstruction of the metadata after power 

resets in the HybridLog FTL. After a power reset, HybridLog scans each block 
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(from the last page to the first page) to find the last written page as the target 

page. If the target page is corrupted, HybridLog selects the previous page as the 

new target page. A corrupted page may exist due to sudden power failure. If all 

the written pages are corrupted (i.e., no target page is found), the block is 

abandoned. According to the target page, HybridLog determines whether this 

block is a data block or a log block. A 1-bit flag in the spare area is used to tell if 

a given block is a data or a log block (i.e., 0 for data block and 1 for log block). 

For a data block, HybridLog derives the intra-block mapping from the MD and 

MT of the target page, and its preceding pages if necessary. For log blocks, 

HybridLog scans all the pages in them to reconstruct the metadata, which is 

similar to other HAT-based FTLs. 
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Chapter 5 

Performance Evaluation 

 A trace-driven simulator [2, 24, 44, 46, 48, 56] was developed for the 

performance evaluation. In addition to ROSE and HybridLog, three well-known 

HAT-based FTLs, FAST, LAST, and Superblock, were also implemented in the 

simulator for performance comparison. Section 5.1 presents the experimental 

setup and the workloads used in the simulation. Sections 5.2 and 5.3 show the 

performance of ROSE and HybridLog, respectively.  

5.1 Experimental Setup and Traces 

 Table 5.1 shows the default values of the parameters in the simulator. An 

80-Gbyte flash storage (i.e., 655360 blocks) is simulated. In all the experiments 

except from the one corresponding to Table 5.5, 2.5% of the storage (i.e., 16384 

blocks) is reserved for the log area. In Table 5.5, the cleaning cost of the FTLs 

under different log area sizes are reported. In the LAST FTL, one-eighth log 

blocks are SW log blocks, which serve write requests with sizes equal to or 

larger than 8 Kbytes. The 8-Kbyte threshold is used since it results in the best 

performance in most of the traces. All the time-related values in Table 5.1 are 

obtained from the specification of the Samsung K9K4G08U0M NAND flash 
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chip [73]. Note that, the values of Wage and  shown in Table 5.1 are used in all 

the experiments except for those corresponding to Figure 5.5 and 5.6. In the 

experiments corresponding to Figure 5.5 and 5.6, the values of Wage and  are 

varied, respectively, to evaluate their effect on the cleaning cost. 

 

TABLE 5.1: DEFAULT VALUES OF THE PARAMETERS 

Parameters Default values 

Number of Blocks 655360 

Number of Pages Per Block 64 

Page Size 2 Kbytes 

Block Erase Time 2000 us 

Page Read/Write Time 88/263 us 

Wage 1 

 0.5 

Thc 10 

 

 

 As shown in Table 5.2, six device-level traces are used in the experiments. 

The LinuxPC trace is a ten-day workload on a Linux laptop computer, which 

includes daily user activities such as web browsing, file browsing and editing, 

multimedia file playing, and program compilation. The Postmark trace is 

generated from the execution of the PostMark file system benchmark [39], 

which emulates the workload of an Internet email server. PostMark first creates 

80,000 small files, and performs 1,000,000 transactions such as create, delete, 
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read, and append on the files. This causes a large number of small random writes 

to the storage. The LargeFile trace is the workload of creating and deleting MP3 

files, whose average size is about 4 Mbytes, and is dominated by large 

sequential writes. The ratio of file creation to deletion is set as 10 and the 

workload terminates until the total number of existing files exceeds 10,000. The 

Fin1 and Fin2 traces obtained from [5] are workloads of OLTP applications 

running at two large financial institutions. The 4VMs trace is a mixed workload 

generated from the execution of four virtual machines on top of the 

VirtualBox-3.1.2 hypervisor. Each virtual machine, equipped with 768-Mbyte 

memory and 20-Gbyte virtual disk, runs one of the following workloads on the 

Linux kernel 2.6.31: file server, web proxy, mail server and OLTP. The 

workloads are obtained from the FileBench file system benchmark [22]. The 

number of 512-byte sectors written and the average size of the write requests in 

each trace are also shown in Table 5.2. 
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TABLE 5.2: TRACES 

Traces Sectors written/Ave. 

write sizes (sectors) 

Description 

LinuxPC 107,111,668/71.76 10-day user activities  

Postmark 8,816,216/6.68 Running the PostMark benchmark 

LargeFile 60,149,736/748.61 Creating and deleting MP3 files 

Fin1 30,517,409/7.44 An OLTP application at a large financial 

institution 

Fin2 3,810,800/5.84 An OLTP application at a large financial 

institution 

4VMs 109,804,512/35.39 4 virtual machines running file server, web 

proxy, mail server and OLTP workloads  
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5.2 Performance Evaluation of ROSE 

5.2.1 Effect of Entire-Block Writing  

 

 

Figure 5.1: Cleaning cost of the methods for handling sequential 

overwrites (normalized to the cleaning cost of EBW) 

 

 The effectiveness of EBW is demonstrated by comparing its performance 

with different sequentiality prediction methods. Figure 5.1 shows the cleaning 

cost, which includes block erase time and page copying time, of different 

methods for handling sequential overwrites. In the figure, EBW corresponds to 

ROSE with EBW enabled, and both MARO and FPR disabled. FP, LP and CP 

correspond to three different prediction methods. FP denotes the FAST FTL, 
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which predicts sequentiality based on LPN. It serves a page collision by the SW 

log block if the following condition holds: the write is to the first page of a 

logical block or corresponds to the first free page of the SW log block. LP 

denotes a modified version of FAST that utilizes the prediction method of the 

LAST FTL (i.e., serves a write request via the SW log block if the following 

condition holds: the request size is equal to or larger than 8 Kbytes). CP denotes 

another modified version of FAST that utilizes a prediction method based on the 

combination of FP and LP. Specifically, it serves a write request via the SW log 

block if both of the conditions of FP and LP hold. Finally, NP denotes a modified 

version of FAST that does not utilize any techniques for detecting or predicting 

sequentiality (and thus no SW log blocks are used). Since the values of the traces 

have different orders of magnitude, they are normalized to the cleaning cost of 

EBW for easy illustration. 

 From Figure 5.1, although the prediction methods could result in lower 

cleaning cost in sequential write dominated workloads, mispredictions could 

occur quite frequently in random write dominated workloads such as Postmark, 

Fin1 and Fin2, leading to increased cleaning cost in the latter workloads when 

compared to the FTL without using any techniques to predict or detect 

sequentiality. The misprediction ratio, which represents the ratio of the number 

of merges of the SW log block when the block is partially-full to the total 

number of merges of the SW log block, is shown Figure 5.2. A high 

misprediction ratio indicates that the SW log block is usually merged when it is 
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only partially-full. The total cost of such partially-full SW log block merges, 

normalized to the overall cleaning cost, is also presented in Figure 5.2. 

 

Figure 5.2: Misprediction ratios and cost of partially-full SW log 

block merges in the sequentiality prediction methods 

 

TABLE 5.3: PORTIONS OF ENTIRE-BLOCK WRITES 

Traces Number of pages written by entire-block writes 
(% of the number of pages written) 

LinuxPC 50% 

Postmark 0% 

LargeFile 72% 

Fin1 1% 

Fin2 6% 

4VMs 9% 
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 Figure 5.1 also reveals that, when compared to NP, EBW results in lower 

cleaning cost in sequential write dominated workloads, but without the negative 

effect (i.e., increased cleaning cost) in random write dominated workloads. 

Table 5.3 shows the percentage of the number of pages written by entire-block 

writes under each trace when EBW is used. From the table, entire-block writes 

occur more frequently in sequential write dominated workloads such as LinuxPC 

and LargeFile, allowing EBW to achieve lower cleaning cost under these traces. 

5.2.2 Effect of MARO Cleaning Policy  

 

Figure 5.3: Cleaning cost of different cleaning policies (normalized 

to the cleaning cost of MARO) 
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 To evaluate the performance of MARO, we compare it with two policies, 

Round-Robin (RR), which is used in FAST, and Cost-Age-Time (CAT), an 

efficient block reclamation policy. Figure 5.3 shows the cleaning cost of RR and 

CAT normalized to that of MARO. From the figure, MARO outperforms RR by 

up to 3.5 times and CAT by up to 31%, respectively, under the traces.  

 

 

Figure 5.4: Cleaning cost of MARO and LAST (normalized to the 

cleaning cost of MARO) 

 

We also implement MARO in the LAST FTL to compare the performance of 

MARO and the cleaning policy used in the LAST FTL (or simply the LAST 

policy). Figure 5.4 shows the cleaning cost of the two policies normalized to that 

of MARO. From the figure, MARO outperforms the LAST policy by up to 1.1 
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times. The results of Figure 5.3 and 5.4 reveal that the performance improvement 

of MARO comes mainly from the reduction of page copying cost. This is because 

the per-bit data copying cost is higher than the per-bit data erasing cost. From 

Table 5.1, the cost of copying only six pages is higher than erasing a whole block. 

Therefore, MARO would prevent a log block to be reclaimed if the reclamation 

involves copying a large number of pages. This leads to an effective reduction on 

the page copying overhead. 

Next, we evaluate the performance of MARO under different values of Wage 

and . Figure 5.5 illustrates the cleaning cost of MARO with Wage ranging from 0 

to infinity. Note that, setting Wage as infinity means that MARO selects victims 

only based on the block age (without considering the merge cost) when dead log 

blocks are not available. For each trace, five Wage settings are tested, and the 

results normalized to the minimum cleaning cost under these settings are reported. 

From the figure, setting Wage as 0 results in a relatively large cleaning cost in the 

LinuxPC, Fin1 and LargeFile traces, and setting Wage as extremely large values 

also results in large cleaning cost in the LinuxPC and 4VMs traces. This 

demonstrates that both the block age and the merge cost need to be considered. 

Exceptions appear in the Postmark and Fin2 traces, under which Wage does not 

have significant effect on the cleaning cost. Note that, according to Figure 5.3 

and 5.5, setting Wage as infinity still results in lower cleaning cost than RR. This is 

because, as mentioned in Section 3.3, MARO still reclaims dead log blocks, i.e., 

blocks with lowest reclamation cost, before selecting victims based on (5), 
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whereas RR does not consider merge cost at all. 

 

 

Figure 5.5: Cleaning cost with different Wage 

 

 

 

Figure 5.6: Cleaning cost with different α 
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 Figure 5.6 shows the cleaning cost of MARO with  ranging from 0 to 1. 

For each trace, five  settings are tested, and the results normalized to the 

minimum cleaning cost under these settings are reported. As mentioned before, 

 is always smaller than 1 in MARO. The results corresponding to  as 1 are 

reported to compare the existing merge cost evaluation approach and that used 

in MARO. As illustrated in the figure, setting  as 1 does not always lead to the 

best performance, indicating that respecting the benefit of copying pages 

corresponding to dead pages of the data blocks helps to reduce the cleaning cost. 

For example, under the LinuxPC trace, the cleaning cost with  as 1 is 15% 

larger than that with  as 0.25. According to Figure 5.5 and 5.6, we set Wage as 1 

and  as 0.5 in the other experiments of this thesis. 

 Below we present the time of score computation and maximum score 

searching. The execution time of the software part of MARO is obtained by 

ARMulator, which simulates a 200MHz ARM926 processor (16-Kbyte I-cache, 

16-Kbyte D-cache and no floating point unit). The performance of the simulated 

processor is common for the processor units in state-of-the-art SSD controllers. 

The hardware part is implemented by Verilog HDL and synthesized by 

SYNOPSYS DesignVision with TSMC’s 0.18 um cell library. The layout for 

the hardware design is generated with SYNOPSYS Astro (for auto placement 

and routing), and verified by MENTOR GRAPHIC Calibre (for DRC and LVS 
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checks).  

 For each page write, the worst case execution time of the MARO 

implementation is 7.6 us (including computation of scores and search of 

intra-cluster maximum scores), which can be totally hidden from the page write 

time (263 us). The size of a cluster is 8 segments. During cleaning, 1.2 us is used 

for searching the maximum score among the clusters, which is insignificant 

when compared to the minimum cleaning cost (i.e., the block erase time, 2000 

us). In addition, the gate count of the hardware is 2.5K, accounting for only a 

tiny percentage of the total number of gates in an SSD controller, which 

generally has more than 1 million gates (for the ECC algorithm, host interface, 

etc.) 
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5.2.3 Effect of Free Page Reuse 

 

Figure 5.7: Cleaning cost w/ and w/o FPR (normalized to the 

cleaning cost w/ FPR) 

 

 To evaluate the performance of FPR, we measure the cleaning cost with and 

without the presence of FPR. As shown in Figure 5.7, FPR is effective in 

Postmark and Fin2. Specifically, it reduces the cleaning cost by 70% and 19% 

in the Postmark and Fin2 traces, respectively. The reason can be seen in Figure 

5.8, which shows the average space utilizations with and without the presence of 

FPR. In Figure 5.8, the two traces have lower space utilizations when FPR is not 

present, meaning that some free pages, which can originally be used to 

accommodate more writes, are erased. FPR increases the space utilizations 

under these traces, which leads to reduction of the cleaning cost. 
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Figure 5.8: Average space utilizations w/ and w/o FPR 
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during each swap operation, the average number of free pages obtained by each 

swap operation and the FPR ratio, under each trace. The FPR ratio is the ratio of 

the number of swap operations to the number of block erase operations under a 
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reducing the cleaning cost under the Postmark and Fin2 traces due to their 

higher FPR ratios. 

TABLE 5.4: STATISTICS OF FPR 

Traces Free pages obtained 
by each swap 

(average) 

Pages copied 
during each swap 

(average) 

FPR ratios 

LinuxPC 40.89 3.04 0.03 

PostMark 61.85 0.17 0.93 

LargeFile 26.52 0.23 0.01 

Fin1 0.11 0.38 0.04 

Fin2 50.03 0.12 0.32 

4VMs 33.18 0.30 0.01 

5.2.4 Overall Performance of ROSE 

 In this section, we compare the overall performance of FAST, LAST and 

ROSE. Figure 5.9 shows the cleaning cost normalized to that of ROSE, in which 

all the proposed techniques are enabled. We also show the cleaning cost of 

ROSE with FPR disabled for performance comparison. From the figure, ROSE 

outperforms FAST and LAST by 34% to 47 times and 2 to 6 times, respectively. 

Even with FPR disabled, ROSE still outperforms FAST and LAST significantly 

under almost all the traces. Figure 5.10 shows the write amplification ratio 

(WAR), which is defined in Section 2.1, of each FTL under each trace. As 

shown in the figure, ROSE achieves the lowest WAR among the FTLs under all 
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the traces. Specifically, it reduces the WAR by up to 1.1 and 1.8 when compared 

to LAST and FAST, respectively, leading to up to 39% and 61% reduction in the 

total write time. 

 

Figure 5.9: Cleaning cost of FAST, LAST and ROSE (normalized 

to the cleaning cost of ROSE) 
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Figure 5.10: Write amplification ratios of FAST, LAST and ROSE 

 

 

Figure 5.11: Effect of the number of sequential write log blocks 
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ROSE under different log area sizes, ranging from 1.5% to 3.5% of the storage 

size. From the table, the cleaning cost usually decreases with the growth of the 

log area size. Moreover, ROSE consistently outperforms the other two FTLs 

when the log area size is equal to or larger than 2% of the storage size. 

TABLE 5.5: CLEANING COST WITH DIFFERENT LOG AREA SIZES 

(SECONDS) 

Traces FTLs Log area sizes (% of the storage size) 

1.5% 2% 2.5% 3% 3.5% 

LinuxPC ROSE 771 623 541 463 418 

LAST 2442 2404 2327 2256 2163 

FAST 4217 4167 4164 4077 4057 

Postmark ROSE 96 89 78 69 61 

LAST 358 350 344 340 334 

FAST 790 669 643 450 434 

LargeFile ROSE 401 394 388 381 375 

LAST 1127 1108 1101 1102 1107 

FAST 1227 1177 1199 1134 1116 

Fin1 ROSE 830 573 446 410 381 

LAST 2139 1925 1671 1227 815 

FAST 5870 5638 5573 5543 5518 

Fin2 ROSE 52 22 6 2 2 

LAST 88 56 43 35 28 

FAST 332 308 288 280 280 

4VMs ROSE 7644 6254 5029 3822 2801 

LAST 20749 16328 13322 10783 9361 

FAST 7278 6982 6763 6643 6528 

 

Finally, Table 5.6 shows the result of wear-leveling in ROSE. In this 
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experiment, each trace is executed repeatedly until the average erase count of 

the blocks is larger than 20. From the table, the standard deviations of the erase 

counts are small for all the traces, showing that ROSE achieves wear-leveling 

with the support of the global wear-leveling technique. Moreover, the overhead 

of the global wear-leveling technique (i.e., the cost of swapping the data of hot 

and cold blocks) is insignificant compared to the overall cleaning cost (i.e., less 

than or equal to 2.01% of the cleaning cost under all the traces) since hot-cold 

swapping are not triggered frequently. 

TABLE 5.6: RESULT OF WEAR-LEVELING 

Traces Numbers of 
iterations 

Ave. erase counts 
/ Std. dev. 

Cost of hot-cold 
swapping (% of the 

cleaning cost) 

LinuxPC 21 20.18/2.43 2.01 

PostMark 225 20.01/0.28 0.02 

LargeFile 56 20.13/2.19 1.13 

Fin1 75 20.02/0.56 0.12 

Fin2 591 20.00/1.30 0.41 

4VMs 16 20.46/2.18 0.95 
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5.3 Performance Evaluation of HybridLog  

5.3.1 Effect of Log-Style Write 
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Figure 5.12: Normalized cleaning cost w/ and w/o log-style writes 

 

 To evaluate the performance of log-style write, we measure the cleaning 

cost with and without the presence of log-style write in the HybridLog FTL. 

Since the values of the traces have different orders of magnitude, they are 

normalized to the cleaning cost without log-style write. As shown in Figure 5.12, 

using log-style write is effective in five of the six workloads, i.e., LinuxPC, 

PostMark, LargeFile, Fin1 and Fin2. In these workloads, using log-style write 
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can reduces the cleaning cost by up to 58%. 
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Figure 5.13: Average number of dummy pages in a data block 

 

 The reason can be seen in Figure 5.13 and Figure 5.14. Figure 5.13 shows 

the average number of dummy pages that have been written when a data block 

becomes full. As mentioned before, dummy pages have to be written in each 

page padding operation to follow consecutive programming. From the figure, 

about 4 to 16 dummy pages in average were written in a data block. This wastes 

the flash memory space since these dummy pages do not accommodate any new 

user data. Moreover, further page writes to the space occupied by the dummy 

pages cause page collisions and thus have to be satisfied by the log area. With 

log-style write in HybridLog, dummy page writes can totally be eliminated. 
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Figure 5.14: Average number of pages collision in a data block 

with free pages 

 

 Figure 5.14 shows the average number of page collisions in a data block 

with free pages. Without log-style write, the collided pages have to be written to 

the log area even in the case that the data blocks still have free space to 

accommodate the collided pages. With log-style write in HybridLog, the 

collided pages can be accommodated by data blocks if there is free space in the 

data blocks. This reduces the write traffic to the log area and thus leading to 

lower cleaning cost. 

 In summary, as mentioned in Section 4.2, log-style write allows every page 

of the data block to accommodate meaningful user data. Moreover, it reduces 

the write traffic to the small-sized log area and hence delays cleaning due to the 
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fullness of the log area, resulting in a lower cleaning cost. 

5.3.2 Cache Hit Ratio 
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 Figure 5.15: Cache hit ratios in HybridLog 

 

 HybridLog caches recently used intra-block mapping in memory to reduce 

spare area reads. Figure 5.15 presents the cache hit ratios with various numbers 

of cache entries, ranging from 2 to 16. Not suprisingly, the hit ratio improves 

with increased cache size. As shown in the figure, very few cache entries are 

sufficient to achieve a high hit ratio due to temporal and spatial locality of the 

traces, which is common in many real workloads. 
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5.3.3 Overall Performance of HybridLog 
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Figure 5.16: Normalized cleaning cost of Superblock, FAST, and 

HybridLog 

 

 In this section, the overall performance of FAST, Superblock and 

HybridLog is compared. Figure 5.16 shows the cleaning cost of the three FTLs 

under each trace. The results are normalized to the cleaning cost of HybridLog. 

From the figure, HybridLog outperforms FAST and Superblock by 30% (under 

LinuxPC) to 17.8 times (under Fin2) and 10% (under LinuxPC) to 7.5 times 

(under Fin2), respectively. 
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Figure 5.17: Write amplification ratios of Superblock, FAST, and 

HybridLog 
 

 Figure 5.17 shows the write amplification ratio (WAR), as defined in (1), of 

each of the FTLs under each trace. As shown in the figure, HybridLog achieves 

the lowest WAR among the FTLs under all the traces. Specifically, it reduces 

the WAR by up to 1.73 and 0.65 (under Fin1) when compared to FAST and 

Superblock, respectively, leading to up to 58% and 35% (under Fin1) reduction 

in the total write time. 
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Chapter 6 

Conclusions and Future Work 

6.1 Conclusions 

 In this thesis, two HAT-based flash translation layers, ROSE and 

HybridLog, are proposed. ROSE integrates three novel techniques, namely 

EBW, MARO and FPR, to reduce the cleaning cost. Existing HAT-based FTLs 

handle sequential overwrites by predicting sequentiality. EBW takes a 

fundamentally different approach. It detects sequentiality instead of predicting it, 

eliminating the cleaning cost resulting from mispredictions that treat random or 

semi-sequential writes as sequential ones. The MARO cleaning policy selects a 

victim log block by considering the states of both the log blocks and their 

corresponding data blocks, improving the cleaning efficiency. In contrast to 

existing cleaning policies in HAT-based FTLs, both the ages and the merge 

costs of the log blocks are considered at the same time. Finally, the FPR 

technique reuses the free pages of obsolete blocks to buffer further page 

overwrites, which increases the space utilization and reduces the cleaning cost. 

Through trace-driven simulation, we have demonstrated the effectiveness of 

each proposed technique of ROSE. Moreover, the results also show that ROSE 

can outperform previous HAT-based FTLs by up to 47 times in terms of 
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cleaning cost and by up to 1.6 times in terms of flash write time. 

 HybridLog is proposed to support modern NAND flash memory and to 

achieve low cleaning cost. To allow consecutive programming required by 

modern NAND flash memories, log-style write is used for all the blocks in the 

flash memory, including the data blocks. To support log-style write to all the 

blocks, intra-block mapping information is stored in the spare area of each 

written page. Since only a small space is required in the spare area for the 

mapping information, many modern SLC/MLC flash memories can be 

supported. In addition to allow consecutive programming, log-style write to data 

blocks also eliminate writes of dummy pages to the data blocks and reduce the 

write traffic to the small-sized log area due to page collisions, which are both 

helpful for reducing the cleaning cost. Through trace-driven simulation on six 

real or benchmark-based workloads, the effectiveness of log-style write and the 

superior performance of HybridLog compared to the other HAT-based FTLs 

have been demonstrated. Specifically, HybridLog outperforms existing 

HAT-based FTLs by up to 17.8 times in terms of cleaning cost and reduces the 

WAR by up to 1.73. 

6.2 Future Work 

 Combining the techniques used in ROSE and HybridLog might reduce the 

cleaning costs further. For example, integrating log-style writing into ROSE 
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allows ROSE to support modern NAND flash memory efficiently. Combing 

EBW with HybridLog also allows the HybridLog to reduce the write traffic to 

the small-sized log area, since HybridLog provides the log-style write to 

accommodate the most up-to-date user data in all data pages. 

 However, there are still some challenges for combining these techniques. 

Firstly, a new equation is required to estimate the merge cost in MARO when 

log-style writing is used. Secondly, when EBW is combined with HybridLog, a 

new methodology is required for handling sequentiality. Thirdly, the 

effectiveness of FPR is required to be evaluated while HybridLog is used. In the 

future, we will address the issues raised due to the combination of the techniques 

and evaluate the performance improvement when combining these techniques. 
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