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CHAPTER 1

Research Overview

1.1 Introduction

Large-scale image retrieval has become a hot topic recently due to the need to retrieve

similar images (to a query image) from ever-growing image collections. For searching

within huge databases, a fast yet efficient approach is the use of global image repre-

sentation (also known as global descriptor), which usually takes the form of a high-

dimensional vector and enables simple similarity measures, such as Cosine Similarity,

to be utilized for image comparison.

Bag-of-words (BoW) [12] is a popular model for global image representation. Its

process (see Fig. 1.1) usually includes:

1. extracting local descriptors, e.g. SIFT, from an image;

2. encoding every local descriptor into a vector representation with one non-zero

entry indicating to which visual word in a pre-defined codebook it is quantized;

and

3. pooling the vector representations for different local descriptors into one single

vector.
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Sec 1.1. Introduction

Figure 1.1: Illustration of BoW formation. x denotes local descriptor and u denotes

visual word.

The result is essentially a histogram of visual words, characterizing the frequency

of their occurrence in an image. Among these steps, the encoding is the most critical

step: the resulting vector needs to be discriminative enough to enable reliable retrieval.

It was shown however that the nearest-neighbor-based visual word assignment in the

current BoWmethod can yield very different encoding results for local descriptors that

are actually similar to each other, a phenomenon often referred to as the ambiguity

problem [13].

To alleviate the ambiguity, soft assignment schemes were proposed [10][11], where

a local descriptor can be assigned to multiple visual words with proper weighting. In

[11] the weighting coefficient to associate with a visual word is determined heuristi-

cally based on its distance to the encoding descriptor, while in [10] it is computed as

a posterior probability, assuming that the local descriptor follows a Gaussian mixture

probability model (GMM) with the means of different components representing the

visual words. The latter is a particular case of the more general Fisher vector (FV)

representation, which encodes an observed local descriptor by taking the derivatives

of its likelihood function with respect to all or some of the model parameters. In-

terestingly, the FV representation has many important analytical properties, which

provide theoretical justification for many other heuristic schemes. Showing promising

retrieval performance, it was recently considered by the ISO/IEC MPEG committee

for standardization of compact descriptors for visual search [5].

-2-



Chapter 1. Research Overview

Figure 1.2: The difference of encoding process between FV and VLAD. c denotes

the weighting of local descriptor x assigned to visual word u.

1.2 Problem Statement

The FV representation however suffers from high computational complexity. In its

most popular form [10], the encoding of a local descriptor requires evaluating the

posterior probability and computing a normalized residual vector with respect to every

visual word (i.e., component). To reduce computations, the vector of locally aggregated

descriptors (VLAD) [7] simply obtains the residual vector to the nearest visual word

(see Fig. 1.2) and sets its weight to one and the others to zero (just like BoW). Not

surprisingly, it inherits the same ambiguity problem from BoW.

1.3 Contributions

In seeking a better trade-off between complexity and performance, this work applies

the locality-constrained linear coding (LLC) [14], a technique proven to be effective for

image classification, to encoding local descriptors. As will be seen, its soft assignment

nature and locality property ensure that similar local descriptors always have similar

encoding results, while the sparseness of the resulting code allows only few weighting

coefficients to be computed. Empirical studies were conducted to determine the best

form of LLC for image retrieval applications. Specifically, our main contributions in

this work include the following:

• We conduct several empirical studies to investigate the effects and benefits of
locality property and to adapt the other terms in FV for a better trade-off between

-3-



Sec 1.4. Organization of Thesis

performance and complexity.

• We propose a global image representation using LLC-based coding with normal-
ized residual vector.

• Wemake a few simplifications to FV in hopes of getting a better trade-off between
complexity and performance.

Under the test conditions [5] suggested by the MPEG committee, the proposed

scheme provides 0.7-3.9% improvements in mean Average Precision (mAP) and reduces

almost by half of average encoding time, when compared with the state-of-the-art

approaches. Part of our design parallels another independently developed work, Robust

Visual Descriptor (RVD) [6]. In addition, the simplified FV not only reduces the

encoding time of FV by half, but also improves its performance slightly (1-1.5%).

1.4 Organization of Thesis

The rest of this thesis is organized as follows: Chapter 2 describes the large-scale image

retrieval architecture and several state-of-the-art methods to ease the understanding

of this work. Chapter 3 presents a series of empirical studies for determining the best

form of LLC. Chapter 4 shows performance comparison with other state-of-the-art

approaches. Finally, Chapter 5 concludes this thesis.
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CHAPTER 2

Background

In this chapter, we describe the large-scale image retrieval architecture and the existing

encoding methods for generating global image representation. They will be explained

in detail in the following sections.

2.1 Large-Scale Image Retrieval

This architecture is proposed to deal with the large-scale image retrieval task, which is

a two-level retrieval pipeline (see Fig. 2.1). It first uses global descriptor to produce a

shortlist of similar images in database, and then applies a geometric verification, where

local descriptors were matched, to re-ranking the shortlist. We will describe all the

components step by step in the following subsections. Note that the ISO/IEC MPEG

Compact Descriptors for Visual Search (CDVS) also adopted this architecture.

2.1.1 Compact Descriptor Extraction

This subsection describes how to generate two different kinds of compact descriptors,

local descriptor and global descriptor. The procedure includes 1) feature detection; 2)

-5-



Sec 2.1. Large-Scale Image Retrieval

Figure 2.1: Large-scale image retrieval architecture

feature description; 3) feature selection; and 4) feature compression.

For the first two steps, we use scale-invariant feature transform (SIFT) [9], an

algorithm in computer vision to detect and describe local features in an image. It

has been widely used in image matching problems such as image classification, image

retrieval and object detection for its excellent properties. Those properties include

invariance to image scaling and rotation, and also partially invariance to illumination

and viewpoint change. For the third step, we then select a limited number of SIFT

features so that this subset is more possible to be correctly matched.

For the fourth step, before the retrieval procedure, we need to encode those se-

lected SIFT features into compact codes. For local descriptor, each SIFT feature is

transformed [5] and scalar quantized to make it a ternary representation. Also, we

need to record their coordinates in order to be utilized for geometric verification. As

for global descriptor, Principal Component Analysis (PCA) is first employed to reduce

the dimension of each raw SIFT feature from 128-dim to 32-dim. It benefits the global

image representation in effectively removing redundant information in raw SIFT fea-

tures. Each 32-dim feature is then encoded into a high dimensional vector. Finally all

the vectors are aggregated into a single high dimensional vector. To further compress,

we employ a simple sign function to binarize the representation. That is, for each di-

mension of the representation, we assign the value "1" to any non-negative value, and

-6-



Chapter 2. Background

the value "0" to any negative value.

2.1.2 Retrieval

In large-scale image retrieval, a two-stage retrieval framework was proposed to accel-

erate the retrieval process. At the first stage, we use the global descriptor to calculate

the similarity scores between query image and the dataset images, and get the shortlist

from the top of the ranked list. At the second stage, the local descriptors of the query

image are matched to the local descriptors of the shortlist images, and the geometric

verification is applied for re-ranking the shortlist as a secondary criteria.

In this thesis, we focus on the encoding methods for generating global descriptor,

and try to improve the reliability of the shortlist.

2.2 Related Works

This section reviews several encoding schemes for generating global image representa-

tion. We review five state-of-the-art encoding schemes, including bag-of-words (BoW)

[12], Fisher vector (FV) [5], vector of locally aggregated descriptor (VLAD) [7], Ro-

bust Visual Descriptor (RVD) [6] and locality-constrained linear coding (LLC) [14].

For notation, we shall use  =
©
x|x ∈ R  = 1 2     

ª
to denote local descrip-

tors (e.g. SIFT) extracted from an image and  =
©
u|u ∈ R  = 1 2    

ª
the

visual words learned from -means clustering.

2.2.1 Bag-of-Words (BoW)

The bag-of-words approach is the state-of-the-art method for the image retrieval that

comes from the idea of bag-of-keywords, which is used to retrieve relevant documents.

According to the occurrence counts of the keywords in document, each document can

have its own histogram representation. Then, two documents can be compared using

their histogram representations to judge whether they are similar or not. As for the

image, we can view the features from the image as the words in the document, and the

visual words as the keywords. That is, the matching algorithm of document search can

also be applied to image search.

-7-



Sec 2.2. Related Works

As shown in the Fig. 1.1, each feature is vector quantized and encoded to a -

dimensional coefficient vector with only one non-zero value, which should be one. In

practice, this is done by searching the nearest visual word and this kind of coefficient

assignment is so-called hard assignment.

However, hard assignment may suffer from the boundary effect that causes high

reconstruction errors, which is called ambiguity problem [13]. To resolve the problem,

the intuitive way is to consider not only the nearest visual word but also other visual

words in the codebook, this is so-called soft assignment. In this thesis, we roughly

divide the existing soft assignment schemes into two frameworks, non-probabilistic

(e.g. LLC) and probabilistic (e.g. FV) framework.

2.2.2 Fisher Vector (FV)

The FV representation of a local descriptor is constructed on the basis of a probabilis-

tic framework. It views local descriptors {x} extracted from an image as outcomes

drawn independently from a parametric probability model (x|) with parameter vec-
tor . The encoding of an observed local descriptor x is accomplished by taking the

derivatives of its log likelihood function ln  (x|) with respect to  at its initial value,
usually obtained through the EM algorithm. To get the final FV representation, a

whitening transform is applied to the resulting vector.

As an example, when (x|) is the Gaussian mixture distribution,

(x|) =
X
=1

N (x|uΣ)  (2.1)

 = {uΣ  = 1 2 }  taking derivatives solely with respect to the means
{u} and applying the transform yields the most popular FV representation for x as

the concatenation of all g  = 1 2  , where

g =
1√

Σ

− 1
2

 (x − u) (2.2)

and  =  (|x) is the posterior probability.
Interestingly, Equation (2.2) comprises four different terms, each has its own use:

1. the 1
√
, which functions similarly to the Inverted Document Frequency (IDF)
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Chapter 2. Background

for discounting frequent visual words;

2. the posterior probability , which serves as a soft assignment scheme and de-

notes the weighting coefficient for visual word u; and

3. the normalization factor Σ
− 1
2

 for equalizing the residual vector; and

4. the residual vector (x

− ), which improves discriminative ability.

2.2.3 Vector of Locally Aggregated Descriptors (VLAD)

This encoding scheme can be seen as a simplification of the FV. Just like what is

described in BoW, we first learn a codebook of  visual words with -means clustering.

Each local descriptor is associated to its nearest visual word. The idea of the VLAD is

to accumulate, for each visual word u, the residual vector x−u of the local descriptor
x assigned to u. The coding complexity can become much simpler by only computing

the information with the nearest visual word.

Assuming there are  visual words in the codebook and the local descriptor is an

-dimensional vector, the dimension of the VLAD is×. For each local descriptor,

we obtain only the residual vector respect to the nearest visual word:

 = x − u (2.3)

where  and  respectively denote the 
 local descriptor and the  visual word.

Not surprisingly, VLAD inherits the same ambiguity problem from BoW.

2.2.4 Robust Visual Descriptor (RVD)

This scheme was recently discussed in the MPEG CDVS, the motivation of this encod-

ing scheme is the same as VLAD. Each local descriptor x is assigned to the  closest

(in 1 distance sense for complexity reason) visual words with the corresponding ranks

and then residual vectors x − u are calculated. Before the aggregation, the residual
vectors are first 1 normalized. It limits the impact of descriptors that are far from

visual word (see Fig. 3.3). The representation of each visual word can be formulated

as follow:

 = 
(x − )

kx − k1
 (2.4)
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Sec 2.2. Related Works

where  denotes the weighting coefficient of the 
 local descriptor respect to the 

visual word. The selection of  depends on number of visual words, stability, reliability

and density of local descriptors in an image. In [6]  = 3 is used. The weighting

coefficients are fixed to 4, 2 and 1.

2.2.5 Locality-constrained Linear Coding (LLC)

The traditional sparse coding (SC) approach works well for image classification, which

encourages the global representation to be sparse (sparseness). Yu et al. [16] empiri-

cally observed that the nonzero coefficients are often assigned to bases nearby to the

encoded local descriptor (locality) and theoretically pointed out that under certain

assumptions locality is more essential than sparsity, so they proposed a modification

to SC, called local coordinate coding (LCC). However, SC and LCC both require high

computational complexity for solving an optimization problem.

Recently, Wang et al. [14] proposed an method called LLC, which can be seen as

a fast implementation of LCC. Originating from sparse representation [15] and local

coordinate coding [16] for image classification, the LLC departs from the probabilistic

framework to encode a local descriptor into a high-dimensional vector by linear coding.

The encoding acts by computing the least-squares solution ec to approximate an en-
coding descriptor x using a selected set of visual words from  as basis vectors; that

is,

minc kx −Ueck2 s.t. 1ec = 1 (2.5)

where the columns ofU consist of the selected visual words and the unit gain constraint

1ec = 1 is to meet the shift-invariant requirement. Note that the complete encoded
representation of x is a vector c of size  × 1 whose elements denote the weighting
coefficients to associate with visual words in  and can be recovered from ec (of size
 × 1   ) by copying its elements to the entries that correspond to the selected

visual words and setting the others to zero. To preserve the sparseness of the resulting

code, U contains only few of the visual words from the over-complete dictionary 

(in our scheme,  = 3); moreover, to meet the locality constraint, they have to be

spatially close to the encoding descriptor x—i.e., only the first few closest visual words

are considered.

-10-



Chapter 2. Background

From the perspective of FV, LLC is different in that it is without residual vector,

residual normalization and IDF terms. Moreover, the coefficient computation method

is in least square sense and it explicitly encourages the weighting coefficients to be local,

which is more probable for similar local descriptors to be represented by similar bases,

and is beneficial for computation complexity. Although reporting excellent results in

image classification, it has not yet applied in image retrieval.

To summarize, the sparseness property of LLC brings computational advantages

since only few weighting coefficients need to be computed, and meanwhile, the locality

constraint helps avoid the ambiguity problem.

-11-



CHAPTER 3

Global Image Representation Using

Locality-constrained Linear Coding

Motivated by the performance benefits of FV and the computational advantages of

LLC, we try to combine their merits to form a better global descriptor. Based on the

form of FV, we first replace the sophisticated computation of the posterior probability

 with LLC. Then, we shall adapt the other terms in FV to such change, so that

the performance of FV can be maintained or even improved while the computational

complexity is being reduced. To this end, we conduct a series of empirical studies

1. to determine a proper sparsity value for the LLC code,

2. to evaluate the performance difference between probabilistic and non-probabilistic

representations,

3. to understand the respective benefits of the residual vector, IDF factor and nor-

malization factor, and whether further simplification to these factors is possible,

and finally

4. to see how binarizing the resulting vector to achieve compression may impact the

performance.
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Chapter 3. Global Image Representation Using Locality-constrained Linear Coding

Figure 3.1: Performance (mAP) of 100K experiment on -NN selection of LLC.

Figure 3.2: Performance (mAP) of 100K experiment on -NN selection of LLC with

residual vector.

All the experiments follow the test conditions specified in Chapter 4, except that

distractor images reduced to 100K.

3.1 -Nearest-Neighbors

Our first experiment aims to choose a proper sparsity value  for LLC, i.e., the number

of nearest visual words to be used in Equation (2.5). For the present experiment, a

local descriptor is simply encoded into its LLC code.

Fig. 3.1 and Fig. 3.2 show the retrieval performance against the value of  for

various codebook sizes. As can be seen, selecting too few or too many visual words
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Sec 3.2. Coefficient Computation

is detrimental to performance, regardless of codebook size. Generally, the best perfor-

mance is achieved when  = 3. The result remains even when the other factors are

incorporated. We thus choose  to be 3 for all the following tests.

3.2 Coefficient Computation

This study compares the performance between probabilistic and non-probabilistic en-

coding methods, including FV, LLC, and BoW, for setting . As in the previous

study, we represent an encoded local descriptor x using solely the   = 1 2 

factors (i.e., g = ). Recall that in FV,  denotes the posterior probability (|x)
of the -th visual word given x whereas in both LLC and BoW, it represents its

weighting coefficient.

From the results in Sec 1 of Table 3.1, we see that with the same codebook size (i.e.,

the same representation length), the probabilistic method from FV (denoted as PP)

outperforms the non-probabilistic ones, BoW and LLC. In addition, the soft assignment

scheme (LLC) is superior to the hard assignment one (BoW). Thus, the computational

advantages of LLC and BoW come at the cost of inferior performance.

3.3 Residual Vector

This study evaluates the benefit of residual vector (x − u) when it is additionally in-
corporated as part of the final representation (i.e., g =  (x − u)). From comparing
the results in Sec 1 and Sec 2 of Table 3.1, we see that including residual vector al-

ways gives better performance at the same representation length. Also, its use leads to

more significant mAP improvement for BoW and LLC (8% and 5%, respectively) than

for PP (0.6%, on average). Interestingly, the configuration (LLC + Residual Vector)

performs very close to (PP + Residual Vector), suggesting that a simpler coefficient

coding may be used with the inclusion of residual vector. Finally, it should be aware

that in order to have the same representation length, the codebook size for methods

in Sec 2 is smaller than that for their counterparts in Sec 1, due to the inclusion of

residual vector, which has a size of .
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Chapter 3. Global Image Representation Using Locality-constrained Linear Coding

Table 3.1: Performance (mAP) of 100K non-binarized experiment on coefficient com-

putation, residual vector, IDF and normalization effect in different encoding methods

Representation Length ( ×)
Non-Binarized

Sec Encoded Information Method 512 1024 2048 4096

BoW 0.486 0.560 0.601 0.625

1 Coeff. PP 0.552 0.645 0.700 0.735
LLC 0.511 0.617 0.670 0.691

BoW 0.512 0.597 0.657 0.704

2 Coeff. + Res. PP 0.556 0.642 0.706 0.755

LLC 0.535 0.627 0.692 0.740

BoW 0.501 0.588 0.610 0.673

3 Coeff. + Res. + IDF PP 0.550 0.637 0.702 0.750
LLC 0.531 0.623 0.698 0.743

BoW 0.513 0.594 0.656 0.700

(Variance) PP 0.557 0.647 0.702 0.752

LLC 0.539 0.631 0.696 0.738
BoW 0.536 0.616 0.675 0.716

4 Coeff. + Res. + Norm. (1) PP 0.573 0.658 0.715 0.757

LLC 0.553 0.643 0.701 0.743
BoW 0.538 0.618 0.677 0.718

(2) PP 0.576 0.660 0.715 0.758

LLC 0.556 0.646 0.703 0.747

Note 1 -  is the number of visual words in the codebook and  is the size of encoded information.

Note 2 - In Sec 1,  = 512 1024 2048 4096  = 1; In Sec 2,3 and 4,  = 16 32 64 128  = 32.
Note 3 - The unit of non-binarized representation is 32 bits.

3.4 Inverted Document Frequency (IDF)

The factor 1
√
 in FV representation is believed to exert an effect similar to IDF,

which helps discount the frequent visual words under certain assumptions. However,

comparing the results in Sec 3 of Table 3.1 with those in Sec 2, where this IDF term is

ignored, shows that the extra gain it brings seems rather minor. We shall thus exclude

it from our approach.

3.5 Residual Vector Normalization

So far, we have seen that including residual vector (x − u) can bring performance
advantages. In FV representation, this residual vector is further normalized by Σ

− 1
2

 ,

the covariance matrix of the -th component, so that the variability along each of

its dimensions can be equalized in a statistical sense. Here we wish to understand

whether there can be significant benefit from performing such normalization (i.e.,

g = Σ
− 1
2

 (x − u)). Additionally, we compare its performance with two ad-

hoc normalization schemes based on the 1 and 2 norm of the residual vector (i.e.,
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Sec 3.6. Global Descriptor Binarization

(a) (b) (c)

Figure 3.3: Illustration of the effect of normalization on residual vector. Local de-

scriptors (Gray) denotes x and visual words (Transparent) denotes u and the visual

word selected as local basis is in red. (a) Without normalization, final representation

would be dominated by the residual vector of x1. (b) With normalization, the effect

disappears as we now consider only the direction of the residual vector, in this case in

the sense of 2. (c) Without normalization, the effect would also decrease when larger

codebook size is used because of high density visual word used.

g =  (x − u)  kx − uk,  = 1 or 2). This is motivated by the intention to de-
emphasize, during the pooling process, the contribution of (outlier) local descriptors

that are spatially far away from visual words and that therefore have a large residual

vector. Fig. 3.3 (a) and (b) show an illustration of such effect.

From Table 3.1, the methods in Sec 2 perform almost identically to their counter-

parts with covariance normalization in Sec 4, which suggests that such sophisticated

normalization may not be as effective as expected. But, somewhat surprisingly, using

simpler 1 or 2 normalization gives 2% gains on average for smaller codebook sizes,

although the benefits diminish when the codebook size is increased. As illustrated in

Fig. 3.3 (c), with larger codebook size used, influence on this effect is decreasing due

to the increasing density of visual words used.

3.6 Global Descriptor Binarization

Sign binarization is a common technique for further compressing the pooling result

from local descriptors’ representations. It quantizes a non-negative real value to “1” and

negative one to “0”. As an example, binarizing a real-valued pooling result with residual

vector size  = 32 and codebook size  = 128 leads to great reduction in global
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Chapter 3. Global Image Representation Using Locality-constrained Linear Coding

Table 3.2: Performance (mAP) of 100K binarized experiment on coefficient compu-

tation, residual vector, IDF and normalization effect in different encoding methods

Representation Length ( ×)
Binarized

Sec Encoded Information Method 512 1024 2048 4096

BoW × × × ×
1 Coeff. PP × × × ×

LLC × × × ×
BoW 0.387 0.510 0.622 0.710

2 Coeff. + Res. PP 0.444 0.567 0.660 0.719

LLC 0.433 0.571 0.669 0.728

BoW 0.387 0.510 0.622 0.710

3 Coeff. + Res. + IDF PP 0.444 0.567 0.660 0.719
LLC 0.433 0.571 0.669 0.728

BoW 0.387 0.510 0.622 0.709

(Variance) PP 0.445 0.566 0.660 0.719

LLC 0.433 0.570 0.670 0.734
BoW 0.407 0.534 0.641 0.718

4 Coeff. + Res. + Norm. (1) PP 0.460 0.581 0.668 0.721

LLC 0.456 0.593 0.683 0.735
BoW 0.407 0.538 0.641 0.719

(2) PP 0.463 0.583 0.666 0.721

LLC 0.458 0.593 0.680 0.736

Note 1 -  is the number of visual words in the codebook and  is the size of encoded information.

Note 2 - In Sec 1,  = 512 1024 2048 4096  = 1; In Sec 2,3 and 4,  = 16 32 64 128  = 32.
Note 3 - The unit of binarized representation is 1 bit.

descriptor’s size from 16K bytes to 512 bytes. The computation of the similarity score

is the same as that in CDVS test model [5]. For the matching of the global descriptors

g and g , given image  and  , the similarity score  can be calculated quickly

by using bitwise comparison to compute Hamming distances, as follows

 =

P
=1

 



¡
32− 2Ha ¡sign(g ) sign(g )¢¢s
128

P
=1

 ×
s
128

P
=1



 (3.1)

where sign(g ) denotes the binarized vector of g

 and Ha( ) denotes the Hamming

distance between two binarized vectors. We have  = 1 if there is at least one local

descriptor assigned to the  visual word; otherwise,  = 0. The similarity score of 


visual word between two binarized vectors will be taken into account, when their own

 and  are equal to one. Intuitively, binarization comes at the expense of poorer

performance. This last study is aimed at investigating how sensitive the performance

of different representations is to sign binarization.
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Sec 3.6. Global Descriptor Binarization

In Table 3.2 presents the performance when the real-valued pooling representations

shown in Table 3.1 are sign binarized. As expected, binarization results in performance

decline in almost all cases and to a large degree, especially when a small codebook size

is in use. Its effect, however, is less obvious for larger codebook sizes. Remarkably,

representations with probabilistic-based  computation are relatively more sensitive

to binarization, in which case, they perform worse than LLC-based schemes. This may

be attributed to that the binarized signals for components with small  values can

be very noisy, which cause the  = 1∀ = 1  . The sparse constraint of LLC

helps avoid this problem. A side experiment confirms our finding by showing that the

former can benefit from quantizing to zero the small  values in FV representation,

which implies some visual words will not be considered,  = 0, as in the Equation

(3.1).

To conclude, we shall adopt a binarized global descriptor with

g = 
(x − u)
kx − uk2

  = 1 2  (3.2)

where  is obtained by LLC.
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CHAPTER 4

Experimental Results

This chapter compares the retrieval performance of the proposed scheme with state-of-

the-art global representations, including VLAD, FV, and RVD. We also compared their

average encoding time (where the time for extracting local descriptors is excluded) for

forming a global descriptor, so as to give a rough indication of their relative computa-

tional complexity. Experiments are conducted based on the datasets from the MPEG

CDVS [4], including (1) mixed text/graphics, (2) paintings, (3) frames from video clips,

(4) landmarks/buildings, (5) objects/scenes, and 1M distractor images from Flickr.

In our experiments, a subset of detected SIFT features are selected to generate

the global descriptor (we select up to 300 SIFT features per image), and then SIFT

features are power normalized and 2 normalized. PCA is employed to reduce the

dimensionality of SIFT features from 128-dim to 32-dim. We perform PCA transform

matrix training over 2 million randomly selected SIFT features, extracted from the

independent datasets, including INRIA Holiday [1], Oxford Building [2] and Pasadena

Building [3]. Other implementation details include:

1. visual words are obtained from -means clustering for all tested schemes;

2. model parameters for FV are estimated with sample variance and sample mixture

weight according to the visual words from -means;
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Sec 4.1. Large-Scale Experiment

Table 4.1: Performance (mAP) of 1M non-binarized experiment on different encoding

methods with  = 128 and  = 32

Dataset Encoding

Method (1) (2) (3) (4) (5) Avg. Time

VLAD [7] 0.665 0.679 0.724 0.543 0.585 0.639 2.5 ms

FV [10] 0.723 0.715 0.767 0.579 0.666 0.696 12.6 ms
RVD [6] 0.691 0.722 0.744 0.564 0.633 0.672 3.0 ms

Ours 0.721 0.746 0.766 0.580 0.660 0.698 3.2 ms

Simplified FV 0.730 0.764 0.780 0.575 0.657 0.706 6.7 ms

Note - Encoding time: encoding plus pooling time.

Table 4.2: Performance (mAP) of 1M binarized experiment on different encoding

methods with  = 128 and  = 32

Dataset Encoding

Method (1) (2) (3) (4) (5) Avg. Time

VLAD [7] 0.666 0.752 0.782 0.513 0.566 0.654 2.5 ms

FV [10] 0.680 0.776 0.795 0.509 0.589 0.668 12.6 ms
RVD [6] 0.700 0.790 0.795 0.536 0.633 0.686 3.0 ms

Ours 0.704 0.805 0.809 0.537 0.632 0.693 3.2 ms
Simplified FV 0.704 0.786 0.806 0.519 0.603 0.683 6.7 ms

Note - Encoding time: encoding plus pooling time.

3. power-normalization [8] is applied to the pooling result; and

4. Cosine Similarity is used to ranking the images.

As usual, the performance is measured by mean Average Precision (mAP) according

to the top 500 images. All the experiments were conducted on an Intel i7 server with

32G memory and 1TB HDD.

4.1 Large-Scale Experiment

From Table 4.1, with real-valued, non-binarized global representation, our scheme per-

forms comparably to FV, and outperforms VLAD and RVD by 5.9% and 2.6%, re-

spectively. Of interest is that both VLAD and RVD somehow benefit slightly from

sign binarization while the others suffer from it, see Table 4.2. Nevertheless, the pro-

posed scheme still performs best even with binarization. As to complexity, the FV has

the largest average encoding time. RVD is slightly faster than ours due to the use of

power-of-two weighting factors (i.e., ).

In addition, motivated by our studies in Chapter 3, we made a few simplifications

to FV in hopes of getting a better trade-off between complexity and performance. The
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Chapter 4. Experimental Results

Algorithm 3.1 Codebook Learning

input:B ∈ R× ,X∈ R× ,K
output:B

1:B← B

2:for i =1 to N do

3: d← 1× zero vector

{find K nearest neighbors}

4: for  = 1 do

5:  ← kx − bk2
6: end for

7: ← {|b ∈  NN of x∀ = 1}
8: B ← B(: )

{coding}

9: ec ← argmin kx −Beck2  1ec = 1
{update basis}

10: 4B ←−2ec (x −Bec)   =p1
11: B ← B − 4B |ec|2
12: B(: )← B

13:end for

changes we made involve:

1. imposing locality-constraint with  = 10, that is,  is computed and properly

normalized with respect to the first 10 nearest visual words only;

2. using 2 normalization; and

3. removing IDF.

As can be seen, these changes not only reduce the encoding time of FV by half, but

also improve its performance slightly (1-1.5%).

4.2 Codebook Learning

To provide more comprehensive analysis of the proposed LLC-based encoding method,

we further evaluated its performance with respect to codebook learning. A simple way

to generate the codebook is to use clustering based method such as -means algorithm.

To further improve the performance, we use the LLC coding criteria to learn the

codebook, which is similar to the algorithm proposed by [14].

To elaborate, we first use a codebook trained by -means clustering to initialize

B. Then we loop through all the training descriptors to update B incrementally. In

each iteration, we take in a single local descriptor to select the local bases B and

solve Equation (2.5) to obtain the corresponding coefficients. The obtained coefficients
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Sec 4.2. Codebook Learning

are then used to update the codebook in a gradient descent fashion. The learning

procedure is illustrated in Alg. 3.1.

We compared the retrieval performance using codebooks trained by -means algo-

rithm and by our proposed Alg. 3.1. In Fig. 4.1, both coding schemes can obtain

0.6-1.2% improvement over the codebook by -means for larger codebook size. From

the experiments, the LLC optimization can improve the performance when the code-

book size is large enough. Though little gain is obtained, it indicates further study on

it.
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Chapter 4. Experimental Results

(a) LLC (D = 1)

(b) Our Approach (D = 32)

Figure 4.1: Performance (mAP) of 100K experiment on codebook learning.
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CHAPTER 5

Conclusions

With a thorough analysis of the interaction among locality property and other terms in

FV, we conduct a series of studies and the final result is telling that you can preserve

high performance for just using a simple global representation.

In our work, we demonstrate that the sparseness and locality from LLC bring several

advantages, where locality property ensures that similar local descriptors always have

similar encoding results, while the sparseness of the resulting code allows only few

weighting coefficients to be computed. According to the properties, this thesis proposed

two global image representations.

1. We propose a global image representation using LLC-based coding with nor-

malized residual vector. We use least-square solution to obtain the coefficients

and apply 2 normalization on the residual vector. LLC provides an analytical

solution which makes the coefficient computation much simpler and faster.

2. We make a few simplifications to FV, which reduce a lot of floating point oper-

ations during the encoding process. By applying locality property, the encoded

information only have a few non-zero values. It makes the pooling step much

faster.
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Chapter 5. Conclusions

Under the test conditions [5] suggested by the MPEG committee, the proposed

schemes not only benefit in mAP performance, but also offer complexity advantages

when compared with other similar works. From our analysis, we can see that sparseness

and locality can bring the advantages for image retrieval.
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