ELSEVIER

Contents lists available at ScienceDirect

Discrete Applied Mathematics

journal homepage: www.elsevier.com/locate/dam

On the spanning fan-connectivity of graphs*

Cheng-Kuan Lin^{a,*}, Jimmy J.M. Tan^a, D. Frank Hsu^b, Lih-Hsing Hsu^c

^a Department of Computer Science, National Chiao Tung University, Hsinchu, 30010, Taiwan, ROC

^b Department of Computer and Information Science, Fordham University, New York, NY 10023, USA

^c Department of Computer Science and Information Engineering, Providence University, Taichung, 43301, Taiwan, ROC

ARTICLE INFO

Article history: Received 1 August 2007 Received in revised form 30 July 2008 Accepted 11 November 2008 Available online 3 January 2009

Keywords: Hamiltonian connected Hamiltonian Dirac Theorem Menger Theorem Ore Theorem Ore Theorem Connectivity Spanning connectivity Spanning fan-connectivity Spanning pipeline-connectivity Graph container

ABSTRACT

Let *G* be a graph. The connectivity of *G*, κ (*G*), is the maximum integer *k* such that there exists a *k*-container between any two different vertices. A *k*-container of *G* between *u* and *v*, $C_k(u, v)$, is a set of *k*-internally-disjoint paths between *u* and *v*. A spanning container is a container that spans *V*(*G*). A graph *G* is *k**-connected if there exists a spanning *k*-container between any two different vertices. The spanning connectivity of *G*, $\kappa^*(G)$, is the maximum integer *k* such that *G* is *w**-connected for $1 \le w \le k$ if *G* is 1*-connected.

Let *x* be a vertex in *G* and let $U = \{y_1, y_2, \ldots, y_k\}$ be a subset of V(G) where *x* is not in *U*. A spanning k - (x, U)-fan, $F_k(x, U)$, is a set of internally-disjoint paths $\{P_1, P_2, \ldots, P_k\}$ such that P_i is a path connecting *x* to y_i for $1 \le i \le k$ and $\bigcup_{i=1}^k V(P_i) = V(G)$. A graph *G* is k^* -fanconnected (or k_f^* -connected) if there exists a spanning $F_k(x, U)$ -fan for every choice of *x* and *U* with |U| = k and $x \notin U$. The spanning fan-connectivity of a graph *G*, $\kappa_f^*(G)$, is defined as the largest integer *k* such that *G* is w_f^* -connected for $1 \le w \le k$ if *G* is 1_f^* -connected.

In this paper, some relationship between $\kappa(G)$, $\kappa^*(G)$, and $\kappa_f^*(G)$ are discussed. Moreover, some sufficient conditions for a graph to be k_f^* -connected are presented. Furthermore, we introduce the concept of a spanning pipeline-connectivity and discuss some sufficient conditions for a graph to be k^* -pipeline-connected.

Published by Elsevier B.V.

1. Introduction

For graph definitions and notations, we follow [1]. A graph G = (V, E) consists of a finite set V (=(V(G))) and a subset E (=(E(G))) of $\{(u, v) | u \neq v \text{ and } (u, v) \text{ is an unordered pair of elements of } V\}$. We say that V is the *vertex set* and E is the *edge set* of G. We use n(G) to denote |V(G)|. Two vertices u and v are *adjacent* if $(u, v) \in E$. A graph H is a *subgraph* of graph G if $V(H) \subseteq V(G)$ and $E(H) \subseteq E(G)$. Let S be a subset of V(G). The subgraph of G *induced* by S, denoted G[S], is the graph with the vertex set S and the edge set $\{(u, v) | (u, v) \in E(G) \text{ and } u, v \in S\}$. We use G - S to denote the graph G[V(G) - S]. A *vertex cut* is a set $S \subseteq V(G)$ such that G - S has more than one component. A graph is k-connected if every vertex cut has at least k vertices. The *connectivity* of G, $\kappa(G)$, is the minimum size of a vertex cut. In other words, $\kappa(G)$ is the maximum k such that G is k-connected. A complete graph has no cut set. We adopt the convention that $\kappa(K_n) = n - 1$ where K_n is the complete graph with n vertices. A *path* is a sequence of vertices represented by $\langle v_0, v_1, \ldots, v_k \rangle$ with no repeated vertex and (v_i, v_{i+1}) is an edge of G for $0 \leq i \leq k - 1$. We also write the path $\langle v_0, v_1, \ldots, v_k \rangle$ as $\langle v_0, \ldots, v_i, Q, v_j, \ldots, v_k \rangle$ where Q is a subpath from v_i to v_j . A *hamiltonian path* of a graph G is a path that contains all vertices of V(G). A graph G is *hamiltonian connected* if there is a hamiltonian path between every two different vertices. A *cycle* is a path with at least three vertices

[🌣] This work was supported in part by the National Science Council of the Republic of China under Contract NSC 96-2221-E-009-137-MY3.

^{*} Corresponding author. Fax: +886 3 5721490.

E-mail addresses: cklin@cs.nctu.edu.tw (C.-K. Lin), jmtan@cs.nctu.edu.tw (J.J.M. Tan), hsu@trill.cis.fordham.edu (D.F. Hsu), lhhsu@pu.edu.tw (L.-H. Hsu).

⁰¹⁶⁶⁻²¹⁸X/\$ – see front matter. Published by Elsevier B.V. doi:10.1016/j.dam.2008.11.014

such that the first vertex is the same as the last vertex. A *hamiltonian cycle* of *G* is a cycle that traverse every vertex of *G*. A graph is *hamiltonian* if it has a hamiltonian cycle. Let $P = \langle x_1, x_2, ..., x_k \rangle$ be a path of the graph *G* connecting x_1 and x_k . We use P^{-1} to denote the path $\langle x_k, x_{k-1}, ..., x_1 \rangle$. We use V(P) to denote the set $\{x_1, x_2, ..., x_k\}$ and I(P) to denote the set $V(P) - \{x_1, x_k\}$. Let P_1 and P_2 be two paths of a graph *G*. We say that P_1 and P_2 are *internally-disjoint* if $I(P_1) \cap I(P_2) = \emptyset$.

Let *u* and *v* be two vertices of a graph *G*. A *k*-container of *G* between *u* and *v*, $C_k(u, v)$, is a set of *k*-internally-disjoint paths between *u* and *v* [2]. It follows from the Menger Theorem [3] that there is a *k*-container between any two distinct vertices of *G* if and only if *G* is *k*-connected. A *k*-container $C_k(u, v) = \{P_1, P_2, \ldots, P_k\}$ of *G* is a *k**-container if $\bigcup_{i=1}^k V(P_i) = V(G)$. A graph *G* is *k**-connected if there exists a *k**-container between any two distinct vertices. The spanning connectivity of *G*, $\kappa^*(G)$, is defined as the largest integer *k* such that *G* is *w**-connected for $1 \le w \le k$ if *G* is a 1*-connected graph. It is obvious that a 1*-connected graph is actually a hamiltonian connected graph and that a 2*-connected graph is actually a hamiltonian graph. Moreover, any 1*-connected graph except K_1 and K_2 is 2*-connected. Thus, the concept of a *k**-connected graph is a hybrid concept of connectivity and hamiltonicity. Recently, the spanning connectivity of graphs have been studied extensively [4–10].

There is a Menger type theorem similar to the spanning connectivity of a graph. Let *x* be a vertex in a graph *G* and let $U = \{y_1, y_2, \ldots, y_t\}$ be a subset of V(G) where *x* is not in *U*. A t-(x, U)-fan, $F_t(x, U)$, is a set of internally-disjoint paths $\{P_1, P_2, \ldots, P_t\}$ such that P_i is a path connecting *x* and y_i for $1 \le i \le t$. It is proved by Dirac [11] that a graph *G* is *k*-connected if and only if it has at least k + 1 vertices and there exists a t-(x, U)-fan for every choice of *x* and *U* with $|U| \le k$ and $x \notin U$. Similarly, we can introduce the concept of a spanning fan. A spanning k-(x, U)-fan is a k-(x, U)-fan $\{P_1, P_2, \ldots, P_k\}$ such that $\bigcup_{i=1}^k V(P_i) = V(G)$. A graph *G* is k^* -fan-connected (also written as k_f^* -connected) if there exists a spanning k-(x, U)-fan for every choice of *x* and *U* with |U| = k and $x \notin U$. The spanning fan-connectivity of a graph *G*, $\kappa_f^*(G)$, is defined as the largest integer *k* such that *G* is w_f^* -connected for $1 \le w \le k$ if *G* is a 1_f^* -connected graph. In this paper, some relationship among $\kappa(G), \kappa^*(G)$, and $\kappa_f^*(G)$ are discussed. Moreover, some sufficient conditions for a graph to be k_f^* -connected are presented.

There is another Menger type theorem similar to the spanning connectivity and spanning fan-connectivity of a graph. Let $U = \{x_1, x_2, \ldots, x_t\}$ and $W = \{y_1, y_2, \ldots, y_t\}$ be two *t*-subsets of V(G). A (U, W)-pipeline is a set of internally-disjoint paths $\{P_1, P_2, \ldots, P_t\}$ such that P_i is a path connecting x_i to $y_{\pi(i)}$ where π is a permutation of $\{1, 2, \ldots, t\}$. It is known that a graph G is k-connected if and only if it has at least k + 1 vertices and there exists a (U, W)-pipeline for every choice of U and W with $|U| = |W| \le k$ and $U \ne W$. Similarly, we can introduce the concept of spanning pipeline. A spanning (U, W)-pipeline is a (U, W)-pipeline $\{P_1, P_2, \ldots, P_k\}$ such that $\bigcup_{i=1}^k V(P_i) = V(G)$. A graph G is k^* -pipeline-connected (or k_p^* -connected) if there exists a spanning (U, W)-pipeline for every choice of U and W with $|U| = |W| \le k$ and $U \ne W$. The spanning pipeline-connectivity of a graph G, $\kappa_p^*(G)$, is defined as the largest integer k such that G is w_p^* -connected for $1 \le w \le k$ if G is a 1_p^* -connected graph.

In Section 2, we establish some relationships among $\kappa(G)$, $\kappa^*(G)$, and $\kappa_f^*(G)$. Section 3 gives sufficient conditions for a graph to be k_f^* -connected. In Section 4, spanning pipeline-connectivity is included. Section 5 gives an example to illustrate the differences between $\kappa(G)$, $\kappa^*(G)$, $\kappa_f^*(G)$, and $\kappa_n^*(G)$.

2. Relationship among $\kappa(G)$, $\kappa^*(G)$, and $\kappa_f^*(G)$

Let *u* be a vertex of *G* and let *H* be a subgraph of *G*. The *neighborhood* of *u* with respect to *H*, denoted by $N_H(u)$, is $\{v \in V(H) \mid (u, v) \in E(G)\}$. We use $d_H(u)$ to denote $|N_H(u)|$. For any vertex *u*, the *degree* of *u* in *G* is $d_G(u)$. The *minimum degree* of *G*, written $\delta(G)$, is $\min\{d_G(x) \mid x \in V\}$. Let *u* and *v* be any two non-adjacent vertices of *G*, we use G + (u, v) to denote the graph obtained from *G* by adding the edge (u, v).

Lemma 1. Every 1*-connected graph is 1_f^* -connected. Moreover, every 1_f^* -connected graph that is not K_2 is 2_f^* -connected. Thus, $\kappa_f^*(G) \ge 2$ if G is a hamiltonian connected graph with at least three vertices.

Proof. Let *G* be a 1*-connected graph with at least three vertices and let *x* be any vertex of *G*. Assume that $U = \{y\}$ with $x \neq y$. Obviously, there exists a hamiltonian path P_1 joining *x* and *y*. Apparently, $\{P_1\}$ forms a spanning 1-(*x*, *U*)-fan. Thus, *G* is 1^{*}_f-connected. Assume that $U = \{y_1, y_2\}$ with $x \notin U$. Let *Q* be a hamiltonian path of *G* connecting y_1 and y_2 . We write *Q* as $\langle y_1, Q_1, x, Q_2, y_2 \rangle$. We set P_1 as $\langle x, Q_1^{-1}, y_1 \rangle$ and P_2 as $\langle x, Q_2, y_2 \rangle$. Then $\{P_1, P_2\}$ forms a spanning 2-(*x*, *U*)-fan. Thus, *G* is 2^{*}_f-connected and $\kappa_f^*(G) \ge 2$.

Theorem 1. $\kappa_f^*(G) \le \kappa^*(G) \le \kappa(G)$ for any 1_f^* -connected graph. Moreover, $\kappa_f^*(G) = \kappa^*(G) = \kappa(G) = n(G) - 1$ if and only if *G* is a complete graph.

Proof. Obviously, $\kappa^*(G) \le \kappa(G)$. Now, we prove that $\kappa_f^*(G) \le \kappa^*(G)$. Assume that $\kappa_f^*(G) = k$. Let *x* and *y* be any two vertices of *G*. We need to show that there is a k^* -container of *G* between *x* and *y*.

Suppose that k = 1. Since *G* is 1_f^* -connected, there is a spanning 1-(x, {y})-fan, { P_1 }, of *G*. Then { P_1 } forms a spanning container of *G* between x and y.

Suppose that $k \ge 2$. Let $U' = \{y_1, y_2, \dots, y_{k-1}\}$ be a set of (k-1) neighbors of y not containing x. We set $U = U' \cup \{y\}$. By assumption, there exists a spanning k-(x, U)-fan. Obviously, we can extend the spanning k-(x, U)-fan by adding the edges

 $\{(y_i, y) \mid y_i \in U'\}$ to obtain a k^* -container between x to y. Hence, G is k^* -connected. Therefore, $\kappa_f^*(G) \leq \kappa^*(G)$ for every 1_f^* -connected graph.

Suppose that *G* is not a complete graph. There exists a vertex cut *S* of size κ (*G*). Let *x* and *y* be any two vertices in different connected components of *G* – *S*. Obviously, *y* is not in any (*x*, *S*)-fan of *G*. Thus, κ_f^* (*G*) < κ (*G*).

3. Some sufficient conditions for a graph to be k_f^* -connected

Since the concept of spanning fan-connectivity is a generalization of hamiltonicity, we review some previews results concerning hamiltonian graphs and hamiltonian connected graphs.

Lemma 2 ([12]). Every graph G with at least three vertices and $\delta(G) \geq \frac{n(G)}{2}$ is 2*-connected. Moreover, every graph G with at least four vertices and $\delta(G) \geq \frac{n(G)}{2} + 1$ is 1*-connected.

Lemma 3 ([13,14]). Let u and v be two non-adjacent vertices of G with $d_G(u) + d_G(v) \ge n(G)$. Then G is 2*-connected if and only if G + (u, v) is 2*-connected. Moreover, suppose that $d_G(u) + d_G(v) \ge n(G) + 1$, then G is 1*-connected if and only if G + (u, v) is 1*-connected.

Lemma 4 ([15]). A graph G is 2*-connected if $d_G(u) + d_G(v) \ge n(G)$ for all non-adjacent vertices u and v. Moreover, a graph G is 1*-connected if $d_G(u) + d_G(v) \ge n(G) + 1$ for all non-adjacent vertices u and v.

For comparison, we list the preview results concerning spanning connectivity.

Lemma 5 ([8]). $\kappa^*(G) \ge 2\delta(G) - n(G) + 2$ if $\frac{n(G)}{2} + 1 \le \delta(G) \le n(G) - 2$.

Lemma 6 ([9]). Let k be a positive integer. Suppose that u and v are two non-adjacent vertices of G with $d_G(u) + d_G(v) \ge n(G) + k$. Then $\kappa^*(G) \ge k + 2$ if and only if $\kappa^*(G + (u, v)) \ge k + 2$.

Lemma 7 ([9]). Let k be a positive integer. Then $\kappa^*(G) \ge k + 2$ if $d_G(u) + d_G(v) \ge n(G) + k$ for all non-adjacent vertices u and v.

Note that Lemma 5 (Lemmas 6 and 7, respectively) generalizes the result of Lemma 2, (Lemmas 3 and 4, respectively) in spanning connectivity. The following theorem on spanning fan-connectivity is analogous to that on spanning connectivity in Lemma 6 [9].

Lemma 8. Let u and v be two non-adjacent vertices of G with $d_G(u) + d_G(v) \ge n(G) + 1$, and let x and y be any two distinct vertices of G. Then G has a hamiltonian path joining x to y if and only if G + (u, v) has a hamiltonian path joining x to y.

Proof. Since every path in *G* is a path in G+(u, v), there is a hamiltonian path of G+(u, v) joining *x* to *y* if *G* has a hamiltonian path joining *x* to *y*.

Suppose that there is a hamiltonian path *P* of *G* + (*u*, *v*) joining *x* to *y*. We need to show that there is a hamiltonian path of *G* between *x* and *y*. If (*u*, *v*) $\notin E(P)$, then *P* is a hamiltonian path of *G* between *x* and *y*. Thus, we consider that $(u, v) \in E(P)$. Without loss of generality, we write *P* as $\langle z_1, z_2, \ldots, z_i, z_{i+1}, \ldots, z_{n(G)} \rangle$ where $z_1 = x, z_i = u, z_{i+1} = v$, and $z_{n(G)} = y$. Since $d_G(u) + d_G(v) \ge n(G) + 1$, there is an index *k* in $\{1, 2, \ldots, n(G)\} - \{i - 1, i, i + 1\}$ such that $(z_i, z_k) \in E(G)$ and $(z_{i+1}, z_{k+1}) \in E(G)$. We set $R = \langle z_1, z_2, \ldots, z_k, z_i, z_{i-1}, \ldots, z_{k+1}, z_{i+2}, \ldots, z_{n(G)} \rangle$ if $1 \le k \le i-2$ and $R = \langle z_1, z_2, \ldots, z_i, z_k, z_{k-1}, \ldots, z_{i+1}, z_{k+2}, \ldots, z_{n(G)} \rangle$ if $i + 2 \le k \le n(G)$. Then *R* is a hamiltonian path of *G* between *x* and *y*. \Box

Theorem 2. Assume that k is a positive integer. Let u and v be two non-adjacent vertices of G with $d_G(u) + d_G(v) \ge n(G) + k$. Then $\kappa_f^*(G) \ge k + 1$ if and only if $\kappa_f^*(G + (u, v)) \ge k + 1$.

Proof. Obviously, $\kappa_f^*(G + (u, v)) \ge k + 1$ if $\kappa_f^*(G) \ge k + 1$. Suppose that $\kappa_f^*(G + (u, v)) \ge k + 1$. Let x be any vertex of G and $U = \{y_1, y_2, \dots, y_t\}$ be any subset of V(G) such that $x \notin U$ and $t \le k + 1$. We need to find a spanning t-(x, U)-fan of G.

Since G + (u, v) is $(k + 1)_f^*$ -connected, there exists a spanning t - (x, U)-fan $\{P_1, P_2, \ldots, P_t\}$ of G + (u, v) with P_i joining x to y_i for $1 \le i \le t$. Obviously, $\{P_1, P_2, \ldots, P_t\}$ is a spanning t - (x, U)-fan of G if (u, v) is not in $\bigcup_{i=1}^t E(P_i)$. Thus, we consider $(u, v) \in \bigcup_{i=1}^t E(P_i)$. By Lemma 3, we can find a spanning (x, U)-fan of G if t = 1, 2. Thus, we consider the case $t \ge 3$. Without loss of generality, we may assume that $(u, v) \in P_1$. Therefore, we can write P_1 as $\langle x, H_1, u, v, H_2, y_1 \rangle$. Let $P'_i = \langle w_i, P'_i, y_i \rangle$ be the path obtained from P_i by deleting x. Thus, we can write P_i as $\langle x, w_i, P'_i, y_i \rangle$ for $1 \le i \le t$. Note that $x \ne w_i$ and $P_i = \langle y_i \rangle$ if $w_i = y_i$ for every $2 \le i \le t$.

Case 1: $d_{P'_i}(u) + d_{P'_i}(v) \ge n(P'_i) + 2$ for some $2 \le i \le t$. Without loss of generality, we may assume that $d_{P'_2}(u) + d_{P'_2}(v) \ge n(P'_2) + 2$. Obviously, $n(P'_2) \ge 2$. We write $P'_2 = \langle w_2 = z_1, z_2, \dots, z_r = y_2 \rangle$. We claim that there exists an index j in $\{1, 2, \dots, r-1\}$ such that $(z_j, v) \in E(G)$ and $(z_{j+1}, u) \in E(G)$. Suppose that this is not the case. Then $d_{P'_2}(u) + d_{P'_2}(v) \le r + r - (r - 1) = r + 1 = n(P'_2) + 1$. We get a contradiction.

Fig. 1. Illustration of case 1.

Fig. 2. Illustration of case 2.1.

We set $Q_1 = \langle x, w_2 = z_1, z_2, \dots, z_j, v, H_2, y_1 \rangle$, $Q_2 = \langle x, H_1, u, z_{j+1}, z_{j+2}, \dots, z_r = y_2 \rangle$, and $Q_i = P_i$ for $3 \le i \le t$. Then $\{Q_1, Q_2, \dots, Q_t\}$ forms a spanning t-(x, U)-fan of G. See Fig. 1 for illustration.

Case 2: $d_{P'_i}(u) + d_{P'_i}(v) \le n(P'_i) + 1$ for every $2 \le i \le t$. Case 2.1: $d_{P'_i}(u) + d_{P'_i}(v) < n(P'_i) + 1$ for some $2 \le i \le t$. Without loss of generality, we may assume that $d_{P'_2}(u) + d_{P'_2}(v) \le n(P'_2)$. Thus,

$$\begin{aligned} d_{P_1}(u) + d_{P_1}(v) &= d_G(u) + d_G(v) - \sum_{i=2}^t (d_{P'_i}(u) + d_{P'_i}(v)) \\ &= d_G(u) + d_G(v) - (d_{P'_2}(u) + d_{P'_2}(v)) - \sum_{i=3}^t (d_{P'_i}(u) + d_{P'_i}(v)) \\ &\ge n(G) + k - n(P'_2) - \sum_{i=3}^t (n(P'_i) + 1) \\ &= n(P_1) + k - (t - 2) \\ &\ge n(P_1) + 1. \end{aligned}$$

By Lemma 8, there is a hamiltonian path Q_1 of $G[P_1]$ joining x to y_1 . We set $Q_i = P_i$ for $2 \le i \le t$. Then $\{Q_1, Q_2, \ldots, Q_t\}$ forms a spanning t-(x, U)-fan of G. See Fig. 2 for illustration.

Case 2.2: $d_{P'_i}(u) + d_{P'_i}(v) = n(P'_i) + 1$ for every $2 \le i \le t$. We have

$$d_{P_1}(u) + d_{P_1}(v) = d_G(u) + d_G(v) - \sum_{i=2}^t (d_{P'_i}(u) + d_{P'_i}(v))$$

= $n(G) + k - \sum_{i=2}^t (n(P'_i) + 1)$
= $n(P_1) + k - (t - 1)$
 $\ge n(P_1).$

Let $R = \langle y_1, H_2^{-1}, v, u, H_1^{-1}, x, w_2, P'_2, y_2 \rangle$. Then $d_R(u) + d_R(v) = d_{P_1}(u) + d_{P_1}(v) + d_{P'_2}(u) + d_{P'_2}(v)$ $\ge n(P_1) + n(P'_2) + 1$ = n(R) + 1.

By Lemma 8, there is a hamiltonian path W of G[R] joining y_1 to y_2 . Thus, W can be written as $\langle y_1, W_1, x, W_2, y_2 \rangle$. We set $Q_1 = \langle x, W_1^{-1}, y_1 \rangle$, $Q_2 = \langle x, W_2, y_2 \rangle$, and $Q_i = P_i$ for $3 \le i \le t$. Then $\{Q_1, Q_2, \ldots, Q_t\}$ forms a spanning (x, U)-fan of G. \Box

We note that Theorem 2 analogizes the result of Lemma 3 in spanning fan-connectivity. By Theorem 2, we can obtain the following theorem.

Theorem 3. Let k be a positive integer. Then $\kappa_f^*(G) \ge k + 1$ if G is not the complete graph and $d_G(u) + d_G(v) \ge n(G) + k$ for all non-adjacent vertices u and v.

Proof. Let $E^c(G)$ be the set $\{e \mid e \notin E(G)\}$. Without loss of generality, we write $E^c = \{e_1, e_2, \dots, e_m\}$. We set $H_0 = G$ and H_i being the graph with $V(H_i) = V(H_{i-1})$ and $E(H_i) = E(H_{i-1}) \cup \{e_i\}$ for every $1 \le i \le m$. Since H_m is isomorphic to the complete graph with n(G) vertices, $\kappa_f^*(H_m) \ge k + 1$. By Theorem 2, $\kappa_f^*(G) = \kappa_f^*(H_0) \ge k + 1$. \Box

Note that Theorem 3 is an analogous result of Lemma 4 in spanning fan-connectivity.

Theorem 4. $\kappa_f^*(G) \ge 2\delta(G) - n(G) + 1$ if $\frac{n(G)}{2} + 1 \le \delta(G)$.

Proof. Suppose that $\frac{n(G)}{2} + 1 \le \delta(G)$. Obviously, $\delta(G) \le n(G) - 1$ and $n(G) \ge 4$. Suppose that n(G) = 2m for some integer $m \ge 2$. Then $\delta(G) = m + k$ for some integer k with $1 \le k \le m - 1$. Obviously, $d_G(u) + d_G(v) \ge 2\delta(G) = 2m + 2k$ for all two distinct vertices u and v in G. By Theorem 3, $\kappa_f^*(G) \ge 2k + 1 = 2\delta(G) - n(G) + 1$. Suppose that n(G) = 2m + 1 for some integer $m \ge 2$. Then $\delta(G) = m + k + 1$ for some integer k with $1 \le k \le m - 1$, and $d_G(u) + d_G(v) \ge 2\delta(G) = 2m + 2k + 2$ for all two distinct vertices u and v in G. By Theorem 3, $\kappa_f^*(G) \ge 2k + 2 = 2\delta(G) - n(G) + 1$ and the theorem follows. \Box

Theorem 4 analogizes the result of Lemma 2 in spanning fan-connectivity. Moreover, when $\delta(G) = n(G) - 2$, we have the following corollary.

Corollary 1. $\kappa_f^*(G) = n(G) - 3$ if $\delta(G) = n(G) - 2$ and $n(G) \ge 5$.

Proof. By Lemma 5, $\kappa^*(G) \ge n(G) - 2$. Since $n(G) - 2 \le \kappa^*(G) \le \kappa(G) \le \delta(G) = n(G) - 2$, $\kappa(G) = n(G) - 2$. By Theorem 4, $\kappa_f^*(G) \ge n(G) - 3$. By Theorem 1, $\kappa_f^*(G) < \kappa(G)$. Thus, $\kappa_f^*(G) = n(G) - 3$. \Box

4. Spanning pipeline-connectivity

Similar to some recent works on the spanning connectivity [4–10] and the spanning fan-connectivity, studied in Section 2, we study spanning pipeline-connectivity in this section. Lemma 9 and Theorem 5 are analogous to Lemma 1 and Theorem 1 respectively.

Lemma 9. Every 1^* -connected graph is 1^*_n -connected.

Theorem 5. $\kappa_p^*(G) \le \kappa_f^*(G) \le \kappa(G)$ for any 1_p^* -connected graph. Moreover, $\kappa_p^*(G) = \kappa_f^*(G) = \kappa(G)$ if and only if G is a complete graph.

Theorem 6. Assume that k is a positive integer. Let u and v be two non-adjacent vertices of G. Suppose that $d_G(u) + d_G(v) \ge n(G) + k$. Then $\kappa_n^*(G) \ge k$ if and only if $\kappa_n^*(G + (u, v)) \ge k$.

Proof. Obviously, $\kappa_p^*(G + (u, v)) \ge k$ if $\kappa_p^*(G) \ge k$. Suppose that $\kappa_p^*(G + (u, v)) \ge k$. Let $U = \{x_1, x_2, \dots, x_t\}$ and $W = \{y_1, y_2, \dots, y_t\}$ be any two subsets of *G* such that $U \ne W$ and $t \ge k$. We need to find a spanning (U, W)-pipeline of *G*.

Since G + (u, v) is k_p^* -connected, there exists a spanning (U, W)-pipeline of G + (u, v). Let $\{P_1, P_2, \ldots, P_t\}$ be a spanning (U, W)-pipeline with P_i joining x_i to $y_{\pi(i)}$ for $1 \le i \le t$. Without loss of generality, we assume that $\pi(i) = i$. Obviously, $\{P_1, P_2, \ldots, P_t\}$ is a spanning (U, W)-pipeline of G if (u, v) is not in P. Thus, we consider the case that (u, v) is in P. By Lemma 3, we can find a spanning (U, W)-pipeline of G if t = 1. Thus, we consider the case $t \ge 2$.

Case 1: $U \cap W = \emptyset$. Without loss of generality, we may assume that $(u, v) \in P_1$. Thus, we can write P_1 as $\langle x_1, H_1, u, v, H_2, y_1 \rangle$. (Note that $H_1 = \langle x \rangle$ if x = u, and $H_2 = \langle y \rangle$ if y = v.) Let P'_i be the path obtained from P_i by deleting x and y_i . Thus, we can write P_i as $\langle x_i, P'_i, y_i \rangle$ for $1 \le i \le t$.

Case 1.1: $d_{P_1}(u) + d_{P_1}(v) \ge n(P_1) + 1$. With Lemma 8, there is a hamiltonian path Q_1 of $G[P_1]$ joining x_1 to y_1 . We set $Q_i = P_i$ for $2 \le i \le t$. Then $\{Q_1, Q_2, \dots, Q_t\}$ forms a spanning (U, W)-pipeline of G. See Fig. 3 for illustration.

Case 1.2: $d_{P_1}(u) + d_{P_1}(v) \le n(P_1)$. We claim that $d_{P_i}(u) + d_{P_i}(v) \ge n(P_i) + 2$ for some $2 \le i \le t$.

Fig. 4. Illustration of Case 1.2.

Suppose that $d_{P_i}(u) + d_{P_i}(v) \le n(P_i) + 1$ for every $2 \le i \le t$. Then

$$d_G(u) + d_G(v) = d_{P_1}(u) + d_{P_1}(v) + \sum_{i=2}^t (d_{P_i}(u) + d_{P_i}(v))$$

$$\leq n(P_1) + \sum_{i=2}^t (n(P_i) + 1)$$

$$= n(G) + t - 1$$

$$\leq n(G) + k - 1.$$

We obtain a contradiction. Thus, $d_{P_i}(u) + d_{P_i}(v) \ge n(P_i) + 2$ for some $2 \le i \le t$. Without loss of generality, we assume that $d_{P_2}(u) + d_{P_2}(v) \ge n(P_2) + 2$. Obviously, $n(P'_2) \ge 2$. We write $P'_2 = \langle x_2 = z_1, z_2, \dots, z_r = y_2 \rangle$. We claim that there exists an index j in $\{1, 2, \dots, r-1\}$ such that $(z_j, v) \in E(G)$ and $(z_{j+1}, u) \in E(G)$. Suppose this is not the case. Then $d_{P'_2}(u) + d_{P'_2}(v) \le r + r - (r-1) = r + 1 = n(P'_2) + 1$. We get a contradiction.

We set $\tilde{Q}_1 = \langle x_2 = z_1, z_2, \dots, z_j, v, H_2, y_1 \rangle$, $Q_2 = \langle x_1, H_1, u, z_{j+1}, z_{j+2}, \dots, z_r = y_2 \rangle$, and $Q_i = P_i$ for $3 \le i \le t$. Then $\{Q_1, Q_2, \dots, Q_t\}$ forms a spanning (U, W)-pipeline of *G*. See Fig. 4 for illustration.

Case 2: $U \cap W \neq \emptyset$. Let $|U \cap W| = r$. Without loss of generality, we assume that $x_i = y_i$ for $t - r + 1 \leq i \leq t$. Let $G' = G[V(G) - (U \cap W)]$, U' = U - W, and W' = W - U. Obviously, $d_{G'}(u) + d_{G'}(v) \geq d_G(u) + d_G(v) - 2r \geq n(G) + k - 2r = n(G') + k - r$, $|U'| = |W'| = t - r \leq k - r$, and $U' \cap W' = \emptyset$. By Case 1, there exists a spanning (U', W')-pipeline $\{Q_1, Q_2, \ldots, Q_{t-r}\}$ of G'. We set $Q_i = \langle x_i \rangle$ for $t - r + 1 \leq i \leq t$. Then $\{Q_1, Q_2, \ldots, Q_t\}$ forms a spanning (U, W)-pipeline of G. \Box

We note that Theorems 6–8 are analogous to Lemmas 3, 4 and 2 in spanning pipeline-connectivity respectively. By Theorem 6, we can obtain the following theorem.

Theorem 7. Let k be a positive integer. Then $\kappa_p^*(G) \ge k$ if G is not the complete graph and $d_G(u) + d_G(v) \ge n(G) + k$ for all non-adjacent vertices u and v.

Proof. Let $E^c(G)$ be the set $\{e \mid e \notin E(G)\}$. Without loss of generality, we write $E^c = \{e_1, e_2, \ldots, e_m\}$. We set $H_0 = G$ and H_i being the graph with $V(H_i) = V(H_{i-1})$ and $E(H_i) = E(H_{i-1}) \cup \{e_i\}$ for every $1 \le i \le m$. Since H_m is isomorphic to the complete graph with n(G) vertices, $\kappa_p^*(H_m) \ge k$. By Theorem 6, $\kappa_p^*(G) = \kappa_p^*(H_0) \ge k$. \Box

Theorem 8. $\kappa_p^*(G) \ge 2\delta(G) - n(G)$ if $\frac{n(G)}{2} + 1 \le \delta(G)$.

Proof. Since $\frac{n(G)}{2} + 1 \le \delta(G)$ and $\delta(G) \le n(G) - 1$, $n(G) \ge 4$. Suppose that n(G) = 2m for some integer $m \ge 2$. Then $\delta(G) = m + k$ for some integer k with $1 \le k \le m - 1$. Thus, $d_G(u) + d_G(v) \ge 2\delta(G) = 2m + 2k$ for all two distinct vertices u and v in G. By Theorem 7, $\kappa_n^*(G) \ge 2k = 2\delta(G) - n(G)$. Suppose that n(G) = 2m + 1 for some integer $m \ge 2$. Then

 $\delta(G) = m + k + 1$ for some integer k with $1 \le k \le m - 1$, and $d_G(u) + d_G(v) \ge 2\delta(G) = 2m + 2k + 2$ for all two distinct vertices *u* and *v* in *G*. By Theorem 3, $\kappa_t^*(G) \ge 2k + 1 = 2\delta(G) - n(G)$ and the theorem follows.

Corollary 2. $\kappa_n^*(G) = n(G) - 4$ if $\delta(G) = n(G) - 2$ and $n(G) \ge 5$.

Proof. By Theorem 8, $\kappa_p^*(G) \ge n(G) - 4$. Let $V(G) = \{x_1, x_2, \dots, x_{n(G)}\}$. Without loss of generality, we assume that $(x_1, x_2) \notin (x_1, x_2) \in \mathbb{R}$

E(G). We set $U = \{x_3, x_5, x_6, \dots, x_{n(G)}\}$ and $W = \{x_4, x_5, x_6, \dots, x_{n(G)}\}$. Obviously, $U \neq W$ and |U| = |W| = n(G) - 3. Since there is no hamiltonian path of $G[V(G) - \{x_5, x_6, \dots, x_{n(G)}\}]$ joining x_3 to x_4 , there is no spanning (U, W)-pipeline of *G*. Thus, $\kappa_n^*(G) = n(G) - 4$.

5. An example

We use the following example to illustrate that $\kappa(G)$, $\kappa^*(G)$, $\kappa^*_f(G)$, and $\kappa^*_n(G)$ are really different concepts and, in general, have different values.

Example 1. Suppose that *n* is a positive integer with $n \ge 2$. Let H(n) be the complete 3-partite graph $K_{2n,2n,n-1}$ with vertex partite sets $V_1 = \{x_1, x_2, \dots, x_{2n}\}, V_2 = \{y_1, y_2, \dots, y_{2n}\}$, and $V_3 = \{z_1, z_2, \dots, z_{n-1}\}$. Let G(n) be the graph obtained from H(n) by adding the edge set $\{(z_i, z_i) \mid 1 \le i \ne j < n\}$. Thus, $G[V_3]$ is the complete graph K_{n-1} . Obviously, n(G(n)) = 5n - 1, $\delta(G(n)) = 2n + (n-1) = 3n - 1$, and $\kappa(G(n)) = \delta(G(n))$. In the following, we will show that $\kappa^*(G(n)) = n + 1$, $\kappa_f^*(G(n)) = n$, and $\kappa_n^*(G(n)) = n - 1$.

By Lemma 5, $\kappa^*(G(n)) \geq 2\delta(G(n)) - n(G(n)) + 2 = n + 1$. To show $\kappa^*(G(n)) = n + 1$, we claim that there is no $\begin{array}{l} (n+2)^{*} - \text{container of } G(n) \text{ between } x_{1} \text{ and } x_{2}. \text{ Suppose this is not the case. Let } \{P_{1}, P_{2}, \ldots, P_{n+2}\} \text{ be an } (n+2)^{*} - \text{container of } G(n) \text{ between } x_{1} \text{ and } x_{2}. \text{ Suppose this is not the case. Let } \{P_{1}, P_{2}, \ldots, P_{n+2}\} \text{ be an } (n+2)^{*} - \text{container of } G(n) \text{ between } x_{1} \text{ and } x_{2}. \text{ Obviously, } |V(P_{i}) \cap (V_{1} - \{x_{1}, x_{2}\})| \leq |V(P_{i}) \cap (V_{2} \cup V_{3})| - 1 \text{ for } 1 \leq i \leq n+2. \text{ Thus,} \\ \sum_{i=1}^{n+2} |V(P_{i}) \cap (V_{1} - \{x_{1}, x_{2}\})| = (\sum_{i=1}^{n+2} |(V_{2} \cup V_{3}) \cap V(P_{i})|) - (n+2). \text{ Therefore, } |V_{1} - \{x, y\}| \leq |V_{2} \cup V_{3}| - (n+2). \\ \text{However, } |V_{1} - \{x, y\}| = 2n - 2 \text{ but } |V_{2} \cup V_{3}| - (n+2) = 2n - 3. \text{ This leads to a contradiction.} \end{array}$

By Theorem 4, $\kappa_f^*(G(n)) \ge 2\delta(G(n)) - n(G(n)) + 1 = n$. To show $\kappa_f^*(G(n)) = n$, we claim that there is no spanning (x_1, U) -fan of G(n) where $U = \{y_1, y_2, \dots, y_{n+1}\}$. Suppose this is not the case. Let $\{P_1, P_2, \dots, P_{n+1}\}$ be a spanning (x_1, U) fan of *G*(*n*). Without loss of generality, we assume that *P_i* is a path joining *x*₁ to *y_i* for $1 \le i \le n + 1$. Obviously, $|(V_1 - \{x_1\}) \cap V(P_i)| \le |((V_2 \cup V_3) - \{y_i\}) \cap V(P_i)|$. Thus, $\sum_{i=1}^{n+1} |(V_1 - \{x_1\}) \cap V(P_i)| \le \sum_{i=1}^{n+1} |((V_2 \cup V_3) - \{y_i\}) \cap V(P_i)|$. Therefore, $|V_1 - \{x_1\}| \le |(V_2 \cup V_3) - U|$. However, $|V_1 - \{x_1\}| = 2n - 1$ but $|(V_2 \cup V_3) - U| = 2n - 2$. We get a contradiction.

By Theorem 8, $\kappa_p^*(G(n)) \ge 2\delta(G(n)) - n(G(n)) = n - 1$. To prove $\kappa_p^*(G(n)) = n - 1$, we claim that there is no spanning $\begin{array}{l} (U, W) \text{-pipeline where } U = \{x_1, x_2, \dots, x_n\} \text{ and } W = \{x_{n+1}, x_{n+2}, \dots, x_{2n}\}. \text{ Suppose that there exists a spanning } (U, W) \text{-pipeline } \{P_1, P_2, \dots, P_n\}. \text{ Obviously, } |V_2 \cap V(P_i)| - 1 \leq |V_3 \cap V(P_i)| \text{ for } 1 \leq i \leq n. \text{ Then } \sum_{i=1}^n |(V_2 \cap V(P_i)| - 1) \leq \sum_{i=1}^n |V_3 \cap V(P_i)|. \text{ Therefore, } (\sum_{i=1}^n |V_2 \cap V(P_i)|) - n \leq \sum_{i=1}^n |V_3 \cap V(P_i)|. \text{ However, } (\sum_{i=1}^n |V_2 \cap V(P_i)|) - n = |V_2| - n = n \end{array}$ but $\sum_{i=1}^{n} |V_3 \cap V(P_i)| = |V_3| = n - 1$. We get a contradiction.

References

- [1] J.A. Bondy, U.S.R. Murty, Graph Theory with Applications, North Holland, New York, 1980.
- [2] D.F. Hsu, On container width and length in graphs, groups, and networks, IEICE Transactions Fundamentals E77-A (1994) 668-680.
- [3] K. Menger, Zur allgemeinen kurventheorie, Fundamentale Mathematik 10 (1927) 95–115.
- [4] M. Albert, R.E.L. Aldred, D. Holton, On 3*-connected graphs, Australasian Journal of Combinatorics 24 (2001) 193–208.
- [5] H.-C. Hsu, C.-K. Lin, H.-M. Hung, L.-H. Hsu, The spanning connectivity of the (n, k)-star graphs, International Journal of Foundations of Computer Science 17 (2006) 415-434.
- [6] C.-K. Lin, H.-M. Huang, L.-H. Hsu, The super connectivity of the pancake graphs and star graphs, Theoretical Computer Science 339 (2005) 257–271.
- [7] C.-K. Lin, H.-M. Huang, D.F. Hsu, L.-H. Hsu, The spanning diameter of the star graph, Networks 48 (2006) 235–249.
- [8] C.-K. Lin, H.-M. Huang, L.-H. Hsu, On the spanning connectivity of graphs, Discrete Mathematics 307 (2007) 285–289.
- [9] C.-K. Lin, H.-M. Huang, J.J.M. Tan, L.-H. Hsu, On spanning connected graphs, Discrete Mathematics 308 (2008) 1330–1333.
- [10] C.-H. Tsai, J.J.M. Tan, L.-H. Hsu, The super connected property of recursive circulant graphs, Information Processing Letters 91 (2004) 293–298. [11] G.A. Dirac, In abstrakten Graphen vorhandene vollstäandige 4-Graphen und ihre Unterteilungen, Mathematische Nachrichten 22 (1960) 61–85.
- [12] G.A. Dirac, Some theorem on abstract graphs, Proceedings of the London Mathematical Society 2 (1952) 69-81.
- [13] O. Ore, Note on Hamilton circuits, American Mathematical Monthly 67 (1960) 55.
- [14] O. Ore, Hamiltonian connected graphs, Journal of Mathematic Pures Application 42 (1963) 21-27.
- [15] J.A. Bondy, V. Chvátal, A method in graph theory, Discrete Mathematic 15 (1976) 111–135.