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a b s t r a c t

Let G be a graph. The connectivity of G, κ(G), is the maximum integer k such that there
exists a k-container between any two different vertices. A k-container of G between u and
v, Ck(u, v), is a set of k-internally-disjoint paths between u and v. A spanning container is a
container that spans V (G). A graph G is k∗-connected if there exists a spanning k-container
between any two different vertices. The spanning connectivity of G, κ∗(G), is the maximum
integer k such that G isw∗-connected for 1 ≤ w ≤ k if G is 1∗-connected.
Let x be a vertex inG and letU = {y1, y2, . . . , yk} be a subset of V (G)where x is not inU .

A spanning k− (x,U)-fan, Fk(x,U), is a set of internally-disjoint paths {P1, P2, . . . , Pk} such
that Pi is a path connecting x to yi for 1 ≤ i ≤ k and∪ki=1 V (Pi) = V (G). A graph G is k

∗-fan-
connected (or k∗f -connected) if there exists a spanning Fk(x,U)-fan for every choice of x and
U with |U| = k and x 6∈ U . The spanning fan-connectivity of a graph G, κ∗f (G), is defined as
the largest integer k such that G isw∗f -connected for 1 ≤ w ≤ k if G is 1

∗

f -connected.
In this paper, some relationship between κ(G), κ∗(G), and κ∗f (G) are discussed.

Moreover, some sufficient conditions for a graph to be k∗f -connected are presented.
Furthermore, we introduce the concept of a spanning pipeline-connectivity and discuss
some sufficient conditions for a graph to be k∗-pipeline-connected.

Published by Elsevier B.V.

1. Introduction

For graph definitions and notations, we follow [1]. A graph G = (V , E) consists of a finite set V (=(V (G))) and a subset
E (=(E(G))) of {(u, v) | u 6= v and (u, v) is an unordered pair of elements of V }. We say that V is the vertex set and E is the
edge set of G. We use n(G) to denote |V (G)|. Two vertices u and v are adjacent if (u, v) ∈ E. A graph H is a subgraph of graph
G if V (H) ⊆ V (G) and E(H) ⊆ E(G). Let S be a subset of V (G). The subgraph of G induced by S, denoted G[S], is the graph
with the vertex set S and the edge set {(u, v) | (u, v) ∈ E(G) and u, v ∈ S}. We use G− S to denote the graph G[V (G)− S].
A vertex cut is a set S ⊆ V (G) such that G− S has more than one component. A graph is k-connected if every vertex cut has
at least k vertices. The connectivity of G, κ(G), is the minimum size of a vertex cut. In other words, κ(G) is the maximum k
such that G is k-connected. A complete graph has no cut set. We adopt the convention that κ(Kn) = n − 1 where Kn is the
complete graph with n vertices. A path is a sequence of vertices represented by 〈v0, v1, . . . , vk〉with no repeated vertex and
(vi, vi+1) is an edge of G for 0 ≤ i ≤ k− 1. We also write the path 〈v0, v1, . . . , vk〉 as 〈v0, . . . , vi,Q , vj, . . . , vk〉where Q is
a subpath from vi to vj. A hamiltonian path of a graph G is a path that contains all vertices of V (G). A graph G is hamiltonian
connected if there is a hamiltonian path between every two different vertices. A cycle is a path with at least three vertices
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such that the first vertex is the same as the last vertex. A hamiltonian cycle of G is a cycle that traverse every vertex of G.
A graph is hamiltonian if it has a hamiltonian cycle. Let P = 〈x1, x2, . . . , xk〉 be a path of the graph G connecting x1 and xk.
We use P−1 to denote the path 〈xk, xk−1, . . . , x1〉. We use V (P) to denote the set {x1, x2, . . . , xk} and I(P) to denote the set
V (P)− {x1, xk}. Let P1 and P2 be two paths of a graph G. We say that P1 and P2 are internally-disjoint if I(P1) ∩ I(P2) = ∅.
Let u and v be two vertices of a graph G. A k-container of G between u and v, Ck(u, v), is a set of k-internally-disjoint paths

between u and v [2]. It follows from the Menger Theorem [3] that there is a k-container between any two distinct vertices
of G if and only if G is k-connected. A k-container Ck(u, v) = {P1, P2, . . . , Pk} of G is a k∗-container if ∪ki=1 V (Pi) = V (G).
A graph G is k∗-connected if there exists a k∗-container between any two distinct vertices. The spanning connectivity of G,
κ∗(G), is defined as the largest integer k such that G is w∗-connected for 1 ≤ w ≤ k if G is a 1∗-connected graph. It is
obvious that a 1∗-connected graph is actually a hamiltonian connected graph and that a 2∗-connected graph is actually a
hamiltonian graph.Moreover, any 1∗-connected graph exceptK1 andK2 is 2∗-connected. Thus, the concept of a k∗-connected
graph is a hybrid concept of connectivity and hamiltonicity. Recently, the spanning connectivity of graphs have been studied
extensively [4–10].
There is a Menger type theorem similar to the spanning connectivity of a graph. Let x be a vertex in a graph G and

let U = {y1, y2, . . . , yt} be a subset of V (G) where x is not in U . A t-(x,U)-fan, Ft(x,U), is a set of internally-disjoint paths
{P1, P2, . . . , Pt} such that Pi is a path connecting x and yi for 1 ≤ i ≤ t . It is proved by Dirac [11] that a graph G is k-connected
if and only if it has at least k+ 1 vertices and there exists a t-(x,U)-fan for every choice of x and U with |U| ≤ k and x 6∈ U .
Similarly, we can introduce the concept of a spanning fan. A spanning k-(x,U)-fan is a k-(x,U)-fan {P1, P2, . . . , Pk} such that
∪
k
i=1 V (Pi) = V (G). A graph G is k

∗-fan-connected (also written as k∗f -connected) if there exists a spanning k-(x,U)-fan for
every choice of x and U with |U| = k and x 6∈ U . The spanning fan-connectivity of a graph G, κ∗f (G), is defined as the largest
integer k such that G is w∗f -connected for 1 ≤ w ≤ k if G is a 1

∗

f -connected graph. In this paper, some relationship among
κ(G), κ∗(G), and κ∗f (G) are discussed. Moreover, some sufficient conditions for a graph to be k

∗

f -connected are presented.
There is anotherMenger type theorem similar to the spanning connectivity and spanning fan-connectivity of a graph. Let

U = {x1, x2, . . . xt} andW = {y1, y2, . . . , yt} be two t-subsets of V (G). A (U,W )-pipeline is a set of internally-disjoint paths
{P1, P2, . . . , Pt} such that Pi is a path connecting xi to yπ(i) where π is a permutation of {1, 2, . . . , t}. It is known that a graph
G is k-connected if and only if it has at least k + 1 vertices and there exists a (U,W )-pipeline for every choice of U andW
with |U| = |W | ≤ k and U 6= W . Similarly, we can introduce the concept of spanning pipeline. A spanning (U,W )-pipeline
is a (U,W )-pipeline {P1, P2, . . . , Pk} such that ∪ki=1 V (Pi) = V (G). A graph G is k

∗-pipeline-connected (or k∗p-connected) if
there exists a spanning (U,W )-pipeline for every choice of U and W with |U| = |W | ≤ k and U 6= W . The spanning
pipeline-connectivity of a graph G, κ∗p (G), is defined as the largest integer k such that G isw

∗
p -connected for 1 ≤ w ≤ k if G is

a 1∗p-connected graph.
In Section 2, we establish some relationships among κ(G), κ∗(G), and κ∗f (G). Section 3 gives sufficient conditions for a

graph to be k∗f -connected. In Section 4, spanning pipeline-connectivity is included. Section 5 gives an example to illustrate
the differences between κ(G), κ∗(G), κ∗f (G), and κ

∗
p (G).

2. Relationship among κ(G), κ∗(G), and κ∗
f (G)

Let u be a vertex of G and let H be a subgraph of G. The neighborhood of u with respect to H , denoted by NH(u), is
{v ∈ V (H) | (u, v) ∈ E(G)}. We use dH(u) to denote |NH(u)|. For any vertex u, the degree of u in G is dG(u). The minimum
degree of G, written δ(G), is min{dG(x) | x ∈ V }. Let u and v be any two non-adjacent vertices of G, we use G + (u, v) to
denote the graph obtained from G by adding the edge (u, v).

Lemma 1. Every 1∗-connected graph is 1∗f -connected. Moreover, every 1
∗

f -connected graph that is not K2 is 2
∗

f -connected. Thus,
κ∗f (G) ≥ 2 if G is a hamiltonian connected graph with at least three vertices.

Proof. Let G be a 1∗-connected graph with at least three vertices and let x be any vertex of G. Assume that U = {y} with
x 6= y. Obviously, there exists a hamiltonian path P1 joining x and y. Apparently, {P1} forms a spanning 1-(x,U)-fan. Thus,
G is 1∗f -connected. Assume that U = {y1, y2} with x 6∈ U . Let Q be a hamiltonian path of G connecting y1 and y2. We write
Q as 〈y1,Q1, x,Q2, y2〉. We set P1 as 〈x,Q−11 , y1〉 and P2 as 〈x,Q2, y2〉. Then {P1, P2} forms a spanning 2-(x,U)-fan. Thus, G is
2∗f -connected and κ

∗

f (G) ≥ 2. �

Theorem 1. κ∗f (G) ≤ κ
∗(G) ≤ κ(G) for any 1∗f -connected graph. Moreover, κ

∗

f (G) = κ
∗(G) = κ(G) = n(G)− 1 if and only if

G is a complete graph.

Proof. Obviously, κ∗(G) ≤ κ(G). Now,we prove that κ∗f (G) ≤ κ
∗(G). Assume that κ∗f (G) = k. Let x and y be any two vertices

of G. We need to show that there is a k∗-container of G between x and y.
Suppose that k = 1. Since G is 1∗f -connected, there is a spanning 1-(x, {y})-fan, {P1}, of G. Then {P1} forms a spanning

container of G between x and y.
Suppose that k ≥ 2. Let U ′ = {y1, y2, . . . , yk−1} be a set of (k−1) neighbors of y not containing x. We set U = U ′∪{y}. By

assumption, there exists a spanning k-(x,U)-fan. Obviously, we can extend the spanning k-(x,U)-fan by adding the edges
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{(yi, y) | yi ∈ U ′} to obtain a k∗-container between x to y. Hence, G is k∗-connected. Therefore, κ∗f (G) ≤ κ∗(G) for every
1∗f -connected graph.
Suppose that G is not a complete graph. There exists a vertex cut S of size κ(G). Let x and y be any two vertices in different

connected components of G− S. Obviously, y is not in any (x, S)-fan of G. Thus, κ∗f (G) < κ(G). �

3. Some sufficient conditions for a graph to be k∗
f -connected

Since the concept of spanning fan-connectivity is a generalization of hamiltonicity, we review some previews results
concerning hamiltonian graphs and hamiltonian connected graphs.

Lemma 2 ([12]). Every graph G with at least three vertices and δ(G) ≥ n(G)
2 is 2

∗-connected. Moreover, every graph G with at
least four vertices and δ(G) ≥ n(G)

2 + 1 is 1
∗-connected.

Lemma 3 ([13,14]). Let u and v be two non-adjacent vertices of G with dG(u) + dG(v) ≥ n(G). Then G is 2∗-connected if and
only if G + (u, v) is 2∗-connected. Moreover, suppose that dG(u) + dG(v) ≥ n(G) + 1, then G is 1∗-connected if and only if
G+ (u, v) is 1∗-connected.

Lemma 4 ([15]). A graph G is 2∗-connected if dG(u)+ dG(v) ≥ n(G) for all non-adjacent vertices u and v. Moreover, a graph G
is 1∗-connected if dG(u)+ dG(v) ≥ n(G)+ 1 for all non-adjacent vertices u and v.

For comparison, we list the preview results concerning spanning connectivity.

Lemma 5 ([8]). κ∗(G) ≥ 2δ(G)− n(G)+ 2 if n(G)2 + 1 ≤ δ(G) ≤ n(G)− 2.

Lemma 6 ([9]). Let k be a positive integer. Suppose that u and v are twonon-adjacent vertices of Gwith dG(u)+dG(v) ≥ n(G)+k.
Then κ∗(G) ≥ k+ 2 if and only if κ∗(G+ (u, v)) ≥ k+ 2.

Lemma 7 ([9]). Let k be a positive integer. Then κ∗(G) ≥ k + 2 if dG(u) + dG(v) ≥ n(G) + k for all non-adjacent vertices u
and v.

Note that Lemma 5 (Lemmas 6 and 7, respectively) generalizes the result of Lemma 2, (Lemmas 3 and 4, respectively) in
spanning connectivity. The following theorem on spanning fan-connectivity is analogous to that on spanning connectivity
in Lemma 6 [9].

Lemma 8. Let u and v be two non-adjacent vertices of G with dG(u) + dG(v) ≥ n(G) + 1, and let x and y be any two distinct
vertices of G. Then G has a hamiltonian path joining x to y if and only if G+ (u, v) has a hamiltonian path joining x to y.

Proof. Since every path inG is a path inG+(u, v), there is a hamiltonian path ofG+(u, v) joining x to y ifG has a hamiltonian
path joining x to y.
Suppose that there is a hamiltonian path P of G + (u, v) joining x to y. We need to show that there is a hamiltonian

path of G between x and y. If (u, v) 6∈ E(P), then P is a hamiltonian path of G between x and y. Thus, we consider that
(u, v) ∈ E(P). Without loss of generality, we write P as 〈z1, z2, . . . , zi, zi+1, . . . , zn(G)〉 where z1 = x, zi = u, zi+1 = v,
and zn(G) = y. Since dG(u) + dG(v) ≥ n(G) + 1, there is an index k in {1, 2, . . . , n(G)} − {i − 1, i, i + 1} such that
(zi, zk) ∈ E(G) and (zi+1, zk+1) ∈ E(G).We set R = 〈z1, z2, . . . , zk, zi, zi−1, . . . , zk+1, zi+1, zi+2, . . . , zn(G)〉 if 1 ≤ k ≤ i−2 and
R = 〈z1, z2, . . . , zi, zk, zk−1, . . . , zi+1, zk+1, zk+2, . . . , zn(G)〉 if i+ 2 ≤ k ≤ n(G). Then R is a hamiltonian path of G between x
and y. �

Theorem 2. Assume that k is a positive integer. Let u and v be two non-adjacent vertices of G with dG(u)+ dG(v) ≥ n(G)+ k.
Then κ∗f (G) ≥ k+ 1 if and only if κ

∗

f (G+ (u, v)) ≥ k+ 1.

Proof. Obviously, κ∗f (G + (u, v)) ≥ k + 1 if κ
∗

f (G) ≥ k + 1. Suppose that κ
∗

f (G + (u, v)) ≥ k + 1. Let x be any vertex of G
and U = {y1, y2, . . . , yt} be any subset of V (G) such that x 6∈ U and t ≤ k+ 1. We need to find a spanning t-(x,U)-fan of G.
Since G+ (u, v) is (k+ 1)∗f -connected, there exists a spanning t-(x,U)-fan {P1, P2, . . . , Pt} of G+ (u, v)with Pi joining x

to yi for 1 ≤ i ≤ t . Obviously, {P1, P2, . . . , Pt} is a spanning t-(x,U)-fan of G if (u, v) is not in ∪ti=1 E(Pi). Thus, we consider
(u, v) ∈ ∪ti=1 E(Pi). By Lemma 3, we can find a spanning (x,U)-fan of G if t = 1, 2. Thus, we consider the case t ≥ 3.Without
loss of generality, we may assume that (u, v) ∈ P1. Therefore, we can write P1 as 〈x,H1, u, v,H2, y1〉. Let P ′i = 〈wi, P

′

i , yi〉 be
the path obtained from Pi by deleting x. Thus, we can write Pi as 〈x, wi, P ′i , yi〉 for 1 ≤ i ≤ t . Note that x 6= wi and Pi = 〈yi〉
ifwi = yi for every 2 ≤ i ≤ t .
Case 1: dP ′i (u)+ dP ′i (v) ≥ n(P

′

i )+ 2 for some 2 ≤ i ≤ t . Without loss of generality, we may assume that dP ′2(u)+ dP ′2(v) ≥
n(P ′2) + 2. Obviously, n(P

′

2) ≥ 2. We write P
′

2 = 〈w2 = z1, z2, . . . , zr = y2〉. We claim that there exists an index j in
{1, 2, . . . , r − 1} such that (zj, v) ∈ E(G) and (zj+1, u) ∈ E(G). Suppose that this is not the case. Then dP ′2(u) + dP ′2(v) ≤
r + r − (r − 1) = r + 1 = n(P ′2)+ 1. We get a contradiction.
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Fig. 1. Illustration of case 1.

Fig. 2. Illustration of case 2.1.

We set Q1 = 〈x, w2 = z1, z2, . . . , zj, v,H2, y1〉, Q2 = 〈x,H1, u, zj+1, zj+2, . . . , zr = y2〉, and Qi = Pi for 3 ≤ i ≤ t . Then
{Q1,Q2, . . . ,Qt} forms a spanning t-(x,U)-fan of G. See Fig. 1 for illustration.
Case 2: dP ′i (u)+ dP ′i (v) ≤ n(P

′

i )+ 1 for every 2 ≤ i ≤ t .

Case 2.1: dP ′i (u)+ dP ′i (v) < n(P
′

i )+ 1 for some 2 ≤ i ≤ t . Without loss of generality, we may assume that dP ′2(u)+ dP ′2(v) ≤
n(P ′2). Thus,

dP1(u)+ dP1(v) = dG(u)+ dG(v)−
t∑
i=2

(dP ′i (u)+ dP ′i (v))

= dG(u)+ dG(v)− (dP ′2(u)+ dP ′2(v))−
t∑
i=3

(dP ′i (u)+ dP ′i (v))

≥ n(G)+ k− n(P ′2)−
t∑
i=3

(n(P ′i )+ 1)

= n(P1)+ k− (t − 2)
≥ n(P1)+ 1.

By Lemma 8, there is a hamiltonian path Q1 of G[P1] joining x to y1. We set Qi = Pi for 2 ≤ i ≤ t . Then {Q1,Q2, . . . ,Qt}
forms a spanning t-(x,U)-fan of G. See Fig. 2 for illustration.
Case 2.2: dP ′i (u)+ dP ′i (v) = n(P

′

i )+ 1 for every 2 ≤ i ≤ t . We have

dP1(u)+ dP1(v) = dG(u)+ dG(v)−
t∑
i=2

(dP ′i (u)+ dP ′i (v))

= n(G)+ k−
t∑
i=2

(n(P ′i )+ 1)

= n(P1)+ k− (t − 1)
≥ n(P1).
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Let R = 〈y1,H−12 , v, u,H
−1
1 , x, w2, P

′

2, y2〉. Then

dR(u)+ dR(v) = dP1(u)+ dP1(v)+ dP ′2(u)+ dP ′2(v)

≥ n(P1)+ n(P ′2)+ 1
= n(R)+ 1.

By Lemma 8, there is a hamiltonian pathW of G[R] joining y1 to y2. Thus,W can be written as 〈y1,W1, x,W2, y2〉. We set
Q1 = 〈x,W−11 , y1〉, Q2 = 〈x,W2, y2〉, and Qi = Pi for 3 ≤ i ≤ t . Then {Q1,Q2, . . . ,Qt} forms a spanning (x,U)-fan of G. �

We note that Theorem 2 analogizes the result of Lemma 3 in spanning fan-connectivity. By Theorem 2, we can obtain the
following theorem.

Theorem 3. Let k be a positive integer. Then κ∗f (G) ≥ k + 1 if G is not the complete graph and dG(u) + dG(v) ≥ n(G) + k for
all non-adjacent vertices u and v.

Proof. Let Ec(G) be the set {e | e 6∈ E(G)}. Without loss of generality, we write Ec = {e1, e2, . . . , em}. We set H0 = G and
Hi being the graph with V (Hi) = V (Hi−1) and E(Hi) = E(Hi−1) ∪ {ei} for every 1 ≤ i ≤ m. Since Hm is isomorphic to the
complete graph with n(G) vertices, κ∗f (Hm) ≥ k+ 1. By Theorem 2, κ

∗

f (G) = κ
∗

f (H0) ≥ k+ 1. �

Note that Theorem 3 is an analogous result of Lemma 4 in spanning fan-connectivity.

Theorem 4. κ∗f (G) ≥ 2δ(G)− n(G)+ 1 if
n(G)
2 + 1 ≤ δ(G).

Proof. Suppose that n(G)2 + 1 ≤ δ(G). Obviously, δ(G) ≤ n(G)− 1 and n(G) ≥ 4. Suppose that n(G) = 2m for some integer
m ≥ 2. Then δ(G) = m+ k for some integer kwith 1 ≤ k ≤ m− 1. Obviously, dG(u)+ dG(v) ≥ 2δ(G) = 2m+ 2k for all two
distinct vertices u and v in G. By Theorem 3, κ∗f (G) ≥ 2k + 1 = 2δ(G) − n(G) + 1. Suppose that n(G) = 2m + 1 for some
integerm ≥ 2. Then δ(G) = m+ k+ 1 for some integer kwith 1 ≤ k ≤ m− 1, and dG(u)+ dG(v) ≥ 2δ(G) = 2m+ 2k+ 2
for all two distinct vertices u and v in G. By Theorem 3, κ∗f (G) ≥ 2k+ 2 = 2δ(G)− n(G)+ 1 and the theorem follows. �

Theorem 4 analogizes the result of Lemma 2 in spanning fan-connectivity. Moreover, when δ(G) = n(G) − 2, we have
the following corollary.

Corollary 1. κ∗f (G) = n(G)− 3 if δ(G) = n(G)− 2 and n(G) ≥ 5.

Proof. By Lemma 5, κ∗(G) ≥ n(G)−2. Since n(G)−2 ≤ κ∗(G) ≤ κ(G) ≤ δ(G) = n(G)−2, κ(G) = n(G)−2. By Theorem 4,
κ∗f (G) ≥ n(G)− 3. By Theorem 1, κ

∗

f (G) < κ(G). Thus, κ∗f (G) = n(G)− 3. �

4. Spanning pipeline-connectivity

Similar to some recentworks on the spanning connectivity [4–10] and the spanning fan-connectivity, studied in Section 2,
we study spanning pipeline-connectivity in this section. Lemma 9 and Theorem 5 are analogous to Lemma 1 and Theorem 1
respectively.

Lemma 9. Every 1∗-connected graph is 1∗p-connected.

Theorem 5. κ∗p (G) ≤ κ
∗

f (G) ≤ κ
∗(G) ≤ κ(G) for any 1∗p-connected graph. Moreover, κ

∗
p (G) = κ

∗

f (G) = κ
∗(G) = κ(G) if and

only if G is a complete graph.

Theorem 6. Assume that k is a positive integer. Let u and v be two non-adjacent vertices of G. Suppose that dG(u) + dG(v) ≥
n(G)+ k. Then κ∗p (G) ≥ k if and only if κ

∗
p (G+ (u, v)) ≥ k.

Proof. Obviously, κ∗p (G + (u, v)) ≥ k if κ
∗
p (G) ≥ k. Suppose that κ

∗
p (G + (u, v)) ≥ k. Let U = {x1, x2, . . . , xt} and

W = {y1, y2, . . . , yt} be any two subsets of G such that U 6= W and t ≤ k. We need to find a spanning (U,W )-pipeline of G.
Since G+ (u, v) is k∗p-connected, there exists a spanning (U,W )-pipeline of G+ (u, v). Let {P1, P2, . . . , Pt} be a spanning

(U,W )-pipeline with Pi joining xi to yπ(i) for 1 ≤ i ≤ t . Without loss of generality, we assume that π(i) = i. Obviously,
{P1, P2, . . . , Pt} is a spanning (U,W )-pipeline of G if (u, v) is not in P . Thus, we consider the case that (u, v) is in P . By
Lemma 3, we can find a spanning (U,W )-pipeline of G if t = 1. Thus, we consider the case t ≥ 2.
Case 1:U∩W = ∅.Without loss of generality, wemay assume that (u, v) ∈ P1. Thus, we canwrite P1 as 〈x1,H1, u, v,H2, y1〉.
(Note that H1 = 〈x〉 if x = u, and H2 = 〈y〉 if y = v.) Let P ′i be the path obtained from Pi by deleting x and yi. Thus, we can
write Pi as 〈xi, P ′i , yi〉 for 1 ≤ i ≤ t .
Case 1.1: dP1(u)+ dP1(v) ≥ n(P1)+ 1. With Lemma 8, there is a hamiltonian path Q1 of G[P1] joining x1 to y1. We set Qi = Pi
for 2 ≤ i ≤ t . Then {Q1,Q2, . . . ,Qt} forms a spanning (U,W )-pipeline of G. See Fig. 3 for illustration.
Case 1.2: dP1(u)+ dP1(v) ≤ n(P1). We claim that dPi(u)+ dPi(v) ≥ n(Pi)+ 2 for some 2 ≤ i ≤ t .
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Fig. 3. Illustration of Case 1.1.

Fig. 4. Illustration of Case 1.2.

Suppose that dPi(u)+ dPi(v) ≤ n(Pi)+ 1 for every 2 ≤ i ≤ t . Then

dG(u)+ dG(v) = dP1(u)+ dP1(v)+
t∑
i=2

(dPi(u)+ dPi(v))

≤ n(P1)+
t∑
i=2

(n(Pi)+ 1)

= n(G)+ t − 1
≤ n(G)+ k− 1.

We obtain a contradiction. Thus, dPi(u)+ dPi(v) ≥ n(Pi)+ 2 for some 2 ≤ i ≤ t . Without loss of generality, we assume
that dP2(u) + dP2(v) ≥ n(P2) + 2. Obviously, n(P

′

2) ≥ 2. We write P
′

2 = 〈x2 = z1, z2, . . . , zr = y2〉. We claim that there
exists an index j in {1, 2, . . . , r − 1} such that (zj, v) ∈ E(G) and (zj+1, u) ∈ E(G). Suppose this is not the case. Then
dP ′2(u)+ dP ′2(v) ≤ r + r − (r − 1) = r + 1 = n(P

′

2)+ 1. We get a contradiction.
We set Q1 = 〈x2 = z1, z2, . . . , zj, v,H2, y1〉, Q2 = 〈x1,H1, u, zj+1, zj+2, . . . , zr = y2〉, and Qi = Pi for 3 ≤ i ≤ t . Then

{Q1,Q2, . . . ,Qt} forms a spanning (U,W )-pipeline of G. See Fig. 4 for illustration.
Case 2: U ∩ W 6= ∅. Let |U ∩ W | = r . Without loss of generality, we assume that xi = yi for t − r + 1 ≤ i ≤ t .
Let G′ = G[V (G) − (U ∩ W )], U ′ = U − W , and W ′ = W − U . Obviously, dG′(u) + dG′(v) ≥ dG(u) + dG(v) − 2r ≥
n(G) + k − 2r = n(G′) + k − r , |U ′| = |W ′| = t − r ≤ k − r , and U ′ ∩ W ′ = ∅. By Case 1, there exists a spanning
(U ′,W ′)-pipeline {Q1,Q2, . . . ,Qt−r} of G′. We set Qi = 〈xi〉 for t − r + 1 ≤ i ≤ t . Then {Q1,Q2, . . . ,Qt} forms a spanning
(U,W )-pipeline of G. �

We note that Theorems 6–8 are analogous to Lemmas 3, 4 and 2 in spanning pipeline-connectivity respectively. By
Theorem 6, we can obtain the following theorem.

Theorem 7. Let k be a positive integer. Then κ∗p (G) ≥ k if G is not the complete graph and dG(u) + dG(v) ≥ n(G) + k for all
non-adjacent vertices u and v.

Proof. Let Ec(G) be the set {e | e 6∈ E(G)}. Without loss of generality, we write Ec = {e1, e2, . . . , em}. We set H0 = G and
Hi being the graph with V (Hi) = V (Hi−1) and E(Hi) = E(Hi−1) ∪ {ei} for every 1 ≤ i ≤ m. Since Hm is isomorphic to the
complete graph with n(G) vertices, κ∗p (Hm) ≥ k. By Theorem 6, κ

∗
p (G) = κ

∗
p (H0) ≥ k. �

Theorem 8. κ∗p (G) ≥ 2δ(G)− n(G) if
n(G)
2 + 1 ≤ δ(G).

Proof. Since n(G)2 + 1 ≤ δ(G) and δ(G) ≤ n(G) − 1, n(G) ≥ 4. Suppose that n(G) = 2m for some integer m ≥ 2. Then
δ(G) = m+ k for some integer kwith 1 ≤ k ≤ m− 1. Thus, dG(u)+ dG(v) ≥ 2δ(G) = 2m+ 2k for all two distinct vertices
u and v in G. By Theorem 7, κ∗p (G) ≥ 2k = 2δ(G) − n(G). Suppose that n(G) = 2m + 1 for some integer m ≥ 2. Then
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δ(G) = m+ k+ 1 for some integer k with 1 ≤ k ≤ m− 1, and dG(u)+ dG(v) ≥ 2δ(G) = 2m+ 2k+ 2 for all two distinct
vertices u and v in G. By Theorem 3, κ∗f (G) ≥ 2k+ 1 = 2δ(G)− n(G) and the theorem follows. �

Corollary 2. κ∗p (G) = n(G)− 4 if δ(G) = n(G)− 2 and n(G) ≥ 5.

Proof. By Theorem 8, κ∗p (G) ≥ n(G)−4. Let V (G) = {x1, x2, . . . , xn(G)}. Without loss of generality, we assume that (x1, x2) 6∈
E(G). We set U = {x3, x5, x6, . . . , xn(G)} andW = {x4, x5, x6. . . . , xn(G)}. Obviously, U 6= W and |U| = |W | = n(G)− 3.
Since there is no hamiltonian path of G[V (G)− {x5, x6, . . . , xn(G)}] joining x3 to x4, there is no spanning (U,W )-pipeline

of G. Thus, κ∗p (G) = n(G)− 4. �

5. An example

Weuse the following example to illustrate that κ(G), κ∗(G), κ∗f (G), and κ
∗
p (G) are really different concepts and, in general,

have different values.

Example 1. Suppose that n is a positive integer with n ≥ 2. Let H(n) be the complete 3-partite graph K2n,2n,n−1 with vertex
partite sets V1 = {x1, x2, . . . , x2n}, V2 = {y1, y2, . . . , y2n}, and V3 = {z1, z2, . . . , zn−1}. Let G(n) be the graph obtained from
H(n) by adding the edge set {(zi, zj) | 1 ≤ i 6= j < n}. Thus, G[V3] is the complete graph Kn−1. Obviously, n(G(n)) = 5n− 1,
δ(G(n)) = 2n+(n−1) = 3n−1, and κ(G(n)) = δ(G(n)). In the following,wewill show that κ∗(G(n)) = n+1, κ∗f (G(n)) = n,
and κ∗p (G(n)) = n− 1.
By Lemma 5, κ∗(G(n)) ≥ 2δ(G(n)) − n(G(n)) + 2 = n + 1. To show κ∗(G(n)) = n + 1, we claim that there is no

(n + 2)∗-container of G(n) between x1 and x2. Suppose this is not the case. Let {P1, P2, . . . , Pn+2} be an (n + 2)∗-container
of G(n) between x1 and x2. Obviously, |V (Pi) ∩ (V1 − {x1, x2})| ≤ |V (Pi) ∩ (V2 ∪ V3)| − 1 for 1 ≤ i ≤ n + 2. Thus,∑n+2
i=1 |V (Pi) ∩ (V1 − {x1, x2})| = (

∑n+2
i=1 |(V2 ∪ V3) ∩ V (Pi)|) − (n + 2). Therefore, |V1 − {x, y}| ≤ |V2 ∪ V3| − (n + 2).

However, |V1 − {x, y}| = 2n− 2 but |V2 ∪ V3| − (n+ 2) = 2n− 3. This leads to a contradiction.
By Theorem 4, κ∗f (G(n)) ≥ 2δ(G(n)) − n(G(n)) + 1 = n. To show κ

∗

f (G(n)) = n, we claim that there is no spanning
(x1,U)-fan of G(n)where U = {y1, y2, . . . , yn+1}. Suppose this is not the case. Let {P1, P2, . . . , Pn+1} be a spanning (x1,U)-
fan of G(n). Without loss of generality, we assume that Pi is a path joining x1 to yi for 1 ≤ i ≤ n + 1. Obviously,
|(V1 − {x1}) ∩ V (Pi)| ≤ |((V2 ∪ V3)− {yi}) ∩ V (Pi)|. Thus,

∑n+1
i=1 |(V1 − {x1}) ∩ V (Pi)| ≤

∑n+1
i=1 |((V2 ∪ V3)− {yi}) ∩ V (Pi)|.

Therefore, |V1−{x1}| ≤ |(V2∪V3)−U|. However, |V1−{x1}| = 2n−1 but |(V2∪V3)−U| = 2n−2.We get a contradiction.
By Theorem 8, κ∗p (G(n)) ≥ 2δ(G(n))− n(G(n)) = n− 1. To prove κ

∗
p (G(n)) = n− 1, we claim that there is no spanning

(U,W )-pipeline where U = {x1, x2, . . . , xn} andW = {xn+1, xn+2, . . . , x2n}. Suppose that there exists a spanning (U,W )-
pipeline {P1, P2, . . . , Pn}. Obviously, |V2 ∩ V (Pi)| − 1 ≤ |V3 ∩ V (Pi)| for 1 ≤ i ≤ n. Then

∑n
i=1(|V2 ∩ V (Pi)| − 1) ≤∑n

i=1 |V3∩V (Pi)|. Therefore, (
∑n
i=1 |V2∩V (Pi)|)−n ≤

∑n
i=1 |V3∩V (Pi)|. However, (

∑n
i=1 |V2∩V (Pi)|)−n = |V2|−n = n

but
∑n
i=1 |V3 ∩ V (Pi)| = |V3| = n− 1. We get a contradiction.
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