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between any two different vertices. The spanning connectivity of G, «*(G), is the maximum
integer k such that G is w*-connected for 1 < w < kif Gis 1*-connected.

ﬁiﬂ?{gﬁ’im connected Let x.be avertexinGandletU = {v1,y2, s Yk} bea _su.b.set of V(G) wherexisnotin U.
Hamiltonian A spanning k — (x, U)-fan, Fy(x, U), is a set of internally-disjoint paths {Py, P, ..., P;} such
Dirac Theorem that P; is a path connecting x toy; for 1 < i < kand U, V(P;) = V(G). A graph G is k*-fan-
Menger Theorem connected (or k}‘-connected) if there exists a spanning Fy(x, U)-fan for every choice of x and
Ore Theorem U with |U| = k and x ¢ U. The spanning fan-connectivity of a graph G, «/(G), is defined as
Connectivity o the largest integer k such that G is wf-connected for 1 < w < kif Gis 1f-connected.

Spanning connectivity In this paper, some relationship between «(G), «*(G), and Kf*(G) are discussed.

Spanning fan-connectivity
Spanning pipeline-connectivity
Graph container

Moreover, some sufficient conditions for a graph to be k}‘-connected are presented.
Furthermore, we introduce the concept of a spanning pipeline-connectivity and discuss
some sufficient conditions for a graph to be k*-pipeline-connected.

Published by Elsevier B.V.

1. Introduction

For graph definitions and notations, we follow [1]. A graph G = (V, E) consists of a finite set V (=(V(G))) and a subset
E (=(E(G))) of {(u, v) | u # v and (u, v) is an unordered pair of elements of V}. We say that V is the vertex set and E is the
edge set of G. We use n(G) to denote |V (G)|. Two vertices u and v are adjacent if (u, v) € E. A graph H is a subgraph of graph
Gif V(H) € V(G) and E(H) € E(G). Let S be a subset of V(G). The subgraph of G induced by S, denoted G[S], is the graph
with the vertex set S and the edge set {(u, v) | (u, v) € E(G) and u, v € S}. We use G — S to denote the graph G[V(G) — S].
A vertex cut is a set S € V(G) such that G — S has more than one component. A graph is k-connected if every vertex cut has
at least k vertices. The connectivity of G, k (G), is the minimum size of a vertex cut. In other words, « (G) is the maximum k
such that G is k-connected. A complete graph has no cut set. We adopt the convention that « (K,) = n — 1 where K, is the
complete graph with n vertices. A path is a sequence of vertices represented by (v, v1, ..., vx) with no repeated vertex and
(vi, viy1) is an edge of G for 0 < i < k — 1. We also write the path (vo, v1, ..., v¢) as {vo, ..., vi, Q, vj, ..., vx) where Q is
a subpath from v; to v;. A hamiltonian path of a graph G is a path that contains all vertices of V(G). A graph G is hamiltonian
connected if there is a hamiltonian path between every two different vertices. A cycle is a path with at least three vertices
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such that the first vertex is the same as the last vertex. A hamiltonian cycle of G is a cycle that traverse every vertex of G.
A graph is hamiltonian if it has a hamiltonian cycle. Let P = (x1, X2, ..., X¢) be a path of the graph G connecting x; and x;.
We use P! to denote the path (xy, X_1, . .., X1). We use V(P) to denote the set {x1, Xy, ..., x¢} and I(P) to denote the set
V(P) — {1, x¢}. Let P; and P, be two paths of a graph G. We say that P; and P, are internally-disjoint if [(P1) N I(P;) = .

Let u and v be two vertices of a graph G. A k-container of G between u and v, C¢(u, v), is a set of k-internally-disjoint paths
between u and v [2]. It follows from the Menger Theorem [3] that there is a k-container between any two distinct vertices
of G if and only if G is k-connected. A k-container C,(u, v) = {P1, Pa, ..., Py} of G is a k*-container if U;‘zl V(P) = V(G).
A graph G is k*-connected if there exists a k*-container between any two distinct vertices. The spanning connectivity of G,
k*(G), is defined as the largest integer k such that G is w*-connected for 1 < w < kif G is a 1*-connected graph. It is
obvious that a 1*-connected graph is actually a hamiltonian connected graph and that a 2*-connected graph is actually a
hamiltonian graph. Moreover, any 1*-connected graph except K; and K; is 2*-connected. Thus, the concept of a k*-connected
graph is a hybrid concept of connectivity and hamiltonicity. Recently, the spanning connectivity of graphs have been studied
extensively [4-10].

There is a Menger type theorem similar to the spanning connectivity of a graph. Let x be a vertex in a graph G and
letU = {y1,Y2,...,Y:} be asubset of V(G) where x is not in U. A t-(x, U)-fan, F;(x, U), is a set of internally-disjoint paths
{P1, P,, ..., P} such that P; is a path connecting x and y; for 1 < i < t.Itis proved by Dirac [11] that a graph G is k-connected
if and only if it has at least k + 1 vertices and there exists a t-(x, U)-fan for every choice of x and U with |[U| < kandx &€ U.
Similarly, we can introduce the concept of a spanning fan. A spanning k-(x, U)-fan is a k-(x, U)-fan {Py, P,, . . ., P} such that
Uf;l V(P;) = V(G). A graph G is k*-fan-connected (also written as k}*-connected) if there exists a spanning k-(x, U)-fan for
every choice of x and U with |U| = k and x & U. The spanning fan-connectivity of a graph G, /c;‘ (G), is defined as the largest
integer k such that G is w}‘—connected forl1 <w <kifGisa lf—connected graph. In this paper, some relationship among
k(G), k*(G), and Kf* (G) are discussed. Moreover, some sufficient conditions for a graph to be k}‘—connected are presented.

There is another Menger type theorem similar to the spanning connectivity and spanning fan-connectivity of a graph. Let
U={x1,x2,...%}and W = {y1, y2, ..., ¥} be two t-subsets of V(G). A (U, W)-pipeline is a set of internally-disjoint paths
{P1, Py, ..., P;} such that P; is a path connecting x; to y, ; where 7 is a permutation of {1, 2, ..., t}. It is known that a graph
G is k-connected if and only if it has at least k + 1 vertices and there exists a (U, W)-pipeline for every choice of U and W
with |U| = |W| < kand U # W. Similarly, we can introduce the concept of spanning pipeline. A spanning (U, W)-pipeline
is a (U, W)-pipeline {Pq, P,, ..., P} such that Uf;l V(P;) = V(G). A graph G is k*-pipeline-connected (or k;f—connected) if
there exists a spanning (U, W)-pipeline for every choice of U and W with |[U| = |[W| < kand U # W. The spanning
pipeline-connectivity of a graph G, K;(G), is defined as the largest integer k such that G is w;-connected for1 <w <kifGis
a 1;-connected graph.

In Section 2, we establish some relationships among « (G), «*(G), and Kf* (G). Section 3 gives sufficient conditions for a
graph to be k}‘—connected. In Section 4, spanning pipeline-connectivity is included. Section 5 gives an example to illustrate
the differences between « (G), «*(G), K}f(G), and K;‘(G).

2. Relationship among «(G), «*(G), and ICf* (G)

Let u be a vertex of G and let H be a subgraph of G. The neighborhood of u with respect to H, denoted by Ny (u), is
{v e V(H) | (u,v) € E(G)}. We use dy(u) to denote [Ny (u)|. For any vertex u, the degree of u in G is dg(u). The minimum
degree of G, written §(G), is min{dg(x) | x € V}. Let u and v be any two non-adjacent vertices of G, we use G + (u, v) to
denote the graph obtained from G by adding the edge (u, v).

Lemma 1. Every 1*-connected graph is l}‘-connected. Moreover, every lf-connected graph that is not K3 is 2}*—connected. Thus,
K;‘ (G) = 2if Gis a hamiltonian connected graph with at least three vertices.

Proof. Let G be a 1*-connected graph with at least three vertices and let x be any vertex of G. Assume that U = {y} with
X # y. Obviously, there exists a hamiltonian path P; joining x and y. Apparently, {P,} forms a spanning 1-(x, U)-fan. Thus,
Gis 1}"—connected. Assume that U = {y;, y,} withx & U. Let Q be a hamiltonian path of G connecting y; and y,. We write

Q as (y1, Q1, X, Q2, y2). We set Py as (x, Qf1, y1) and P as (x, Qz, ¥»). Then {P;, P,} forms a spanning 2-(x, U)-fan. Thus, G is
2f*—connected and Kf*(G) >2. O

Theorem 1. /cjf‘ (G) < k*(G) < k(G) for any 1}*—connected graph. Moreover, lcji" (G) = «*(G) = k(G) = n(G) — 1ifand only if
G is a complete graph.

Proof. Obviously, «*(G) < «(G). Now, we prove that K}f (G) < k*(G).Assume that Kf‘(G) = k.Letx and y be any two vertices
of G. We need to show that there is a k*-container of G between x and y.

Suppose that k = 1. Since G is 1f*—connected, there is a spanning 1-(x, {y})-fan, {P;}, of G. Then {P} forms a spanning
container of G between x and y.

Suppose thatk > 2.LetU’ = {y1, >, ..., yx—1} be aset of (k— 1) neighbors of y not containing x. We set U = U’ U {y}. By
assumption, there exists a spanning k-(x, U)-fan. Obviously, we can extend the spanning k-(x, U)-fan by adding the edges
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{i,y) | yi € U’} to obtain a k*-container between x to y. Hence, G is k*-connected. Therefore, KF(G) < «*(G) for every
lf-connected graph.

Suppose that G is not a complete graph. There exists a vertex cut S of size « (G). Let x and y be any two vertices in different
connected components of G — S. Obviously, y is not in any (x, S)-fan of G. Thus, /cf* G) <k(G). O

3. Some sufficient conditions for a graph to be k;‘-connected

Since the concept of spanning fan-connectivity is a generalization of hamiltonicity, we review some previews results
concerning hamiltonian graphs and hamiltonian connected graphs.

Lemma 2 ([12]). Every graph G with at least three vertices and §(G) > @ is 2*-connected. Moreover, every graph G with at
least four vertices and §(G) > @ + 11is 1*-connected.

Lemma 3 ([13,14]). Let u and v be two non-adjacent vertices of G with dg(u) + dg(v) > n(G). Then G is 2*-connected if and
only if G+ (u, v) is 2*-connected. Moreover, suppose that ds(u) + dg(v) > n(G) + 1, then G is 1*-connected if and only if
G + (u, v) is 1*-connected.

Lemma 4 ([15]). A graph G is 2*-connected if dc(u) 4+ dg(v) > n(G) for all non-adjacent vertices u and v. Moreover, a graph G
is 1*-connected if dg(u) + d¢(v) > n(G) + 1 for all non-adjacent vertices u and v.

For comparison, we list the preview results concerning spanning connectivity.
Lemma 5 ([8]). «*(G) > 26(G) — n(G) + 2if @ +1<48(G) <n(G) —2

Lemma 6 ([9]). Let k be a positive integer. Suppose that u and v are two non-adjacent vertices of Gwithdg(u)+dg(v) > n(G)+k.
Then k*(G) > k + 2 ifand only if *(G + (u, v)) > k + 2.

Lemma 7 ([9]). Let k be a positive integer. Then «*(G) > k + 2 if dg(u) 4+ dg(v) > n(G) + k for all non-adjacent vertices u
and v.

Note that Lemma 5 (Lemmas 6 and 7, respectively) generalizes the result of Lemma 2, (Lemmas 3 and 4, respectively) in
spanning connectivity. The following theorem on spanning fan-connectivity is analogous to that on spanning connectivity
in Lemma 6 [9].

Lemma 8. Let u and v be two non-adjacent vertices of G with dg(u) 4+ dg(v) > n(G) + 1, and let x and y be any two distinct
vertices of G. Then G has a hamiltonian path joining x to y if and only if G + (u, v) has a hamiltonian path joining x to y.

Proof. Since every pathin Gis a pathin G+ (u, v), there is a hamiltonian path of G+ (u, v) joining x to y if G has a hamiltonian
path joining x to y.

Suppose that there is a hamiltonian path P of G 4+ (u, v) joining x to y. We need to show that there is a hamiltonian
path of G between x and y. If (u, v) &€ E(P), then P is a hamiltonian path of G between x and y. Thus, we consider that
(u, v) € E(P). Without loss of generality, we write P as (z1, 2, ..., Zi, Zit1, - - . » Zng)) Where z; = X,z = U, ziy1 = v,
and z, = Y. Since dg(u) 4+ dg(v) > n(G) + 1, there is an index k in {1,2,...,n(G)} — {i — 1,i,i + 1} such that
(zi, z) € E(G) and (zi41, Zk+1) € E(G).WesetR = (21,22, .. ., Zks Zi, Zie1, - -+ Zkt15 Zit1» Zig2, - - - Zney) if 1 <k <i—2and
R=(z1,22,...,2i, Zky Zk—1, - - -, Zix15 Zkt1> Zkt2s - - - » Zn(c)) if i1+ 2 < k < n(G). Then R is a hamiltonian path of G between x
andy. O

Theorem 2. Assume that k is a positive integer. Let u and v be two non-adjacent vertices of G with dg(u) + dg(v) > n(G) + k.
Then Kf*(G) > k + 1ifand only if Kf*(G + (u,v)) > k+ 1.

Proof. Obviously, Kf*(G + (u,v)) > k+1if /cf*(G) > k + 1. Suppose that Kf*(G + (u, v)) > k + 1. Let x be any vertex of G
and U = {y1, y2, ..., ¥} be any subset of V(G) such thatx ¢ U and t < k + 1. We need to find a spanning t-(x, U)-fan of G.
Since G+ (u, v) is (k+ 1)}‘—c0nnected, there exists a spanning t-(x, U)-fan {Py, P,, ..., P;} of G+ (u, v) with P; joining x
toy; for 1 < i < t. Obviously, {Py, P,, ..., P} is a spanning t-(x, U)-fan of G if (u, v) is not in Ui_, E(P;). Thus, we consider
(u, v) € U_, E(P;). By Lemma 3, we can find a spanning (x, U)-fan of Gift = 1, 2. Thus, we consider the case t > 3. Without
loss of generality, we may assume that (u, v) € P;. Therefore, we can write P; as (x, Hy, u, v, Hz, y1). Let P/ = (wj, P/, y;) be
the path obtained from P; by deleting x. Thus, we can write P; as (x, w;, P}, y;) for 1 <i < t. Note that x # w; and P; = (y;)
ifw; =y;forevery2 <i<t.
Case 1: dpl_/ ) + dpi/(v) > n(P{) + 2 for some 2 < i < t. Without loss of generality, we may assume that dpé (u) + dpé(v) >
n(P;) + 2. Obviously, n(Py) > 2. We write P, = (w, = z1,23,...,2 = Y,). We claim that there exists an index j in
{1,2,...,r — 1} such that (z;, v) € E(G) and (zj;1, u) € E(G). Suppose that this is not the case. Then dpé (w) + dpé(v) <
r+r—(r—1) =r+1=n(P)) + 1. We get a contradiction.
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Fig. 1. Illustration of case 1.
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Fig. 2. Illustration of case 2.1.

WesetQq = (x, w2 = 21,22, ...,%,V,H2, ¥1), Q2 = (X, H1, U, Zj41, Zj12, . . ., Zr = ¥2),and Q; = P; for 3 < i < t. Then
{Q1, Qa, ..., Q;} forms a spanning t-(x, U)-fan of G. See Fig. 1 for illustration.

Case 2: dpl_/(u) + dpi/(v) <n(P))+ 1forevery2 <i<t.
Case 2.1: dpir (u) + dpi/(v) < n(P)) + 1forsome 2 < i < t. Without loss of generality, we may assume that dpé (w) + d,,é v) <
n(P}). Thus,

t

dp, () + dp, (V) = de(W) + dg(v) — Y (dpr (W) + d (1)
i=2
t

= do(u) + de(v) — (dpy, () + dpy (1)) — Y _(dpy (W) + dpt (1)
i=3
t
> n(G) +k—n(Py) — Y (P + 1)
i=3

=n(Py) +k—(t—2)

> n(Py) + 1.
By Lemma 8, there is a hamiltonian path Q; of G[P] joining x to y;. We set Q; = P;for 2 < i < t.Then {Q, Q2, ..., Q;}
forms a spanning t-(x, U)-fan of G. See Fig. 2 for illustration.
Case 2.2: d”i’ (w) + dp,[(v) = n(P]) + 1forevery 2 <i < t. We have

t

dp, (u) + dp, (v) = do(w) +dc(v) — ) (dp (W) + dpy (v)
i=2
t

=nG) +k= Y () +1)

i=2
=nP)+k—(-1
> n(Py).
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Let R = (y1, Hz_l, v, U, Hl_l, X, wa, P}, y,). Then

dp(W) + dg(v) = dp, () + dp, (v) + dpy () + iy (v)
n(Py) +n(Py) + 1
n(R) + 1.

By Lemma 8, there is a hamiltonian path W of G[R] joining y; to y,. Thus, W can be written as (y1, Wy, x, W5, y,). We set
Q = (x, W{l,yl), Q = (x, W5, y,),and Q; = P; for 3 <i < t.Then {Qq, Qy, ..., Q;} forms a spanning (x, U)-fanof G. O

vl

We note that Theorem 2 analogizes the result of Lemma 3 in spanning fan-connectivity. By Theorem 2, we can obtain the
following theorem.

Theorem 3. Let k be a positive integer. Then /cf*(G) > k 4+ 1if Gis not the complete graph and d¢(u) + dg(v) > n(G) + k for
all non-adjacent vertices u and v.

Proof. Let E°(G) be the set {e | e & E(G)}. Without loss of generality, we write E€ = {eq, e,, ..., en}. We set Hy = G and
H; being the graph with V(H;) = V(H;_1) and E(H;) = E(H;_1) U {e;} for every 1 < i < m. Since H,, is isomorphic to the
complete graph with n(G) vertices, Kf* (Hm) = k + 1. By Theorem 2, /cf* G) = /cf* (H)>k+1. O

Note that Theorem 3 is an analogous result of Lemma 4 in spanning fan-connectivity.
Theorem 4. «/ (G) > 25(G) — n(G) + 1if "2 + 1 < 5(G).

Proof. Suppose that @ 4+ 1 < 6(G). Obviously, §(G) < n(G) — 1 and n(G) > 4. Suppose that n(G) = 2m for some integer
m > 2.Then 6(G) = m+ k for some integer k with 1 < k < m — 1. Obviously, dg(u) 4+ dg(v) > 25(G) = 2m + 2k for all two
distinct vertices u and v in G. By Theorem 3, KF (G) = 2k + 1 = 25(G) — n(G) + 1. Suppose that n(G) = 2m + 1 for some
integer m > 2. Then §(G) = m + k + 1 for some integer k with 1 < k < m — 1, and dg(u) + dg(v) > 26(G) = 2m + 2k + 2
for all two distinct vertices u and v in G. By Theorem 3, Kf* (G) = 2k 4+ 2 = 25(G) — n(G) + 1 and the theorem follows. O

Theorem 4 analogizes the result of Lemma 2 in spanning fan-connectivity. Moreover, when 6(G) = n(G) — 2, we have
the following corollary.

Corollary 1. Kf*(G) =n(G) — 3if §(G) = n(G) — 2 and n(G) > 5.

Proof. By Lemma 5, k*(G) > n(G) —2.Since n(G) —2 < «*(G) < k(G) < §(G) = n(G) — 2,k (G) = n(G) — 2. By Theorem 4,
Kf*(G) > n(G) — 3. By Theorem 1, Kf*(G) < k(G). Thus, KF(G) =n(G) —3. O

4. Spanning pipeline-connectivity

Similar to some recent works on the spanning connectivity [4-10] and the spanning fan-connectivity, studied in Section 2,
we study spanning pipeline-connectivity in this section. Lemma 9 and Theorem 5 are analogous to Lemma 1 and Theorem 1
respectively.

Lemma 9. Every 1*-connected graph is 1;-connected.

Theorem 5. K;‘(G) < Kf*(G) < k*(G) < k(G) for any 1Z—connected graph. Moreover, K;‘(G) = f*(G) = k*(G) = k(G) ifand
only if Gis a complete graph.

Theorem 6. Assume that k is a positive integer. Let u and v be two non-adjacent vertices of G. Suppose that dg(u) 4+ dg(v) >
n(G) + k. Then K;‘(G) > kif and only if K;‘(G + (u,v)) > k.

Proof. Obviously, «*(G + (u,v)) > kif IC;(G) > k. Suppose that K;(G 4+ (u,v)) > k.let U = {x{,%2,...,%} and

W= {yi,y,... ,yri be any two subsets of G such that U 2 W and t < k. We need to find a spanning (U, W)-pipeline of G.
Since G+ (u, v) is k; -connected, there exists a spanning (U, W)-pipeline of G + (u, v).Let {Pq, P,, ..., P;} be a spanning

(U, W)-pipeline with P; joining x; to y,; for 1 < i < t. Without loss of generality, we assume that 7z (i) = i. Obviously,

{P1, P,, ..., P} is a spanning (U, W)-pipeline of G if (u, v) is not in P. Thus, we consider the case that (u, v) is in P. By

Lemma 3, we can find a spanning (U, W)-pipeline of G if t = 1. Thus, we consider the case t > 2.

Case 1: UNW = (. Without loss of generality, we may assume that (u, v) € P;.Thus, we can write Py as (x1, Hy, u, v, Hy, y1).

(Note that H; = (x) ifx = u, and H, = (y) if y = v.) Let P/ be the path obtained from P; by deleting x and y;. Thus, we can

write P; as (x;, P, y;) for 1 <i <t.

Case 1.1: dp, (u) +dp, (v) > n(P;) 4+ 1. With Lemma 8, there is a hamiltonian path Q; of G[P;] joining x; to y;. We set Q; = P;

for2 <i<t.Then{Qq, Qy, ..., Q;} forms a spanning (U, W)-pipeline of G. See Fig. 3 for illustration.

Case 1.2: dp, (u) + dp, (v) < n(P;). We claim that dp, (1) + dp,(v) > n(P;) + 2 forsome 2 <i < t.
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Fig. 3. Illustration of Case 1.1.
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Suppose that dp, (u) + dp,(v) < n(P;) + 1forevery2 <i < t.Then

d(u) + dg(v) = dp, (u) + dp, (v) + Y (dp (W) + dp,(v))

i=2

IA

t
n(Py) + > (n(P) + 1)
i=2
=nG +t—-1
<nG +k—1.

We obtain a contradiction. Thus, dp, (u) + dp,(v) > n(P;) + 2 for some 2 < i < t. Without loss of generality, we assume
that dp, (u) + dp, (v) > n(P,) + 2. Obviously, n(P;) > 2. We write P, = (X, = z1,2,...,2- = ¥). We claim that there

exists an index j in {1, 2,...,r — 1} such that (z, v) € E(G) and (zj+1,u) € E(G). Suppose this is not the case. Then
dpé (u) + dpé(v) <r+r— (-1 =r+1=n(P) + 1. We get a contradiction.
WesetQy = (X, = 21,22,...,Z,V,Hy, y1), Qo = (X1, H1, U, 211, Z42, ...,z = ¥2),and Q; = P;for 3 < i < t. Then

{Q1, Qa, ..., Q;} forms a spanning (U, W)-pipeline of G. See Fig. 4 for illustration.

Case 2: UNW # . Let [U N W| = r. Without loss of generality, we assume thatx; = y;fort —r+1 < i < t.
Let ¢ = G[V(G) — (UNW)],U = U —W,and W = W — U. Obviously, dg (1) + dg(v) > dg(u) + dg(v) — 2r >
nG) +k—2r=nG)+k—r|U| =|W|=t—r <k—r,and U "W = (. By Case 1, there exists a spanning
(U, W)-pipeline {Q1, Q2, ..., Q;_;} of G.Weset Q; = (x;) fort —r + 1 < i < t.Then {Qq, Qy, ..., Q;} forms a spanning
(U, W)-pipelineof . O

We note that Theorems 6-8 are analogous to Lemmas 3, 4 and 2 in spanning pipeline-connectivity respectively. By
Theorem 6, we can obtain the following theorem.

Theorem 7. Let k be a positive integer. Then K;(G) > kif Gis not the complete graph and dg(u) + dg(v) > n(G) + k for all
non-adjacent vertices u and v.

Proof. Let E°(G) be the set {e | e ¢ E(G)}. Without loss of generality, we write E° = {eq, e,, ..., en}. We set Hy = G and
H; being the graph with V(H;) = V(H;_1) and E(H;) = E(H;_1) U {e;} for every 1 < i < m. Since H,, is isomorphic to the
complete graph with n(G) vertices, K;‘ (Hp) = k. By Theorem 6, K;‘(G) = K; (Hy) =k. 0O

Theorem 8. «;(G) > 28(G) — n(G) if 2 +1 < §(G).

Proof. Since @ + 1 < 46(G) and §(G) < n(G) — 1, n(G) > 4. Suppose that n(G) = 2m for some integer m > 2. Then
8(G) = m + k for some integer k with 1 < k < m — 1. Thus, dg(u) + dg(v) > 26(G) = 2m + 2k for all two distinct vertices
u and v in G. By Theorem 7, K;(G) > 2k = 26(G) — n(G). Suppose that n(G) = 2m + 1 for some integer m > 2. Then
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8(G) = m+ k + 1 for some integer k with 1 < k < m — 1, and dg(u) + dg(v) > 286(G) = 2m + 2k + 2 for all two distinct
vertices u and v in G. By Theorem 3, Kf*(G) > 2k + 1 = 26(G) — n(G) and the theorem follows. 0O

Corollary 2. K;(G) =n(G) — 4if §(G) = n(G) — 2 and n(G) > 5.

Proof. By Theorem 8, K; (G) > n(G) —4.Let V(G) = {x1, X2, ..., Xn(c)}. Without loss of generality, we assume that (x1, x,) &
E(G). We setU = {x3, X5, X, - . . , Xn(y} and W = {x4, X5, Xs. . . ., Xn(G)}. Obviously, U # W and |U| = [W| = n(G) — 3.

Since there is no hamiltonian path of G[V(G) — {xs, Xs, . . . , Xa(c)}] joining X3 to X4, there is no spanning (U, W)-pipeline
of G. Thus, K;(G) =n(G —4. 0O

5. An example

We use the following example to illustrate that « (G), € *(G), lcf* (G),and K;‘ (G) are really different concepts and, in general,
have different values.

Example 1. Suppose that n is a positive integer with n > 2. Let H(n) be the complete 3-partite graph Ky, 2 n—1 With vertex
partite sets Vi = {x1, X2, ..., X0}, Vo = {y1, Y2, ..., Yan}, and V3 = {z, 25, . . ., z,_1}. Let G(n) be the graph obtained from
H(n) by adding the edge set {(z;, zj) | 1 < i # j < n}. Thus, G[V3] is the complete graph K,,_;. Obviously, n(G(n)) = 5n — 1,
8(G(n)) = 2n+(n—1) = 3n—1,and « (G(n)) = 8(G(n)).In the following, we will show that x*(G(n)) = n+1,/<f*(G(n)) =n,
and K;(G(n)) =n—1.

By Lemma 5, «*(G(n)) > 25(G(n)) — n(G(n)) + 2 = n + 1. To show «*(G(n)) = n + 1, we claim that there is no
(n 4 2)*-container of G(n) between x; and x,. Suppose this is not the case. Let {Py, P, ..., Pp42} be an (n 4 2)*-container
of G(n) between x; and x,. Obviously, [V(P;)) N (V1 — {x1,%}D| < [VP) N VL, UV3)] — 1for1 < i < n+ 2. Thus,
YLV N (Vi — (x1. %D = (1127 (Vo U Va) N V(P)]) — (n + 2). Therefore, [Vy — {x, y}| < V2 U Vs| — (n +2).
However, |V, — {x, y}| = 2n — 2 but |V, U V3| — (n + 2) = 2n — 3. This leads to a contradiction.

By Theorem 4, Kf* (G(n)) > 26(G(n)) — n(G(n)) + 1 = n. To show /cjf‘ (G(n)) = n, we claim that there is no spanning
(x1, U)-fan of G(n) where U = {y1, y2, . . ., ¥n+1}. Suppose this is not the case. Let {Py, P,, ..., P,+1} be a spanning (x{, U)-
fan of G(n). Without loss of generality, we assume that P; is a path joining x; to y; for 1 < i < n + 1. Obviously,
|(Vi — ) NV P < [(VaU V) — {3 N V(P Thus, Y15 (Vi — () NVEP)] < YT (V2 U Vs) — (i) N VP
Therefore, |V, — {x1}| < [(V,UV3) —U|.However, |V; — {x1}| = 2n—1but [(V, UV3) —U| = 2n— 2. We get a contradiction.

By Theorem 8, «(G(n)) > 26(G(n)) — n(G(n)) = n — 1. To prove /c; (G(n)) = n — 1, we claim that there is no spanning
(U, W)-pipeline where U = {x1, X2, ..., Xp} and W = {X,11, Xn12, - - . , X2n}. Suppose that there exists a spanning (U, W)-
pipeline {Pq, P5, ..., P,}. Obviously, [V, NV(P)| — 1 < [V NV(P)| for 1 < i < n.Then Z?=1(|V2 NVEP)l —1) <
Yo, V3NV (Py)|. Therefore, O, [VaNV(P)]) —n < YL, [VsNV(P)]. However, (3 1L, [VoNV(P)) —n = |V,|—n=n
but Z?:l [V3NV(P)| = |V3] = n— 1. We get a contradiction.
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