Contents lists available at [ScienceDirect](http://www.elsevier.com/locate/dam)

Discrete Applied Mathematics

journal homepage: www.elsevier.com/locate/dam

On the spanning fan-connectivity of graphs^{\star}

Cheng-Kuan Lin^{[a,](#page-0-1)[∗](#page-0-2)}, Jimmy J.M. T[a](#page-0-1)n^a, D. Frank Hsu^{[b](#page-0-3)}, Lih-Hsing Hsu^{[c](#page-0-4)}

^a *Department of Computer Science, National Chiao Tung University, Hsinchu, 30010, Taiwan, ROC*

^b *Department of Computer and Information Science, Fordham University, New York, NY 10023, USA*

^c *Department of Computer Science and Information Engineering, Providence University, Taichung, 43301, Taiwan, ROC*

a r t i c l e i n f o

Article history: Received 1 August 2007 Received in revised form 30 July 2008 Accepted 11 November 2008 Available online 3 January 2009

Keywords: Hamiltonian connected Hamiltonian Dirac Theorem Menger Theorem Ore Theorem Connectivity Spanning connectivity Spanning fan-connectivity Spanning pipeline-connectivity Graph container

a b s t r a c t

Let *G* be a graph. The connectivity of *G*, κ(*G*), is the maximum integer *k* such that there exists a *k*-container between any two different vertices. A *k*-*container* of *G* between *u* and $v, C_k(u, v)$, is a set of *k*-internally-disjoint paths between *u* and *v*. A spanning container is a container that spans *V*(*G*). A graph *G* is *k* ∗ -*connected* if there exists a spanning *k*-container between any two different vertices. The *spanning connectivity* of *G*, κ ∗ (*G*), is the maximum integer *k* such that *G* is w[∗]-connected for $1 ≤ w ≤ k$ if *G* is 1^{*}-connected.

Let *x* be a vertex in *G* and let $U = \{y_1, y_2, \ldots, y_k\}$ be a subset of $V(G)$ where *x* is not in *U*. A *spanning k*−(*x*, *U*)-*fan*, *Fk*(*x*, *U*), is a set of internally-disjoint paths {*P*1, *P*2, . . . , *Pk*} such that *P*_{*i*} is a path connecting *x* to *y*_{*i*} for $1 \le i \le k$ and $\cup_{i=1}^k V(P_i) = V(G)$. A graph *G* is k^* -fan*connected* (or k_f^* -connected) if there exists a spanning $F_k(x, U)$ -fan for every choice of *x* and *U* with $|U| = k$ and $x \notin U$. The spanning fan-connectivity of a graph *G*, $\kappa_f^*(G)$, is defined as the largest integer *k* such that *G* is w_f^* -connected for $1 \leq w \leq k$ if *G* is 1_f^* -connected.

In this paper, some relationship between $\kappa(G)$, $\kappa^*(G)$, and $\kappa_f^*(G)$ are discussed. Moreover, some sufficient conditions for a graph to be k_f^* -connected are presented. Furthermore, we introduce the concept of a spanning pipeline-connectivity and discuss some sufficient conditions for a graph to be *k*[∗]-pipeline-connected.

Published by Elsevier B.V.

1. Introduction

For graph definitions and notations, we follow [\[1\]](#page-6-0). A graph $G = (V, E)$ consists of a finite set $V = (V(G)))$ and a subset $E = (E(G))$ of $\{(u, v) \mid u \neq v \text{ and } (u, v) \text{ is an unordered pair of elements of } V\}$. We say that *V* is the *vertex set* and *E* is the *edge set* of *G*. We use $n(G)$ to denote $|V(G)|$. Two vertices *u* and *v* are *adjacent* if $(u, v) \in E$. A graph *H* is a *subgraph* of graph G if $V(H) \subseteq V(G)$ and $E(H) \subseteq E(G)$. Let S be a subset of $V(G)$. The subgraph of G induced by S, denoted G[S], is the graph with the vertex set *S* and the edge set $\{(u, v) | (u, v) \in E(G) \text{ and } u, v \in S\}$. We use $G - S$ to denote the graph $G[V(G) - S]$. A *vertex cut* is a set *S* ⊆ *V*(*G*) such that *G* − *S* has more than one component. A graph is *k*-*connected* if every vertex cut has at least *k* vertices. The *connectivity* of *G*, κ(*G*), is the minimum size of a vertex cut. In other words, κ(*G*) is the maximum *k* such that *G* is *k*-connected. A complete graph has no cut set. We adopt the convention that $\kappa(K_n) = n - 1$ where K_n is the complete graph with *n* vertices. A *path* is a sequence of vertices represented by $\langle v_0, v_1, \ldots, v_k \rangle$ with no repeated vertex and (v_i, v_{i+1}) is an edge of *G* for $0 \le i \le k-1$. We also write the path $\langle v_0, v_1, \ldots, v_k \rangle$ as $\langle v_0, \ldots, v_i, Q, v_j, \ldots, v_k \rangle$ where *Q* is a subpath from v*ⁱ* to v*^j* . A *hamiltonian path* of a graph *G* is a path that contains all vertices of *V*(*G*). A graph *G* is *hamiltonian connected* if there is a hamiltonian path between every two different vertices. A *cycle* is a path with at least three vertices

 \overline{x} This work was supported in part by the National Science Council of the Republic of China under Contract NSC 96-2221-E-009-137-MY3.

[∗] Corresponding author. Fax: +886 3 5721490.

E-mail addresses: cklin@cs.nctu.edu.tw (C.-K. Lin), jmtan@cs.nctu.edu.tw (J.J.M. Tan), hsu@trill.cis.fordham.edu (D.F. Hsu), lhhsu@pu.edu.tw (L.-H. Hsu).

⁰¹⁶⁶⁻²¹⁸X/\$ – see front matter. Published by Elsevier B.V. [doi:10.1016/j.dam.2008.11.014](http://dx.doi.org/10.1016/j.dam.2008.11.014)

such that the first vertex is the same as the last vertex. A *hamiltonian cycle* of *G* is a cycle that traverse every vertex of *G*. A graph is *hamiltonian* if it has a hamiltonian cycle. Let $P = \langle x_1, x_2, \ldots, x_k \rangle$ be a path of the graph *G* connecting x_1 and x_k . We use P^{-1} to denote the path $\langle x_k, x_{k-1}, \ldots, x_1 \rangle$. We use $V(P)$ to denote the set $\{x_1, x_2, \ldots, x_k\}$ and $I(P)$ to denote the set $V(P) - \{x_1, x_k\}$. Let P_1 and P_2 be two paths of a graph G. We say that P_1 and P_2 are internally-disjoint if $I(P_1) \cap I(P_2) = \emptyset$.

Let *u* and *v* be two vertices of a graph *G*. A *k*-container of *G* between *u* and *v*, $C_k(u, v)$, is a set of *k*-internally-disjoint paths between *u* and v [\[2\]](#page-6-1). It follows from the Menger Theorem [\[3\]](#page-6-2) that there is a *k*-container between any two distinct vertices of G if and only if G is k-connected. A k-container $C_k(u, v) = \{P_1, P_2, \ldots, P_k\}$ of G is a k^* -container if $\cup_{i=1}^k V(P_i) = V(G)$. A graph *G* is *k*[∗]-connected if there exists a *k*[∗]-container between any two distinct vertices. The spanning connectivity of *G*, κ ∗ (*G*), is defined as the largest integer *k* such that *G* is w[∗] -connected for 1 ≤ w ≤ *k* if *G* is a 1[∗] -connected graph. It is obvious that a 1[∗] -connected graph is actually a hamiltonian connected graph and that a 2[∗] -connected graph is actually a hamiltonian graph. Moreover, any 1[∗] -connected graph except *^K*¹ and *^K*² is 2[∗] -connected. Thus, the concept of a *k* ∗ -connected graph is a hybrid concept of connectivity and hamiltonicity. Recently, the spanning connectivity of graphs have been studied extensively [\[4–10\]](#page-6-3).

There is a Menger type theorem similar to the spanning connectivity of a graph. Let *x* be a vertex in a graph *G* and let $U = \{y_1, y_2, \dots, y_t\}$ be a subset of $V(G)$ where x is not in U. A t-(x, U)-fan, $F_t(x, U)$, is a set of internally-disjoint paths $\{P_1, P_2, \ldots, P_t\}$ such that P_i is a path connecting x and y_i for $1 \le i \le t$. It is proved by Dirac [\[11\]](#page-6-4) that a graph G is k-connected if and only if it has at least $k + 1$ vertices and there exists a $t-(x, U)$ -fan for every choice of x and U with $|U| \le k$ and $x \notin U$. Similarly, we can introduce the concept of a spanning fan. A *spanning k*-(*x*, *U*)-*fan* is a *k*-(*x*, *U*)-fan {*P*₁, *P*₂, , *P_k*} such that $\bigcup_{i=1}^k V(P_i) = V(G)$. A graph G is k^* -fan-connected (also written as k_f^* -connected) if there exists a spanning k - (x, U) -fan for every choice of *x* and *U* with $|U| = k$ and $x \notin U$. The spanning fan-connectivity of a graph *G*, $\kappa_f^*(G)$, is defined as the largest integer k such that G is w_f^* -connected for $1\le w\le k$ if G is a 1 $_f^*$ -connected graph. In this paper, some relationship among κ (*G*), $\kappa^*(G)$ and $\kappa^*_f(G)$ are discussed. Moreover, some sufficient conditions for a graph to be k^*_f -connected are presented.

There is another Menger type theorem similar to the spanning connectivity and spanning fan-connectivity of a graph. Let $U = \{x_1, x_2, \ldots x_t\}$ and $W = \{y_1, y_2, \ldots, y_t\}$ be two t-subsets of $V(G)$. A (U, W) -pipeline is a set of internally-disjoint paths $\{P_1, P_2, \ldots, P_t\}$ such that P_i is a path connecting x_i to $y_{\pi(i)}$ where π is a permutation of $\{1, 2, \ldots, t\}$. It is known that a graph *G* is *k*-connected if and only if it has at least *k* + 1 vertices and there exists a (*U*, *W*)-pipeline for every choice of *U* and *W* with $|U| = |W| \le k$ and $U \ne W$. Similarly, we can introduce the concept of spanning pipeline. A *spanning* (*U*, *W*)-*pipeline* is a (U, W) -pipeline $\{P_1, P_2, \ldots, P_k\}$ such that $\cup_{i=1}^k V(P_i) = V(G)$. A graph G is k^* -pipeline-connected (or k_p^* -connected) if there exists a spanning (U, W) -pipeline for every choice of *U* and *W* with $|U| = |W| \leq k$ and $U \neq W$. The *spanning* pipeline-connectivity of a graph G , $\kappa_p^*(G)$, is defined as the largest integer k such that G is w_p^* -connected for $1\le w\le k$ if G is \mathbf{a} $\mathbf{1}_p^*$ -connected graph.

In Section [2,](#page-1-0) we establish some relationships among κ (*G*), $\kappa^*(G)$, and κ^*_f (*G*). Section [3](#page-2-0) gives sufficient conditions for a graph to be *k* ∗ *f* -connected. In Section [4,](#page-4-0) spanning pipeline-connectivity is included. Section [5](#page-6-5) gives an example to illustrate the differences between $\kappa(G)$, $\kappa^*(G)$, $\kappa^*_f(G)$, and $\kappa^*_p(G)$.

2. Relationship among $\kappa(G)$, $\kappa^*(G)$, and $\kappa_f^*(G)$

Let *u* be a vertex of *G* and let *H* be a subgraph of *G*. The *neighborhood* of *u* with respect to *H*, denoted by $N_H(u)$, is $\{v \in V(H) \mid (u, v) \in E(G)\}\$. We use $d_H(u)$ to denote $|N_H(u)|$. For any vertex u, the degree of u in G is $d_G(u)$. The minimum *degree* of *G*, written $\delta(G)$, is min{ $d_G(x) \mid x \in V$ }. Let *u* and *v* be any two non-adjacent vertices of *G*, we use $G + (u, v)$ to denote the graph obtained from *G* by adding the edge (*u*, v).

Lemma 1. Every 1*-connected graph is 1‡-connected. Moreover, every 1‡-connected graph that is not K₂ is 2 *_f -connected. Thus, $\kappa_f^*(G) \geq 2$ if G is a hamiltonian connected graph with at least three vertices.

Proof. Let *G* be a 1[∗]-connected graph with at least three vertices and let *x* be any vertex of *G*. Assume that *U* = {*y*} with $x \neq y$. Obviously, there exists a hamiltonian path P_1 joining *x* and *y*. Apparently, $\{P_1\}$ forms a spanning 1-(*x*, *U*)-fan. Thus, *G* is 1_f^* -connected. Assume that $U = \{y_1, y_2\}$ with $x \notin U$. Let *Q* be a hamiltonian path of *G* connecting y_1 and y_2 . We write Q as (y_1, Q_1, x, Q_2, y_2) . We set P_1 as $\langle x, Q_1^{-1}, y_1 \rangle$ and P_2 as $\langle x, Q_2, y_2 \rangle$. Then $\{P_1, P_2\}$ forms a spanning 2- (x, U) -fan. Thus, G is 2_f^* -connected and $\kappa_f^*(G) \geq 2.$

Theorem 1. $\kappa_f^*(G) \le \kappa^*(G) \le \kappa(G)$ for any 1_f^* -connected graph. Moreover, $\kappa_f^*(G) = \kappa^*(G) = \kappa(G) = n(G) - 1$ if and only if *G is a complete graph.*

Proof. Obviously, $\kappa^*(G) \le \kappa(G)$. Now, we prove that $\kappa_f^*(G) \le \kappa^*(G)$. Assume that $\kappa_f^*(G) = k$. Let *x* and *y* be any two vertices of *G*. We need to show that there is a *k* ∗ -container of *G* between *x* and *y*.

Suppose that $k = 1$. Since *G* is 1^{*}_{*f*}-connected, there is a spanning 1-(*x*, {*y*})-fan, {*P*₁}, of *G*. Then {*P*₁} forms a spanning container of *G* between *x* and *y*.

Suppose that $k\geq 2$. Let $U'=\{y_1,y_2,\ldots,y_{k-1}\}$ be a set of $(k-1)$ neighbors of y not containing x . We set $U=U'\cup\{y\}$. By assumption, there exists a spanning *k*-(*x*, *U*)-fan. Obviously, we can extend the spanning *k*-(*x*, *U*)-fan by adding the edges $\{(y_i, y) \mid y_i \in U'\}$ to obtain a k^* -container between x to y. Hence, G is k^* -connected. Therefore, $\kappa_f^*(G) \leq \kappa^*(G)$ for every 1 ∗ *f* -connected graph.

Suppose that *G* is not a complete graph. There exists a vertex cut *S* of size κ(*G*). Let *x* and *y* be any two vertices in different connected components of *G* – *S*. Obviously, *y* is not in any (x, S) -fan of *G*. Thus, $\kappa_f^*(G) < \kappa(G)$.

3. Some sufficient conditions for a graph to be *k* ∗ *f* **-connected**

Since the concept of spanning fan-connectivity is a generalization of hamiltonicity, we review some previews results concerning hamiltonian graphs and hamiltonian connected graphs.

Lemma 2 ([\[12\]](#page-6-6)). Every graph G with at least three vertices and $\delta(G) \geq \frac{n(G)}{2}$ is 2*-connected. Moreover, every graph G with at least four vertices and $\delta(G) \geq \frac{n(G)}{2} + 1$ is 1^{*}-connected.

Lemma 3 ([\[13,](#page-6-7)[14\]](#page-6-8)). Let u and v be two non-adjacent vertices of G with $d_G(u) + d_G(v) \ge n(G)$. Then G is 2^{*}-connected if and only if $G + (u, v)$ is 2^* -connected. Moreover, suppose that $d_G(u) + d_G(v) \ge n(G) + 1$, then G is 1^* -connected if and only if $G + (u, v)$ *is* 1^{*}-connected.

Lemma 4 ([\[15\]](#page-6-9)). A graph G is 2*-connected if $d_G(u) + d_G(v) \ge n(G)$ for all non-adjacent vertices u and v. Moreover, a graph G *is* 1^{*}-connected if $d_G(u) + d_G(v) \ge n(G) + 1$ for all non-adjacent vertices u and v.

For comparison, we list the preview results concerning spanning connectivity.

Lemma 5 ([\[8\]](#page-6-10)). $\kappa^*(G) \ge 2\delta(G) - n(G) + 2$ if $\frac{n(G)}{2} + 1 \le \delta(G) \le n(G) - 2$.

Lemma 6 ([\[9\]](#page-6-11)). Let k be a positive integer. Suppose that u and v are two non-adjacent vertices of G with $d_G(u) + d_G(v) \ge n(G) + k$. *Then* $\kappa^*(G) \geq k + 2$ *if and only if* $\kappa^*(G + (u, v)) \geq k + 2$ *.*

Lemma 7 ([\[9\]](#page-6-11)). Let k be a positive integer. Then $\kappa^*(G) \geq k+2$ if $d_G(u) + d_G(v) \geq n(G) + k$ for all non-adjacent vertices u *and* v*.*

Note that [Lemma 5](#page-2-1) [\(Lemmas 6](#page-2-2) and [7,](#page-2-3) respectively) generalizes the result of [Lemma 2,](#page-2-4) [\(Lemmas 3](#page-2-5) and [4,](#page-2-6) respectively) in spanning connectivity. The following theorem on spanning fan-connectivity is analogous to that on spanning connectivity in [Lemma 6](#page-2-2) [\[9\]](#page-6-11).

Lemma 8. Let u and v be two non-adjacent vertices of G with $d_G(u) + d_G(v) \ge n(G) + 1$, and let x and y be any two distinct *vertices of G. Then G has a hamiltonian path joining x to y if and only if* $G + (u, v)$ *has a hamiltonian path joining x to y.*

Proof. Since every path in *G* is a path in $G+(u, v)$, there is a hamiltonian path of $G+(u, v)$ joining *x* to *y* if *G* has a hamiltonian path joining *x* to *y*.

Suppose that there is a hamiltonian path *P* of $G + (u, v)$ joining *x* to *y*. We need to show that there is a hamiltonian path of *G* between *x* and *y*. If $(u, v) \notin E(P)$, then *P* is a hamiltonian path of *G* between *x* and *y*. Thus, we consider that $(u, v) \in E(P)$. Without loss of generality, we write P as $\langle z_1, z_2, \ldots, z_i, z_{i+1}, \ldots, z_{n(G)} \rangle$ where $z_1 = x, z_i = u, z_{i+1} = v$, and $z_{n(G)} = y$. Since $d_G(u) + d_G(v) \ge n(G) + 1$, there is an index k in $\{1, 2, ..., n(G)\} - \{i - 1, i, i + 1\}$ such that $(z_i, z_k) \in E(G)$ and $(z_{i+1}, z_{k+1}) \in E(G)$. We set $R = \langle z_1, z_2, \ldots, z_k, z_i, z_{i-1}, \ldots, z_{k+1}, z_{i+1}, z_{i+2}, \ldots, z_{n(G)} \rangle$ if $1 \leq k \leq i-2$ and $R = \langle z_1, z_2, \ldots, z_i, z_k, z_{k-1}, \ldots, z_{i+1}, z_{k+1}, z_{k+2}, \ldots, z_{n(G)} \rangle$ if $i+2 \leq k \leq n(G)$. Then R is a hamiltonian path of G between x and *y*. \square

Theorem 2. Assume that k is a positive integer. Let u and v be two non-adjacent vertices of G with $d_G(u) + d_G(v) \ge n(G) + k$. *Then* $\kappa_f^*(G) \geq k + 1$ *if and only if* $\kappa_f^*(G + (u, v)) \geq k + 1$ *.*

Proof. Obviously, $\kappa_f^*(G + (u, v)) \ge k + 1$ if $\kappa_f^*(G) \ge k + 1$. Suppose that $\kappa_f^*(G + (u, v)) \ge k + 1$. Let x be any vertex of G and $U = \{y_1, y_2, \ldots, y_t\}$ be any subset of $V(G)$ such that $x \notin U$ and $t \leq k + 1$. We need to find a spanning t -(x, U)-fan of G.

Since $G + (u, v)$ is $(k + 1)^*_{f}$ -connected, there exists a spanning t - (x, U) -fan $\{P_1, P_2, \ldots, P_t\}$ of $G + (u, v)$ with P_i joining x to y_i for $1 \le i \le t$. Obviously, $\{P_1, P_2, \ldots, P_t\}$ is a spanning t - (x, U) -fan of G if (u, v) is not in $\cup_{i=1}^t E(P_i)$. Thus, we consider (u, v) ∈ ∪ i _{i=1} E(P_i). By [Lemma 3,](#page-2-5) we can find a spanning (x, U) -fan of *G* if $t = 1$, 2. Thus, we consider the case $t ≥ 3$. Without loss of generality, we may assume that $(u, v) \in P_1$. Therefore, we can write P_1 as $\langle x, H_1, u, v, H_2, y_1 \rangle$. Let $P'_i = \langle w_i, P'_i, y_i \rangle$ be the path obtained from P_i by deleting x. Thus, we can write P_i as $\langle x, w_i, P'_i, y_i \rangle$ for $1 \le i \le t$. Note that $x \ne w_i$ and $P_i = \langle y_i \rangle$ if $w_i = y_i$ for every $2 \le i \le t$.

Case 1: $d_{P_i'}(u) + d_{P_i'}(v) \ge n(P_i') + 2$ for some $2 \le i \le t$. Without loss of generality, we may assume that $d_{P_i'}(u) + d_{P_i'}(v) \ge$ $n(P'_2) + 2$. Obviously, $n(P'_2) \ge 2$. We write $P'_2 = \langle w_2 = z_1, z_2, \dots, z_r = y_2 \rangle$. We claim that there exists an index j in $\{1, 2, \ldots, r-1\}$ such that $(z_j, v) \in E(G)$ and $(z_{j+1}, u) \in E(G)$. Suppose that this is not the case. Then $d_{P'_2}(u) + d_{P'_2}(v) \le$ $r + r - (r - 1) = r + 1 = n(P'_2) + 1$. We get a contradiction.

Fig. 1. Illustration of case 1.

Fig. 2. Illustration of case 2.1.

We set $Q_1 = \langle x, w_2 = z_1, z_2, \dots, z_j, v, H_2, y_1 \rangle$, $Q_2 = \langle x, H_1, u, z_{j+1}, z_{j+2}, \dots, z_r = y_2 \rangle$, and $Q_i = P_i$ for $3 \le i \le t$. Then {*Q*1, *Q*2, . . . , *Qt*} forms a spanning *t*-(*x*, *U*)-fan of *G*. See [Fig. 1](#page-3-0) for illustration.

Case 2: $d_{P_i'}(u) + d_{P_i'}(v) \le n(P_i') + 1$ for every $2 \le i \le t$.

Case 2.1: $d_{P'_i}(u) + d_{P'_i}(v) < n(P'_i) + 1$ for some $2 \le i \le t$. Without loss of generality, we may assume that $d_{P'_2}(u) + d_{P'_2}(v) \le$ $n(P'_2)$. Thus,

$$
d_{P_1}(u) + d_{P_1}(v) = d_G(u) + d_G(v) - \sum_{i=2}^t (d_{P'_i}(u) + d_{P'_i}(v))
$$

= $d_G(u) + d_G(v) - (d_{P'_2}(u) + d_{P'_2}(v)) - \sum_{i=3}^t (d_{P'_i}(u) + d_{P'_i}(v))$
 $\geq n(G) + k - n(P'_2) - \sum_{i=3}^t (n(P'_i) + 1)$
= $n(P_1) + k - (t - 2)$
 $\geq n(P_1) + 1.$

By [Lemma 8,](#page-2-7) there is a hamiltonian path Q_1 of $G[P_1]$ joining x to y_1 . We set $Q_i = P_i$ for $2 \le i \le t$. Then $\{Q_1, Q_2, \ldots, Q_t\}$ forms a spanning *t*-(*x*, *U*)-fan of *G*. See [Fig. 2](#page-3-1) for illustration.

Case 2.2: $d_{P_i'}(u) + d_{P_i'}(v) = n(P_i') + 1$ for every $2 \le i \le t$. We have

$$
d_{P_1}(u) + d_{P_1}(v) = d_G(u) + d_G(v) - \sum_{i=2}^t (d_{P'_i}(u) + d_{P'_i}(v))
$$

= $n(G) + k - \sum_{i=2}^t (n(P'_i) + 1)$
= $n(P_1) + k - (t - 1)$
\$\geq\$ $n(P_1)$.

Let $R = \langle y_1, H_2^{-1}, v, u, H_1^{-1}, x, w_2, P'_2, y_2 \rangle$. Then $d_R(u) + d_R(v) = d_{P_1}(u) + d_{P_1}(v) + d_{P'_2}(u) + d_{P'_2}(v)$ $\geq n(P_1) + n(P'_2) + 1$ $= n(R) + 1.$

By [Lemma 8,](#page-2-7) there is a hamiltonian path *W* of *G*[*R*] joining y_1 to y_2 . Thus, *W* can be written as $\langle y_1, W_1, x, W_2, y_2 \rangle$. We set $Q_1 = \langle x, W_1^{-1}, y_1 \rangle, Q_2 = \langle x, W_2, y_2 \rangle$, and $Q_i = P_i$ for $3 \le i \le t$. Then $\{Q_1, Q_2, \ldots, Q_t\}$ forms a spanning (x, U) -fan of G.

We note that [Theorem 2](#page-2-8) analogizes the result of [Lemma 3](#page-2-5) in spanning fan-connectivity. By [Theorem 2,](#page-2-8) we can obtain the following theorem.

Theorem 3. Let k be a positive integer. Then $\kappa_f^*(G) \geq k+1$ if G is not the complete graph and $d_G(u) + d_G(v) \geq n(G) + k$ for *all non-adjacent vertices u and* v*.*

Proof. Let $E^c(G)$ be the set $\{e \mid e \notin E(G)\}$. Without loss of generality, we write $E^c = \{e_1, e_2, \ldots, e_m\}$. We set $H_0 = G$ and H_i being the graph with $V(H_i) = V(H_{i-1})$ and $E(H_i) = E(H_{i-1}) \cup \{e_i\}$ for every $1 \le i \le m$. Since H_m is isomorphic to the complete graph with $n(G)$ vertices, $\kappa_f^*(H_m) \geq k+1$. By [Theorem 2,](#page-2-8) $\kappa_f^*(G) = \kappa_f^*(H_0) \geq \overline{k+1}$. \Box

Note that [Theorem 3](#page-4-1) is an analogous result of [Lemma 4](#page-2-6) in spanning fan-connectivity.

Theorem 4. $\kappa_f^*(G) \geq 2\delta(G) - n(G) + 1$ if $\frac{n(G)}{2} + 1 \leq \delta(G)$.

Proof. Suppose that $\frac{n(G)}{2} + 1 \le \delta(G)$. Obviously, $\delta(G) \le n(G) - 1$ and $n(G) \ge 4$. Suppose that $n(G) = 2m$ for some integer *m* ≥ 2. Then $\delta(G) = m + k$ for some integer *k* with $1 \le k \le m - 1$. Obviously, $d_G(u) + d_G(v) \ge 2\delta(G) = 2m + 2k$ for all two distinct vertices *u* and *v* in *G*. By [Theorem 3,](#page-4-1) $\kappa_f^*(G) \ge 2k + 1 = 2\delta(G) - n(G) + 1$. Suppose that $n(G) = 2m + 1$ for some integer $m \ge 2$. Then $\delta(G) = m + k + 1$ for some integer k with $1 \le k \le m - 1$, and $d_G(u) + d_G(v) \ge 2\delta(G) = 2m + 2k + 2$ for all two distinct vertices *u* and *v* in *G*. By [Theorem 3,](#page-4-1) $\kappa_f^*(G) \ge 2k + 2 = 2\delta(G) - n(G) + 1$ and the theorem follows.

[Theorem 4](#page-4-2) analogizes the result of [Lemma 2](#page-2-4) in spanning fan-connectivity. Moreover, when $\delta(G) = n(G) - 2$, we have the following corollary.

Corollary 1. $\kappa_f^*(G) = n(G) - 3$ *if* $\delta(G) = n(G) - 2$ *and* $n(G) \geq 5$ *.*

Proof. By [Lemma 5,](#page-2-1) $\kappa^*(G) \ge n(G) - 2$. Since $n(G) - 2 \le \kappa^*(G) \le \kappa(G) \le \delta(G) = n(G) - 2$, $\kappa(G) = n(G) - 2$. By [Theorem 4,](#page-4-2) $\kappa_f^*(G) \ge n(G) - 3$. By [Theorem 1,](#page-1-1) $\kappa_f^*(G) < \kappa(G)$. Thus, $\kappa_f^*(G) = n(G) - 3$. □

4. Spanning pipeline-connectivity

Similar to some recent works on the spanning connectivity [\[4–10\]](#page-6-3) and the spanning fan-connectivity, studied in Section [2,](#page-1-0) we study spanning pipeline-connectivity in this section. [Lemma 9](#page-4-3) and [Theorem 5](#page-4-4) are analogous to [Lemma 1](#page-1-2) and [Theorem 1](#page-1-1) respectively.

Lemma 9. Every 1^{*}-connected graph is 1^{*}_p-connected.

Theorem 5. $\kappa_p^*(G) \leq \kappa_f^*(G) \leq \kappa^*(G) \leq \kappa(G)$ for any 1_p^* -connected graph. Moreover, $\kappa_p^*(G) = \kappa_f^*(G) = \kappa^*(G) = \kappa(G)$ if and *only if G is a complete graph.*

Theorem 6. Assume that k is a positive integer. Let u and v be two non-adjacent vertices of G. Suppose that $d_G(u) + d_G(v) \ge$ $n(G) + k$. Then $\kappa_p^*(G) \geq k$ if and only if $\kappa_p^*(\tilde{G} + (u, v)) \geq k$.

Proof. Obviously, $\kappa_p^*(G + (u, v)) \ge k$ if $\kappa_p^*(G) \ge k$. Suppose that $\kappa_p^*(G + (u, v)) \ge k$. Let $U = \{x_1, x_2, \ldots, x_t\}$ and $W = \{y_1, y_2, \ldots, y_t\}$ be any two subsets of \acute{G} such that $U \neq W$ and $t \leq k$. We need to find a spanning (U, W) -pipeline of G .

Since $G + (u, v)$ is k_p^* -connected, there exists a spanning (U, W) -pipeline of $G + (u, v)$. Let $\{P_1, P_2, \ldots, P_t\}$ be a spanning (U, W) -pipeline with \tilde{P}_i joining x_i to $y_{\pi(i)}$ for $1 \leq i \leq t$. Without loss of generality, we assume that $\pi(i) = i$. Obviously, $\{P_1, P_2, \ldots, P_t\}$ is a spanning (U, W) -pipeline of *G* if (u, v) is not in *P*. Thus, we consider the case that (u, v) is in *P*. By [Lemma 3,](#page-2-5) we can find a spanning (U, W) -pipeline of *G* if $t = 1$. Thus, we consider the case $t \geq 2$.

Case 1: $U \cap W = \emptyset$. Without loss of generality, we may assume that $(u, v) \in P_1$. Thus, we can write P_1 as $\langle x_1, H_1, u, v, H_2, y_1 \rangle$. (Note that $H_1 = \langle x \rangle$ if $x = u$, and $H_2 = \langle y \rangle$ if $y = v$.) Let P'_i be the path obtained from P_i by deleting x and y_i . Thus, we can write P_i as $\langle x_i, P'_i, y_i \rangle$ for $1 \le i \le t$.

Case 1.1: $d_{P_1}(u) + d_{P_1}(v) \ge n(P_1) + 1$. With [Lemma 8,](#page-2-7) there is a hamiltonian path Q_1 of G[P₁] joining x_1 to y_1 . We set $Q_i = P_i$ for $2 \le i \le t$. Then $\{Q_1, Q_2, \ldots, Q_t\}$ forms a spanning (U, W) -pipeline of *G*. See [Fig. 3](#page-5-0) for illustration.

Case 1.2: $d_{P_1}(u) + d_{P_1}(v) \le n(P_1)$. We claim that $d_{P_i}(u) + d_{P_i}(v) \ge n(P_i) + 2$ for some $2 \le i \le t$.

Fig. 4. Illustration of Case 1.2.

Suppose that $d_{P_i}(u) + d_{P_i}(v) \le n(P_i) + 1$ for every $2 \le i \le t$. Then

$$
d_G(u) + d_G(v) = d_{P_1}(u) + d_{P_1}(v) + \sum_{i=2}^t (d_{P_i}(u) + d_{P_i}(v))
$$

\n
$$
\leq n(P_1) + \sum_{i=2}^t (n(P_i) + 1)
$$

\n
$$
= n(G) + t - 1
$$

\n
$$
\leq n(G) + k - 1.
$$

We obtain a contradiction. Thus, $d_{P_i}(u) + d_{P_i}(v) \ge n(P_i) + 2$ for some $2 \le i \le t$. Without loss of generality, we assume that $d_{P_2}(u) + d_{P_2}(v) \ge n(P_2) + 2$. Obviously, $n(P'_2) \ge 2$. We write $P'_2 = \langle x_2 = z_1, z_2, \ldots, z_r = y_2 \rangle$. We claim that there exists an index *j* in {1, 2, . . . , *r* − 1} such that $(z_j, v) \in E(G)$ and $(z_{j+1}, u) \in E(G)$. Suppose this is not the case. Then $d_{P_2'}(u) + d_{P_2'}(v) \le r + r - (r - 1) = r + 1 = n(P_2') + 1$. We get a contradiction.

We set $\tilde{Q}_1=\langle x_2=z_1,z_2,\ldots,z_j,v,H_2,y_1\rangle$, $Q_2=\langle x_1,H_1,u,z_{j+1},z_{j+2},\ldots,z_r=y_2\rangle$, and $Q_i=P_i$ for $3\leq i\leq t.$ Then $\{Q_1, Q_2, \ldots, Q_t\}$ forms a spanning (U, W) -pipeline of *G*. See [Fig. 4](#page-5-1) for illustration.

Case 2: *U* ∩ *W* \neq Ø. Let $|U \cap W| = r$. Without loss of generality, we assume that $x_i = y_i$ for $t - r + 1 \le i \le t$. Let $G' = G[V(G) - (U \cap W)]$, $U' = U - W$, and $W' = W - U$. Obviously, $d_{G'}(u) + d_{G'}(v) \ge d_G(u) + d_G(v) - 2r \ge$ $n(G) + k - 2r = n(G') + k - r$, $|U'| = |W'| = t - r \le k - r$, and $U' \cap W' = \emptyset$. By Case 1, there exists a spanning (U', W') -pipeline $\{Q_1, Q_2, \ldots, Q_{t-r}\}$ of G'. We set $Q_i = \langle x_i \rangle$ for $t - r + 1 \le i \le t$. Then $\{Q_1, Q_2, \ldots, Q_t\}$ forms a spanning (U, W) -pipeline of *G*. \Box

We note that [Theorems 6–8](#page-4-5) are analogous to [Lemmas 3,](#page-2-5) [4](#page-2-6) and [2](#page-2-4) in spanning pipeline-connectivity respectively. By [Theorem 6,](#page-4-5) we can obtain the following theorem.

Theorem 7. Let k be a positive integer. Then $\kappa_p^*(G) \geq k$ if G is not the complete graph and $d_G(u) + d_G(v) \geq n(G) + k$ for all *non-adjacent vertices u and* v*.*

Proof. Let $E^c(G)$ be the set $\{e \mid e \notin E(G)\}$. Without loss of generality, we write $E^c = \{e_1, e_2, \ldots, e_m\}$. We set $H_0 = G$ and H_i being the graph with $V(H_i) = V(H_{i-1})$ and $E(H_i) = E(H_{i-1}) \cup \{e_i\}$ for every $1 \le i \le m$. Since H_m is isomorphic to the complete graph with *n*(*G*) vertices, $\kappa_p^*(H_m) \geq k$. By [Theorem 6,](#page-4-5) $\kappa_p^*(G) = \kappa_p^*(H_0) \geq k$.

Theorem 8. $\kappa_p^*(G) \ge 2\delta(G) - n(G)$ if $\frac{n(G)}{2} + 1 \le \delta(G)$.

Proof. Since $\frac{n(G)}{2} + 1 \le \delta(G)$ and $\delta(G) \le n(G) - 1$, $n(G) \ge 4$. Suppose that $n(G) = 2m$ for some integer $m \ge 2$. Then $δ(G) = m + k$ for some integer *k* with $1 ≤ k ≤ m − 1$. Thus, $d_G(u) + d_G(v) ≥ 2δ(G) = 2m + 2k$ for all two distinct vertices *u* and *v* in *G*. By [Theorem 7,](#page-5-2) $\kappa_p^*(G) \ge 2k = 2\delta(G) - n(G)$. Suppose that $n(G) = 2m + 1$ for some integer $m \ge 2$. Then

 $\delta(G) = m + k + 1$ for some integer k with $1 \le k \le m - 1$, and $d_G(u) + d_G(v) \ge 2\delta(G) = 2m + 2k + 2$ for all two distinct x vertices *u* and *v* in *G*. By [Theorem 3,](#page-4-1) $κ_f^*(G) ≥ 2k + 1 = 2δ(G) − n(G)$ and the theorem follows. □

Corollary 2. $\kappa_p^*(G) = n(G) - 4$ *if* $\delta(G) = n(G) - 2$ *and* $n(G) \geq 5$ *.*

Proof. By [Theorem 8,](#page-5-3) $\kappa_p^*(G) \ge n(G) - 4$. Let $V(G) = \{x_1, x_2, \ldots, x_{n(G)}\}$. Without loss of generality, we assume that $(x_1, x_2) \notin$

 $E(G)$. We set $U = \{x_3, x_5, x_6, \ldots, x_{n(G)}\}$ and $W = \{x_4, x_5, x_6, \ldots, x_{n(G)}\}$. Obviously, $U \neq W$ and $|U| = |W| = n(G) - 3$. Since there is no hamiltonian path of $G[V(G) - \{x_5, x_6, \ldots, x_{n(G)}\}]$ joining x_3 to x_4 , there is no spanning (*U*, *W*)-pipeline of *G*. Thus, $\kappa_p^*(G) = n(G) - 4$. □

5. An example

We use the following example to illustrate that $\kappa(G)$, $\kappa^*(G)$, $\kappa^*_f(G)$, and $\kappa^*_p(G)$ are really different concepts and, in general, have different values.

Example 1. Suppose that *n* is a positive integer with $n \geq 2$. Let $H(n)$ be the complete 3-partite graph $K_{2n,2n,n-1}$ with vertex partite sets $V_1 = \{x_1, x_2, \ldots, x_{2n}\}, V_2 = \{y_1, y_2, \ldots, y_{2n}\},$ and $V_3 = \{z_1, z_2, \ldots, z_{n-1}\}.$ Let $G(n)$ be the graph obtained from $H(n)$ by adding the edge set $\{(z_i, z_j) \mid 1 \le i \ne j < n\}$. Thus, $G[V_3]$ is the complete graph K_{n-1} . Obviously, $n(G(n)) = 5n - 1$, $\delta(G(n)) = 2n + (n-1) = 3n-1$, and $\kappa(G(n)) = \delta(G(n))$. In the following, we will show that $\kappa^*(G(n)) = n+1$, $\kappa_f^*(G(n)) = n$, and $\kappa_p^*(G(n)) = n - 1$.

 $By' Lemma 5, κ*(G(n)) ≥ 2δ(G(n)) − n(G(n)) + 2 = n + 1$ $By' Lemma 5, κ*(G(n)) ≥ 2δ(G(n)) − n(G(n)) + 2 = n + 1$ $By' Lemma 5, κ*(G(n)) ≥ 2δ(G(n)) − n(G(n)) + 2 = n + 1$. To show $κ*(G(n)) = n + 1$, we claim that there is no $(n + 2)^*$ -container of $G(n)$ between x_1 and x_2 . Suppose this is not the case. Let $\{P_1, P_2, \ldots, P_{n+2}\}$ be an $(n + 2)^*$ -container of $G(n)$ between x_1 and x_2 . Obviously, $|V(P_i) \cap (V_1 - \{x_1, x_2\})| \leq |V(P_i) \cap (V_2 \cup V_3)| - 1$ for $1 \leq i \leq n + 2$. Thus, $\sum_{i=1}^{n+2} |V(P_i) \cap (V_1 - \{x_1, x_2\})| = (\sum_{i=1}^{n+2} |(V_2 \cup V_3) \cap V(P_i)|) - (n+2)$. Therefore, $|V_1 - \{x, y\}| \le |V_2 \cup V_3| - (n+2)$. However, $|V_1 - {x, y}| = 2n − 2$ but $|V_2 \cup V_3| - (n + 2) = 2n − 3$. This leads to a contradiction.

By Theorem 4 , $\kappa_f^*(G(n)) \geq 2\delta(G(n)) - n(G(n)) + 1 = n$. To show $\kappa_f^*(G(n)) = n$, we claim that there is no spanning (x_1, U) -fan of $G(n)$ where $U = \{y_1, y_2, ..., y_{n+1}\}\$. Suppose this is not the case. Let $\{P_1, P_2, ..., P_{n+1}\}\$ be a spanning (x_1, U) fan of $G(n)$. Without loss of generality, we assume that P_i is a path joining x_1 to y_i for $1 \le i \le n + 1$. Obviously, $|(V_1 - \{x_1\}) \cap V(P_i)| \le |((V_2 \cup V_3) - \{y_i\}) \cap V(P_i)|$. Thus, $\sum_{i=1}^{n+1} |(V_1 - \{x_1\}) \cap V(P_i)| \le \sum_{i=1}^{n+1} |((V_2 \cup V_3) - \{y_i\}) \cap V(P_i)|$. Therefore, $|V_1 - \{x_1\}| \le |(V_2 \cup V_3) - U|$. However, $|V_1 - \{x_1\}| = 2n - 1$ but $|(V_2 \cup V_3) - U| = 2n - 2$. We get a contradiction.

By [Theorem 8,](#page-5-3) $\kappa_p^*(G(n)) \geq 2\delta(G(n)) - n(G(n)) = n - 1$. To prove $\kappa_p^*(G(n)) = n - 1$, we claim that there is no spanning (U, W) -pipeline where $U = \{x_1, x_2, \ldots, x_n\}$ and $W = \{x_{n+1}, x_{n+2}, \ldots, x_{2n}\}\$. Suppose that there exists a spanning (U, W) pipeline $\{P_1, P_2, \ldots, P_n\}$. Obviously, $|V_2 \cap V(P_i)| - 1 \leq |V_3 \cap V(P_i)|$ for $1 \leq i \leq n$. Then $\sum_{i=1}^n (|V_2 \cap V(P_i)| - 1) \leq \sum_{i=1}^n |V_3 \cap V(P_i)|$. However, $(\sum_{i=1}^n |V_2 \cap V(P_i)| - n = |V_2| - n = n$ $\frac{1}{2}$ *but* $\sum_{i=1}^{n} |V_3 \cap V(P_i)| = |V_3| = n - 1$. We get a contradiction.

References

- [1] J.A. Bondy, U.S.R. Murty, Graph Theory with Applications, North Holland, New York, 1980.
- [2] D.F. Hsu, On container width and length in graphs, groups, and networks, IEICE Transactions Fundamentals E77-A (1994) 668–680.
- [3] K. Menger, Zur allgemeinen kurventheorie, Fundamentale Mathematik 10 (1927) 95–115.
- [4] M. Albert, R.E.L. Aldred, D. Holton, On 3[∗] -connected graphs, Australasian Journal of Combinatorics 24 (2001) 193–208.
- [5] H.-C. Hsu, C.-K. Lin, H.-M. Hung, L.-H. Hsu, The spanning connectivity of the (*n*, *k*)-star graphs, International Journal of Foundations of Computer Science 17 (2006) 415–434.
- [6] C.-K. Lin, H.-M. Huang, L.-H. Hsu, The super connectivity of the pancake graphs and star graphs, Theoretical Computer Science 339 (2005) 257–271.
- [7] C.-K. Lin, H.-M. Huang, D.F. Hsu, L.-H. Hsu, The spanning diameter of the star graph, Networks 48 (2006) 235–249.
- [8] C.-K. Lin, H.-M. Huang, L.-H. Hsu, On the spanning connectivity of graphs, Discrete Mathematics 307 (2007) 285–289.
- [9] C.-K. Lin, H.-M. Huang, J.J.M. Tan, L.-H. Hsu, On spanning connected graphs, Discrete Mathematics 308 (2008) 1330–1333.
-
- [10] C.-H. Tsai, J.J.M. Tan, L.-H. Hsu, The super connected property of recursive circulant graphs, Information Processing Letters 91 (2004) 293–298. [11] G.A. Dirac, In abstrakten Graphen vorhandene vollstäandige 4-Graphen und ihre Unterteilungen, Mathematische Nachrichten 22 (1960) 61–85.
- [12] G.A. Dirac, Some theorem on abstract graphs, Proceedings of the London Mathematical Society 2 (1952) 69–81.
- [13] O. Ore, Note on Hamilton circuits, American Mathematical Monthly 67 (1960) 55.
-
- [14] O. Ore, Hamiltonian connected graphs, Journal of Mathematic Pures Application 42 (1963) 21–27.
- [15] J.A. Bondy, V. Chvátal, A method in graph theory, Discrete Mathematic 15 (1976) 111–135.