
This research was supported in part by the National Science Council
under Grant NSC95-2220-E009-013 and the Ministry of Economic
Affairs under Grant 96-EC-17-A-01-S1-034.

Rapid C to FPGA Prototyping with Multithreaded Emulation Engine
Shin-Kai Chen, Bing-Shiun Wang, Tay-Jyi Lin, and Chih-Wei Liu

Department of Electronics Engineering
National Chiao Tung University, Taiwan

Abstract – FPGA prototyping is preferred over software
simulations for its more convincing & realistic behaviours
and fast simulation time. However, it is usually possible
after the RTL design is done, which prevents extensive
design space exploration. This paper describes an early-
stage FPGA prototyping flow, which starts from C sources,
through hardware/software partitioning with transaction-
level modelling (TLM), to the RTL design. We also propose
a FPGA-customized multithreaded emulation engine for
TLM prototyping. Compared with the OpenRISC core, the
proposed engine saves 43.08% datapath complexity while
improving the operating frequency by 60.67%. Moreover,
our FPGA prototype for JPEG at TLM can compress 37.16
color QCIF frames per second, which is 4.5X faster than
SystemC simulation on a 3GHz PentiumD PC.

I. INTRODUCTION
Recent advances in fabrication allow engineers to design

large amount of transistors in a single chip. More and more
functions are integrated together to support novel applications.
Large-scale designs lead to long develop time and bring
difficulties to verification. The poor test speed of traditional
software simulation is really annoying to designers. FPGA are
generally used for system prototyping. It provides high speed
functional verification with accurate hardware behavior, gives
designer more confidence to the products. With this useful tool,
bugs in the design are eliminated before costly silicon
implementation. Unfortunately, FPGA prototyping is only
possible after the RTL design implementation. It takes a long
time for RTL construction from C model. The lacks of hardware
verification system makes the construction inefficient. In this
paper, we propose a rapid prototyping system using a
multithreaded emulation engine. The emulation engine is
designed and optimized on FPGA, provides high speed TLM
modeling. A simulation kernel is built on the multithreaded
emulation engine. The prototyping system enables FPGA
prototyping at very early stages, even when hardware/software
partition has not been done. Besides concept proving and
demonstration, the rapid prototyping can further migrate to RTL
implementation following original design flow.

The rest of this paper is organized as follows. Section 2
introduces the C to FPGA design flow and some related work.
Section 3 presents the proposed rapid prototyping scheme,
multithreaded emulation engine, and simulation kernel. A JPEG
encoder example and some comparisons between multithreaded
emulation engine and an open source processor, OpenRISC, will
appear in Section 4 to demonstrate the prototyping system.
Finally, Section 5 concludes this paper.

II. PRELIMINARY
C language was developed in the early 1970s, and has

become the most familiar language to software programmers.
Traditionally, application implementations generally start from
C model as figure 1. Relying on experienced engineers, the
application is directly mapped into RTL model, which contains
all the implementation information. With CAD tools, Silicon
implementation can be obtained from RTL model automatically.

Fig. 1 Conventional design flow

The C language is originally designed for programmable
processors, suggesting sequential execution, flattened share
memory, and implicit data communication while hardware owns
concurrency, complex memory layout, and explicit data transfer.
These inconsistencies have led to huge gap between C and
hardware, making hardware implementation a difficult job,
especially for today’s large scale designs. To overcome the gap,
several related works propose additional abstraction levels
between C and hardware to smooth the design flow. SystemC [1]
and Handel-C [2] provide TLM abstraction to address the
problem. Figure 2 shows the TLM flow. First of all,
concurrency and interconnection are extracted from C model
using processes and channels to form untimed TLM model.
Hardware/Software partition are then performed, refine untimed
TLM model to bus functional model. Concurrency explorations
can be performed here in this TLM abstraction. The components
in TLM model are then mapped to RTL individually. Finally,
silicon implementation is achieved through RTL model. The
TLM abstraction bridges C and hardware, smoothes design flow,
and also provides opportunities for automation.

Fig. 2 Modern SoC design flow

Normally, FPGA prototyping can be obtained using RTL
model for function verification and concept proving. It helps
designers to avoid expensive failure in silicon implementation,
and demonstrate the circuit earlier. Some researches [3][4] have
noticed the requirement for rapid prototyping. Most of them
follow above design flow. They start from well-defined
synthesizable TLM model, rely on tools to generate RTL or

C Model

RTL Model

Design Refinement FPGA Prototyping

RTL Prototyping

C Model

Untimed TLM Model

RTL Model

Concurrency
Extraction with

Explicit
Communications

Design Refinement FPGA Prototyping

RTL Prototyping

Bus Functional Model

Software
Harden

Hardware /
Software
Partition

4091-4244-0921-7/07 $25.00 © 2007 IEEE.

FPGA netlist automatically for prototyping. Unfortunately,
synthesizable TLM model construction is still difficult and time
consuming. Also, the automation is not complete yet; several
steps still require manual assistances.

III. PROPOSED METHOD
In this chapter, we’ll introduce proposed rapid prototyping

flow, multithreaded emulation engine optimized for FPGA, and
simulation kernel.

A. Rapid prototyping flow
The proposed flow is as figure 3. Similar to the TLM flow,

the proposed flow introduce TLM models, which comprises
tasks and queues. Tasks represent concurrency while queues
establish data communication between them.

Fig. 3 Refined design flow with proposed early-stage FPGA

prototyping

The task/queue model is built using simple C language. The
structure of a task is restricted as figure 4. Inside the infinite
loop, function of the task is assigned between the two APIs,
which read input from input queue and write output to output
queue. The queues are simply FIFO buffers which expose data
communication between tasks explicitly.

Fig. 4 Task structure

Using above structure, the task/queue model can be easily
built without implementation details. The rapid prototyping can
be quickly realized using this model with multithreaded
emulation engine. After hardware/software partition, multi-core
engine will take the responsibility for bus functional model
prototyping.

These emulation engines are not only for TLM prototyping,
but are applied during the software harden step toward RTL

construction. When some components are already fulfilled by
RTL, it can be downloaded onto FPGA, co-simulate with
original prototyping system. Keeping move components out of
prototyping system to RTL implementation, the prototyping
system will naturally migrate to conventional RTL prototyping
system as complete RTL model is constructed.

B. Multithreaded emulation engine
The multithreaded emulation engine is basically a 4-thread

programmable RISC processor. The instruction set architecture
is MIPS-compatible [5], simple and compiler-friendly. It
essentially follows classical 5-stage pipeline [6] – instruction
fetch, instruction decode, execution, memory access and write
back, provides 32 32-bit general purpose registers for each
thread. As the shrinking in technology, interconnection become
critical issue for design. This problem already affects FPGA
implementation seriously for there is poor routing resource in
FPGA. Global routing are usually threats to performance. In the
pipelined processor, global interconnection normally comes
from forwarding and interlocking. These circuits are set for
possible data hazard between instructions, which gather
information from several pipeline stages and send control
signals back.

Fig. 5 Interleaved multithreading of 4 hardware threads on a classical

5-stage pipeline

Multithreaded processors support multiple instruction
streams on the same hardware. To achieve this, multiple
hardware content should be maintained in the machine.
Multithreaded machines expose thread-level parallelism,
provides latency tolerance. To address the interconnection issue,
the emulation engine takes interleaved multithreaded strategy. In
this machine, 4 independent threads are executed
simultaneously using single datapath. One PC register and
register file are required to hold the context for each thread. As
figure 4, the 4 threads are issued interleavingly, thus, no data
dependencies would exist between adjacent instructions reside
right in the datapath anytime. In this case, forwarding and
interlocking unit can be discarded, which greatly alleviates
pressure from global routing. Besides, interleaved multithreaded
architecture provides numerous optimization opportunities.
Every instruction include branch and jump can have 3 cycle
latencies now. Calculation performed in the execution stage can
now extend into the memory access stage, which shortens the
critical path in the execution stage. Such optimization burst
clock rate of the multithreaded emulation engine while no
overhead occurs in software development.

Interrupt mechanisms are implemented only on the first
thread, called system thread. Tasks running on the system thread
may be interrupted for system services. In contrast, other threads
are referred as computation thread, and they are QoS (Quality of
Service) guaranteed. System thread responds to outward
stimulus as general purpose processor. Once an exception
occurs, the ongoing task is suspended. After context switch, an
interrupt service routine comes for event handling. Computation
threads have deterministic behavior. Once a task is assigned on
computation thread, the task will be guaranteed to finish at a

Thread 1

Thread 2

Thread 3

Thread 4

Thread 1

Thread 2

…

IF ID EXE MEM WB
IF ID EXE MEM WB

IF ID EXE MEM WB
IF ID EXE MEM WB

IF ID EXE MEM WB

IF ID EXE MEM WB

…

task ()
{

// Variable Declaration
for (;;)
{

Read _ Input _ Queue () ;
// Task Code
Write_ Output _ Queue () ;

}

{

C Model

Untimed TLM Model

RTL Model

Migration

Design Refinement

RTL Prototyping

TLM Prototyping with
Multithreaded Engine

FPGA Prototyping

Concurrency
Extraction with

Explicit
Communications

Software
Harden

Bus Functional Model TLM Prototyping with
Multicore Engine

Migration

Hardware /
Software
Partition

410

predictable time. Context switches will never take place in these
threads regardless of any interrupt. The QoS property is useful
for real-time system. Time critical tasks can be assigned to
computation threads, which concentrate on computation.
Interactive tasks like operating system can be processed on the
system thread, which support complete interrupt handling.
Using the deterministic property of computation threads, real-
time scheduler can be implemented on the system thread, master
computation thread, form a real-time guaranteed system.

C. Simulation kernel
The multithreaded emulation engine can only provide up to

4 time-multiplexing concurrencies by hardware techniques.
Unfortunately, there are generally more than 4 tasks in
applications. A multitasking simulation kernel brings more
concurrency and flexibility to the emulation engine. In this
multitasking kernel, the 4 hardware threads are used in different
manner. The system thread in the emulation engine is used for
system management as the others perform computation tasks.
The system thread takes responsibility for resource management,
task scheduling, task dispatching, and data communication. It
takes control of other computation threads. Some hardware
circuit may be added into the system as hardware threads. Once
the system starts, a ready list is maintained in the kernel. If there
are any computation threads or hardware threads idling, the
kernel will assign an appropriate task from ready list. In the
system, all data communication is processed in system thread as
software FIFO queue. Using communication APIs,
interconnections between tasks are easily fulfilled by software
mechanism.

D. Migration
The prototyping system helps migration from untimed TLM

model to RTL model. After hardware/software partition, data
communications in untimed TLM model are replaced with
hardware queues. In bus functional model, tasks are transferred
from multithreaded emulation engine to individual processor.
As each task is fulfilled using RTL, the processor is replaced by
physical function blocks. Finally, RTL prototyping will be
seamlessly constructed.

Task
Thread 1

Kernel

Task
Thread 2

Hardware
Thread 2

Hardware
Thread 1

Task
Thread 2

(a) (b) (c) (d)

Task
Thread 1

Task
Thread 1

Hardware
Thread 2

Fig. 6 Design migration: (a) Untimed TLM model (b) Bus functional

model (c) One task migrates to hardware (d) A

Figure 6 shows an example for migration. The example
system contains 2 tasks, and there’s data communication from
task 1 to task 2. Initially, untimed TLM model of 6(a) is built;
both tasks are executed in computation threads on emulation
engine, data transfer between tasks are performed through the
kernel. 6(b) shows bus functional model, data communication is
replaced by hardware queue here, and both tasks are performed
by programmable processors. After task 2 is implemented in
RTL, the prototyping system becomes 6(c). After all tasks are
translated into RTL, the emulation engines are eliminated
eventually like 6(d).

IV. EXPERIMENTAL RESULTS
In this section, a JPEG encoder will be used as a design

example to demonstrate the proposed rapid prototyping flow.
Also, comparisons between the multithreaded emulation engine
and OpenRISC core will present here.

A. JPEG Encoder

Fig. 7 JPEG encoder

JPEG [7] is a well-known standard, and it’s broadly used
around the world for picture compression. The flow of JPEG
encoder is as Figure 7. It takes RGB data as input, and output
JPEG stream. Data communication among the system is based
on a macroblock, which comprises 16x16 pixels. After receiving
input, a color space transformation translates RGB input to
YCbCr data by 3x3 matrix multiplication. YCbCr is an
orthogonal domain suitable for compression. DCT further
transform the data from time domain to frequency domain, most
information now concentrate to lower frequency. During the
quantization, coefficients shrink to smaller value. Zigzag scan
records the coefficients from low frequency to high frequency.
Run-length coding pacts the resulting streams into value and
length of zero run. Finally, Huffman coding produces JPEG
streams after several look-up tables. Modifying JPEG encoder
into TLM model using proposed task/queue model, the result is
shown in figure 8. In the JPEG encoder flow, quantization,
zigzag scan, and run-length coding acquire little computation,
and the data communication between them is consistent. Thus
these steps are combined in a single task. Data communication
between tasks is modeled by FIFO queues.

Fig. 8 The TLM model for JPEG encoder

Using the multithreaded emulation engine, the above TLM
model for JPEG encoder can be quickly prototyped on FPGA
platform. We set up software simulation and hardware
prototyping environments for C, TLM, and RTL JPEG encoders
to process QCIF image. Software simulations are realized on a
Pentium D machine operating at 3 GHz. The TLM model
simulation follows SystemC’s simulation framework, and RTL
simulation is done by ModelSim SE simulator. Hardware
prototyping systems are implemented on a Xilinx Virtex II 6000
[8] FPGA board, which can sustain large scale designs. The
FPGA board only supports 35 MHz clock signal, logic must
operate at multiple of 35 MHz on this platform. A 70 MHz
RISC processor is used for C prototyping. This RISC processor
has the same ISA with the multithreaded emulation engine, it
implements forwarding unit and interlocking mechanism for

Color Space
Transformation DCT Quantization

Zigzag Scan Run-length
Coding

Huffman
Coding

RGB
Stream

JPEG
Stream

RGB
Stream

Color Space
Transformation DCT

Quantization + Zigzag + Run-
length Coding

Huffman
Coding JPEG

Stream

411

data hazard. TLM model is prototyped by proposed
multithreaded emulation engine which can run 140 MHz on this
FPGA board. A JPEG encoder RTL is directly downloaded on
FPGA, operating at 35 MHz. The result is listed below in Table
I. Software simulation only shows advantage on C modeling,
while hardware prototyping provides high speed verification on
TLM and RTL modeling. As the design abstraction goes down
following modern SoC design flow, software simulation
provides poor simulation speed. The RTL simulation takes more
than 3 minutes to encode a QCIF frame. Hardware prototyping
system can’t get up with software simulation for C model, but
the processing speed improves as designs are modified toward
real hardware. In the intermediate abstraction, the TLM layer,
the JPEG encoder generates 37.162 QCIF JPEG frames per
second on our prototyping system, while the software SystemC
simulator can only offer 8.253 QCIF frames per second.

Table I PERFORMANCE EVALUATION

B. FPGA implementation
OpenCores is a repository for open source, freely available

IP (Intellectual Property) core. They hold projects to build IPs
for various purposes. The most famous project among them is
the programmable processor cores, OpenRISC [9]. OpenRISC is
basically a single-threaded 32-bit RISC processor which also
has a MIPS-compatible instruction set architecture. Many
properties including register count can be adjusted according to
usage. OpenRISC is programmed and optimized by people from
world wide around for it’s an open source project, everyone can
contribute to the OpenRISC project. We port this free core on
Xilinx Virtex II 6000 using Xilinx ISE v6.2, with speed grade -6,
and all optimization effort levels are set to high, the same
configuration as proposed multithreaded emulation engine.

Table II shows the difference between the two processors.
The proposed engine provides 4 thread as OpenRISC is single-
threaded. Among the 4 threads, at least 3 computation threads
are utilized for computation. In OpenRISC, Instructions are
pipelined to different number of stages. Computation operations
are pipelined into 4 stages, additional one stage is required by
memory access operations. Register files are not included in the
datapath complexity comparison, because the resources are not
compatible between the two processors. The OpenRISC
processor consumes more area for those interconnections-centric
forwarding and interlocking unit. Also, the critical path starts
from write back stage, through forwarding unit, back to
execution stage. The elimination of global interconnections
brings revenue to multithreaded emulation engine, with 43.08%
profit in complexity, and gain 60.67% performance.

Table II OPENRISC V.S. MULTITHREADED EMULATION ENGINE

V. CONCLUSION
In this paper, we propose a processor-based system on

FPGA to provide hardware prototyping. The proposed system
provides FPGA prototyping in the early design stage, even
before hardware/software partition has not been done. This rapid
prototyping system supports high speed verification, much faster
than traditional software simulation on desktop machines.
Multithreaded emulation engine and simulation kernel form the
main framework. The multithreaded emulation engine is a 4-
thread RISC processor with MIPS-compatible ISA. Thanks to
interleaving multithreading, the datapath of emulation engine
gets rid of global interconnection, and is optimized for FPGA.
Compared with OpenRISC, a well-known open source
processor, it runs 60.67% faster using about half hardware
resource. In addition to concept proving and demonstration for
TLM model, the system can further help co-verification of
numerous modules from different abstraction layer. Following
the TLM flow, this proposed system can seamlessly migrate to
RTL FPGA prototyping.

REFERENCES
[1] SystemC Version 2.0 User’s Guide, Open SystemC Initiative

(OSCI), 2001.
[2] Handel-C Language Reference Manul, Celoxica Corp., 2003.
[3] W. Klingauf and R. Gunzel, “From TLM to FPGA: rapid

prototyping with SystemC and transaction level modeling,” in
Proc. ICFPT, 2005, pp. 285-286.

[4] M. Vasilko, L. Machacek, M. Matej, and S. Holloway, “A rapid
prototyping methodology and platform for seamless
communication systems,” in Proc. RSP, Jun. 2001, pp. 70-76.

[5] D. Sweetman, See MIPS Run, 1st Edition, Morgan Kaufmann,
2002.

[6] J. L. Hennessy and D. A. Patterson, Computer Architecture – A
Quantitative Approach, 3rd Edition, Morgan Kaufmann, 2002.

[7] W.B. Pennebarker and J. L. Mitchell, JPEG Still Image
Compression Standard, Van Nostrand Reinhold, 1993.

[8] Virtex-II Platform FPGA User Guide, Xilinx Inc., Mar. 23,
2003.

[9] D. Lampret, OpenRISC 1200 IP Core Specification. Rev. 0.7,
Preliminary Draft. OpenCores, Sep. 6, 2001.

[10] S. A. Edwardws, “The challenges of hardware synthesis from
C-like languages,” in Proc. DATE, 2005, pp. 66-67.

[11] M. Stoian, and G. Stefan, “A multithreading architecture for
low power processors,” in Proc. CAS, 2006, pp. 387-390.

[12] J. J. Labrosse, MicroC/OS-II The Real-Time Kernel, 1st Edition,
CMP Books, 1999.

[13] T. Grotker, S. Liao, G. Martin, and S. Swan, System Design
with SystemC. Kluwer, 2002.

OpenRISC Multithreaded
Emulation Engine

1 3 + 1# Hardware Threads

4 ~ 5 5

32*32- bit 4 * 32* 32-bit# Registers

Pipeline Stages

32- bit ALU Functional Unit

89 MHz 143 MHzOperating Frequency

Datapath Complexity 1,300 CLBs 740 CLBs

C

TLM

RTL

C

TLM

RTL

Target Platform

Classical 5-stage RISC
Processor @ 70 MHz

Multithreaded Emulation
Engine @ 140 MHz

Direct Implementation on
FPGA @ 35 MHz

Pentium D @ 3 GHz Software
Simulation

FPGA
Prototyping

Simulation Speed
(FPS)Model

77. 576

8. 253

0. 005

23. 728

37. 162

84. 250

412

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

