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Abstract

In this thesis, by exploiting the log of call detail records, we present a solution procedure of
mining user moving patterns in a mobile computing system. Specifically, we propose algorithm
LS to accurately determine similar moving sequences from the log of call detail records so as
to obtain moving behavior of users. By exploring the feature of spatial-temporal locality, which
refers to the feature that if the time interval among consecutive calls of a mobile user is small, the
mobile user is likely to move nearby, weidevelop algerithm TC to cluster those call detail records
whose time intevals are very close. In light of the concept of regression, we devise algorithm MF
to derive moving functions of moving behavior. Performance of the proposed solution procedure
is analyzed and sensitivity analysis on‘several design parameters is conducted. It is shown by
our simulation results that user moving patterns obtained by our solution procedure are of very
high quality and in fact very close to real user moving behavior.

Index Terms — user moving patterns, mobile computing, data mining, mobile database.
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Chapter 1

Introduction

Due to recent technology advances, an increasing number of users are accessing various infor-
mation systems via wireless communication. Suéh information systems as stock trading, banking,
wireless conferencing, are being provided by informationservices and application providers[3][5][9][11],
and mobile users are able to access’such information via wireless communication from anywhere
at any time [16][22].

User moving patterns are referred to the areas where users frequently travel in a mobile
computing environment. It is worth mentioning that user moving patterns are particularly
important and are able to provide many benefits in mobile applications. A significant amount of
research efforts has been elaborated upon issues of utilizing user moving patterns in developing
location tracking schemes and data allocation methods [7][15]. We mention in passing that the
authors in [7] developed a new location tracking strategy based on user moving behaviors. The
authors in [15] devised data allocation schemes that are able to allocate data to the areas defined

according to user moving patterns. Clearly, user moving patterns are beneficial on developing



Uid Date Time | Cellid
01/03/2004 | 03:30:21 A

01/03/2004 | 09:12:02 D
01/03/2004 | 20:30:21 G
01/03/2004 | 21:50:31 I

—_| =] =] =

Table 1.1: An example of selected call detail records.

location management and querying strategy in a mobile computing system [7][15][18][20][21].
Thus, it has been recognized as an important issue to develop algorithms to mine user moving
patterns so as to improve the performance of mobile computing systems.

The study in [15] explored the problem of mining user moving patterns with the moving
log of mobile users given. Specifically, in order to capture user moving patterns, a moving log
recording each movement of mobile users ismeeded. In practice, generating the moving log of all
mobile users unavoidably leads to the ingreased storage'cost and degraded performance of mobile
computing systems. Consequently,in this paper, we address the problem of mining user moving
patterns from the existing log of call.detail records(referred to as CDR) of mobile computing
systems. Generally, mobile computing systems generate one call detail record when a mobile
user makes or receives a phone call. Table 1.1 shows an example of selected real call detail
records where Uid is the identification of an individual user that makes or receives a phone call
and Cellid indicates the corresponding base station that serves that mobile user. Thus, a mobile
computing system produces daily a large amount of call detail records which contain hidden
valuable information about the moving behaviors of mobile users. Unlike the moving log keeping
track of the entire moving paths, the log of call detail records only reflects the fragmented moving

behaviors of mobile users. However, such a fragmented moving behavior is of little interest in



a mobile computing environment where one would naturally like to know the complete moving
behaviors of users. Thus, in this paper, with these fragmented moving behaviors hidden in the
log of call detail records, we devise a solution procedure to mine user moving patterns. The
problem we shall study can be best understood by the illustrative example in Figure 1.1 where
the log of call detail records is given in Table 1.1. The dotted line in Figure 1.1 represents the
real moving path of the mobile user and the cells with the symbol of a mobile phone are the areas
where the mobile user made or received phone calls. Explicitly, there are four call detail records
generated in the log of CDRs while the mobile user travels. The corresponding locations of these
call detail records are scattered over the mobile computing environment, showing the limited
information obtained from the log of CDRs when it comes to mining user moving patterns.
Given these fragmented moving behaviers, we éxplore the technique of regression analysis to
generate approximate user moving patterns: (iie. the solid line in Figure 1.1). As shown in
Figure 1.1, the approximate user moving pattern (i.e.;=the solid line) is very close to the real
moving behavior (i.e., the dotted line). In practice, approximate user moving patterns are able
to provide sufficient user moving behaviors. For example, some mobile applications only require
the moving trend of users. Furthermore, if approximate user moving patterns are close to the
real moving paths, one can utilize approximate user moving patterns to predict the real moving
behaviors of mobile users. Consequently, given the log of call detail records, we shall develop in
this paper an efficient approach of mining user moving patterns close to real moving behaviors.

In this paper, we propose a regression-based solution procedure to mine user moving patterns.
Regression analysis is widely applied in many scientific fields including statistics, economy, bi-

ological informatics and data mining. The main objective of regression analysis is that given



Figure 1.1: A moving path and an approximate user moving pattern of a mobile user

data points, a regression line is calculated with the purpose of minimizing the distance between
the line derived and data points. Therefore, regression analysis is very suitable to mine user
moving patterns with call detail records given. Compared to the moving log, call detail records
reflect fragmented moving behavior of mobile users and thus call detail records are very precious
for mining user moving patterns. However, the moving behavior of mobile users may scatter
widely, making the traditional regression analysis:not+directly applicable to call detail records.
To remedy this, three important issues, which-we shall explicitly address and reflect in the design
of a regression-based solution procedure for mining moving patterns, are as follows:
¢ Extracting regular moving behavior
Note that call detail records not only contain the regularity of user moving behaviors
but also have noise data accidentally generated. For example, a mobile user has some call detail
records during his vacation. These call detail records are viewed as noise data in this paper.
Since regression analysis is sensitive to noise data, we shall first rule out the noise data, i.e.
those call detail recorded generated accidentally to increase the accuracy of regression analysis.
¢ Exploiting spatial-temporal locality

Call detail records reflect the fragmented moving behavior of mobile users. If all call



detail records are put in regression analysis, it is likely that the regression line derived is not
very close real moving behaviors of users. Note that the moving behavior of mobile users usually
has spatial-temporal locality, which refers to the feature that if the time interval between two
consecutive calls of a mobile user is small, the mobile user is likely to move nearby. In this paper,
we will exploit spatial-temporal locality in our proposed algorithm.
e Utilizing regression to generate moving patterns
Regression analysis is able to derive the relationship among two or more random variables.
User location is usually specified as 2-dimensional coordinates (i.e., x-axis and y-axis). Since x-
axis and y-axis are not closely correlated in natural, we will properly divide user location into
two dimensions and then utilize regression to derive moving behavior of mobile users.
Consequently, in this paper, we prepose a solution procedure to mine approximate user
moving patterns. Specifically, we shall first determine Similar moving sequences from the log of
call detail records and then these similar, moving sequenees are merged into one moving sequence
(referred to as aggregate moving sequence). It isiworth mentioning that to fully explore the
feature of periodicity and utilize the limited amount of call detail records, algorithm LS (standing
for Large Sequence) devised is able to accurately extract those similar moving sequences in
the sense. By exploiting the feature of spatial-temporal locality, algorithm TC (standing for
Time Clustering) developed should cluster those call detail records whose occurring time are
close. For each cluster of call detail records, algorithm MF (standing for Moving Function),
a regression-based method, devised is employed to derive moving functions of users so as to
generate approximate user moving patterns. Performance of the proposed solution procedure is

analyzed and sensitivity analysis on several design parameters is conducted. It is shown by our



simulation results that approximate user moving patterns obtained by our proposed algorithms
are of very high quality and in fact very close to real moving behaviors of users.

The rest of the thesis is organized as follows. Related works are described in Chapter 2.
Algorithms for mining user moving patterns are devised in Chapter 3. Performance results are

presented in Chapter 4. This thesis concludes with Chapter 5.



Chapter 2

Related Works

A significant amount of research works has been elaborated on mining user moving patterns.
Among these research works, the study.n15]J which is very related to the proposed method,
exploited a moving log of mobile users o mming user moving patterns. Hence, in this chapter,

the prior work of mining user moving patterns in [15] is'briefly described.

2.1 (Generation of Moving Log

In a mobile environment, each mobile user is associated with a home location database which
maintains an up-to-date location data for the mobile user. The location management procedure
for a mobile computing system considered in [15] is similar to the one in IS-41/GSM [4] [12],
which is a two level standard and uses a two-tier system of home location register (HLR) and
visitor location register (VLR) databases. Each mobile user is associated with an HLR. HLR
databases maintain recent mobile users’ records and current locations. A copy of the mobile

user’s record will be created in its local VLR while a mobile user moves out the area maintained



by its HLR. The record in the HLR is updated to reflect the movement of that user. The above
procedure is so-called registration.

In order to capture user moving patterns, a movement log is needed. Each node in the
network topology of a mobile computing system can be viewed as a VLR and each link is viewed
as the connection between VLRs. Specifically speaking, a movement log contains a pair of (old
VLR, new VLR) in the database when registration occurs. For each mobile user, we can obtain

a moving sequence {(O1, N1), (O2, N3),...(O,, Ny,)} from the movement log.

2.2 Incremental Mining for Moving Patterns in a Mobile

Environment

Once the movement log is generated, we shall -convert the log data into multiple subsequences,
each of which represents a maximal moving sequence. After maximal moving sequences are
obtained, we shall find frequent moving; patterns among maximal moving sequences. A sequence
of k movements is called a large k-moving sequence if there are a sufficient number (referred as
support) of maximal moving sequences containing this k-moving sequence. After large moving
sequences are determined, moving patterns can then be obtained in a straightforward manner. A
moving pattern is a large moving sequence that is not contained in any other moving patterns. For
example, let {AB, BC, AE, CG, GH} be the set of large 2-moving sequences and {ABC, CGH}
be the set of large 3-moving sequences. We can obtain the user moving patterns {AE, ABC,
CGH}. As we mentioned above, user moving patterns indicate the areas that users frequently

travel in a mobile computing system.



The overall procedure for mining moving patterns is outlined as follows.

Procedure for incremental mining of moving patterns

Step 1. (Data collection phase) Employing algorithm MM to determine maximal moving
sequences from a set of log data and also the occurrence count of moving pairs.

Step 2. (Incremental mining phase) Employing algorithm LM to determine large moving
sequences for every w maximal moving sequence obtained in Step 1, where w is the retrospec-
tive factor which is an adjustable window size for the recent maximal moving sequences to be
considered.

Step 3. (Pattern generation phase) Determine user moving patterns from large moving
sequences obtained in Step 2, where user moving patterns are those frequent occurring consecutive

subsequences among maximal moving sequences.

Note that in the data collectionr phase, the'oceurrence counts of moving pairs are updated
on-line during registration procedure. Nete‘that algorithm LM is executed to obtain new moving
patterns in an incremental manner for every w maximal moving sequence generated, where the
unit of w is the number of maximal moving sequences. As users travel, their moving patterns

can be discovered incrementally to reflect the user moving behavior.

2.2.1 Finding Maximal Moving Sequences

Given a moving sequence {(O1, N1), (O2, Na), ...(O,, N,,) } of a user, we shall map it into multiple
subsequences, each of which represents a maximal moving sequence. First, we can obtain a
moving sequence {(O1, N1), (Oa, N3), ...(O,, N,)} for each mobile user from the movement log,

where pairs of (O;, NV;) are sorted by time. Then, algorithm MM (standing for maximal moving



Move | Maximal moving sequences output by algorithm MM
AB
ABC
ABCD
ABCDH
ABCDHG
ABCDHGH
ABCDHGHD
ABCDHGHDC
ABCDHGHDCB
ABCDHGHDCBA

—_

O 00| || U x| W| DN

—
]

Table 2.1: An illustrative example for algorithm MM

sequence), whose algorithmic form is given below, is applied to moving sequences of each mobile
user to determine the maximal moving sequences of that user and update the occurrence count
of moving pairs during registration procedure.

In algorithm MM, we use F to“indicate-if a node is revisited and Y to keep the current
maximal moving sequence. Dp denetes the‘database to store all the resulting maximal moving
sequences. S is the home location site of a mobile*user. By the roundtrip model considered
[10][17], the selection of S is either VLR or HLR whose geography area contains the homes of
mobile users. Algorithm MM outputs a maximal moving sequence to Dg until the S is reached.
In algorithm MM, moving sequences are scanned in line 2. A maximal moving sequence is output
and a new maximal moving sequence will be explored (from line 14 to line 18) if MM finds that
N; in the moving pair (O;, N;) is the same as the starting site S. Otherwise, N; is appended into
Y (in line 12) and the occurrence count of (O;,N;) is updated on-line in the database (in line 14).
An example execution scenario by algorithm MM is given in Table 2.1

Algorithm MM /* Algorithm MM for finding maximal moving sequences */
Input: A moving sequence {((Oy, V1), (O2, N3),...(O,, N,,)} of a mobile user.

10



Output: Maximal moving sequences of the mobile user.

begin

1. Set 7 to 1 and string Y to null , where Y is used to keep the current maximal moving sequence
and S is the starting point.

2. while (not end of movings)

3. begin

4. Set A =0; and B = N;;

5. if (A==29)

6. begin

7. Set Y=S;

8. Append B to Y;

9. end

10. else

11. begin

12. Append B to string Y
13. Update the occurrence count of (A,B) in database Dp;
14. if (B==2S5)

15. begin

16. Output string Y to database Dp;
17. Set Y to null;

18. end

19. end

20. 14+

21. end

end

2.2.2 Finding Large Moving Sequences

As long as we obtain the maximal moving sequences, the large moving sequences are next to be
determined. A large moving sequence can be determined from all maximal moving sequences
of each individual user based on its occurrences in those maximal moving sequences. We define
intra-sequence count to be the number of occurrences of a moving sequence within a maximal
moving sequence, and inter-sequence set of a moving sequence to be the set of maximal moving
sequences which contain that moving sequence. The count of a large moving sequence is the

sum of intra-sequence counts from its inter-sequence set. For the example in Table 2.2, the

11



intra-sequence count of GB in {ABCGBCGBA} is 2 and that in {ABGBA} is 1. Also, the
inter-sequence set of GB is {{ABCGBCGBA}, {ABGBA}}. Hence, the count of GB is the
sum of intra-sequence counts in its inter-sequence set (i.e. 2 ( i.e., intra-sequence count in
ABCGBCGBA) +1 (i.e., intra-sequence count in ABGBA)=3). Algorithm LM (standing for
large moving sequence) is then developed for the determination of large moving sequences. Let
L;. represent the set of all large k-moving sequences and Cj be a set of candidate k-moving
sequences.

Algorithm LM /* Algorithm for finding large moving sequences */

Input: A set of w maximal moving sequences of a mobile user.

Output: Large moving sequences of the mobile user.

begin

1. Determining Lo= {large 2-moving sequence} from moving pairs in Cy;

2. for (k=3;Lr1 #0,k++)
3. begin

4. Cy = Ly_1 % Lg_1; /* Generating Cgdfrom L1 * Ly */
5. for w maximal moving sequence S
6. begin
/* Calculating the intra-sequence count of-Cj, within S */
7. intra-sequence =sub-sequence(C};:S);
8. if (intra-sequence>0)
9. Including S into inter-sequence set;
/* sum of occurrence counts in a inter-sequence set */
10. for all candidate ¢ € inter-sequence
11. c.count=c.count+c.intra-sequence;
12. end
13. Ly= {c € C} | c.count>support };
14. end
end

As pointed out in [14], the initial candidate set generation, especially for Lo, is the key issue
to improve the performance of data mining. Since occurrence counts of moving pairs, i.e., Cs,
were updated on-line in the data collection phase, L, can be determined by proper trimming on

O efficiently (line 1), showing the advantage of having on-line update in algorithm MM. Also,

12



Cs Intra-sequence counts Total count from
ABCGBCGBA | ABGBA | the inter-sequence set

AB |1 1 2

BC | 2 - 2

CG |2 - 2

BG | - 1 1

GB |2 1 3

Table 2.2: An example for counting the occurrences of 2-moving sequences

note that Cy can be simply generated from L 1 x Ly_1(line 4). For example, with the set of Lo
being {AB, BK}, we have a C3 as {ABK}. As explained above, the occurrence count of each k-
moving sequence is the sum of intra-sequence counts (from line 5 to line 9 in algorithm LM) in its
inter-sequence set (i.e., line 10 and line 11 in algorithm LM). Note that this step is very different
from that in mining the path traversal patterns [I]swhere there are no loops in a moving sequence
(i.e., the corresponding intra-sequetice count:is always zero). The occurrences of each k-moving
sequence in C}, are determined for the identification of Lg. After the summation of the occurrence
counts in the inter-sequence set from ling 10 to line414n algorithm LM, those k-moving sequences
with counts exceeding the support are qualified as Ly, (line 13 of algorithm LM). Notice that those
large k-moving sequences are obtained from w maximal moving sequences of that mobile user,
showing the incremental mining capability of algorithm LM. For illustrative purposes, with the
maximal moving sequences of a mobile user being { ABCGBCGBA, ABGBA}, Table 2.2 shows
the corresponding counts of C.

As mentioned above, the main drawback of [15] is the generation of moving log for all mobile
users. In practice, generating the moving log of all mobile users unavoidably leads to the increased

storage cost and degraded performance of mobile computing systems. In order to reduce the effort
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of generating moving log, we explore regression for mining user moving patterns from the existing

log of call detail records (referred to as CDR).
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Chapter 3

Mining User Moving Patterns

3.1 Preliminary

In this paper, assume that the moving behavior of mobile users have periodicity and consecutive
movements of mobile users are not too far.-Therefore; if the time interval of two consecutive
CDRs is not too large, the mobile user. is likely to,move nearby. Two location models (i.e.,
geometric model and symbolic model) are available for the location identification techniques
[2]. In geometric model, the location is specified as n-dimensional coordinates (typically n=2 or
3). For example, the location pair returned by global positioning system at time ¢ is expressed
by (X;,Y;) where X, is the value of location in horizontal coordinate axis, whereas Y; is the
corresponding value of location in vertical coordinate axis. In symbolic model, the system uses
logical entities to describe the location spaces. For example, in mobile computing systems, the
base station identification is used to represent the location of mobile users. In our prior work [15],

user moving patterns are represented in symbolic model (i.e., base station identification). In this

15



paper, we will take both two location models into consideration. To facilitate the presentation
of this paper, a moving section is defined as a basic time unit. A moving record is a data
structure that is able to accumulate the counting of base station identifications (henceforth
referred to as item) appearing in call detail records whose occurring time are within the same
moving section. Given a log of call detail records, we will first convert these CDR, data into
multiple moving sequences where a moving sequence is an ordered list of moving records and the
length of the moving sequence is €. The value of € depends on the periodicity of mobile users
and is able to obtain by proposed method in [6]. As a result, a moving sequence i is denoted
by <MR! MR? MR3, .., MR:>, where MR’ is the jth moving record of moving sequence
i. Assume the basic unit of a moving section is four hours and the value of ¢ is six. Given
the log data in Table 1.1, we have the mioving sequence M S, = < {A : 1}, {},{D : 1},{}, {},
{G:1,1:1} >. Time projection sequence-of moving sequence M S; is denoted as T'Py;g,, which is
formulated as T Pys, = < ay, ..., a=>, where MR, # 4} and oy < ... < a,. Explicitly, T Py, is
a sequence of numbers that are the idéntifications.ef. moving sections in which the corresponding
moving records are not empty. Given MS; =< {A : 1},{},{D : 1}, {}, {},{G : 1,1 : 1} >,
one can verify that T'Pygs, =< 1,3,6 >. By utilizing the technique of sequential clustering,
a time projection sequence T'Pyg, is able to divide into several groups in which time intervals
among moving sections are close. For the brevity purpose, a clustered time projection sequence

of T'Pys,, denoted by CT P(T Pyyg,) is represented as < C'Ly,CLs,...,CL, > where C'L; is the

ith group and ¢ = [1, z]. Note that the value of z is determined by our proposed method.
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3.2 Procedure for Mining User Moving Patterns

In Section 3.1, we develop a solution procedure, which is composed of a sequence of algorithms
in the corresponding phases, to mine approximate user moving patterns. Specifically, with the
multiple moving sequences converted from the log of call detail records, we develop algorithm LS
to identify those moving sequences beneficial to discover approximate user moving patterns in
Section 3.2. Then, in Section 3.3, by exploring the spatial-temporal locality, we devise algorithm
TC to cluster call detail records in time projection sequences. In Section 3.4, a regression-based

algorithm MF is devised to mine approximate user moving patterns.

3.2.1 An Overview

The overall procedure for mining moving patterns is outlined as follows:

Procedure for Mining Approximate User Moving Patterns

Step 1. (Data Collection Phase) Employing algorithm LS to mine the regularity of moving
sequences from original call detail records for every w moving sequence, where w is an adjustable
window size for recent moving sequences to be considered.
Step 2. (Time Clustering Phase) Employing algorithm TC to cluster call detail records into
groups and then generate a clustered time projection sequence.
Step 3. (Regression Phase) Employing algorithm MF to derive moving functions of mobile
users from a clustered time projection sequence.

As mentioned before, once the log of call detail records is given, we shall covert the log data
into multiple moving sequences, each of which is an ordered list of moving records. Generally

speaking, call detail records not only contain the regularity of user moving behaviors but also
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have noise data accidentally generated. For example, a mobile user has some call detail records
during his vacation. These call detail records are viewed as noise data in this paper. As mentioned
before, we explore the technique of regression analysis, which is very sensitive to noise data, to
derive moving functions for mobile users. Thus, in data collection phase, algorithm LS is able to
determine similar moving behaviors of mobile users for every w moving sequences. By exploring
the feature of spatial-temporal locality, which refer to the feature that if the time interval between
two consecutive calls of a mobile user is small, the mobile user is likely to move nearby, algorithm
TC is employed to cluster call detailed records with spatial-temporal locality into several groups.
After obtaining the clustering groups, we develop algorithm MF that takes both temporal and
spatial data of similar moving records into consideration to determine approximate user moving

patterns. The details of mining algorithmis are deéscribed in the following subsections.

3.2.2 Data Collection Phase

As mentioned early, in this phase, we shall identify similar moving sequences from a set of w
moving sequences obtained and then merge these similar moving sequences into one aggregate
moving sequence (to be referred to as AMS). Algorithm LS is applied to moving sequences of
each mobile user to determine the aggregate moving sequence that contains a sequence of large
moving records denoted as LM R', where i = [1,¢]. Specifically, large moving record LM R’ is a
set of items with their corresponding counting values if there are a sufficient number of M RZ of
moving sequences containing these items. Such a threshold number is called vertical min_sup
in this paper. Once the aggregate moving sequence is generated from these recent w moving

sequences, we will then compare this aggregate moving sequence with these w moving sequences
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so as to further accumulate the occurring counts of items appearing in each large moving record.
The threshold to identify the similarity between moving sequences and the aggregate moving

sequence is named by match _min_sup. The algorithmic form is given below.

Algorithm LS
input: w moving sequences with their length being ¢,

two threshold:vertical min _sup and match _min__sup
output: Aggregate moving sequence AM S
1 begin
2 forj=1toe
3 for i=1 to w
4 LMR’ =large 1-itemset of M R/;

(by vertical _min__sup)

5 fori=1tow
6 begin
7 match = 0
8 forj=1toe
9 begin . .
10 C(MR!,LMFR) = |xr € MREOWLMR!|,/ |y € MR! U LM R/|;
11 match = match+| M R} |*C(M R} LMRYY:
12 end
13 if match > match _min_sup then
14 accumulate the occurring-counts of
items in the aggregate moving sequence;
15 end
16 end

In algorithm LS (from line 2 to line 4), we first calculate the appearing count of items in
each moving sections of w moving sequences. If the count of an item among w moving sequence
is larger than the value of vertical _min_sup, this item will be weaved into the corresponding
large moving record. After obtaining all large moving records, AMS is then generated and is
represented as < LM R', LM R?,...LM R¢ >, where the length of given moving sequence is £. As
mentioned before, large moving records contains frequent items with their corresponding counts.
Once obtaining the aggregate moving sequence, we should in algorithm LS (from line 5 to line

12) compare this aggregate moving sequence with w moving sequences in order to identify those
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similar moving sequences and then calculate the counts of each item in large moving records.
Note that a moving sequence (respectively, AMS) consists of a sequence of moving records
(respectively, large moving records). Thus, in order to quantity how similar between a moving

sequence (e.g., MS;) and AMS, we shall first measure the closeness between moving record

[{z€ MRINLMR7}|
{yeMRJULMR7}|

MR? and LM R/, denoted by C(MR!, LMR?). C(MR!, LM R/) is formulated as
that returns the normalized value in [0,1]. The larger the value of C(MR!, LM RY) is, the more
closely M R{ resembles LM R’. For example, we set large moving records LM R’ = {a,b,c,d},
MR], = {b,e} and MR} = {a,b,c,d,e}. It can be verified that the value of C(M R}, LM R) is
£ and the value of C(MRJ/, LMR?) is 5. Clearly, MR} is more similar to LM R/ than MRJ is.
Accordingly, the similarity measure of moving sequence M S; and AM S is thus able to formulated
as sim(MS;, AMS) = 32| M R!|«C(MR} TMR/). Given a threshold value match _min_ sup,
for each moving sequence M.S;, if sim(MS;, AMS).> match _min__sup, moving sequence M S;
is identified as a similar moving sequence.<In algorithm LS (from line 13 to line 14), for each
item in large moving records, the occurring count. is accumulated from the corresponding moving
records of those similar moving sequences. Given an illustrative example in Table 3.1, we have
sim(M Sy, AMS) = 1x1+1%14+0+1x5+1%2 = 2. Consequently, we also have sim (M S, AMS) =
3, sim(MS3, AMS) = 2, sim(MSy, AMS) = 3, and sim(MSs, AMS) = 3. Assume that
match _min__sup is 2. Compared with AMS, MS;, M Sy, MSs and MS, are then recognized
as similar moving sequences. After identifying those similar moving sequences, algorithm LS is
able to calculate the occurring count of each item in large moving records. Consider LM R! of

AMS in Table 2 as an example. From those similar moving sequences, the occurring count of

Ain LMR! is calculated as the sum of the count of A in M R{, that in M R} and that in MR}
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1 2 3 4 5
MSy A:14 A:2 F:1 I:2
MSs C:8 | C:1, D:1, F:1 | H:1, G:4
M S5 A:l C:1 D:1 H:1
MSy A:1, B:1 A:1 F:9
M S5 B:4 D:4 | H:1 A:1, B:2
AMS | {A:16, B:1} | {A:3} | ¢ {D:2, F:3} {H:2}

Table 3.1: An example of algorithm LS

(i.e., 14+1+1 = 16). Following the same procedure, we could have AMS <{A:16,B : 1}, {A:
3}, 0,{D :2,F:3},{H :2}> shown in Table 3.1.

It can be verified that algorithm LS is of polynomial time complexity. With w moving
sequences and the length of a moving sequence being ¢, the complexity of algorithm LS can be
expressed by O(ew). Specifically, the complexity of calculating large moving records is O(ew)
and that of extracting regular moving sequencesisic *w * O(1) = O(ew). As a result, the overall

time complexity of algorithm LS is:O(cw).

3.2.3 Time Clustering Phase

Recall that the time projection sequence of moving sequence M.S; is denoted as T'Pyg,, which
is presented as T'Pys, =< 1, ...,, >, where MR}’ # {} and a; < ... < a,. Once obtaining
AM S, we could easily determine T'P4,s5. By exploring the feature of spatial-temporal locality,
we will in this phase develop algorithm TC to generate a clustered time projection sequence of
AMS (i.e., CTP(T Pays))-

In algorithm TC, two threshold values (i.e., d and ¢2) are given in clustering a time projection

sequence. Explicitly, the value of ¢ is used to determine the density of clusters and o2 is utilized to
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make sure that the spread of the time is bounded within 2. Algorithm TC is able to dynamically
determine the number of groups in a time projection sequence.

Algorithm TC
input: Time projection sequence T P4y;s,
threshold § and o2
output: Clustered time projection sequence
CTP(TPans)
1 begin
2 group the numbers whose differences are within §;
3  mark all clusters;
4 while there exist marked clusters and § >=1
5 for each marked clusters C'L;
6
7
8
9

if Var(CL;) < o?
unmark C'L;;
0=06—1;
for all marked clusters C'L;
10 group the numbers whose differences are
within ¢ in C'L;;
11 end while

12 if there exist marked clusters

13 for each marked cluster C'L;

14 k=1,

15 repeat

16 k++;

17 divide evenly C'L; into K groups ;

18 until the spread degree of each group< o?;
19 end

By grouping those numbers together if the difference between two successive numbers is
smaller than the threshold value 9, algorithm TC (from line 2 to line 3) first starts coarsely
clustering T' P45 into several marked clusters. As pointed out before, C'L; denotes the ith marked
cluster. In order to make sure that quality of clusters, variance of C'L;, denoted as Var(CL;),
is defined to measure the distribution of numbers in cluster C'L;. Specifically, Var(CL;) is the

. : 1 1 2
variance of a sequence of numbers. Hence, Var(CL;) is formulated as = 1; 1(nk — w2 1nj) ,
= j:

where n;, is the kth number in C'L; and m is the number of elements in C'L;. As can be seen from
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line 5 to line 7 in algorithm TC, for each cluster C'L;, if Vaar(CL;) is smaller than o2, we unmark
the cluster C'L;. Otherwise, we will decrease ¢ by 1 and with given the value of , algorithm TC
(from line 8 to line 10) will re-cluster those numbers in unmark clusters. Algorithm TC partitions
the numbers of T'P4yss iteratively with the objective of satisfying two threshold values, i.e., ¢
and o2, until there is no marked cluster or § = 0. If there is no marked clusters, CT P(T Payss) is
thus generated. Note that, however, if there are still marked clusters with their variance values
larger than o2, algorithm TC (from line 12 to line 18) will further finely partition these marked
clusters so that the variance for every marked cluster is constrained by the threshold value of 0.
If the threshold value of § is 1, a marked cluster is usually a sequence of consecutive numbers in
which the variance of this marked cluster is still larger than ¢2. To deal with this problem, we
derive the following lemma:
Lemma 1: Given a sequence of conisecutiveintegers Sy with the length being n, the variance of
Sp is &(n* —1).
Proof:

Note that the variance of the sequence of consecutive integers with the same length is the same.
For example, consider two sequences of consecutive integers: {1,2,3,4,5} and {7,8,9,10, 11}.

It can be verified that Var({1,2,3,4,5}) = Var({7,8,9,10,11}). Without loss of generality,

consider the variance Var({1,2,3,...,n}).

Let Z is the average of {1,2,..n}, T = (@)/n — nltl) — Lin Then

Var({1,2,3,...,n}) = %(Z (x —7)?)

_ (n+l)é2n+1) . (Tl—|— 1):2, —|—i‘2



(n+1)((32n—|—1) B (n—;l)2 + (nTl)Q

_ (n+1)(2n+1)  (n+1)?
- 6 4

=5(n+1)(4n+2—3n—3)
=L(n+1)(n—1)

:1—12(n2—1) O

Property: Given a sequence of consecutive integers {1,2,3,...,n} and a positive integer k, the
optimal way of dividing {1,2,3,...,n} into k clusters is to partition {1,2,3,..,n} into k clusters
with each cluster size being [7].
Proof:

Suppose {1,2,3,...,n} is divided into {1,...,t1}{t1 + 1, ..., ta}, .., {tk—1 + 1,...,n}.

Let tg = 1, ty = n, and Var; = Var({ti 1, 6244 1, ..., t;}). Our goal is to find the point ¢y,

k
ta, ..., and t_ywith the purpose of minimizing- f'= > "Var;.
i=1
k k
From lemma 1, Var({1,2,...,n}) = 5 (m*=1)-we have f = > Var; = 15 > ((t; —ti-1)* — 1).
=1

i= i=1

k
To minimize f = > Var;, the cutting points¥y; to, ..., and t;_; are derived by letting first
=1

(2

derivlatives be zero.

3—15]1:4t1—2t2—2t0:0

2L = Aty — 205 — 2, = 0

O — gty — 2 — 2t 5 =0

Ot—1
\
Thus, we can have the following term:
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t, = tz’();-tz
ty = tl;t?)
/ _ lg—atty
k—1 — D)

\

By using substitution method, we could have
4

t; = ity

ty = 2t3

k-1
tk—1 = T lk
\

Therefore, we can get:
(

tl = %TL
tQ = %TL
k—1

tkfl = Tn

\
From the derivation above, the optimal way to divide {1, 2,3, ...,n} into k clusters is to divide

{1,2,3,..,n} into k clusters with each cluster size being [7].

By the above property, given marked cluster C'L;, algorithm TC initially sets k to be 1. Then,
marked cluster C'L; is evenly divided into k groups with each group size [#]. By increasing the
value of k£ each run, algorithm TC is able to partition the marked cluster until the variance of
each partition in the marked cluster CL; satisfies o2.

Consider the execution scenario in Table 3.2 where the time projection sequence is T Payss
=<1,2,3,4,5,9, 10, 14, 17, 18, 20>. Given 0% = 1.6 and J = 3, algorithm TC first roughly

partitions T'P4jss into three clusters. It can been verified in Table 3.2 that two marked clusters

25



o2 | Clusters of a time projection sequence

1.6 | <{1,2,3,4,5,9,10,14,17, 18,20} >

1.6 | <{1,2,3,4,5*,{9,10}, {14, 17, 18,20}* >
1.6 | <{L,2,3,4,5}*,{9, 10}, {14}, {17, 18,20} >
1.6 | <{1,2,3,4,5}*,{9,10}, {14}, {17, 18,20} >
1.6 | <{1,2,3,4,5}*,{9,10}, {14}, {17, 18,20} >
1.6 | <{1,2,3},{4,5},{9, 10}, {14}, {17, 18,20} >

Run

OO N|W W

QY x| WIN| O

Table 3.2: An execution scenario under algorithm TC.

(i.e., {1,2,3,4,5} with Var({1,2,3,4,5})=2 and {14, 17, 18,20} with Var({14,17,18,20})=4.69)
are determined due to that the variance values of these two clusters are larger than 1.6. Then, ¢ is
reduced to 2, and these two marked clusters are examined again. Following the same procedure,
algorithm TC partitions mark clusters until 6 equals 1. As can been seen in Run 4 of Table 3.2,
{1,2,3,4,5} is still a marked cluster with Var({1,2,3,4,5})=2. Therefore, algorithm TC finely
partitions {1,2,3,4,5}. The value of k is-initially. set*to be 1. Since Var({1,2,3,4,5})=2.5 is
larger than o2 (i.e., 1.6), k is incréased to 2.-Then, {1,2,3,4,5} is divided into {1,2,3}{4,5}.
Among these two clusters (i.e., {1,2:3} and {4,5});.{1,2,3} has the larger variance and thus
{1,2, 3} is compared with the value of o%. Note that since the variance of {1,2,3} = 0.67 < 1.6,
algorithm TC stops clustering. After the execution of algorithm TC, a CT P(T Pays) is generated
as <{1,2,3},{4,5},{9,10}, {14}, {17,18,20}>.

The time complexity of algorithm TC is of polynomial time complexity. Explicitly, let T'Pays
have n numbers. In line 2 of algorithm TC, we have O(n) to roughly divide sequence into ¢ the
clusters. Note that from line 4 to line 11 of algorithm TC, we have O(dmt) to group the original
sequence. From 13 to 19, assume that there are still ¢ clusters with m numbers to be refined

and then we have t * m x (m) = O(m?t) to run the clustering process. Since algorithm TC is a
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heuristic algorithm, we consider the worst case when estimating the time complexity of algorithm
TC. Assume that the worst case is that ¢ = m = n, and thus the overall time complexity of

algorithm TC is at most O(n?).

3.2.4 Regression Phase

Given aggregate moving sequence AM S devised by algorithm LS with its clustered time projec-
tion sequence CT P( T Papys) generated by algorithm TC, in this phase, algorithm MF is able
to derive a sequence of moving functions that are able to estimate moving behaviors of mobile
users.

Assume that AM S is <LMR', LM R?, ..., LM R¢> with its clustered time projection sequence
CTP(TPays) = < CLy, CLs, ..., CLy3% where Cl; represents the ith cluster. For each cluster
CL; of CTP( T Paus), we will derive the estimated moving function of mobile users, expressed as
Ei(t) = ( 2;(t),9:(t), valid _time _interval ), where z;(t): (respectively, y;(t)) is a moving function
in x-coordinate axis (respectively, in y-egordinateaxis)) and the moving function is valid for the
time interval indicated in valid time interval.

Without loss of generality, let C'L; be {ti,ts, ...,t,} where t; is one of the moving section in
CL;. As described before, a moving record has the set of the items with their corresponding
counts. Therefore, we could extract those large moving records from AM S to derive the estimated
moving function for each cluster. In order to derive moving functions, the location of base stations
should be represented in geometry model through a map table provided by tele-companies.
Hence, given AM S and a cluster of CTP(T Pays), for each cluster of CTP(T Paps), we could

have geometric coordinates of frequent items with their corresponding counts, which are able to
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represent as (t1,21,y1,w1), (t2,22,Y2,W2), ..(tn,Tn,Yn,wy). Accordingly, for each cluster of CT P(
T Pans), regression analysis is able to derive the corresponding estimated moving function. By
exploring the technique of regression analysis, the moving functions devised are able to generate
the curves close to the data points and thus can be used to estimate users’ moving behaviors.

The regression analysis fits equations of approximating curves to the raw field data [23]. For
a given set of data, the fitting curves are generally not unique. Note that a curve with a minimal
deviation from all data points is desired. Let e; be the error between the ith data point and the
estimated fitting curve. Given a set of data points, the best estimated curve is the one that has
the minimal sum of least square errors (i.e., the minimal value of €, where ¢, = >  €?) [23].
Since the number of calls may be varied for each distinct (¢;,x;,¥;), it is reasonable to derive
moving functions by taking the weights into consideration. Therefore, the regression analysis
with weighted least squares is then applied.

Given a cluster of data points (e.g., (b15@1, Y1, wi)y (t2, T2, Y2, Wa), wooy (tn, T, Yn,Wy)), WE
first consider the derivation of Z(t). Aivm=degree polynomial function z(t) = ag+ a1t +... + a;,t™
will be derived to approximate moving behaviors in x-coordinate axis. Specifically, the regression
coefficients {ayg, a1, ...a,, } are chosen to make the residual sum of squares €, = Z?:l w;e? minimal,
where w; is the weight of the data point (z;, ;) and e; = (z;— (ag+a1t; +aa(t;)%...+am(t;)™)). The
value of m is determined in accordance with the requirement of applications but m is usually

smaller than the number of data points. To facilitate the presentation of our paper, we define

the following terms:
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1 tl <t1)2 (tl)m Qo T €1 w1
1 tg <t2)2 (t2)m ay - i) (&) W9
H = ,a* = , b, = ,€e = , W =
1 t, (tn)2 e ()" A T en Wy,

It can be verified that the residual sum of squares (i_.e., € :-2?:1 w;e?) can be expressed as
¢ = e/ We in linear algebra manner. Note that e is able to be formulated as ( b, — Ha"). Thus,

we have:
¢, =e'We = (b, — Ha") "W (b, — Ha*) = (b, — Ha*)T"vVWvW (b, — Ha*) !

_ (VWb, — VWHa")T(vWh, — vWHa")

= ||[VWb, — vVWHa’||
let A = VWH and B = vVWhb,. It can be seen that the main objective is to minimize

e = ||B — Aa*||. According to the theorem.of least.squares, B — Aa* must be orthogonal to
Aa”* so as to minimize €,[8]. For interest of brévity, the theorem of least squares is omitted in

this paper. Consequently, we can have:

B - Aa" € R(A)t = N(AT)
, where R(A)* represents the orthogonal complement of column space of A
and N(AT) represents the kernel space of AT

AT(B - Aa*) =0

I

ATAa* = ATB

I

ATAa* = ATB is viewed as the normal equation [8]. By substituting A = vVWH and
B = vVWhb,, we could have (vWH)”(vWH)a* = (vVWH)”v/Wb,. By solving the normal

equation, we can a* such that the value of €, is minimized. Therefore, Z:(t) = ag+ a1t + ... + a,t™

1Since W is diagonal and all elements are positive, we can decompose W into v W+y/'W.
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t; | item | x; | i | w;i
1 A 1111
1 B 1|2 1
2 A 1 (1 1
4 D 4 12| 2
4 F 313 | 3
) H 53| 2

Table 3.3: Data points with their corresponding weights.

is obtained. Following the same procedure, we could derive g(t). As a result, for each cluster
of CTP(T'Pans), the estimated moving function E;(t) = (Z(t), 4(t), [t1,t,]) of a mobile user is
devised.

Consider an illustrative example in Table 3.1, where AMS = <{A:16,B:1},{A:3},¢,{D:
2,F : 3}, {H : 2}>. Assume that CTR(T:Pays) =< {1,2,4,5} > and the coordinates of
A, B, D, F and H are (1, 1), (1, 2);, (4,-2), (3; 3) and (5,3), respectively. Given AMS and
CTP(TPays) =< {1,2,4,5} >, we could have the data points with their weights shown in
Table 3.3. By choosing m to be 3i the 3-degree polynomial #(t) = ag + a1t + ast® + aszt®
is derived. Due to that the coefficients ag, a1, as and a3 are unknown, we intend to have
a regression curve with the purpose of minimizing the residual sum error. In other words,

*

a* = (g, a ay as ) should be determined. Since there are five data points with their

11
12 (2 (2

corresponding moving sections are 1, 2, 4, 4 and 5, H = |1 4 (4)2 (4)3 is then obtained.

15 (5 (5
Note that since the data pair (1, 1) appearing twice in Table 3.3, the weight of_(l, 1) should be the
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Figure 3.1: An illustrative example, where the arrow line is the real moving path and the solid
line is estimated by moving functions obtained by algorithm MF.

sum of 16 and 1. The weights of data points are 17, 1, 2, 3 and 2, respectively. Hence, VW is a

diagonal matrix with its diagonal entries toibe [\/ﬁ . V1,v2,4/3, \/5] From Table 3.3, we can get

b, =(1 1 4 3 5)7. By solvingthé equation (v WH)T(vVWH)a* = (vVWH)"vWhb,,
wecangeta* = ( 9333 _2133 0.867 | =0.066 )" Therefore #(t) = 2.333—2.133t+0.867t*—

0.066¢3 is devised to predict the x coordinate-axis of the mobile user from ¢t = 1 tot = 5. Similarly,

Ey =(1 2 1 2 3 3 )%isthen determined from Table 3.3. By solving the normal equation

(VWH)"(VWH)a" = (VWH)"VWb,, we can get a” = ( 2.520 —2.386 1.021 —0.105 )"
Consequently, §(t) = 2.529—2.386t+1.021£2—0.105¢2 is obtained. The estimated moving function
is shown in Figure 3.1. It can be seen that the estimated moving function is very close to the
real moving path, showing the advantage of utilizing regression in mining user moving patterns.

Algorithm MF
input: AMS and clustered time projection sequence
CTP(TPans)
output: A set of moving functions
F(t) = {El(t>7 Ul(t)u E2<t)7 ) Ek@)? Uk<t)}
1 begin
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2 initialize F'(t)=empty;

3 fori=1tok-1

4 begin

5 doing regression on C'L; to generate F;(t);

6 doing regression on C'L;,; to generate E; 1(t);
7 t; =the last number in C'L;;

8 to =the first number in C'L;;

9 using inner interpolation to generate

Ui(t) = (2:(1), 9:(1), (1, t2));

10 insert F;(t),U;(t) and E;1(t) in F(t);
11 end
12 if(1¢ CLy)
13 generate Up(t) and Insert Uy(t) into the head of F(t);
14  if(e ¢ CLy)
15 generate U (t) and Insert Uy (t) into the tail of F'(t);
16 return F(t);
17 end

Given AMS and a cluster of CTP(T'Pays) = <CLy,CLs,...,CLg>, algorithm MF is able
to generate the whole estimated moving, fanetion; denoted as F'(t). F'(t) is represented as {Uy(?),
E\(t), Ui(t), Ea(t), ..., Ex(t), Up(t)}, where- E;j(t) is the estimated moving function in cluster
i of CTP(TPays) and U;(t) is the linkagesmoving function from F;(t) to E;y1(t). It is shown
in algorithm MF (from line 5 to liné6).that forweach cluster of CTP(T Pys), we could de-
rive the corresponding estimated moving functions by the regression method mentioned above.
Note that, however, it is possible that the first moving section is not in C'L;. If ¢y is the first
number of C'Ly and ty # 1, the Uy(t) = {E1(to),[1,t0)} is generated for the boundary condi-
tion. Otherwise, Up(t) will not be valid in F'(¢). The situation of Uy(t) is similar. The linkage
moving function will be calculated by interpolation (in line 9 of algorithm MF). For example,
assume that CTP(TPayrs)=<{1,2,4,5}{7,9,10}>, E(t) =(2.333 — 2.133t + 0.867t* — 0.066¢,
2,520 —2.386¢+1.021¢2 —0.105¢3, [1, 5]) and Ex(t) = (10— 2.17¢+0.17t2, 32— 6.33t+0.33¢2, [7, 10)).

It can be verified that the first number of cluster {1,2,4,5} is 1. Thus Uy(t) is invalid in F(?).

32



¥ [y coordinate

b time |

Figure 3.2: A snapshot of complete moving function F'(t)

The last number of {1,2,4,5} is 5 and the first number of cluster {7,9,10} is 7. Thus, a linkage
moving function should be generated by inner interpolation. From FEj(¢), at time 5, we can have
a data point (z = 5.09, y = 3). At time.7ja'data point ( z = 3.14, y = 3.86 ) is generated by
applying E»(7). By inner interpolation, 'welcould have U, () = (9.965 4 342=209¢ 0.85 4 385-5¢,
(5,7)). Similarly, Us(t) can be produced. Thus; we couldhave F'(t) = {E\(t), U1(t), Ea(t), Ua(t)}.
The snapshot of F(t) is shown in Figure 3.2.

When using F'(t) to predict the location of a mobile user, we will only use the estimated
moving function whose time interval includes the given time ¢. For the above example F(t) =
{E1(t), Ur(t), Ex(t), Us(t)}, given the time to be 4, only E;(t) will be used to predict the location
since the given time 4 is within the time interval of F;(t). Once the estimated moving function is
obtained, it is straightforward to generate the approximate moving patterns in symbolic model.
By utilizing the estimated moving function derived, the location of a mobile user is predicted as
(x4, y¢). Since each base station is aware of its location and converge area, as shown in Figure 3.3,

we can obtain transform the geometric location (z, ;) into base station D in symbolic model.

33



Figure 3.3: An illustrative example for transformation from geometric model to symbolic model

Note that the time complexity of algorithm MF is of polynomial time complexity. Specifi-
cally, with the maximal size in row/column being n, the time complexity of solving the normal
equation by Strassen’s algorithm is ©(n'¢7) [19]. Moreover, the interpolation by Lagrange’s for-
mula requires ©(m?), where m represents the number of points involved in the interpolation [19].
Since n is usually larger than m, the'value of ©(n'87) is the dominating factor of the complexity

of algorithm MF.
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Chapter 4

Performance Study

In this section, the effectiveness of mining approximate user moving patterns by call detail records
is evaluated empirically. The simulation.midédel for,the mobile system considered is described in
Section 4.1. Section 4.2 is devoted: to experimental results and comparison with the original
algorithm of mining moving patterns [15]. <Finally, sensitivity analysis of mining approximate

user moving patterns is shown in Section 4.3.

4.1 Simulation Model for a Mobile System

To simulate base stations in a mobile computing system, we use an eight by eight mesh network,
where each node represents one base station and there are hence 64 base stations in this model
[13][15]. A moving path is a sequence of base stations travelled by a mobile user. The number of
movements made by a mobile user during one moving section is modeled as a uniform distribution
between m f-2 and m f+2. There are 10,000 users considered in our simulation model. According

to Law of Large Number[23], we repeat each experiment for 20 times and every result presented
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in the figures is the average performance of 20 experimental results. Explicitly, the larger the
value of mf is, the more frequently a mobile user moves. To model user calling behavior, the
calling frequency is employed to determine the number of calls during one moving section. If
the value of cf is large, the number of calls for a mobile user will increase. Similar to [15], the
mobile user moves to one of its neighboring base stations depending on a probabilistic model. To
make sure the periodicity of moving behaviors, the probability that a mobile user moves to the
base station where this user came from is modeled by Py, and the probability that the mobile
user routes to the other base stations is determined by (1-Ppex)/(n-1) where n is the number of
possible base stations this mobile user can move to. We assign two Py, to each users to present
the major and minor moving behavior respectively. As mentioned before, the method of mining
moving patterns in [15], denoted as UMiP, is ifaplemented for the comparison purposes. For
interest of brevity, our proposed soliition procedure:of mining user moving patterns is expressed
by AUMP (standing for approximate user moving patterns). The location is represented as
the identifications of base stations. Te measure the prediction accuracy, we use the hop count
(denotes as hn), which is measured by the number of base stations, to represent the distance from
the prediction location to the actual location of the mobile user. Intuitively, a smaller value of hn

implies that the more accurate prediction is achieved. It is worth mentioning that the expected

value of hop count per call, denoted by E(hn/call), is #’2}72 where cf /2 is the expected value
of the number of CDR in a time unit. Thus a precise ratio is defined as 1 — W Precise

ratio is a measurement considering not only the distance between the moving patterns and real
paths but also the ratio of the distance and the whole network size. Table 4.1 summarizes the

definitions for some primary simulation parameters and the measurements of performance.
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Notation Definition Value

w retrospective factor various value used
Ms the number of moving sections in a moving sequence | various value used
Mf moving frequency various value used
cf call frequency various value used
o? variance threshold various value used

vertical _min__sup

threshold of vertical minimal support

various value used

match _min__sup

threshold of match minimal support

various value used

Table 4.1: The parameters and measurements used in the simulation
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Figure 4.1: The precise ratio of UMPand’AUMP with the value of m f varied.

4.2 Experiments of UMP and AUMP

To conduct the experiments to evaluate UM P and AUM P, we set the value of w to be 10, the

value of ¢f to be 3 and the value of € to be 12. The precise ratio of UM P and AUM P with

various values of m f are shown in Figure 4.1. It can be seen that by having a moving log, which

contains the entire moving behaviors of users, the precise ratio of UM P is higher than that of

AUMP.

As mentioned before, UM P is able to mine user moving patterns from a set of moving log

in which every movement of mobile user is recorded. Note, however, that though performing
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Figure 4.2: The cost ratios of AUMP and UMP with the moving frequency varied

better than AUM P in the hop count, UM P incurs more amount of data in the moving log. In

order to reduce the amount of data used in mining user moving patterns, AUM P explores the

precise ratio

» Tmeunt of Tog data> m€ans the prediction

log of call detail records. The cost ratio for a user, i.e.
accuracy gained by having the additional‘amount of log data. Figure 4.2 shows the cost ratios of
UMP and AUM P. Notice that AUM P has/larger cost ratios than UM P, showing that AUM P

employs the amount of log data more cost-efficiently to-increase the prediction accuracy.

4.3 Sensitivity Analysis of AUMP

The impact of varying the values of w for mining approximate moving patterns is next investi-
gated. Without loss of generality, we set the value of € to be 12, that of mf to be 3, and the
values of ¢f to be 1, 3 and 5. Both wvertical _min__sup and match _min__sup are set to 20% ,
the value of ¢ is set to be 3 , and o2 is set to be 0.25. With this setting, the experimental results
are shown in Figure 4.3.

As can be seen from Figure 4.3, the precise ratio of AUMP increases as the value of w

increases. This is due to that as the value of w increases, meaning that the number of moving
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Figure 4.3: The performance of AUMP with the value of w varied.
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Figure 4.4: The precise ratio of AUMP with vertical min sup and match min sup varied.

sequences considered in AUMP increases, AUMP is able to effectively extract more information
from the log of call detail records. Note that with a given the value of w, the precise ratio of
AUMP with a larger value of ¢f is bigger, showing that the log of data has more information
when the value of c¢f increases. Clearly, for mobile users having high call frequencies, the value
of w is able to set smaller in order to quickly obtain moving patterns. However, for mobile users
having low call frequencies, the value of w should be set larger so as to increase the accuracy of

moving patterns mined by AUM P.
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Figure 4.5: The precise ratio of AUMP with the values of match min sup and the variance
threshold varied.

Now, the experiments of varying the values of vertical muin_sup and match min_ sup for
algorithm LS are conducted where we set the value of c¢f to be 5, that of mf to be 1, that
of € to be 12 and that of 02 to be 0.25«+Therprecise ratio of AUM P with various values of
vertical _min_sup and match _min_  sup lare shown in Figure 4.4, where it can be seen that
the precise ratio of AUM P with‘a given @ertical min sup tends to increase as the value
of match _min_sup increases. The reason is that increasing the match min _sup is able to
efficiently filter out call detail records that are viewed as noise data. As such, the precision of
AUMP with higher match _min__sup is larger. In addition, with a given match min_ sup,
the precise ratio of AUM P increases, as the value of vertical min _sup increases. This is due
to that as the value of vertical min_sup increases, the more frequent set of base stations is
determined from a set of call detail records. Thus, the frequent set of base stations, referring to
areas that users more frequently travel, are very helpful to approximate user moving patterns.

As described before, the value of o2 for algorithm TC affects the precision of time clustering

in AUMP. To conduct the experiments to evaluate AUM P with the values of 0% varied, we set
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Figure 4.6: The precise ratio of AUMP with the values of vertical min sup and variance thresh-
old varied.

the value of € to be 12, that of mf to be 3, that of vertical min_sup to be 20%, and the values
of match _min__sup to be 1, 3 and 5, respectively. Figure 4.5 shows the precise ratio of AUM P
with the values of match _min_ sup and variance threshold o2 varied. As can been seen in Figure
4.5, the precise ratio of AUM P tends.to increase-as the value of variance threshold o2 increases.
This is mainly due to the reason that with larger valués of match _min_sup, algorithm LS is
likely to identify those similar moving sequences-and thus the time projection of the aggregate
moving sequence is very related to real moving behaviors of mobile users. Therefore, the precise
ratio of AUM P increases drastically when larger values of match _min_ sup.

In addition, the hop counts of AU M P with various values of vertical min _sup and variance
threshold o2 are shown in Figure 4.6, where the match min_sup is set to be 20%. It can be
seen that with a given value of variance threshold o2, the larger the value of vertical min_ sup,

the larger the precise ratio of AUM P.
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Chapter 5

Conclusions

In this paper, without increasing the overhead of generating the moving log, we presented a
new mining method to mine user movingypattetns,from the existing log of call detail records of
mobile computing systems. Specifically, we proposed algorithm LS to capture similar moving
sequences from the log of call detailrecords and then thése similar moving sequences are merged
into the aggregate moving sequence. “Algorithm LS ‘devised is able to accurately extract those
similar moving sequences in the sense that those similar moving sequences are determined by
two adjustable threshold values (i.e., vertical _min__sup and match _min_sup) when deriving
the aggregate moving sequence from a set of call detail records. By exploring the feature of
spatial-temporal locality, which refers to the feature that if the time intervals among consecutive
calls of a mobile user is small, the mobile user is likely to move nearby, algorithm TC proposed
is able to cluster those call detail records whose occurring time are very close from the aggregate
moving sequence. For each cluster of the aggregate moving sequence, algorithm MF devised is

employed to derive the estimated moving function, which is able to generate approximate user

42



moving patterns. Performance of the proposed algorithm was analyzed and sensitivity analysis
on several design parameters was conducted. It is shown by our simulation results that the
approximate user moving patterns achieved by our proposed algorithms are of very high quality

and in fact very close to real user moving behaviors.
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