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Abstract

In this thesis, by exploiting the log of call detail records, we present a solution procedure of

mining user moving patterns in a mobile computing system. Specifically, we propose algorithm

LS to accurately determine similar moving sequences from the log of call detail records so as

to obtain moving behavior of users. By exploring the feature of spatial-temporal locality, which

refers to the feature that if the time interval among consecutive calls of a mobile user is small, the

mobile user is likely to move nearby, we develop algorithm TC to cluster those call detail records

whose time intevals are very close. In light of the concept of regression, we devise algorithm MF

to derive moving functions of moving behavior. Performance of the proposed solution procedure

is analyzed and sensitivity analysis on several design parameters is conducted. It is shown by

our simulation results that user moving patterns obtained by our solution procedure are of very

high quality and in fact very close to real user moving behavior.

Index Terms – user moving patterns, mobile computing, data mining, mobile database.
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Chapter 1

Introduction

Due to recent technology advances, an increasing number of users are accessing various infor-

mation systems via wireless communication. Such information systems as stock trading, banking,

wireless conferencing, are being provided by information services and application providers[3][5][9][11],

and mobile users are able to access such information via wireless communication from anywhere

at any time [16][22].

User moving patterns are referred to the areas where users frequently travel in a mobile

computing environment. It is worth mentioning that user moving patterns are particularly

important and are able to provide many benefits in mobile applications. A significant amount of

research efforts has been elaborated upon issues of utilizing user moving patterns in developing

location tracking schemes and data allocation methods [7][15]. We mention in passing that the

authors in [7] developed a new location tracking strategy based on user moving behaviors. The

authors in [15] devised data allocation schemes that are able to allocate data to the areas defined

according to user moving patterns. Clearly, user moving patterns are beneficial on developing
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Uid Date Time Cellid
1 01/03/2004 03:30:21 A
1 01/03/2004 09:12:02 D
1 01/03/2004 20:30:21 G
1 01/03/2004 21:50:31 I

Table 1.1: An example of selected call detail records.

location management and querying strategy in a mobile computing system [7][15][18][20][21].

Thus, it has been recognized as an important issue to develop algorithms to mine user moving

patterns so as to improve the performance of mobile computing systems.

The study in [15] explored the problem of mining user moving patterns with the moving

log of mobile users given. Specifically, in order to capture user moving patterns, a moving log

recording each movement of mobile users is needed. In practice, generating the moving log of all

mobile users unavoidably leads to the increased storage cost and degraded performance of mobile

computing systems. Consequently, in this paper, we address the problem of mining user moving

patterns from the existing log of call detail records (referred to as CDR) of mobile computing

systems. Generally, mobile computing systems generate one call detail record when a mobile

user makes or receives a phone call. Table 1.1 shows an example of selected real call detail

records where Uid is the identification of an individual user that makes or receives a phone call

and Cellid indicates the corresponding base station that serves that mobile user. Thus, a mobile

computing system produces daily a large amount of call detail records which contain hidden

valuable information about the moving behaviors of mobile users. Unlike the moving log keeping

track of the entire moving paths, the log of call detail records only reflects the fragmented moving

behaviors of mobile users. However, such a fragmented moving behavior is of little interest in
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a mobile computing environment where one would naturally like to know the complete moving

behaviors of users. Thus, in this paper, with these fragmented moving behaviors hidden in the

log of call detail records, we devise a solution procedure to mine user moving patterns. The

problem we shall study can be best understood by the illustrative example in Figure 1.1 where

the log of call detail records is given in Table 1.1. The dotted line in Figure 1.1 represents the

real moving path of the mobile user and the cells with the symbol of a mobile phone are the areas

where the mobile user made or received phone calls. Explicitly, there are four call detail records

generated in the log of CDRs while the mobile user travels. The corresponding locations of these

call detail records are scattered over the mobile computing environment, showing the limited

information obtained from the log of CDRs when it comes to mining user moving patterns.

Given these fragmented moving behaviors, we explore the technique of regression analysis to

generate approximate user moving patterns (i.e., the solid line in Figure 1.1). As shown in

Figure 1.1, the approximate user moving pattern (i.e., the solid line) is very close to the real

moving behavior (i.e., the dotted line). In practice, approximate user moving patterns are able

to provide sufficient user moving behaviors. For example, some mobile applications only require

the moving trend of users. Furthermore, if approximate user moving patterns are close to the

real moving paths, one can utilize approximate user moving patterns to predict the real moving

behaviors of mobile users. Consequently, given the log of call detail records, we shall develop in

this paper an efficient approach of mining user moving patterns close to real moving behaviors.

In this paper, we propose a regression-based solution procedure to mine user moving patterns.

Regression analysis is widely applied in many scientific fields including statistics, economy, bi-

ological informatics and data mining. The main objective of regression analysis is that given

3



Figure 1.1: A moving path and an approximate user moving pattern of a mobile user

data points, a regression line is calculated with the purpose of minimizing the distance between

the line derived and data points. Therefore, regression analysis is very suitable to mine user

moving patterns with call detail records given. Compared to the moving log, call detail records

reflect fragmented moving behavior of mobile users and thus call detail records are very precious

for mining user moving patterns. However, the moving behavior of mobile users may scatter

widely, making the traditional regression analysis not directly applicable to call detail records.

To remedy this, three important issues, which we shall explicitly address and reflect in the design

of a regression-based solution procedure for mining moving patterns, are as follows:

• Extracting regular moving behavior

Note that call detail records not only contain the regularity of user moving behaviors

but also have noise data accidentally generated. For example, a mobile user has some call detail

records during his vacation. These call detail records are viewed as noise data in this paper.

Since regression analysis is sensitive to noise data, we shall first rule out the noise data, i.e.

those call detail recorded generated accidentally to increase the accuracy of regression analysis.

• Exploiting spatial-temporal locality

Call detail records reflect the fragmented moving behavior of mobile users. If all call

4



detail records are put in regression analysis, it is likely that the regression line derived is not

very close real moving behaviors of users. Note that the moving behavior of mobile users usually

has spatial-temporal locality, which refers to the feature that if the time interval between two

consecutive calls of a mobile user is small, the mobile user is likely to move nearby. In this paper,

we will exploit spatial-temporal locality in our proposed algorithm.

• Utilizing regression to generate moving patterns

Regression analysis is able to derive the relationship among two or more random variables.

User location is usually specified as 2-dimensional coordinates (i.e., x-axis and y-axis). Since x-

axis and y-axis are not closely correlated in natural, we will properly divide user location into

two dimensions and then utilize regression to derive moving behavior of mobile users.

Consequently, in this paper, we propose a solution procedure to mine approximate user

moving patterns. Specifically, we shall first determine similar moving sequences from the log of

call detail records and then these similar moving sequences are merged into one moving sequence

(referred to as aggregate moving sequence). It is worth mentioning that to fully explore the

feature of periodicity and utilize the limited amount of call detail records, algorithm LS (standing

for Large Sequence) devised is able to accurately extract those similar moving sequences in

the sense. By exploiting the feature of spatial-temporal locality, algorithm TC (standing for

Time Clustering) developed should cluster those call detail records whose occurring time are

close. For each cluster of call detail records, algorithm MF (standing for Moving Function),

a regression-based method, devised is employed to derive moving functions of users so as to

generate approximate user moving patterns. Performance of the proposed solution procedure is

analyzed and sensitivity analysis on several design parameters is conducted. It is shown by our
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simulation results that approximate user moving patterns obtained by our proposed algorithms

are of very high quality and in fact very close to real moving behaviors of users.

The rest of the thesis is organized as follows. Related works are described in Chapter 2.

Algorithms for mining user moving patterns are devised in Chapter 3. Performance results are

presented in Chapter 4. This thesis concludes with Chapter 5.
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Chapter 2

Related Works

A significant amount of research works has been elaborated on mining user moving patterns.

Among these research works, the study in [15], which is very related to the proposed method,

exploited a moving log of mobile users to mining user moving patterns. Hence, in this chapter,

the prior work of mining user moving patterns in [15] is briefly described.

2.1 Generation of Moving Log

In a mobile environment, each mobile user is associated with a home location database which

maintains an up-to-date location data for the mobile user. The location management procedure

for a mobile computing system considered in [15] is similar to the one in IS-41/GSM [4] [12],

which is a two level standard and uses a two-tier system of home location register (HLR) and

visitor location register (VLR) databases. Each mobile user is associated with an HLR. HLR

databases maintain recent mobile users’ records and current locations. A copy of the mobile

user’s record will be created in its local VLR while a mobile user moves out the area maintained

7



by its HLR. The record in the HLR is updated to reflect the movement of that user. The above

procedure is so-called registration.

In order to capture user moving patterns, a movement log is needed. Each node in the

network topology of a mobile computing system can be viewed as a VLR and each link is viewed

as the connection between VLRs. Specifically speaking, a movement log contains a pair of (old

VLR, new VLR) in the database when registration occurs. For each mobile user, we can obtain

a moving sequence {(O1, N1), (O2, N2),...(On, Nn)} from the movement log.

2.2 Incremental Mining for Moving Patterns in a Mobile

Environment

Once the movement log is generated, we shall convert the log data into multiple subsequences,

each of which represents a maximal moving sequence. After maximal moving sequences are

obtained, we shall find frequent moving patterns among maximal moving sequences. A sequence

of k movements is called a large k-moving sequence if there are a sufficient number (referred as

support) of maximal moving sequences containing this k-moving sequence. After large moving

sequences are determined, moving patterns can then be obtained in a straightforward manner. A

moving pattern is a large moving sequence that is not contained in any other moving patterns. For

example, let {AB, BC, AE, CG, GH} be the set of large 2-moving sequences and {ABC, CGH}

be the set of large 3-moving sequences. We can obtain the user moving patterns {AE, ABC,

CGH}. As we mentioned above, user moving patterns indicate the areas that users frequently

travel in a mobile computing system.

8



The overall procedure for mining moving patterns is outlined as follows.

Procedure for incremental mining of moving patterns

Step 1. (Data collection phase) Employing algorithm MM to determine maximal moving

sequences from a set of log data and also the occurrence count of moving pairs.

Step 2. (Incremental mining phase) Employing algorithm LM to determine large moving

sequences for every w maximal moving sequence obtained in Step 1, where w is the retrospec-

tive factor which is an adjustable window size for the recent maximal moving sequences to be

considered.

Step 3. (Pattern generation phase) Determine user moving patterns from large moving

sequences obtained in Step 2, where user moving patterns are those frequent occurring consecutive

subsequences among maximal moving sequences.

Note that in the data collection phase, the occurrence counts of moving pairs are updated

on-line during registration procedure. Note that algorithm LM is executed to obtain new moving

patterns in an incremental manner for every w maximal moving sequence generated, where the

unit of w is the number of maximal moving sequences. As users travel, their moving patterns

can be discovered incrementally to reflect the user moving behavior.

2.2.1 Finding Maximal Moving Sequences

Given a moving sequence {(O1, N1), (O2, N2), ...(On, Nn)} of a user, we shall map it into multiple

subsequences, each of which represents a maximal moving sequence. First, we can obtain a

moving sequence {(O1, N1), (O2, N2), ...(On, Nn)} for each mobile user from the movement log,

where pairs of (Oi, Ni) are sorted by time. Then, algorithm MM (standing for maximal moving

9



Move Maximal moving sequences output by algorithm MM
1 AB
2 ABC
3 ABCD
4 ABCDH
5 ABCDHG
6 ABCDHGH
7 ABCDHGHD
8 ABCDHGHDC
9 ABCDHGHDCB
10 ABCDHGHDCBA

Table 2.1: An illustrative example for algorithm MM

sequence), whose algorithmic form is given below, is applied to moving sequences of each mobile

user to determine the maximal moving sequences of that user and update the occurrence count

of moving pairs during registration procedure.

In algorithm MM, we use F to indicate if a node is revisited and Y to keep the current

maximal moving sequence. DF denotes the database to store all the resulting maximal moving

sequences. S is the home location site of a mobile user. By the roundtrip model considered

[10][17], the selection of S is either VLR or HLR whose geography area contains the homes of

mobile users. Algorithm MM outputs a maximal moving sequence to DF until the S is reached.

In algorithm MM, moving sequences are scanned in line 2. A maximal moving sequence is output

and a new maximal moving sequence will be explored (from line 14 to line 18) if MM finds that

Ni in the moving pair (Oi, Ni) is the same as the starting site S. Otherwise, Ni is appended into

Y (in line 12) and the occurrence count of (Oi,Ni) is updated on-line in the database (in line 14).

An example execution scenario by algorithm MM is given in Table 2.1

Algorithm MM /* Algorithm MM for finding maximal moving sequences */
Input: A moving sequence {((O1, N1), (O2, N2), ...(On, Nn)} of a mobile user.

10



Output: Maximal moving sequences of the mobile user.
begin
1. Set i to 1 and string Y to null , where Y is used to keep the current maximal moving sequence
and S is the starting point.

2. while (not end of movings)
3. begin
4. Set A = Oi and B = Ni;
5. if (A == S )
6. begin
7. Set Y=S;
8. Append B to Y;
9. end
10. else
11. begin
12. Append B to string Y ;
13. Update the occurrence count of (A,B) in database DF ;
14. if (B == S )
15. begin
16. Output string Y to database DF ;
17. Set Y to null;
18. end
19. end
20. i++;
21. end
end

2.2.2 Finding Large Moving Sequences

As long as we obtain the maximal moving sequences, the large moving sequences are next to be

determined. A large moving sequence can be determined from all maximal moving sequences

of each individual user based on its occurrences in those maximal moving sequences. We define

intra-sequence count to be the number of occurrences of a moving sequence within a maximal

moving sequence, and inter-sequence set of a moving sequence to be the set of maximal moving

sequences which contain that moving sequence. The count of a large moving sequence is the

sum of intra-sequence counts from its inter-sequence set. For the example in Table 2.2, the
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intra-sequence count of GB in {ABCGBCGBA} is 2 and that in {ABGBA} is 1. Also, the

inter-sequence set of GB is {{ABCGBCGBA}, {ABGBA}}. Hence, the count of GB is the

sum of intra-sequence counts in its inter-sequence set (i.e. 2 ( i.e., intra-sequence count in

ABCGBCGBA) +1 (i.e., intra-sequence count in ABGBA)=3). Algorithm LM (standing for

large moving sequence) is then developed for the determination of large moving sequences. Let

Lk represent the set of all large k-moving sequences and Ck be a set of candidate k-moving

sequences.

Algorithm LM /* Algorithm for finding large moving sequences */
Input: A set of w maximal moving sequences of a mobile user.
Output: Large moving sequences of the mobile user.
begin
1. Determining L2= {large 2-moving sequence} from moving pairs in C2;
2. for (k = 3;Lk−1 6= 0, k ++)
3. begin
4. Ck = Lk−1 ∗ Lk−1; /* Generating Ck from Lk−1 ∗ Lk−1 */
5. for w maximal moving sequence S
6. begin

/* Calculating the intra-sequence count of Ck within S */
7. intra-sequence =sub-sequence(Ck, S);
8. if (intra-sequence>0)
9. Including S into inter-sequence set;

/* sum of occurrence counts in a inter-sequence set */
10. for all candidate c ∈ inter-sequence
11. c.count=c.count+c.intra-sequence;
12. end
13. Lk= {c ∈ Ck | c.count>support };
14. end
end

As pointed out in [14], the initial candidate set generation, especially for L2, is the key issue

to improve the performance of data mining. Since occurrence counts of moving pairs, i.e., C2,

were updated on-line in the data collection phase, L2 can be determined by proper trimming on

C2 efficiently (line 1), showing the advantage of having on-line update in algorithm MM. Also,
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C2 Intra-sequence counts Total count from
ABCGBCGBA ABGBA the inter-sequence set

AB 1 1 2
BC 2 - 2
CG 2 - 2
BG - 1 1
GB 2 1 3

Table 2.2: An example for counting the occurrences of 2-moving sequences

note that Ck can be simply generated from Lk−1 ∗ Lk−1(line 4). For example, with the set of L2

being {AB, BK}, we have a C3 as {ABK}. As explained above, the occurrence count of each k-

moving sequence is the sum of intra-sequence counts (from line 5 to line 9 in algorithm LM) in its

inter-sequence set (i.e., line 10 and line 11 in algorithm LM). Note that this step is very different

from that in mining the path traversal patterns [1] where there are no loops in a moving sequence

(i.e., the corresponding intra-sequence count is always zero). The occurrences of each k-moving

sequence in Ck are determined for the identification of Lk. After the summation of the occurrence

counts in the inter-sequence set from line 10 to line 11 in algorithm LM, those k-moving sequences

with counts exceeding the support are qualified as Lk (line 13 of algorithm LM). Notice that those

large k-moving sequences are obtained from w maximal moving sequences of that mobile user,

showing the incremental mining capability of algorithm LM. For illustrative purposes, with the

maximal moving sequences of a mobile user being {ABCGBCGBA,ABGBA}, Table 2.2 shows

the corresponding counts of C2.

As mentioned above, the main drawback of [15] is the generation of moving log for all mobile

users. In practice, generating the moving log of all mobile users unavoidably leads to the increased

storage cost and degraded performance of mobile computing systems. In order to reduce the effort
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of generating moving log, we explore regression for mining user moving patterns from the existing

log of call detail records (referred to as CDR).
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Chapter 3

Mining User Moving Patterns

3.1 Preliminary

In this paper, assume that the moving behavior of mobile users have periodicity and consecutive

movements of mobile users are not too far. Therefore, if the time interval of two consecutive

CDRs is not too large, the mobile user is likely to move nearby. Two location models (i.e.,

geometric model and symbolic model) are available for the location identification techniques

[2]. In geometric model, the location is specified as n-dimensional coordinates (typically n=2 or

3). For example, the location pair returned by global positioning system at time t is expressed

by (Xt, Yt) where Xt is the value of location in horizontal coordinate axis, whereas Yt is the

corresponding value of location in vertical coordinate axis. In symbolic model, the system uses

logical entities to describe the location spaces. For example, in mobile computing systems, the

base station identification is used to represent the location of mobile users. In our prior work [15],

user moving patterns are represented in symbolic model (i.e., base station identification). In this
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paper, we will take both two location models into consideration. To facilitate the presentation

of this paper, a moving section is defined as a basic time unit. A moving record is a data

structure that is able to accumulate the counting of base station identifications (henceforth

referred to as item) appearing in call detail records whose occurring time are within the same

moving section. Given a log of call detail records, we will first convert these CDR data into

multiple moving sequences where a moving sequence is an ordered list of moving records and the

length of the moving sequence is ε. The value of ε depends on the periodicity of mobile users

and is able to obtain by proposed method in [6]. As a result, a moving sequence i is denoted

by <MR1i ,MR2i ,MR3i , ...,MRε
i>, where MRj

i is the jth moving record of moving sequence

i. Assume the basic unit of a moving section is four hours and the value of ε is six. Given

the log data in Table 1.1, we have the moving sequence MS1 = < {A : 1}, {}, {D : 1}, {}, {},

{G : 1, I : 1} >. Time projection sequence of moving sequenceMSi is denoted as TPMSi , which is

formulated as TPMSi = < α1, ..., αn >, whereMR
αj
i 6= {} and α1 < ... < αn. Explicitly, TPMSi is

a sequence of numbers that are the identifications of moving sections in which the corresponding

moving records are not empty. Given MS1 =< {A : 1}, {}, {D : 1}, {}, {}, {G : 1, I : 1} >,

one can verify that TPMS1 =< 1, 3, 6 >. By utilizing the technique of sequential clustering,

a time projection sequence TPMSi is able to divide into several groups in which time intervals

among moving sections are close. For the brevity purpose, a clustered time projection sequence

of TPMSi, denoted by CTP (TPMSi) is represented as < CL1, CL2, ..., CLx > where CLi is the

ith group and i = [1, x]. Note that the value of x is determined by our proposed method.
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3.2 Procedure for Mining User Moving Patterns

In Section 3.1, we develop a solution procedure, which is composed of a sequence of algorithms

in the corresponding phases, to mine approximate user moving patterns. Specifically, with the

multiple moving sequences converted from the log of call detail records, we develop algorithm LS

to identify those moving sequences beneficial to discover approximate user moving patterns in

Section 3.2. Then, in Section 3.3, by exploring the spatial-temporal locality, we devise algorithm

TC to cluster call detail records in time projection sequences. In Section 3.4, a regression-based

algorithm MF is devised to mine approximate user moving patterns.

3.2.1 An Overview

The overall procedure for mining moving patterns is outlined as follows:

Procedure for Mining Approximate User Moving Patterns

Step 1. (Data Collection Phase) Employing algorithm LS to mine the regularity of moving

sequences from original call detail records for every w moving sequence, where w is an adjustable

window size for recent moving sequences to be considered.

Step 2. (Time Clustering Phase) Employing algorithm TC to cluster call detail records into

groups and then generate a clustered time projection sequence.

Step 3. (Regression Phase) Employing algorithm MF to derive moving functions of mobile

users from a clustered time projection sequence.

As mentioned before, once the log of call detail records is given, we shall covert the log data

into multiple moving sequences, each of which is an ordered list of moving records. Generally

speaking, call detail records not only contain the regularity of user moving behaviors but also
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have noise data accidentally generated. For example, a mobile user has some call detail records

during his vacation. These call detail records are viewed as noise data in this paper. As mentioned

before, we explore the technique of regression analysis, which is very sensitive to noise data, to

derive moving functions for mobile users. Thus, in data collection phase, algorithm LS is able to

determine similar moving behaviors of mobile users for every w moving sequences. By exploring

the feature of spatial-temporal locality, which refer to the feature that if the time interval between

two consecutive calls of a mobile user is small, the mobile user is likely to move nearby, algorithm

TC is employed to cluster call detailed records with spatial-temporal locality into several groups.

After obtaining the clustering groups, we develop algorithm MF that takes both temporal and

spatial data of similar moving records into consideration to determine approximate user moving

patterns. The details of mining algorithms are described in the following subsections.

3.2.2 Data Collection Phase

As mentioned early, in this phase, we shall identify similar moving sequences from a set of w

moving sequences obtained and then merge these similar moving sequences into one aggregate

moving sequence (to be referred to as AMS). Algorithm LS is applied to moving sequences of

each mobile user to determine the aggregate moving sequence that contains a sequence of large

moving records denoted as LMRi, where i = [1, ε]. Specifically, large moving record LMRj is a

set of items with their corresponding counting values if there are a sufficient number of MRj
i of

moving sequences containing these items. Such a threshold number is called vertical_min_sup

in this paper. Once the aggregate moving sequence is generated from these recent w moving

sequences, we will then compare this aggregate moving sequence with these w moving sequences
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so as to further accumulate the occurring counts of items appearing in each large moving record.

The threshold to identify the similarity between moving sequences and the aggregate moving

sequence is named by match_min_sup. The algorithmic form is given below.

Algorithm LS
input: w moving sequences with their length being ε,

two threshold:vertical_min_sup and match_min_sup
output: Aggregate moving sequence AMS
1 begin
2 for j =1 to ε
3 for i=1 to w
4 LMRj =large 1-itemset of MRj

i ;
(by vertical_min_sup)

5 for i = 1 to w
6 begin
7 match = 0;
8 for j = 1 to ε
9 begin
10 C(MRj

i , LMRj) = |x ∈MRj
i ∩ LMRj| / |y ∈MRj

i ∪ LMRj|;
11 match = match+|MRj

i |*C(MRj
i , LMRj);

12 end
13 if match ≥ match_min_sup then
14 accumulate the occurring counts of

items in the aggregate moving sequence;
15 end
16 end

In algorithm LS (from line 2 to line 4), we first calculate the appearing count of items in

each moving sections of w moving sequences. If the count of an item among w moving sequence

is larger than the value of vertical_min_sup, this item will be weaved into the corresponding

large moving record. After obtaining all large moving records, AMS is then generated and is

represented as < LMR1, LMR2, ...LMRε >, where the length of given moving sequence is ε. As

mentioned before, large moving records contains frequent items with their corresponding counts.

Once obtaining the aggregate moving sequence, we should in algorithm LS (from line 5 to line

12) compare this aggregate moving sequence with w moving sequences in order to identify those
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similar moving sequences and then calculate the counts of each item in large moving records.

Note that a moving sequence (respectively, AMS) consists of a sequence of moving records

(respectively, large moving records). Thus, in order to quantity how similar between a moving

sequence (e.g., MSi) and AMS, we shall first measure the closeness between moving record

MRj
i and LMRj, denoted by C(MRj

i , LMRj). C(MRj
i , LMRj) is formulated as |{x∈MRj

i∩LMRj}|
|{y∈MRj

i∪LMRj}|

that returns the normalized value in [0, 1]. The larger the value of C(MRj
i , LMRj) is, the more

closely MRj
i resembles LMRj. For example, we set large moving records LMRj = {a, b, c, d},

MRj
x = {b, e} and MRj

y = {a, b, c, d, e}. It can be verified that the value of C(MRj
x, LMRj) is

1
5
and the value of C(MRj

y, LMRj) is 4
5
. Clearly, MRj

y is more similar to LMRj than MRj
x is.

Accordingly, the similarity measure of moving sequenceMSi and AMS is thus able to formulated

as sim(MSi, AMS) =
Pε

i=1 |MRj
i |∗C(MRj

i , LMRj). Given a threshold valuematch_min_sup,

for each moving sequence MSi, if sim(MSi, AMS) ≥ match_min_sup, moving sequence MSi

is identified as a similar moving sequence. In algorithm LS (from line 13 to line 14), for each

item in large moving records, the occurring count is accumulated from the corresponding moving

records of those similar moving sequences. Given an illustrative example in Table 3.1, we have

sim(MS1, AMS) = 1∗ 1
2
+1∗ 1

1
+0+1∗ 1

2
+1∗ 0

1
= 2. Consequently, we also have sim(MS2, AMS) =

3, sim(MS3, AMS) = 2, sim(MS4, AMS) = 3, and sim(MS5, AMS) = 1
2
. Assume that

match_min_sup is 2. Compared with AMS, MS1,MS2, MS3 and MS4 are then recognized

as similar moving sequences. After identifying those similar moving sequences, algorithm LS is

able to calculate the occurring count of each item in large moving records. Consider LMR1 of

AMS in Table 2 as an example. From those similar moving sequences, the occurring count of

A in LMR1 is calculated as the sum of the count of A in MR11, that in MR13 and that in MR14
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1 2 3 4 5

MS1 A:14 A:2 F:1 I:2
MS2 C:8 C:1, D:1, F:1 H:1, G:4
MS3 A:1 C:1 D:1 H:1
MS4 A:1, B:1 A:1 F:9
MS5 B:4 D:4 H:1 A:1, B:2
AMS {A:16, B:1} {A:3} φ {D:2, F:3} {H:2}

Table 3.1: An example of algorithm LS

(i.e., 14+1+1 = 16). Following the same procedure, we could have AMS <{A : 16, B : 1}, {A :

3}, φ, {D : 2, F : 3}, {H : 2}> shown in Table 3.1.

It can be verified that algorithm LS is of polynomial time complexity. With w moving

sequences and the length of a moving sequence being ε, the complexity of algorithm LS can be

expressed by O(εω). Specifically, the complexity of calculating large moving records is O(εω)

and that of extracting regular moving sequences is ε ∗ω ∗O(1) = O(εω). As a result, the overall

time complexity of algorithm LS is O(εω).

3.2.3 Time Clustering Phase

Recall that the time projection sequence of moving sequence MSi is denoted as TPMSi , which

is presented as TPMSi =< α1, ..., αn >, where MR
αj
i 6= {} and α1 < ... < αn. Once obtaining

AMS, we could easily determine TPAMS. By exploring the feature of spatial-temporal locality,

we will in this phase develop algorithm TC to generate a clustered time projection sequence of

AMS (i.e., CTP (TPAMS)).

In algorithm TC, two threshold values (i.e., δ and σ2) are given in clustering a time projection

sequence. Explicitly, the value of δ is used to determine the density of clusters and σ2 is utilized to
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make sure that the spread of the time is bounded within σ2. Algorithm TC is able to dynamically

determine the number of groups in a time projection sequence.

Algorithm TC
input: Time projection sequence TPAMS,

threshold δ and σ2

output: Clustered time projection sequence
CTP (TPAMS)

1 begin
2 group the numbers whose differences are within δ;
3 mark all clusters;
4 while there exist marked clusters and δ >= 1
5 for each marked clusters CLi

6 if V ar(CLi) ≤ σ2

7 unmark CLi;
8 δ = δ − 1;
9 for all marked clusters CLi

10 group the numbers whose differences are
within δ in CLi;

11 end while
12 if there exist marked clusters
13 for each marked cluster CLi

14 k = 1;
15 repeat
16 k++;
17 divide evenly CLi into k groups ;
18 until the spread degree of each group≤ σ2;
19 end

By grouping those numbers together if the difference between two successive numbers is

smaller than the threshold value δ, algorithm TC (from line 2 to line 3) first starts coarsely

clustering TPAMS into several marked clusters.As pointed out before, CLi denotes the ith marked

cluster. In order to make sure that quality of clusters, variance of CLi, denoted as V ar(CLi),

is defined to measure the distribution of numbers in cluster CLi. Specifically, V ar(CLi) is the

variance of a sequence of numbers. Hence, V ar(CLi) is formulated as 1
m

mP
k=1

(nk − 1
m

mP
j=1

nj)
2,

where nk is the kth number in CLi and m is the number of elements in CLi. As can be seen from
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line 5 to line 7 in algorithm TC, for each cluster CLi, if V ar(CLi) is smaller than σ2, we unmark

the cluster CLi. Otherwise, we will decrease δ by 1 and with given the value of δ, algorithm TC

(from line 8 to line 10) will re-cluster those numbers in unmark clusters. Algorithm TC partitions

the numbers of TPAMS iteratively with the objective of satisfying two threshold values, i.e., δ

and σ2, until there is no marked cluster or δ = 0. If there is no marked clusters, CTP (TPAMS) is

thus generated. Note that, however, if there are still marked clusters with their variance values

larger than σ2, algorithm TC (from line 12 to line 18) will further finely partition these marked

clusters so that the variance for every marked cluster is constrained by the threshold value of σ2.

If the threshold value of δ is 1, a marked cluster is usually a sequence of consecutive numbers in

which the variance of this marked cluster is still larger than σ2. To deal with this problem, we

derive the following lemma:

Lemma 1: Given a sequence of consecutive integers Sn with the length being n, the variance of

Sn is 1
12
(n2 − 1).

Proof:

Note that the variance of the sequence of consecutive integers with the same length is the same.

For example, consider two sequences of consecutive integers: {1, 2, 3, 4, 5} and {7, 8, 9, 10, 11}.

It can be verified that V ar({1, 2, 3, 4, 5}) = V ar({7, 8, 9, 10, 11}). Without loss of generality,

consider the variance V ar({1, 2, 3, ..., n}).

Let x̄ is the average of {1, 2, ...n}, x̄ = (n(n+1)
2
)/n = n(n+1)

2n
= 1+n

2
. Then

V ar({1, 2, 3, ..., n}) = 1
n
(

nP
x=1

(x− x̄)2)

= 1
n
(

nP
x=1

x2 − 2x̄
nP

x=1

x+ x̄
nP

x=1

1)

= (n+1)(2n+1)
6

− (n+ 1)x̄+ x̄2
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= (n+1)(2n+1)
6

− (n+1)2

2
+ (n+1

2
)2

= (n+1)(2n+1)
6

− (n+1)2

4

= 1
12
(n+ 1)(4n+ 2− 3n− 3)

= 1
12
(n+ 1)(n− 1)

= 1
12
(n2 − 1) ¤

Property: Given a sequence of consecutive integers {1, 2, 3, ..., n} and a positive integer k, the

optimal way of dividing {1, 2, 3, ..., n} into k clusters is to partition {1, 2, 3, .., n} into k clusters

with each cluster size being dn
k
e.

Proof:

Suppose {1, 2, 3, ..., n} is divided into {1, ..., t1}{t1 + 1, ..., t2}, ..., {tk−1 + 1, ..., n}.

Let t0 = 1, tk = n, and V ari = V ar({ti−1, ti−1 + 1, ..., ti}). Our goal is to find the point t1,

t2, ..., and tk−1with the purpose of minimizing f =
kP
i=1

V ari.

From lemma 1, V ar({1, 2, ..., n}) = 1
12
(n2−1), we have f =

kP
i=1

V ari =
1
12

kP
i=1

((ti− ti−1)
2−1).

To minimize f =
kP
i=1

V ari, the cutting points t1, t2, ..., and tk−1 are derived by letting first

derivatives be zero.⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂f
∂t1
= 4t1 − 2t2 − 2t0 = 0

∂f
∂t2
= 4t2 − 2t3 − 2t1 = 0

...

∂f
∂tk−1

= 4tk−1 − 2tk − 2tk−2 = 0
Thus, we can have the following term:
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

t1 =
ti0+t2
2

t2 =
t1+t3
2

...

tk−1 =
tk−2+tk

2

By using substitution method, we could have⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

t1 =
1
2
t2

t2 =
2
3
t3

...

tk−1 =
k−1
k
tk

Therefore, we can get:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

t1 =
1
k
n

t2 =
2
k
n

...

tk−1 =
k−1
k
n

From the derivation above, the optimal way to divide {1, 2, 3, ..., n} into k clusters is to divide

{1, 2, 3, .., n} into k clusters with each cluster size being dn
k
e.

By the above property, given marked cluster CLi, algorithm TC initially sets k to be 1. Then,

marked cluster CLi is evenly divided into k groups with each group size dnk e. By increasing the

value of k each run, algorithm TC is able to partition the marked cluster until the variance of

each partition in the marked cluster CLi satisfies σ2.

Consider the execution scenario in Table 3.2 where the time projection sequence is TPAMS

= <1, 2, 3, 4, 5, 9, 10, 14, 17, 18, 20>. Given σ2 = 1.6 and δ = 3, algorithm TC first roughly

partitions TPAMS into three clusters. It can been verified in Table 3.2 that two marked clusters
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Run δ σ2 Clusters of a time projection sequence
0 3 1.6 <{1, 2, 3, 4, 5, 9, 10, 14, 17, 18, 20}>
1 3 1.6 <{1, 2, 3, 4, 5}∗, {9, 10}, {14, 17, 18, 20}∗>
2 2 1.6 <{1, 2, 3, 4, 5}∗, {9, 10}, {14}, {17, 18, 20}>
3 1 1.6 <{1, 2, 3, 4, 5}∗, {9, 10}, {14}, {17, 18, 20}>
4 0 1.6 <{1, 2, 3, 4, 5}∗, {9, 10}, {14}, {17, 18, 20}>
5 0 1.6 <{1, 2, 3}, {4, 5}, {9, 10}, {14}, {17, 18, 20}>

Table 3.2: An execution scenario under algorithm TC.

(i.e., {1, 2, 3, 4, 5} with V ar({1, 2, 3, 4, 5})=2 and {14, 17, 18, 20} with V ar({14, 17, 18, 20})=4.69)

are determined due to that the variance values of these two clusters are larger than 1.6. Then, δ is

reduced to 2, and these two marked clusters are examined again. Following the same procedure,

algorithm TC partitions mark clusters until δ equals 1. As can been seen in Run 4 of Table 3.2,

{1, 2, 3, 4, 5} is still a marked cluster with V ar({1, 2, 3, 4, 5})=2. Therefore, algorithm TC finely

partitions {1, 2, 3, 4, 5}. The value of k is initially set to be 1. Since V ar({1, 2, 3, 4, 5})=2.5 is

larger than σ2 (i.e., 1.6), k is increased to 2. Then, {1, 2, 3, 4, 5} is divided into {1, 2, 3}{4, 5}.

Among these two clusters (i.e., {1, 2, 3} and {4, 5}), {1, 2, 3} has the larger variance and thus

{1, 2, 3} is compared with the value of σ2. Note that since the variance of {1, 2, 3} = 0.67 < 1.6,

algorithmTC stops clustering. After the execution of algorithmTC, a CTP (TPAMS) is generated

as <{1, 2, 3}, {4, 5}, {9, 10}, {14}, {17, 18, 20}>.

The time complexity of algorithm TC is of polynomial time complexity. Explicitly, let TPAMS

have n numbers. In line 2 of algorithm TC, we have O(n) to roughly divide sequence into t the

clusters. Note that from line 4 to line 11 of algorithm TC, we have O(δmt) to group the original

sequence. From 13 to 19, assume that there are still t clusters with m numbers to be refined

and then we have t ∗m ∗ (m) = O(m2t) to run the clustering process. Since algorithm TC is a
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heuristic algorithm, we consider the worst case when estimating the time complexity of algorithm

TC. Assume that the worst case is that t = m = n, and thus the overall time complexity of

algorithm TC is at most O(n3).

3.2.4 Regression Phase

Given aggregate moving sequence AMS devised by algorithm LS with its clustered time projec-

tion sequence CTP ( TPAMS) generated by algorithm TC, in this phase, algorithm MF is able

to derive a sequence of moving functions that are able to estimate moving behaviors of mobile

users.

Assume that AMS is<LMR1, LMR2, ..., LMRε> with its clustered time projection sequence

CTP (TPAMS) = < CL1, CL2, ..., CLk>, where CLi represents the ith cluster. For each cluster

CLi of CTP ( TPAMS), we will derive the estimated moving function of mobile users, expressed as

Ei(t) = ( x̂i(t), ŷi(t), valid_time_interval ), where x̂i(t) (respectively, ŷi(t)) is a moving function

in x-coordinate axis (respectively, in y-coordinate axis)) and the moving function is valid for the

time interval indicated in valid_time_interval.

Without loss of generality, let CLi be {t1, t2, ..., tn} where ti is one of the moving section in

CLi. As described before, a moving record has the set of the items with their corresponding

counts. Therefore, we could extract those large moving records fromAMS to derive the estimated

moving function for each cluster. In order to derive moving functions, the location of base stations

should be represented in geometry model through a map table provided by tele-companies.

Hence, given AMS and a cluster of CTP (TPAMS), for each cluster of CTP (TPAMS), we could

have geometric coordinates of frequent items with their corresponding counts, which are able to
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represent as (t1,x1,y1,w1), (t2,x2,y2,w2), ...(tn,xn,yn,wn). Accordingly, for each cluster of CTP (

TPAMS), regression analysis is able to derive the corresponding estimated moving function. By

exploring the technique of regression analysis, the moving functions devised are able to generate

the curves close to the data points and thus can be used to estimate users’ moving behaviors.

The regression analysis fits equations of approximating curves to the raw field data [23]. For

a given set of data, the fitting curves are generally not unique. Note that a curve with a minimal

deviation from all data points is desired. Let ei be the error between the ith data point and the

estimated fitting curve. Given a set of data points, the best estimated curve is the one that has

the minimal sum of least square errors (i.e., the minimal value of �x, where �x =
Pn

i=1 e
2
i ) [23].

Since the number of calls may be varied for each distinct (ti, xi, yi), it is reasonable to derive

moving functions by taking the weights into consideration. Therefore, the regression analysis

with weighted least squares is then applied.

Given a cluster of data points (e.g., (t1, x1, y1, w1), (t2, x2, y2, w2), ..., (tn,xn,yn,wn)), we

first consider the derivation of x̂(t). An m-degree polynomial function x̂(t) = a0+a1t+ ...+amt
m

will be derived to approximate moving behaviors in x-coordinate axis. Specifically, the regression

coefficients {α0, α1, ...am} are chosen to make the residual sum of squares �x =
Pn

i=1wie
2
i minimal,

where wi is the weight of the data point (xi, yi) and ei = (xi−(a0+a1ti+a2(ti)2...+am(ti)m)).The

value of m is determined in accordance with the requirement of applications but m is usually

smaller than the number of data points. To facilitate the presentation of our paper, we define

the following terms:
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H =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 t1 (t1)
2 ... (t1)

m

1 t2 (t2)
2 ... (t2)

m

... ... ... ... ...

1 tn (tn)
2 ... (tn)

m

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, a∗ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a0

a1

...

am

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, b̃x =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x1

x2

...

xn

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, e =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

e1

e2

...

en

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

T

,W =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

w1

w2

...

wn

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

It can be verified that the residual sum of squares (i.e., �x =
Pn

i=1wie
2
i ) can be expressed as

�x = e
TWe in linear algebra manner. Note that e is able to be formulated as ( b̃x−Ha∗). Thus,

we have:

�x = eTWe = (b̃x −Ha∗)TW(b̃x −Ha∗) = (b̃x −Ha∗)T
√
W
√
W(b̃x −Ha∗) 1

= (
√
Wb̃x −

√
WHa∗)T (

√
Wb̃x −

√
WHa∗)

= ||
√
Wb̃x −

√
WHa∗||

let A =
√
WH and B =

√
Wb̃x. It can be seen that the main objective is to minimize

�x = ||B − Aa∗||. According to the theorem of least squares, B−Aa∗ must be orthogonal to

Aa∗ so as to minimize �x[8]. For interest of brevity, the theorem of least squares is omitted in

this paper. Consequently, we can have:

B−Aa∗ ∈ R(A)⊥ = N(AT )

, where R(A)⊥ represents the orthogonal complement of column space of A

and N(AT ) represents the kernel space of AT

=⇒ AT (B−Aa∗) = 0

=⇒ ATAa∗ = ATB

ATAa∗ = ATB is viewed as the normal equation [8]. By substituting A =
√
WH and

B =
√
Wb̃x, we could have (

√
WH)T (

√
WH)a∗ = (

√
WH)T

√
Wb̃x. By solving the normal

equation, we can a∗ such that the value of �x is minimized. Therefore, x̂(t) = a0+a1t+ ...+amt
m

1SinceW is diagonal and all elements are positive, we can decomposeW into
√
W
√
W.
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ti item xi yi wi

1 A 1 1 16
1 B 1 2 1
2 A 1 1 1
4 D 4 2 2
4 F 3 3 3
5 H 5 3 2

Table 3.3: Data points with their corresponding weights.

is obtained. Following the same procedure, we could derive ŷ(t). As a result, for each cluster

of CTP (TPAMS), the estimated moving function Ei(t) = (x̂(t), ŷ(t), [t1, tn]) of a mobile user is

devised.

Consider an illustrative example in Table 3.1, where AMS =<{A : 16, B : 1}, {A : 3}, φ, {D :

2, F : 3}, {H : 2}>. Assume that CTP (TPAMS) =< {1, 2, 4, 5} > and the coordinates of

A, B, D, F and H are (1, 1), (1, 2), (4, 2), (3, 3) and (5,3), respectively. Given AMS and

CTP (TPAMS) =< {1, 2, 4, 5} >, we could have the data points with their weights shown in

Table 3.3. By choosing m to be 3, the 3-degree polynomial x̂(t) = a0 + a1t + a2t
2 + a3t

3

is derived. Due to that the coefficients a0, a1, a2 and a3 are unknown, we intend to have

a regression curve with the purpose of minimizing the residual sum error. In other words,

a∗ = ( a0 a1 a2 a3 )
T should be determined. Since there are five data points with their

corresponding moving sections are 1, 2, 4, 4 and 5, H =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 (1)2 (1)3

1 2 (2)2 (2)3

1 4 (4)2 (4)3

1 4 (4)2 (4)3

1 5 (5)2 (5)3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
is then obtained.

Note that since the data pair (1, 1) appearing twice in Table 3.3, the weight of (1, 1) should be the
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Figure 3.1: An illustrative example, where the arrow line is the real moving path and the solid
line is estimated by moving functions obtained by algorithm MF.

sum of 16 and 1. The weights of data points are 17, 1, 2, 3 and 2, respectively. Hence,
√
W is a

diagonal matrix with its diagonal entries to be [
√
17,
√
1,
√
2,
√
3,
√
2]. From Table 3.3, we can get

b̃x = ( 1 1 4 3 5 )
T . By solving the equation (

√
WH)T (

√
WH)a∗ = (

√
WH)T

√
Wb̃x,

we can get a∗ = ( 2.333 −2.133 0.867 −0.066 )T . Therefore x̂(t) = 2.333−2.133t+0.867t2−

0.066t3 is devised to predict the x coordinate-axis of the mobile user from t = 1 to t = 5. Similarly,

b̃y = ( 1 2 1 2 3 3 )
T is then determined from Table 3.3. By solving the normal equation

(
√
WH)T (

√
WH)a∗ = (

√
WH)T

√
Wb̃y, we can get a∗ = ( 2.529 −2.386 1.021 −0.105 )T .

Consequently, ŷ(t) = 2.529−2.386t+1.021t2−0.105t3 is obtained. The estimated moving function

is shown in Figure 3.1. It can be seen that the estimated moving function is very close to the

real moving path, showing the advantage of utilizing regression in mining user moving patterns.

Algorithm MF
input: AMS and clustered time projection sequence

CTP (TPAMS)
output: A set of moving functions

F (t) = {E1(t), U1(t), E2(t), ..., Ek(t), Uk(t)}
1 begin
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2 initialize F (t)=empty;
3 for i= 1 to k-1
4 begin
5 doing regression on CLi to generate Ei(t);
6 doing regression on CLi+1 to generate Ei+1(t);
7 t1 =the last number in CLi;
8 t2 =the first number in CLi+1;
9 using inner interpolation to generate

Ui(t) = (x̂i(t), ŷi(t), (t1, t2));
10 insert Ei(t), Ui(t) and Ei+1(t) in F (t);
11 end
12 if(1 /∈ CL1)
13 generate U0(t) and Insert U0(t) into the head of F (t);
14 if(ε /∈ CLk)
15 generate Uk(t) and Insert Uk(t) into the tail of F (t);
16 return F (t);
17 end

Given AMS and a cluster of CTP (TPAMS) = <CL1, CL2, ..., CLk>, algorithm MF is able

to generate the whole estimated moving function, denoted as F (t). F (t) is represented as {U0(t),

E1(t), U1(t), E2(t), ..., Ek(t), Uk(t)}, where Ei(t) is the estimated moving function in cluster

i of CTP (TPAMS) and Ui(t) is the linkage moving function from Ei(t) to Ei+1(t). It is shown

in algorithm MF (from line 5 to line 6) that for each cluster of CTP (TPAMS), we could de-

rive the corresponding estimated moving functions by the regression method mentioned above.

Note that, however, it is possible that the first moving section is not in CL1. If t0 is the first

number of CL1 and t0 6= 1, the U0(t) = {E1(t0), [1, t0)} is generated for the boundary condi-

tion. Otherwise, U0(t) will not be valid in F (t). The situation of Uk(t) is similar. The linkage

moving function will be calculated by interpolation (in line 9 of algorithm MF). For example,

assume that CTP (TPAMS)=<{1, 2, 4, 5}{7, 9, 10}>, E1(t) =(2.333− 2.133t+ 0.867t2 − 0.066t3,

2.529−2.386t+1.021t2−0.105t3, [1, 5]) and E2(t) = (10−2.17t+0.17t2, 32−6.33t+0.33t2, [7, 10]).

It can be verified that the first number of cluster {1, 2, 4, 5} is 1. Thus U0(t) is invalid in F (t).
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Figure 3.2: A snapshot of complete moving function F (t)

The last number of {1, 2, 4, 5} is 5 and the first number of cluster {7, 9, 10} is 7. Thus, a linkage

moving function should be generated by inner interpolation. From E1(t), at time 5, we can have

a data point (x = 5.09, y = 3). At time 7, a data point ( x = 3.14, y = 3.86 ) is generated by

applying E2(7). By inner interpolation, we could have U1(t) = (9.965 + 3.14−5.09
7−5 t, 0.85 + 3.86−3

7−5 t,

(5,7)). Similarly, U2(t) can be produced. Thus, we could have F (t) = {E1(t), U1(t), E2(t), U2(t)}.

The snapshot of F(t) is shown in Figure 3.2.

When using F (t) to predict the location of a mobile user, we will only use the estimated

moving function whose time interval includes the given time t. For the above example F (t) =

{E1(t), U1(t), E2(t), U2(t)}, given the time to be 4, only E1(t) will be used to predict the location

since the given time 4 is within the time interval of E1(t). Once the estimated moving function is

obtained, it is straightforward to generate the approximate moving patterns in symbolic model.

By utilizing the estimated moving function derived, the location of a mobile user is predicted as

(xt, yt). Since each base station is aware of its location and converge area, as shown in Figure 3.3,

we can obtain transform the geometric location (xt, yt) into base station D in symbolic model.
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(xt , yt )
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Figure 3.3: An illustrative example for transformation from geometric model to symbolic model

Note that the time complexity of algorithm MF is of polynomial time complexity. Specifi-

cally, with the maximal size in row/column being n, the time complexity of solving the normal

equation by Strassen’s algorithm is Θ(nlg 7) [19]. Moreover, the interpolation by Lagrange’s for-

mula requires Θ(m2), where m represents the number of points involved in the interpolation [19].

Since n is usually larger than m, the value of Θ(nlg 7) is the dominating factor of the complexity

of algorithm MF.
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Chapter 4

Performance Study

In this section, the effectiveness of mining approximate user moving patterns by call detail records

is evaluated empirically. The simulation model for the mobile system considered is described in

Section 4.1. Section 4.2 is devoted to experimental results and comparison with the original

algorithm of mining moving patterns [15]. Finally, sensitivity analysis of mining approximate

user moving patterns is shown in Section 4.3.

4.1 Simulation Model for a Mobile System

To simulate base stations in a mobile computing system, we use an eight by eight mesh network,

where each node represents one base station and there are hence 64 base stations in this model

[13][15]. A moving path is a sequence of base stations travelled by a mobile user. The number of

movements made by a mobile user during one moving section is modeled as a uniform distribution

betweenmf -2 andmf+2. There are 10,000 users considered in our simulation model. According

to Law of Large Number[23], we repeat each experiment for 20 times and every result presented
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in the figures is the average performance of 20 experimental results. Explicitly, the larger the

value of mf is, the more frequently a mobile user moves. To model user calling behavior, the

calling frequency is employed to determine the number of calls during one moving section. If

the value of cf is large, the number of calls for a mobile user will increase. Similar to [15], the

mobile user moves to one of its neighboring base stations depending on a probabilistic model. To

make sure the periodicity of moving behaviors, the probability that a mobile user moves to the

base station where this user came from is modeled by Pback and the probability that the mobile

user routes to the other base stations is determined by (1-Pback)/(n-1) where n is the number of

possible base stations this mobile user can move to. We assign two Pback to each users to present

the major and minor moving behavior respectively. As mentioned before, the method of mining

moving patterns in [15], denoted as UMP , is implemented for the comparison purposes. For

interest of brevity, our proposed solution procedure of mining user moving patterns is expressed

by AUMP (standing for approximate user moving patterns). The location is represented as

the identifications of base stations. To measure the prediction accuracy, we use the hop count

(denotes as hn), which is measured by the number of base stations, to represent the distance from

the prediction location to the actual location of the mobile user. Intuitively, a smaller value of hn

implies that the more accurate prediction is achieved. It is worth mentioning that the expected

value of hop count per call, denoted by E(hn/call), is hn
w∗ε∗cf/2 where cf/2 is the expected value

of the number of CDR in a time unit. Thus a precise ratio is defined as 1− E(hn/call)−1
2n

. Precise

ratio is a measurement considering not only the distance between the moving patterns and real

paths but also the ratio of the distance and the whole network size. Table 4.1 summarizes the

definitions for some primary simulation parameters and the measurements of performance.
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Notation Definition Value
w retrospective factor various value used
Ms the number of moving sections in a moving sequence various value used
Mf moving frequency various value used
Cf call frequency various value used
σ2 variance threshold various value used
vertical_min_sup threshold of vertical minimal support various value used
match_min_sup threshold of match minimal support various value used

Table 4.1: The parameters and measurements used in the simulation
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Figure 4.1: The precise ratio of UMP and AUMP with the value of mf varied.

4.2 Experiments of UMP and AUMP

To conduct the experiments to evaluate UMP and AUMP , we set the value of w to be 10, the

value of cf to be 3 and the value of ε to be 12. The precise ratio of UMP and AUMP with

various values of mf are shown in Figure 4.1. It can be seen that by having a moving log, which

contains the entire moving behaviors of users, the precise ratio of UMP is higher than that of

AUMP .

As mentioned before, UMP is able to mine user moving patterns from a set of moving log

in which every movement of mobile user is recorded. Note, however, that though performing
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Figure 4.2: The cost ratios of AUMP and UMP with the moving frequency varied

better than AUMP in the hop count, UMP incurs more amount of data in the moving log. In

order to reduce the amount of data used in mining user moving patterns, AUMP explores the

log of call detail records. The cost ratio for a user, i.e., precise ratio
amount of log data , means the prediction

accuracy gained by having the additional amount of log data. Figure 4.2 shows the cost ratios of

UMP and AUMP . Notice that AUMP has larger cost ratios than UMP , showing that AUMP

employs the amount of log data more cost-efficiently to increase the prediction accuracy.

4.3 Sensitivity Analysis of AUMP

The impact of varying the values of w for mining approximate moving patterns is next investi-

gated. Without loss of generality, we set the value of ε to be 12, that of mf to be 3, and the

values of cf to be 1, 3 and 5. Both vertical_min_sup and match_min_sup are set to 20% ,

the value of δ is set to be 3 , and σ2 is set to be 0.25. With this setting, the experimental results

are shown in Figure 4.3.

As can be seen from Figure 4.3, the precise ratio of AUMP increases as the value of w

increases. This is due to that as the value of w increases, meaning that the number of moving
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Figure 4.3: The performance of AUMP with the value of w varied.
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Figure 4.4: The precise ratio of AUMP with vertical_min_sup and match_min_sup varied.

sequences considered in AUMP increases, AUMP is able to effectively extract more information

from the log of call detail records. Note that with a given the value of w, the precise ratio of

AUMP with a larger value of cf is bigger, showing that the log of data has more information

when the value of cf increases. Clearly, for mobile users having high call frequencies, the value

of w is able to set smaller in order to quickly obtain moving patterns. However, for mobile users

having low call frequencies, the value of w should be set larger so as to increase the accuracy of

moving patterns mined by AUMP .
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Figure 4.5: The precise ratio of AUMP with the values of match_min_sup and the variance
threshold varied.

Now, the experiments of varying the values of vertical_min_sup and match_min_sup for

algorithm LS are conducted where we set the value of cf to be 5, that of mf to be 1, that

of ε to be 12 and that of σ2 to be 0.25. The precise ratio of AUMP with various values of

vertical_min_sup and match_min_sup are shown in Figure 4.4, where it can be seen that

the precise ratio of AUMP with a given vertical_min_sup tends to increase as the value

of match_min_sup increases. The reason is that increasing the match_min_sup is able to

efficiently filter out call detail records that are viewed as noise data. As such, the precision of

AUMP with higher match_min_sup is larger. In addition, with a given match_min_sup,

the precise ratio of AUMP increases, as the value of vertical_min_sup increases. This is due

to that as the value of vertical_min_sup increases, the more frequent set of base stations is

determined from a set of call detail records. Thus, the frequent set of base stations, referring to

areas that users more frequently travel, are very helpful to approximate user moving patterns.

As described before, the value of σ2 for algorithm TC affects the precision of time clustering

in AUMP . To conduct the experiments to evaluate AUMP with the values of σ2 varied, we set
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Figure 4.6: The precise ratio of AUMP with the values of vertical_min_sup and variance thresh-
old varied.

the value of ε to be 12, that of mf to be 3, that of vertical_min_sup to be 20%, and the values

of match_min_sup to be 1, 3 and 5, respectively. Figure 4.5 shows the precise ratio of AUMP

with the values ofmatch_min_sup and variance threshold σ2 varied. As can been seen in Figure

4.5, the precise ratio of AUMP tends to increase as the value of variance threshold σ2 increases.

This is mainly due to the reason that with larger values of match_min_sup, algorithm LS is

likely to identify those similar moving sequences and thus the time projection of the aggregate

moving sequence is very related to real moving behaviors of mobile users. Therefore, the precise

ratio of AUMP increases drastically when larger values of match_min_sup.

In addition, the hop counts of AUMP with various values of vertical_min_sup and variance

threshold σ2 are shown in Figure 4.6, where the match_min_sup is set to be 20%. It can be

seen that with a given value of variance threshold σ2, the larger the value of vertical_min_sup,

the larger the precise ratio of AUMP .
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Chapter 5

Conclusions

In this paper, without increasing the overhead of generating the moving log, we presented a

new mining method to mine user moving patterns from the existing log of call detail records of

mobile computing systems. Specifically, we proposed algorithm LS to capture similar moving

sequences from the log of call detail records and then these similar moving sequences are merged

into the aggregate moving sequence. Algorithm LS devised is able to accurately extract those

similar moving sequences in the sense that those similar moving sequences are determined by

two adjustable threshold values (i.e., vertical_min_sup and match_min_sup) when deriving

the aggregate moving sequence from a set of call detail records. By exploring the feature of

spatial-temporal locality, which refers to the feature that if the time intervals among consecutive

calls of a mobile user is small, the mobile user is likely to move nearby, algorithm TC proposed

is able to cluster those call detail records whose occurring time are very close from the aggregate

moving sequence. For each cluster of the aggregate moving sequence, algorithm MF devised is

employed to derive the estimated moving function, which is able to generate approximate user
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moving patterns. Performance of the proposed algorithm was analyzed and sensitivity analysis

on several design parameters was conducted. It is shown by our simulation results that the

approximate user moving patterns achieved by our proposed algorithms are of very high quality

and in fact very close to real user moving behaviors.
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