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Implicit-Explicit Runge-Kutta and pseudospectral methods
for Schrodinger equation

Student : Pei-Yuan Lin Advisor : Ming-Chih Lai
Co-Advisor : Chun-Hao Teng

Institute of Mathematic Modeling and Scientific Computing
Department of Applied Mathematics

National Chiao Tung University

Abstract

In this paper, we present a scheme for solving the Schrodinger equation based on
Implicit-Explicit Runge-Kutta and.pseudospectral method. The boundary conditions
are imposed to the scheme through the penalty methodology. By conducting the
energy estimate, we determine the values of penalty parameters. We apply
Legendre-Gauss-Lobatto and Chebyshev-Gauss-Lobatto grid points for numerical
computations. Several numerical experiments are shown to validate the scheme.
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1 Introduction

The Schordinger equation is a partial differential equation (PDE) which describes
the behavior of a particle in quantum mechanics, formulated by the Austrian physicist
Erwin Schérdinger [1]. It predicts the probability of observing the particle in a particular
position, and the equation is applied wildly in the fields of nuclear physics and quantum
chemistry.

Due to the repaid development of computers, people have started to solve PDEs by
numerical computations. To solve a problem numerically, it is necessary to construct a
computational scheme. Therefore, how to obtain an efficient scheme and whether the
numerical solution from the scheme converges to.the exact solution become important.

The finite difference method isoften used to discretize the Schordinger equation [6, 11].
However, it requires many grid points to obtain an accurate results in heavy computations.
To reduce the computational loading, we introduce the pseudospectral methods [5] to solve
problems.

The Lax-Richtmyer theorem [4] providesus a simple way to examine the convergence
of a scheme for a linear problem. It states that a consistent scheme for a well-posed linear
initial value problem«s convergent if and only if itis stable: Therefore, we can ensure
the convergence of a scheme by examining the consistency and stability of the scheme. A
procedure proposed by von Neumann is.commonly used to check the stability for partial
differential equations. But in this paper, we establish the stability of proposed schemes
by the energy method.

In this study, we present a pseudospectral scheme for the Schordinger equation defined
on the square domain subject to different types of boundary conditions. The Legendre-
Gauss-Lobatto and Chebyshev-Gauss-Lobatto grid points are introduced to discrete the
space. The boundary conditions are imposed to the scheme through the penalty method-
ology [10]. We pay attention to the stability of the scheme by conducting the energy
estimate. Through the discrete energy estimate, we determine the values of penalty
parameters to ensure the stable computations. For time discretization, we use the Crank-

Nicolson and implicit-explicit Runge-Kutta methods. Because these methods are implicit,



it is necessary to invert matrices. Here, we adopt the eigen-decomposition approach [9]
to conduct the matrix inversion.

This thesis is organized as follows. Section 2 states the initial boundary value problem
and examines the well-posedness by conducting an energy estimate. In section 3, the
concepts of pseudospectral methods are introduced. Then we propose the pseudospectral
scheme and analyze the stability of the scheme. Section 4 presents the numerical results

with several experiments. The concluding remarks are drawn in Section 5.

2 Formulation

2.1 Model problem and energy estimate

We consider the space demain € ¢ R?and denote the space and time coordinates by
x = (z,y) and t, respectively. Let u = u(x,t) be a complex-valued function satisfying

the initial boundarywalue problem-(IBVP):

@% =—pViu(z,t), xeQt>0, (1a)
u(x,0) = (x), x € (, (1b)
Bu(x,t) = cda@)u(x,t) + ﬁ(m)% = g(t), x €00 t>0, (1c)

where p is a positive constant, V? is the Laplace operator and i = v/—1 is the imaginary
unit, f is the initial data of & and Bu =g is the boundary condition imposed at the
boundary domain 02, and B is the boundary operator parameterized by non-negative
functions a(x) and S(x) which satisfy the constrains o?(x) + 8*(x) # 0 on 0f.

We consider the homogeneous boundary conditions and assume that there is an unique
solution to the IBVP. Multiplying —ip~'u* and ip~'u to Eq. (1a) and its complex conju-

gate, respectively, and summing the resultants, we have

u—Fu ) = iu*V?u — iuV>3u*, (2)

with the symbol * denoting the complex conjugate. Integrating Eq. (2) over the domain

Q, it becomes

1 *@ du” _ *v72 s 2, *
p/ﬂ(u at—kuat)dw—z/g(uVu)dw Z/Q(uVu)da:. (3)




The left-hand side of Eq. (3) can be simplified as

1 ou ou* 1d
- t— de = —— 2dz.
p/g(uat—l—uat) x pdt/glm x

Invoking the divergence theorem, the terms on the right-hand side of Eq. (3) become

z/ (u*V?u) de = —/ (Vu* - Vu)dz —i—i% u*(n - Vu)de,
Q 0

o0

—z'/Q (uVPu*) de = /Q (Vu - Vu*)dx — 2]{ u(n - Vu*)de,

o0N

where §¢() - dz denotes the surface integration. Applying the boundary condition, we

obtain the energy rate equation
1d
——/ u|? dae. = —27{ |)? Tm (g) dx
pdt.Jo 0% s
= 0.

It leads to an energy bound for-u-as

/ lu(z,t)*de = / [f(@)|Pdz, Vvt >0
Q Q
Thus, this problem is well-posed.

2.2 Basic concepts of the pseudospectral method

Let N be a positive integer. The Legendre-Gauss-Lobatto (LGL) grid points x; are
the roots of the polynomial (1 — x2?)Py(z), where the prime denotes the differentiation

and Py(z) is the N-th degree Legendre polynomial defined by

N(x)—mdx—]v(l‘ - 1" (5)
These points are arranged in ascending order in the interval | = [—1, 1]. In addition to the

LGL grid points, we introduce another set of collocation points, the Chebyshev-Gauss-
Lobatto (CGL) grid points. The CGL points are the zeros of the polynomial (1—z%)T(z)

with Ty (z) being the N-th degree Chebyshev polynomial

Tn(x) = cos(N cos ™ (x)), (6)



and the CGL points can be defined explicitly as

xj:—cos(‘%), 7=0,1,...,N. (7)

Pseudospectral methods are commonly based on interpolations at the LGL or CGL
points. Based on a set of collocation points, we approximate a function f(z) defined on |

as

f@) = fn(z) = Z L) f(2;), (8)

j=0

with [;(x) being the Lagrange basis polynomials given as

T — T .
li(z) = II:v—x’ j=0,1,...,N.
0<m<N "7 m
m#j

Then the p-th derivative of f(a) can be also approximated as

AN
G ~ 1)

=0

f@;).

Through a matrix-vector multiplication the:numerical derivatives at the grid points can

be evaluated as
f(p) — D"f,

where f and f®) arevectors given by

T

£ = o) e o), 59 = [P0 ), 10 )]
with the superscript T' being the vector transpose, and D is called the differential matrix
with the entries Dj, = [} (z;). Notice that the differential matrix D varies when we use
different types of collocation points. The Legendre differentiation matrix D* has entries

—1)iti — Ar\17!
e () oo

0, 1=

And the entries of the Chebyshev differentiation matrix D¢ are

) o
¢ (=1
_< ) 72#‘7
C; Ty — Xy
_ 2<i=j<N
Do _ 2(1 —x3)’ - -
“ 2n% +1 i1
Y 1= :7
6 j
2n? +1
A =N+,
\ 6




where

)2, i=1lor N+1,
“=11, 2<i=j<N.

Y

Associated with the LGL points especially, we have the quadrature formula

> wifta) = [ fa)ds, ©)

with f(z) being a polynomial of degree at most 2N — 1, and the quadrature weights w;

are given by

2 .
—N_'_l[PN(l'j)PN_l(ij)]_l, J= 1727"'aN_ 17
o —2 =0, N
N(N 421} J=0

For further use, we have the following rules based en Eq. (9). Let u(z) and v(x) be

polynomials of degree at most /V--We have

Z wiulz; ' (25) = ul@zy)v(zy) —u(ze)v(we) = Z wiu'(z5)v(x;), (10)
Z wju(x;) (v(x )l (@) . @ u(an ) o(@n ) In(wr) = u(zo)u(@o)lo(zr) — wiet (vx)v(2s).

(11)

The above concepts can be extended for problems defined on two dimensional space.
Given {xz;}}L, and {yx},_,, the sets of grid points on [-1,1] along the z-axis and the y-axis,
respectively. Define the two-dimensional collection points (z;, yx). Based on these points,

we construct the two-dimensional Lagrange basis polynomials as

Ljk(w,y) = 15 () li(y),

where [§(x),/(y) are the one-dimensional Lagrange interpolation polynomials based on

{z;}My and {yx}il,, respectively. Then we approximate a function f(x,y) defined on

12 =[-1,1]* as



The partial derivatives of f at the grid point (z;, yx) are approximated as follows,

af@,yk) anN IE ayk’ 0L, ’k’ T 7yk
or J ZZ 2 )

/ Ok,/

af@,yk) anN IE ayk’ 0L, ’k’ T 7yk
7 N

/ 0 k/
The numerical partial derivatives can also be calculated through a matrix-vector multi-

plication as
F,=D,F, F,=FDj,

where F' is an (M + 1) x (N + 1) matrix with entries being Fj, = f(x;,yx), D, and D,
are the (M +1) x (M +1) and(N +1)x (N +1) differentiation matrices in the z- and the
y-directions, respectively. F, and F, are the matrices whose elements are the numerical
partial derivatives O famn (%}, yi)/0z-and O farn (%5, yr) /Oy, resSpectively.

Let u(x,y) and v(z,y) both-be-polynomials of degree at most M and N in z and y,

respectively. Denote wj, = u(x;, yx) and v, = v(2;, yr). We have

M N o N M N
ZZ (wu%> . Zwk (wv)|p — (uv)|ox] — ZZ (w—v) (12a)
7=0 k=0 j=0 k=0
M N M. N
ZZ (wu—) Zw wo)|jn — (wv)ljol = ZZ (w—v> (12b)
j=0 k=0 J=0 k=0
2.3 Semi-discrete schemes
2.3.1 One-dimensional problem
Consider the problem on the interval | = [—1, 1].
i@——@ zel, t>0 (13a)
at - pa$27 ) Y
u(z,0) = f(x), x €, (13Db)
ou(—1,t
B0 =a w10 -5 o g i (13¢)
Ou(+1,t
Bou(+10) =asu(+1.0)+ 8,20 _ gy iz (134)

To solve the problem numerically, we collocate N +1 LGL points z; for j = 0,1,..., N

and denotes the field values at the grid points by v;(t) = v(x;,t). We seek a solution of

6



the form

N
o(a,t) =Y L) (),
§=0
satisfying the collocation equations
Ov(zy, ) OF(z5,1) .
lT— pa—l‘7 j—o,l,...,N, (14&)
v(z;,0) = f(z;), j=0,1,..., N, (14b)
where
ov(z,t)
Fo,t) = =+ 7-8_(2)(B-tg = g-(t)) = 74:5-(2)(Bsvw — g4+(1)), (14c)
with
_ (A —=z)Py(z) o (L4 z)Py(x)
ov(=1,t ov(+1,t
B_vy=a_v(=1,t) — B_%, Bawvy = o v+ t) + 54_%.

The symbols 7_ and 7, are called the penalty parameters, and their values will be de-
termined later such.that the seheme is stable. It is also noticed that S_(x) and S, (x)
coincide with the lo(#) and In(z); respectively. The purpose of introducing S_(z) and
Sy (x) is to avoid confusion when we use CGL grid-points which will be shown later.

For stability analysis, we consider the homogeneous boundary conditions, namely,

g+(t) = 0. Consider Eq. (14a) and its complex conjugate version:

Ov 0 [Ov |
ot J o (% j + 75 (2)(B-vo) — T+S+($j)(B+UN)> , J=0,1,...,N,
(15a)
Ov” 9 v * * * * .
ot i “Por ((% j + 725 (25)(B-vp) — T+S+(xj)(B+UN)> , 7=0,1,...,N.

(15b)

Multiplying Eq. (15a) and Eq. (15b) by —ip~'w;v; and ip~'w;v; respectively, and sum-



ming the resultants over the index 5 = 0 to N, we obtain

2 ()L % ()

+zT_ij S_(x;)B_vy)

J

. L0
— it Z “ii o (54 (25)B1ow) (16a)
j=0
N N
1 ov* ‘ O*v*
;;(wv Gt) j:—ljz:;(wvax2) j_ZT Zwﬂvﬂa —(x;)B_vyp)
=9
+i7y Y w5 (S () By uy) (16b)
j=0

Applying Eq. (10) to the first summation term on the right-hand side of Eq. (16a), we

obtain

(17)

L0V 4 *811 : al ov* Qv
ZZ(“”’ @) j_w %‘ 63:‘ ﬂ;(“w%) i
The other terms on the right-hand side of Eq. (16a) can be evaluated by invoking Eq. (11),

and the results are given as follows,

*

: . ov v
it ij U] (‘9 S_(x;)B_v5) = —i7—(v" + wo P Ja_v — ﬁ_£>‘o (18)

. . 0 : . v* v
T4 ijvj% (84 (25)Byon) = —i74 (v — Wy or )(opv + 5+8 )
=0

(19)

With similar arguments, for the terms on-the right-hand side of Eq. (16b), we have the

results
N N
0?v* ov* ov* v Ov*
. _ o ovT . v 5
Z;(waﬁ) j e N+w@$ 0+ij_;(w6x5$)j7 (20
N
. 0 . ov ov*
—ir* ;w"”ja_x (S_(z)B_vy) = i7" (v + w()%)(a vt —p_ e ) (21)
al ) v v
ity Zwﬂ’j— (S+(25)Byoy) = ith (v — wy - ) (™ + By ) (22)
s ox ox ox
Define a vector function r and a matrix function A as
r(ry,ro) = [r, 7 ]T Ala, B, T,w) = —Tat T 1-7f-wr'a (23)
1,72 1,72 IR I —1+T*B—I—w7a WTﬁ—WT*B



Adding Eq. (16a) to Eq. (16b) and substituting Egs. (17)-(22) into the resultants, we have

an energy rate equation
N
1d 9 -
—-— g wjlv;|* =irt A_r_ +irl Ajry,
pdt 4
Jj=0
where r_, r, are vectors given as

r_(t) = r(v(zo, t), —0v(x0,t)/0x), T (t)=r(v(xy,t),0v(TN,1)/0X),

and
As= Alos, fee.8), ©=
= A(a Ty, W), W=
+ £, PEy T+, ) N(N+1)
Taking the values of 7_ and 7, as
1 1
T T, ==
wa_ P ok + 6

we have A_ and A being zero matrices. This leads to

implying the stability of the scheme.

(24)

The semi-discretesscheme Fq.o(14) can be represented in the form of matrices and

vectors. We introduce the matrices

with eg, ey, and e being the vectors of length N + 1, given by
e =[1,0,...,0]", ey=1[0,...,0,1]", e=11,...,1]".
Define the solution vector
v(t) = [v(zo,t),v(z1,1), ..., v(zN, )],

Then the semi-discrete scheme Eq. (14) can be expressed as

ov
E = Lv +g(t),

v(0) = f,

(28a)

(28b)



where L is the matrix operator and g(t) collects the terms caused by the time-dependent

boundary conditions, given as

L=ip(D(D+71-S_E (a_Iy—p_IyD)—7,S E (arIy+ p:IyD))), (29)

g(t)=ip(—7_g_(t)DS_E_ey+ 7.9 (1)DS,E ey). (30)

f = [f(xo), f(x1),---, flan)]" is a vector concerned with initial data. In the above

expression, Iy, In, S_, and S are (N + 1) x (N + 1) matrices defined by

S:t = diag(Si(xo), Si(l’l), Ce ,Si(CL’N)), (31)

I, = diag(1,0,...,0), Iy =diag(0,...,0,1), (32)

and D is the differentiationamatrix corresponding to the grid points.

We have constructed a stable scheme based on the LGLgrid points. The constructed
scheme can be slightly modified-for-computations based on CGL grid points, also known
as the Chebyshev-Legendre method [2]. Here we briefly summarized the modification.

We seek a numerical solution of the form

[¥]=

v(z,t) =) E(x)y, (33)

J
J=0

where ljc(x) are the Lagrange basis polynomials based on the CGL grid points and v; are
the field values collocated atthe CGL grid points. ‘We require the solution satisfy the

scheme Eq. (14) at the CGL grid points,

Ov(xf,t)  OF(x5,1)

ZT = pa—x, 7 =0,1, , N, (34a)
v(at,0) = f(z2), j=0,1,...,N, (34b)
where
Pty = P00 4o 5 @) (B — g (1) oS- (#) (Bavw — gu1)), (340
with
e T

10



Notice that numerical solution v(x,t) in fact satisfy the partial differential equation:

Ov(z,t)  OF(z,t)
ot T o

Hence, we can establish the stability of the scheme based on the Legendre integration
quadrature rule as shown before. We conclude the scheme is stable provided that the

penalty parameters are given in Eq. (26).
2.3.2 Two-dimensional problem

Let us consider the IBVP problem defined on I> = [—1,1] x [—1,1]:

ZW = —pVu(z,y,1), (z,y) €1?, t>0, (35a)
u(z,y,0) = f(x,y), (z,y) € 1%, (35b)
BDu(—1,y,t) = g(y, ), BY =al?)— B(“)%, yel, t>0, (35¢)
BOu(+1,y,t) = g4(y, t),—BE = o) 4 ﬁ@a%, yel, t>0, (35d)
BOu(x, —1,ty= h_(x,t), B =ald < 5(0)6%’ rel, t>0, (35€)
BDu(x, 41, t)= hy(z,t), [ BY=aD ¢ B(d)a%’ rlel, t>0. (35f)

For v € {a,b,c,d}, B9 are the boundary operators defined on the edges of the domain.
Each boundary operator is parameterized by two-mon-negative constants a(? and S
satisfying the constrain (o) 4 (892 <£0:

Introduce the two-dimensional LGL grid points (z;,y;) based on the sets of LGL

points {z;}y and {yx}i_,- We seek a numerical solution of the form

’U(l'a Y, t) = Z Z ij(l‘, y)v($j7 Yk, t)

7=0 k=0
satisfying the scheme:
av(xjay/mt) an(%vykvt) aFy<xj7yk7t) .
i et LI LN — 0<i< M, 0<Ek<N 36
7 ot P Oz P ay ) >7 = ) = —= ) ( a)
v(xjayka()):f(x]ayk)a OSJSMa O§k§N7 (36b)

11



with

Jv(x,y,t al D)/ ola
Fy(z,y,t) :% + Z Lo (z,9)7 Y (B@vgr — g_(y,1))
k=0
N
- Z L (2, y)7 (B v — g4 (y, 1)), (36¢)

dv(z,y,
By 1) =2 y ZL/O:Uy (BOvy0 — h_(z,1))

— Z Lin(z,y) 7D (BDv;n — hy(x,1)). (36d)

7@ 7® 7 and 7@ are the penalty parameters associated with the edges and their
values will be determined through condueting.an energy estimate for the scheme.

To conduct the stability analysis; we consider the problem subject to the homogeneous
boundary conditions, that is; g+ (y,t) =0 and ha(xr, ). = 04 Define wj, = wiw] with w?
and wy being the quadrature weights associated with LGL peints x; and yy, respectively.
Multiplying —ip_lekv;fk and ip ‘wjrvie to-Eq.(36a) and. its éomplex conjugate, respec-
tively, summing the resultants over the indices j = 0 to/M and k = 0 to NV, and adding

them together, we have the energy rate equation

1qg M N YO NLA L
E%ZZ wlv|?) =ZZ(zwv 83:)

j=0 k=0 3=0 k=0 J j=0 k=0 Y ik
M N M N
OF; OF:
—1 N — WU ——— . (37
X ( Zwvax)jﬁZZ( ’vaay>jk (37)
7=0 k=0 j=0 k=0

Invoking Egs. (12a)-(12b), we can evaluate the summation terms on the right-hand side

of Eq. (37) and have

L g N N . N .
SIS ()| =i dowl (r) A i Y wt () AORY
A gk k=0 =0
M M .
+1 wa (r](c)> A(C)r](-c) ) Zoﬂ (rj(d)) A@D g
=0 =0

7'](:) = 7 (vo, —Ovgg/0x), r,(cb) = r(vmk, Ovmr/Ox),

T‘](‘C) 7(vjo, —0vj0/0y), TJ('d) = 7(vjn, Ovjn /Oy),

12



and

A =A@, B0 700 W) for y = a, b, ¢, and d.

2 : _
W = MO %f v =a,b
m lf Y = C, d

To ensure the stability of the scheme, we request

so that A are all zero matrices, and we have
1g N , Y
;EJZ_;; (wlv]?) ‘jk = 0.
The semi-discrete scheme has a matrix-vector representation. Let v(f) be a solution
matrix with the entries vy, = v, v, t). D, and D, are the differentiation matrices

respect to z— and y— directions. Thelscheme (36) can berepresented as

ov
— = LvtvR 1 G(b). (38a)
v(0) = £, (38D)

where L € CMH)XMHD and R'e @WFDXIVED are matrix operators
L =ip(D,(D, + 7“8 E (o I — BOTT D,y =70 ST EL (6 17, + BV I5,D,))),
R =ip((DT +r9(a 1} £ JADLL) (5" B )T 4D T, + 5@ DI 1Y) (SLELT) DY),
and G(t) consists of the terms from discrete boundary conditions
G(t) =ip(~m'D,S* E* I§ (e,g-(1)) + 7D, S{ E{ I} (e.g+(1)))
+ip(—r (h_(t)ey)(D,SYELIY)" + 79 (hy(t)ey) (D, S{ELIY)T),

with e, and e, being the vectors of length N 41 and M + 1 that all the components are

equal to 1, and

g+(t) = [9+ (Yo, 1), 9+ (Y1, ), - -, g+ (yn, )],

hi(t) = [hi<l’0, t), hi(:cl, t), ceey hi(l‘M, t)]T

For v € {z,y}, the matrices SY and EY are defined through Eq. (27) and (31). The

superscript x and y mean the sizes of the matrices are M + 1 and N + 1, respectively.

13



2.4 Time integration

To march the numerical solution in time, we adopt the Crank-Nicolson (CN) method

[7] and Implicit-explicit Runge-Kutta (IMEX-RK) method [3, 8]. Denote the time step

by At and the n-th time level by t" = nAt. Let u™ be the numerical solution at time t"

for the following differential equation

du
= Fltult),
u(0) = wuo.

The Crank-Nicolson algorithm solves Egs. (39) as

't — o 1
AL tdll oy P, o).

Then we have the fully-discrete version for Egs. (14) as

iv?“ —of P OF (wyt™H1) I OF(x;,t") 0.1
At 2 Ox O ’ T
v) =f (&), j=0,1,...

(39a)

(39b)

(40)

N, (41a)
N, (41b)

To analyze the stability of Eqs. (41), we consider the homogeneous boundary conditions.

For convenience, we denote (U;-H_l + v})/2 by U;-L-H/ * Multiplying —ip—w; (v“l/ 2) and

C1, n+1/2
P W,
and following a similar approach in semi-discrete scheme, we obtain

N

1 n n .-k - %
2pAt ZWJ(|UJ'+1|2 — [ fP) =ir* A_r_+irt Air,,

J=0

where A, are given in Eq. (25) and

J

to Eq. (41a) and its.complex conjugate; Tespectively, summing the resultants,

ro=rpt? ot o), v =rT? 002 o).

For 7, given in Eq. (26), A4 are zero matrices. Thus, we have

N N N
D il =D el == D wilf ()
j=0 j=0 =0

indicating the stability.
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In addition, we have the fully-discrete scheme for Eq. (38a) with v” being the numerical

solution matrix at time t"

,UnJrl — "

1
A §(Lv”+1 + 0" R+ G(t,1) + Lv" + v"R + G(t")). (42)

The Eq. (42) can be rewritten as

Av'tt "B = F, (43)
where
A= lpon Bty g lywm Alp
2 2 2 2

At
F=v"+ - (Lv" +0"R + +G(t") + G(tnt1)) -

with T3M) ¢ RIMHDx(M+1) and JOV) ¢ RIWHDXINED heing identity matrices. Assuming
that A and B are diagonalizable, we can directly solve v™'L by the eigenvector decom-
position method [9]:

For Egs. (39), the IMEX-RK method splits the flux function: ' into two parts as
F(t, u(t)) =7 @) s F) (¢t u(6),

where F" and Fl**! are flux functions to be treated in implicit and explicit ways, respec-
tively. For a s-stage IMEX-RK method, we solve E¢s.(39) numerically by the following

steps:

u ="+ At Z a%»m]F["m] (t" + ¢;At, u9)) 4+ At Z aE?I]F[“”] (t" + c;At, ), 1<i<
=1 =1
S ) S
utt ="+ At Z I Rl (g7 4 e At u®) 4+ At Z I FlE (17 4 e At u).
i=1 1=1
The coefficients of a%m], an.x], pi™ ple™) ¢ can be found in [3]. We consider Lv+vR+G(1)

in Eq. (38a) to be the implicit part, and the explicit part is regarded as zero. Then we
have a fully-discrete scheme with IMEX-RK

0@ = o™ + AtZaZm](Lv(j) + v R 4+ G(t" +cjAt)), 1<i<s (44a)
j=1
v ="+ ALY 0 (Lo + 0O R+ G(1" + ¢AL)). (44D)

=1

15



We can rewrite Eq. (44a) as

Av?D B =FO 1 <i<s, (45)
where
1 At 1 At
. O Y (SO
A=3 oL B=3 B
v" + Ata TG + e A), ifi=1,
F0) i1 ' ‘
v+ ALY alFD At G + cAt), if i 1.
j=1

n+1

Thus, we solve Eqs. (45) directly to obtain v®, and then v can be computed by

Eqs. (44D).

3 Numerical results

In this section, weillustrate-the-proposed methods by several examples. Denote Ax =
2N~! which is the mean distance for a set of &V + 1 grid points. The time step At is

computed adaptively as
At = CF LAz,

where C'F'L is referred to the.Courant-Friedrichs-Lewy number. The convergence order

is calculated as

_ log(e(Ny)/e(N3))
log(Ny/Ny) 7

where ¢(N) = ||u—upn||s is the maximum error with u and uy being the analytic solution

and the numerical solution corresponding to polynomial degree N, respectively.

3.1 One-dimensional problem

Example 1. Let | = [~1,1]. Consider ¢(z,t) = !*" satisfying the problem:
dq 0%q
| — = —— el, t>0
Yot ox?’ rehoten
q(z,0) = e, x €,
Biq(£1,t) = ape’®1D 4 g, F-0, t>0,

16



Table 1-3 shows the results subject to different types of boundary conditions imposed
at r = +£1 applying Crank-Nicolson method. For each terminal time 7', the error decreases
as NN increases and the rate of convergence is approximately a two. Compare the results
from different collocation points, there is little difference between them and the rate of
convergence is similar. Thus, we know that the scheme can achieve a convergent result.

Table 1: The rate of convergence for Example 1 with CGL and LGL points at different terminal time.
The numerical results are computed by Crank-Nicolson method. ay =1,5L =0, CFL =0.1

T =10 T =100

N CGL LGL CGL LGL
eN) g eN) g eN) q eN) g

8  7.10e-05 7.10e-05 7.22e-05 7.22e-05

12 3.12e-05 2.03 3.12e-05 2.03 3:21e-05 2.00 3.21e-05 2.00
16 1.76e-05 1.99 " 1.76e-05-1.99. 1.8le-056 1.98 1.81e-05 1.98
20 1.13e-05 1.98 1.13e-05 1.98 1.18e-05 1.94 1.18e-05 1.94

Table 2: The rate of convergence for Example 1 with CGL and LGL points at different terminal time.
The numerical resultsiare computed by Crank-Nicolson method. oy = 0,61 =1, CFL =0.1

T =10 T.=100
N Qe LGL CGL LCL
e(N) q e(V) q e(N) q e(N) q
8 1.05e-04 1.05¢-04 6.536-05 -  6.53¢-05

12 4.64e-05 202 4.64e-05 2.02 2:86e-05  2.03 2.86e-05 2.03
16 2.61e-05 2.00 £ 2:61e=05. 2.001.64e-05 1.94 1.64e-05 1.94
20 1.67e-05 2.00 1.67e-05 2.00" 1.06e-05 1.97 1.06e-05 1.97

The IMEX-RK method can be applied to solve Example 1, and the results are shown
in Table 4-6. We see the convergence order is approximately a three in each case. So the
scheme produced by IMEX-RK is still convergent whether we use CGL or LGL points.

Fig. 1 reveals that the discrete energy is conserved, where AF is defined as

N N
AE =) wjlul* = wjl f(x)
=1 j=1

17



Table 3: The rate of convergence for Example 1 with CGL and LGL points at different terminal time.
The numerical results are computed by Crank-Nicolson method. aL = 1.5,8+ = 0.5, CFL =0.1

N

T =10

T =100

CGL

LGL

CGL

LGL

e(N)

4q

e(N)

q

e(N)

q

e(N)

4q

8
12
16
20

2.24e-04
9.97e-05
9.60e-05
3.59e-05

2.00
2.00
2.00

2.24e-04
9.97e-05
2.60e-05
3.59e-05

2.00
2.00
2.00

2.05e-04
9.07e-05
5.10e-05
3.26e-05

2.01
2.00
2.01

2.05e-04
9.07e-05
5.10e-05
3.26e-05

2.01
2.00
2.01

Table 4: The rate of convergence for Example 1 with CGL and LGL points at different terminal time.
The numerical results are computed by third-order IMEX-RK. a4 = 1,8+ =0, CFL =0.1

N

T =10

T =100

CGL

LGL

CGL

LGL

e(NV)

q

e(V)

q

e(V)

q

e(N)

q

8
12
16
20

1.43e-06
4.05e-07
1.72e-07
8.84e-08

210
2.98
2.98

1.43e-06
4.07e-07
1.72e-07
8.84e-08

3.10
2.99
2.98

1:33e-06
4.13e-07
1.75e-07
8.86e-08

2.88
2.98
3.05

1.34e-06
4.14e-07
1.75e-07
8.86e-08

291
2.99
3.05

Table 5: The rate of convergence for Example 1 with CGL and LGL points at different terminal time.
The numerical results ‘are computed by third-order IMEX-RK. a4 = 0,8+ =1, CFL =0.1

N

7' =10

7 =100

CGL

LGL

CGL

LGL

e(N)

q

e(V)

q

e(N)

q

e(N)

q

8
12
16
20

1.81e-06
2.68e-07
1.14e-07
5.87e-08

4.71
2.98
297

1.81e-06
2.68e-07
1.14e-07
5.87e-08

4.71
2.98
2.97

1.16e-06
2.79e-07
1.20e-07
6.18e-08

3.50
2.95
2.96

1.16e-06
2.79e-07
1.20e-07
6.18e-08

3.50
2.95
2.96

Table 6: The rate of convergence for Example 1 with CGL and LGL points at different terminal time.
The numerical results are computed by third-order IMEX-RK. oy = 1.5, 6+ = 0.5, CFL =0.1

N

T =10

T =100

CGL

LGL

CGL

LGL

e(N)

4q

e(N)

q

e(N)

q

e(N)

4q

8
12
16
20

2.42e-06
7.21e-07
3.04e-07
1.56e-07

2.99
3.00
3.00

2.45e-06
7.21e-07
3.04e-07
1.56e-07

3.02
3.00
3.00

2.17e-06
6.66e-07
2.82e-07
1.44e-07

2.92
2.99
3.00

2.17e-06
6.66e-07
2.82e-07
1.44e-07

2.92
2.99
3.00
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Figure 1: The difference of discrete energy for Example 1 subject to Dirichlet boundary condition. Left:
Time integration by Crank-Nicolson method. Left: Time integration by third-order IMEX-RK.

Example 2. Let | = [—1,1]. Consider ¢(z,t) = sin(nz) sin(nt) satisfying the problem:
0 0?
za—(i = _a_xz + intsin(ra)eos(mt) =asin(zx) sin(rt), xel, t>0,
q(z,0) =0, x €l
Biq(£1,t) = agesin(En) sin(wt) £ Sem cos(Lm) sin(rt), t>0,

In this experiment, the partial differential equation contains a source term. To solve
Example 2 with the IMEX-RK method, the source term is treated in the explicit flux. The
results are shown in Table 7- 8. We observe an order reduction occurs when the boundary
conditions are not Dirichlet-type. However, if we apply the Crank-Nicolson method to
solve the same problem, the convergence order is-approximately a two for every types of
boundary conditions. Since the Dirichlet boundary condition in this problem is exactly
zero, we guess that the order reduction occurs if we use IMEX-RK in time to solve a
problem which contains a source term and nonzero boundary conditions.

Table 7: Convergence order for Example 2. The numerical solutions are computed by third-order IMEX-
RK and Crank-Nicolson at T'= 1 with CGL points. CFL = 0.1

ar=1,8L=0 ar=0,0L =1
N IMEX-RK CN IMEX-RK CN
e(N) q e(N) q e(N) q e(N) q
8 1.72¢-04 - 8.14e-05 - 1.01e-03 - 5.98e-04 -
12 5.38e-05 2.87 3.40e-05 2.16 4.02¢-04 2.27 2.65e-04 2.01
16 2.24e-05 3.04 1.92e-05 1.98 1.94e-04 2.54 1.48e-04 2.02
20 1.15e-05 297 1.25e-05 1.93 1.11e-04 2.48 9.41e-05 2.03
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Table 8: Convergence order for Example 2. The numerical solutions are computed by third-order IMEX-
RK and Crank-Nicolson at T'= 1 with LGL points. CFL = 0.1

aizluﬁizo Oéizovﬁizl
N  IMEX-RK CN IMEX-RK CN
e(N) q e(N) q e(N) q e(N) q
8 1.77¢-04 -  7.85¢-05 1.00e-03 -  6.08¢-04 -

12 5.37e-05 2.94 3.39e-05 2.07 4.02e-04 2.25 2.64e-04 2.05
16 2.26e-05 3.01 1.94e-05 1.95 1.94e-04 254 1.48e-04 2.02
20 1.15e-05 3.03 1.24e-05 1.99 1.11e-04 248 9.41e-05 2.03

Example 3. Let | = [-1,1]. Consider ¢(z,t) = ! satisfying the problem:
z@:—@—w(m) zel, t>0
ot Ox? ' T
q(z,0) = ™, x €l
Biq(£1,t) = ade’E1H 4 jR iR t>0,

We construct Example 3 whose-boundary conditions are all nonhomogeneous. Table 9-
10 show the results.as we solve this problem with IMEX-RK and Crank-Nicolson method,
respectively. The order reduction still occurs in the case of IMEX-RK. Meanwhile, the
results produced by«Crank-Nicolson method present a second-order convergence as we
expect.

Table 9: Convergence order for Example 3. The numerical results are computed by third-order IMEX-RK
and Crank-Nicolson with CGL points at 1T'=1. CFL =0.1

ar=1,8L=0 ar =08 =1
N IMEX-RK CN IMEX-RK CN
e(N) q e(N) q e(N) q e(N) q
8 3.25e-04 - 3.33e-05 3.27e-05 6.37e-05

12 1.56e-04 1.81 1.48e-05 1.99 1.20e-05 2.46 2.83e-05 2.00
16 8.28e-05 2.20 8.48e-06 1.95 5.47e-06 2.74 1.59e-05 2.00
20 5.16e-05 2.12 5.46e-06 1.97 3.05e-06 2.62 1.02¢-05 2.00
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Table 10: Convergence order for Example 3. The numerical results are computed by third-order IMEX-
RK and Crank-Nicolson with LGL points at T'=1. CFL = 0.1

aizl,ﬂi:O Oéizo,ﬁizl
N IMEX-RK CN IMEX-RK CN
e(N) g eN) g eN) g eN) ¢
8 3.25e-04 - 3.33e-05 3.27e-05 6.35e-05

12 1.56e-04 1.81 1.48e-05 1.99 1.20e-05 2.46 2.83e-05 2.00
16 8.28e-05 2.20 8.49e-06 1.94 5.47e-06 2.74 1.59e-05 2.00
20 5.16e-05 2.12 5.46e-06 1.98 3.05e-06 2.62 1.02e-05 2.00

3.2 Two-dimensional problem

Example 4. Let 12 = [—1,1]x [~1, 1]. Consider g(z,y,t) = e > cos(m(z+y)) satisfying
the problem:

01 _ _Paq 024

ot 0x% 0y?!

q(w,y,0) = cos(a(z +y)), (x,y) € 1%,

(r,y) €1, t>0,

B@g(~1,5,) = a@e P eos(mly — 1)) + JITE PG (A= 1)), yel, 120,
BYq(+1,y,1) = aPe 2™ cos(mly 1:4)) = fOme 2™ sin(nly 1)), yel, >0,
Bq(x,—1,t) = oIt cos(m(af — 1)) + B zer 2T sinfn(#— 1)), ze€l, ¢>0,

BDqg(z,+1,t) = aPe T eos(n(z + 1)) — B Dre > sinm(z + 1)), z€l, t>0.

We consider Example 4 to test the scheme for two-dimension problems. For simpli-
fication, the grid revolutions N and M are set to be equal. We apply Crank-Nicolson
method in time to solve this problem, and show the convergence results in Table 11-13.
We use different collocation points to compute the numerical solutions. For each terminal
time 7', The error decreases as N increases with a second-order convergence. The scheme
is stable after a long-time computation (7" = 100). Moveover, for a fixed N, the error
grows linearly in time.

Table 14-16 present the results computed by IMEX-RK in time. For each terminal
time 7', the the rate of convergence decays rapidly in the beginning, and then goes down
to third order. We see the error grows linearly for a fixed grid revolution N. It shows

that the proposed scheme is still stable.
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Table 11: The rate of convergence for Example 4 with CGL and LGL points at different terminal time.
The numerical results are computed by Crank-Nicolson method. For v € {a,b,¢,d}, a =1, = 0.
CFL =0.01

T =10 T =100

N CGL LGL CGL LGL
eN) g eN) g eN) q eN) g

8  3.58¢-02 3.37¢-02 3.50e-01 3.32e-01

12 1.79e-02 1.71 1.79e-02 1.57 1.78e-01 1.67 1.77e-01 1.55
16 9.79e-03 2.10 9.92e-03 2.04 9.71le-02 2.10 9.84e-02 2.05
20 6.30e-03 1.97 6.24e-03 2.08 6.28e-02 1.96 6.21e-02 2.06

Table 12: The rate of convergence for Example 4 with CGLiand/'LGL points at different terminal time.
The numerical results are computed by third-erder Crank-Nicolson method. For v € {a,b,¢,d}, a =
0,5 =1. CFL =0.01

T =10 7= 100
N GGL LGL CGL LCL
e(IV) q e(NV) q e(N) q e(N) q
8  4.81¢-02 4846202 3.95¢-01 3.95¢-01

12 1.80e-02 2.42 " 1.80e-02 243 1.78¢-01 197 1.78e-01 1.97
16 1.02e-02 2.00 1.02e-02 2.00- 1.00e-01 + 2.00 1.00e-01 2.00
20 6.50e-037 2.00.. 6.50e-03 2.00 6.41e-02+ 2.00 6.41e-02 2.00

Table 13: The rate of convergence for Example 4 with CGL and LGL points at different terminal time.
The numerical results are computed by third-order Crank-Nicolson method. For v € {a,b, ¢, d}, a =
1.5,4) =0.5. CFL = 0.01

T =10 T = 100
N CGL LGL CGL LCL
e(N) q e(N) q e(N) q e(N) q
8  1.79¢-02 1.80e-02 1.68¢-02 1.69¢-02

12 4.76e-04 895 4.92e-04 888 6.58e-04 7.99 6.75e-04 7.94
16 2.76e-04 1.88 2.80e-04 1.95 3.88e-04 1.84 3.91e-04 1.90
20 1.79e-04 1.94 1.80e-04 1.98 2.46e-04 2.04 2.46e-04 2.07

22



Table 14: The rate of convergence for Example 4 with CGL and LGL points at different terminal time.
The numerical results are computed by third-order IMEX-RK. For v € {a,b,c,d}, a =1, = .
CFL =0.01

T =10 T =100
N CGL LGL CGL LGL
eN) q elN) g eN) q eN) g
8  4.58¢-03 4.82e-03 2.26e-02 2.33e-02

12 1.84e-04 7.93 1.83e-04 8.06 1.82e-03 6.21 1.82e-03 6.29
16 7.52e-05 3.11 7.61e-05 3.05 7.44e-04 3.11 7.55e-04 3.05
20 3.87e-05 2.98 3.83e-05 3.08 3.85e-04 2.96 3.81e-04 3.06

Table 15: The rate of convergence for Example 4 with CGLiand/'LGL points at different terminal time.
The numerical results are computed by third-order IMEX-RK. .For v € {a,b,c,d}, a =0, = 1.
CFL =0.01

T =10 T= 100
N CGL LGL CGL LGL
e(N)= | g e(N) g e(N)V g e(N) ¢
8 105002 1.06e02" = 0.26e-03 9.18e-03

12 1.85e-04- 9.95 "1.84e-04 10.00 1.82e-03 4.02° 1.82e-03 3.99
16 7.84e-05:72.99 7.84e-05 296 7.68e-04¢ 3.00 7.68e-04 3.00
20 4.02e-05 ©3.00+, 4.02¢-05 3.00 3.93e-04° . 3.00 3.93e-04 3.00

Table 16: The rate of convergence for Example 4 with CGL and LGL points at different terminal time.
The numerical results are computed by third-order IMEX-RK. For « € {a,b, ¢, d}, a =15, =0.5.
CFL =0.01

T =10 T = 100
N CGL LGL CGL LGL
e(N) q e(N) q e(N) q e(N) q
8 1.62e-02 -  1.62e-02 -  141e-02 -  1.41e-02

12 1.21e-05 17.74 1.22¢-05 17.74 8.97e-06 18.15 9.13e-06 18.11
16 2.33e-06 5.73 2.34e-06 5.73 3.25e-06 3.53 3.25e-06 3.59
20 1.20e-06 2.97 1.20e-06 3.00 1.66e-06 3.01 1.65e-06 3.04
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Example 5. Let I? = [—1,1] x [-1,1]. Consider q(x,y,t) = e " sin(rz) sin(7y) satisfying

the problem:

i = ——— — —— + (1 — 27%)e " sin(7z) sin(7y), (z,y) €1?, t>0,
q(2,y,0) = sin(mz) sin(my), (z,y) € I%,
B@q(—1,y,t) = a e " sin(—n) sin(my) — BV7re " cos(—n)sin(ry), ye€l, t>0,
BOq(+1,y,t) = a®e " sin(+n) sin(ry) + S re " cos(+n)sin(ry), y €1, t>0,
BYq(z,—1,t) = a9e " sin(rz) sin(—n) — fO7me *sin(nx) cos(—7), x€l, >0,

BWq(z,+1,t) = aWe " sin(nx) sin(+r) + 8D e " sin(rz) cos(+n), = €1, t>0.

We can use the scheme to solve Example 5 which contains a source term. Table 17-18
present the results subject to different types of boundary conditions. We see the results
computed by the Crank-Nicolson method achieve a convergence of second order indeed.
The order reduction still occurs-while we use IMEX-RK to solve this problem with the
nonhomogeneous boundary conditions.

It has been observed that if we use pseudospectral ‘penalty method to construct a
scheme, the order reduction may occurs.for Runge-Kutta methods. The paper [2] provide
us a procedure to deal with explicit Runge-Kutta. However, there is no way for implicit
Runge-Kutta up to now.

Table 17: Convergence order for Example 5 at 7' = 1. The numerical solutions are computed by third-
order IMEX-RK and Crank-Nicolson with LGL points. CFL = 0.1

aM=18"=0 a =0, =1
N IMEX-RK CN IMEX-RK CN
e(N) q e(N) q e(N) g  edN) q
8 1.12¢-03 - 1.07e-03 - 1.68e-03 3.20e-03

12 1.69e-05 10.36 4.59e-07 19.13 2.51e-04 4.69 6.98e-06 15.11
16 6.96e-06 3.07 1.43e-07 4.05 1.24e-04 244 3.76e-06 2.15
20 3.51e-06 3.07 7.50e-08 2.89 6.98e-05 2.59 2.45e-06 1.92
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Table 18: Convergence order for Example 5 at 7' = 1. The numerical solutions are computed by third-
order IMEX-RK and Crank-Nicolson with CGL points. CFL = 0.1

a=1,0 =0 a =0, =1
N IMEX-RK CN IMEX-RK CN
e(N) q e(N) q e(N) g  edN) q
8 1.13e-03 - 1.27e-03 - 1.62e-03 3.17e-03 -

12 1.69e-05 10.36 4.66e-07 19.52 2.55e-04 4.56 6.99e-06 15.08
16 6.86e-06 3.13 1.41e-07 4.15 1.25e-04 247 3.76e-06 2.15
20 3.54e-06 2.96 7.57e-08 279 6.99e-05 2.61 2.45e-06 1.92

4 Concluding remarks

In this study, we proposed a numerical scheme for solving the Schoérdinger equation
based on pseudospectral penalty method. For stable computations, we determine the
penalty parameters subject to different types of boundary conditions by conducting the
energy estimate. Although we establish the stability through LGL points, the scheme
still works when we employ CGli points. We apply Crank-Nicolson method and IMEX-
RK for time-discretization. Several numerical experiments are shown to validate the
scheme, and we observe the expected convergence rate in most cases. An order reduction
occurs only when we use IMEX-RK to solve the problems that contain a source term and
nonhomogeneous boundary conditions.

The present method well solves the problems in a simple domain with scalar boundary
parameters. In the future, we can conduct some numerical experiments for the problems
whose boundary conditions are parameterized by functions. The method may be gener-

alized to solve the non-linear Schoérdinger equations defined on complicated domains.
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