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摘要 

在即時系統中的工作，不但要求計算結果正確，而且必須在一定的時限內完成。

由於在一個多處理器的即時系統中的工作，如果無法在時限內被正確的被執行並傳回

計算結果會導致嚴重的後果，所以具有容錯能力的工作排程演算法是非常重要的。主

從模型（Primary Backup model）是一種常用的容錯排程方式。這類的排程法會為工

作安排額外的備份，因此系統資源的需求會較大。本論文即是提出了一個動態排程演

算法，並使之能夠動態調整備份工作的數量。其目的是為了讓更多的工作在時限內被

正確執行並降低系統資源的要求，為此，我們提出了負載回饋的調整機制，依據當前

系統的負載程度來決定是不是要安排額外的備份工作。此方法採取的是折衷原則，藉

由減少備份工作的安排以達到節省系統資源的目的，並將其用來執行更多的工作，有

效提高工作完成比。為了回收並有效利用配置給備份工作的系統資源，我們也提出了

一個等候機制，讓工作在佇列中等待系統資源被釋放，直到工作本身的完成時限無法

被滿足為止。我們以模擬的方式來評估演算法的效能，結果顯示，在大部分的情況下，

我們的方法比其他現有的演算法具有更好的工作完成比，但是容錯的能力會稍微下降。 
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Abstract 

Real-time systems are defined as those systems in which the correctness of the system 

depends not only on the logical result of computation, but also on the time at which the 

results are produced. Task scheduling on real-time multiprocessor systems with 

fault-tolerant requirements is an important problem due to the catastrophic consequences of 

not tolerating faults. Primary Backup model is commonly used to schedule real-time tasks 

with fault-tolerant requirements. In such scheme, redundant copies of tasks are scheduled 

and more computing resources are required. In this thesis, we propose an effective dynamic 

scheduling algorithm, named Loading-driven Adaptive Scheduling Algorithm (LASA), 

which has an adaptive fault-tolerant mechanism to control when redundant (backup) copies 

of tasks will be scheduled or not. For the purpose of conserving computing resources and 

achieving higher Guarantee Ratio, the proposed loading-driven adaptation strategy takes the 

system loading into consideration and makes a trade-off between rejecting tasks and 

accepting them without backup copies. In order to improve the utilization of reclaimed 

computing resources from redundant copies, we also propose the task deferment mechanism 

by adding a waiting queue to the scheduling scheme. A task can be left in the waiting queue 

until some processors become available or its deadline becomes unable to be met. To 

evaluate the performance of our proposed algorithm, we have constructed a simulation 

environment to study it and found that our algorithm outperforms other previous work. 
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Chapter 1 Introduction 

Real-time systems require both functionally correct executions and the results that are 

produced on time [1]. Because of their capability for high performance and reliability, 

multiprocessors and multi-computers systems have emerged as a powerful computing 

means for the real-time applications, such as autopilot systems, satellite and nuclear plant 

control [8, 13-14]. In such systems, the problem of the real-time task scheduling is to 

determine when and on which processor a task is executed so that the execution satisfies its 

deadline requirements. The scheduling can be performed either statically or dynamically [1]. 

In static algorithms, the assignment of the tasks to processors and the time at which the 

tasks start execution are determined a priori. Static algorithms are often used to schedule the 

periodic tasks but not applicable to the aperiodic tasks whose arrival times and deadlines are 

not known until they really arrive at the system. Therefore, a dynamic scheduling algorithm 

is required for scheduling the aperiodic tasks. Since there does not exist an optimal 

scheduling algorithm for dynamically arrival tasks [1, 16], and we need to find a feasible 

schedule quickly, heuristic approaches are taken. 

If the scheduler can reserve enough computing resources for the task to be finished 

before its deadline, we say that the task is guaranteed or accepted [4-5]. Meanwhile, to 

guarantee newly arrival tasks must not jeopardize the previously guaranteed tasks. When 

too many tasks arrive at one time, the scheduler can not guarantee that all tasks meet their 

deadlines and it must reject some tasks. The task rejection invokes the error handling 

routines for fixing it and causes the overall system performance degradation. The most 

important objective of a dynamic scheduling algorithm is to guarantee as many tasks 

meeting their deadlines as possible [5, 11-12]. 

Due to the critical nature of real-time tasks, several techniques have evolved for 

fault-tolerant scheduling [4, 18-19]. In Primary Backup (PB) model, one primary copy and 
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one backup copy are scheduled on two different processors and an acceptance test is used to 

check the correctness of the execution result [4, 5]. The backup copy will be executed only 

if the output of the primary copy fails the acceptance test. Otherwise, it is deallocated from 

the schedule. 

In recent years, the adaptation mechanism opens up many avenues for further research 

in the dynamic scheduling problem [14]. The concept of adaptation mechanism is to allow 

the scheduler dynamically adjust its scheduling parameters, or switching heuristic functions, 

even changing the entire scheduling algorithm in order to be favorable for different 

environments. An adaptation strategy usually accompanies with a trade-off among 

schedulability, reliability, and efficiency [1, 13-15]. For instance, if we schedule more 

copies for the tasks, the schedulability will be lower while the reliability is increased. With 

an effective adaptation mechanism, the scheduler can flexibly satisfy the different 

requirements of different circumstances. 

In this thesis, we study scheduling algorithms for non-preemptable, aperiodic, 

real-time tasks with fault-tolerant requirements by using PB model. We examine many 

existing heuristic algorithms, and observe that most of these backup copies are redundant 

and the reclaimed backup copies are not fully utilized. For the purpose of improving 

schedulability, we propose an effective dynamic scheduling algorithm, named the 

Loading-driven Adaptive Scheduling Algorithm (LASA), which monitors the processor 

utilization to control if a backup copy is required or not. Intuitively, if we schedule only the 

primary copies for all guaranteed tasks, we achieve the highest performance but lose the 

capability of fault-tolerance. Therefore, our loading-driven adaptation strategy introduces a 

trade-off between the performance and the degree of fault-tolerance. Only when the system 

is overloaded, the scheduler begins to schedule only primary copies for some tasks to accept 

more. In the LASA, we use two predetermined threshold values to control when the 

scheduler has to schedule the backup copies for the tasks and when to schedule only the 
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primary copies. On the other hand, in order to improve the utilization of the deallocated 

backup copies, we also add a waiting queue to our scheduling model. If currently there is no 

processor available for the task to be scheduled, it can stay in the waiting queue until some 

processors become available or its deadline becomes unable to be met. The task will be 

rejected in the waiting queue if its deadline becomes unable to be met. 

For evaluating the performance, we construct a dynamic simulator and compare our 

algorithm with previous work. We synthesize various workloads according to various task 

arrival rates, laxity, and the number of processors in the system. Then these workloads are 

used to test the scheduling algorithms. From the simulation results, we can see that the 

LASA outperforms other algorithms. 

This thesis is organized as follows. Chapter 2 introduces the system model and reviews 

some related work. Chapter 3 describes our LASA in some detail. Performance evaluations 

are presented in Chapter 4. Finally, conclusions and future work are given in Chapter 5. 
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Chapter 2 System Model and Related Work 

In this chapter, we will present our system model for the real-time multiprocessor 

system. It consists of the task model, the fault model, and the scheduler model. Then, we 

will briefly describe survey of related work about the dynamic task scheduling algorithm 

and the adaptive scheduling scheme. 

2.1 System model 

In our system model, a task is an instance of computation or a unit of work [3]. When a 

task comes to the system, it is dispatched and executed on a specific processor within a 

deterministic time interval [1]. By scheduling multiple copies of tasks on different 

processors, our system provides fault-tolerance [4-8]. In the following, we will give some 

basic concepts of task model, scheduler model, and fault model. 

2.1.1 Task model 

Considering that there are n tasks to be scheduled on m processors in a real-time 

system, a real-time task Ti (i = 1, 2,…, n) has the following attributes: the arrival time (ai), 

the ready time (ri), the deadline (di), and the worst case execution time (cij) for each 

processor Pj (j = 1, 2,…, m) [10-12]. Several assumptions are made for our task model. First, 

assuming tasks are aperiodic. The attributes of tasks are not known a priori, until it arrives 

at the system and ready to be executed. In our model, a task is ready at its arrival time, i.e., 

ai = ri. Second, we assume that there are no precedence constraints between tasks. 

Nevertheless, dealing with precedence constraints is equivalent to working with the 

modified ready time and deadline [17]. There are also no communications between the tasks. 

Third, the tasks are not preemptable and not parallelizable. When the execution of a task is 

started on a specific processor, it finishes to its completion without any interrupt. 
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2.1.2 Scheduler model 

A dynamic multiprocessor system consists of m+1 processors. One of them is a 

dedicated scheduling processor called the system processor or scheduler, and the other m 

processors are application processors. In a centralized scheduling scheme, all tasks arrive at 

the scheduler, and distributed to application processors. The communication between the 

scheduler and application processors is through dispatch queues. Figure 2.1 shows the 

architecture of the scheduler model [5]. The Spring system is such an example [3].  

The m application processors execute dispatched tasks in parallel with the scheduler 

which schedules the newly arriving tasks and updates the dispatch queues. Hence, the 

scheduling overhead does not cause uncertainty in the executions of the dispatched 

real-time tasks. 

2.1.3 Fault model 

In Primary Backup (PB) model, each task has one primary and one backup copy [4]. 

The backup is redundant and started only when its primary fails. Hence, for each task Ti, the 

interval between arrival time (ai) and deadline (di) must be large enough so that we can 

schedule two copies of Ti before its deadline without a timing overlap. Also, the two copies 

P2 

Pm 

Arrivals 

Figure 2.1 The scheduler model

Current schedule 

P0 
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must be scheduled on different processors [4, 8]. 

For using the PB model, we assume that each task encounters at most one failure either 

due to processor or software. That is, if a primary fails, its backup will always be completed 

successfully. This also implies that there is at most one failure in the system at any instant of 

time. We also assume that failures are independent, namely, correlated failures are not 

considered [12]. 

We assume that there exist fault-detection mechanisms, such as fail-signals for 

detecting processor failures and acceptance tests for detecting both processor failures and 

software failures [4]. The failures can be transient or permanent. The scheduler will not 

schedule tasks to a known failed processor. Besides, in this thesis we do not deal with faults 

in the scheduler by assuming that there are some approaches to tolerate the faults of the 

scheduler. 

2.2 Related work [1-2, 4-5, 11-14] 

In the past decades, many heuristic algorithms have been proposed to dynamically 

schedule a set of real-time aperiodic tasks. In this section, we state this scheduling problem 

first and then discuss an important algorithm called myopic. Next, two scheduling 

techniques, backup overloading and backup deallocation, are introduced. The two 

techniques significantly improve the performance of PB-based scheduling algorithm. Then, 

many work extended by myopic algorithm are described, including DMA, FTMA, and 

DNA. RT-SADS, value-based scheduling scheme and feedback-based adaptive scheduling 

scheme are presented at last. 

2.2.1 The heuristic dynamic scheduling problem [1, 2] 

Scheduling a set of tasks to find a full feasible schedule is actually a search problem. 

The search space can be represented by a search tree. A path from the root to a leaf node  
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represents a scheduling sequence. An intermediate node is a partial schedule, and a leaf 

node is a complete schedule. A schedule is said to be feasible if all tasks in the schedule 

meet their deadlines. Obviously, not all leaf nodes correspond to feasible schedules. If a 

feasible schedule is to be found, it might cause an exhaustive search which is 

computationally intractable in the worst case. For the dynamic scheduling problem, 

heuristic approaches are taken. 

Figure 2.2 depicts the concept of heuristic scheduling problem. It starts at the root of 

the search tree which is an empty schedule and tries to extend the schedule with one task 

every time. The scheduling procedure can be divided into two stages. The first is to select 

one task by a heuristic function. Next, after a task is selected, we use an allocation strategy 

for deciding when and where a task should be scheduled. In Figure 2.2, the black arrows 

along the tree edges indicate the extending direction and each rectangle in the feasible 

schedule represents scheduled task with a start time and a finish time. 

Backtracking [1-5] is a branch-and bound technique. It changes the extending direction 

P1

P2

P3

Time

T2 Tn 

T2 T3 Tn T1 T3 Tn 

T1

... ... ... 

T1 T3 Tn-1

Search space    : 

Feasible schedule : 

Figure 2.2 The concept of heuristic scheduling problem 
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when the current node is not strongly-feasible. A node is said to be strongly-feasible if it is 

still feasible after extending it with any nodes in its next level. When backtracking, the 

scheduler moves back to predecessor node and uses the second highest priority task to 

extend the schedule until all tasks are tried. 

The objective of a heuristic scheduling algorithm is to achieve higher Guarantee Ratio 

defined as follows [5, 11-14]: 

Number of tasks whose deadline are met 
Guarantee Ratio = 

Total number of tasks arrived in the system 
×100% 

2.2.2 Myopic scheduling algorithm [1] 

The myopic algorithm firstly considers the real-time system with resource constraints 

[1]. It uses an integrated heuristic function for task selection, which captures the deadline 

and resource requirements of tasks. When determining the task with the minimum heuristic 

value and checking strongly-feasibility, it considers only the first k tasks in task queue in 

which tasks are maintained in the non-decreasing order of deadlines. The k is an input 

parameter represents the feasibility check window size. For processor allocation, it uses 

ASAP (As Soon As Possible) strategy. In other words, a task is assigned to a processor on 

which it has the earliest start time (or earliest finish time). 

The termination conditions are either (1) a complete feasible schedule has been found, 

or (2) no more backtracking is possible. The complexity of this two-stage heuristic 

scheduling algorithm depends on the number of tasks in the task queue, denoted by n. Since 

only at most k tasks are considered, the complexity of myopic is reduced to O(kn). 

The value of k can be adaptive. The larger value of k indicates more scheduling cost 

and usually the better scheduling result. Hence, myopic adapts the value of k based on the 

tightness of task deadlines and the resource contention between tasks. When the resource 

contention becomes serious or the deadlines become tighter, the scheduler switches k to a 
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PR1

BK1

larger value. This adaptation is done statically. The probability of resource contention 

between tasks and the average tightness of deadline of the workload have to be known in 

advance. 

The drawback of myopic is that it does not support fault-tolerance. Besides, the value 

of k is difficult to be selected while we prefer a higher Guarantee Ratio rather than reducing 

the scheduling cost. 

2.2.3 Backup overloading and backup deallocation [4] 

Backup overloading and backup deallocation are evolved to increasing the Guarantee 

Ratio of those scheduling algorithms applied with the Primary Backup model. Figure 2.3 

illustrates the backup overloading technique. BK1 and BK2 can overlap each other if and 

only if PR1 and PR2 are scheduled on different processors. This technique saves the 

computing resources reserved for redundant copies. However, the disadvantage is that it 

only tolerates one fault at any instant of time. 

Backup deallocation is a technique which allows the scheduler to deallocate the backup 

when its primary is successfully completed and use the reclaimed time slots to schedule 

other tasks in a greedy manner [4, 5, 9]. It reduces the wasted processor time reserved for 

the backup copies since most of them are not executed. 

2.2.4 DMA and FTMA [5, 11] 

Distance Myopic Algorithm (DMA) extends the myopic algorithm with the PB-based 

fault-tolerant model [5]. In the DMA, the scheduler treats the primary and backup copies as 

PR2

BK2

Figure 2.3 The backup overloading 
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separate tasks. The primary copies are at first inserted in to the task queue in the order of 

non-decreasing deadlines and then the backup copies are duplicated and inserted at a fixed 

distance behind their corresponding primary copies. The Fault-Tolerant Myopic Algorithm 

(FTMA) further improves the way of constructing the task queue [11]. FTMA uses two task 

queues for the primary and backup copies separately, and blocks backup copies whose 

primary copies have not been scheduled outside the feasibility check window. Compared 

with DMA, FTMA selects more appropriate tasks to schedule. The processor allocation 

strategy in DMA and FTMA is the same as myopic. 

Similar to myopic, FTMA and DMA have the difficulty in selecting the value of k. 

Moreover, DMA needs to determine one more parameter, the distance. A major 

disadvantage of both algorithms is that they schedule the backup copies with ASAP method 

which loses more opportunities to do backup overloading and deallocation. This is 

improved by DNA introduced below. 

2.2.5 DNA [12] 

The density first with minimum non-overlap scheduling algorithm (DNA) does not 

duplicate the tasks when constructing the task queue. Instead, it schedules two copies for 

each selected task in the processor allocation stage. If it cannot schedule two copies for the 

selected task, it rejects the task. The density function is proposed for the task selection stage, 

which is more complex than the integrated heuristic function used in myopic, DMA, and 

FTMA. The density function highlights the urgency of the tasks, and the scheduler selects 

the task which has the least flexibility to be scheduled. In processor allocation stage, DNA 

uses ASAP for allocating only the primary copies. For allocating backup copies, a minimum 

non-overlap strategy (MNO) is proposed for saving the available time slots of the 

processors. It has higher Guarantee Ratio than that of FTMA. However, the density function 

and the MNO strategy require higher scheduling cost. 
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2.2.6 Real-time self-adjusting dynamic scheduling algorithm [2] 

In Real-Time Self-Adjusting Dynamic Scheduling algorithm (RT-SADS), the 

scheduling time has an upper bound and this upper bound can be online adjusted. The 

current scheduling phase will be terminated if its scheduling time reaches the upper bound. 

In the current scheduling phase, the scheduler adjusts the upper bound for the next one. This 

adaptation is based on the earliest available time of application processors and deadlines of 

new tasks in the task queue. The objective is to keep the application processors busy and the 

current length of the task queue in a reasonable range. The drawback is that RT-SADS 

rejects a task too late, and the system may not have enough time to handle this event of 

rejection. 

2.2.7 Value-based scheduling scheme [13] 

The value-based scheduling scheme extends the current partial schedule with multiple 

tasks at one time to maximize the total performance index (PI). In their scheme, the tasks 

have different redundancy levels and different fault probabilities. A task contributes a 

positive value to the PI if it is completed successfully. However, a small penalty to PI is 

incurred if a task is rejected and a large penalty to PI if all the copies of an accepted task 

failed. Hence, the more important tasks are scheduled with more copies than the less 

important tasks. A task can be scheduled with at most r copies, where r is the maximum 

redundancy level. The importance of a task depends on the value it contributes. By 

evaluating the expected value of the PI, the scheduler decides how many tasks are selected 

and how many copies are scheduled for each selected task. This algorithm takes the 

importance level into consideration. However, it reserves too many resources for backup 

copies so that the number of accepted tasks is small. Besides, the evaluation of expected 

value of PI requires higher complexity which is O(rk), where k is the known feasibility 
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check window size. 

2.2.8 Feedback-based adaptive scheduling scheme [14] 

The feedback-based adaptive scheduling scheme makes use of an estimation of the 

primary fault probability and the laxities of tasks to control the degree of overlap time 

between the primary copy and the backup copy of the same task [14]. This scheme allows a 

task to have an extremely tight deadline that is not enough for scheduling two copies with 

exclusive in time. When the backup copy has a timing overlap with its primary copy, parts 

of them are executed concurrently. If the primary copy is successfully completed, the 

execution of the backup copy will be terminated immediately and the remaining unused 

time slot will be deallocated. A modified backup overloading technique for overlapping 

primary with backup discussed in [15] may be applicable to this scheme. However, it is 

difficult to control the degree of the overlap time between the primary copy and the backup 

copy. Since to find a slot for a backup copy is not easy, to find a slot within a particular start 

and finish times is almost impossible. Besides, the effect of backup deallocation would 

degrade because only part of the backup copies is reclaimed. 

In the next chapter, we will introduce our new effective algorithm which dynamically 

schedules the real-time tasks with fault-tolerance. We apply the feedback-based scheduling 

scheme with the loading driven adaptation strategy. When the loading exceeds the 

predetermined level, our algorithm begins to accept tasks without scheduling backup copies 

for them in order to improve the Guarantee Ratio. We also extend the waiting queue to the 

scheduling system which improves the utilization of the deallocated backup copy. 
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Chapter 3 Loading-driven Adaptive 

Scheduling Algorithm (LASA) 

In this chapter, we describe our new effective scheduling algorithm which monitors the 

system loading and controls whether it will schedule two copies for the real-time task or just 

one copy. In section 3.1, we give overview of our algorithm. The scheduling model with the 

waiting queue and the loading-driven adaptation is illustrated. In section 3.2, we describe 

the heuristic function used to select a task from the task queue. In section 3.3, we state the 

processor allocation strategies for primary and backup copies. In section 3.4, the deferment 

and rejection mechanism for the tasks in the waiting queue are presented. In section 3.5, we 

propose the loading-driven adaptation strategy for adaptive fault-tolerant scheduling. 

3.1 Overview 

Like many previous work, our algorithm repeats two main stages until all tasks in the 

task queue are either accepted, rejected, or deferred. In the first stage (task selection), the 

scheduler selects one task by a heuristic function, and in the 2nd stage (processor allocation), 

the scheduler allocates primary and backup copies without timing overlap. However, there 

are two major differences between our algorithm and previous work. First, when the 

scheduler can’t find exactly two feasible slots for the selected task immediately, many 

existing algorithms either reject it or backtrack. However, we add a waiting queue to our 

system model and the scheduler moves the non-schedulable tasks to this waiting queue. 

Observe that perhaps a task is not schedulable right now, but it may be, later, if some 

previously scheduled backup copies are deallocated. Thus, when backup deallocation 

happens, the scheduler moves waiting tasks back to the task queue so that they will have 

more chances to be accepted. 
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Second, we proposed the loading-driven adaptation strategy which temporarily allows 

the scheduler to accept some tasks with allocating only the primary copies. This happens 

only when the system loading is heavy. Figure 3.1 depicts our scheduling model. More 

details are given in the following sections. 

Similar to DNA [12], we don’t apply backtracking mechanism in our scheduling 

algorithm. As mentioned in section 2.2, there are totally n! possible paths in the search tree, 

where n is the number of tasks in the task queue. Each path represents a scheduling 

sequence and the backtracking mechanism changes to a new path when the current node is 

not strongly-feasible. When we need to find a fully feasible schedule for a task set, 

backtracking seems helpful to prevent searching the whole n! paths. But in our model the 

objective is to minimize number of rejected tasks, we can’t ensure that the backtracking 

mechanism leads searching to a better result. Besides, the backtracking mechanism 

increases the scheduling cost. Figure 3.2 shows the whole scheduling procedure of our 

algorithm. In order to describing our algorithm in some detail, we introduce the following 

terminology at first.

P0

P1 

P2 

P3 

Arrivals 

Dispatch queues 

Task queue 
Scheduler 

System loading 

Backup deallocation 
Waiting queue 

Figure 3.1 A loading-driven adaptive scheduler  
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Loading driven adaptive scheduling algorithm() 
{ 

WHILE (task queue is not empty) { 
FOR (all tasks in task queue) { 

IF (EFT(Ti) is infinite) { 
    Move Ti to waiting queue 
} ELSE { 
   Compute heuristic value H(Ti) = EFT(Ti) + di

} 
     } 

Select a task with the smallest heuristic value 
Find feasible allocations for selected task              /* evaluation only */
IF (Both primary and backup slots are found) { 

IF (L>LA) { 
Allocate only PRi  

} ELSE { 
Allocate both copies 

} 
} ELSE IF (only primary slots is found) { 

IF (L>LR) { 
Allocate only PRi

} ELSE { 
    Move task to waiting queue 
} 

} 
FOR (all tasks in waiting queue) { 

IF (the LST(Ti) < the smallest finish time of all dispatched primary copies) {
Reject Ti

} 
} 

} 

 

 

Definition

Pj and tha

before di, E
Figure 3.2 The loading-driven adaptive scheduling algorithm 
 3.1 For a Task Ti, EFTj(Ti) is the earliest finish time of Ti executed on processor 

t can complete before its deadline. If we can not find a feasible slot for Ti on Pj 

FTj(Ti) is set as infinite. Formally, we define EFT(Ti) as: 
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EFT(Ti) = MIN{EFTj(Ti)} , for all processor Pj [11]

Definition 3.2 For a task Ti, LST(Ti) is the latest start time boundary of its primary copy. 

This value is defined by the attributes of a task and is independent to the current schedule. 

LST(Ti) = di -MAX{cij} – SecondMAX{cij}, for all processor Pj 

Definition 3.3 For a task Ti, LFP(Ti) is the latest finish time boundary of its primary copy. 

This value is defined by the attributes of a task and is independent to the current schedule. 

LFP(Ti) = di – MIN{cij}, for all processor Pj [12] 

In the next section, we will describe the principle of the first stage of our algorithm and 

the heuristic function. 

3.2 The heuristic function for task selection 

We use the integrated heuristic function H to select the task with smallest H value from 

the task queue. This function is also used in myopic, DMA, and FTMA algorithms [11]. 

Definition 3.4 H(Ti) is the heuristic function defined as: 

H(Ti) = EFT(Ti) +di, if EFT(Ti) is not infinite. 

Comparing with the density function in DNA [12], we select a task which has less 

execution time and smaller deadline instead of which has large execution time and less 

scheduling flexibility selected by the density function. By this way, it can help boost the 

Guarantee Ratio. For example, Figure 3.3 shows a workload. Assume that there are four 

application processors, and the current partial schedule is shown in Figure 3.4. When T1 and 

T2 just arrive at time step 16, we can calculate the heuristic values of T1 and T2 as follows. 

Obviously, T1 will be selected from the task queue. 

EFT(T1) = MIN{r1+c11, 55+ c12, r1+c13, r1+c14} = MIN{68, 107, 65, 69} = 65 

H(T1) = EFT(T1) + d1 = 65+124 = 189 

EFT(T2) = MIN{r2+c21, 55+ c22, r2+c23, r2+c24} = MIN{65, 109, 72, 62} = 62 

H(T2) = EFT(T2) + d2 = 62 + 131 = 193 
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 T0 T1 T2 T3 T4 T5 T6 T7 T8 T9

ri 11 16 16 18 29 45 48 53 54 70 
di 118 124 131 130 137 153 157 173 165 165 
ci1 52 52 49 44 46 48 53 45 43 47 
ci2 44 52 54 48 47 47 52 54 45 46 
ci3 53 49 56 56 58 48 42 57 48 46 
ci4 44 53 46 43 44 43 43 59 46 44 

 Figure 3.3 A workload 

 Figure 3.4 The partial schedule at time = 11 

Before calculating the H value of the task, its EFT(Ti) value must be evaluated first. 

The value of EFT(Ti) is not infinite means that at least one feasible slot for Ti has been 

found. In our algorithm, when EFT(Ti) is infinite, Ti is moved to the waiting queue 

immediately and H(Ti) needs not to be calculated. 

After selecting a task from the task queue, the scheduler allocates one primary and one 

backup slot for it in the 2nd stage which will be described in the next section. 

3.3 The processor allocation strategies 

After a task Ti is selected from the task queue, the scheduler tries to allocate PRi and 

BKi, which denotes the primary and backup copy of Ti, respectively. We simply use the 

ASAP strategy to allocate PRi, i.e., PRi will be allocated on processor Pj where the value of 
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EFT(Ti) is found. The ASAP strategy captures both the response times and the resource 

requirements of the tasks. Since a task may require different execution times on different 

processors, the scheduler will allocate it to the processor which can finish it with smaller 

response time. Meanwhile, when a processor is chosen to assign a primary copy, it must be 

available earlier or has less execution time for the task than other processors. 

As for BKi, we allocate it by ALAP strategy. It takes more advantages of the backup 

deallocation than ASAP strategy in FTMA [11]. Because the backup copies are redundant, 

they may not need to be executed. If a backup copy is scheduled to an earlier time slot, it 

possibly takes away the only chance of some other task which needs that time slot. On the 

other hand, when an “ASAP” backup copy is deallocated, tasks suitable for this slot may 

have already been scheduled to other processors or rejected. At this time, if no new tasks 

arrive, the deallocated slot will be wasted. In definition 3.5, we define BLST(Ti) formally, 

and BKi will be allocated on the processor where this value is found.  

Definition 3.5 For a task Ti, BLSTj(Ti) is the latest start time of BKi on processor Pj. If 

currently there is no available time slot on Pj, BLSTj(Ti) is set as zero. We express BLST(Ti) 

as follows: 

BLST(Ti) = MAX{BLSTj(Ti)}, for all processor Pj, and Pj ≠ proc(PRi), where proc(PRi) 

denotes the processor of PRi. 

If the scheduler can’t find any feasible time slot for BKi, BLST(Ti) must be zero and 

thus Ti will be moved to the waiting queue immediately. Note that when the scheduler 

evaluates EFT(Ti) and BLST(Ti), it just searches for the feasible time slots. PRi and BKi are 

not really allocated (dispatched). Ti will be accepted only after finding feasible time slots for 

allocating both PRi and BKi. 

We still use the above example to illustrate our allocation strategies. After T1 is 

selected, we have known that EFT(T1) = 65. Then, we find that BLST(T1) = MAX{72, 72, 

0, 71} = 72. Both P1 and P2 have the same BLST value; we simply choose P1 by following 
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the processor number. Therefore, PR1 and BK1 are allocated on P3 and P1, respectively. 

After scheduling T1, the scheduler repeats these two steps and T2 is selected and scheduled 

in the same way. Because the task queue becomes empty, the scheduler idles and waits for 

new events. Figure 3.5 shows the schedule after scheduling T1 and T2. 

Figure 3.5 The current schedule at time = 16 

As mentioned, when a task has an infinite EFT(Ti) or a zero BLST(Ti), it is 

non-schedulable and is moved to the waiting queue. In the next section, we will describe 

how to maintain the tasks in the waiting queue. 

3.4 Task deferment and rejection in the waiting queue 

After all tasks in the task queue are processed by the scheduler and those 

non-schedulable tasks are moved to the waiting queue, the scheduler starts to check the 

tasks in the waiting queue and decide which one should be rejected. As mentioned in section 

3.1, the tasks in the waiting queue will be moved back to the task queue when the backup 

deallocation happens. This means that a task should have enough time to wait for the next 

backup deallocation before its deadline. Otherwise, it should be rejected. Therefore, the 

scheduler has to know when backup deallocation will happen and how long a task can wait. 
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is smaller than th

the waiting queue

Figure 3.6 s

time=29, because

the scheduled fin

time=54, therefo

which is larger t

immediately. Aft

this example is 7

So far, we 

fault-tolerance. In

fault-tolerance. 

3.5 The loa

When too m
Figure 3.6 The complete schedule at time = 70
ithm, we use the smallest scheduled finish time of all primary copies in the 

as the estimated time of the next backup deallocation. If the LST(Ti) value 

e estimated backup deallocation time, Ti is rejected. Otherwise, Ti is left in 

. 

how the complete scheduling result of above example. T4 is rejected at 

 it is not schedulable and LST(T4) = 137-58-47 = 32, which is smaller than 

ish time of PR0. On the contrary, T8 is non-schedulable when it arrives at 

re it is moved to the waiting queue. Since LST(T8) = 165-48-46 = 70, 

han the scheduled finish times of PR0, PR1, and PR2, T8 is not rejected 

er BK0 and BK3 are all deallocated, T8 is accepted. The Guarantee Ratio in 

/10, and finally 3 tasks are rejected. 

have introduced the complete scheduling algorithm without adaptive 

 the next section, we will propose a mechanism which providing adaptive 

ding driven adaptation strategy 

any tasks arrive at a small time interval, the system is overloaded. The 
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scheduler must reject some of them and tries to accept as many tasks as possible. Since 

rejecting the tasks incurs the system error handling routines and degrades the overall system 

performance, it is reasonable to intentionally stop scheduling backup copies in order to 

accept more tasks. Apparently, this approach takes a trade-off between the Guarantee Ratio 

and the degree of reliability. Hence, we propose a loading driven adaptation strategy, which 

aims to improve the Guarantee Ratio without sacrificing too much reliability. 

Before introducing our strategy, we have to make two more assumptions. First, when 

the task scheduled without a backup copy fails to complete, the system error handling 

routines are invoked for compensating it similar to a rejected task. Second, the error 

handling cost for a failed is the same as for a rejected task, although the former may be a 

little higher. 

Although the backup copies is not always necessary in our adaptive scheduling scheme, 

we still schedule the primary copies within the requirement: EFT(Ti) ≤ LFP(Ti), for 

preserving an enough time interval between the scheduled finish time of PRi and di. This 

time interval is used to make sure that in case the task is scheduled without a backup copy, 

the system will have more error handling time if a failure happens to the task. In other 

words, if a task is scheduled with only primary copy, its deadline becomes logically 

LFP(Ti). 

We use the average processor utilization in a small time interval to define the system 

loading. 

Definition 3.6 Let L denotes the system loading, which is defined as: 

∑ −
=

i ii

ij

ad
caverage

m
L

)(
)(1  , for all dispatched and not finished tasks Ti, where average(cij) 

and the arrival time of T , respectively. 

At the beginning, all of the dispatch queues are empty and 

is the average execution time of Ti on m application processors. di and ai are the deadline 

i

L = 0. Then, L is increased 

when the scheduler dispatches a new task, or decreased when a dispatched task is finished 
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either successfully or faultily. Two threshold values, LA and LR, are given, so that the 

scheduler switches its strategies according to the values of L, LA and LR. LA represents the 

point that the scheduler starts to actively give up the feasible backup slots found for the 

tasks. This means that the scheduler begin to preserve processor time slots for the 

forthcoming tasks. However, we don’t want to accept too many tasks without finding the 

feasible backup slots because of reliability consideration. Only when L exceeds LR, the 

scheduler accepts a task without a backup copy rather than move it to waiting queue. 

Intuitively, smaller threshold values results in fewer backup copies, but higher Guarantee 

Ratio. This is a trade-off. Notice that in our algorithm, LA can be equal to, larger, or smaller 

than LR. Depending on the current value of L and the result of searching for feasible slots, 

there are three cases in the processor allocation stage: 

Case I: Both feasible PRi and BKi slots are foun

LR 

If both PRi and BKi 
are possible 

When L ≤ LA When L > LA

Accept Ti and allocate 
and 

 allocate 
both PRi BKi 

Accept Ti and
PRi only

possible 
Do not accept Accept Ti and a

PRi only
L 

If only PRi is 
When L ≤ LR  

Ti

When L > LR  

llocate 

LA 

L 

Figure 3.7 The relationship among L, thresholds, and scheduling strategies  

d. Ti is will be accepted. PRi will be 

alloc

 case, only when L > LR, the 

sche

is not found. In this case, Ti is moved to the waiting queue. 

ated for Ti, but BKi will be allocated only when L ≤ LA. 

Case II: PRi slot is found but BKi slot is not. In this

duler accepts Ti with only PRi. Otherwise, Ti is not accepted and is moved to the 

waiting queue. Figure 3.7 summarizes the relationship between the system loading and the 

scheduling strategies. 

Case III: PRi slot 
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time=54. 
Figure 3.8 The schedule at time = 54

 

  
Figure 3.9 The schedule at time = 70
e example shown in Figure 3.3, this time we apply the adaptation 

 and LR = 0.5, in this example. When T5 arrives at time step 45, T0 ~ 

and L is 0.451. Even though the scheduler finds both PR5 and BK5 

R5 because L > LA. Similarly, T6 is accepted and the scheduler 

en T7 arrives at time=53, there is no available slots for it and the 

the waiting queue. Because LST(T7) =173-59-57= 57 and the 

 deallocation will happen at time=55, T7 is not rejected. T8 arrives at 

o the waiting queue, too. Figure 3.8 shows the partial schedule at 
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At time=55, PR0 is finished successfully. The scheduler schedule T7 and T8 again. But 

they 

e=62, PR0, PR2 and PR3 are finished, and their backup are deallocated. T8 is 

sche

 have introduced the essence of our scheduling algorithm, including task 

selec

are still non-schedulable and moved to the waiting queue. T7 is rejected but T8 is still 

has enough time to wait for the next backup deallocation happens at time=62, because 

LST(T8)=71. 

When tim

duled at time=62 with only one copy, because L is 0.448 at that time. Then T9 arrives at 

time=70 and L becomes 0.319. Therefore, T9 is scheduled with two copies. Figure 3.9 

shows the schedule at time=70. In this example, finally, 2 tasks are rejected and 3 tasks are 

accepted without backup copy. The Guarantee Ratio is 8/10, which is higher than the result 

generated by the algorithm without applying this adaptation mechanism (refer to Figure 3.6 

in section 3.4). 

So far, we

tion, processor allocation, and loading driven adaptation. In the next chapter, we will 

evaluate and analyze the performance of our algorithm and compare with others. 
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Chapter 4 Preliminary Performance 

Evaluations 

In this chapter, we perform a number of simulations to study the performances of our 

scheduling algorithm presented above. The goals of our simulations are as follows. First, we 

compare the overall performance of our algorithm with FTMA and DNA [11-12]. The 

density function is compared with EFT+D function and the MNO strategy for backup 

allocation is compared with ALAP [11-12]. We also want to know the effect of the waiting 

queue. Second, we measure the effect of the adaptive fault-tolerant scheme on Guarantee 

Ratio and reliability. Meanwhile, we also study the effect of threshold values of loading 

driven adaptation strategy. Finally, the effect of failure rate is evaluated. 

4.1 Simulation overview 

Our simulation program is divided into two parts, the task generator and the dynamic 

simulator. The task generator generates a set of real-time tasks as the input of the simulator. 

The dynamic simulator generates the events based on the input task set and then simulates 

the actions of the scheduler to the events. We will describe the details of the task generator 

and the simulator separately in the next two subsections. 

4.1.1 The task generator 

The task generator generates a set of real-time tasks in the non-decreasing order of 

arrival time and gives the attributes to each task according to the input parameters. The 

attributes, including an arrival time, a deadline, and m worst case execution times for m 

application processors, are generated in the following ways. For a task Ti, the worst case 

execution times cij (j = 1 to m) are uniformly distributed in the interval [MIN_C, MAX_C]. 
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parameter explanation values 

MIN_C Minimum execution time 10 

MAX_C Maximum execution time 80 

λ Task arrival rate {0.4, 0.5,…,1.2} 

R Laxity {2, 3,…, 10} 

m Number of application processors {3,4,…,10} 

 

max cij 2nd max cij

R × max cij

Figure 4.1 The range of a randomly chosen deadline 

<The range of di> 

r 
 

The arrival time, ai, i

exponentially distrib

_1 CMIC
m
×

×λ

, where m is the num

is uniformly distribut

where R is the laxity

of the primitive of Pr

range for choosing t

generation and their

combinations of abov

4.1.2 The simul

 

Figure 4.2 Parameters of the task generato
s calculated depending on the inter-arrival time between tasks, which is 

uted with mean value [5]: 

2
_ CMAX+  

ber of application processors and λ is the task arrival rate. The deadline 

ed between ai + MAX{cij} + SecondMAX{cij} and ai + R × MAX{cij}, 

 parameter which indicates the tightness of the deadline [12]. Because 

imary Backup model, the value of R is at least 2. Figure 4.1 depicts the 

he deadline. Figure 4.2 shows the input parameters used for the task 

 possible values [12]. Thus, the task sets are generated with different 

e parameters for representing different workload and system scale. 

ator 
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parameter explanation values 

FP Probability of a primary copy failure [0, 0.1] 

SoftFP Probability of software failure 0.2 

HardFP Probability of hardware failure 0.8 

PermHardFP Probability of a permanent hardware failure 0.000001 

MAX_Recovery 
Maximum recovery time after a transient 
hardware fault 50 

 s 
 

The simulator genera

The events include arriva

according to the input task

result. Failure and recover

[12]. Before generating a 

current schedule to see if t

task encounters at most on

copy if its backup copy ov

an earlier failure event. A

eligible primary copy has 

event. For simplicity, if m

uses the earliest one to ge

event happens, the simulat

software failure, permanen

failure affects only the pri

scheduled on the same p

transient hardware failure 

in the interval [0, MAX_Re
Figure 4.3 Parameters for fault event
tes scheduling events and simulates the behavior of the scheduler. 

l, finish, failure, and recover. The arrival events are generated 

 set. The finish events are generated according to the scheduling 

 events are generated based on the parameters listed in Figure 4.3 

failure event, the simulator has to check all primary copies in the 

hey can be assigned a failure event. Because we assume that each 

e failure, the simulator do not assign a failure event to a primary 

erlaps with another one which has already been activated due to 

fter all primary copies in the current schedule are checked, each 

the failure probability (FP) to be selected for generating a failure 

ore than one primary copy is selected at one time, the simulator 

nerate a failure event. After deciding when and where a failure 

or decides what type of this failure event is. There are three types: 

t hardware failure and transient hardware failure [5]. A software 

mary copy itself, but a hardware failure affects all primary copies 

rocessor. A hardware failure can be transient or permanent. A 

is recovered in some recovery time which is normally distributed 

covery], but a permanent hardware failure will persist. 
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Input task set

Event generation 

Event queue 

Arrival ( ), Finish ( ), Failure ( ), Recover ( ), Scheduler ( ) 

current schedule task queue waiting queue 

parameters 

Figure 4.4 The architecture of the simulator 
 

Figure 4.4 shows the architecture of our simulator. The input data includes a task set 

generated by the task generator and the parameters consists of threshold values, failure 

probability, and feasibility check window size. The events are generated according to the 

input data and the current schedule. Because various events could happen at the same time, 

we need an event queue to order them. For every event, its corresponding function is 

executed. After the function is finished, the waiting queue, the task queue, and the current 

schedule are updated depending on the execution result. 

For the comparisons among different scheduling algorithms, we have to implement 

different subroutines of Arrival( ), Finish( ), Recover( ), Failure( ), and Scheduler( ). The 

following algorithms are implemented: FTMA, DNA, New DNA (We extend a waiting 

queue to the original DNA), LASA (Loading-driven adaptive scheduling algorithm), and 

LASA’ (This algorithm is the same as LASA except that the backup allocation strategy is 

modified to be the MNO strategy). All these subroutines except Scheduler( ) are executed 

when their corresponding events happen. The Scheduler( ) is executed when task queue 
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becomes not empty. If more than one event happens at the same time, the execution order is: 

Arrival( ) → Finish( ) → Recover( ) → Failure( ) → Scheduler( ). 

Two things are worthy of notice. First, both FTMA and DNA prefer to activate the 

scheduler periodically so that the task queue can have more tasks and then the scheduler has 

more choice for the task selection. If the scheduler is started immediately when the task 

queue becomes not empty, there is usually only one task to be considered. With only one 

task in the task queue to be scheduled, the heuristic function becomes somewhat useless and 

the task queue becomes a FIFO queue. Therefore, we periodically activate the scheduler 

when simulating FTMA and DNA. 

Second, FTMA need the parameter, k, known as feasibility check window size. The 

value of k ranges from 2 to the maximum length of the task queue. Larger k usually implies 

higher scheduling cost, but it is not proportional to the Guarantee Ratio. Since we assume 

that the scheduling cost can be ignored comparing with the execution times of tasks, the 

value of k can be as large as possible. But the best value of k is not predictable, we test all 

possible k for every task set when simulating FTMA and record the best result for 

comparison. 

4.2 Result and analysis 

In this section we present the simulation results and compare the performance of our 

algorithm with DNA and FTMA [12, 11]. For each workload scenarios, we generate 20 task 

sets and each one contains 20000 independent tasks. Each data in the graph is the average of 

the simulations of 20 input task sets. 

In the following subsections, at first, we will compare the Guarantee Ratio of various 

algorithms. Next, we study the reliability of the adaptive fault-tolerance and the effect of the 

threshold value LA and LR. At last, the effect of failure probability FP is estimated. 
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better than FTMA since it highly exploits the backup overloading and the backup 

deallocation. By comparing DNA and New DNA curves, we find that New DNA has higher 

GR due to the effect of adding a waiting queue. We also find that ALAP strategy for 

allocating backup is better than MNO used in DNA by observing that LASA has higher GR 

than that of LASA’ in these figures. We may conclude that backup deallocation contributes 

GR more than that of backup overloading, because the MNO strategy mainly considers 

backup overloading. 

4.2.2 The trade-off between reliability and schedulability 

We have shown the Guarantee Ratio of LASA in previous subsection. Figure 4.8 shows 

the average number of the primary-only tasks scheduled by LASA with various workload 

scenarios. When the system loading is relative low, i.e., smaller task arrival rate or larger 

laxity, LASA schedules fewer primary-only tasks. This result conforms to our anticipation. 

When the system loading is not heavy, fewer tasks are rejected and therefore the cost of 

executing error handling routines is low. Although we can accept them by not scheduling 

the backup copies, it would be better to keep the fault-tolerant capability. In (c), when the 

number of processors is small, there are few opportunities for backup overloading. This 

causes the value of L hard to exceed the thresholds. Therefore, the number of primary-only 

tasks is small. When the number of processor varies from 3 to 7, the number of 

primary-only tasks is steadily increased, but it decreased after the number of processor lager 

than 8. Because there are more tasks in the current schedule, the value of L becomes 

insensitive. This means that it will not be increased or decreased significantly after adding 

or removing one task from the schedule. 
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Figure 4.8 Number of primary-only tasks 
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Figure 4.9 show the GR and the percentage of primary-only tasks of our algorithm with 

various LA and LR. When LA and LR vary from 1 to 0, the proportion of primary-only tasks 

increased from 0% to almost 100% but the improvement of GR is less than 8%. The 

fault-tolerant capability is highly degraded but the GR is not greatly improved when LA and 

LR is becomes smaller. 
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Figure 4.9 Effect of threshold values (m=8, R=3, λ=1.2, FP=0) 

Figure 4.10 Effect of threshold values (m=8, R=3, λ=1.2, FP=0) 
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In Figure 4.10, we observe that LA has more influences on GR, and the difference is 

about 5% when LA varies from 1.0 to 0.5. However, for any constant LA with LR varying 

from 0.7 to 1.0, the difference of GR is less than 0.5%. If we don’t want to lose too much 

fault-tolerant capability, we should give larger values of LA and LR. Let CR and CF indicate 

the average penalty caused by the rejected task and the failed primary-only task, 

respectively. After applying our adaptive strategy, assume that the increment of the 

primary-only tasks is ∆PO, and the increment of the Guarantee Ratio is ∆GR. We wish that 

the penalty would be reduced. In other words, ∆PO×CF×fr - ∆GR×CR ≤ 0, where fr is the 

fault rate of the accepted tasks. Because we assume that CF ≅ CR, fr
PO
GR

≥
∆
∆ . If we want to 

make fr as large as possible, ∆GR should be very close to ∆PO. Unfortunately, ∆PO is much 

larger than ∆GR when LA and LR are large. In such situation, we suggest that LA and LR are 

set in the interval [0.9, 1.0] for the reliability consideration. 

4.2.3 The effect of failure rate 

Figure 4.11 shows the effect of FP for our algorithm. We use 5 different workloads as 

the inputs and find that the GR decreases with the increase of FP value, especially when the 

task loading is heavy. In Figure 4.12, the percentage of primary-only tasks scheduled by our 

algorithm is shown. Here, we set LA=0.95 and LR=1.0 in order to maintain the high degree 

of fault-tolerant capability for most tasks mentioned in previous subsection. When FP is 

larger, more backup copies are activated and fewer backup deallocations can be done. Thus, 

L becomes larger and primary-only copies increased when FP is larger. 

In this chapter, we have evaluated the performance of our LASA. We showed that 

adding a waiting queue can improve GR significantly. We also found that the adaptive 

fault-tolerant mechanism slightly increase the GR without losing too much fault-tolerant 

capability, if the threshold values are adequately given. In the next chapter, some 

conclusions and future work are remarked. 
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Figure 4.11 Effect of failure probability on LASA. The 3-tuple means 
(λ, m, R), which indicating different workload scenarios. 

Figure 4.12 Effect of failure probability on LASA (m=8, R=3, λ=1.2) 
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Chapter 5 Conclusion and Future Work 

In this thesis, we propose a loading driven adaptive algorithm, named LASA, which 

dynamically schedules real-time tasks with fault-tolerant capability based on Primary 

Backup model in a heterogeneous multiprocessor system effectively. Through the 

simulations, we have evaluated the performance of our proposed algorithm comparing with 

FTMA and DNA. We will make conclusions and give some future work in this chapter. 

5.1 Conclusion 

In summary, our new algorithm has the following main features and contributions: 

(1) The integrated heuristic function used for task selection in our algorithm has been 

shown to have the highest Guarantee Ratio than others based on our simulation results. This 

function selected a task which can be finished earlier and has smaller deadline. 

(2) When scheduling backup copies, we have shown that ALAP strategy is the most 

effective strategy for cooperating with backup deallocation than ASAP and MNO strategy. 

(3) By adding a waiting queue, tasks with larger deadlines have more opportunities to 

utilize the reclaimed backup slots when encountering heavy system loading. Thus the 

Guarantee Ratio is improved. Meanwhile, we use the latest start time to limit the waiting 

time. If a deferred task cannot be feasibly scheduled finally, it will be rejected far before its 

deadline so that the system still has enough time to execute error handling routines. 

(4) The loading driven adaptation strategy allows the scheduler to stop scheduling 

backup copies temporarily when loading exceeds a predetermined threshold. Because it 

reduces the resources reserved for backup copies which might be unused, the Guarantee 

Ratio is increased with minor degradation of reliability. 
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5.2 Future work 

In addition to our previous features, there are still some attractive issues worthy of 

further investigations in the future. 

(1) In our task model, we assume that all tasks have the same importance. However, it 

will be more desirable if we allow tasks have different level of importance. More critical 

tasks should have higher priorities to be accepted with scheduling both primary and backup 

copies, even if some less important tasks must be deallocated from the current schedule. 

Moreover, we can schedule more than two copies for a task which has higher level of 

importance. In this model, how to define the importance level of tasks would be a difficult 

problem. It may refer to the workload of real-world applications. Besides, the performance 

metrics requires more sophisticated design rather than Guarantee Ratio. The importance 

level of individual task should be taken into consideration. 

(2) We assume that each task has a large enough deadline so that primary and backup 

slots can be scheduled without timing overlaps. It will be more general by allowing the 

primary and backup copies to have timing overlaps. Even for a task with a large deadline, 

we can still use this approach if the only two available time slots happen to have timing 

overlaps. Further, if more than two copies are required for reliability, some of them should 

have timing overlaps. Although this scheme requires more computing resources, we can 

design an effective adaptation mechanism to dynamically switch the scheduling strategies. 

(3) We only monitor the system loading for switching scheduling strategies, but there 

are still many other system statuses that may be useful. As mentioned in section 2.2, the 

concept of monitoring the fault rate was proposed in feedback-based adaptive scheduling 

scheme [14]. This can be extended to an adaptation strategy. Besides, the amount of tasks in 

the task queue is not considered in our algorithm. Evaluating total resource requirements of 

all tasks in the task queue may also be taken into consideration. We expect a more effective 
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adaptation strategy scheduler integrated with more than one system status, such as system 

loading, failure rate, and number of incoming tasks. 

(4) The threshold values are constant in our algorithm. It can also be adaptive for 

different workload scenarios. We need a more sophisticate system model and a more 

complex performance metrics. As mentioned in section 4.2.2, we hope that our algorithm 

can still tolerate most of the failure tasks and assume that CF ≅ CR, we simply assign the LA 

and LR with larger values. In the future, we may define a more precise system model in 

which the tasks have different priorities, contributions and penalties. Then, we can evolve a 

method which dynamically adjusts the LA and LR according to the statistics of the penalty 

and the fault rate. 
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