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考慮分支指令行為的迴圈排班方法 
 

研究生 ： 李嘉淳   指導教授 ： 陳 正 教授 

國立交通大學資訊工程學系碩士班 

 

摘要 

 

 隨著個人攜帶式應用產品的普及，數位訊號處理機的應用也隨之廣泛，且性

能迅速改進，使得攜帶式的應用程式日益複雜。在數位訊號處理機中，巢狀迴圈

經常佔去大部分的計算時間，所以需要探討針對巢狀迴圈中包含分支指令的排班

方法。在過去已經完成的研究中，Push-Up Scheduling Method 與 Bottom Up 

Scheduling Method 皆是基於 Retiming且可以處理巢狀迴圈的指令排班的排班方

法，目的在得到最短的 Schedule Length，但是不能處理分支指令。Multidimensional 

Branch Anticipation 可以處理含分支指令的巢狀迴圈問題但是不考慮分支指令的

行為。當迴圈中的分支指令越多，分支指令的行為將會對應用程式的產能影響越

大。由於分支指令的影響，迴圈中的某些指令不會被執行，所以傳統的 Schedule 

Length 無法完全反應排班結果的優劣。我們提出 Expected Value of Schedule 

Length 用來評估含有分支指令的巢狀迴圈排班結果的優劣。之後我們基於

Retiming 的觀念，並考慮分支指令的行為發展出 Probabilistic Loop Scheduling 

Method (PLSM)，可以達到相當短的 Expected Value of Schedule Length。最後利用

實驗，可以看出 PLSM 的優勢與效果。 
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Abstract 
  

Multidimensional systems containing nested loop are widely used to model scientific 

computations such as image processing and signal processing programs. They are usually 

executed on VLIW DSP architecture. The instruction scheduling is an important step through 

the while process. However, branch instructions within loop may cause low utilization of a 

VLIW instruction word. The Multidimensional Branch Anticipation can get a minimum 

schedule length, however it can not consider the behavior of branch instructions. Because of 

the branch instruction, some instruction may not be executed and the schedule length can not 

present the performance perfectly. We will propose a method to evaluate its Expected Value 

of Schedule Length and show it is more closed to realistic performance than static schedule 

length. We also propose a retiming based scheduling method, Probabilistic Loop Scheduling 

Method, to get a better Expected Value of Schedule Length. The experimental results show 

the effectiveness of our method. 
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Chapter 1.  Introduction 
 

In embedded system, high performance Digital Signal Processing（DSP）is usually used 

in image processing, multimedia and wireless security, etc. These applications usually contain 

time-critical sections consisting of nested loops of instructions [4]. However, branch 

instructions within these loops may waste many computing resource by failure of branch 

testing. The optimization of such loops, considering processing resource constraints, is 

required in order to improve their entire computational time [1-4]. 

Many retiming-based methods can deal with nested loop to get a lower entire execution 

time, including Push-Up Schedule Method (PUSM) [1], Relax Push-Up Schedule Method 

(RPUSM) [2] and Bottom Up Schedule Method (BUSM) [3]. In such scheduling methods, 

PUSM achieve a minimum scheduling length, RPUSM reduces the entire execution time by 

selecting a better retiming function, and BUSM reduces the entire execution time by reducing 

the retiming depth. However they can not deal with the conditional branch, we use such ideas 

to improve entire performance. 

Early work for loop scheduling with conditional branches, such as Sumit [5], 

Radivojevic [6] and Xie [13] do not consider the executing probability of instructions. 

Lakshminarayana et al. [7] and Sha [8] only consider the executing probability in task level. 

However, an instruction level probability definition can help us to get a more precisely 

schedule result than task level. In this thesis, we focus on probability definition on instruction 

level problem. 

Resource Sharing is a useful mechanism to enhance the computing resource utilization, 

and many researches have discussed it already [4,6,10-11]. In [6,10], scheduling on directed 

acyclic graphics is considered, and in [11], one dimensional data-flow graph is studied. 

However, they do not consider the two dimensional nested loops. 
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Multidimensional Branch Anticipation (MDBA) [4] is retiming-based scheduling method 

used to schedule nested loops with conditional branch under resource constraint environment. 

It can fully utilize functional units to achieve the minimum static schedule length by the 

concept of PUSM. Because of the branch instruction, some instructions may not be executed. 

It means that some long instructions may not be executed and schedule length is not fixed. 

The traditional static schedule length can not perfectly present the performance of scheduling 

result. We need to define a more realistic measurement for nested loop with conditional 

branch. 

Firstly, we will propose a method to evaluate the expected value of schedule length by 

the behavior of each branch instruction and explain why it is closed to the realistic 

performance. Because MDBA do not consider the behavior of conditional branches, it usually 

gets a higher average schedule length. Secondly, we will propose a retiming-based scheduling 

method to reduce the average schedule length of nested loop with conditional branch. And we 

will use some benchmarks to show the efficiency of our scheduling method. 

This thesis is organized as follows. In chapter 2, we introduce the fundamental 

background and the related work. In chapter 3, we define the expected value of schedule 

length and discuss our scheduling strategies. Probability Loop Scheduling Method is 

presented in this chapter. In chapter 4, we do some experiments and give some summary for 

our experimental results with MDBA to show its efficiency. Finally, we conclude our thesis in 

chapter 5, and list the future work of our research.
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Chapter 2.  Fundamental Background & 
  Related Work 

  

 In this chapter, we define the Multidimensional Conditional Data Flow Diagram 

(MD-CdDFG) to model the nested loop with conditional branch to be scheduled and describe 

the concept of resource sharing. We survey several basic techniques in loop scheduling and 

resource sharing with conditional branch, including Push-Up Schedule Method [1], Bottom 

Up Schedule Method [3] and Multidimensional Branch Anticipation [4]. 

 

2.1 Modeling the Problem 

 Multidimensional conditional data flow graph (MD-CdDFG) is used to model the nested 

loop with conditional branch to be scheduled [4]. We add some attributes for our problem and 

redefine it in Definition 2.1 .  

 

Definition 2.1 A Multidimensional Conditional Data Flow Graph (MD-CdDFG) 

),,,,,( fktdEVG =  is a node-weighted and edge-weighted directed graph, where V is the set 

of computation nodes, VVE ×∈  represents the set of dependence edges, d is a function 

from E to Zn , representing the multi-dimensional delay between two adjacent nodes where n 

is the number of dimensions, t is a function from V to the positive integers, representing the 

computation time of each node, k is a function from V to the set of types, e.g. {fork, join, alu, 

mult, div}, f is a function from V to positive real number representing the truth probability 

when Vv∈ is a fork node. 

 

 A fork node represents a conditional instruction in the loop body. A join node with zero 

computing time is a dummy node representing the ending of conditional statements. 



 4

 

 

 

 

Fig 2.1(a) shows an example of high-level language codes of one DSP program and its 

equivalent two dimensional conditional data flow graph is shown in Fig 2.1(b). It’s a nested 

loop with depth two and contains a branch instruction C. When C is true, D is enable and E is 

disable. When C is false, D is disable and E is enable. We use ).,.()( 1 ydxded =  to represent 

any delay edge e  in a two-dimensional data flow graph. 

A conditional block is a set of nodes including a fork node, its corresponding join node, 

and all nodes controlled by the fork node. Nested conditional block is allowed, which means 

one node may be controlled by several fork nodes. We use conditional depth to present the 

number of fork nodes which decide execution of one node. Nodes belong to the true (or false) 

path respect to C means that they are enable if the fork is true (or false). For example from Fig 

2.1(b), nodes C, D, E and the join node consist of the conditional block. And node D and E 

belong to the true and false paths respect to C respectively. 

An iteration is equivalent to the execution of each node in V exactly once, excluding 

disable nodes by branch instruction. For the example in Fig 2.1(b), if fork node C is true, an  

(a) (b) 

Fig 2.1 (a) High-level language code for DSP program; (b) A MD-CdDFG respect to (a) . 
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iteration means the completion to node A, C and D. Iteration is identified by a vector I, 

equivalent to a multidimensional index, starting from (1,1…,1). Inter-iteration dependencies 

are represented by vector-weighted edge in an MD-CdDFG such as (1,1)e1 = in the Fig 

2.1(b). It means the result of fork node will be used by another iteration with indexing 

distance (1,1) in the iteration space. 

For any iteration j, edge from node u to node v with delay vector d(e) means that the 

computation of node v at iteration j depends the execution of node u at iteration j-d(e). An 

edge with delay (0,0…,0) in an MD-CdDFG represents a data dependence within the same 

iteration. A legal MD-CdDFG must have no zero-delay cycle, i.e., the summation of the delay 

vectors along any cycle can’t be (0,0…,0) [ ].  

A cell dependence graph (DG) of the MD-CdDFG G is the directed acyclic graph, 

showing the dependence between copies of nodes representing an MD-CdDFG G. Fig 2.2(a) 

shows the DG based on the replication of the MD-CdDFG in Fig 2.1, and Fig 2.2(b) shows its 

data dependence of DG represented by computational cells. A computation cell is the DG 

node that represents a copy of the MD-CdDFG, excluded the edges with delay vectors 

different from (0,0…,0). The computation cell is considered as an atomic execution unit.  

(a) (b) 

Fig 2.2 (a) A DG respect to Fig 2.1;  (b) A DG without intra iteration data dependence. 
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2.2 Multidimensional Retiming [1,9] 

For as MD-CdDFG G, the multidimensional retiming r is a function from V to Zn that 

redistributes nodes in consecutive iteration. Each iteration, represented by loop index, still 

contains all nodes in V with one instance. A new MD-CdDFG ),,,,,( fktdEVG rr =  is 

created, such that the summation of delay vectors of any cycle is unchanged. The retiming 

vector r(u) of a node u∈G represents the offset between the original iteration containing u and 

the one after retiming. The delay vectors change accordingly to preserve data dependencies, 

i.e., r(u) represents delay components pushed into the edge u→v, and subtracted from the 

edge w→u, where u,v,w∈V. After retiming, the execution of node u in iteration i is moved to 

the iteration i-r(u). For example, Fig. 2.3 shows the retimed MDFG Gr after applying retiming 

function r(A)=(0,1) on G. We can use the Definition 2.2 to obtain the retimed delay vector for 

every edge e in E. 

 

Definition 2.2 For any MD-CdDFG G=(V,E,d,t,k,f), retiming function r, and retimed 

MD-CdDFG Gr=(V,E,dr,t,k,f), we define the retimed delay vector for every edge e in E, the 

retimed delay vector for every path in G, and the retiming delay vector for every cycle in G, 

denoted as dr(e), dr(p), dr(l) respectively by the following formulas: 

Fig 2.3 A retimed MD-CdDFG of  Fig2.1(b). 
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(a) )()()()( vrurededr −+= for every edge vu e⎯→⎯ , u,v∈V and e∈E.  

(b) )()()()( vrurpdpdr −+= for any path vu e⎯→⎯ , u,v∈V and p∈G.  

(c) dr(l) = d(l) for any cycle l∈G. 

 

 In Fig. 2.4(a), we show the retimed DG based on the replication of the MD-CdDFG in 

Fig. 2.3 and the retimed DG represented by computational cells is shown in Fig. 2.4(b). The 

retiming function applied to an MD-CdDFG may create prologue and epilogue. Prologue is 

the set of instructions that must be executed to provide the necessary data for the beginning of 

the iterative process. Epilogue is the set of instructions that must be executed to complete the 

process [2]. These two sets of instructions are complementary. For example in Fig. 2.4(a), the 

instruction A becomes the prologue, and the instruction C, D and E become epilogue for this 

problem. 

(a) (b) 

Fig 2.4 (a) A retimed DG respect to Fig 2.3;  (b) A retimed DG without intra iteration 
data dependence . 
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A schedule vector s is the normal vector for a set of parallel equitemporal hyper planes 

that define the sequence of execution of the cell dependence graph. To get a schedule vector s, 

we can solve the inequalities 0)( ≥⋅ sed  for every Ee∈  [2]. For example, (1,0) is a 

schedule vector of the MD-CdDFG in Fig. 2.1(b).  

 

Definition 2.3 A legal MD-CdDFG ),,,,,( fktdEVG =  that have no zero-delay cycle is 

realizable if there exits a schedule vector s for the cell dependence graph with respect to G, 

i.e., 0≥⋅ ds  for any Gd ∈ [1-3]. 

 

Property 2.4 Given a realizable MD-CdDFG G, a legal multidimensional retiming for G is 

the multidimensional retiming function r that transforms G into Gr, such that Gr is still 

realizable [1-3]. 

 

 A legal multidimensional retiming on an MD-CdDFG ),,,,,( fktdEVG =  requires that 

the execution sequence of the corresponding retimed DG does not contain any cycle. This 

constraint is enforced through the use of a schedule vector that supports the realization of the 

retimed graph. 

 

Property 2.5  If r is a multidimensional retiming function orthogonal to a schedule vector s 

that realizes an MD-CdDFG ),,,,,( fktdEVG = , and Vu∈ , then ))(( urk ×  is also a legal 

multidimensional retiming on that MDFG [1-3]. 

 

From the Property 2.5, which is called as chained multidimensional retiming, we know 

that the retiming function of every node in the retimed MDFG can be in the form r)(k × . 

Here, r is called retiming base, and k is called retiming depth [2]. 
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2.3 Resource Sharing [4,6,10-12] 

Our method works on a uni-processor VLIW system with multiple various functional 

units which can be executed concurrently [10]. We assume that each type of functional unit 

has the same execution time, called a “Control Step”, or a “C-Step”. That is in one C-Step, a 

long instruction consist of several individual operations. To enhance the utilization of 

computing resource, we have some difference in execution stage. Branch Anticipation logic 

and Address Control logic are the first and second steps in the execution stage [4,10]. 

Branch Anticipation logic allow multiple conditional signal to cross iteration. From Fig 

2.5, branch conditional testing of fork node C decides either D or E should be executed. 

However, C and D, E are in different iteration with offset (0,1). Branch Anticipation logic can 

use some hardware to record the testing result to the later iteration. 

Because of the branch instruction, we observe some nodes are mutual exclusive. It means 

that only one of them can be executed. For example in Fig 2.5, D and E are mutual exclusive. 

We use a mechanism to enhance the utilization of functional unit called resource sharing. If 

two nodes are resource sharing, we assign them into the same functional unit. However, it 

needs some hardware to support such mechanism.   

Address Control logic can enhance resource utilization by assigning several nodes to the 

same functional unit at one step. From Fig 2.5, if node D and E use the same functional unit, 

they can share the same operation and only one of them can be executed in an iteration. We 

Fig 2.5 (a) A retimed DG respect to Fig 2.1 . 
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denote “D/E” to present that node D and E share one operation. Branch Anticipation logic and 

Address Control logic can work together. When a long instruction is fetched, two logics 

decide which one instruction is assigned to which one functional unit. It is easy to observe in 

an acyclic conditional block, all nodes sharing the same functional unit must come from the 

same iteration. 

 

2.4 Related Work 

 Many scheduling algorithms are designed based on multidimensional retiming technique. 

In this section we briefly describe some of them, including Push-Up Schedule Method 

(PUSM) [1], Bottom-Up Schedule Method (BUSM) [3] and Multidimensional Branch 

Anticipation (MDBA) [4]. 

 

2.4.1 Push-Up Schedule Method [1] 

 In order to make the schedule length shorter, PUSM uses retiming technique to change 

the dependence in the MDFGs. PUSM will first analyze that if a node could be scheduled, and 

then use retiming technique to make the node schedulable as early as possible. Now, we 

define what a schedulable node as follows. 

 

Definition 2.7 (Schedulable Condition) Given an MDFG ),,,( tdEVG =  and a node Vu∈ , 

u is a schedulable node at a C-Step cs, if it satisfies one of the following conditions: 

(a) u has no incoming edges 

(b) all incoming edges of u have a nonzero multidimensional delay 

(c) all predecessors of u, connected to u by a zero-delay edge, have been scheduled to 

earlier control steps 
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Before traversing the MDFG G, a schedule vector s realizing G and a legal retiming r on 

G will be found. Then scheduling an MDFG G by PUSM, it uses a queue to maintain the set 

of schedulable nodes. Scheduler fetches a schedulable node and places it into schedule table at 

an earliest C-Step to get a minimum schedule length. Schedulable nodes are filled into 

schedule table sequentially and get a minimum schedule length. 

During traversing G, every traversed node will record the retiming count function 

VuuRC ∈),( . RC(u) represents the number of extra nonzero delays required by any path from 

roots of G to node u. When we schedule one node u into schedule table , we “push-up” u to 

the earliest available functional unit. If this scheduling violate the data dependence, we 

increase RC(u) to add the retiming depth. Retiming count will propagate to its successors. 

After traversing G, PUSM uses retiming count to calculate the retiming function of every 

node by the following formula: 

ruRCVvvRCMaxurVu ×−∈∀=∈∀ ))(}),({()(,  

PUSM promises to get a minimum static schedule length but ignores the effect of the retiming 

depth which affects the entire execution time of a scheduled nested loop. In the next section, 

we survey the BUSM which provides a method to reduce the retiming depth. 

 

2.4.2 Bottom-Up Schedule Method [3] 

 The PUSM gets a minimum schedule length but cause high retiming depth. Bottom-Up 

Schedule Method (BUSM) reduces retiming depth and holds the same schedule length. The 

main idea of BUSM calculate the maximum schedule length of MDFG G before allocating 

nodes into schedule table. The formula for computing maximum schedule length (MSL) is  

⎡ ⎤ ⎡ ⎤} / ,/ ,1 max{)( MMultAADDGMSL =   

The ADD means the number of addition and A means the number of adder in the processor. It 

is the same in the multiplication, and easy to extend to the architecture with more types of 
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functional units. Scheduler prepares an empty schedule table with size as MSL which is equal 

to the schedule length of PUSM.  

 Then BUSM use the same schedulable condition in Definition 2.7 to allocate node into 

schedule table. The policy for node allocation is trying to allocate node into schedule table 

without increasing retiming depth. It is different from PUSM which always tries to allocate 

node in an earlier C-Step. 

 However, BUSM can not deal with conditional branch instruction and resource sharing 

problem. We will improve it in our method.. 

 

2.4.3 Multidimensional Branch Anticipation [4] 

 Multidimensional Branch Anticipation is based on PUSM with resource sharing to deal 

with nested loop with conditional branch problem in VLIW architecture [ ]. When we use 

PUSM to find an earlier available functional unit, we also find all scheduled operations for the 

possibility of resource sharing. 

As we schedule one node u into schedule table and share it with other nodes, such 

operations should have the same retiming depth. If we always use the earliest functional unit 

to allocate node u, there may cause a contradiction in data dependence as a cycle. Fig 2.6(a) is 

a part of MD-CdDFG G, m1,m2 and a1 have scheduled into schedule table and m1,m2 share 

the same multiplier. The dotted edges in Fig 2.7(a) are sharing indication edges. The graph 

consisting of G and sharing indication edges is denoted by Gs consisted by MD-CdDFG and 

resource sharing indication edges. The retiming depth of m1 and m2 is the same, so as a1and 

a2. By the propagation of RC in the PUSM, retiming depth will propagate and increase 

infinitely along the path a1→ m1→m2→a2→a1. We note such situation as a 

“sharing-prevention cycle”.  
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MDBA provide a mechanism, called “AVAIL-PREVENT” to solve such problem. In 

AVAIL-PREVENT, we pseudo-allocate a node into schedule and try to detect any 

sharing-prevention cycle in graph Gs. If a sharing-prevention cycle is detected, we recover the 

schedule table and allocate the node to a later C-Step and try to detect again until no 

sharing-prevention cycle in Gs. Similar to PUSM, we use the retiming base to calculate the 

retiming function of each node u∈V.  

In this section, we have surveyed several retiming based scheduling algorithm. PUSM 

can achieve a minimum schedule length but cause a high retiming depth. BUSM reduces the 

retiming depth but can not deal with branch instruction. MDBA bases on PUSM to get a 

minimum schedule length but does not consider the behavior of conditional branch. In the 

next chapter, we will discuss the importance of branch behavior and present our motivation to 

propose a new scheduling method. Then our new method will be described clearly. 

 

Fig 2.6 (a) A part of MD-CdDFG; (b) A schedule table with sharing prevention cycle; 
(c) A schedule table without sharing prevention cycle. 
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Chapter 3. Probabilistic Loop Scheduling 
Method 

 

In this chapter, we will finely introduce Probability Loop Schedule Method (PLSM) to 

deals with the nested loop with conditional branch. This chapter is organized as follows. In 

section 3.1, we explain our motivations and discuss our scheduling goal. In section 3.2, we 

define the instruction level executing probability and a new measurement for average 

performance. For the definition of average schedule length, we propose some schedule 

strategies in section 3.3. Finally in the section 3.4, we completely propose an algorithm to 

achieve the scheduling goal. 

 

3.1 Motivation 

 From the related work, PUSM and MDBA use the schedule length as a performance 

measurement [1,4]. Because of the conditional branch, some operations may not be executed 

and the schedule length is not fixed. Using schedule length as the measurement may 

overcount the performance. It is necessary to define a measurement to deal with the nested 

loop with conditional branch.  

We use an example to explain the shortcoming of schedule length. Fig 3.1(a) is a source 

fragment code in high level language and Fig 3.1(b) is its respected MD-CdDFG. It is a 

one-level conditional block and we assume the true probability of the fork node C is 0.5. It 

means the executing probability of node D is 0.5 and so as E.  

A simple architecture is used to explain our motivation in this section, and it can 

complete two operations in a C-Step. A retimed scheduling result of source code is shown in 

Fig 3.2(a). The integral superscript of each operation represents the multiple of retiming base 

by Property 2.5. Fig 3.2(b) shows two consecutive iterations which distance is one unit of  
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retiming base r in the iteration space. The subscript of each operation represents its loop 

index. 

In the Fig 3.2(b), it is an example to show our motivation. Although its schedule length is 

two, we can observe that the second long instruction which contains nodes A and B may not 

be executed. When C(i,j) is true and C(i,j)+r is false, the second long instruction in the second 

iteration does not be executed. We assume that the true probability of C(i,j) and C(i,j)+r are 

independent and expected executing probability of the second long instruction is 

1-0.5×0.5=0.75. 

From the related work, a long instruction uses Branch Anticipation logic and Address 

Control logic firstly in the execution stage [10]. If all operations in a long instruction need not  

(a) (b) 

Fig 3.1 (a) A source code fragment (b) MD-CdDFG respect to (a). 

(a) (b) 
Fig 3.2 (a) Schedule result of our motivation (b) The consecutive two iterations. 
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to be executed, execution stage stops after Address Control logic [ ]. Because time 

consumption of such two logics are small, we can regard that execution time is saved. 

We can compute the average schedule length of the first scheduling result. The first long 

instruction is always executed and the second has probability 0.75 to be executed. The 

average schedule length is 1.75. On the contrary in Fig 3.3(a), we use MDBA to get a 

scheduling result which schedule length is two. However the first and second long 

instructions are always executed and the average schedule length is 2 C-Step. We discover 

that the schedule length can not present the difference between such two scheduling results, 

and we need to define the average schedule length as our new measurement. It is more closed 

to the realistic executing performance of nested loop problem. 

MDBA does not consider the behavior of branch instruction, and usually get a high 

schedule length in average. We need to design a method to deal with such problem and get a 

lower average schedule length. In the next section, we define the measurement to evaluate the 

average schedule length. 

 

3.2 Basic Concept 

 In this section, we first define the executing probability of each operation in a given 

MD-CdDFG. Second, we infer the relationship from the executing probability of an operation 

to long instruction. Finally, we define the expected schedule length of a scheduling result and  

(a) (b) 
Fig 3.3 (a) Schedule result of MDBA (b) The consecutive two iterations. 



 17

 
 

 

explain its relationship to the average performance of nested loop. 

 

Definition 3.1 Given an MD-CdDFG ),,,,,( fktdEVG = , for each node Vu∈ , u belongs 

to conditional block c1, c2,…,cn . The executing probability of node u is defined as 

)()...()()( 21 nckckckup =  where  
⎩
⎨
⎧

=
=

iii

iii

c of path false the to belongsu   wherecf-1ck
 c of path true the to belongsu   wherecfck

)()(
)()(

 

  

For example in Fig 3.4, if f(c1)=0.2 and f(c2)=0.5, the executing probability of a3 is 

p(a3)=f(c1) and  m3 is p(m3)=(1-f(c1))(1-f(c2))=0.8×0.5=0.4.  

Because a long instruction is consisted by several operations, we use PL to present the 

execution probabilistic of long instruction and explain the relationship between )(up  and 

PL . In a general case, we assume a long instruction can complete n  operations in parallel 

and having executing probability as )()...2(),1( nppp . The PL  is equal to the complement 

that all of n  operations are not be executed in the same time. We use a formula to present it.  

Fig 3.4  A example of MD-CdDFG. 
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))(1))...(2(1))(1(1(1)( npppiPL −−−−=  …………………………………….……… (1) 

It is correct in most cases where the event of )()...2(),1( nppp  are independent. However, we 

know the probability of each node execution is not always independent. For example in Fig 

3.4, it is a dependent case on a3 and a4, they are always executed in the same time when C1 is 

true. We need some modifications for dependent cases. 

In the later, when a operation and long instruction with probability less than one, we 

describe them as conditional. On the contrary, a operation and long instruction is described as 

unconditional when their executing probability are equal to one. We define a term “source” to 

present the latest common predecessor of two nodes in a given MD-CdDFG. One function 

t=Source(u,v) presents that t is the source of u and v, where t,u,v∈V. For example in Fig 3.4, it 

shows that Source(m2,m3)=c2, Source(m2,a3)=c1 and Source(a1,m3)=a1. We use a simple 

architecture which a long instruction contains two operations in this section. 

 

3.2.1 Exclusive Nodes 

In the example, we can observe that some nodes are mutual exclusive and only one of 

such mutual exclusive nodes can be executed. We define the relationship to describe the 

relationship. 

 

Definition 3.2 For a given MD-CdDFG G, ∀ u, v∈V are exclusive if they satisfy the 

following property: There exists a fork node c∈V such that u belongs to the true path and v 

belongs to the false path of c. 

 

For example in the Fig 3.4, m2 and m3 belong to the different side of fork node c2. If m2 and 

m3 come form the same iteration, they are exclusive and p(m2), p(m3) are dependent. We 

need to modify the formula (1) to deal with such exclusive nodes. We assume that there are 
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two independent nodes u, v in a long instruction, its executing probability is: 

)'()()()'()()())(1))((1(1 vpupvpupvpupvpupPL ++=−−−= . ……….......................(2) 

Now we assume that u and v are exclusive, u and v can not be executed in the same time and 

p(u)p(v)=0. We modify (2) as: 

 )'()()()'( vpupvpupPL += ..…………………………………………………………...(3) 

When u has executed, v is always disabled. It means that p(v)’=1 and p(u)p(v)’=p(u). We can 

modify (3) as: 

 )()( vpupPL += ..………………………………………………………….……..…….(4) 

Finally, we apply (4) to modify (1) where there are n operations in one long instruction. If 

there are two exclusive operations, we sum there executing probability and use only one 

operation to replace them. It means that there are 1)(n −  independent operations in a long 

instruction and we apply (1) to compute PL  of long instruction. In our architecture, we can 

assign several exclusive nodes into one operation, called “resource sharing” and all sharing 

nodes are exclusive, the executing probability of the operation is the summation of all sharing 

nodes. 

For example, if a long instruction consist two operations, one is a4 and the other is 

shared by m2/m3. The probability of first operation is equal to the executing probability of a4. 

The other operation has probability p(m2/m3)=p(m2)+p(m3) because they share one 

functional unit. Then we discover that a4 and m2/m3 are exclusive, the executing probability 

of long instruction equal to the summation of such two operations; PL=p(a4)+p(m2/m3)= 

p(a4)+p(m2)+p(m3). 

 

3.2.2 Inclusive Nodes 

 We discover that some nodes are always executed in the same time. For example in Fig 

3.4, when c1 is true, a3 and a4 are executed in the same time. Executing probability of a3 and 
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a4 are not independent and we need a modification for (1). Now we define a relationship to 

describe this situation. 

 

Definition 3.3 For a given MD-CdDFG G, ∀ u, v∈V are inclusive if they satisfy the following 

property: For all fork nodes c∈V such that u and v belong the conditional block of c, they are 

in the same side. 

 

We assume two independent nodes u, v into a long instruction, its executing probability 

is: 

)'()()()'()()())(1))((1(1 vpupvpupvpupvpupPL ++=−−−= ..………..…….……....(2) 

If u, v are inclusive, they should be executed in the same time. It means p(u)’p(v) 

=p(u)p(v)’=0. We modify (2) as : 

 )()())(1))((1(1 vpupvpupPL =−−−= …………………………………....……..……(5) 

When u has been executed, p(v)=1 and we modify formula (5) is as: 

 )(vpPL = ……………………………………………………………....………..……..(6) 

Finally, we apply (6) to modify (1) where are n operations in a long instruction. If there are 

two operations which are inclusive, we delete one of them. It means that there are 1)(n−  

independent operations in a long instruction and we apply (1) to compute the PL . For 

example in Fig 3.4, when a3 and a4 are scheduled in a long instruction, we delete the 

probability of a4 and PL=p(a3). 

 We have proposed some modification to correct the executing probability of a long 

instruction. Now we discuss how to compute the executing probability of a long instruction. 

Firstly, we find the inclusive relationship in a long instruction and delete the redundant 

operations. Second, we merge the executing probability of sharing nodes. Third, we find the 

exclusive operations in the long instruction and use only one operation to merge their 

executing probability. Finally, we use formula (1) to compute the executing probability from 
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the remaining independent operations and get the executing probability of each long 

instruction. 

 

3.2.3 Expected Value of Schedule Length 

We have defined the executing probability of each long instruction. Because we schedule 

the MD-CdDFG into several long instructions, we can sum PL  to define the expected value 

of schedule length as follow. 

 

Definition 3.4 Expected value of schedule length (ESL) is defined as ∑
=

=
MSL

i
iPLESL

1
)( , where 

MSL is the maximum schedule length of MD-CdDFG G and )(iPL  is the executing 

probability of long instruction PL at C-Step i . 

 

The behavior of fork node decides the average number of instructions to be executed in 

an iteration. We schedule instructions into several long instructions and get the maximum 

schedule length. Schedule length can not present the performance perfectly because it is static. 

We propose the ESL which is computed by the behavior of fork nodes means that the average 

computation time of loop body. The ESL is a more fair measurement for the performance of 

scheduling result. 

Our schedule goal is ESL reduction. The ESL reduction means that we collect some 

conditional operations into a conditional long instruction. Because the loop body usually use 

large part of computation time, ESL reduction can decrease the entire execution time. In the 

next section, we propose a new method for ESL reduction. 
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3.3 Schedule Strategy 

 Our scheduling goal is to reduce the ESL and we propose several heuristic strategies to 

achieve it. From the related work, MSL is defined as :  

 } 
unit functional of #

operations of # max{ MSL =  

MSL is the upper bound of schedule length. We need to reduce the number of operations to 

reduce the upper bound and to share several nodes into one operation. We define the resource 

sharing condition to indicate which nodes can share one operation. 

 

Definition 3.6 (Resource Sharing Condition) In a given MD-CdDFG G, Vvu ∈, , u and v can 

share the same operation if they satisfy:  

(1)  u and v use the same type of functional unit. 

(2)  u and v are exclusive 

(3)  u and v do not exist “sharing-prevention cycle” 

Fig 3.5 A example of MD-CdDFG. 
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We use this definition to check all pairs of nodes in the MD-CdDFG, and get a GS to present 

resource sharing policy. The condition (3) can be detected by traversing the GS in the MDBA. 

 We use Fig 3.6 as our example in this section and the result for finding resource sharing 

policy is shown in Fig 3.7. It shows that a2/a3/a8, a6/a7 and a4/a5 share one adder. By 

formula (4) in 3.3.2, we can compute that a2/a3/a8 and a4/a5 are unconditional. After finding 

all resource sharing policy, the number of operations is reduced. MSL can be also reduced by 

resource sharing. Thus, our scheduling strategy is given below.  

 

Schedule strategy 1 To reduce the upper bound of schedule length, we find more and more 

nodes to share one operation. 

 

We also need to reduce the lower bound of schedule length. From (1), if there exists an 

unconditional operation in a long instruction, the executing probability of this long instruction 

PL  is equal to 1. It is an unconditional long instruction which always be executed in each 

Fig 3.6 The resource sharing policy of our example 
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iteration. Because the resource sharing policy has been found, we define the number of 

unconditional long instruction as Minimum Schedule Length (NSL). 

 

Definition 3.7 Given an MD-CdDFG G after finding resource sharing policy, the Minimum 

Schedule Length (NSL) is defined as }
___#

___#max{
unitfunctionalof

operationsnalunconditioofNSL =  

 

For example in Fig 3.7(b), we have found the resource sharing policy and get unconditional 

operations as { a1, m1, c1, c3, a4/a5, m5/m7, m2/m3, a2/a3/a8 }. If we have two adders and 

one multiplier in our architecture, the NSL = 3}
1
3,

2
5max{ = . NSL is the lower bound of 

schedule length, it physical meaning is that three long instructions always be executed. 

However, there are three conditional long instructions with executing probability, the 

PL(6)PL(5)PL(4)3ESL +++=  by Definition 3.5. Thus, given an MD-CdDFG G after 

finding resource sharing policy, we can compute the MSL, NSL, ESL and know that 

NSLESLMSL ≥≥ . 

We need a minimum number of unconditional long instructions to reduce NSL. Our second 

scheduling strategy can be given as below. 

 

Schedule Strategy 2 To reduce the lower bound of schedule, we schedule unconditional 

operations into minimum number of long instructions. 

 

 After scheduling all unconditional operations into minimum number of long instruction, 

there are still some conditional operations to be scheduled. We need to schedule them into 

conditional long instructions and also need to reduce its executing probability. We consider 

the pervious simple architecture with only two operations, and p, q are scheduled into the long 

instruction.  
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If p and q are exclusive, its PL  is )()( qppp + . However, if p and q are independent, 

its PL  is ))(1))((1(1 qppp −−− by (1). Because p(p) and p(q) are positive, )()( qppp +  > 

))(1))((1(1 qppp −−−  is always right. It means that exclusive nodes will increase PL  and 

we should propose a heuristic method to avoid such exclusive nodes. We have many methods 

to avoid exclusive and we choice the easiest one which select one operation to increase its 

retiming count. Then such two operations will become independent. This heuristic method 

will increase the retiming depth of our scheduling result, but reduce ESL which is our 

schedule goal. This heuristic method has a disadvantage which retiming depth will increase. 

Our third scheduling strategy is shown as following. 

 

Schedule Strategy 3 When we schedule two exclusive conditional operations into a long 

instruction, they need to be set different retiming count. 

 

 We have proposed three scheduling method and we will propose our scheduling method 

in the next section. Such three scheduling method will be used to decrease the average 

schedule length ESL. 

 

3.4 Probabilistic Loop Schedule Method 

In this section, we propose our detail algorithm and use an example to explain how they work. 

Our scheduling goal is a static schedule result with shorter ESL. Input of our algorithm is the 

MD-CdDFG G, and outputs is the retiming of each node u∈V..  

Our method which called Probabilistic Loop Scheduling Method (PLSM) contains four 

steps. The first step computes the executing probabilistic of each node. The second step finds 

the sharing policy of graph. The third step allocates operations into schedule table which is 

one output. The final step computes the retiming of each node u∈V. 
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Fig 3.7 shows the algorithm for calculating the probability of each Vu∈ . In the 

algorithm is an implement of Definition 3.1, Line 1 initially sets all nodes with probability 

equal to 1. From Line 2 to Line 4 is a loop indexed by the number of fork nodes. When loop is 

indexed by ci , we multiply the true probability to every node which belongs to the true path of 

ci and multiply the false probability to every node which belongs to the false path of ci . After 

processing all fork nodes, each node gets an executing probability. For example in Fig 3.8, we 

assume the executing probability of each node and the italic real number means the result of 

probability calculation. We can know the executing probability of each node after the first 

step, the second step we need to find the resource sharing policy. 

 

Input : MD-CdDFG G 

Output : probability of each node 

1. ∀ u∈V  p(u)=1  

2. For each fork node ci = c1…..cn  

3. do   ∀ p ∈ true path of ci ;  p(p)=p(p)×f(ci) 

4.         ∀ q ∈ false path of ci ;  p(q)=p(q) × (1-f(ci)) 

Fig 3.7  Step 1 of PLSM : Calculating the executing probability for each node 

Fig 3.8 After calculating executing probability of each node. 
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Input : MD-CdDFG with p(u)  ∀u∈V   

Output : GS : MD-CdDFG with sharing indication edges 

1  Sort fork node Ci=C1…Cm By its Decreasing Order of Conditional Depth 

2  Sort type of FU FUj=FU1…Fun By its (number of nodes / FU in system) 

3  For (Fui=Fu1…Fun) 

4    For (Cj=C1…Cm) 

5       For each u s.t {(u ∈ true path respect to Ci ; shared u first) } 

6            For each v s.t {(v ∈ false path respect to Ci ; shared v first )} 

7                  IF (  (Fu(u)=Fu(v)=Fuj)  

8                 AND ( u and v are exclusive)  

9                       AND ( u and v are not sharing-prevention cycle ) ) 

10                THEN A sharing indication edge u→v 

11  p(u)=p(u)+p(v) ; p(v)=p(u); 

Fig 3.9 Step 2 of PLSM : Algorithm for finding resource sharing policy 

Fig 3.9 is the algorithm for finding resource sharing policy. Input of this algorithm is the 

MD-CdDFG with calculated the executing probability of each node in the first step. From the 

Line 5 and Line 9, we select a pair of nodes to check the resource sharing conditions in 

Definition 3.6. If we find two nodes which satisfy the sharing conditional, we use a sharing 

indication edge to connect them and sum their executing probability in Line 10 and 11. By the 

first schedule strategy, Line 1 and Line 2 try to merge more nodes into one operation. The 

Line 1 means that we find the sharing policy from the deeper conditional block first. The Line 

2 means that we find the sharing nodes from the functional units which use longer schedule 

length. They are useful to enhance the number of resource sharing nodes. Fig 3.10(a) shows 

the resource sharing policy after finding addition, and Fig 3.10(b) shows the finding resource 

sharing policy after finding multiplication. After finding sharing policy, operations are 

classified into unconditional and conditional by its executing probability in Fig 3.11. 
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For example, after finding the resource sharing policy, we can find the number of 

unconditional and conditional operations as shown in Fig 3.11. The MSL and NSL can be 

computed by the related works and Definition 3.7. In this example, if we have two adders and 

one multiplier, then 

Fig 3.10  (a) After finding sharing policy among addition;  (b) After finding all sharing 
   policy. 

Fig 3.11 Operations after finding resource sharing policy. 
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6  } 
1
6  ,

2
8 max{  

units functional of #
operations of MSL === }#max{  and 

 3  } 
1
2  ,

2
6 max{  

units functional of #
operations nalunconditio of NSL === }#max{ . 

The third step, we allocate all operations into schedule table which size is equal to the 

MSL. By second scheduling strategy, unconditional operations should be scheduled into 

minimum number of long instructions from C-step 0 to NSL. Fig 3.12 shows the schedule 

tables and the dotted line means the NSL. Algorithm for allocating operations is shown in Fig 

3.13 which contains two phases. The first phase allocates all unconditional operations into 

schedule table from C-Step 1 to NSL by BUSM [3] to reduce the retiming depth. After first 

phase, there are some conditional operations to be scheduled. The second phase allocates 

conditional operations into schedule table by its executing probability. A conditional operation 

with higher probability is scheduled to the earlier C-Step to reduce the PL of later long 

instructions. 

 Now, we use the example to show how the algorithm works. Initially a1 is in the QueueV 

Fig 3.12 Scheduling processes for allocating operations 
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in the Line 4 and we can find an available FU in the C-Step 1 in the Line 9 to 11. We schedule 

a1 into schedule table and decrease the indegree count of its successors to find schedulable 

operations. Then m1 and c3 are added into QueueV and we try to find an available functional 

unit for m1 at C-Step from 2 to 4 and schedule it into C-Step 2. 

After a1, m1, c1, c3 are schedulable in Fig 3.12(a), we need to schedule c2 but it’s a 

conditional operation in the Line 19. We decrease its successors’ indegree count but added c2 

into QueueS. Then the sharing operation m2/m3 has zero indegree and is schedulable. There 

are not available functional unit from ES(m2/m3)=3 to NSL and we find another one at C-Step 

1 to ES(m2/m3)-1 in the line 13 to 16. It’s the idea of BUSM to reduce retiming depth. In the 

Fig 3.12(b), when Queue is empty, all unconditional operations are allocated into schedule 

table, there are some conditional operation to be scheduled in the QueueS. 

We sort such conditional operations by its executing probability and allocate them into 

schedule table at C-Step from 1 to MSL. The highest probability operation is m8/m9 and will 

be scheduled into table firstly in Fig 3.12(c). After allocating all operations, we get the 

schedule table as Fig 3.12(d). We can observe that the first three long instructions will always 

be executed, and the other three depend on the branch testing. By the definition of ESL, we 

can compute ESL=3+PL(4)+PL(5)+PL(6) as the average performance of our scheduling 

result. However, the retiming count of each operation is unknown, we finally use a algorithm 

to set the retiming count. 

Input : MD-CdDFG GS ,MSL,NSL 

Output : An Allocated Schedule Table 

1. ES(∀v∈V)←1 

2. Queue←v∈V ; QueueV=QueueS=∅ 

3. ∀e∈E, E←E-{e, s.t. d(e)≠(0...0)} 

4. QueueV←QueueV∪{u∈V, s.t. Indegree(u)=0} 
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5. While (Queue≠∅) 

6.  DO u←DeQueue(QueueV)  

7.   IF (u is unconditional) 

8.  THEN   for i=ES(u) to NSL 

9.    if (exist an empty FU for u) 

10.    ES(u)=i ;  

11.  Assign operation u to an available FU at C-Step i 

12.  Assign operation shared with u to an available FU at C-Step i 

13.    for i=1 to ES(u)-1 

14.    if (exist an empty resource for u) 

15.   ES(u)=i ; Assign node u to an available FU at C-Step i 

16.  Assign operation shared with u to an available FU at C-Step i 

17.  ∀v s.t. u→v 

18.  ES(v)←Max{ES(u),ES(u)+t(v)} 

19.  ELSE   QueueS=QueueS∪{u , nodes shared with u} 

20.  ∀v s.t. u→v 

21.   Indegree(v)=Indegree(v)-1 

22.  if Indegree(v and nodes shared with v)=0 

23.   QueueV=QueueV∪{v} 

24. While (QueueS≠∅) 

25.  u←DeQueue(QueueV)  s.t. u has the highest p(u) in QueueV 

26.  for i =1 to MSL 

27.  if (exist an empty FU for u) 

28.  Assign operation u to an available FU at C-Step i 

Fig 3.13  Step 3 of PLSM : allocating operations into schedule table 
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Input : MD-CdDFG and scheduled table 

Output : retiming function of each node v∈V 

1. ∀ u∈V RC(v)=null 

2. RCmax=0 

3. E ← E – { e, s.t. d(e)=(0...0) } 

4. ∀ u∈V s.t. Indegree(u)=0  RC(u)=0  

5. While (∀ u∈V, RC(u) ≠null) 

6.  do  For CS=1 to MSL 

7.   for each u s.t u is a operation in the control step 

8.   do  IF (RC(u)=null AND RC(all parents of u) ≠ null) 

9.    THEN  RC(u)=RCmax 

10.  IF (exist operation v, s.t. u, v are exclusuive) 

11.   AND RCmax>NSL 

12.  AND RC(v)=RCmax 

13.   Then   RC(u)=RC(u)+1 

14.   RCmax=RCmax+1 

15. Choose s=(s1,s2…sn) s.t. s•d(e ) > 0 for any e∈E whose d(e)≠(0,…,0) 

16. Choose r s.t. r ⊥ s 

17. for each u∈V 

18.  do  r(u) = (RCmax – RC(u))*r 

Fig 3.14 Step 4 of PLSM : Algorithm for setting retiming count 

 

The final step is retiming count setting. We need to avoid the exclusive by Schedule 

Strategy 3. Nodes which do not violate the data dependence in the schedule table can use the 

same retiming count. Detail algorithm is shown in the Fig 3.14, and we use the allocated  
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result in Fig 3.12 to show how retiming count setting works. 

The process of retiming count setting is shown in Fig 3.15. The input of algorithm is the 

graph MD-CdDFG G and scheduled table. Initially we set the retiming count of each node as 

null in Line 1. We set the nodes without incoming edges as zero retiming count with retiming 

count 0 in the Line 4. In the Fig 3.15(a), only a1 has zero retiming count initially. Then we 

find all nodes which satisfy zero retiming count in the schedule table from the Line 5 to 13. 

One operation can be set its retiming count if their parents are set the retiming count. For 

example, when we search the second C-Step and observe that all parents of c2 have set the 

retiming count, we can set the retiming count of c2 as zero. The first round from Line 6 to 9 

set all operations which can apply zero retiming count and the result is shown in Fig 3.15(b). 

 After setting zero retiming count, we search the table twice to find nodes which can 

apply retiming count 1 and 2 in the Fig 3.15(c). From Line 10 to 13, we avoid schedule two 

exclusive operations into one long instruction by the Schedule Strategy 3. We increase the 

Fig 3.15  Process for retiming count setting. 
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retiming count of a later scheduled node. The while loop is finished until that all operations 

have its retiming count as Fig 3.15(d) . The maximum retiming count is recorded by RCmax. 

From the Line 15 to 18, we find the base retiming function by RPUSM [2] and compute the 

retiming function of each node v∈V. 

So far, we have scheduled all operations into schedule table and set the retiming count. 

The example has shown how algorithm works. By property2.5, the scheduling result is a legal 

retiming to get a realize scheduling result. In the next chapter, we will use several benchmarks 

to evaluate the efficiency of our method. 

 



 35

Chapter 4. Preliminary Performance 
      Evaluations 
 

 In this chapter, we will show some performance evaluations of the DSP program. First 

we will introduce the formula of evaluating the execution time for nested loops with 

conditional branch. Then, we will explain how the ESL affects the entire execution time. 

Secondly, we use some benchmarks to evaluate our method PLSM and MDBA in some detail. 

At the end, we will give some summary of time complexity and entire execution time between 

MDBA and our method PLSM. 

 

4.1 Evaluating the Execution Time 
 
 In DSP applications, most nested loops are 2-dimensional loops. Thus, we use four 

benchmarks to evaluate the performance of PLSM and they are all 2-dimensional MD-CdDFG. 

In the following, we introduce the formula to calculate the execution time of 2-dimensional 

loops whose indexes are m and n. Before applying the retiming technique to a 2-dimensional 

loop, its execution time can be represented by Anm ×× , where A is the static schedule length. 

After applying the retiming technique, the execution time of a 2-dimensional loop can be 

divided into three parts, the loop body, the prologue and epilogue inside the first level loop, 

and the prologue and epilogue are out of the nested loop[2-3]. The formula of evaluating 

execution time of a 2-dimensional loop is shown as follows [2]: 

)1()2)(())(( 2121212112 +×××+×××−×−×+×++×−×− ddssDssdssnsmsCBdsndsmA ...(7) 

, where (s1,s2) is the schedule vector, d is the maximum retiming depth, A is the average 

schedule length after applying some algorithm for optimization, D is the static schedule length 

of an iteration after applying “List Scheduling”, B is the length of prologue inside the first 
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level loop, and C is the length of epilogue inside the first level loop. Following, we use the 

formula to compare the performance of PLSM and MDBA. We both use average schedule 

length in A to calculate their entire execution time. 

 

4.2 Experiments Results 

 We use some benchmarks to evaluate the effects of MDBA and PLSM. They are all 

nested loops with conditional branches. We use (7) to compute their entire execution time, 

including loop bodies and overheads. The four benchmarks are the Floyd-Steinberg [4], 

VerySmall [6], SC [4,6], Kim [4,6.11,14] and VeryLarge[11,14] are shown in the Appendix A. 

These benchmarks are all 2-dimensional loops with conditional branches. We change the 

behavior of branch instructions and number of functional units to get different results which 

including MSL, NSL, ESL and retiming depth by our method. We also use MDBA to schedule 

such benchmarks and get MSL and retiming depth.  

In the comparison of entire execution time, we use formula (7) to compute the execution 

time of scheduling result. Because the execution time is various, we show the maximum, 

minimal and average execution times. We change the size of nested loop to observe its 

influence of loop size on the entire execution time. 

 Fig 4.1(a) is the benchmark “VerySmall”, we assume that there are one adder and two 

multipliers in our architecture and the parameters are f(c1)=0.2 and f(c2)=0.8. We select a 

best schedule vector (1,0) by RPUSM [2] and (0,1) as retiming base. The PLSM’s scheduling 

result is shown in Fig 4.1(b) and MDBA’s scheduling result is shown in Fig 4.1(c). Both the 

retiming depth of PLSM and MDBA are 2. After scheduling, we can compute the ESL are 

1.36 in the PLSM and 2 in the MDBA by our average schedule length measurement. 

We compute the maximum, average and minimum execution times by (7) in a 

2-dimensional nested loop. Fig 4.2 shows that such two scheduling results are executed on a 
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5×5 nested loop. In this graph, the left three bars mean the maximum, average and minimum 

execution time produced by MDBA in the Fig 4.1(c). Each bar contains tow part, overhead 

and loop body. The overhead means instructions including prologues and epilogues beside 

loop body. The loop body means the instructions executed by nested loop in a retiming 

problem. Integral numbers in the central of each bar means the execution time of overhead or 

loop body. Because PLSM and MDBA cause the same retiming depth, the overhead both need 

20 cycles to complete. 
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Fig 4.1  (a) Benchmark “VerySmall”; (b) Scheduling result by PLSM; 
(c) Scheduling Result of MDBA 

Fig 4.2  Maximum, average and minimum execution time (cycle) of the 
Fig 4.1(b)(c) in a 5x5 nested loop  

(Cycle) 
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In both scheduling results, we use the same retiming function and get the same retiming 

depth. We assume that prologues and epilogues use the same execution time. There are both 

15 iterations in the loop body in such two scheduling results. In the MDBA, the schedule 

length is always 2, we always need 2×15=30 cycles to complete the loop body.  

In our PLSM, the second long instruction is not always executed. In the worst case, if the 

second long instructions are executed in the every iteration, the execution time of loop body 

reaches to the maximum value 30, equal to the MDBA. However, if all second long 

instructions are not executed in the loop body, the best case need only 15 cycles to complete 

loop body. When the loop body is larger, maximum and minimum execution time is very 

small possibility to achieve. The entire execution time is usually close to the average value. 

 We use different size of nested loops to evaluate the effect from size and shape of loop 

body. Fig 4.3 shows the experiment results, the x-axis means the different size and shape of  

100×100 100×50 25×50 25×25 10×25 10×5 5×5 

Fig 4.3 Execution times in different size of nested loop 
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loop body. Same as Fig 4.2, we also use six bars to present the maximum, average, minimum 

execution time of MDBA and PLSM for every type of loop body. The y-axis is a ratio over 

the maximum execution time of MDBA in each group. The floating point in each bar means 

the ratio of loop body over the entire execution time. In the top of graph are the entire 

execution times of each bar. 

 In the Fig 4.3, we observe the shape of loop body is less effect on the entire execution 

time. The improvement on the average execution time is more obvious when loop size is 

larger. We change the functional units and behavior of branch instructions to evaluate MDBA 

and our PLSM. Fig 4.4 is the scheduling result of “VerySmall” under variant type of 

functional units and branch behaviors. The high-lighting part is the scheduling result in Fig 

4.1 which is a maximum improvement case. In other cases, if we can not get some 

improvement in ESL, we can assure that MSL of PLSM is equal MDBA and the entire 

execution is the same. 

Fig 4.5 is another benchmark “Floyd-Stienberg”[4]. Its characteristic is a small 

conditional block and less conditional operations. It means that MSL, NSL and ESL are so 

closed, and we hardly to get a conditional long instruction to save entire execution time. In 

other words, such type of program contains numerous unconditional operations. Because we 

use BUSM [3] to allocate unconditional operations into unconditional long instruction, we 

may reduce some retiming depth here. We also use variant branch behaviors and functional  

Fig 4.4  Experiments of “VerySmall” in different functional units and branch behaviors 
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units to compute its execution. The experimental results are shown in Fig 4.6, and we use the 

high-lighting part to do experiments on different size of loop size in Fig 4.7. In the Fig 4.7, we 

observe some improvement by reducing retiming count. However the ratio of such 

improvement is dim with the increase of loop body. Retiming depth reduction decrease the 

ratio of overhead in the execution time, but the instructions of overhead is almost fixed. 

Improvements in the overhead will diluted with the loop body in any scheduling method.  

We also use the benchmark “SC” and “Kim” to run experiments and the results are shown in 

Fig 4.8 and 4.9. In the benchmark “SC” and “Kim” are not extreme case of conditional block. 

We can get scheduling result with lower average schedule length.  

Fig 4.5 Benchmark “Floyd-Stienberg” 

Fig 4.6 Experiment Results of “Floyd-Stienberg” 
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And in the final benchmark “VeryLarge” as shown in Appendix A, When there are one 

adder multiplier and divider, we can use PLSM to get a maximum schedule length 12, better 

than 15 by MDBA. Because the maximum is the upper bound of schedule length, we need not 

compare other measurements. The reason is that we find the resource sharing policy before 

allocate nodes. We can assign more operations to one functional unit and get a shorter 

maximum schedule length. In the next section, we will give summary of our method in time 

complexity and effectiveness. 

300×150 200×100 100×50 50×25 20×10 10×5 5×5 

Fig 4.7 Experiments of “Floyd-Stienberg” in different functional units and 
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4.3 Summary of Experiment Result 

 We give some summary the time complexity of our algorithm PLSM and MDBA. In 

MDBA, its time complexity is )( 2 EVO + . MDBA traverse the MD-CdDFG once in )( EO  

and search the sharing policy in )( 2VO . In our algorithm PLSM, we have four steps to get a 

scheduling result. The first sets the executing probability in )(VO . The second step finds 

resource policy by checking the resource sharing conditionals for a pair of node in the 

MD-CdDFG. Its time complexity is )( 2VO . The third step allocates operations into schedule 

table, it traverse the graph once in the time complexity )( EO . And the final step sets the 

Fig 4.8 Experiment Results of “SC” 

Fig 4.9 Experiment Results of “Kim” 
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retiming count of all operations in the schedule table. It need to check the parents’ retiming 

count for each operation with time complexity )( EO . Thus, totally time complexity of 

PLSM is )2( 2 EVO + , almost equal to MDBA. 

 Secondly, we summary the efficiency on average schedule length of our method. It is 

different from the MDBA that we find the resource sharing policy before allocating operations 

into schedule table. It allows us to compute the maximum and minimum schedule length. 

Then we use three schedule strategies to achieve a minimum average schedule length. A low 

average schedule length can reduce the entire execution time and experimental results show 

the improvement of entire execution time. We can classify problems into tow cases. One is 

large conditional instructions and the other is small conditional instructions. When there are 

more conditional instructions, we can get a smaller average schedule length. On the contrary, 

when most instructions are unconditional, we are hard to get improvement from average 

schedule length. However, long instructions in this problem are almost unconditional. We can 

use the concept of BUSM to reduce the retiming depth. Because the average schedule length 

and retiming depth are trade-off, we improve one of them in the respected extreme cases. 
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Chapter 5. Conclusion and Future Work 
  

In this thesis, we have designed an effective retiming based scheduling method PLSM to 

reduce the average performance. The experimental results have shown the effectiveness of 

PLSM and we will finally conclude our thesis and propose some future work for our research. 

 

5.1 Conclusion 

 Because DSP processor becomes popular, high performance DSP used in such devices 

need to be processed with high data throughput. Applications in such systems become more 

complexity and cause numerous branch instructions. Static scheduling length can not present 

the inference which is caused by branch instructions. For this issue, we have proposed a 

method to evaluate the average performance. In summary, we give the following conclusions:  

 

(a) In our problem modeling, we have profiled the behavior of each branch instruction. By 

the fundamental of profiling, we can compute the executing probability of each 

instruction in the program. We propose a method to compute the executing probability of 

long instruction. The average schedule length is the summation the average schedule 

length of each long instruction. Because we have assumed that the execution time of long 

instruction is the same, the average schedule length presents the average execution time. 

When loop is large, the entire execution time usually closed to the average execution 

time. In the experimental results, we show that our measurement by average execution 

time. 

(b) By the measurement of average schedule length, we have designed a scheduling method 

to get a scheduling result with lower average execution time. We propose several 

scheduling strategies to reduce execution in VLIW DSP architecture with resource 
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sharing and resource constraining. After finding resource sharing policy, we can compute 

the maximum schedule length as the upper bound and the minimum schedule length as 

the lower bound. We propose a method to allocate nodes into schedule by a mixed 

method. Finally, we compare our algorithm with MDBA in the maximum, average, 

minimum schedule length and retiming depth. From the experimental results, we can 

conclude the retiming depth and average schedule length are trade-off. Experiments 

results have shown such extreme cases. In a problem with large conditional block, we 

can get a lower average execution time but cause high retiming depth. However, in a 

problem with small conditional block, average schedule length can not get large 

improvements in schedule length, but we can also reduce the entire execution time by 

lower retiming depth. In general cases, we can usually get a lower entire execution time.  

 

5.2 Future Work 

There are still some issues in the research that can be improved in the future. 

(a)  When we compute the average schedule length of loop body, we assume that happening 

of all long instructions are independent and compute the average schedule length by 

summing their executing probability. However, happening of long instruction may be 

dependent events. It means our measurement may overcount the entire execution time. In 

the future, we can analyze the relationship between long instructions’ executing 

probability and get a more precisely. 

(b) In our modeling of nested loop, all operations cost the same execution time. It may not 

respect the real case. In the future, we need to analyze the relationship between average 

schedule length and average execution time under considering different execution time of 

functional units. And, we use such measurement to develop a schedule method to get a 

shorter entire execution time.  
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(c) In modern microprocessors, branch prediction is usually used to enhance executing 

performance. However, we do not consider its efficiency to focus on branch behavior. In 

the future, we can also use branch prediction to evaluate a more precisely scheduling 

performance. It is possible to consider the efficiency of branch prediction into our 

scheduling method. 
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Appendix A 

 

 
Performance Benchmark “VeryLarge” [11,14] 

Performance Benchmark “Kim” [4,6,11,14] 


