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Abstract

Multidimensional systems-containing .nested loop are widely used to model scientific
computations such as image processing and-signal processing programs. They are usually
executed on VLIW DSP architecture. The instruction scheduling is an important step through
the while process. However, branch instructions within loop may cause low utilization of a
VLIW instruction word. The Multidimensional Branch Anticipation can get a minimum
schedule length, however it can not consider the behavior of branch instructions. Because of
the branch instruction, some instruction may not be executed and the schedule length can not
present the performance perfectly. We will propose a method to evaluate its Expected Value
of Schedule Length and show it is more closed to realistic performance than static schedule
length. We also propose a retiming based scheduling method, Probabilistic Loop Scheduling
Method, to get a better Expected Value of Schedule Length. The experimental results show

the effectiveness of our method.
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Chapter 1. Introduction

In embedded system, high performance Digital Signal Processing DSP is usually used

in image processing, multimedia and wireless security, etc. These applications usually contain
time-critical sections consisting of nested loops of instructions [4]. However, branch
instructions within these loops may waste many computing resource by failure of branch
testing. The optimization of such loops, considering processing resource constraints, is
required in order to improve their entire computational time [1-4].

Many retiming-based methods can deal with nested loop to get a lower entire execution
time, including Push-Up Schedule Method (PUSM) [1], Relax Push-Up Schedule Method
(RPUSM) [2] and Bottom Up Schedule:Method (BUSM) [3]. In such scheduling methods,
PUSM achieve a minimum scheduling length, RPUSM reduces the entire execution time by
selecting a better retiming function,’and BUSM reduces the entire execution time by reducing
the retiming depth. However they can-not deal‘with the conditional branch, we use such ideas
to improve entire performance.

Early work for loop scheduling with conditional branches, such as Sumit [5],
Radivojevic [6] and Xie [13] do not consider the executing probability of instructions.
Lakshminarayana et al. [7] and Sha [8] only consider the executing probability in task level.
However, an instruction level probability definition can help us to get a more precisely
schedule result than task level. In this thesis, we focus on probability definition on instruction
level problem.

Resource Sharing is a useful mechanism to enhance the computing resource utilization,
and many researches have discussed it already [4,6,10-11]. In [6,10], scheduling on directed
acyclic graphics is considered, and in [11], one dimensional data-flow graph is studied.

However, they do not consider the two dimensional nested loops.



Multidimensional Branch Anticipation (MDBA) [4] is retiming-based scheduling method
used to schedule nested loops with conditional branch under resource constraint environment.
It can fully utilize functional units to achieve the minimum static schedule length by the
concept of PUSM. Because of the branch instruction, some instructions may not be executed.
It means that some long instructions may not be executed and schedule length is not fixed.
The traditional static schedule length can not perfectly present the performance of scheduling
result. We need to define a more realistic measurement for nested loop with conditional
branch.

Firstly, we will propose a method to evaluate the expected value of schedule length by
the behavior of each branch instruction and explain why it is closed to the realistic
performance. Because MDBA do not consider the behavior of conditional branches, it usually
gets a higher average schedule length. Secondly, we-will propose a retiming-based scheduling
method to reduce the average schedule length of nested loop with conditional branch. And we
will use some benchmarks to show the efficiency.of our scheduling method.

This thesis is organized as‘follows. In-Chapter 2, we introduce the fundamental
background and the related work. In chapter 3, we define the expected value of schedule
length and discuss our scheduling strategies. Probability Loop Scheduling Method is
presented in this chapter. In chapter 4, we do some experiments and give some summary for
our experimental results with MDBA to show its efficiency. Finally, we conclude our thesis in

chapter 5, and list the future work of our research.



Chapter 2. Fundamental Background &
Related Work

In this chapter, we define the Multidimensional Conditional Data Flow Diagram
(MD-CdDFG) to model the nested loop with conditional branch to be scheduled and describe
the concept of resource sharing. We survey several basic techniques in loop scheduling and
resource sharing with conditional branch, including Push-Up Schedule Method [1], Bottom

Up Schedule Method [3] and Multidimensional Branch Anticipation [4].

2.1 Modeling the Problem

Multidimensional conditional:data flow graph (MD-CdDFG) is used to model the nested
loop with conditional branch to-be scheduled [4]. We add some attributes for our problem and

redefine it in Definition 2.1 .

Definition 2.1 A Multidimensional Conditional Data Flow Graph (MD-CdDFG)
G =(V,E,d,t,k, f) isanode-weighted and edge-weighted directed graph, where V is the set
of computation nodes, E €V xV represents the set of dependence edges, d is a function
from E to Z" , representing the multi-dimensional delay between two adjacent nodes where n
is the number of dimensions, t is a function from V to the positive integers, representing the
computation time of each node, k is a function from V to the set of types, e.g. {fork, join, alu,
mult, div}, f is a function from V to positive real number representing the truth probability

when v eV is a fork node.

A fork node represents a conditional instruction in the loop body. A join node with zero

computing time is a dummy node representing the ending of conditional statements.

3



1 For (I=1 to 100)

2 For (J=1to 100)

3 A ral[yy]=alfi-1,5-1]+2

4 C: IF (al[y)] 1s even)

5 D: al=al[L)]+2

6 ELSE ‘ - addition

7 E: al=al[yj]+1
- fork node

QQQ

Jomn node

(@)
Fig 2.1 (a) High-level language code for DSP program; (b) A MD-CdDFG respect to (a) .

Fig 2.1(a) shows an example of high-level, language codes of one DSP program and its
equivalent two dimensional conditional data flow ‘graph is shown in Fig 2.1(b). It’s a nested
loop with depth two and contains-a branch instruction C. When C is true, D is enable and E is
disable. When C is false, D is disable and E is enable. We use d(e;) =(d.x,d.y) to represent
any delay edge e ina two-dimensional data flow graph.

A conditional block is a set of nodes including a fork node, its corresponding join node,
and all nodes controlled by the fork node. Nested conditional block is allowed, which means
one node may be controlled by several fork nodes. We use conditional depth to present the
number of fork nodes which decide execution of one node. Nodes belong to the true (or false)
path respect to C means that they are enable if the fork is true (or false). For example from Fig
2.1(b), nodes C, D, E and the join node consist of the conditional block. And node D and E
belong to the true and false paths respect to C respectively.

An iteration is equivalent to the execution of each node in V exactly once, excluding

disable nodes by branch instruction. For the example in Fig 2.1(b), if fork node C is true, an
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(a) (b)
Fig 2.2 (a) ADG respect to Fig 2.1; (b) A DG without intra iteration data dependence.

iteration means the completion to node A, C and D. lIteration is identified by a vector I,
equivalent to a multidimensional index; sstarting from (1,1...,1). Inter-iteration dependencies
are represented by vector-weighted edgée'lin an MD-CdDFG such as e, =(1,1)in the Fig
2.1(b). It means the result of fork node will be used by another iteration with indexing
distance (1,1) in the iteration space.

For any iteration j, edge from node uto node v with delay vector d(e) means that the
computation of node v at iteration j depends the execution of node u at iteration j-d(e). An
edge with delay (0,0...,0) in an MD-CdDFG represents a data dependence within the same
iteration. A legal MD-CdDFG must have no zero-delay cycle, i.e., the summation of the delay
vectors along any cycle can’t be (0,0...,0) [ ].

A cell dependence graph (DG) of the MD-CdDFG G is the directed acyclic graph,
showing the dependence between copies of nodes representing an MD-CdDFG G. Fig 2.2(a)
shows the DG based on the replication of the MD-CdDFG in Fig 2.1, and Fig 2.2(b) shows its
data dependence of DG represented by computational cells. A computation cell is the DG
node that represents a copy of the MD-CdDFG, excluded the edges with delay vectors

different from (0,0...,0). The computation cell is considered as an atomic execution unit.



r(AY=(0,1)
r(C)=(0,0)
r(D=(0,0)
r(E=(0,0)

Fig 2.3 Aretimed MD-CdDFG of Fig2.1(b).

2.2 Multidimensional Retiming [1,9]

For as MD-CdDFG G, the multidimensional retiming r is a function from V to Z" that
redistributes nodes in consecutive iteration: Each iteration, represented by loop index, still
contains all nodes in V with one instance. /A new MD-CdDFG G, =(V,E,d,,t,k, f) is
created, such that the summation of delay vectors of any cycle is unchanged. The retiming
vector r(u) of a node u eG represents the offset'between the original iteration containing u and
the one after retiming. The delay vectors change accordingly to preserve data dependencies,
i.e., r(u) represents delay components pushed into the edge u—v, and subtracted from the
edge w—u, where u,v,w V. After retiming, the execution of node u in iteration i is moved to
the iteration i-r(u). For example, Fig. 2.3 shows the retimed MDFG G; after applying retiming
function r(A)=(0,1) on G. We can use the Definition 2.2 to obtain the retimed delay vector for

every edge e in E.

Definition 2.2 For any MD-CdDFG G=(V,E,d,tk,f), retiming function r, and retimed
MD-CdDFG G,=(V,E,d,t,k,f), we define the retimed delay vector for every edge e in E, the
retimed delay vector for every path in G, and the retiming delay vector for every cycle in G,

denoted as d.(e), dr(p), dr(I) respectively by the following formulas:



Epilogue
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Frologue
(a) (b)
Fig 2.4 (a) A retimed DG respect to Fig 2.3; (b) A retimed DG without intra iteration
data dependence .

(@ d,(e)=d(e)+r(u)—r(v)foreveryedge u—=>v,uyveVandecE.
(b) d,(p)=d(p)+r(u)—r(v)forany path u—-—v,uyveVandpeG.

(c) di(l) = d(I) for any cycle | G.

In Fig. 2.4(a), we show the retimed DG based on the replication of the MD-CdDFG in
Fig. 2.3 and the retimed DG represented by computational cells is shown in Fig. 2.4(b). The
retiming function applied to an MD-CdDFG may create prologue and epilogue. Prologue is
the set of instructions that must be executed to provide the necessary data for the beginning of
the iterative process. Epilogue is the set of instructions that must be executed to complete the
process [2]. These two sets of instructions are complementary. For example in Fig. 2.4(a), the
instruction A becomes the prologue, and the instruction C, D and E become epilogue for this

problem.



A schedule vector s is the normal vector for a set of parallel equitemporal hyper planes
that define the sequence of execution of the cell dependence graph. To get a schedule vector s,

we can solve the inequalities d(e)-s>0 for every e E [2]. For example, (1,0) is a

schedule vector of the MD-CdDFG in Fig. 2.1(b).

Definition 2.3 A legal MD-CdDFG G =(V,E,d,t,k, f) that have no zero-delay cycle is
realizable if there exits a schedule vector s for the cell dependence graph with respect to G,

i.e., s-d>0 foranyd e G[1-3].

Property 2.4 Given a realizable MD-CdDFG G, a legal multidimensional retiming for G is
the multidimensional retiming function r that transforms G into G,, such that G, is still

realizable [1-3].

A legal multidimensional retiming-on.an MD-CdDFG G =(V,E,d,t,k, f) requires that
the execution sequence of the corresponding retimed DG does not contain any cycle. This
constraint is enforced through the use of a schedule vector that supports the realization of the

retimed graph.

Property 2.5 If r is a multidimensional retiming function orthogonal to a schedule vector s

that realizes an MD-CdDFG G =(V,E,d,t,k,f),and ueV,then (kxr)(u) is also a legal

multidimensional retiming on that MDFG [1-3].

From the Property 2.5, which is called as chained multidimensional retiming, we know

that the retiming function of every node in the retimed MDFG can be in the form (kxr).

Here, r is called retiming base, and k is called retiming depth [2].



r(A)=(0.1)
r(C)=0,1)
1(D)=(0,0)
r(E)=(0,0)

Fig 2.5 (a) A retimed DG respect to Fig 2.1 .

2.3 Resource Sharing [4,6,10-12]

Our method works on a uni-processor VLIW system with multiple various functional
units which can be executed concurrently [10]. We assume that each type of functional unit
has the same execution time, called a “Control Step”, or a “C-Step”. That is in one C-Step, a
long instruction consist of several individual operations. To enhance the utilization of
computing resource, we have seme.difference«in execution stage. Branch Anticipation logic
and Address Control logic are the first.and second steps in the execution stage [4,10].

Branch Anticipation logic allow multiple conditional signal to cross iteration. From Fig
2.5, branch conditional testing of fork node C decides either D or E should be executed.
However, C and D, E are in different iteration with offset (0,1). Branch Anticipation logic can
use some hardware to record the testing result to the later iteration.

Because of the branch instruction, we observe some nodes are mutual exclusive. It means
that only one of them can be executed. For example in Fig 2.5, D and E are mutual exclusive.
We use a mechanism to enhance the utilization of functional unit called resource sharing. If
two nodes are resource sharing, we assign them into the same functional unit. However, it
needs some hardware to support such mechanism.

Address Control logic can enhance resource utilization by assigning several nodes to the
same functional unit at one step. From Fig 2.5, if node D and E use the same functional unit,

they can share the same operation and only one of them can be executed in an iteration. We

9



denote “D/E” to present that node D and E share one operation. Branch Anticipation logic and
Address Control logic can work together. When a long instruction is fetched, two logics
decide which one instruction is assigned to which one functional unit. It is easy to observe in
an acyclic conditional block, all nodes sharing the same functional unit must come from the

same iteration.

2.4 Related Work

Many scheduling algorithms are designed based on multidimensional retiming technique.
In this section we briefly describe some of them, including Push-Up Schedule Method
(PUSM) [1], Bottom-Up Schedule Method (BUSM) [3] and Multidimensional Branch

Anticipation (MDBA) [4].

2.4.1 Push-Up Schedule Method [1]

In order to make the schedulelength shorter, PUSM uses retiming technique to change
the dependence in the MDFGs. PUSM will first analyze that if a node could be scheduled, and
then use retiming technique to make the node schedulable as early as possible. Now, we

define what a schedulable node as follows.

Definition 2.7 (Schedulable Condition) Given an MDFG G = (V,E,d,t) andanode ueV,
u is a schedulable node at a C-Step cs, if it satisfies one of the following conditions:

(@) u has no incoming edges

(b) all incoming edges of u have a nonzero multidimensional delay

(c) all predecessors of u, connected to u by a zero-delay edge, have been scheduled to

earlier control steps

10



Before traversing the MDFG G, a schedule vector s realizing G and a legal retiming r on
G will be found. Then scheduling an MDFG G by PUSM, it uses a queue to maintain the set
of schedulable nodes. Scheduler fetches a schedulable node and places it into schedule table at
an earliest C-Step to get a minimum schedule length. Schedulable nodes are filled into
schedule table sequentially and get a minimum schedule length.

During traversing G, every traversed node will record the retiming count function
RC(u),u eV . RC(u) represents the number of extra nonzero delays required by any path from
roots of G to node u. When we schedule one node u into schedule table , we “push-up” u to
the earliest available functional unit. If this scheduling violate the data dependence, we
increase RC(u) to add the retiming depth. Retiming count will propagate to its successors.
After traversing G, PUSM uses retiming count to calculate the retiming function of every
node by the following formula:

Vu eV,r(u) =(MaxfRC(v), Y eV}=RC(u))xr
PUSM promises to get a minimum static'schedule length but ignores the effect of the retiming
depth which affects the entire execution time of @.scheduled nested loop. In the next section,

we survey the BUSM which provides a method to reduce the retiming depth.

2.4.2 Bottom-Up Schedule Method [3]

The PUSM gets a minimum schedule length but cause high retiming depth. Bottom-Up
Schedule Method (BUSM) reduces retiming depth and holds the same schedule length. The
main idea of BUSM calculate the maximum schedule length of MDFG G before allocating
nodes into schedule table. The formula for computing maximum schedule length (MSL) is

MSL(G) = max{1,[ ADD/A],[Mult/M |}

The ADD means the number of addition and A means the number of adder in the processor. It

is the same in the multiplication, and easy to extend to the architecture with more types of

1



functional units. Scheduler prepares an empty schedule table with size as MSL which is equal
to the schedule length of PUSM.

Then BUSM use the same schedulable condition in Definition 2.7 to allocate node into
schedule table. The policy for node allocation is trying to allocate node into schedule table
without increasing retiming depth. It is different from PUSM which always tries to allocate
node in an earlier C-Step.

However, BUSM can not deal with conditional branch instruction and resource sharing

problem. We will improve it in our method..

2.4.3 Multidimensional Branch Anticipation [4]

Multidimensional Branch Anticipation is.hased on PUSM with resource sharing to deal
with nested loop with conditional branch problem in VLIW architecture [ ]. When we use
PUSM to find an earlier available functional unit, we also find all scheduled operations for the
possibility of resource sharing.

As we schedule one node u into. schedule table and share it with other nodes, such
operations should have the same retiming depth. If we always use the earliest functional unit
to allocate node u, there may cause a contradiction in data dependence as a cycle. Fig 2.6(a) is
a part of MD-CdDFG G, m1,m2 and al have scheduled into schedule table and m1,m2 share
the same multiplier. The dotted edges in Fig 2.7(a) are sharing indication edges. The graph
consisting of G and sharing indication edges is denoted by Gsconsisted by MD-CdDFG and
resource sharing indication edges. The retiming depth of m1 and m2 is the same, so as aland
a2. By the propagation of RC in the PUSM, retiming depth will propagate and increase
infinitely along the path al—» ml-—»m2—a2-—»al. We note such situation as a

“sharing-prevention cycle”.

12



C-Step | ALU MULT
1 cl ml/m2
2 c2
3 al/a2
(b)
C-Step | ALU MULT
1 cl mil/m2
2 c2
3 al
4 a2
(c)

Fig 2.6 (a) A part of MD-CdDFG,; (b) A schedule table with sharing prevention cycle;
(c) A schedule table without sharing prevention cycle.

MDBA provide a mechanism, .called “AVAIL-PREVENT” to solve such problem. In
AVAIL-PREVENT, we pseudo-allocate a-“node- into schedule and try to detect any
sharing-prevention cycle in graph G;.-1f.a sharing-prevention cycle is detected, we recover the
schedule table and allocate the node.to a later C-Step and try to detect again until no
sharing-prevention cycle in Gs. Similar to PUSM, we use the retiming base to calculate the
retiming function of each node ueV.

In this section, we have surveyed several retiming based scheduling algorithm. PUSM
can achieve a minimum schedule length but cause a high retiming depth. BUSM reduces the
retiming depth but can not deal with branch instruction. MDBA bases on PUSM to get a
minimum schedule length but does not consider the behavior of conditional branch. In the
next chapter, we will discuss the importance of branch behavior and present our motivation to

propose a new scheduling method. Then our new method will be described clearly.

13



Chapter 3. Probabilistic Loop Scheduling
Method

In this chapter, we will finely introduce Probability Loop Schedule Method (PLSM) to
deals with the nested loop with conditional branch. This chapter is organized as follows. In
section 3.1, we explain our motivations and discuss our scheduling goal. In section 3.2, we
define the instruction level executing probability and a new measurement for average
performance. For the definition of average schedule length, we propose some schedule
strategies in section 3.3. Finally in the section 3.4, we completely propose an algorithm to

achieve the scheduling goal.

3.1 Motivation

From the related work, PUSM rand-MDBA use- the schedule length as a performance
measurement [1,4]. Because of the‘conditional branch, some operations may not be executed
and the schedule length is not fixed. Using schedule length as the measurement may
overcount the performance. It is necessary to define a measurement to deal with the nested
loop with conditional branch.

We use an example to explain the shortcoming of schedule length. Fig 3.1(a) is a source
fragment code in high level language and Fig 3.1(b) is its respected MD-CdDFG. It is a
one-level conditional block and we assume the true probability of the fork node C is 0.5. It
means the executing probability of node D is 0.5 and so as E.

A simple architecture is used to explain our motivation in this section, and it can
complete two operations in a C-Step. A retimed scheduling result of source code is shown in
Fig 3.2(a). The integral superscript of each operation represents the multiple of retiming base

by Property 2.5. Fig 3.2(b) shows two consecutive iterations which distance is one unit of
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IF C THEN A ELSE B ° °
D
(a) o (b)

Fig 3.1 (a) A source code fragment (b) MD-CdDFG respect to (a).

Cig Di jy-ar
A . Beij)r
C-Step Fuil Fu 2
1 Cz D.D T C(i;j)'H' (ij)-r
2 At Bt A i)+ Byi.i)
(a) (b)

Fig 3.2 (a) Schedule result of our mativation (b) The consecutive two iterations.
retiming base r in the iteration space. The subscript of each operation represents its loop
index.

In the Fig 3.2(b), it is an example to show our motivation. Although its schedule length is
two, we can observe that the second long instruction which contains nodes A and B may not
be executed. When C ;) is true and Cgj)+r is false, the second long instruction in the second
iteration does not be executed. We assume that the true probability of Cgj and Cgj+r are
independent and expected executing probability of the second long instruction is
1-0.5x0.5=0.75.

From the related work, a long instruction uses Branch Anticipation logic and Address

Control logic firstly in the execution stage [10]. If all operations in a long instruction need not
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C(I j) A(i,j) I
T
B(I j) F D(IJ) I
C-Step Ful Fu 2

.. C(i P+r (i.§)

1 C2 Al 4 J

2 Bt Do B(i,j)+r D(i,j)

(a) (b)

Fig 3.3 (a) Schedule result of MDBA (b) The consecutive two iterations.

to be executed, execution stage stops after Address Control logic [ ]. Because time
consumption of such two logics are small, we can regard that execution time is saved.

We can compute the average schedule length of the first scheduling result. The first long
instruction is always executed and the second has probability 0.75 to be executed. The
average schedule length is 1.75. On-the contrary in Fig 3.3(a), we use MDBA to get a
scheduling result which schedule length -is' two. "However the first and second long
instructions are always executed and the average schedule length is 2 C-Step. We discover
that the schedule length can not present the difference between such two scheduling results,
and we need to define the average schedule length as our new measurement. It is more closed
to the realistic executing performance of nested loop problem.

MDBA does not consider the behavior of branch instruction, and usually get a high
schedule length in average. We need to design a method to deal with such problem and get a
lower average schedule length. In the next section, we define the measurement to evaluate the

average schedule length.

3.2 Basic Concept

In this section, we first define the executing probability of each operation in a given
MD-CdDFG. Second, we infer the relationship from the executing probability of an operation

to long instruction. Finally, we define the expected schedule length of a scheduling result and

16



al

/ (1,1)
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a3 ad | m? m3

- join node

m4 Q - fork node

s mltiplication

\ ad - addition

Fig 3.4 A example of MD-CdDFG.

explain its relationship to the average performance of nested loop.

Definition 3.1 Given an MD-CdDEG..G = (V,E,d\t,k, f), for each node ueV, u belongs

to conditional block c;, Cj,...,ch . The executing probability of node u is defined as

k(c,)=f(c;) whereubelongs to the true path of c,

=k(c,)k(c,)..k h
p(u) =k(e,)k(c,)..k(c,) where {k(ci):l- f (c;) where u belongs to the false path of c,

For example in Fig 3.4, if f(c1)=0.2 and f(c2)=0.5, the executing probability of a3 is
p(al3)=f(cl) and m3is p(m3)=(1-f(cl))(1-f(c2))=0.8x0.5=0.4.

Because a long instruction is consisted by several operations, we use PL to present the
execution probabilistic of long instruction and explain the relationship between p(u) and
PL. In a general case, we assume a long instruction can complete n operations in parallel
and having executing probability as p(1), p(2)...p(n). The PL is equal to the complement

that all of n operations are not be executed in the same time. We use a formula to present it.
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PL() =1 (L= P)(L= P(2))sll= PUN)) werrereeeeeeeeeeee e, Q)

It is correct in most cases where the event of p(1), p(2)...p(n) are independent. However, we
know the probability of each node execution is not always independent. For example in Fig
3.4, it is a dependent case on a3 and a4, they are always executed in the same time when C1 is
true. We need some modifications for dependent cases.

In the later, when a operation and long instruction with probability less than one, we
describe them as conditional. On the contrary, a operation and long instruction is described as
unconditional when their executing probability are equal to one. We define a term “source” to
present the latest common predecessor of two nodes in a given MD-CdDFG. One function
t=Source(u,v) presents that t is the source of u and v, where t,u,veV. For example in Fig 3.4, it
shows that Source(m2,m3)=c2, Source(m2,a3)=cl and Source(al,m3)=al. We use a simple

architecture which a long instruction contains two operations in this section.

3.2.1 Exclusive Nodes

In the example, we can observe that'some nodes are mutual exclusive and only one of
such mutual exclusive nodes can be executed. We define the relationship to describe the

relationship.

Definition 3.2 For a given MD-CdDFG G, V u, veV are exclusive if they satisfy the
following property: There exists a fork node ceV such that u belongs to the true path and v

belongs to the false path of c.

For example in the Fig 3.4, m2 and m3 belong to the different side of fork node c2. If m2 and
m3 come form the same iteration, they are exclusive and p(m2), p(m3) are dependent. We

need to modify the formula (1) to deal with such exclusive nodes. We assume that there are
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two independent nodes u, v in a long instruction, its executing probability is:

PL=1-(1- pu)@- p(v)) = p(u) p(v)+ p(u) p(v) + pU) P(V)" oo (2)
Now we assume that u and v are exclusive, u and v can not be executed in the same time and
p(u)p(v)=0. We modify (2) as:

PL = PU) PV) 4 PUU) PIV) et et e e et e e e e e e e 3)
When u has executed, v is always disabled. It means that p(v)’=1 and p(u)p(v)’=p(u). We can
modify (3) as:

I o1 (V) I 1 () I PP PTN 4)
Finally, we apply (4) to modify (1) where there are n operations in one long instruction. If
there are two exclusive operations, we sum there executing probability and use only one
operation to replace them. It means that there are (n—1) independent operations in a long
instruction and we apply (1) to compute PL of long instruction. In our architecture, we can
assign several exclusive nodes #nto-one operation,.called “resource sharing” and all sharing
nodes are exclusive, the executing probability of the operation is the summation of all sharing
nodes.

For example, if a long instruction consist two operations, one is a4 and the other is
shared by m2/m3. The probability of first operation is equal to the executing probability of a4.
The other operation has probability p(m2/m3)=p(m2)+p(m3) because they share one
functional unit. Then we discover that a4 and m2/m3 are exclusive, the executing probability

of long instruction equal to the summation of such two operations; PL=p(a4)+p(m2/m3)=

p(ad)+p(m2)+p(m3).

3.2.2 Inclusive Nodes

We discover that some nodes are always executed in the same time. For example in Fig

3.4, when c1 is true, a3 and a4 are executed in the same time. Executing probability of a3 and
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a4 are not independent and we need a modification for (1). Now we define a relationship to

describe this situation.

Definition 3.3 For a given MD-CdDFG G, V u, veV are inclusive if they satisfy the following
property: For all fork nodes ceV such that u and v belong the conditional block of c, they are

in the same side.

We assume two independent nodes u, v into a long instruction, its executing probability

PL=1-(1-p(u))X-p(v)) = pU)p(v)+ p(u) p(V) + PU)P(V) oo (2

If u, v are inclusive, they should be executed in the same time. It means p(u)’p(v)
=p(u)p(v)’=0. We modify (2) as :
PL=1-(1—p(Uu))@A— p(V))=PLU)PIV) coate et et e e e e e (5)

When u has been executed, p(v)=1 and-we.modify formula (5) is as:

Finally, we apply (6) to modify (1) where are n operations in a long instruction. If there are
two operations which are inclusive, we delete one of them. It means that there are (n-1)
independent operations in a long instruction and we apply (1) to compute the PL. For
example in Fig 3.4, when a3 and a4 are scheduled in a long instruction, we delete the
probability of a4 and PL=p(a3).

We have proposed some modification to correct the executing probability of a long
instruction. Now we discuss how to compute the executing probability of a long instruction.
Firstly, we find the inclusive relationship in a long instruction and delete the redundant
operations. Second, we merge the executing probability of sharing nodes. Third, we find the
exclusive operations in the long instruction and use only one operation to merge their

executing probability. Finally, we use formula (1) to compute the executing probability from
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the remaining independent operations and get the executing probability of each long

instruction.

3.2.3 Expected Value of Schedule Length

We have defined the executing probability of each long instruction. Because we schedule
the MD-CdDFG into several long instructions, we can sum PL to define the expected value

of schedule length as follow.

MSL
Definition 3.4 Expected value of schedule length (ESL) is defined as ESL = Z PL(i), where

i=1

MSL is the maximum schedule length of MD-CdDFG G and PL(i) is the executing

probability of long instruction PL at-C-Step 1.

The behavior of fork node decides the average number of instructions to be executed in
an iteration. We schedule instructions”into several.long instructions and get the maximum
schedule length. Schedule length can not present the performance perfectly because it is static.
We propose the ESL which is computed by the behavior of fork nodes means that the average
computation time of loop body. The ESL is a more fair measurement for the performance of
scheduling result.

Our schedule goal is ESL reduction. The ESL reduction means that we collect some
conditional operations into a conditional long instruction. Because the loop body usually use
large part of computation time, ESL reduction can decrease the entire execution time. In the

next section, we propose a new method for ESL reduction.
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Fig 3.5 A example of MD-CdDFG.

3.3 Schedule Strategy

Our scheduling goal is to reduce the ESL.and we propose several heuristic strategies to

achieve it. From the related work, MSL is defined as :

# of operations

MSL = max{ . .
# of functional unit

MSL is the upper bound of schedule length. We need to reduce the number of operations to
reduce the upper bound and to share several nodes into one operation. We define the resource

sharing condition to indicate which nodes can share one operation.

Definition 3.6 (Resource Sharing Condition) In a given MD-CdDFG G, u,veV ,uandv can
share the same operation if they satisfy:

(1) uand v use the same type of functional unit.

(2) uand v are exclusive

(3) uand v do not exist “sharing-prevention cycle”
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(1,1)

Fig 3.6 The resource sharing policy of our example

We use this definition to check-all pairs of ‘nodes in the MD-CdDFG, and get a Gs to present
resource sharing policy. The condition.(3)-Can.be detected by traversing the Gsin the MDBA.
We use Fig 3.6 as our example.in-this section and the result for finding resource sharing
policy is shown in Fig 3.7. It shows that a2/a3/a8, a6/a7 and a4/a5 share one adder. By
formula (4) in 3.3.2, we can compute that a2/a3/a8 and a4/a5 are unconditional. After finding
all resource sharing policy, the number of operations is reduced. MSL can be also reduced by

resource sharing. Thus, our scheduling strategy is given below.

Schedule strategy 1 To reduce the upper bound of schedule length, we find more and more

nodes to share one operation.

We also need to reduce the lower bound of schedule length. From (1), if there exists an
unconditional operation in a long instruction, the executing probability of this long instruction

PL is equal to 1. It is an unconditional long instruction which always be executed in each
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iteration. Because the resource sharing policy has been found, we define the number of

unconditional long instruction as Minimum Schedule Length (NSL).

Definition 3.7 Given an MD-CdDFG G after finding resource sharing policy, the Minimum

# of _unconditional _operations

Schedule Length (NSL) is defined as NSL = max{ - -
# of _ functional _unit

For example in Fig 3.7(b), we have found the resource sharing policy and get unconditional

operations as { al, ml, c1, c3, a4/a5, m5/m7, m2/m3, a2/a3/a8 }. If we have two adders and

one multiplier in our architecture, the NSL =max{2,i}:3. NSL is the lower bound of

schedule length, it physical meaning is that three long instructions always be executed.
However, there are three conditienal long instructions with executing probability, the
ESL =3+ PL(4) + PL(5) + PL(6): by | Definition: 3.5, “Thus, given an MD-CdDFG G after
finding resource sharing policy, we can ‘compute the MSL, NSL, ESL and know that
MSL > ESL > NSL.

We need a minimum number of unconditional long instructions to reduce NSL. Our second

scheduling strategy can be given as below.

Schedule Strategy 2 To reduce the lower bound of schedule, we schedule unconditional

operations into minimum number of long instructions.

After scheduling all unconditional operations into minimum number of long instruction,
there are still some conditional operations to be scheduled. We need to schedule them into
conditional long instructions and also need to reduce its executing probability. We consider
the pervious simple architecture with only two operations, and p, q are scheduled into the long

instruction.
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If p and g are exclusive, its PL is p(p)+ p(q). However, if p and g are independent,
its PL is 1-(1-p(p))@- p(a))by (1). Because p(p) and p(q) are positive, p(p)+ p(q) >
1-(1—p(p))(L—p(q)) is always right. It means that exclusive nodes will increase PL and
we should propose a heuristic method to avoid such exclusive nodes. We have many methods
to avoid exclusive and we choice the easiest one which select one operation to increase its
retiming count. Then such two operations will become independent. This heuristic method
will increase the retiming depth of our scheduling result, but reduce ESL which is our
schedule goal. This heuristic method has a disadvantage which retiming depth will increase.

Our third scheduling strategy is shown as following.

Schedule Strategy 3 When we schedule two exclusive conditional operations into a long

instruction, they need to be set different retiming count.

We have proposed three scheduling-method.and we will propose our scheduling method
in the next section. Such three scheduling method will be used to decrease the average

schedule length ESL.

3.4 Probabilistic Loop Schedule Method

In this section, we propose our detail algorithm and use an example to explain how they work.
Our scheduling goal is a static schedule result with shorter ESL. Input of our algorithm is the
MD-CdDFG G, and outputs is the retiming of each node ueV..

Our method which called Probabilistic Loop Scheduling Method (PLSM) contains four
steps. The first step computes the executing probabilistic of each node. The second step finds
the sharing policy of graph. The third step allocates operations into schedule table which is

one output. The final step computes the retiming of each node ueV.
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Input : MD-CdDFG G

Output : probability of each node

=

YueV p(u)=1
2. For each fork node ci = c;.....Cy
3. do Vp e true pathof ci; p(p)=p(p)xf(ci)

4. V q e false path of ¢; ;  p(q)=p(q) x (1-f(ci))

Fig 3.7 Step 1 of PLSM : Calculating the executing probability for each node

Fig 3.7 shows the algorithm for calculating the probability of each ueV . In the
algorithm is an implement of Definition 3.1, Line 1 initially sets all nodes with probability
equal to 1. From Line 2 to Line 4 is a loop indexed by the number of fork nodes. When loop is
indexed by c;, we multiply the true probability to every node which belongs to the true path of
ci and multiply the false probability to every.node which belongs to the false path of c;. After
processing all fork nodes, each node-gets an executing probability. For example in Fig 3.8, we
assume the executing probability of each-nede-and the italic real number means the result of
probability calculation. We can know:the exeeuting probability of each node after the first

step, the second step we need to find the resource sharing policy.

flc,)=0.2
flc,)=0.6
flc,)=0.8

Fig 3.8 After calculating executing probability of each node.
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Input : MD-CdDFG with p(u) VYueV

Output : Gs : MD-CdDFG with sharing indication edges

1 Sort fork node Ci=C;...C,, By its Decreasing Order of Conditional Depth
2 Sort type of FU FU;=FU,...Fu, By its (number of nodes / FU in system)

3 For (Fui=Fu;...Fuy)

4 For (C;=C;...Cn)

5 For each u s.t {(u e true path respect to C; ; shared u first) }

6 For each v s.t {(v e false path respect to C; ; shared v first )}

7 IF ( (Fu(u)=Fu(v)=Fu;)

8 AND (uand v are exclusive)

9 AND (uand v are not sharing-prevention cycle ) )
10 THEN A sharing,indication edge u—v

11 R(U)=PU)Fp() ; p(V)=p(u);

Fig 3.9 Step 2 of PLSM : Algorithm-for finding resource sharing policy

Fig 3.9 is the algorithm for finding resource sharing policy. Input of this algorithm is the
MD-CdDFG with calculated the executing probability of each node in the first step. From the
Line 5 and Line 9, we select a pair of nodes to check the resource sharing conditions in
Definition 3.6. If we find two nodes which satisfy the sharing conditional, we use a sharing
indication edge to connect them and sum their executing probability in Line 10 and 11. By the
first schedule strategy, Line 1 and Line 2 try to merge more nodes into one operation. The
Line 1 means that we find the sharing policy from the deeper conditional block first. The Line
2 means that we find the sharing nodes from the functional units which use longer schedule
length. They are useful to enhance the number of resource sharing nodes. Fig 3.10(a) shows
the resource sharing policy after finding addition, and Fig 3.10(b) shows the finding resource
sharing policy after finding multiplication. After finding sharing policy, operations are

classified into unconditional and conditional by its executing probability in Fig 3.11.
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Fig 3.10 (a) After finding sharing policy among addition; (b) After finding all sharing
policy.

Unconditional | Conditional
al c2 (0.2)

cl a6b/a7 (0.2)
c3 m2/m3 (0.88)
a2/a3/as m8/m9 (0.92)
ad/ab m4 (0.8)

a9 m6 (0.8)

m1

m5/m7

Fig 3.11 Operations after finding resource sharing policy.

For example, after finding the resource sharing policy, we can find the number of
unconditional and conditional operations as shown in Fig 3.11. The MSL and NSL can be
computed by the related works and Definition 3.7. In this example, if we have two adders and

one multiplier, then
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C-Step Adder Adder Mult C-Step Adder Adder Mult
1 al 1 al a9 m2/m3
2 c3 ml 2 c3 a2/a3/a8 ml
3 et 3l | adas |
4 4
5 5
6 6
(a) (b)
C-Step Adder Adder Mult C-Step Adder Adder Mult
1 al a9 m2/m3 1 al a9 m2/m3
2 c3 a2/a3/a8 ml 2 c3 a2/a3/a8 ml
|3 ] S S s | N U a4/as | m8/m9 |
4 4 c2 ab/a7 m2/m3
5 5 m4
6 6 A6
. (c) . ] (d)
Fig 3.12 Scheduling processes for allocating operations
# of operations 8. 6
MSL = max{ p_ —}=max{-~,— }=6 and
# of functional units 20
# of unconditional operations 6 2
NSL = max{ - P - +=max{ —,— }=3.
#of functional*units 2 1

The third step, we allocate all operations into schedule table which size is equal to the

instructions.

Now, we use the example to show how the algorithm works. Initially al is in the QueueV
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MSL. By second scheduling strategy, unconditional operations should be scheduled into
minimum number of long instructions from C-step 0 to NSL. Fig 3.12 shows the schedule
tables and the dotted line means the NSL. Algorithm for allocating operations is shown in Fig
3.13 which contains two phases. The first phase allocates all unconditional operations into
schedule table from C-Step 1 to NSL by BUSM [3] to reduce the retiming depth. After first
phase, there are some conditional operations to be scheduled. The second phase allocates
conditional operations into schedule table by its executing probability. A conditional operation

with higher probability is scheduled to the earlier C-Step to reduce the PL of later long



in the Line 4 and we can find an available FU in the C-Step 1 in the Line 9 to 11. We schedule
al into schedule table and decrease the indegree count of its successors to find schedulable
operations. Then m1 and c3 are added into QueueV and we try to find an available functional
unit for m1 at C-Step from 2 to 4 and schedule it into C-Step 2.

After al, ml, c1, c3 are schedulable in Fig 3.12(a), we need to schedule c2 but it’s a
conditional operation in the Line 19. We decrease its successors’ indegree count but added c2
into QueueS. Then the sharing operation m2/m3 has zero indegree and is schedulable. There
are not available functional unit from ES(m2/m3)=3 to NSL and we find another one at C-Step
1 to ES(m2/m3)-1 in the line 13 to 16. It’s the idea of BUSM to reduce retiming depth. In the
Fig 3.12(b), when Queue is empty, all unconditional operations are allocated into schedule
table, there are some conditional operation to be scheduled in the QueueS.

We sort such conditional operations by its executing probability and allocate them into
schedule table at C-Step from 1-to.MSL. The highest probability operation is m8/m9 and will
be scheduled into table firstly-in Fig-3.12(c). After allocating all operations, we get the
schedule table as Fig 3.12(d). We can ebserve that the first three long instructions will always
be executed, and the other three depend on the branch testing. By the definition of ESL, we
can compute ESL=3+PL(4)+PL(5)+PL(6) as the average performance of our scheduling
result. However, the retiming count of each operation is unknown, we finally use a algorithm

to set the retiming count.

Input : MD-CdDFG Gs,MSL,NSL
Output : An Allocated Schedule Table
1. ES(VveV)«1

2. Queue<«veV ; QueueV=QueueS=y
3. VeeE, E«E-{e, s.t. d(e)#(0...0)}

4. QueueV«QueueVU{ueV, s.t. Indegree(u)=0}
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5. While (Queue#J)

6.

7.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24

25.

26.

217.

28.

DO

u<—DeQueue(QueueV)
IF (u is unconditional)
THEN  for i=ES(u) to NSL
if (exist an empty FU for u)
ES(u)=i;
Assign operation u to an available FU at C-Step i
Assign operation shared with u to an available FU at C-Step i
for i=1 to ES(u)-1
if (exist an empty resource for u)
ES(u)=i ; Assign node u to an available FU at C-Step i
Assign operation shared with u to an available FU at C-Step i
VvV it u=—v
ES(V)«:Max{ES(u), ES(u)+t(v)}
ELSE  QueueS=QueueS{u , nodes shared with u}
VYV s.t. u—v
Indegree(v)=Indegree(v)-1
if Indegree(v and nodes shared with v)=0

QueueV=QueueVU{Vv}

. While (QueueS#2)

u<«—DeQueue(QueueV) s.t. u has the highest p(u) in QueueV
fori=1to MSL
if (exist an empty FU for u)

Assign operation u to an available FU at C-Step i

Fig 3.13 Step 3 of PLSM : allocating operations into schedule table
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Input : MD-CdDFG and scheduled table

Output : retiming function of each node veV

[N

.V ueV RC(V)=null

2. RCmax=0

w

.E<« E-{e,s.td(e)=(0...0) }

4.V ueV s.t Indegree(u)=0 RC(u)=0

ol

. While (V ueV, RC(u) =null)

6. do For CS=1to MSL

7. for each u s.t u is a operation in the control step

8. do IF (RC(u)=null AND RC(all parents of u) = null)
9. THEN RC(u)=RCmax

10. IF (exist operation v, s.t. U,V are exclusuive)

11. AND RCmax>NSL

12. AND RC(v)=RCmax

13. Then  RC(u)=RC(u)+1

14. RCmax=RCmax+1

15. Choose s=(s1,S2...Sn) S.t. sed(e ) > 0 for any ecE whose d(e)=(0,...,0)
16. Choosers.t.r L s
17. for eachueV

18. do r(u) = (RCmax — RC(u))*r

Fig 3.14 Step 4 of PLSM : Algorithm for setting retiming count

The final step is retiming count setting. We need to avoid the exclusive by Schedule
Strategy 3. Nodes which do not violate the data dependence in the schedule table can use the

same retiming count. Detail algorithm is shown in the Fig 3.14, and we use the allocated
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C-Step Adder Adder Mult C-Step Adder Adder Mult
1 alv a9 m5/m7 1 ald a9 m5/m7
2 c3 a2/a3/a8 ml 2 c3° a2/a3/a8 m1®
IR N N N S /=IO IR CE . kel B
4 c2 a6/a7 m2/m3 4 c20 ab/a7 m2/m3
5 m4 5 m4°
6 mé 6 mo
(a) (b)
C-Step Adder Adder Mult C-Step Adder Adder Mult
alo a9 m5/m72 1 alo a9+ m5/m72
2 ¢3¢ a2/a3/aB: mio 2 c30 a2fa3/ag® m1o
3 clo ad4/a5! m8/m3% 3 clo ad/ab! m8/m93
4| 2 | a6/a7z |mz/m3t|| 4 | 2@ | a6/a72 |m2/m3t
5 m4° 5 m4o
6 mé2 6 m62
(c) (d)

Fig 3.15 Process for retiming count setting.

result in Fig 3.12 to show how retiming count setting works.

The process of retiming count setting 1s shown-in Fig 3.15. The input of algorithm is the
graph MD-CdDFG G and scheduled table. Initially we set the retiming count of each node as
null in Line 1. We set the nodes without incoming edges as zero retiming count with retiming
count 0 in the Line 4. In the Fig 3.15(a), only al has zero retiming count initially. Then we
find all nodes which satisfy zero retiming count in the schedule table from the Line 5 to 13.
One operation can be set its retiming count if their parents are set the retiming count. For
example, when we search the second C-Step and observe that all parents of c2 have set the
retiming count, we can set the retiming count of c2 as zero. The first round from Line 6 to 9
set all operations which can apply zero retiming count and the result is shown in Fig 3.15(b).

After setting zero retiming count, we search the table twice to find nodes which can
apply retiming count 1 and 2 in the Fig 3.15(c). From Line 10 to 13, we avoid schedule two

exclusive operations into one long instruction by the Schedule Strategy 3. We increase the
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retiming count of a later scheduled node. The while loop is finished until that all operations
have its retiming count as Fig 3.15(d) . The maximum retiming count is recorded by RCmax.
From the Line 15 to 18, we find the base retiming function by RPUSM [2] and compute the
retiming function of each node v V.

So far, we have scheduled all operations into schedule table and set the retiming count.
The example has shown how algorithm works. By property2.5, the scheduling result is a legal
retiming to get a realize scheduling result. In the next chapter, we will use several benchmarks

to evaluate the efficiency of our method.
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Chapter 4. Preliminary Performance
Evaluations

In this chapter, we will show some performance evaluations of the DSP program. First
we will introduce the formula of evaluating the execution time for nested loops with
conditional branch. Then, we will explain how the ESL affects the entire execution time.
Secondly, we use some benchmarks to evaluate our method PLSM and MDBA in some detail.
At the end, we will give some summary of time complexity and entire execution time between

MDBA and our method PLSM.

4.1 Evaluating the Execution Time

In DSP applications, most nested loops+are -2-dimensional loops. Thus, we use four
benchmarks to evaluate the performance of P.SM and they are all 2-dimensional MD-CdDFG.
In the following, we introduce the “formula to-calculate the execution time of 2-dimensional
loops whose indexes are m and n. Before applying the retiming technique to a 2-dimensional
loop, its execution time can be represented by mxnx A, where A is the static schedule length.

After applying the retiming technique, the execution time of a 2-dimensional loop can be
divided into three parts, the loop body, the prologue and epilogue inside the first level loop,
and the prologue and epilogue are out of the nested loop[2-3]. The formula of evaluating
execution time of a 2-dimensional loop is shown as follows [2]:

A(m-s,xd)(n—s, xd)+(B+C)(s,xM+85,xn—5§ x8, —2xd xS, xs,)+Dxs, xs,xd(d +1)...(7)
, Where (s3,52) is the schedule vector, d is the maximum retiming depth, A is the average
schedule length after applying some algorithm for optimization, D is the static schedule length

of an iteration after applying “List Scheduling”, B is the length of prologue inside the first
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level loop, and C is the length of epilogue inside the first level loop. Following, we use the
formula to compare the performance of PLSM and MDBA. We both use average schedule

length in A to calculate their entire execution time.

4.2 Experiments Results

We use some benchmarks to evaluate the effects of MDBA and PLSM. They are all
nested loops with conditional branches. We use (7) to compute their entire execution time,
including loop bodies and overheads. The four benchmarks are the Floyd-Steinberg [4],
VerySmall [6], SC [4,6], Kim [4,6.11,14] and VeryLarge[11,14] are shown in the Appendix A.
These benchmarks are all 2-dimensional loops with conditional branches. We change the
behavior of branch instructions and number 6f functional units to get different results which
including MSL, NSL, ESL and retiming depth by our method. We also use MDBA to schedule
such benchmarks and get MSL and retiming-depth.

In the comparison of entire execution‘time; we use formula (7) to compute the execution
time of scheduling result. Because the execution time is various, we show the maximum,
minimal and average execution times. We change the size of nested loop to observe its
influence of loop size on the entire execution time.

Fig 4.1(a) is the benchmark “VerySmall”, we assume that there are one adder and two
multipliers in our architecture and the parameters are f(c1)=0.2 and f(c2)=0.8. We select a
best schedule vector (1,0) by RPUSM [2] and (0,1) as retiming base. The PLSM’s scheduling
result is shown in Fig 4.1(b) and MDBA’s scheduling result is shown in Fig 4.1(c). Both the
retiming depth of PLSM and MDBA are 2. After scheduling, we can compute the ESL are
1.36 in the PLSM and 2 in the MDBA by our average schedule length measurement.

We compute the maximum, average and minimum execution times by (7) in a

2-dimensional nested loop. Fig 4.2 shows that such two scheduling results are executed on a

36



5x5 nested loop. In this graph, the left three bars mean the maximum, average and minimum
execution time produced by MDBA in the Fig 4.1(c). Each bar contains tow part, overhead
and loop body. The overhead means instructions including prologues and epilogues beside
loop body. The loop body means the instructions executed by nested loop in a retiming
problem. Integral numbers in the central of each bar means the execution time of overhead or

loop body. Because PLSM and MDBA cause the same retiming depth, the overhead both need
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Fig 4.1 (a) Benchmark “VerySmall”; (b) Scheduling result by PLSM,;
(c) Scheduling Result of MDBA
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Fig 4.3 Execution times in different size of nested loop

In both scheduling results, we use the same retiming function and get the same retiming
depth. We assume that prologues and epilogues-use the same execution time. There are both
15 iterations in the loop body in such two scheduling results. In the MDBA, the schedule
length is always 2, we always need 2x15=30 cycles to complete the loop body.

In our PLSM, the second long instruction is not always executed. In the worst case, if the
second long instructions are executed in the every iteration, the execution time of loop body
reaches to the maximum value 30, equal to the MDBA. However, if all second long
instructions are not executed in the loop body, the best case need only 15 cycles to complete
loop body. When the loop body is larger, maximum and minimum execution time is very
small possibility to achieve. The entire execution time is usually close to the average value.

We use different size of nested loops to evaluate the effect from size and shape of loop

body. Fig 4.3 shows the experiment results, the x-axis means the different size and shape of
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LALU, IMULT 2ALU,1MULT 2ALU, 2MULT
MDBA, PLSM MDBA PLSM MDBA PLSM

mMsL | ESL |rd | msL | ESL |rd|msL | ESL |rd | mMsL | ESL | rd | mMSL | EsL |rd [ MSL | ESL | rd
flel)=0.2 4 24 |1 4 24 [ 1] 2 2 2 2 | 136 | 2 2 2 2 2 | 138 | 2
f(c2)=0.8
f{c1)=0.5 4 3 1 4 3 1 2 2 2 2 1.75 | 2 2 2 2 2 | 175 | 2
f(e2)=0.5
f(e1)=0.8 4 36 |1 4 36 |1 2 2 2 2 196 | 2 2 2 2 2 | 196 | 2
f{c2)=0.8
f{c1)=0.8 4 36 | 1 4 36 |1 2 2 2 2 196 | 2 2 2 2 2 |19 | 2
f(e2)=0.2

Fig 4.4 Experiments of “VerySmall” in different functional units and branch behaviors

loop body. Same as Fig 4.2, we also use six bars to present the maximum, average, minimum
execution time of MDBA and PLSM for every type of loop body. The y-axis is a ratio over
the maximum execution time of MDBA in each group. The floating point in each bar means
the ratio of loop body over the entire execution time. In the top of graph are the entire
execution times of each bar.

In the Fig 4.3, we observe-the.shape of leop body is less effect on the entire execution
time. The improvement on the-average execution time is more obvious when loop size is
larger. We change the functional units-and behavior of branch instructions to evaluate MDBA
and our PLSM. Fig 4.4 is the scheduling result of “MerySmall” under variant type of
functional units and branch behaviors. The high-lighting part is the scheduling result in Fig
4.1 which is a maximum improvement case. In other cases, if we can not get some
improvement in ESL, we can assure that MSL of PLSM is equal MDBA and the entire
execution is the same.

Fig 4.5 is another benchmark “Floyd-Stienberg”[4]. Its characteristic is a small
conditional block and less conditional operations. It means that MSL, NSL and ESL are so
closed, and we hardly to get a conditional long instruction to save entire execution time. In
other words, such type of program contains numerous unconditional operations. Because we
use BUSM [3] to allocate unconditional operations into unconditional long instruction, we

may reduce some retiming depth here. We also use variant branch behaviors and functional
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Fig 4.6 Experiment Results of “Floyd-Stienberg”

units to compute its execution. The experimental results are shown in Fig 4.6, and we use the
high-lighting part to do experiments on different size of loop size in Fig 4.7. In the Fig 4.7, we
observe some improvement by reducing retiming count. However the ratio of such
improvement is dim with the increase of loop body. Retiming depth reduction decrease the
ratio of overhead in the execution time, but the instructions of overhead is almost fixed.
Improvements in the overhead will diluted with the loop body in any scheduling method.

We also use the benchmark “SC” and “Kim” to run experiments and the results are shown in
Fig 4.8 and 4.9. In the benchmark “SC” and “Kim” are not extreme case of conditional block.

We can get scheduling result with lower average schedule length.
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Fig 4.7 Experiments of “Floyd-Stienberg” in different functional units and

And in the final benchmark “MeryLarge” as shown in Appendix A, When there are one
adder multiplier and divider, we"can use PLSM to get a maximum schedule length 12, better
than 15 by MDBA. Because the maximumis the upper bound of schedule length, we need not
compare other measurements. The reason is that we find the resource sharing policy before
allocate nodes. We can assign more operations to one functional unit and get a shorter
maximum schedule length. In the next section, we will give summary of our method in time

complexity and effectiveness.
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1ALU,1IMULT 2ALU,1MULT 28LU, ZMULT
MDBA, PLSM MDBA, PLSM MDBA, PLSM

ML | ESL |rd | msL | EsL |rd|msL | EsL |rd [ mMsL | ESL | rd [ MSL | ESL | rd | MSL | ESL | rd
fiel)=0.2 = 72 | 3 g 72 |2 & 3 4 & 46 | 3 4 4 4 4 |33 | 3
f(c2)=0.8
f(c3)=0.6
f(c1)=0.5 B 75 | 3 8 75 | 2 6 & 4 6 45 | 3 4 4 4 4 | 375 | 3
f(c2)=0.5
f(c3)=0.5
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Fig 4.8 Experiment Results of “SC”

1ALU,AMULT 2ALU, IMULT 281U, 2MULT
MDBA, PLEM MDBA PLSM MDBA PLSM

msL | EsL |rd ImMsL [ EsL [rd | msL |ESL | rd ImMSL | ESL |rd | MSL | ESL | rd [ MSL | ESL | rd
flel)=0.2 10 | a2 | 2] 10 8.4 | 2 s s 4 5 | 438 | 3 s 5 4 5 | 436 | 4
fle2)=0.6 8 3 4
flel)=0.5 10 | a5 | 2] 10 g 2 s s 4 5 | 493 | 3 s 5 4 5 | 475 | 4
f(c2)=0.5 8 3 4
flcl)=0.8 10 | 98 | 2] 110 a6 | 2 s s 4 5 | 499 | 3 s 5 4 s | 496 | 4
flc2)=0.6 8 3 4
flcl)=0.6 10 | 98 | 2] 10 96 | 2 s s 4 s |asa| 3 s 5 4 s |49 | 4
fle2)=0.2 8 3 4

Fig 4:9 Experiment Results of “Kim”

4.3 Summary of Experiment Result

We give some summary the time complexity of our algorithm PLSM and MDBA. In

MDBA, its time complexity is O(M2 +E). MDBA traverse the MD-CADFG once in O(|E)
and search the sharing policy in O(Mz). In our algorithm PLSM, we have four steps to get a

scheduling result. The first sets the executing probability in O(M). The second step finds
resource policy by checking the resource sharing conditionals for a pair of node in the

MD-CdDFG. Its time complexity is O(Mz) . The third step allocates operations into schedule

table, it traverse the graph once in the time complexityO(\E\). And the final step sets the
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retiming count of all operations in the schedule table. It need to check the parents’ retiming

count for each operation with time complexity O(\E\). Thus, totally time complexity of

PLSMis O(V[* +2E

), almost equal to MDBA.

Secondly, we summary the efficiency on average schedule length of our method. It is
different from the MDBA that we find the resource sharing policy before allocating operations
into schedule table. It allows us to compute the maximum and minimum schedule length.
Then we use three schedule strategies to achieve a minimum average schedule length. A low
average schedule length can reduce the entire execution time and experimental results show
the improvement of entire execution time. We can classify problems into tow cases. One is
large conditional instructions and the other is small conditional instructions. When there are
more conditional instructions, we car:get a smaller. average schedule length. On the contrary,
when most instructions are unconditional, we are ‘hard to get improvement from average
schedule length. However, long-instructionsin this problem are almost unconditional. We can
use the concept of BUSM to reduce the retiming depth. Because the average schedule length

and retiming depth are trade-off, we improve one of them in the respected extreme cases.
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Chapter 5. Conclusion and Future Work

In this thesis, we have designed an effective retiming based scheduling method PLSM to
reduce the average performance. The experimental results have shown the effectiveness of

PLSM and we will finally conclude our thesis and propose some future work for our research.

5.1 Conclusion

Because DSP processor becomes popular, high performance DSP used in such devices
need to be processed with high data throughput. Applications in such systems become more
complexity and cause numerous branch instructions. Static scheduling length can not present
the inference which is caused by branch instructions. For this issue, we have proposed a

method to evaluate the average performance..In summary, we give the following conclusions:

(@) In our problem modeling, we have profiled the*behavior of each branch instruction. By
the fundamental of profiling, we can compute the executing probability of each
instruction in the program. We propose a method to compute the executing probability of
long instruction. The average schedule length is the summation the average schedule
length of each long instruction. Because we have assumed that the execution time of long
instruction is the same, the average schedule length presents the average execution time.
When loop is large, the entire execution time usually closed to the average execution
time. In the experimental results, we show that our measurement by average execution
time.

(b) By the measurement of average schedule length, we have designed a scheduling method
to get a scheduling result with lower average execution time. We propose several

scheduling strategies to reduce execution in VLIW DSP architecture with resource
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sharing and resource constraining. After finding resource sharing policy, we can compute
the maximum schedule length as the upper bound and the minimum schedule length as
the lower bound. We propose a method to allocate nodes into schedule by a mixed
method. Finally, we compare our algorithm with MDBA in the maximum, average,
minimum schedule length and retiming depth. From the experimental results, we can
conclude the retiming depth and average schedule length are trade-off. Experiments
results have shown such extreme cases. In a problem with large conditional block, we
can get a lower average execution time but cause high retiming depth. However, in a
problem with small conditional block, average schedule length can not get large
improvements in schedule length, but we can also reduce the entire execution time by

lower retiming depth. In general cases, we can usually get a lower entire execution time.

5.2 Future Work

There are still some issues irrthe research that can-be improved in the future.

(@) When we compute the average schedule length of loop body, we assume that happening
of all long instructions are independent and compute the average schedule length by
summing their executing probability. However, happening of long instruction may be
dependent events. It means our measurement may overcount the entire execution time. In
the future, we can analyze the relationship between long instructions’ executing
probability and get a more precisely.

(b) In our modeling of nested loop, all operations cost the same execution time. It may not
respect the real case. In the future, we need to analyze the relationship between average
schedule length and average execution time under considering different execution time of
functional units. And, we use such measurement to develop a schedule method to get a

shorter entire execution time.
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(c) In modern microprocessors, branch prediction is usually used to enhance executing
performance. However, we do not consider its efficiency to focus on branch behavior. In
the future, we can also use branch prediction to evaluate a more precisely scheduling
performance. It is possible to consider the efficiency of branch prediction into our

scheduling method.
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