

國 立 交 通 大 學

資訊工程學系

碩 士 論 文

建構在模糊擷取器及列表法編解碼器上的認證系統
Authentication Using Fuzzy Extractor with List Decodable

Codes

研 究 生：賴建名

指導教授：蔡錫鈞 教授

中 華 民 國 九 十 四 年 八 月

 ii

建構在模糊擷取器及列表法編解碼器的認證系統

Authentication Using Fuzzy Extractor with List Decodable Codes

研 究 生：賴建名 Student：Chian-Ming Lai

指導教授：蔡錫鈞 Advisor：Shi-Chun Tsai

國 立 交 通 大 學
資 訊 工 程 學 系
碩 士 論 文

A Thesis

Submitted to Department of Computer Science and Information Engineering

College of Electrical Engineering and Computer Science

National Chiao Tung University

in partial Fulfillment of the Requirements

for the Degree of

Master

in

Computer Science and Information Engineering

August 2005

Hsinchu, Taiwan, Republic of China

中華民國九十四年八月

建構在模糊擷取器及列表法編解碼器上的認證系統

學生：賴建名

指導教授：蔡錫鈞

國立交通大學資訊工程學系﹙研究所﹚碩士班

摘 要

 密碼認證系統是最普遍和傳統的認證系統。但是因為人為設定的密碼的

亂度不足並且使用者常常使用有意義的字當成密碼，所以密碼認證並不安

全。近來有人開始關注生物特徵，例如虹膜、指紋或是手型。Dodis提出了

由模糊擷取器來擷取生物特徵來做密碼學應用的概念。在這一篇論文中，我

們以模糊擷取器為基礎建構一個指紋認證系統。除此之外，並在模糊擷取器

裡改用列表法編解碼器來加強辨識的能力。

 iii

 iv

Authentication Using Fuzzy Extractor with List Decodable Codes

student：Chian-Ming.Lai

Advisors：Dr.Shi-Chun Tsai

Department﹙Institute﹚of Computer Science and Information Engineering

National Chiao Tung University

ABSTRACT

Password authentication is a traditional method to verify rights of a

user. But it’s not secure, since the password is low-entropy and
non-uniform. Recently people are thinking about using the biometric
information, such as fingerprint, iris, hand shape…etc. Dodis et al.
proposed fuzzy extractor to extract truly random string from biometric
data for cryptographic use. In this thesis, based on the fuzzy extractor, we
construct a fingerprint authentication system. Furthermore, we use list
decodable codes to raise the identification rate of the system.

 v

誌 謝

論文的完成要感謝蔡錫鈞老師耐心細心的指導與關心，更要感謝信龍學長和佳蓉學姊不厭其煩的

解答我的疑惑。也謝謝家人給我精神上和物質上不虞匱乏的支持，讓我一路可以毫無顧忌的完成學

業。在論文寫作期間也要謝謝我的同學和朋友對我的開導和關懷，讓我產生無比勇氣。

Authentication Using Fuzzy Extractor with

List Decodable Codes

Chian-Ming Lai

August 30, 2005

2

Contents

1 Introduction 9

2 Preliminary 13

2.1 Metric Space . 13

2.2 Error Correcting Codes . 14

2.3 List Decodable Codes . 14

2.3.1 Unique Decoding . 15

2.3.2 List Decoding . 16

2.4 Fuzzy Extractor . 17

2.5 Constructions . 21

2.5.1 Construction under Hamming metric space 21

2.5.2 Construction under set difference metric space 22

3 Fingerprint authentication system 25

3.1 Background . 25

3.2 System . 27

3.2.1 Assumptions . 27

3.2.2 Some implementation issues 27

3.2.3 System structure . 30

Sign up . 30

Login . 31

4 Experimental results 35

4.1 The fingerprint authentication system 35

3

4 CONTENTS

4.2 Tests . 40

5 Conclusion 45

Appendices 48

A 49

A.1 System Requirements . 49

A.2 Setup . 49

A.3 File Description . 50

List of Figures

2.1 Secure sketch . 19

2.2 Procedure Gen in fuzzy extractor 20

2.3 Procedure Rep in fuzzy extractor 21

3.1 Extract biometric data from a fingerprint image 26

3.2 Procedure RecList in secure sketch 28

3.3 Procedure RepList in fuzzy extractor 29

3.4 Sign Up . 31

3.5 Login . 32

3.6 Login via list decoding . 33

4.1 Sign up snapshot 1 . 36

4.2 Login snapshot 1 . 37

4.3 Sign up snapshot 2 . 38

4.4 Login snapshot 2 . 39

4.5 fingerprint image a to f . 42

4.6 fingerprint image g to l . 43

A.1 Relation between classes . 52

5

6 LIST OF FIGURES

List of Tables

4.1 Experiments with different fingerprints 44

A.1 Files used in the servlet . 51

A.2 Files used in the applet . 52

7

8 LIST OF TABLES

Chapter 1

Introduction

Based on the paper [2] proposed by Dodis et al., we construct a fingerprint

authentication system with Java Servlet technology and Apace Tomcat web

server. Moreover, we enhance the identification rate of the fingerprint au-

thentication by using list decodable code.

The password authentication is a traditional method to verify the access

rights of a user. User signs up with a name and a password, and the system

uses a hash function (one way function) to get a hashed value by hashing

the password and stores the user name and hashed value. As a user logins

with his/her password which is exactly what he/she set, system compares

the hashed value of the password with pre-saved hashed value and checks

if they are equal. Such an authentication method is traditional and easy,

however it’s not a secure method. It has two shortcomings. 1) Passwords

are rarely truly random, since humans can’t remember non-meaningful and

long password. 2) Passwords are not reproducible, since user has to type the

password exactly what he/she set at the first time. In other words, users

always set the meaningful passwords, such as birthday or personal identi-

fication number, and usually can’t exactly remember long and complicated

passwords. Therefore the password authentication can’t guarantee security.

There are researchers have proposed methods with nonuniform and low-

entropy passwords. For instance, one method is proposed by Ellison et al.[4],

9

10 CHAPTER 1. INTRODUCTION

which asks user several private questions and uses the answers to encrypt the

secret. The method is useful and practical, but it’s not convenient. In order

to generate truly randomness for cryptographical use, recently people are

thinking about using the biometric information. The biometric data includes

iris, fingerprint, hand shape, facial shape, signature and voiceprints (for more

biometric data see [5]). The biometric data can not be reproduced precisely

each time and is not uniformly distributed. We use the fuzzy extractor,

which is proposed by Dodis et al.[2], to extract nearly uniform distributed

randomness from non-uniform distributed biometric data for cryptographic

use.

Dodis also proposes the idea of secure sketch, with which a fuzzy extractor

can be built. A secure sketch output the sketch s about the input biometric

data w. While revealing some information about w, the secure sketch still

can reconstruct it from any other input biometric data w′ that is sufficiently

close. Moreover, a fuzzy extractor make use of the secure sketch to output

a random string R and a public string P . We use the random string R as

the strong key used in the fingerprint authentication system of this thesis.

The key extracted from the biometric data by the fuzzy extractor is different

from the traditional key. We don’t need to store the key, since the key can

be recovered from the biometric data. It is uniformly distributed and can be

easily reproduced.

A fuzzy extractor can generate a strong key as cryptographical use from

biometric data in a tolerant way. That is, whatever the biometric data

change, if the changes is not much, the fuzzy extractor can correct it. Hence,

an error correcting code (see [14] for survey) is needed. In coding theory,

given n, k and d, a code is a collection of elements (codewords) in {0, 1}n

such that d is the minimum distance of the code and there is a function

f : {0, 1}k → {0, 1}n that encodes the message of length k into a codeword

of length n. The minimum distance of the code is the minimum hamming

distance between any two codewords. Since any codeword is at distance at

least d from each other. We can find a unique codeword within distance bd−1
2
c

11

from a message of size n. Let t = bd−1
2
c, and t is called the error correcting

bound. The problem to decode a message to at most one codeword within

the error correcting code is called unique decoding.

The error locating bound is called the traditionally error correcting bound,

since no one can correct more errors beyond this bound until Elias[3] and

Wozencraft[16] invented the list decoding in 1950s. If there is a decoder

that can list all possible codewords beyond the traditional bound when re-

ceiving a message, we call the decoder a list decoder. The code with this

property is a list decodable code. The problem to decode all possible code-

words beyond the traditional bound is called list decoding. There are sev-

eral list decodable codes, including Reed-Muller codes[10], Chinese remain-

der codes[8], algebraic-geometric codes[7], concatenated codes[6] and Reed-

Solomon codes[12]. The first efficient decoding algorithm of Reed-Solomon

code is invented by Sudan[15]. We apply Reed-Solomon codes to our system.

Fingerprint is one of the mostly available biometric data. In order to get

the fingerprint data, fingerprint readers are needed. It scans the image of the

fingerprint and transmits it to the computer for extended visional processes.

In order to extract fingerprint data from raw fingerprint image, several graph-

ical processes are applied[11]. In this thesis, we assume there is a method

that helps us to extract biometric data from raw fingerprint images. Then

we construct a fingerprint authentication system containing a fuzzy extrac-

tor to handle the biometric data. Moreover, we use a list decodable code,

here is Reed-Solomon Codes, as the error correcting code needed in the fuzzy

extractor to raise the recovery capability. The system can be accessed via

https://donna.csie.nctu.edu.tw/ FuzzyServlet/. We develop the system with

Java Servlet technology and Apache Tomcat web server(http://apache.org/).

Java language(http://java.sun.com/) is an object-oriented and cross-platform

programming language. The greatest advantages of Java language are reusabil-

ity and portability, since Java source codes are compiled into Java Bytecodes

which can be run under different platforms. Furthermore, Java is simple,

since Java has automatic memory management. Programmers don’t need to

12 CHAPTER 1. INTRODUCTION

handle the problem about dangling pointers or memory leaks. The Java tech-

nology contains Java Servlet and Java Applet technology. The Java Servlets

are modules of code that run in a server application to answer client requests,

and the Java Applet is written in Java language and is run in a web browser.

However, Java has some security restrictions. It is limited to communicate

with the host web server only. We use Java Servlet in the web server to

respond the requests from the applet in the client side.

The rest of this thesis is organized as follows. We introduce the pre-

liminaries in chapter 2, including the secure sketch, fuzzy extractor and the

Reed-Solomon code. Chapter 3 shows the architecture of the fingerprint au-

thentication system and related implemental issues. Chapter 4 gives some

experiments. Last chapter makes a conclusion.

Chapter 2

Preliminary

In this chapter, we review several related definitions and introduce fuzzy

extractor.

2.1 Metric Space

A metric space is a set M and a corresponding distance function dist that

satisfies the following conditions. That is for any three elements a, b and c ∈
M , (1) a = b iff dist(a, b) = 0, (2) dist(a, b) = dist(b, a) and (3) dist(a, b) +

dist(b, c) ≥ dist(a, c) (triangle inequality).

For example, the hamming metric space over a field F, consists of a metric

set M ⊆ F, consists of a metric set M ⊆ Fn with a distance function dist :

M×M → N
⋃{0}, which outputs the number of the coordinates in which two

metric elements differs. Another example is the set difference metric. A set

difference metric space M contains all the subsets of fixed size s contained

in the universal set U = {0, 1, ..., n − 1} and for A,B ∈ M , the distance

function dist(A, B) outputs the number of elements in A that are not in B.

Note that dist(A,B) = 1
2
|A4B|. Obviously, they all satisfy the above three

conditions.

We view biometric data as elements in the metric space. In this thesis we

define biometric data over Hamming metric space and set difference metric

13

14 CHAPTER 2. PRELIMINARY

space respectively. Besides the metric space issue, a fuzzy extractor needs

error correcting codes to provide fault tolerance ability.

2.2 Error Correcting Codes

Error correcting codes are widely used in communication. When message

is transferred from sender to receiver over a noisy channel, data might be

changed. To guarantee correctness and integrity, we add some extended

information to original message to ensure that receiver would receive the

correct message. Given parameters n, k, d and a symbol set
∑

, codewords

are the image of the function C :
∑k → ∑n such that for any two messages x

and y in
∑k, the (Hamming) distance of the codewords C(x) and C(y) is at

least d. If we receive an encoded message y, to correct the message is to find

the x with the smallest distance between C(x) and y. Since any codeword

is at distance d from any other codewords, for any received encoded message

y, there is at most one codeword within the distance t = bd−1
2
c, where t is

called error correcting distance of the code.

In this thesis, we use Reed solomon code which is also a list decodable

code.

2.3 List Decodable Codes

When we can’t find the closest codeword for a received message within error

correcting bound t, we still can find numerous close codewords beyond the

bound. We call a code with this property a list decodable code, for example

Reed-Solomon code.

Reed-Solomon Code: Let Σ = Fq be a finite field and α1, α2, ..., αn

be distinct elements of Fq. Given n,k and Fq, such that k ≤ n ≤ q, a

message m = 〈m0,m1, ...,mk−1〉 and the polynomial p(X) = Σk−1
i=0 miX

i, we

can encode a message by a mapping C : Σk → Σn, where the codeword C(m)

is 〈p(α1), p(α2), ..., p(αn)〉.

2.3. LIST DECODABLE CODES 15

For any two messages M1 and M2 whose corresponding polynomials are

p1(X) and p2(X) of degree at most k − 1, the distance of the codewords of

M1 and M2 is at least n − (k − 1). We know that the minimum distance

d ≤ n − k + 1, and by the Singleton bound d ≥ n − k + 1 (see reference

[14]), the minimum distance d is n − k + 1, Therefore Reed Solomon code

is a [n, k, d = (n − k + 1)] error correcting code and can be used for fuzzy

extractor.

2.3.1 Unique Decoding

The unique decoding algorithm of the Reed-Solomon code was invented by

Berlekamp and Welch [1].

Let x1, x2, ..., xn be the distinct elements in F, assume we have a received

message y1, y2, ..., yn with at most e ≤ bn−k
2
c errors, the original message

m0,m1, ..., mk−1, its corresponding polynomial p(X) =
∑k−1

i=0 miX
i, and the

encoded codeword p(x1), p(x2), ..., p(xn). We can reproduce at most one p(x).

In order to reconstruct p(x), we define an error locating polynomial E(x) =∏
{i:p(αi)6=yi}(x− xi). That is, E(xi) = 0 if p(xi) 6= yi.

For all i, the equation E(xi)(p(xi) − yi) = 0 holds, since E(xi) = 0 if

p(xi) 6= yi and p(xi) − yi = 0 if p(xi) = yi. Let N(x) = E(x)p(x) be a

polynomial of degree ≤ e + k − 1, then N(xi) = E(xi)p(xi) = E(xi)yi for all

i. If we can find the N(x) and E(x), we can reconstruct the message. The

following is the Berlekamp-Welch unique decoding algorithm.

Algorithm 2.3.1. Berlekamp-Welch unique decoding algorithm

Input: x1, x2, ..., xn,y1, y2, ..., yn ∈ Fq, Message size k and error number

e ≤ bn−k
2
c

1. Find polynomial N(x) and E(x) such that

i. deg(E) ≤ e, and E(x) 6= 0.

ii. deg(N) ≤ e + k − 1, and N(x) 6= 0.

iii. N(xi) = yiE(xi) for all i.

16 CHAPTER 2. PRELIMINARY

2. Compute p(x) = N(x)/E(x) and output the coefficients of the p(x).

The algorithm works, if the polynomials N(x) and E(x) exists and p(x)

is unique[1]. The brief explanation is given below.

First, to prove the existence of the polynomials N(x) and E(x), we note

that the condition N(xi) = yiE(xi) for all i. Thus, a solution can be found

by solving a homogenous linear system, since the there are more equations

than the unknowns.

Second, to prove that the polynomial p(x) is unique, assume that any N

and E found in step 1 satisfy N(x) = p(x)E(x). Let R = {i|p(xi) = yi} and

|R| ≥ n−e. That is, there are at most e errors in the received message. Thus,

for every i ∈ R, N(xi)−E(xi)p(xi) = 0, and the polynomial N(x)−E(x)p(x)

has at least n − e roots and the degree at most e + k − 1. If the number

of roots is more than the degree, the polynomial N(xi) − E(xi)p(xi) is zero

identically. Hence, p(x) = N(x)
E(x)

. The condition is exactly given, since e ≤
bn−k

2
c ⇒ e + k ≤ n− e ⇒ e + k − 1 < n− e.

The Berlekamp-Welch algorithm uniquely outputs the closest codeword

when e ≤ bn−k
2
c. In next section, the listing decoding algorithm can correct

more errors (at most n− (k − 1)

⌈√
2(n+1)

k−1

⌉
+ bk−1

2
c).

2.3.2 List Decoding

In this section, we describe the list decoding algorithm for Reed Solomon

code, which was invented by Sudan [15].

Weighted degree: The (a, b)-weighted degree of the monomial qijx
iyj

is defined as ai + bj. The (a, b)-weighted degree of a polynomial Q(x, y) =∑
ij qijx

iyj is the maximum, over the monomials with non-zero coefficients,

of the (a,b)-weighted degree of the monomial.

We recall the definition of the Reed-Solomon code. Let x1, x2, ..., xn be

the distinct elements of F, given a message (m0,m1, ..., mk−1) and p(X) =∑k−1
i=0 miX

i, the encoded codeword is 〈p(x1), ..., p(xn)〉. Let 〈y1, ..., yn〉 be the

corrupted codeword. To do the list decoding, we find any close codewords

2.4. FUZZY EXTRACTOR 17

〈c1, ..., cn〉 such that |{i|ci = yi}| ≥ t. In other words, we have to find all

those polynomials q’s such that |{i|q(xi) = yi}| ≥ t. The following algorithm

gives a way to find all possible polynomials.

Algorithm 2.3.2. List decoding algorithm for Reed Solomon Codes

Input: n, k, t and distinct pairs (x1, y1), (x2, y2), ..., (xn, yn) ∈ F× F.

1. Let d = k− 1, m = bd
2
− 1c and l =

⌊
(t

d
+ 1

2
)−

√
(t

d
+ 1

2
)2 − 2n

d

⌋
. Find

any function Q : F2 → F that satisfies

i. (1, d)-weighted degree of Q(x, y) is ≤ m + ld.

ii. Q(xi, yi) = 0, for all i = 0, ..., n− 1.

iii. Q 6= 0.

2. Factor Q into irreducible factors.

3. Output all the polynomials p such that (y − p(x)) is a factor of Q and

p(xi) = yi for at least t values of i.

The algorithm works if the bivariate polynomial Q(x, y) exists and if the

polynomial p can be found[15]. We briefly give the reason why it works.

At first, to prove that Q(x, y) exists, let Q(x, y) =
∑l

j=0

∑m+(l−j)d
k=0 qijx

iyj.

Try to find the coefficients of Q such that Q(xi, yi) = 0 for all i. Consider this

homogenous linear system, there are more unknowns than equations. Thus,

a nonzero solution exists and Q(x, y) exists.

Second, if t >
√

2(n + 1)d − d
2
− 1 and |{i|p(xi) = yi}| ≥ t, the list

decoding algorithm should output p. To find such polynomial p is equivalent

to prove that (y− p(x)) divides Q(x, y). We let f(x) = Q(x, p(x)). It can be

proved that the degree of f(x) is less than |{i|f(xi) = 0}|. Therefore f(x) is

identical zero and y − p(x) divides Q(x, y). Hence, the algorithm works.

2.4 Fuzzy Extractor

We introduce some involved definitions as follows.

18 CHAPTER 2. PRELIMINARY

Min-entropy: For a random variable X, the min-entropy of X is H∞(X) =

− log(maxx Pr(X = x)). For two random variables X and Y , the average

min-entropy of X given Y is defined as H̃∞(X|Y) = − log(Ey←Y (2−H∞(X|Y =y))).

We use the average min-entropy to measure the entropy loss of the data

source if we give some extended information.

Statistical distance: The statistical distance of two distributions X and

Y is defined as SD(X, Y) = 1
2
Σw|Pr(X = w)− Pr(Y = w)|.

Strong Extractor: An (n,m′, l, ε)-strong extractor is a function Ext:{0, 1}n×
{0, 1}d → {0, 1}l, such that, for any distribution W on {0, 1}n with H∞(W) ≥
m′, SD(〈Ext(W,Ud), Ud〉, 〈Ul, Ud〉) ≤ ε. In other words, Ext(W,X) denotes

the application of Ext to W using uniformly distributed randomness Ud.

A secure sketch has two procedures Sketch and Rec. The procedure

Sketch produces the public description (called sketch) about the biometric

input w, and the procedure Rec recover w from any biometric input w′ that

is close to w and the original description about w. The formal definition of

the secure sketch is below.

Definition 2.4.1. (Def 2. from [2]) An (M,m, m′, t)-secure sketch contains

two procedures Sketch and Rec.

• Sketch is a randomized mapping from metric space M to {0, 1}∗.

• Rec is a recovery function, such that for any w ∈ M with min-entropy

m, given Sketch(w), and any w′ ∈ M such that dist(w, w′) ≤ t, we can

recover w = Rec(Sketch(w), w′).

• For any random variable W over M with min-entropy m, H̃∞(W |
Sketch(W)) ≥ m′

Note that the random output of Sketch is denoted as Sketch(W), or

Sketch(W,X) when we make the randomness explicit.

A fuzzy extractor provides a similar function. It also contains two proce-

dures Gen and Rep. The procedure Gen extracts randomness R and public

2.4. FUZZY EXTRACTOR 19

Secure Sketch - procedure Sketch and Rec

Rec

SketchBiometric
data w

Biometric
data w’ and
Sketch(w)

Sketch(w)

Original
biometric data
w

Figure 2.1: Secure sketch

string P from a biometric input w which is close to w′, and the procedure Rep

extracts R from biometric input w′ and the public string P . The following

is the formal definition.

Definition 2.4.2. (Def 3. from [2]) An (M, m, l, t, ε)-fuzzy extractor contains

two procedures Gen and Rep:

• Gen is a probabilistic procedure, such that for any w ∈ M with min-

entropy m, it outputs a string R ∈ {0, 1}l and a public string P , satis-

fying SD(〈R,P 〉, 〈Ul, P 〉) ≤ ε.

• Rep is a procedure that recovers R from the corresponding public

string P and any w′ close to w. That is, for all w, w′ ∈ M , such

that dist(w, w′) ≤ t, Rep(w′, P) = R.

A fuzzy extractor addresses the error-tolerance just like a secure sketch.

Furthermore, a fuzzy extractor also addresses the nonuniformity. That means

that it always extracts a uniformly random string R reliably from its biomet-

ric input w in an error-tolerant way. Whatever the w′ change, if w′ is still

close to w, the fuzzy extractor always output the same R.

The procedure Gen outputs R with the restriction SD(〈R, P 〉, 〈Ul, P 〉) ≤
ε. To achieve it, we use a strong extractor to extract R from w. The procedure

20 CHAPTER 2. PRELIMINARY

Rep recovers R from the public string P and w′ which is close to w. Thus,

we can use a secure sketch to help a fuzzy extractor to recover w and use one

strong extractor to extract R from recovered w. Obviously, a fuzzy extractor

can be built by one secure sketch and one strong extractor.

Lemma 2.4.3. (Lemma 3.1 from [2]) Given an (M, m, l, t, ε)-secure sketch

containing two procedures Sketch and Rec , and an (n, m′, l, ε)-strong extrac-

tor Ext with l = m′ − 2 log(1
ε
). Then for W ∈ M and uniformly distributed

random strings X1, X2, an (M,m, l, t, ε)-fuzzy extractor is defined as two pro-

cedures Gen and Rep:

• Gen(W ; X1, X2) : Compute P = 〈Sketch(W,X1), X2〉, R = Ext(W ; X2)

and output 〈R; P 〉.

• Rep(W ′, P = 〈V, X2〉) : Recover W = Rec(W ′, V) and output R =

Ext(W,X2).

Note that V is the Sketch(W,X1) generated by Gen.

Fuzzy Extractor - procedure Gen

Biometric
data w

Strong Extractor
Ext

Secure Sketch
Sketch

Public String P
=
�
Sketch(w, X1), X2�

Private string R

X1

X2

Figure 2.2: Procedure Gen in fuzzy extractor

Note that the random strings X1 and X2 referred in the lemma do not

specify the length. It depends on how you make a secure sketch and what

strong extractor you choose. There are concrete examples in next section.

2.5. CONSTRUCTIONS 21

Fuzzy Extractor - procedure Rep

Biometric data w’

Strong Extractor
Ext

Secure Sketch
Rec

Original
biometric data w

Private string RX2

Sketch(w, X1)

Public String P =�
Sketch(w, X1), X2�

Figure 2.3: Procedure Rep in fuzzy extractor

2.5 Constructions

This section shows how to make secure sketches under two metric spaces, i.e.,

Hamming and set difference, and demonstrates how to build fuzzy extractors

from those two secure sketches respectively.

2.5.1 Construction under Hamming metric space

Given an [n, k, d = 2t+1] code C, the Hamming metric space M = {0, 1}n, a

biometric input W ∈ M and a random string X1 ∈ {0, 1}k, the secure sketch

is Sketch(W ; X1) = W⊕C(X1). Let S = Sketch(W ; X1) and dist(W,W ′) ≤
bd−1

2
c. The recovery function is Rec(S, W ′) = S ⊕ C(D(W ′ ⊕ S)) = S ⊕

C(X1) = W ⊕ C(X1)⊕ C(X1) = W .

Based on the Hamming secure sketch, given a biometric input W ∈ M

and random strings X1 ∈ {0, 1}k and X2 ∈ {0, 1}∗, the procedure Gen of

the fuzzy extractor outputs a public string P = 〈Sketch(W,X1), X2〉 and a

random string R = Ext(W,X2). The length of X2 depends on the strong

extractor.

To reproduce R, given a biometric input W ′ ∈ M and P = 〈Sketch(W,X1),

X2〉, the procedure Rep in the fuzzy extractor first recovers W = Rec(W ′,

22 CHAPTER 2. PRELIMINARY

Sketch(W,X1)), where W ′ is close to W (dist(W,W ′) ≤ t). Second, the

procedure Rep extracts R = Ext(W,X2). Then we have a fuzzy extractor

from a hamming secure sketch.

2.5.2 Construction under set difference metric space

Consider a different metric space with the universal set U = {0, 1, ..., n−1} =

[n]. The metric space M is a collection of all subsets of size s in U and the

distance function distset. Given A and B ∈ M , the distance function is

defined as the number of the elements in A but not in B. We denotes the

distance as 1
2
|A4B|. Since A and B is of the same size, |A4B| is even and

can be divided by 2. Actually, we can represent a set as a binary string.

Assume that A ∈ M , the i-th bit of the binary string represents if the i-th

element exists or not. For example, given n = 10, s = 5, to represent a set

A = {0, 1, 3, 5, 7} ⊆ [n] in the set difference metric space, the corresponding

binary string is 1101010100.

To make the secure sketch, given a biometric input W ∈ M , random

string X1 ∈ {0, 1}∗ and an [n, k, d = 4t + 1] code C with constant weight

s, randomly select a codeword B from C, and generate one permutation

π : [n] → [n] such that π(W) = B. Finally output the permutation π as

the secure sketch. The length of X1 depends on how we generate the secure

sketch (permutation). Practically we use X1 as a random seed to select B

from C and generate the permutation from W and B.

We summarize these steps into the following algorithm.

Algorithm 2.5.1. Make a sketch under set difference metric space

Input: a biometric data W ∈ M .

1. Randomly select a codeword B from C.

2. Choose a random permutation π : [n] → [n] such that π(W) = B.

3. Output the permutation π by listing π(1), ...π(n).

2.5. CONSTRUCTIONS 23

Given the secure sketch Sketch(W,X1) and a biometric input W ′ ∈ M

such that distset(W,W ′) ≤ d−1
4

, the recovery function Rec(Sketch(W,X1),W
′)

contains the following steps: Compute B′ = π(W ′). Since the permutation

keeps the distance, the intersection of W and W ′ is the same as of B and

B′ = π(W ′). B′ can be corrected to B, and the recovery function finally

outputs W = π−1(B).

In the same way, we can build the fuzzy extractor from the set difference

secure sketch. Given a biometric input W ∈ M and random strings X1 ∈
{0, 1}∗ and X2 ∈ {0, 1}∗, the procedure Gen in the fuzzy extractor outputs

public string P = 〈Sketch(W,X1), X2〉 and R = Ext(W,X2). There are

some differences, i.e., the length of X1 depends on how you do the secure

sketch (X1 may be used as a seed to generate a random mapping for the

permutation), and the length of X2 depends on the strong extractor.

To reproduce the R, given a biometric input W ′ ∈ M and P =〈Sketch(W,

X1),X2〉, the procedure Rep of the fuzzy extractor first recover W = Rec(W ′,

Sketch(W,X1)), where W ′ is close to W (that is distset(W,W ′) ≤ t). Second,

the procedure Rep outputs R = Ext(W,X2). Then we construct a fuzzy

extractor from a set difference secure sketch.

24 CHAPTER 2. PRELIMINARY

Chapter 3

Fingerprint authentication

system

In this chapter, we show a system that provides fingerprint authentication

by using the fuzzy extractor with two metric space.

3.1 Background

Fingerprint identification is one of the popular biometrics technologies. When

one presses his/her fingerprint on a fingerprint reader, some unique and

shorter data are produced to identify the fingerprint owner in a ideal situa-

tion. To achieve the goal, several processes are applied to the raw fingerprint

image. For example, IBM Exploratory computer vision group gives several

comments on the steps to produce data to represent fingerprints[11].

1. Processing - to adjust the size and contrast.

2. Computation of block directions - Determination of primary ridge di-

rection in each sub-region of an image.

3. Foreground/Background Segmentation - Identification of fingerprint

area.

25

26 CHAPTER 3. FINGERPRINT AUTHENTICATION SYSTEM

4. Ridge Extraction - Extraction of ridge area within the foreground area.

5. Blob Removal - Elimination of non-elongated small structures.

6. Thinning and Morphology - Ridges are thinned into one pixel wide

skeletons.

7. Minutia Extraction - Determine location and orientation of ridge bi-

furcations and ridge terminations.

8. Post processing - Elimination of extraneous minutia.

Usually a fingerprint identification device contains a fingerprint reader

and a identification software that extracts biometric data from image. The

following figure shows the idea.

Fingerprint
Reader

Fingerprint
Image File

Intermediate
processing
steps Fingerprint Data

(Biometric Data)

Figure 3.1: Extract biometric data from a fingerprint image

The final fingerprint data is not always unique in real world, since it might

be mistakenly identified as some other’s fingerprint data. The misidentifica-

tion rate of the current fingerprint identification systems can be reduced to

1/1000, but the price of the fingerprint identification device with that rate

is expensive. Therefore we could consider one device with lower price and

high identification rate. We use the fuzzy extractor with list decodable code

to raise the identification rate. The method is cheaper and innovative, since

the fuzzy extractor can handle the biometric data that is not reproducible

and not uniformly distributed.

3.2. SYSTEM 27

3.2 System

In this section, we discuss the system architecture and related issues.

3.2.1 Assumptions

Since we have fuzzy extractor to extract random string R for cryptographical

use, we can build a fingerprint authentication system. However, we have to

make some assumptions on fingerprint data. For some reasons, we cannot

get a fingerprint identification software that can extract fingerprint data.

So we need to generate suitable data in place of those data produced by

identification software. Therefore we design an easy method to simulate and

generate fingerprint data from fingerprint images.

Suppose user A uses some identification device. One can get two finger-

print images of user A. After extracted by this software, the difference of

these two fingerprint data is supposed to be slight. Based on the above ob-

servation, our method is to add small noise on the original fingerprint data.

Therefore, we get another data which is slightly different from the original

one. To sum it up, a fingerprint data corresponds to a user’s fingerprint image

and such a data with small noise corresponds to the same user’s fingerprint

image read again later by the device.

In this thesis, we deal with those data generated by the above description.

Furthermore, we focus on how to raise the identification rate of the existing

methods by fuzzy extractor with list decodable codes.

3.2.2 Some implementation issues

When we use list decoding, several possible messages are listed. For bet-

ter practice, slight changes should be made to the secure sketch and fuzzy

extractor for the list decodable code. Intuitively, the recovery function in

secure sketch should output several possible results as the figure shows.

Thus, the secure sketch should provide three procedures: sketch, recovery

function and additional recovery function for list decoding. The procedures

28 CHAPTER 3. FINGERPRINT AUTHENTICATION SYSTEM

Secure Sketch - procedure Rec with list decoding

RecList
Biometric
data w’ and
Sketch(w)

Close
biometric data
w1,w2,…

Figure 3.2: Procedure RecList in secure sketch

can be defined in Java interface like this:

interface SecureSketch {
Object Sketch(BioData w,BioData X1,Code codec)throws Exception;

BioData Rec(BioData w1,Object result of sketch,Code codec);

BioData[] RecList(BioData w1,Object resutl of sketch,Code codec);

}
Procedure RecList is added to the secure sketch, and it outputs a bio-

metric data array that stores all possible w1, w2, ...etc.

Based on the secure sketch, the fuzzy extractor with list decodable code

should output all the possible random strings R1, R2, ...etc. In the same way,

we add one reproduction function for list decoding method in fuzzy extractor.

The following figure shows the changes.

The following is the Java interface FuzzyExtractor.

interface FuzzyExtractor {
Object[] Gen(BioData w,BioData X1,BioData X2,Code codec)throws Exception;

BioData Rep(BioData w1,Object[] P,Code codec);

BioData[] RepList(BioData w1,Object[] P,Code codec);

}

Procedure RepList is added to the original fuzzy extractor.

3.2. SYSTEM 29

Fuzzy Extractor - procedure Rep with list decoding

Biometric data w’

Strong Extractor
Ext

Secure Sketch
RecList

X2

Sketch(w, X1)
w1, w2,…

Private
strings R1, R2,…

Public String P =�
Sketch(w, X1), X2�

Figure 3.3: Procedure RepList in fuzzy extractor

Another implementation issue is the secure sketch under the set difference

metric space. The restriction on the constructions is that the code must be

a constant weight code. We implement the secure sketch in a tricky way to

avoid using the constant weight code. As we discuss in the previous chapter,

a set can be view as a binary string. Hence we can view the intersection of

two sets as the exclusive-or of two binary strings. Based on this observation,

we modify the algorithm as follows.

Algorithm 3.2.1. Modified Secure sketch under set difference

Input: a biometric data W ∈ M .

1. Randomly select a codeword B from an [n, k, d = 4t + 1]-code C.

2. Generate a random permutation π : [n] → [n]

3. Compute E = π(W)
⊕

B

4. Output the permutation π by listing π(1), ...π(n) and E.

This secure sketch also provides recovery capability. For any input bio-

metric data W , assume that we have sketch 〈π, E〉 and W ′ where distset(W,W ′) ≤

30 CHAPTER 3. FINGERPRINT AUTHENTICATION SYSTEM

t, the recovery function contains the following steps: Compute B′ = π(W ′)
⊕

E.

B′ can be decoded to B. Finally recovery function outputs W = π−1(B
⊕

E).

It works since the modified permutation still keeps the distance. Based on

the secure sketch, a fuzzy extractor can be built, but more storage is needed

for the sketch.

3.2.3 System structure

Some free resources are used, such as Java Servlet and Apache Tomcat web

server with SSL(Secure Socket Layer) support. Servlets are modules of code

that run in a server application to answer client requests. We use an Apache

tomcat web server with servlet. This servlet easily answers two kinds of

commands from the applet in the client. One is to sign up a new user,

the other is to verify the user. Users can type in the user name and the

fingerprint in the applet to ask for service from servlet. The servlet contains

Fuzzy extractor to extracts data, and the applet gets the fingerprint data

from the raw image and communicates with the server. We introduce the

details of how to sign up and verify in the following.

Sign up

The run-down processes can be listed in the following steps, where h is a one

way hash function.

1. Key in the user name username and read the fingerprint w from the

client side.

2. Send the data from the client side to the server side via secure sockets

layer.

3. The server checks if username already exists in the database or not. If

exists, outputs the message ”User existed” to the client and terminate.

4. The fuzzy extractor procedure Gen takes the w, and computes the

random string R and the public string P .

3.2. SYSTEM 31

AppletServlet

Fuzzy
Extractor

Sign up run-down diagram

SSL connection
via Internet 1.User Name

2.Fingerprint
data w

3.Other Information

Response
Message

1.User Name
2.Public String P
3.Randomness R

Store hashed R, h(R)

Database h is an one way function.

Figure 3.4: Sign Up

5. The server computes h(R). Stores h(R), P and the unique username

in the database.

6. Output the message ”Sign up successfully” to the client.

Login

Similarly, a user login with a user name and fingerprint. The following is the

whole run-down processes.

1. Key in the user name username and read the fingerprint w′ in the

client side.

2. Send the data from the client side to the server side via secure sockets

layer.

3. The server checks if username exists in the database or not. If not,

output the message ”User does not exist, login fail!” to the client and

terminate.

32 CHAPTER 3. FINGERPRINT AUTHENTICATION SYSTEM

AppletServlet

Fuzzy
Extractor

Login run-down diagram

SSL connection
via Internet

1.User Name
2.Fingerprint

data w’

Response
Message

R’

Compute h(R’)
check if they
equal or not?

h is an one way function.Database

Load value h(R) by user name.

Figure 3.5: Login

4. The server load the stored h(R) and P by the username.

5. The fuzzy extractor procedure Rep takes the w′ and P . computes the

random string R′.

6. The server checks if h(R′) is equal to h(R) or not. If yes, output

message ”Login successfully!” ; no, output message ”Login fail!” to the

client.

If the list decoding is used. The login step 5 and 6 are modified as follows.

5. The fuzzy extractor procedure RepList takes the w′ and P , and com-

putes the random strings R1, R2, ...etc.

6. The server checks if h(R) is equal to some h(Ri) or not. If yes, output

message ”Login successfully” ; no, output message ”Login fail” to the

client.

3.2. SYSTEM 33

Database

AppletServlet

Fuzzy
Extractor

Login run-down diagram with list decoding

SSL connection
via Internet

1.User Name
2.Fingerprint

data w’

Response
Message

R1, R2,
…

Can we find one
Ri such that h(Ri)
equal to h(R) ?

Load value h(R) by user name.

h is an one way function.

Figure 3.6: Login via list decoding

Because the list decoding take much more time than unique decoding.

For better practice, we still try to do unique decoding first. If fails, then it

switches to the list decoding.

34 CHAPTER 3. FINGERPRINT AUTHENTICATION SYSTEM

Chapter 4

Experimental results

We use fuzzy extractor to improve the identification rate of existing finger-

print identification methods. This chapter gives some experimental results.

4.1 The fingerprint authentication system

At first we take snapshots on the system. The system can be accessed via

https://donna.csie.nctu.edu.tw/FuzzyServlet/. There is one tabbed panel in-

cluding two parts. One is for new user registration, the other for login panel.

New User Sign up:

In the new user registration panel, a user can choose a random string or

a sample fingerprint as the fingerprint data. When a user chooses ”random

string”, there is one button ”create” and an uneditable text field. The uned-

itable text field shows the fingerprint in the Base64 format (the characters

a-z, A-Z, the numbers 0-9 and the ”+”, ”-” symbols, with ”=” symbol as

special suffix code). When users key in the user name and click the ”create”

button, a random string is produced as a biometric data and placed in the

uneditable text field.

If one uses the sample fingerprint, there shows a list in the left side and a

gray block in the right side. The list has several samples, choose one finger-

print and the image will show in the gray block. Finally you can construct

35

36 CHAPTER 4. EXPERIMENTAL RESULTS

Figure 4.1: Sign up snapshot 1

4.1. THE FINGERPRINT AUTHENTICATION SYSTEM 37

Figure 4.2: Login snapshot 1

38 CHAPTER 4. EXPERIMENTAL RESULTS

Figure 4.3: Sign up snapshot 2

4.1. THE FINGERPRINT AUTHENTICATION SYSTEM 39

Figure 4.4: Login snapshot 2

40 CHAPTER 4. EXPERIMENTAL RESULTS

your fingerprint data under the different metric spaces by setting the lower

radio buttons.

As you sign up, some information is shown in the message area, including

the user name you signed up and the fingerprint data in the Base64 format.

These data will be directly copied to the ”login” panel for your own use.

Login:

The login panel also provides similar look. Users type in the user name

with noisy fingerprint.

If choose ”paste my fingerprint string”, it shows an editable text field, a

button ”Add noises”, a slide bar and an uneditable text field ”Noisy finger-

print” in the middle of the panel. If one just generates a random string as

the fingerprint data in the sign up panel, the editable text field will be filled

automatically. Otherwise, one can copy the fingerprint data and paste it.

Then one can adjust the slide bar to decide the noise rate for the fingerprint

data in the upper editable text field and click the button ”Add Noises” to

display the result in the following text field ”Noisy fingerprint”.

When select a sample fingerprint, there shows a list on the left side and

a gray block will be on the right side. One can choose a sample from the list

and selected image will be displayed in the gray block. Then one can press

the mouse and drag on the image to make some black sketches on it.

In the lower part of the panel, there is a bound setting. If the verification

fails, then one can choose ”List decoding” for better identification rate.

4.2 Tests

Based on the assumption we made earlier. When a user’s fingerprint is read,

the fingerprint reader always gives the same fingerprint image with some

errors. We design an easy method to simulate and generate fingerprint data

from fingerprint images.

Since the size of a fingerprint image is larger than fingerprint data, the

tradeoff between the efficiency and the size of the fingerprint data should be

4.2. TESTS 41

considered. In our system, the fingerprint image size is 160*160 pixels and

we cut the image into 64 blocks, that is, 8x8 blocks on the image. Each

block (20*20 pixels) can be represented as a integer between 0 and 63. We

use (64, 8)26 Reed Solomon Code for implementation. Once you login or sign

up with fingerprint image, a message is produced as a fingerprint data.

We design the method to extract biometric data from processed finger-

print image, since we assumed that we do not focus on how to extract fin-

gerprint data from raw fingerprint image. If there are better intermediate

processing steps to process the fingerprint image into the fingerprint data,

we can apply our method to these steps to gain some advantages from the

fuzzy extractor.

We sign up with the first sample fingerprint image and verify with fol-

lowing the noisy fingerprint images. There are twelve fingerprint images a to

l. Images a to e can be verified successfully via unique decoding. Images f

to h fail with unique decoding but pass with list decoding. Images i to l fail

in both decoding methods.

These error pattern are reasonable, since there might be object, such as

hair, on the scanning device. If the error is minor, then it can be handled via

unique decoding. Besides, users may wound their fingers, which we simulate

with images f , g and h. For these cases we can choose list decoding for larger

recovery capability.

42 CHAPTER 4. EXPERIMENTAL RESULTS

Figure 4.5: fingerprint image a to f

4.2. TESTS 43

Figure 4.6: fingerprint image g to l

44 CHAPTER 4. EXPERIMENTAL RESULTS

Image Results with unique decoding Results with list decoding

a pass pass

b pass pass

c pass pass

d pass pass

e pass pass

f fail pass

g fail pass

h fail pass

i fail fail

j fail fail

k fail fail

l fail fail

Table 4.1: Experiments with different fingerprints

Chapter 5

Conclusion

In this thesis, we construct a fingerprint authentication system by using fuzzy

extractor with unique decoding and list decoding. We not only implement

the fuzzy extractor under two different metric space, but also provide list

decoding for more powerful recovery capability. Although some assumptions

are made for the some restriction, our system provides the evidence of us-

ability.

We assume there is a method that helps us to extract fingerprints data.

Actually the method plays an important part of the identification system.

The future work is to design steps that extract fingerprint data that actually

reflects important features on fingerprint image.

45

46 CHAPTER 5. CONCLUSION

Bibliography

[1] E.R. Berlekamp and L.R. Welch, Error correction for algebraic block

codes, US Patent 4 633 470, 1986.

[2] Y. Dodis, L. Reyzin, and A. Smith, Fuzzy Extractors: How to Generate

Strong Keys from Biometrics and Other Noisy Data, In Advances in

Cryptology - EUROCRYPT, May 2004.

[3] P.Elias, List decoding for noisy channels, Institute of Radio Engineers,

94-104, 1957.

[4] C.Ellison, C.Hall, R.Milbert, B.Schneier, Protecting keys with personal

entropy. Future Generation Computer Systems, 16, pp. 311-318, 2000.

[5] N.Frykholm, Passwords: Beyond the Terminal Interaction Model, Mas-

ter’s Thesis, UMEA University.

[6] V.Guruswami and M.Sudan, List decoding algorithm for certain con-

catenated codes, Proceedings of the 32nd annual ACM symposium on

Theory of computing, 181-190, May 2000.

[7] V.Guruswami and M.Sudan, Improved Decoding of Reed-Solomon

Codes and Algebraic Geometric Codes, IEEE Transactions on Infor-

mation Theory, vol. 45, no 6, pp. 1757-1767, September 1999.

[8] V.Guruswami, A.Sahai and M.Sudan, Soft-Decision Decoding of Chi-

nese remainer Codes, Proceedings of the 41st Annual Symposium on

Foundations of Computer Science, 2000.

47

48 BIBLIOGRAPHY

[9] N.Nisan, D.Zuckerman, Randomness is Linear in Space, In JCSS,52(1),

pp.43-52,1996.

[10] R.Pellikaan and Xin-Wen Wu, List decoding of q-ary Reed-Muller codes,

IEEE Transactions on Information Theory, April 2004.

[11] IBM Exploratory Computer Vision Group, Fingerprint Steps,

http://www.research.ibm.com/ecvg/biom/fp-steps.html

[12] I.S.Reed and G.Solomon, Polynomial codes over certain finite field,

J.SIAM, 8:300-304, 1960.

[13] D.R. Stinson, Universal hash families and the leftover hash lemma, and

application to cryptography and computing, J. Combin. Math. Combin.

Comput. 42 (2002), 3-31.

[14] M. Sudan, Coding Theory: Tutorial and Survey. Online talks from

http://theory.csail.mit.edu/ madhu/, April 2001.

[15] M. Sudan, Decoding of Reed Solomon codes beyond the error-correction

bound, Journal of Complexity,13(1):180-193, 1997.

[16] J.M. Wozencraft, List decoding, Quarterly Progress Report, Research

Laboratory of Electronics, MIT, 48:90-95, 470, 1958.

Appendix A

A.1 System Requirements

Our system are constructed by some free resources as follows.

• Apache Tomcat web server 5.5.9(http://jakarta.apache.org/tomcat/)

• Java 2 Platform, Standard Edition 1.5 (J2SE 1.5 http://java.sun.com/j2se/index.jsp)

Java 2 Platform, Enterprise Edition 1.4 (J2EE 1.4 http://java.sun.com/j2ee/index.jsp)

Note that J2EE 1.4 is necessary for developing a servlet.

A.2 Setup

In this section, We setup Apache Tomcat web server and add our servlet on

it.

Apache Tomcat is the servlet container that is used in the official Refer-

ence Implementation for the Java Servlet and JavaServer Pages technologies.

In order to setup the web server with SSL (Secure Socket Layer) supported,

install the Apache Tomcat web server and do the steps provided in

http://jakarta.apache.org/tomcat/tomcat-5.5-doc/ssl-howto.html.

We summarize it into the following steps.

1. Create a certificate keystore by executing the following command:

Windows:

49

50 APPENDIX A.

%JAVA HOME%\bin\keytool -genkey -alias tomcat -keyalg RSA

Unix:

$JAVA HOME/bin/keytool -genkey -alias tomcat -keyalg RSA

and specify a password value of ”changeit”.

2. Uncomment the ”SSL HTTP/1.1 Connector” entry in

$CATALINA HOME$/conf/server.xml and tweak as necessary.

Note that the variable name $CATALINA HOME is the directory into which

you have installed Tomcat 5.

In step 1, we create a certificate keystore in default file name ”.keystore”.

We can create one keystore with specific name by the option ”-keystore [File-

Name]”. To use this ketstore file in the web server, move the file to the

directory $CATALINA HOME.

In step 2, we enable the web server to accept SSL connection. If we want

to use specific keystore file, we should setup the attributes ”keystoreFile”

and ”keystorePass” in the ”SSL HTTP/1.1” entry.

Finally, copy the folder ”FuzzyServlet” to the directory

$CATALINA HOME$/webapps/ to complete the setup. The system will create

a file ”bData.txt”, which stores user information, in the directory user.home.

The variable name user.home is the user’s ”home” directory. If we install

Tomcat as system service, the variable user.home denotes the local service di-

rectory. For example, it denotes the directory ”\Documents and Settings\LocalService”

in the Microsoft Windows XP Operating system.

A.3 File Description

A.3. FILE DESCRIPTION 51

File name Description

Account Object that stores the user information

BdataAccess Object that maintains user information database

BioData Basic object that stores the fingerprint data

Code Java interface for a code

Command The object that received by the servlet

ExtGF Extended Field object

FiniteField Java interface for finite field

FuzzyExtractor Java interface for fuzzy extractor

FuzzyServlet Our servlet

GF Galois Field

HammingFE Hamming Fuzzy extractor

HammingSS Hamming Secure sketch

HashF1 Hashing function used in strong extractor

Permutation Object in the set difference secure sketch

Poly Polynomial object.

ResponseMsg Object that sent by the servlet

RS Reed-Solomon code

SecureSketch Java interface for secure sketch

SetFE Set difference fuzzy extractor

SetSS Set difference secure sketch

StrongExtractor.java Strong extractor used in a fuzzy extractor.

Table A.1: Files used in the servlet

52 APPENDIX A.

Class name Description

Account Object that stores user information

BioData Basic object that stores the fingerprint data

Command Object that sent by the applet to the servlet

FingerImage Graphic panel that handles fingerprint images

JM Our applet.

index.html Web page that contains the applet ”JM”

ResponseMsg Object that received by the applet

waitProcess System uses this thread to wait for response

Table A.2: Files used in the applet

FuzzyServletJMFingerImage
waitProcess

Command (Account)

RespondMsg

ExtGF
GF
Poly

RS

HammingFE

SetFE

HammingSS

SetSS

StrongExtractor HashF1

Permutation

BdataAccess

Figure A.1: Relation between classes

	論文格式1.pdf
	Authentication Using Fuzzy Extractor with List Decodable Cod
	Authentication Using Fuzzy Extractor with List Decodable Cod

