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Using the level-spacing (LS) statistics, we have investigated the localization-delocalization transitions
(LDTs) in Hessian matrices of a simple fluid with short-ranged interactions. The model fluid is a prototype of
topologically disordered systems and its Hessian matrices are recognized as an ensemble of Euclidean random
matrices with elements subject to several kinds of constraints. Two LDTs in the Hessian matrices are found,
with one in the positive-eigenvalue branch and the other in the negative-eigenvalue one. The locations and the
critical exponents of the two LDTs are estimated by the finite-size scaling for the second moments of the
nearest-neighbor LS distributions. Within numerical errors, the two estimated critical exponents are almost
coincident with each other and close to that of the Anderson model (AM) in three dimensions. The nearest-
neighbor LS distribution at each LDT is examined to be in a good agreement with that of the AM at the critical
disorder. We conclude that the LDTs in the Hessian matrices of topologically disordered systems exhibit the

critical behaviors of orthogonal universality class.
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I. INTRODUCTION

The localization-delocalization transition (LDT) in disor-
dered systems has attracted much attention since the pioneer-
ing work by Anderson [1] about localization. Investigation
for the universality of the LDT remains one of the essential
problems in condensed-matter physics [2,3]. Many universal
properties about the LDT are obtained from the Anderson
model (AM) for electron transport in a simple-cubic lattice
with the on-site energies randomly distributed within a width
W [4-8]. In dimension d=3, the on-site energy distribution
has a critical width W so that the electron wave functions in
the central region of the energy band are delocalized in space
for W<W_, and all wave functions become localized for W
> W,. The energy levels in these two regimes of disorder are
described by different statistics: The nearest-neighbor level-
spacing (LS) distribution of the delocalized states for W
<W, is very close to the Wigner surmise Py/(s)
=(m/2)s exp(=ms?/4), while the distribution of the localized
states for W> W, changes to the Poisson distribution Pp(s)
=exp(-s), where s is the energy spacing between adjacent
levels normalized by the mean LS. At W=W,, the wave
functions around the energy-band center behave in a multi-
fractal nature [9], and the level statistics is characterized by a
critical nearest-neighbor LS distribution P(s), which is fun-
damentally different from Py(s) and Pp(s). At small s, the
behavior of P(s) is accepted to be linear with a slope larger
than that of the Wigner surmise and depending on the choice
of the boundary conditions in the AM [10]. Numerical works
suggest that P.(s) at large s is the Poisson-type with a decay
rate above unity [5,7]; however, some analytical theory pre-
dicts other asymptotic behavior [11]. According to the scal-
ing theory of localization [12], P(s) is a scale-invariant
function; this has been evidenced by numerical studies with
the AM [7,13]. Based on this universal feature, the scale
invariance of Pc(s) provides a method to determine the
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LDTs in disordered systems other than for electron transport
[14,15]. Compared with other approaches, this method ben-
efits by only requiring the energy levels of a disordered sys-
tem at several sizes; however, very large system sizes and a
large amount of realizations for average have to be consid-
ered.

Recently, many efforts have been devoted to study har-
monic vibrations in topologically disordered systems, which
have no reference frame of lattice [16-22]. In harmonic ap-
proximation, vibrations in a topologically disordered system
composed of particles of equal masses are described by the
eigenmodes of its Hessian matrices, which are the second
derivatives of potential energy of the system with respect to
particle displacements and inversely weighted by the particle
mass. In d=3, the Hessian matrices are composed of 3 X3
blocks, which are functions of relative displacements of par-
ticle pairs [23,24], and can be recognized as a generalized
version of the Euclidean random matrices [25], with random-
ness originated from the disorder of particle positions. From
the viewpoint of the random matrix theory [26], Hessian ma-
trices of topologically disordered systems fall into the same
universality class with the AM. But the elements of each
Hessian matrix are subject to constraints [27], which are
classified into three categories: (I) the sum rules between the
diagonal and off-diagonal blocks due to momentum conser-
vation of the system, which makes the diagonal blocks de-
termined by the off-diagonal ones; (IT) the triangle rule for
the relative positions of any three particles [28], which
makes only N—1 off-diagonal blocks independent, with N
being the particle number of the system, and (IIT) the internal
constraints of each off-diagonal block, which reduce the de-
grees of freedom of an off-diagonal block to the three com-
ponents of relative displacement of the related particle pair.
None of these constraints appear in the AM. The triangle-rule
constraints are not considered in those vibrational models
with a lattice reference frame [29,30]. The constraints in (I1I)
are ignored in the scalar-vibration models [31-34].

For topologically disordered systems in three-dimension
space, the spectrum of harmonic vibrations can be separated
into the extended (or delocalized) and localized regions: the
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vibrational modes with eigenvalues near zero are generally
delocalized in nature, while those in the end of the spectrum
are usually found to be localized. Thus, the sharp boundaries
that separate the localized and delocalized regions in a vibra-
tional spectrum, usually termed as mobility edge (ME) [35],
are examples of the LDT. Thermal conductivity in topologi-
cally disordered systems, such as glasses, is associated with
the ME in their vibrational spectra [36]. To determine the
location of the ME, several methods with different measures,
including participation ratios [37,38], multifractal analysis
[30], the LS statistics [39-42], and the diagonal elements of
the resolvent matrix [43], have been studied. However,
highly demanding in accuracy, the determination for the ME
by numerical calculations is still a challenge problem.

In this paper, we investigate the MEs of the Hessian ma-
trices of a truncated Lennard-Jones (TLJ) fluid, which is a
prototype of topologically disordered systems, with the ma-
trices evaluated at fluid configurations at a thermodynamic
state of the fluid. The eigenmodes of the corresponding Hes-
sian matrices are referred as the instantaneous normal modes
(INMs) of the fluid [44], and the eigenvalue spectrum of the
INMs is associated with the local-curvature distribution of
the potential-energy surface of the system [45]. In Sec. II, the
randomness of the elements in Hessian matrices of the TLJ
fluid is described. In Sec. III, the second moments of the
nearest-neighbor LS distributions in several intervals chosen
from the extended region to the localized one are calculated
for four system sizes. Then, we employ the approach of
finite-size scaling to determine the MEs [46,47]. Two MEs,
one with positive eigenvalue and the other with negative
eigenvalue, are found in the INM-eigenvalue spectrum. The
critical exponents of the two MEs are estimated. The nearest-
neighbor LS distribution at each ME is examined to be in a
good agreement with P(s) obtained from the AM. Our con-
clusions are given in Sec. I'V.

II. HESSIAN MATRICES OF THE TLJ FLUID

The TLJ potential ¢ppj(r) is obtained by truncating the
Lennard-Jones (LJ) potential at the minimum r.=2"°¢ and

then lifting up in energy by € [48], where o and € are the
length and energy parameters of the LJ potential, respec-
tively. So, the TLJ potential is purely repulsive. We choose
the thermodynamic state of the TLJ fluid at reduced density
p*=0.972 and reduced temperature 7*=0.836 in the units of
the two LJ parameters. With N particles confined in a cube of
length L=(N/p*)"* and using the periodic boundary condi-
tions, the fluid configurations are generated by Monte Carlo
simulation for four system sizes from N=3000 to 24 000.

Owing to the short-range nature of the TLJ potential, the
Hessian matrices are sparse. The ratio, f.g, of the nonzero
off-diagonal blocks in a Hessian matrix is estimated to be
N./N, where N, is the average number of neighbors around a
particle within r,.. Evaluated by the radial distribution func-
tion of the TLJ fluid [49], N, is about 6 and independent of
N. Thus, f. is inversely proportional to N, with a value
about 0.05% for N=12 000.

For each Hessian matrix, the trace of the off-diagonal
block associated with particles i and j at distance r;; is given
by the negative of k;=d¢(r;)+2¢y,(r;)/r;, where a
prime stands for a derivative of the function. ¢ (r;;) and
¢r1y(ryj) /1y are, respectively, the force constants of the vi-
brational and rotational binary motions of the two particles
[21]. The trace of the diagonal block associated with particle
i, expressed as 2. k;;, is the sum of all force constants con-
nected to this particle. For the TLJ fluid, the traces of the
diagonal and off-diagonal blocks are positive and negative

values, respectively, and their averages, denoted as k,,, and

—k, are related via the equation k=N k.

The randomness of the elements in the Hessian matrices
can be described by four distributions: two for characterizing
the traces and the off-diagonal elements of the diagonal
blocks and the other two for the corresponding quantities of
the off-diagonal blocks [50]. The four distributions of the
TLJ fluid are shown in Fig. 1. Some features of the four
distributions are given in the following: first, the distribu-
tions of the traces are asymmetric about their averages. De-
pending on the pair potential in the fluid, the distribution for
the off-diagonal blocks has a sharp cusp, which is a result of

041105-2



LOCALIZATION-DELOCALIZATION TRANSITION IN...

PHYSICAL REVIEW E 79, 041105 (2009)

been discussed in many literatures [52,53]. One ME is ex-
pected to occur in each branch. With the LS analysis given
below for systems of smaller sizes [54], the MEs in D(\) are
found within the range A=1150-1230 and A=-95~-80,
which are the two shaded regions in Fig. 2.

III. MOBILITY EDGES IN THE INM-EIGENVALUE
SPECTRUM

To do the LS analysis for eigenvalues from A; to \,, we
first unfold these eigenvalues A; with the following proce-
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FIG. 2. (Color online) Normalized INM-eigenvalue spectrum,
D(N\), of the TLJ fluid at p*=0.972 and T°=0.836. \ is in unit of
e/ma?, where m is the particle mass. The two insets show the
unfolding procedures for the eigenvalues within the two shaded red
regions in the main figure: (a) for A between 1150 and 1230 and (b)
for N between —95 and —80. A, and \,,. are the locations of the
ME:s in the positive and negative branches, respectively.

the short-range nature of the TLJ potential [50]. Second, the
distributions of the off-diagonal elements are symmetric
about their averages, which are zero. The distribution for the
off-diagonal blocks can be fit with a Lorentzian, reflecting
the complete independence of the off-diagonal elements in
the associated blocks. However, the distribution for the diag-
onal blocks can only be fit with a pseudo-Voigt function,
which is a weighted linear combination of a Lorentzian and a
Gaussian; the weighted factors of the Lorentzian and the
Gaussian are about 40% and 60%, respectively. The reason
why the pseudo-Voigt function is used is resulted from that
the distribution is caused by a summation of the off-diagonal
independent elements in the off-diagonal blocks and the
number of the independent elements in the summation is
about N, which is only a few in our model.

The Hessian matrices of the TLJ fluid are diagonalized
with Lanczos method [51]. Presented in Fig. 2 is the normal-
ized INM-eigenvalue spectrum D()\), which is an average for
the realizations generated for each system size. Quite asym-
metric with respect to the maximum at zero eigenvalue, the
spectrum D(N\) consists of two branches, one with positive
eigenvalues and the other with negative eigenvalues. The
physical meaning of the INMs with negative eigenvalues has

1 N

Zi=—

= iD)\d)\, 1
by, P ()

where Dy=[ ))ITD()\)d)\ is the percentage of the eigenvalues
within the integral range. Shown in the insets of Fig. 2 are
the unfolding procedures for the eigenvalues within the two
shaded regions, with the unfolded eigenvalues z, and z,, for
the positive and negative branches, respectively. Since the
function of D(N\), although obtained numerically, is smooth
enough, the unfolded eigenvalues are found to be uniformly
distributed between zero and one.

For each branch, we select the unfolded eigenvalues in
different sections, which have a width Az=0.125 and are
centered at MAz/2 with M an integer from 1 to 15. For the
unfolded eigenvalues z; in a section, the nearest-neighbor LS
is defined as s;=(z;;;—z;)/A’, where A’ is the mean LS of
the unfolded eigenvalues in this section. The LS data for the
two shaded regions in Fig. 2 are summarized in Table 1. The
INM density of states in the shaded region in the positive
branch is about four times smaller than that in the shaded
region in the negative branch. Thus, for each system size, the
number of samples in the calculation of the LS for the posi-
tive branch is four times of that for the negative branch; this
makes the calculations for the positive branch much more
difficult. The LS number of each section in the positive
branch is about 2.2 X 10°, and that of each section in the
negative branch is about 3.8 X 10°. For each section, we cal-
culate the nearest-neighbor LS distribution P(s), which is
normalized and has a mean of unity. With the numerical P(s)
distribution of each section, the second moment I of P(s),
defined as Iy=[(s>P(s)ds, is calculated. The data of Iy, in-
cluding statistical errors, for the four system sizes we simu-

TABLE 1. Numerical data of the LS statistics for the eigenvalues in the indicated ranges. N: number of
particles; L: length of the simulated box in the LJ unit; M: number of samples; N;: total number of LS; A:
mean LS; A=(3ND,)~!, where Dy, is the percentage of the eigenmodes in the range, equals to 1.54 X 1072 and

1.06 X 1072 for the positive and negative eigenvalues, respectively.

N\ from 1150 to 1230

\ from =95 to —80

N L M N,y X 1070 A X103 M N, X 107° A X103
3000 14.56 128000 17.65 72 32000 3.020 10.5
6000 18.35 64000 17.65 3.6 16000 3.035 52
12000 23.12 32000 17.65 1.8 8000 3.042 2.6
24000 29.12 16000 17.65 0.9 4000 3.037 1.3
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FIG. 3. (Color online) The second moment Iy of the LS distri-
bution as a function of the unfolded eigenvalue: (a) for the positive
branch and (b) for the negative branch. N is the number of particles
in a system. The symbols (blue triangles for N=3000, green squares
for N=6000, red diamonds for N=12 000 and black circles for
N=24 000) are the results of the numerical eigenvalues obtained by
diagonalization. The lines in (a) are the fitting functions of the
model (1,0,3,3) for z, within [0.1875,0.8125]; the lines in (b) are
those of the model (0,0,2,2) for z, within [0.25,0.75]; the solid,
dashed, dotted and dot-dashed line styles are for N=24 000, 12 000,
6000, and 3000, respectively.

lated are shown in Fig. 3. In principle, the values of 7y fall in
a range between 4/ and 2, which are the second moments
of the Wigner surmise and the Poisson distribution, respec-
tively. For each system size, as the selected section moves
from the delocalized to the localized region, the value of Iy
increases monotonically. For each branch, the calculated Iy
as a function of the unfolded eigenvalue z generally depends
on system size and follows the scaling behavior: I, increases
with N in the localized region but decreases with N in the
delocalized region. At some unfolded eigenvalue z., Iy is
expected to be invariant with N and, therefore, z,. is the lo-
cation of the ME in the branch.

A. Scaling near a ME

Each ME at z, is expected to be characterized by the
correlation length &(z) of the infinite system. &(z), which is a
function of the unfolded eigenvalue z, diverges at z. with a
critical exponent v and can be expressed as

PHYSICAL REVIEW E 79, 041105 (2009)

Ez)=Clz—z|™, (2)

where C is some constant. In order to extract the critical
exponent from quantities X calculated for finite-size systems,
one usually uses the one-parameter scaling hypothesis [12],
in which X is a function of the form

X =fLI&®z)]. (3)

That is, after the system size L is scaled by &(z), all quantities
X of finite-size systems collapse onto a single scaling func-
tion.

For the data of I)y presented in Fig. 3, we make two kinds
of corrections to the one-parameter scaling function. First,
the scaling variable I apparently has a nonlinear depen-
dence on the unfolded eigenvalue z. Second, for the possi-
bility of a systematic shift of the crossing points of I, curves,
an irrelevant scaling variable is considered to appear in the
scaling function. Once the system sizes are large enough, the
systematic shift of the crossing points is expected to disap-
pear so that the irrelevant scaling variable is not necessary.
Thus, according to the renormalization theory for a critical
point [46], we assume that the data of I, obey the scaling law

In(z) = fx, L', xiL), (4)

where y, and y; are the relevant and irrelevant scaling vari-
ables with corresponding critical and irrelevant exponents v
and y, with y <0, respectively. Following the method given

in Refs. [56,57], the f function is expanded into a series of
the irrelevant scaling variable up to order n;:

Iy=2 XL 00", (5)
n=0
and ]7,1 is also expanded into a series up to order 7,
fn(XrLI/V) = 2 aniXiLi/V' (6)
i=0

Due to the nonlinear dependence of the scaling variable I
on z, x,, and y; are expanded into series up to order m, and
m;, respectively,

Xr(Z) = E anns XI(Z) = 2 CnZns (7)
n=1 n=0

where Z=(z.—z)/z. and b;=cy=1. Each fitting function can
be specified by a set of four indices (n;,m;,n,,m,) and the
fitting parameters include those expansion coefficients, z,., v,
and y. Of course, an appropriate fitting function should be
the one with the total number of fitting parameters as few as
possible.

We fit the Iy data within different intervals of z for the
four system sizes with the scaling functions given in Eqs.
(4)—(7). In a fit for N,; data points with a scaling function of
N, parameters, we use the downhill simplex method to mini-
mize the )y statistics of the data points, while the goodness
of fit is measured by the Q factor, which is determined by the
best-fit value of y* and N,=N,, the number of degrees of
freedom in the fitting [58]. In order to obtain the confidence
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TABLE II. Fit parameters and estimates for z.,,, v,, and y, with 95% confidence intervals for the positive branch. zy;, and z;,, give the
fit interval of z. N, is the number of data points in the interval. N, is the number of fitting parameters. The value of X is for the best fit. Q

is the goodness of fit. In each model, m;=0.

2

[Zmin> Zmax] Ny N, n; n, n, X 0 Zep v, Vp
[0.25,0.75] 36 6 0 2 2 34.98 0.2435 0.433 +0.008 1.59+0.08 0
[0.25,0.75] 36 7 0 2 3 35.43 0.1909 0.434 = 0.008 1.60+0.09 0
[0.25,0.75] 36 7 0 3 2 33.85 0.2449 0.428 = 0.008 1.60+0.09 0
[0.25,0.75] 36 8 0 3 3 31.69 0.2872 0.422+0.010 1.52+0.10 0
[0.25,0.75] 36 6 0 1 3 41.40 0.0804 0.435 = 0.009 1.74+0.07 0
[0.25,0.75] 36 6 0 3 1 49.29 0.0147 0.438 = 0.009 1.79+0.10 0
[0.1875,0.8125] 44 11 1 3 1 30.39 0.5978 0.431+0.014 1.45+0.09 —7.72+5.32
[0.1875,0.8125] 44 11 1 3 3 25.92 0.7248 0.409 = 0.017 1.54+0.10 —-6.00+3.48

intervals of fit parameters, 10* synthetic data sets are gener-
ated by uniformly sampling each new data within the error
bar of the data [57]. The error bars of fit parameters are
estimated by those within 95% confidence intervals of its
original fit. The acceptance of a fit is determined by two
criteria. First, the Q value of an acceptable fit should be
larger than 0.01 [58]. Second, since the value of v is deter-
mined by the universality class of the random matrices, a
large error of v would make the fitting meaningless. So, we
set the error bar of parameter v for an acceptable fit to be less
than 0.2. To keep the number of fit parameters as few as
possible, we set m;=0 for all fits and limit n, and m, no more
than three. Also, verified by the results given below, no clear
shift of the crossing points of the data curves in Fig. 3(b) is
found so that, for the negative branch, the irrelevant scaling
variable is not necessary and n; is, therefore, set to be zero.

With the criterions given above, only several models are
accepted for each branch, and the results are listed in Tables
IT and III. The distribution of the v, and v, values of the
accepted models is shown in Fig. 4. For the negative branch,
although the Q values of the accepted models are around 0.1,
the fit values of z,,. and v, are generally close to one another,
so we think all of these models are reliable. The average of
these models leads us to v,=1.60*0.07 and z,
=0.462+0.016, which corresponds to A\,.=—-87.1%£0.3.
However, the accepted models for the positive branch are

somewhat diversified. The two with v, larger than 1.7 have
larger x* values than others, causing their Q values less than
0.1. The rest four models without the irrelevant scaling vari-
able have Q values generally more than 0.2 and their v, and
Z,c values are close to one another. For the two models in
which the irrelevant scaling variable is introduced, the good-
ness of fit substantially increases and the value of v, is rela-
tively lowered; however, the value of irrelevant exponent y is
large and its error is roughly the same order of y. By aver-
aging the results of the six models with O generally larger
than 0.2, we have v,= 1.55£0.09 and zpc=0.426i0.011,
which gives \,,=1183.8=0.8.

In principle, v, and v, should coincide with each other,
for the two MEs in the INM-eigenvalue spectrum belong to
the same random matrices. On the other hand, due to the
same universality class, the values of v, and v, should be
equal to the critical exponent of the AM in d=3 [59,60].
Obtained by accurate numerical studies, the critical exponent
of the AM in d=3 is reported to be 1.57=0.02 [56]; how-
ever, other numerical studies give smaller values [57].
Within numerical errors, our results are generally satisfied
with these requirements for v, and v,.

The solid lines in Fig. 3 present the fit results of the mod-
els with the highest Q value for each branch; the model of
the positive branch is (1,0,3,3), in which the irrelevant scal-
ing variable is used, and the one of the negative branch is

TABLE III. Fit parameters and estimates for z., and v, with 95% confidence intervals for the negative
branch. The notations are the same meaning as those given in Table II. In each model, no irrelevant scaling

variable is used, so n;=m;=0.

X 0

(Zmin> Zmax] Ny N, n, m, Zen Vy
[0.3125,0.6875] 28 6 1 3 31.91 0.0789 0.467 = 0.061 1.63+0.07
[0.3125,0.6875] 28 6 2 2 31.58 0.0848 0.464+0.012 1.59+0.10

[0.25,0.75] 36 6 2 2 39.13 0.1228 0.460 = 0.007 1.60+0.04
[0.3125,0.6875] 28 6 3 1 31.32 0.0897 0.461 =0.007 1.55+0.09

[0.25,0.75] 36 6 3 1 39.19 0.1216 0.459 +=0.005 1.60£0.04
[0.3125,0.6875] 28 7 2 3 30.36 0.0851 0.465+0.020 1.59£0.09

[0.25,0.75] 36 7 2 3 39.09 0.1000 0.461 =0.009 1.60£0.06

[0.25,0.75] 36 7 3 2 39.13 0.0992 0.460 = 0.009 1.60£0.04

[0.25,0.75] 36 8 3 3 38.98 0.0812 0.457+0.016 1.63£0.09
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FIG. 4. (Color online) Fit values of the critical exponents with
95% confidence intervals as a function of Q. The red squares and
black circles are for the models listed in Tables II and III for the
positive and negative branches, respectively.

(0,0,2,2). The correlation length &(z) of each ME can be
given as &|x,(Z)|7", where v is the estimated value of v, or
v, and &, is a constant but different for the two branches, and
the correlation lengths of the two MEs are plotted in the
insets of Fig. 5. For each branch, after the system sizes are
scaled by the corresponding correlation length &(z), the Iy
data of the four system sizes collapse onto a single scaling
function, which is shown in Fig. 5. One should notice that
the Iy data shown in Fig. 5(a) have been corrected by the
formula [56]

1" =Iy—Lf(x,L""). (8)

The scaling function consists of two continuous curves, sepa-
rated by the value of I, at the ME. Although the 7, values at
the ME shown in Fig. 5 are slightly different for the two
branches, the difference is within the error bars of the two Iy
values. The upper and lower curves of the scaling function
correspond to the localized and extended INMs, respectively.
Thus, we have confirmed the scaling hypothesis for the
INMs near each ME and suggest that the MEs in the INM-
eigenvalue spectrum should follow the universality for the
orthogonal random matrices.

B. P(s) at each ME

To examine the critical behavior at the two MEs, we se-
lect two narrow intervals A=1181.8—1185.8 and A=-88.1—
—86.1, which contain the MEs in the positive and negative
branches, respectively. For the realizations of each system
size generated by our simulations, the number of the LSs
within the interval in the positive branch is about 8.9 X 10°
and that within the interval in the negative branch is 4.1
X 10°. Calculated for the four system sizes, the numerical
data of the P(s) distribution within each interval are pre-
sented by symbols with error bars in Fig. 6. Since the widths
of the two selected intervals are small enough, the two P(s)
distributions, within numerical errors, are generally indepen-
dent of system size N. We fit the P(s) data of the four system
sizes for s less than three by the following formula, which
has used to fit the critical LS distribution of the AM [7],
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FIG. 5. (Color online) Scaling functions (solid line) of (a) the
model (1,0,3,3) for the positive branch and (b) the model (0,0,2,2)
for the negative branch. The symbols, with the same meaning as in
Fig. 3, are the numerical data. The scaled I, values in (a) have been
corrected by Eq. (8); those in (b) are the original ones. The insets
show the correlation lengths &(z) near the two MEs.

2

A _—
Pe(s) = =—=—=explu -V’ +(A5)’],  (9)
Vi +(Ags)

where A, and u are two fitting parameters. The normalized
distribution in Eq. (9) has a linear behavior at small s with
slope P[(0)=AZ?/p but changes to a Poisson-type form at
large s with a decay rate A.. Also, the second moment /.. of
the distribution is given as 2(u+1)/A%

Our results give A,=1.89%0.02 and u=1.565=0.015
with the goodness of fit 0=0.69 for the positive branch and
A.=19%0.02 and p=1.568 = 0.020 with Q close to one for
the negative branch, where the errors of the fit parameters are
estimated within 95% confidence interval. The numerical re-
sults and the fit for large s are shown in the insets of Fig. 6.
Indicated by the fit data, the P(s) distributions within the two
selected intervals almost coincide with each other and the
two values of A, are almost the same as that of the AM [13].
Calculated with the values of A, and wu, the slope P(0) at
s=0 has a value about 2.29, which is comparable with that of
the AM with the periodic boundary conditions [10]. Simi-
larly, the second moments /. of the two fit distributions are
close to 1.43, which is once again very close to the corre-
sponding value of the AM. Thus, we have verified that,

041105-6



LOCALIZATION-DELOCALIZATION TRANSITION IN...

0.8 — ‘
0.6
»
~ 0.4}
o
A N =3000 <
0.2 o N=6000 .
¢ N=12000
o N =24000
00 1 2 3
S
0.8 — ‘
R % 9 11
06| i el -
= 2 q
— | D ]
(/J P |
— 04 2 4 6—
o
R (b) i
A N =3000 <
0.2 o N=6000 .
¢ N=12000
o N =24000 . b
0 . e
0 1 2 3

FIG. 6. (Color online) The nearest-neighbor LS distribution near
the ME (a) in the positive branch or (b) in the negative branch. The
symbols with error bars are the numerical data for the four system
sizes, with the same symbol style as in Fig. 3 for each size. In each
panel, the solid line represents the fit result with Eq. (9). The dotted
and dashed lines are the Wigner surmise and the Poisson distribu-
tion, respectively. The insets show the large-s behavior of the
distributions.

within numerical errors, the nearest-neighbor LS distribution
near any ME in the INM spectrum of the TLJ fluid agrees the
critical P(s) distribution obtained from the AM, which sup-
ports the universality of the critical nearest-neighbor LS dis-
tribution.

IV. CONCLUSIONS

In this paper, we have performed LS analysis for Hessian
matrices of the TLJ fluid at a thermodynamic state to inves-
tigate the properties of the LDT in topologically disordered

PHYSICAL REVIEW E 79, 041105 (2009)

systems, which have no reference frame of lattice. With dis-
order originated from the randomness of particle positions in
the fluid, the Hessian matrices evaluated at the fluid configu-
rations are an ensemble of Euclidean random matrices with
elements subject to several constraints, and the matrices are
sparse due to the short-range nature of the TLJ potential. By
referring the eigenmodes of the matrices as the INMs, the
eigenvalue spectrum of the INMs is composed of two
branches corresponding to the positive and negative eigen-
values.

Calculated for four system sizes of the TLJ fluid and av-
eraged for very large amounts of fluid configurations, the
second moments of the nearest-neighbor LS distributions of
the INMs within some small intervals in each branch are
found to follow the scaling behavior near a LDT. In terms of
the size invariance of the second moments, two LDTs, re-
ferred as the MEs, are confirmed to exist in the INM-
eigenvalue spectrum, with one in the positive branch and the
other in the negative branch. We have used the finite-size
scaling to estimate the locations and the critical exponents of
the two MEs. In the models to fit the data of the second
moments, the nonlinear dependence of the scaling variable
on the eigenvalue has been considered and an irrelevant scal-
ing variable due to the finite-size effect is introduced in some
models for the positive branch. In principle, the critical ex-
ponents of the two MEs should coincide in value; through
the fitting, their values are found to be 1.55%0.09 and
1.60x0.07 for the positive and negative branches, respec-
tively. Within numerical errors, the estimated values of the
two critical exponents are almost coincident with each other
and compatible with that of the AM in three dimensions [56].
The nearest-neighbor LS distributions at the two MEs are
examined to be almost the same as the critical LS distribu-
tion obtained from the AM. Thus, we conclude that the MEs
in the eigenvalue spectra of Hessian matrices of topologi-
cally disordered systems follow the universality for the or-
thogonal universality class and have nothing to do with the
topological nature of the disorder in the systems and the
constraints imposed on the Hessian matrices due to structural
considerations.

ACKNOWLEDGMENTS

We acknowledge Professor R. A. Romer for helpful dis-
cussions and S. L. Chang for helping in computer calcula-
tions. T.M.W. acknowledges support from the National Sci-
ence Council of Taiwan under Grant No. NSC 97-2112-M-
009-005-MY2.

[1] P. W. Anderson, Phys. Rev. 109, 1492 (1958).

[2] M. Janssen, Phys. Rep. 295, 1 (1998).

[3] A. D. Mirlin, Phys. Rep. 326, 259 (2000).

[4] A. MacKinnon and B. Kramer, Phys. Rev. Lett. 47, 1546
(1981).

[5] B. 1. Shklovskii, B. Shapiro, B. R. Sears, P. Lambrianides, and

H. B. Shore, Phys. Rev. B 47, 11487 (1993).

[6] E. Hofstetter and M. Schreiber, Phys. Rev. B 48, 16979
(1993); Phys. Rev. B 49, 14726 (1994).

[7] I. Kh. Zharekeshev and B. Kramer, Phys. Rev. Lett. 79, 717
(1997).

[8] A. M. Garcia-Garcia and E. Cuevas, Phys. Rev. B 75, 174203

041105-7



B. J. HUANG AND TEN-MING WU

(2007).

[9] M. Schreiber and H. Grussbach, Phys. Rev. Lett. 67, 607
(1991).

[10] D. Braun, G. Montambaux, and M. Pascaud, Phys. Rev. Lett.
81, 1062 (1998).

[11] A. G. Aronov, V. E. Kravtsov, and I. V. Lerner, JETP Lett. 59,
39 (1994).

[12] E. Abrahams, P. W. Anderson, D. C. Licciardello, and T. V.
Ramakrishnan, Phys. Rev. Lett. 42, 673 (1979).

[13]I. Kh. Zharekeshev and B. Kramer, Jpn. J. Appl. Phys. 34,
4361 (1995).

[14] C. P. Zhu and S. J. Xiong, Phys. Rev. B 62, 14780 (2000).

[15] M. Sade, T. Kalisky, S. Havlin, and R. Berkovits, Phys. Rev. E
72, 066123 (2005).

[16] T. S. Grigera, V. Martin-Mayor, G. Parisi, and P. Verrocchio,
Phys. Rev. Lett. 87, 085502 (2001).

[17] V. Martin-Mayor, M. Mézard, G. Parisi, and P. Verrocchio, J.
Chem. Phys. 114, 8068 (2001).

[18] T. S. Grigera, V. Martin-Mayor, G. Parisi, and P. Verrocchio,
Nature (London) 422, 289 (2003).

[19] S. Ciliberti, T. S. Grigera, V. Martin-Mayor, G. Parisi, and P.
Verrocchio, J. Chem. Phys. 119, 8577 (2003).

[20] J. J. Ludlam, S. N. Taraskin, S. R. Elliott, and D. A. Drabold,
J. Phys.: Condens. Matter 17, L321 (2005).

[21] T. M. Wy, S. L. Chang, and K. H. Tsai, J. Chem. Phys. 122,
204501 (2005).

[22] S. Ciliberti, P. De Los Rios, and F. Piazza, Phys. Rev. Lett. 96,
198103 (2006).

[23] T. M. Wu and R. F. Loring, J. Chem. Phys. 97, 8568 (1992).

[24] Y. Wan and R. M. Stratt, J. Chem. Phys. 100, 5123 (1994).

[25] M. Mézard, G. Parisi, and A. Zee, Nucl. Phys. B 559, 689
(1999).

[26] M. L. Mehta, Random Matrices (Academic, San Diego, 1991).

[27] W. J. Ma, T. M. Wu, and J. Hsieh, J. Phys. A 36, 1451 (2003).

[28] D. A. Parshin and H. R. Schober, Phys. Rev. B 57, 10232
(1998).

[29] S. N. Taraskin, Y. L. Loh, G. Natarajan, and S. R. Elliott, Phys.
Rev. Lett. 86, 1255 (2001).

[30] J. J. Ludlam, S. N. Taraskin, and S. R. Elliott, Phys. Rev. B 67,
132203 (2003).

[31] W. Schirmacher, G. Diezemann, and C. Ganter, Phys. Rev.
Lett. 81, 136 (1998).

[32] Y. Akita and T. Ohtsuki, J. Phys. Soc. Jpn. 67, 2954 (1998).

[33] J. W. Kantelhardt, S. Russ, and A. Bunde, Phys. Rev. B 63,
064302 (2001).

[34] S. N. Taraskin and S. R. Elliott, Phys. Rev. B 65, 052201
(2002).

[35] S. Alexander and R. Orbach, J. Phys. (Paris), Lett. 43, L625

PHYSICAL REVIEW E 79, 041105 (2009)

(1982).

[36] P. B. Allen and J. L. Feldman, Phys. Rev. B 48, 12581 (1993).

[37] W. Garber, F. M. Tangerman, P. B. Allen, and J. L. Feldman,
Philos. Mag. Lett. 81, 433 (2001).

[38]J. L. Feldman and N. Bernstein, Phys. Rev. B 70, 235214
(2004).

[39]J. W. Kantelhardt, A. Bunde, and L. Schweitzer, Phys. Rev.
Lett. 81, 4907 (1998).

[40] P. Carpena and P. Bernaola-Galvan, Phys. Rev. B 60, 201
(1999).

[41] S. Sastry, N. Deo, and S. Franz, Phys. Rev. E 64, 016305
(2001).

[42] S. Ciliberti and T. S. Grigera, Phys. Rev. E 70, 061502 (2004).

[43] S. Ciliberti, T. S. Grigera, V. Martin-Mayor, G. Parisi, and P.
Verrocchio, Phys. Rev. B 71, 153104 (2005).

[44] R. M. Stratt, Acc. Chem. Res. 28, 201 (1995).

[45] T. Keyes, J. Phys. Chem. A 101, 2921 (1997).

[46] J. Cardy, Scaling and Renormalization in Statistical Physics
(Cambridge University Press, Cambridge, 1996).

[47] A. MacKinnon and B. Kramer, Z. Phys. B: Condens. Matter
53, 1 (1983).

[48] T. M. Wu, W. J. Ma, and S. L. Chang, J. Chem. Phys. 113, 274
(2000).

[49] T. M. Wu, W. J. Ma, and S. F. Tsay, Physica A 254, 257
(1998).

[50] S. N. Taraskin and S. R. Elliott, J. Phys.: Condens. Matter 14,
3143 (2002).

[51]7J. K. Cullum and R. K. Willoughby, Lanczos Algorithms for
Large Symmetric Eigenvalue Computations (Birkhauser, Bos-
ton, 1985).

[52] B. Madan and T. Keyes, J. Chem. Phys. 98, 3342 (1993).

[53] H. E. Stanley, S. V. Buldyrev, N. Giovambattista, E. La Nave,
M. Mossa, A. Scala, E. Sciortino, F. W. Starr, and M. Yamada,
J. Stat. Phys. 110, 1039 (2003) and references therein.

[54] We have performed the LS analysis given in the text for sys-
tem sizes N=375, 750, and 1500.

[55] T. Guhr, A. Muller-Groeling, and H. A. Weidenmuller, Phys.
Rep. 299, 189 (1998).

[56] K. Slevin and T. Ohtsuki, Phys. Rev. Lett. 82, 382 (1999).

[57] F. Milde, R. A. Rémer, and M. Schreiber, Phys. Rev. B 61,
6028 (2000).

[58] W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vet-
terling, Numerical Recipes in FORTRAN (Cambridge Univer-
sity Press, Cambridge, 1989).

[59] L. V. Plyushchay, R. A. Rémer, and M. Schreiber, Phys. Rev. B
68, 064201 (2003).

[60] A. Eilmes, A. M. Fischer, and R. A. Rémer, Phys. Rev. B 77,
245117 (2008).

041105-8



