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Abstract

This paper describes a new polyhedral oligomeric silsesquioxane (POSS)-based blue-light electroluminescent nanoparticle, octakis[N-
(9-ethyl-9H-carbazol-3-yl)undecanamide-11-dimethylsiloxy]silsesquioxane (POSS-C11-Cz), which contains eight carbazole chromophore
arms, synthesized through the hydrosilation reaction of octakis(dimethylsiloxy)silsesquioxane with the terminal olefin Cz-C11ene. POSS-
C11-Cz exhibits good thermal and electrochemical stabilities and good film-forming properties. The optical and photoluminescence spec-
tra of POSS-C11-Cz in solution and in the solid state indicate a reduction in the degrees of aggregation and excimer formation because
inter-chain interactions were prohibited by the bulky POSS core. Moreover, photoluminescence spectra of a POSS-C11-Cz (3 wt.%)/
polyfluorene (97 wt.%) blend revealed that the color was stable after heating the sample at 200 �C for 5 h; in contrast, the pure polyflu-
orene exhibited a significant green emission at 530 nm. A triple-layer device based on this blend exhibited higher maximum brightness
and luminance efficiencies relative to those of the pure polyfluorene. Thus, the organic/inorganic POSS-C11-Cz/polyfluorene blend has
potential for use in polymeric light-emitting diodes because of its improved thermal and optoelectronic characteristics.
Published by Elsevier Ltd on behalf of Acta Materialia Inc.
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1. Introduction

Polyhedral oligomeric silsesquioxanes (POSSs),
(RSiO1.5)n, are intermediates between silica (SiO2) and sili-
cone (R2SiO); they comprise a hydrophobic inorganic core
covered externally by organic substituents [1–6]. Recently,
organic/inorganic hybrid nanocomposites based on POSS
derivatives have attracted considerable interest [7–10]
because they exhibit several advantageous properties
resulting from the unique physical properties of POSS
nanoparticles (NPs) [1,2,11–13]. Through appropriate
design of their architectures, POSS derivatives can be
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tailored for specific applications [14–16]. The presence of
POSS derivatives can improve quantum efficiencies,
improve the thermal stability of conjugated polymers, sup-
press the aggregation of conjugated groups, and enhance
photoluminescence (PL) and electroluminescence (EL) per-
formance [17–22].

Sellinger et al. [21,23] used Heck coupling to synthesize a
POSS derivative containing eight octavinyl groups and
explored its application in electroluminescent devices. Jab-
bour et al. [24] and Shim et al. [22] synthesized POSS deriv-
atives containing eight chromophore groups and reported
that they enhanced the EL emissive properties and quan-
tum efficiencies of the host through energy transfer. Xiao
et al. [25] used Grignard chemistry to synthesize an oligo-
phenylene-functionalized POSS. Kawakami et al. [26]
reported that a POSS derivative containing eight carbazole
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groups enhanced the PL properties of poly(9-vinylcarbaz-
ole) (PVK), but they did not develop it into an electrolumi-
nescent device.

In previous studies, we found that the incorporation of
POSS derivatives improves the properties of several poly-
meric matrixes [27–32]. In this study, we prepared a new
POSS derivative, POSS-C11-Cz, that contains eight
3,9-ethylcarbazole groups and exhibits good optical and
electroluminescence properties and high electrochemical
stability. The linkage of the carbazole units via alkyl chain
spacers to the POSS cage suppresses their aggregation.
POSS-C11-Cz is a blue light-emitting NP possessing a suit-
able glass transition temperature for fabrication into solid
state devices; it enhances the color stability of blue light-
emitting polyfluorenes through energy transfer [33–39].

2. Experimental

2.1. Materials

3-Amino-9-ethylcarbazole (AECz) was purchased from
Acros Organics (USA) and recrystallized from cyclohex-
ane. 10-Undecenoyl chloride and platinum-divinyltetra-
methyldisiloxane complex (Pt-dvs, the hydrosilylation
catalyst) were obtained from Aldrich (USA). Octakis(dim-
ethylsilyloxy)-POSS (Ot-POSS) was purchased from
Hybrid Plastics (USA). Acryloyl chloride was purchased
from Alfa Aesar (USA) and used as received. Poly(9,90-
dioctylfluorene) (POF) was synthesized through Suzuki
coupling according to a procedure described previously
[70,71]. Gel permeation chromatography (GPC) analysis
indicated that the molecular weight of POF was ca.
20,000 g mol�1, with a polydispersity index (PDI, Mw/
Mn) of 1.2. All solvents were purchased from TEDIA
(USA) and distilled over CaH2 prior to use. All other
chemicals were used as received without purification.

2.1.1. N-(9-Ethyl-carbazol-3-yl)undec-10-enamide (Cz-
C11ene)

AECz (2 g, 9.5 mmol, 100 mol.%) and triethylamine
(0.96 g, 9.5 mmol, 100 mol.%) were dissolved in dry tetra-
hydrofuran (THF, 60 ml) and then the mixture was cooled
to 0 �C in an ice bath. A solution of 10-undecenoyl chloride
(2.7 g, 14.3 mmol, 150 mol.%) in dry THF (20 ml) was
added dropwise to this mixture over a period of 1 h; the
reaction was left to proceed at 0 �C for 3 h and then at
room temperature for an additional 8 h. Finally, the reac-
tion mixture was filtered, the solvent evaporated and the
residue purified through chromatography (SiO2; 20% hex-
ane/ethyl acetate) to give Cz-C11ene (3.18 g, 89%) as a gray
powder. M.p.: 115 �C; 1H nuclear magnetic resonance
(NMR) (300 MHz, CDCl3, 25 �C): d = 8.30 (s, 1H; NH),
8.06 (d, J = 7.70 Hz, 1H; Ar-CH), 7.51–7.10 (m, 7H; Ar-
CH), 5.91–5.70 (m, 1H; CH), 4.97 (dd, J1 = 28.20 Hz,
J2 = 14.52 Hz, 2H; CH2), 4.31 (dd, J = 7.17, 14.34 Hz,
2H; CH2), 2.40 (t, J = 7.53 Hz, 2H; CH2), 2.05–1.98 (m,
2H; CH2), 1.77-1.71 (m, 2H; CH2), 1.49–1.20 (m, 13H;
CH2, CH3) ppm; 13C NMR (75 MHz, CDCl3, 25 �C):
d = 171.5, 160.6, 139.6, 137.28, 129.8, 125.9, 123.3, 120.8,
120.1, 118.8, 114.3, 113.0, 108.7, 108.4, 37.9, 37.7, 34.0,
29.5, 29.3, 29.1, 26.0, 14.0 ppm; LRMS (EI): m/z 376
[M]+; elemental analysis: calcd (%) for C25H32N2O: C,
79.75; H, 8.57; N, 7.44. Found: C, 79.07; H, 8.50; N, 7.61.

2.1.2. POSS-C11-Cz

A solution of Pt-dvs (0.1 ml, 200 ppm) was injected via
syringe into a solution of Ot-POSS (0.51 g, 0.5 mmol,
100 mol.%) and Cz-C11ene (1.89 g, 5 mmol, 100 mol.%)
in dry toluene (15 ml). The mixture was stirred at 80 �C
under an argon atmosphere until the Si–H peak
(2140 cm�1) disappeared completely (2 h). After cooling
to room temperature, the mixture was filtered and the solid
washed several times with toluene and then dried under
vacuum to yield POSS-C11-Cz (1.90 g, 95%); 1H NMR
(300 MHz, CDCl3, 25 �C): d = 8.23 (br, 8H; NH), 8.06–
7.90 (m, 8H; Ar-CH), 7.51–7.10 (m, 48H; Ar-CH), 4.13
(m,16H; CH2), 2.40 (m,16H; CH2), 1.73 (m,16H; CH2),
1.28 (m, 136H; CH2, CH3), 0.60–0.42 (m, 16H; CH2),
0.13 (m, 48H; CH3) ppm; 13C NMR (75 MHz, CDCl3,
25 �C): d = 171.5, 160.6, 137.28, 129.8, 125.9, 123.3,
120.8, 120.1, 118.8, 113.0, 108.7, 108.4, 37.9, 37.7, 34.0,
29.5, 29.3, 29.1, 26.0, 23.3, 18.0, 14.0, 0.0 ppm; matrix-
assisted laser desorption/ionization time-of-flight mass
spectrometry (MALDI-TOF): m/z 4051.535 [M + Na]+;
elemental analysis: calcd (%) for C216H312N16O28Si16: C,
64.37; H, 7.80; N, 5.56. Found: C, 64.08; H, 7.83; N, 5.29.

2.1.3. 3-Acrylamide-9-ethylcarbazole (AcrCz)

A solution of acryloyl chloride (1.3 g, 14.3 mmol,
150 mol.%) in dry THF (20 ml) was added dropwise over
a period of 1 h to a solution of AECz (2 g, 9.5 mmol,
100 mol.%) and triethylamine (0.96 g, 9.5 mmol,
100 mol.%) in dry THF (60 ml) while cooling at 0 �C in
an ice bath. The reaction mixture was stirred at 0 �C for
3 h and then at room temperature for an additional 8 h.
After evaporating the solvent, the residue was partitioned
between CH2Cl2 (100 ml) and 0.1 N sodium carbonate.
The organic extract was dried (MgSO4) and evaporated
to dryness; the residue was purified through chromatogra-
phy (SiO2; 10% hexane/ethyl acetate) to give AcrCz (1.88 g,
75%) as a gray powder. M.p.: 179 �C; 1H NMR (300 MHz,
CDCl3, 25 �C): d = 8.38 (s, 1H; NH), 8.04 (d, J = 7.73 Hz,
1H; Ar-CH), 7.78–7.15 (m, 6H; Ar-CH), 6.49 (d,
J = 7.73 Hz, 1H; CH), 6.37–6.24 (dd, J = 1.22, 9.98 Hz,
1H; CH), 5.76 (d, J = 7.73 Hz, 1H, CH), 4.34 (dd,
J = 7.17, 14.34 Hz, 2H; CH2), 1.38 (m, 3H; CH3) ppm;
13C NMR (75 MHz, CDCl3, 25 �C): d = 163.8, 150.6,
137.4, 131.6, 129.6, 127.4, 126.1, 123.2, 122.9, 120.9,
119.5, 119.0, 113.1, 108.7, 37.6, 14.0 ppm; LRMS (EI):
m/z 264 [M]+; elemental analysis: calcd (%) for
C17H16N2O: C, 77.25; H, 6.10; N, 10.60. Found: C,
76.60; H, 6.12; N, 10.27.
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2.1.4. Poly(3-acrylamide-9-ethylcarbazole) (PACz)

A mixture of AcrCz (1 g, 3.8 mmol) and 2,2́-azobisi-
sobutyronitrile (AIBN, initiator, 5 wt.%) was stirred at
140 �C in a mixture of dry N,N-dimethylformamide
(DMF, 7 ml) and toluene (3 ml) under an argon atmo-
sphere for 24 h. The product, PACz, was obtained as a
slightly gray powder after precipitation into methanol.
The molecular weight and the polydispersity index (PDI,
weight-average molecular weight (Mw)/number-average
molecular weight (Mn)) of the PACz polymer, obtained
from GPC analysis, were ca. 20,000 g mol�1 and 2.04,
respectively. Conversion: 96%; 1H NMR (300 MHz,
CDCl3, 25 �C): d = 8.38 (br, NH), 8.04–6.19 (br, Ar-CH),
3.78 (br, CH2), 2.07 (br, CH), 1.25 (br, CH3), 0.89 (br,
CH2) ppm; elemental analysis: calcd (%) for C, 77.25; H,
6.10; N, 10.60. Found: C, 77.01; H, 6.24; N, 10.11.

2.2. Characterization

2.2.1. Nuclear magnetic resonance spectroscopy
1H and 13C NMR spectra were recorded at 300 and

75 MHz, respectively, using a Varian Inova 300 MHz spec-
trometer equipped with a 9.395-T Bruker magnet. The
samples (ca. 5 mg for 1H NMR; ca. 20 mg for 13C NMR)
were dissolved in deuterated solvent and analyzed at room
temperature.

2.2.2. Gel permeation chromatography

The Mw, Mn and PDI (Mw/Mn) were measured using a
Waters 410 GPC system equipped with a refractive index
detector and three Ultrastyragel columns (100, 500, and
1000 Å) connected in series. DMF was the eluent; the flow
rate was 0.6 ml min�1. The system was calibrated using
polystyrene standards.

2.2.3. Elemental analysis

The carbon, hydrogen and nitrogen atom contents of
the samples were obtained using a CHN-O-Rapid elemen-
tal analyzer (Foss. Heraeus, Germany).

2.2.4. Gas chromatography/mass spectrometry

Gas chromatography/mass spectrometry spectra were
acquired using a Micromass Trio 2000 mass spectrometer
(Micromass, Beverly, MA).

2.2.5. Matrix-assisted laser desorption/ionization time-of-
flight mass spectrometry

MALDI-TOF mass spectra were recorded using a Bru-
ker AutoFlex spectrometer equipped with a 337 nm N2

laser (over 20 Hz).

2.2.6. Thermogravimetric analysis

Thermogravimetric analysis (TGA) was performed
using a TA Instruments TGA 2050 thermogravimetric ana-
lyzer operated at a heating rate of 20 �C min�1 from room
temperature to 800 �C under a continuous flow of nitrogen.
2.2.7. Differential scanning calorimetry

Differential scanning calorimetry (DSC) was performed
using a DuPont 910 DSC-9000 controller operated under
an atmosphere of dry N2. The samples were weighed (ca.
5–10 mg) and sealed in an aluminum pan, then heated from
�100 to +200 �C at a scan rate of 20 �C min�1. The glass
transition temperature was taken as the midpoint of the
heat capacity transition between the upper and lower
points of the deviation from the extrapolated glass and
liquid lines.

2.2.8. Wide-angle X-ray diffraction

Wide-angle X-ray diffraction (WAXD) spectra of pow-
ders were obtained using a Rigaku D/max-2500 X-ray dif-
fractometer. The radiation source was Ni-filtered Cu Ka

radiation at a wavelength of 0.154 nm. The voltage and
current were set at 30 kV and 20 Ma, respectively. The
sample was mounted on a circular sample holder; the data
were collected using a proportional counter detector over
the 2h range from 2� to 50� at a rate of 5� min�1. Bragg’s
law (k = 2d sinh) was used to compute the d-spacing corre-
sponding to the complementary behavior.

2.2.9. Scanning electron microscopy

Scanning electron microscopy (SEM) images were
obtained using a JEOL-7401F field emission SEM micro-
scope operated at 15 kV. The sample for SEM investiga-
tion was prepared by placing a drop of the sample
solution onto a wafer and then evaporating the solvent
(THF).

2.2.10. Cyclic voltammetry

Cyclic voltammetry was performed using a BAS 100 B/
W electrochemical analyzer operated at a scanning rate of
100 mV s�1 in dichloromethane. Each sample contained
0.1 M tetrabutylammonium hexafluorophosphate as a sup-
porting electrolyte in a cell equipped with a platinum work-
ing electrode. The potential were measured against an Ag/
Ag+ (0.01 M AgNO3) reference electrode. Ferrocene was
the internal standard.

2.2.11. Ultraviolet–visible and photoluminescence spectra

Ultraviolet–visible (UV–vis) and PL spectra were mea-
sured using an HP 8453 diode-array spectrophotometer
and a Hitachi F-4500 luminescence spectrometer,
respectively.

2.2.12. Light-emitting devices

Devices were fabricated in the configuration ITO/
poly(3,4-ethylene dioxythiophene) (PEDOT, 35 nm)/poly-
mer (ca. 60 nm)/1,3,5-tris(N-phenylbenzimidazol-2-yl)ben-
zene (TPBI, 30 nm)/LiF (150 nm)/Al (100 nm). The
PEDOT layer was used as a hole injection layer to facilitate
hole conduction, and also to smoothen the relatively rough
ITO layer. The TPBI layer deposited through thermal
evaporation was employed as an electron-transporting



5 10 15 20 25 30 35 40 45 50

θ

Cz-C11ene

In
te

ns
it

y 
(a

.u
.)

2 (degrees)

1.33 nm 0.47 nm

POSS-C11-Cz

Fig. 1. WXRD data for POSS-C11-Cz and Cz-C11ene.

C.-C. Cheng et al. / Acta Materialia 57 (2009) 1938–1946 1941
and hole-blocking layer. The device was characterized fol-
lowing procedures described previously [36,72].

3. Results and discussion

3.1. Synthesis and characterization of POSS-C11-Cz

We synthesized the electroluminescent NP POSS-C11-
Cz through the hydrosilation reaction (Scheme 1) between
octakis(dimethylsiloxy)silsesquioxane (Ot-POSS) and an
allyl-functionalized Cz-C11ene, which functioned as a hole
transporting organic semiconducting segment [40]. POSS-
C11-Cz was recovered in high yield (95%) after direct filtra-
tion of the cooled mixture; its molecular weight
(Mw = 4028) was consistent with the structure of the mol-
ecule presented in the Experimental section and in the Sup-
porting information. In addition, we also synthesized an
acrylic polymer, poly(3-acrylamide-9-ethyl-carbazole)
(PACz), presenting the carbazole chromophore on its side
chains [41]. POSS-C11-Cz exhibits good solubility in com-
mon organic solvents, such as THF, methylene chloride,
chloroform and chlorobenzene. The formation of a film
of POSS-C11-Cz through solvent-casting onto an indium
tin oxide (ITO) plate was straightforward, suggesting that
this POSS derivative could be applied as a component of
polymer light emitting diodes (PLEDs).[42,43]

Figs. 1 and 2 present the WXRD, TGA and DSC data,
respectively, of Cz-C11ene and POSS-C11-Cz. Cz-C11ene
exhibits several sharp WXRD peaks because of its crystal-
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Fig. 3. SEM image of POSS-C11-Cz; removal of the solvent caused a
bubble, which appears in the form of a light circle.
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indicating that the attachment of Cz-C11ene units to the
POSS cage led to a reduction in the packing of its molecu-
lar chains [25,49]. The TGA curves of POSS-C11-Cz and
Scheme 2. Graphical representation of the well-ordered dispe
Cz-C11ene (Fig. 2) reveal thermal decomposition tempera-
tures (Td, 5 wt.% loss) of 350 and 286 �C, respectively. The
ceramic yield of POSS-C11-Cz at 800 �C was 30% against
the theoretical value of 26%. The unreacted carbon that
was present could account for higher than expected cera-
mic yield, indicating its superior thermal stability.

Previous studies [19,25,50–52] revealed that the diame-
ters of POSS derivatives containing organic chromophores
are equal to or greater than 1.2 nm, and that bonding to
nanosized POSS cages interrupts the aggregation of these
chromophores units, resulting in a reduction of the
rsive structure formed from POSS-C11-Cz in bulk state.
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crystallinity of light-emitting materials, thereby improving
PL and EL efficiencies [53]. The SEM image in Fig. 3 indi-
cates that POSS-C11-Cz was well dispersed, as depicted in
Scheme 2.

3.2. Electrochemical, optical and electroluminescence
properties of POSS-C11-Cz

We anticipated that POSS-C11-Cz, which contains eight
3,9-carbazole groups, would exhibit improved
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Fig. 5. UV–vis absorption and PL emission spectra of POSS-C11-Cz and
PACz in (a) chloroform solution and (b) the solid state.
electrochemical stability of its carbazole units [26,54–57].
Fig. 4 displays the cyclic voltammogram of POSS-C11-
Cz, indicating that the attachment of 3,9-carbazole units
to the POSS cage did not change its original circuit poten-
tial appreciably, i.e. it exhibits high electrochemical stabil-
ity. Thus, the presence of the POSS cage did not affect the
electrochemical properties of 3,9-carbazole [58].

Fig. 5 presents the UV–vis and PL spectra of POSS-C11-
Cz and PACz in chloroform; the wavelengths of maximum
absorption of both POSS-C11-Cz and PACz were 346 nm
in their UV–vis spectra and 390 nm in their PL spectra.
The shape of the PL emission spectrum of POSS-C11-Cz
is substantially different from that of PACz. The emission
wavelength was blue-shifted most likely because the POSS
cage interrupts the aggregation of the chromophore groups
[19]. The PL quantum efficiency (Q) of POSS-C11-Cz in
chloroform, estimated in reference to 9,10-diphenylanth-
rancene (Q = 0.90), was 0.19, nearly identical to that of
Cz-C11ene (Q = 0.20) but substantially higher than that
of PACz (Q = 0.10) in a PVK-based polymer [59]. Carba-
zole groups attached to POSS-Cz-C11 appear to be well
separated by the POSS cage and the long alkyl chain link-
ers; thus, the formation of excimers, which decrease the
quantum yield, was effectively suppressed.

Fig. 5 displays the UV–vis and PL spectra of POSS-C11-
Cz and PACz in the solid state; again, POSS-C11-Cz and
PACz exhibit the same maximum absorptions in their
UV–vis (at 348 nm) and PL spectra (at 390 nm). The max-
imum PL emission of POSS-C11-Cz in the solid state coin-
cides with that in solution, whereas PACz exhibits a main
peak at 390 nm accompanied by a shoulder at ca.
460 nm, implying that the tendency toward forming an
inter-chain excimer formation (460 nm) was decreased
and that aggregation of both the inter-chain and chromo-
phoric segments was also reduced by the presence of the
POSS cages.

Fig. 6 displays the excitation/emission (ex-em) measure-
ments of POSS-C11-Cz; the excitation and emission peaks
are nearly symmetric at 369 nm for the UV–vis spectrum
and at 388 nm for the PL spectrum, respectively. This
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result indicates that the POSS cage simultaneously sup-
presses aggregation of the chromophore groups and
enhances the color stability of the 3,9-carbazole units in
the solid state [22,26].

The electroluminescence of POSS-C11-Cz in a PLED is
deep blue. We assembled the device through sequential
coating of PEDOT (to improve the hole injection),
POSS-C11-Cz (emissive layer), TPBI (electro-transport
material), LiF (electrode) and Al layers onto ITO (trans-
parent anode) [i.e. ITO/PEDOT/POSS-C11-Cz or PACz
(ca. 60 nm)/TPBI/LiF/Al] [36]. Fig. 7a and b displays plots
of the current density and brightness with respect to the
voltage from the device.

The turn-on voltage and maximum EL peak (kEL-max) of
the POSS-C11-Cz-based device were 5.2 ± 0.1 V and
423 ± 1 nm, respectively; the maximum brightness was
45 cd m�2 at 11 V; the maximum external quantum effi-
ciency was 0.06% at a current density of 4.3 mA cm�2.
The maximum external quantum efficiency of the PACz-
based device was 0.02% at a current density of
5.9 mA cm�2. The POSS-C11-Cz-based device exhibited a
higher maximum external quantum than did the PACz-
based device because the POSS cages separate the attached
carbazole groups and suppress aggregation. Interestingly,
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Fig. 7. (a) Voltage–current density (V–I) and (b) voltage–luminance (V–L)
characteristics of devices having the configurations ITO/PEDOT/emissive
layer/TPBI/LiF/Al.
the maximum brightness of the EL obtained from a
POSS-C11-Cz (3 wt.%)/PACz (97 wt.%) blend was twice
that of the PACz-based device, and the turn-on voltage
was reduced from 10.5 to 7.5 V. Thus, a small amount
POSS-C11-Cz acted as an effective dopant to transfer
energy to PACz; therefore, POSS-C11-Cz appears to have
potential for use in improving the quantum efficiency and
color stability of polyfluorenes through blending [33–39].

3.3. Photoluminescence and PLED manufactured through a

POSS-C11-Cz/polyfluorene blend

Polyfluorenes are promising candidates for blue-light
emitting materials because of their high PL efficiency, EL
efficiency and thermal stability [60–62]. Nevertheless, red-
shifted emissions – attributed to either intermolecular inter-
actions leading to the aggregation or the emissive keto
defect sites caused by the thermo- or electro-oxidation of
the polyfluorene backbone – limits their applications in
PLEDs [33–39].

Consistent with the results described in the section
above, we found that a device manufactured by incorporat-
ing a small amount of POSS-C11-Cz into poly(9,90-dioctyl-
fluorene) (POF) exhibited significantly improved color
stability and EL properties. After heating a film composed
of POSS-C11-Cz and POF, we measured the effect of the
incorporation of POSS-C11-Cz on the photoluminescence
properties of POF. The PL spectra (Fig. 8) reveal that
the green emission peak at 530 nm of the POSS-C11-Cz
(3%)/POF (97%) blend in the solid state had a lower inten-
sity than that of the POF polymer itself. The PL stability of
this blend is similar to that of other polyfluorene deriva-
tives [20,63–67], indicating that incorporation of POSS-
C11-Cz into POF polymer reduces the extent of both
aggregation and keto defects of the POF. Fig. 9 presents
plots of the external quantum efficiency with respect to
the current density and the EL spectra of the POF- and
POSS-C11-Cz/POF-based triple-layer LED devices men-
tioned above. The incorporation of POSS-C11-Cz did not
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Fig. 8. PL spectra of spin-coated films of pristine POF, annealed POF and
annealed POF/3% POSS-C11-Cz; annealing conditions: 200 �C, 5 h.
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appreciably change the EL and quantum efficiencies of the
POF. However, the POSS-C11-Cz (3 wt.%)/POF
(97 wt.%)-based device exhibited higher maximum bright-
ness and luminance efficiency than did the POF-based
device because of the doping effect of POSS-C11-Cz
(Fig. 10) [68], which enhanced energy transfer efficiency
from the carbazole chromophore groups on POSS-C11-
Cz to POF and suppressed the aggregation of POF. The
brightness of the POSS-C11-Cz/POF-based device
decreased slightly upon increasing the POSS-C11-Cz con-
tent to 5 wt.% because of an increase in the resistivity of
the light emitting layer. The compatibility of POSS-C11-
Cz and POF was also responsible for this deterioration in
brightness.[69] We are currently investigating the mecha-
nism of deterioration caused by the addition of POSS-
C11-Cz.

4. Conclusions

In summary, we have synthesized, in high yield, a novel
POSS derivative (POSS-C11-Cz) containing eight blue-light
electroluminescent functionalities. This novel POSS deriva-
tive has good thermal stability, electrochemical stability and
film-forming properties. From optical and electrolumines-
cence measurements, we found that attachment to the POSS
cage suppressed aggregation and enhanced the color stabil-
ity of 3,9-carbazole units both in solution and in the solid
state. POSS-C11-Cz also behaves as an effective dopant that
enhances energy transfer from itself to POF. In addition,
POSS-C11-Cz improves the quantum efficiency and color
stability of POF because its presence reduces the degree of
aggregation and the formation of keto defects. A POSS-
C11-Cz (3 wt.%)/POF (97 wt.%)-based device exhibited
higher maximum brightness and luminance efficiency than
did the non-blended POF-based device.
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