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Wavelet Transform Method for Coupled Map Lattices
Cheng Juang, Chin-Lung Li, Y. H. Liang, and Jonq Juang

Abstract—The purpose of this paper is twofold. First, we derive a
necessary and sufficient condition for local synchronization in cou-
pled map lattices (CMLs) with symmetric coupling. In particular,
we also identify the best choice of coupling strength in the sense
that such a coupling strength gives the fastest convergence rate of
initial values toward the synchronous manifold. Furthermore, such
a coupling strength is independent of the choice of the individual
chaotic map. In addition, it is demonstrated that the wavelet trans-
form method, which is proposed by Wei et al., can greatly increase
the applicable ranges of coupling strengths, the parameters of the
individual chaotic map, and the number of nodes for local synchro-
nization of CMLs.

Index Terms—Connectivity topology, synchronization, wavelet
transform.

I. INTRODUCTION

S IMULATION of natural phenomena is one of the most im-
portant research fields, and coupled map lattices (CMLs)

are a paradigm for studying fundamental questions in spatially
extended dynamical systems. This is because of their wide range
of applications such as in turbulence, pattern formation in nat-
ural systems, and solitons. They also exhibit a very rich phe-
nomenology, including a wide variety of both spatial and tem-
poral periodic structures, intermittence, chaos, domain walls,
kink dynamics, etc. As a matter of fact, one of the most inter-
esting aspects of CMLs is the presence of attracting manifolds.
Such attracting manifolds lead to notions such as partial syn-
chronization [1], weak and strong synchronization [2], [3], and
(complete) synchronization [4]–[9].

In continuous coupled chaotic systems, the stably syn-
chronous motion was first studied in [10]. Later, Pecora and
Carroll [11] proposed a master stability function (MSF) to
symmetrically determine the stability of their synchronous
manifold. In the case of full-state coupling, the MSF can
be further reduced to a single inequality
[12], [13], where is the largest Lyapunov exponent of
the single chaotic oscillator, is the coupling strength, and

is the second largest eigenvalue of the coupling matrix
. This necessary and sufficient stability condition

then allows one to achieve the synchronization of identical
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dynamical systems whenever is greater than the critical value
. However, for a typical connectivity topology

such as the diffusively coupled matrix, its moves closer to
the origin as the number of nodes increases. Consequently,
synchronization is more difficult to realize as increases. In
[8], Wei et al. proposed a wavelet transform method to alter
the connectivity topology. In doing so, becomes
a quantity depending on wavelet parameter . It is found
there that a critical wavelet parameter can be chosen to
move away from the origin regardless of the number
of nodes. This, in turn, greatly reduces the size of the critical
coupling strength . Such phenomena are analytically verified
in [14]–[16]. We also remark that, in the case of partial-state
coupling for continuous coupled chaotic systems, even though
the MSF can no longer be further reduced to the single in-
equality, as given earlier, much progresses are still made for
both local synchronization theory (see, e.g., [17] and the ref-
erences cited therein) and global synchronization theory (see,
e.g., [18] and the references cited therein). It should also be
noted that a theory for multiresolution signal decomposition by
using wavelet representation is addressed in [19].

The development of synchronization theory of the discrete
dynamical coupled systems is still at the primitive stage as com-
pared to that of their continuous counterparts. The reason for
the gap between the theory developed in the lattices of coupled
chaotic systems and that of CMLs lies mostly on the fact that it is
more natural to have a nonlinear coupling between oscillators in
CMLs. This is because a nonlinear coupling with suitable range
of coupling strength tends to yield an invariant region for the
corresponding CMLs, while linear coupling cannot. It should be
noted that there is no such problem for the lattices of coupled
chaotic systems. It should also be mentioned that the analytical
results of the lattice of the coupled chaotic systems stated earlier
are linearly coupled. As a result of such nonlinear coupling, the
following different phenomena of CMLs as compared to those
of the lattices of coupled chaotic systems are observed (see, e.g.,
[5]). A stronger coupling strength does not ensure synchroniza-
tion, but it will cause the trajectory of the oscillator to grow out
of bound. Furthermore, synchronization becomes numerically
unobservable even for a modest number of oscillators.

The purpose of this paper is twofold. First, we derive an op-
timal synchronization theory for CMLs (1). In particular, we
have the following results. A necessary and sufficient condition
on coupling strength for local synchronization is obtained. Fur-
thermore, the coupling strength giving the fastest convergence
rate of initial values toward the synchronous state is explicitly
obtained. Such is shown to be independent of the choice of the
individual chaotic map. Moreover, the maximum number of os-
cillators for which the corresponding network would still yield
synchronization can be explicitly obtained. Second, by using
such results, we demonstrate that the wavelet transform method
can greatly increase the applicable range of coupling strength
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and the number of oscillators for local synchronization of cou-
pled chaotic map lattices. The family of quadratic maps is used
as numerical examples.

II. THEORETICAL CONSIDERATIONS

A. Stability Results Without Wavelet Transform Method

The case of CMLs can be described in vector form [6], [7]

(1)

where ; is the unit matrix;
is the coupling strength; is a symmetric coupling matrix
having zero row sums, with zero being a simple eigenvalue;
and . Here, de-
scribes the chaotic dynamics of an individual oscillator. Let

be the eigenvalues of the coupling
matrix . It was shown, e.g., [6], that if

(2)

for all the nonzero eigenvalues . Note that the second largest
eigenvalue alone is not enough to ensure that all other eigen-
values satisfied (3). To achieve synchronization of CMLs, we
need to find so that the maximum of
is a minimum, i.e., to solve a min–max problem of the form

(3)

To find such saddle point , let , , be real
numbers so that

(4)

Solving for (3), we have or . It
then follows that, for fixed

(5)

occurred at . Let be indexes so that
for all . We have that

occurred at . Taking the fact that , , are all
negative, we conclude that , which is to be called
the synchronization index of the system. The aforementioned
results are summarized as follows.

Theorem 1: The min–max problem (3) can be achieved when
, . Consequently, system (1) is (lo-

cally) synchronized if and only if

(6)

If (6) holds, then there exists an optimal neighborhood
of so that (1) is (locally) synchronized whenever .
Here

(7)

The interval (if it exists) is optimal in the sense that if
is not in , then system (1) will not acquire (local) synchro-
nization. Moreover, , which is independent of the choice

of the individual chaotic map, is the best choice of coupling
strength for local synchronization of (1) in the sense that such
a coupling strength gives the fastest convergence rate of initial
values toward the synchronous manifold.

Remark 1: The interval is first derived in [5]. Our
approach here gives the optimal coupling strength , which
is independent of the choice of the individual chaotic map.
Since , it is then clear that as
the number of oscillators increases, approaches to one.
Consequently, (6) cannot be fulfilled, provided that is large.
Hence, to achieve synchronization of (1), one has to place a
limit on the number of oscillators considered. Using (6), one
should be able to find the maximum number of oscillators
satisfying (6). From here on, and are to be called
the synchronization interval and the Lyapunov index of the
system, respectively. The length of is denoted by .
Apparently, a larger gives a better applicable range of
coupling strength.

B. Stability Results With Wavelet Transform Method

How the wavelet transform method [12] affects the stability
of synchronous manifold of (1) is discussed in this part. Let the
number of nodes be equal to . Write as

...
. . .

...

Here, the dimension of each block matrix is . By
an -scale wavelet operator [12], [20], the matrix is trans-
formed into of the form

...
. . .

...

where each entry of is the average of entries of , ,
. After reconstruction [12], the coupling matrix be-

comes . Here, is a wavelet parameter. In summary,
the effects of the wavelet transform method can be viewed as the
changes of the eigenvalues of the coupling matrix [13] and vary
dramatically for different ’s. The eigenvalues of
are denoted by , with

. Clearly, Theorem 1 is still valid for such new coupling
matrix. Note that the corresponding , , , and
now depend on the wavelet parameter as well. To emphasize
such dependence, we shall write , , , and as

, , , and , respectively.

III. NUMERICAL RESULTS

A. (No Improvement)

The effects of the wavelet transform method can be viewed
as the changes of the eigenvalues of the coupling matrix and
vary dramatically for different 's. Consider the quadratic map

diffusively coupled with periodic boundary
conditions for . Fig. 1(a) shows the calculated eigen-
values of the coupling matrix as a function of wavelet pa-
rameter . The coupling matrices before and after reconstruc-
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(a) (b)

(c) (d)

(e)

Fig. 1. (a) Eigenvalues � ��� of the coupling matrix as a function of wavelet parameter � for � � �. The solid line is � ���, while the dotted line is � ���.
(b) Synchronization index of the coupling matrix as a function of wavelet parameter � . (c) Theoretical predicted synchronization intervals which are in agreement
with Fig. 1(d) and (e). (d) Numerically produced intervals of synchronization without the wavelet transform method. (e) Numerically produced intervals of synchro-
nization with �� � ���� the wavelet transform method. The theoretically predicted synchronization interval is shown in Fig. 1(c). Fig. 1(e) shows synchronization
intervals �� � �� with and without �� � ���� the wavelet transform method via computer simulation. The dark, gray, and white regions represent in complete
synchronization, partial synchronization, and out of synchronization, respectively. The dark areas around � � ���� and � � ��	
 are caused by periodic windows.
They are consistent with the results of Fig. 1(a)–(c), where � � ��� �
.

tion are denoted by , with
and , respectively, where

The solid line is , while the dotted line is . Note
that as is increased, a crossing appears at . This
crossing makes the analytical identification of a diffi-
cult task. Thus, the optimal is numerically determined from
Fig. 1(b), where , the synchronization index, is obtained
from Fig. 1(a). According to (6), is the number
for which is a minimum. Fig. 1(b) shows that

. Thus, it is clear that no enhancement of syn-
chronization is expected.

B. (Significantly Improved)

For , the enhancement of synchronization is shown.
Fig. 2(a) shows the eigenvalues of the coupling matrix
as a function of wavelet parameter , where

if

if

otherwise.
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(a) (b)

(c) (d)

(e) (f)

(g)

Fig. 2. (a) Eigenvalues � ��� of the coupling matrix as a function of wavelet parameter � for � � �. (b) Synchronization index of the coupling matrix as
a function of wavelet parameter � . (c) Lyapunov index versus growth rate. (d) White region gives the synchronization intervals, as stated in (8), for � � �.
(e) White region gives the synchronization intervals, as stated in (8), with � � ����. (f) Numerically produced synchronization intervals without the wavelet
transform method. (g) Numerically produced synchronization intervals with �� � ����� the wavelet transform method for � � �.

Note that two crossing points appear. Similarly, the synchro-
nization index is shown in Fig. 2(b). It is observed that

. Thus, using an optimal (in the min
region), it is expected to have a significant improvement over

according to Theorem 1.

Given the optimal , the effects of the wavelet transform
method on synchronization with different growth rates and cou-
pling strengths are further investigated. The quantities obtained
in Theorem 1 produced those shown Fig. 2(b) and (c). Fig. 2(c)
shows the Lyapunov index of system (1) with
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and . These two graphs are identical with a vertical
shift. It is seen, via Fig. 2(c), that if , so as

, then the local synchronization is lost without the
wavelet transform method. However, with the wavelet transform
method , for all 's, and so, the local
synchronization of (1) is preserved. Figs. 2(d) and (e) shows the
optimal length of the coupling strength as a function of growth
rate without the transform and with the optimal trans-
form , respectively.

The numerical simulation for obtaining the interval of syn-
chronization recorded in Fig. 2(f) and (g) again confirms our the-
oretical prediction earlier. Without the transform , there
is a narrow region for complete synchronization. In dark areas
around and 3.85, each cell shows a periodic window
type of behavior. In gray areas, different initial conditions give
rise to different scenarios of partial synchronization (for ex-
ample, even/odd cells are synchronized). With the wavelet trans-
form method, there is a very significant increase in dark areas
as compared to those in Fig. 2(f). The applicable ranges of cou-
pling strengths and growth rates are significantly improved. The
numerically produced Fig. 2(f) and (g) is in agreement with our
theoretically predicted Fig. 2(d) and (e).

C. (Effects on Large )

The wavelet transform method is most dramatic for a large
number of oscillators. Fig. 3(a) shows the maximum number
of oscillators for which the local synchronization of the system
with or without the wavelet transform method can still be sus-
tained. The numbers are obtained by solving (6). It is seen, via
Fig. 3(a), that the good improvement on the maximum number
of oscillators allowed is there even without choosing the op-
timal . The graphs in Fig. 2(a) are decreasing with respect
to the growth rate of the map, except at those ’s yielding the
window behavior.

As increases, the dominant eigenvalue approaches zero.
Hence, local synchronization becomes unobservable. Further-
more, the change of the dominant eigenvalue due to the wavelet
transform method is very significant. Fig. 3(b) shows that if

, then system (1) ac-
quires synchronization with and . However, it
is easily verified from (6) that if , then the maximum
number of oscillators allowed for synchronization without the
wavelet transform method is . From Fig. 3(b), it is also
seen that if , then system (1) achieves
synchronization with . It should be noted that in pro-
ducing Fig. 3(b). only the end points of synchronization inter-
vals are recorded. For those ’s, where , exhibiting
the window behavior, the end points of synchronization inter-
vals lie outside the interval (0.1, 0.5).

With the wavelet transform method, global synchronization
can be achieved for . In the case of , the trans-
form enhances the synchronization effect. In this case, there is
a very significant region, as shown in the dark areas in Fig. 3(c).
Without the transform, synchronization for such a large number
of oscillators would not be possible. This demonstrates the dra-
matic effects of the transform with relatively large .

(a)

(b)

(c)

Fig. 3. (a) Maximum number of oscillators allowed for which (1) acquires syn-
chronization. (b) Lyapunov index versus growth rate. Here, � � ������ and
� � �������. (c) Numerically produced synchronization interval with� � �

and � � ��.

IV. CONCLUSION

The optimal coupling strength of CMLs with symmetric cou-
pling can be analytically obtained. In particular, we also iden-
tify the best choice of coupling strength in the sense that such
a coupling strength gives the fastest convergence rate of ini-
tial values toward the synchronous manifold. Furthermore, such
a coupling strength is independent of the choice of the indi-
vidual chaotic map. It should be noted that due to the nonlinear
coupling for CMLs, both the second largest and the smallest
values play a role in determining the synchronization interval.
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This, in turn, places a limit on the number of oscillators for ac-
quiring synchronization, no matter how we choose the coupling
strengths. Based on those results, the theory of the wavelet trans-
form method on system (1) can be predicted numerically. The
family of quadratic maps is then used to demonstrate that the
wavelet transform method can greatly increase the applicable
ranges of coupling strengths, the parameters of the individual
chaotic map, and the number of nodes for local synchronization
of CMLs.
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